Teck Coal Limited
Water Quality Management
P.O. Box 1777
421 Pine Avenue +1 250 425 808
Sparwood, B.C. Canada V0B 2G0 www.teck.com

+1 250 425 8086 Tel Technical Report Overview

Report: 2022 Coal Mountain Mine Local Aquatic Effects Monitoring Program (LAEMP) Report

Overview: This report summarizes the results of the Coal Mountain mine Local Aquatic Effects Monitoring Program (CMm LAEMP), a study that was initiated after benthic invertebrate community diversity and abundance was found to be lower than expected downstream of Coal Mountain.

This report was prepared for Teck by WSP Canada Inc.

For More Information

If you have questions regarding this report, please:

- Phone toll-free to 1.855.806.6854
- Email feedbackteckcoal@teck.com

Future studies will be made available at teck.com/elkvalley.

REPORT

2022 Coal Mountain Mine Local Aquatic Effects Monitoring Program (LAEMP) Report (EVP S8-3-3 and 9-5)

Submitted to:

Teck Coal Limited

Sparwood, British Columbia Attn.: Cybele Heddle

Submitted by:

Distribution List

Electronic Copy - Teck Coal Limited - Coal Mountain mine

Electronic Copy - WSP

Electronic Copy - Minnow Environmental Inc.

Electronic Copy - Environmental Monitoring Committee

i

Executive Summary

Teck Coal Limited (Teck) conducts several programs to monitor and evaluate potential effects of mining operations in the Elk Valley on aquatic receptors. Some of these programs, such as the water quality monitoring and regional aquatic effects monitoring program (RAEMP), provide spatially and temporally comprehensive monitoring and assessment of potential effects, whereas many other programs are designed with targeted spatial and/or temporal coverage. Teck conducts local aquatic effects monitoring programs (LAEMPs) to address local scale uncertainties associated with potential mine related aquatic effects. The study questions addressed by the LAEMPs are unique to each program and distinct from those of the regional programs, such as the RAEMP. The overarching objective of all LAEMPs is to reduce uncertainty and thereby support effective environmental management decisions. Therefore, as study questions are answered and uncertainty is reduced, LAEMPs are intended to eventually be discontinued.

A LAEMP was initiated for Teck's Coal Mountain Mine (CMm; currently in care and maintenance) in 2018 "to assess the magnitude and extent of influence from CMm on water quality, calcite, and benthic invertebrate communities downstream of CMm, and to assess what factors are contributing to the observed effects" (per 25 August 2018 and 4 April 2019 amendments to Permit 107517). Sediment and benthic invertebrate tissue selenium (BIT Se) are also monitored under the CMm LAEMP to support the interpretation of potential effects to the benthic invertebrate community (BIC). Sampling began at the CMm study sites in September 2018 and was repeated annually in September between 2019 and 2022.

There are two study questions considered for the CMm LAEMP.

Study Question 1

Study Question 1. What are the magnitude and spatial extent of influence from CMm on water quality, calcite, sediment quality, and benthic invertebrate communities in Michel Creek downstream of CMm, how are these conditions changing over time, and are the conditions expected?

The highest concentrations of mine-influenced water quality constituents were observed at the station closest to CMm on Corbin Creek (CORCK), followed by the first station downstream of CMm on Michel Creek (0.94 kilometres [km] downstream of the Corbin Creek confluence; MIDCO). A declining gradient of concentrations with distance downstream was observed for most mine-influenced water quality constituents; for nickel in particular, concentrations returned to reference conditions after MIDAG (5.27 km downstream of the Corbin Creek confluence). Dissolved nickel concentrations increased between 2012 and 2018, and then decreased between 2018 and 2022 as expected based on changes in mine water management with the transition to Care and Maintenance. In 2022, nickel was the only constituent identified as having the potential to cause effects to the BIC in Michel Creek. Peak nickel concentrations exceeded the proposed level 3 nickel benchmark at CORCK and MIDCO, and exceeded the proposed level 2 nickel benchmark at MIDAG. At other reference and mine-influenced stations, nickel concentrations were below the proposed level 1 nickel benchmark.

Calcite presence in 2022 in Corbin Creek was higher than in Michel Creek, where it remained consistently low in 2022 compared to previous years and was within the regional normal range.

Sediment metal and polycyclic aromatic hydrocarbon (PAH) concentrations in 2022 were generally within the range measured in previous years. Both metal and PAH concentrations were above the lower British Columbia

working sediment quality guidelines (BC WSQG) at both reference and mine influenced stations in 2022, and a subset of these were above the upper BC WSQG at CORCK and at stations downstream of CORCK on Michel Creek (MIDCO, MIDAG and MIULE). As with water quality, the highest concentrations in sediment generally occurred at CORCK and then decreased downstream. Sediment quality is considered unlikely to affect BIC due to the predominantly erosional habitat and limited potential for exposure to sediment-associated constituents.

In 2022, organoselenium was below detection at the CM_MC2, with the exception of samples collected in the third quarter of 2022, where MeSe IV was detected above the Level 1 screening value but below the Level 2 screening value. At concentrations below 0.025 µg/L, organoselenium is unlikely to cause a discernable shift in benthic invertebrate selenium concentrations (ADEPT et al. 2023). Concentrations of BIT Se were within the regional normal range at reference and almost all mine influenced stations in 2022 and did not exhibit a spatial pattern consistent with observed effect to the BIC. BIT Se concentrations were less than the lowest level 1 benchmark at all stations, below the biological trigger thresholds, and lower than expected based on water quality data from stations on Corbin and Michel creeks. Based on these results, selenium concentrations are not expected to negatively impact the BIC or fish communities in Michel Creek; therefore, BIT Se does not need to be tracked under the Adaptive Management Plan framework at stations on Michel Creek within the CMm LAEMP study area.

Richness and abundance of BIC were similar among reference and mine-influenced stations and were generally within or above the site-specific and/or regional normal ranges in Michel Creek in 2022. The proportion of Ephemeroptera, Plecoptera and Trichoptera taxa (% EPT) and proportion of Ephemeroptera taxa (% E) were lower at CORCK and MIDCO compared to the downstream and reference stations and below the regional and site-specific normal ranges in 2022. All other stations on Michel Creek had % EPT and % E values within the normal ranges. Benthic invertebrate endpoint values in 2022 were not significantly lower compared to previous years at mine-influenced stations. Ephemeroptera dominated the communities at mine-influenced stations in Michel Creek and at the reference stations, except at MIDCO and CORCK, where Diptera dominated. At MIDCO, the reduction in % E (but not E abundance) appears related to increases in more tolerant taxa (e.g., increase in Diptera abundance) rather than a decline in more sensitive taxa (i.e., no observed change in Ephemeroptera abundance). These patterns in BIC endpoints indicate that the mine-related influence on EPT taxa is localized to the area immediately downstream of CMm. BIC endpoints were all within the regional and site-specific normal ranges by MIDAG, which is 5.27 km downstream of the Corbin Creek confluence.

Overall, in Michel Creek, water quality (as indicated by reductions in nickel concentrations) is improving, as expected based on the SRK modelled data. Calcite is within the regional normal range. Sediment quality data were generally within the range measured in previous years and declined in a downstream gradient from the Corbin Creek confluence in Michel Creek. In general, BIC endpoints and BIT Se concentrations were within or above the regional and/or site-specific normal ranges in 2022, except for % EPT and % E, which were below normal ranges at the station closest to the Corbin Creek confluence, indicating the effects on the BIC are localized to the area around CMm.

Study Question 2

Study Question 2. How do spatial and temporal patterns in the benthic invertebrate communities correspond to water quality, calcite, sediment quality, and other potential stressors, and what does this tell us about what factors are causing observed effects?

Habitat variables (e.g., water depth, velocity, sediment particle size, and TOC) were similar between reference and mine-influenced stations and were unlikely to have caused the differences observed in % EPT and % E at the stations downstream of CMm in Michel Creek. It is also unlikely that calcite presence and concretion in Michel

Creek was a factor in the lower % EPT and % E at MIDCO, because calcite index values were low between 2012 and 2022 and within the reference normal range in Michel Creek. However, calcite presence may have been a factor in effects observed in BIC endpoints in Corbin Creek because the presence of calcite in Corbin Creek may reduce habitat availability for benthic invertebrates.

Spatial and temporal patterns in BIC endpoints corresponded more closely with mine-influenced water quality than with sediment quality or calcite, supporting the interpretation that observed patterns in the BIC are linked to water quality. Spatial comparisons indicated correlations of % EPT and % E with aqueous concentrations of nickel across stations and nickel was the only water quality constituent with concentrations in Michel Creek above invertebrate benchmarks. In 2022, peak nickel concentrations were above the proposed level 3 nickel benchmark for invertebrates in Corbin Creek (CORCK) and at the first Michel Creek station downstream of CMm (MIDCO; 0.94 km downstream of the Corbin Creek confluence), and above the proposed level 2 nickel benchmark for invertebrates at Michel Creek downstream of Andy Good Creek (MIDAG; 5.27 km downstream of the Corbin Creek confluence). Stations downstream of MIDAG had nickel concentrations below the proposed level 1 nickel benchmark for invertebrates. Patterns of % E relative to nickel concentrations were consistent with those described in the nickel benchmark derivation (WSP Golder 2022c).

Early studies in the area further support the interpretation that nickel is responsible for observed BIC changes. The findings of the 2019 to 2022 CMm LAEMPs and the chronic toxicity testing program support findings that nickel is likely responsible for the BIC changes. Results of the 2022 LAEMP suggest that BIC effects from nickel in Michel Creek are localized near CMm on Michel Creek and do not extend farther on Michel Creek than 5.27 km downstream.

Conclusions and Recommendations

The study questions for the CMm LAEMP have been adequately addressed and it is considered unlikely that further investigation will provide any new insights or change the interpretation outlined in this LAEMP report. Confidence in this conclusion is strengthened by the incorporation of results from the comprehensive analysis used to derive site-specific benchmarks for nickel (WSP Golder 2022c), the reproducibility of results across multiple study years (Golder 2019; 2020a; 2021a; WSP Golder 2022a), and the corroboration of data across multiple lines of evidence (e.g., water quality, toxicity testing, BIC monitoring). Further, the results of the 2022 CMm LAEMP are supported by findings from other monitoring conducted by Teck such as the routine water quality and chronic toxicity monitoring programs.

It is recommended that monitoring of the aquatic environment at CMm continue, to provide a basis for tracking expected improvement over time related to mine water management and other factors, and to allow detection of potential unexpected changes. However, the study questions for ongoing monitoring align with those of the regional monitoring programs, and it is therefore recommended that further monitoring, interpretation, and reporting be conducted under the RAEMP, calcite, surface water quality, and chronic toxicity monitoring programs. Because the CMm LAEMP study questions have been answered, it is recommended that reporting under the CMm LAEMP be discontinued.

Table of Contents

1.0	INTRO	ODUCTION	1
	1.1	Background	1
	1.2	Study Questions and Scope	3
	1.3	Linkages to Adaptive Management	3
	1.4	Site Activities and Water Management at CMm	5
	1.5	Conceptual Site Model	7
	1.6	Incorporating Feedback from the Environmental Monitoring Committee	10
	1.7	Report Organization	10
2.0	METH	IODS	10
	2.1	Water Quality	15
	2.1.1	Sample Collection	15
	2.1.2	Laboratory Analysis	15
	2.1.3	Data Analysis	15
	2.2	Calcite Index	16
	2.2.1	Sample Collection	17
	2.2.2	Data Analysis	17
	2.3	Sediment Quality	18
	2.3.1	Sample Collection	18
	2.3.2	Laboratory Analysis	18
	2.3.3	Data Analysis	18
	2.4	Benthic Invertebrate Tissue	18
	2.4.1	Sample Collection	18
	2.4.2	Laboratory Analysis	19
	2.4.3	Data Analysis	19
	2.5	Physical Habitat Characteristics	19
	2.6	Benthic Invertebrate Community	19

	2.6.1	Sample Collection	19
	2.6.2	Laboratory Analysis	20
	2.6.3	Data Analysis	20
	2.7	Quality Assurance and Quality Control	24
	2.8	Related Aquatic Programs	24
3.0	RESU	LTS	24
	3.1	Water Quality	24
	3.1.1	Data Screening	24
	3.1.2	Spatial Trends	27
	3.1.3	Projections and Temporal Trends	28
	3.1.4	Seasonal Variation in Nickel Concentrations in 2022	30
	3.1.5	Water Quality Summary	32
	3.2	Calcite Index	32
	3.3	Sediment Quality	33
	3.3.1	Spatial Trends	33
	3.3.2	Temporal Trends	34
	3.3.3	Sediment Quality Summary	38
	3.4	Benthic Invertebrate Tissue Chemistry	39
	3.5	Physical Habitat Characteristics	40
	3.6	Benthic Invertebrate Community	43
	3.6.1	Richness and Abundance	43
	3.6.2	Community Composition	45
	3.6.3	Ephemeroptera, Plecoptera, Trichoptera Abundance	47
	3.6.4	Ephemeroptera Abundance	49
	3.6.5	Benthic Invertebrate Community Relationships to Habitat Variables and Aqueous Nickel	53
	3.6.6	Benthic Invertebrate Community Summary	55
4.0	Study	QUESTIONS	55
	4.1	Study Question 1	55

	4.2 Study Question 2	58
5.0	DISCUSSION	58
6.0	CONCLUSION AND RECOMMENDATIONS	60
7.0	CLOSURE	61
8.0	REFERENCES	
9.0	STUDY LIMITATIONS	67
TAB	BLES	
Tabl	le 2.1-1: Monitoring Locations and Replication of Sampling Components for the 2022 CMm LAEMP	12
Tabl	le 2.2-1: Elk Valley Benchmarks and Updated Effect Concentrations for Invertebrates	16
Tabl	le 2.6-1: Benthic Invertebrate Community Regional Normal Ranges	21
Tabl	le 2.6-2: Spatial Planned Linear Orthogonal Contrasts for Benthic Invertebrate Community Endpoints	22
Tabl	le 2.6-3: Temporal Planned Linear Orthogonal Contrasts for Benthic Invertebrate Community Endpoint	23
Tabl	le 3.1-1: Summary of Water Quality Screening Exceedances at Stations Downstream of CMm, September 2022	26
Tabl	e 3.3-1: Summary of Sediment Quality Screening Exceedances for Metals at CMm, September 2022	35
Tabl	le 3.3-2: Summary of Sediment Quality Screening Exceedances for Polycyclic Aromatic Hydrocarbons at CMm, September 2022	36
Tabl	le 3.5-1: Habitat Characteristics at Benthic Invertebrate Sampling Stations in the CMm LAEMP Study Area, September 2022	41
Tabl	le 4.1-1: Summary of 2021 CMm LAEMP Results	57
FIGL	URES	
Figu	re 1.1-1: Location of CMm and CMm LAEMP Study Area	2
Figu	re 1.4-1: Timeline of Mining, Water Management, and Monitoring in the CMm Area	6
Figu	re 1.5-1: Conceptual Site Model for the CMm LAEMP	9
Figu	re 2.1-1: Monitoring Locations for the CMm LAEMP	13
Figu	re 2.1-2: Integrated Monitoring Locations for Historical and Recent Sampling Programs near CMm	14
Figu	re 3.1-1: Spatial Variation in Total Nickel Concentrations Collected in the CMm LAEMP Study Area, September 2012 to 2022	27
Figu	re 3.1-2: Weekly Dissolved Nickel Concentrations at CM_MC2 and CM_MC1 (top panel) and CM_CC1 (bottom panel), 2012 to 2022	29
Figu	re 3.1-3: Dissolved Nickel Concentrations (top panel) and the Proportion of the Proposed Level 1 Nickel Benchmark (bottom panel) in the CMm LAEMP Study Area, 2022	31

Figure 3.2-1: Spatial Variation in Calcite Index in the CMm LAEMP Study Area, 2012 to 2022	33
Figure 3.3-1: Spatial Variation in Sediment Metal Concentrations in the CMm LAEMP Study Area, September 2018 to 2022 Notes: WSQG = working sediment quality guideline; mg/kg = milligrams per kilogram dry weight; CMm = Coal Mountain Mine.	37
Figure 3.4-1: Composite Benthic Invertebrate Tissue Selenium Concentrations from the CMm LAEMP Study Area, 2012 to 2022	39
Figure 3.5-1: Mean Particle Size and Total Organic Carbon in Sediment in the CMm LAEMP Study Area, September 2018 to 2022	42
Figure 3.6-1: Benthic Invertebrate Taxonomic Richness in the CMm LAEMP Study Area, September 2012 to 2022	44
Figure 3.6-2: Benthic Invertebrate Abundance in the CMm LAEMP Study Area, September 2012 to 2022	44
Figure 3.6-3: Benthic Invertebrate Community Composition at Reference Stations in the CMm LAEMP Study Area, September 2012 to 2022	46
Figure 3.6-4: Benthic Invertebrate Community Composition at Mine-influenced Stations in the CMm LAEMP Study Area, September 2012 to 2022	46
Figure 3.6-5: Ephemeroptera, Plecoptera, Trichoptera Abundance in the CMm LAEMP Study Area, September 2012 to 2022	48
Figure 3.6-6: Ephemeroptera, Plecoptera, Trichoptera Proportion in the CMm LAEMP Study Area, September 2012 to 2022	48
Figure 3.6-7: Ephemeroptera Abundance in the CMm LAEMP Study Area, September 2012 to 2022	50
Figure 3.6-8: Ephemeroptera Proportion in the CMm LAEMP Study Area, September 2012 to 2022	50
Figure 3.6-9: Benthic Invertebrate Community Composition by Abundance of Major Groups at CMm LAEMP Stations, September 2022	52
Figure 3.6-10: Proportion of Ephemeroptera, Plecoptera, and Trichoptera and Proportion of Ephemeroptera versus Nickel Concentrations (top panels) and versus the Level 1 Nickel Benchmark Toxicity Units (bottom panels) in the CMm LAEMP Study Area, September 2012 to 2022	54

APPENDICES

APPENDIX A

Adaptive Management Plan – Biotriggers

APPENDIX B

Site Conditions and Water Management

APPENDIX C

Integrated Aquatic Programs

APPENDIX D

Water Quality Screening Data

APPENDIX E

Quality Assurance and Quality Control

APPENDIX F

Laboratory Reports

APPENDIX G

Supplemental Figures

APPENDIX H

Calcite Data

APPENDIX I

Sediment Quality Screening Data

APPENDIX J

Field and Habitat Data

APPENDIX K

Benthic Invertebrate Community Data

APPENDIX L

Benthic Invertebrate Tissue Data

Appendix M

Declaration of Competency and Conflict of Interest

Abbreviations and Units of Measure

Abbreviation	Definition
%	percent
<	less than
≤	equal to or less than
>	greater than
μS/cm	microsiemens per centimetre
cm	centimetre
°C	degree Celsius
km	kilometre
m	metre
mm	millimetre
m/s	metres per second
min	minute
no.	number
min	minute
mg/L	milligrams per litre
mg-N/L	milligrams nitrogen per litre
mg/kg dw	milligram per kilogram dry weight
μg/L	micrograms per litre
μm	micrometre
ADIT	Aquatic Data Integration Tool
ALS	ALS Environmental
AMP	Adaptive Management Plan
ANOVA	Analysis of Variance
BC	British Columbia
BC WQGs	British Columbia Water Quality Guidelines
BIC	Benthic Invertebrate Community
BIT	Benthic Invertebrate Tissue Chemistry
BIT Se	Benthic Invertebrate Tissue selenium
CABIN	Canadian Aquatic Biomonitoring Network
CCME	Canadian Council of Ministers of the Environment
CMm	Coal Mountain mine
CMO	Coal Mountain Operations
CP'	calcite presence prime
DO	dissolved oxygen
DQO	data quality objective
dw	dry weight
d/s	downstream
E	Ephemeroptera
EA	Environmental Assessment
ECCC	Environment and Climate Change Canada

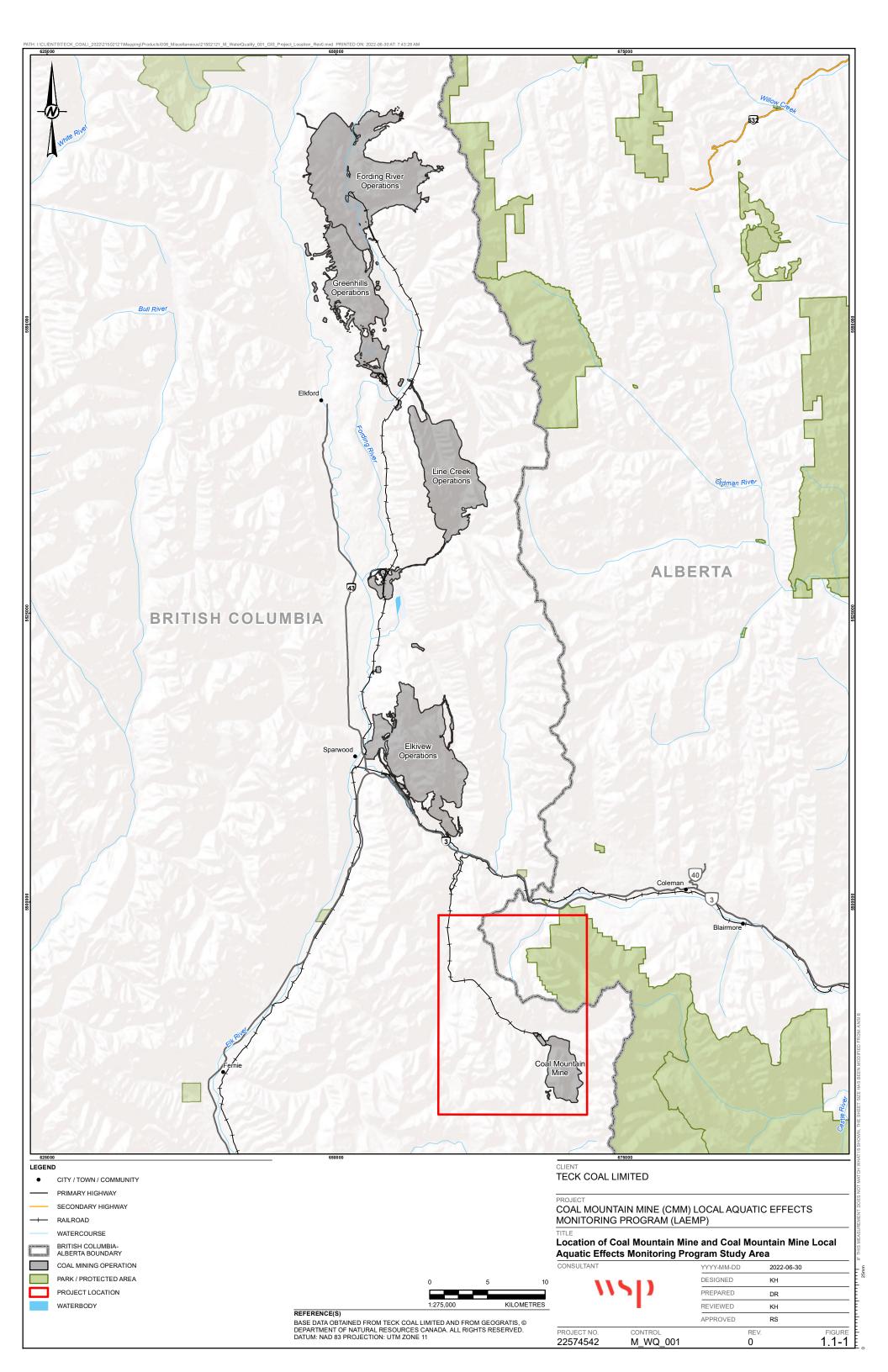
Abbreviation	Definition
e.g.	for example
EFN	Environmental Flow Needs
EMC	Environmental Monitoring Committee
ENV	British Columbia Ministry of Environment and Climate Change Strategy
EPT	Ephemeroptera, Plecoptera, and Trichoptera
ETMF	exposure and toxicity-modifying factors
et al.	and others
EVO	Elkview Operations
EVWQP	Elk Valley Water Quality Plan
FEQGs	Federal Environmental Quality Guidelines
FRO	Fording River Operations
GHO	Greenhills Operations
Golder	Golder Associates Ltd.
GPS	Global Positioning System
i.e.,	that is
KUs	key uncertainties
LA-ICPMS	Laser Ablation with Inductively Coupled Plasma Mass Spectrometry
LAEMP	local aquatic effects monitoring program
LCO	Line Creek Operations
LMW	low molecular weight
Minnow	Minnow Environmental Inc.
MQ	Management Question
n/a	not applicable
PAH	polycyclic aromatic hydrocarbon
Р	probability
QA	quality assurance
QC	quality control
RAEMP	regional aquatic effects monitoring program
RNR	regional normal range
SD	standard deviation
SPO	Site Performance Objective
SS NR	site-specific normal range
SRK	SRK Consulting Inc.
TDS	total dissolved solids
Teck	Teck Coal Limited
TIE	toxicity identification evaluation
Trich	TrichAnalytics Inc.
TOC	total organic carbon
UTM	Universal Transverse Mercator
u/s	upstream
WCT Se	Westslope Cutthroat Trout muscle tissue selenium
WSP	WSP Canada Inc.
WSQG	Working Sediment Quality Guidelines

1.0 INTRODUCTION

WSP Canada Inc. (WSP) is pleased to provide Teck Coal Limited (Teck) with the following report on the 2022 local aquatic effects monitoring program (LAEMP) for Teck's Coal Mountain mine (CMm, formerly Coal Mountain Operations [CMO]) in the Elk Valley. This study represents the fourth year of monitoring under the approved study design (Golder 2019, 2020, 2021a; WSP Golder 2022a) to satisfy requirements of Permit 107517.

1.1 Background

Teck maintains and operates five steelmaking coal mines in the Elk River watershed: Fording River Operation (FRO), Greenhills Operation (GHO), Line Creek Operation (LCO), Elkview Operation (EVO), and CMm (Figure 1.1-1). Discharges from the mines are authorized by the British Columbia Ministry of Environment and Climate Change Strategy (ENV) through Permit 107517, issued under the provisions of the *Environmental Management Act*.


Permit 107517 requires that Teck evaluate potential effects on aquatic life associated with the mines in the Elk River watershed via a regional aquatic effects monitoring program (RAEMP). The RAEMP (Minnow 2015, 2018a,b, 2020a,b) and its predecessor programs (Minnow et al. 2007, 2011, 2012; Minnow 2014) provide comprehensive routine annual monitoring and assessment of potential mine-related effects on the aquatic environment downstream from Teck's coal mines in the Elk Valley, every three years. Teck also conducts a variety of other programs that are spatially and temporally comprehensive to monitor, evaluate, and/or manage the aquatic effects of mining operations within the Elk Valley, including the water quality monitoring program, regional and site-specific groundwater monitoring programs, flow monitoring plan, regional calcite monitoring program, chronic toxicity testing program, fish and fish habitat management program, tributary evaluation and management plan, and supporting studies to the RAEMP (Minnow 2020a).

In addition to the regional monitoring, Teck conducts LAEMPs to address local-scale, sometimes transient, uncertainties associated with potential mine-related aquatic effects. The study questions addressed by the LAEMPs are unique to each program and distinct from those of the RAEMP. The ultimate objective of all LAEMPs is to reduce uncertainty in a localized area and thereby support effective environmental management decisions. Investigations undertaken in the LAEMPs can also inform refinement of the RAEMP (e.g., by developing refined interpretive tools or identifying locations of interest for ongoing inclusion in RAEMP monitoring). As the LAEMP's study questions are answered and uncertainty is reduced, the intent is that the scope of the LAEMP will be progressively reduced. All LAEMPs are intended to eventually be discontinued.

The CMm LAEMP was initiated by Teck in response to findings from the RAEMP between 2015 and 2017 (Minnow 2018 a,b), the routine chronic toxicity testing program (Golder 2018a), and an aquatic health assessment conducted to support planning for care and maintenance at CMm (Golder 2017) and was permitted via Permit 107517 in 2018. Specifically, the results of RAEMP monitoring between 2015 and 2017 indicated alteration of the benthic invertebrate community (BIC) in Corbin Creek and in Michel Creek immediately downstream of Corbin Creek relative to stations upstream in Michel Creek, local reference areas, and the regional normal range. Concurrently, the chronic toxicity testing program reported effects to the invertebrate test species *Hyalella azteca* and *Ceriodaphnia dubia* exposed to water collected from the compliance monitoring point in Michel Creek downstream of Corbin Creek. Follow-up testing attributed the observed chronic toxicity test responses to nickel (Nautilus Environmental 2018) and an evaluation of published toxicity data for nickel supported the interpretation that nickel could be the cause of observed changes to the BIC (Golder 2017).

wsp

1

The objective of the CMm LAEMP was specified in amendments to Permit 107517 that were issued by ENV on 25 August 2018 and 4 April 2019. Specifically, the CMm LAEMP was required to "assess the magnitude and extent of influence from CMm on water quality, calcite, and benthic invertebrate communities downstream of CMm, and to assess what factors are contributing to the observed effects". The 2019 CMm LAEMP study design (Golder 2019) was developed to address this permit requirement. Sampling began in September 2018 under a preliminary study design. Finalization of the study design was completed in 2019, with updates in 2020, 2021, and 2022 (Golder 2020a; 2021a; WSP Golder 2022a). Sampling was conducted under the approved study design between September 2019 and September 2022.

As discussed at the May 2023 Environmental Monitoring Committee (EMC) meeting and presented herein, consistent results have been observed throughout the CMm LAEMP cycle (i.e., 2018 to 2022) and the LAEMP's study questions can now be answered with a high degree of confidence (as presented in the next section). Therefore, per the original intent of LAEMP to address local-scale uncertainties, the 2022 results presented herein support the recommendation to discontinue the CMm LAEMP. It is proposed that monitoring and assessment for the CMm study area return to regional programs such as the RAEMP, calcite, surface water quality, and toxicity monitoring programs.

1.2 Study Questions and Scope

The CMm LAEMP study questions were developed in consultation with the EMC to meet the objectives specified in the 25 August 2018 and 4 April 2019 amendments to Permit 107517. The study questions define the scope of the CMm LAEMP by explicitly defining the intended use of the data. The CMm LAEMP study questions are:

- What are the magnitude and spatial extent of influence from CMm on water quality, calcite, sediment quality, and benthic invertebrate communities in Michel Creek downstream of CMm, how are these conditions changing over time, and are the conditions expected?
- 2) How do spatial and temporal patterns in the benthic invertebrate communities correspond to water quality, calcite, sediment quality, and other potential stressors, and what does this tell us about what factors are causing observed effects?

The study questions are intended to address uncertainties and information gaps identified by the EMC and the CMm care and maintenance aquatic health assessment (Golder 2017). The study questions address the nature, extent, and cause(s) of observed effects on biota in Michel Creek and are intended to inform decisions regarding water quality management at CMm. In addition to addressing the study questions, this report integrates information from other relevant monitoring studies in the Michel Creek watershed to help characterize and understand potential effects of activities at CMm on fish and aquatic-dependent wildlife.

1.3 Linkages to Adaptive Management

As required in Permit 107517 Section 10, Teck developed an Adaptive Management Plan (AMP) to support implementation of the Elk Valley Water Quality Plan (EVWQP) to achieve water quality targets (including calcite targets), ensure that human health and the environment are protected, and where necessary, restored, and to facilitate continuous improvement of water quality in the Elk Valley. The AMP was most recently updated in December 2021 (Teck 2021a). Adaptive management is a systematic, rigorous approach to environmental management that maximises learning about uncertainties while simultaneously striving to meet multiple management objectives and adapt management actions based on what is learned. The adaptive management cycle comprises six stages: assess, design, implement, monitor, evaluate and adjust. The AMP identifies six

Management Questions (MQ) that are re-evaluated at regular intervals. Evaluating these MQs collectively articulates whether Teck is on track to meet the environmental objectives of the EVWQP.

The CMm LAEMP was designed to monitor conditions in Michel Creek to assess the magnitude and extent of influence from CMm on water quality, calcite, and benthic invertebrate communities downstream of CMm, and to assess what factors are contributing to the observed effects. The annual LAEMP is used to track issues for which a potential need for an adjustment has been identified. The LAEMP uses the AMP, which includes an assessment of biological triggers, to identify these issues. Biological triggers are intended as a simple and consistent way to flag potential unexpected monitoring results that may require additional investigation and adjustment. Annual LAEMP results are reported on June 30 of each year for the preceding calendar year.

In addition to addressing questions specific to the CMm LAEMP on an annual basis, aquatic monitoring data from the LAEMP will contribute to the broader dataset assessed every three years within the RAEMP. The RAEMP is designed to evaluate MQ 5: "Does monitoring indicate that mine-related changes in aquatic ecosystem conditions are consistent with expectations?" Data from the LAEMP and RAEMP also contribute to answering MQ 2: "Will aquatic ecosystem health be protected by meeting the long-term Site Performance Objectives (SPO)?"

Biological triggers were finalized in 2021 (Teck 2021a) under Management Question 5. Assessment of the biological triggers is provided in Appendix A; in brief, biological triggers were developed for three measurement endpoints:

- 1) percent Ephemeroptera, Plecoptera, and Trichoptera (% EPT)
- 2) benthic invertebrate tissue selenium (BIT Se)
- 3) Westslope Cutthroat Trout muscle tissue selenium (WCT Se)

The third trigger does not apply directly to the CMm LAEMP, because fish tissue selenium is not included in the CMm LAEMP, but is considered as supporting information.

The 2022 CMm LAEMP represents the third time that biological triggers will be evaluated and reported for CMm. Results from this report will be used to determine whether a biological trigger has been reached. Reaching a trigger may lead to an adjustment (Stage 6: Adjust) using the response framework. This is the main report for conveying biological trigger results under the AMP. Implementation of management actions is not constrained to the AMP or LAEMP annual reporting cycles but may be (and have been) triggered at any time during the monitoring and reporting cycle.

Identifying and reducing environmental management uncertainty is a foundational aspect of adaptive management. Therefore, the AMP identifies key uncertainties (KUs) that, as reduced, fill gaps in current understanding to support the achievement of the EVWQP objectives. Aquatic monitoring data assist in reducing KU 5.1: "How will monitoring data be used to identify potentially important mine-related effects on the aquatic ecosystem?" and KU 2.1 "How will the science-based benchmarks be validated and updated?" Progress on reducing these KUs, and associated learnings, are described in annual AMP reports (Teck 2021a). Please refer to the 2021 AMP Update (Teck 2021a) for more information on the adaptive management framework, including Management Questions, key uncertainties and continuous improvement. Linkages between the AMP and other EVWQP programs, and details about AMP reporting are also discussed in the 2021 AMP Update (Teck 2021a). Progress on gaining new knowledge and reducing KUs is described in annual AMP reports (submitted July 31) and evaluating the answers to MQs are reported in MQ evaluation reports (various submission dates).

1.4 Site Activities and Water Management at CMm

During operations at CMm, the mine consisted of four pits: 6 Pit, 14 Pit, 34 Pit, and 37 Pit, with mining of 14 Pit ceasing in 2006, 34 Pit in 2013, and 37 Pit and 6 Pit in 2018 (Figure 1.4-1; Teck 2017). Coal Mountain concluded active mining and processing operations on 30 April 2019 and made the transition into care and maintenance on 1 May 2019. Since ceasing operations and moving into care and maintenance the mine has been working on dewatering of the pits (see Appendix B for details). Current water management practices direct water to backfilled and dormant pits or to established and permitted mining contact water collection systems, which eventually discharge to Corbin Creek. Water levels in dormant or inactive pits are managed for controlled release in accordance with approved pumping plans.

Between 2016 and 2018, concentrations of several constituents (see Appendix B for details) were identified as increasing in water discharged from Corbin Dam at monitoring station CM CCPD (or CM CCOFF1) and at the Main Interceptor Sedimentation Ponds (CM SPD; Teck 2019). These constituents were associated with the flush of blasting residues and with metal leaching. Between 2018 and 2019, a decrease in some of these constituents was measured at CM CCPD and at CM SPD resulted in an improvement to water quality downstream of CMm in Corbin Creek and Michel Creek (Teck 2019). The decrease was in part attributed to completion of the flush of accumulated constituents that resulted from the re-handling of waste rock in 2016 and 2017.

¹ CM CCOFF is the alternate sampling location for CM CCPD because CM CCPD is no longer safe to access. Teck has amended the monitoring location to CM CCOFF.

Current Study: CMm LAEMP Figure 1.4-1: Timeline of Mining, Water Management, and Monitoring in the CMm Area Sampling conducted for the 2022 RAEMP and the **CMO LAEMP** 2022 CMm LAEMP Sampling conducted for the RAEMP and First CMO LAEMP program in CMm LAEMP September **CMO LAEMP** CMm LAEMP _Biological Monitoring ___ **RAEMP RAEMP RAEMP** Annual CMm 2021 2020 2018 2019 2015 2016 2017 2012 2014 2013 Monitoring until integrated in **Lentic Supporting Study RAEMP** Routine Teck Water Monitoring at CM_MC1, CM_AG1, CM_CC1, CM_MC2, CM_MTCM **Future Mine Activities** Q1 Q2 Q3 Q4 01 02 03 04 Care and Maintenance -2012 2016 2018 2019 2020 2021 2022 2023 2013 2015 2017 2014 2018 to 2028 Pumping from 6 Pit -dewatering of 34 Pit Pumping from 34 Mining Activity - throughout 2021 -plant may restart to process Pit - throughout with a pause Seven pit settling coal from other Elk Vallev Flush of accumulated 1908 to 1975: 2022 with a pause between Sept 14 ponds constituents from re-Operations as required intermittent between Feb 3 and and 30 for Corbin decommissioned handled waste rock in small Mining Active pumping April 26 Dam project Active Closure - 2028 to 2036 underground 2016 and 2017 passed. concluded at 34 Pit; of 34 Pit: water Pumping from 34 mining -decommissioning and backfilling and flooding eventually Mining concluded 1975 to 2008: Pit - throughout removing structures and (2013 to 2016) discharged to at 37 Pit: Open-pit 2021 with a pause reclamation and revegetation Corbin Creek at operations under backfilling and between Sept 7 Transitioned to Backfilling of 14 Pit complete; various owners a maximum flooding (2016 Nov 24 care and filled with water discharging 2008 onward: pumping rate of End of Active onward) maintenance. Coal Teck took control to North Ditch 150 L/s Operations Proactive management of Active mining of of CMO in 2008 no longer being Post Closure - 2036 and (2016 onward) 2018 37 Pit:1999 to pit-pumping rates washed; decrease bevond Active mining of 34 Pit: 2018 in mine-related 2000 to 2013; Pumping from 6 Pit - May 2020 constituents Active mining of 14 Pit: Pumping from 34 Pit - freshet 2019 to Mining concluded at 6 Pit in 2018 1995 to 2006 02 2019 Oct 2020

Consistent with the chronic toxicity testing program (WSP 2023a), nickel has been identified as a causal factor for adverse responses in Michel Creek immediately downstream of Corbin Creek. The main loading sources of nickel are from 34 Pit and the Corbin Creek Rock Drain. Proactive water management and pit-pumping of 34 Pit in recent years has resulted in an improvement in water quality and nickel concentrations downstream of CMm since 2017.

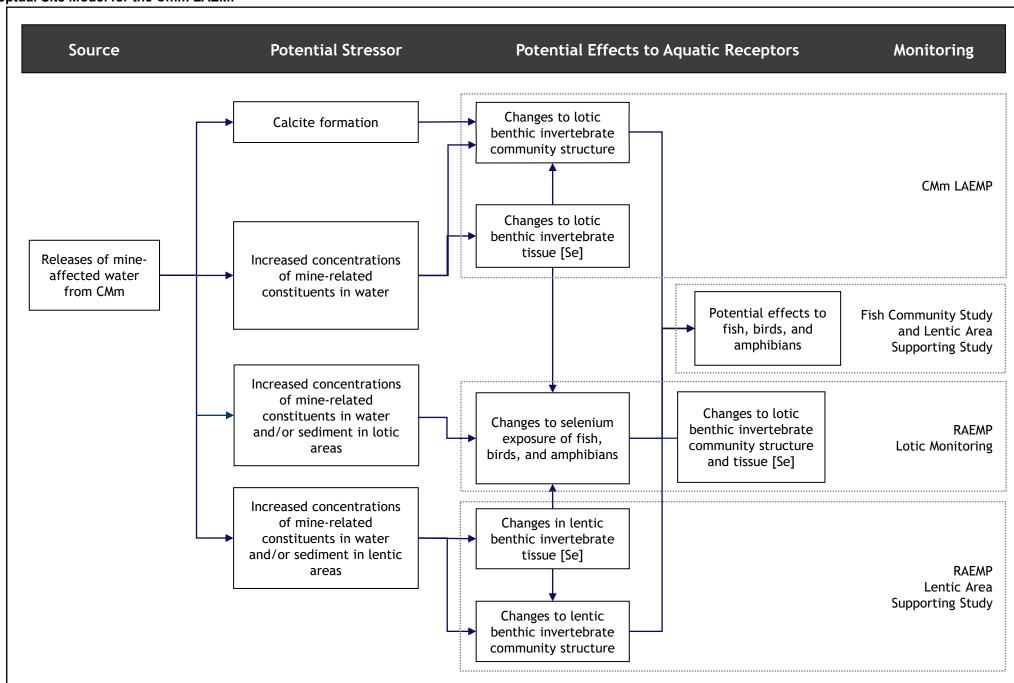
In addition to the influence of past and current activities at CMm on Michel Creek, there are other anthropogenic influences that cannot clearly be accounted for, including logging. These potential influences have been taken into consideration when interpreting the 2022 CMm LAEMP data; however, they are believed to represent minor uncertainties in the interpretation of CMm results. Despite these uncertainties, results to date suggest that the greatest influence on water quality in Michel Creek has been mining activities.

1.5 Conceptual Site Model

A conceptual site model for the CMm LAEMP is shown in Figure 1.5-1, which illustrates the relationships between activities at CMm and the ways in which those activities might alter the environment and affect biological receptors. The conceptual model identifies potential stressors, pathways, and receptors for potential effects of CMm on water quality and aquatic biota in Michel Creek. Figure 1.5-1 also summarizes monitoring conducted under the CMm LAEMP and the RAEMP to evaluate potential effects to aquatic biota.

The CMm LAEMP evaluates pathways related to the study questions by monitoring the following:

- Supporting Environmental Variables: to provide information on water quality, calcite, sediment quality, and physical habitat characteristics to aid in the interpretation of biological data.
- 2) **Benthic Invertebrate Community (BIC):** to characterize potential effects of CMm on the BIC resulting from changes in water and sediment quality or other mine-related stressors.
- 3) Benthic Invertebrate Tissue (BIT) Chemistry: to provide a measure of selenium exposure to aquatic biota over time, relative to historical conditions, relative to reference areas, and relative to benchmarks for potential effects.


Although the conceptual model depicted in Figure 1.5-1 includes pathways for exposure of benthic invertebrates to both water and sediment, the interpretation of data for the CMm LAEMP focuses on the aqueous exposure pathway. Work completed under the RAEMP (Minnow 2020a) and the lotic sediment toxicity program (Golder 2020b) has highlighted uncertainty around the relevance of lotic sediment quality to the BIC. Importantly, BIC samples are collected from riffle habitats that are highly erosional and contain very little to no surficial fines. The dominant taxa in these areas (i.e., Ephemeroptera, Plecoptera, Trichoptera) tend to be associated with the hard gravel and cobble substrates that predominate in erosional areas. Depositional areas are small and uncommon on Michel Creek, and sediment samples for sediment quality analysis, although collected within the same general reaches as the BIC samples, are located in low-energy areas along the margins of the creek, or in small side channels that do not represent the habitat where the BIC samples are collected. Further, in habitats where sediment is an exposure pathway, aqueous nickel exposure has been demonstrated to be the dominant pathway for BIC effects (Brix et al. 2017). Thus, there is no significant operable pathway for exposure of the sampled BIC to the measured sediment quality.

The conceptual model depicted in Figure 1.5-1 includes a pathway for potential effects of tissue selenium on the BIC because selenium is widely understood to be a bioaccumulative substance and the most reliable basis for evaluating potential effects is via bioaccumulated concentrations.

Figure 1.5-1: Conceptual Site Model for the Cmm LAEMP

1.6 Incorporating Feedback from the Environmental Monitoring Committee

Technical advice was provided by EMC via written advice (24 May 2023) and through input offered at the 3 May 2023 EMC meeting. Key changes made in response to the EMC advice and input were:

- Adjusted plots for aqueous nickel to evaluate monthly nickel concentrations in 2022 and assess timing of peak nickel concentrations (i.e., magnitude and duration) relative to recently proposed nickel benchmarks, including an assessment of toxic units compared to proposed nickel benchmarks (Section 3.1.4 and Section 5.0).
- Discussed shifts in BIC composition associated with lower proportions (but not abundance) of Ephemeroptera (Section 3.6.4).
- Provided recommendation and rationale to discontinue the CMm LAEMP (Section 6.0). The recommendation to transition ongoing monitoring from the CMm LAEMP to regional programs received verbal support from the EMC at the May 2023 EMC meetings. In the event the LAEMP continues, recommendations and rationale to remove sediment quality (Section 3.3.3) and station MI5 (Section 2.0) have also been provided herein; these recommendations also received verbal support from the EMC.

1.7 Report Organization

The remaining sections of this report present the methods (Section 2.0) and results (Section 3.0) of the 2022 CMm LAEMP monitoring. The study questions are answered in Section 4.0, and a discussion of nickel in Michel Creek is presented in Section 5.0. The discussion section provides a brief history of nickel at CMm, including an overview of earlier studies that identified nickel as a constituent of concern for invertebrates and the resulting actions initiated by Teck under the AMP response framework to better understand and assess potential nickel effects at CMm. The purpose of the section is to highlight the investigative efforts undertaken since 2017 that corroborate nickel as a likely cause of invertebrate responses at CMm. Conclusions and recommendations are provided in Section 6.0.

2.0 METHODS

Biological monitoring areas included in the CMm LAEMP and corresponding water quality monitoring stations are listed in Table 2.1-1 and shown on Figure 2.1-1.² Integrated monitoring locations for other programs (e.g., RAEMP stations, lentic supporting study stations) in and around the CMm area are shown on Figure 2.1-2. Monitoring areas were selected to delineate the spatial extent of observed effects to physical and biological conditions and to provide a basis for evaluating potential future changes, including those related to water quality mitigation.

Sampling was conducted by Minnow Environmental Inc. (Minnow), with support from WSP staff, in September 2022 following the 2023 CMm LAEMP Study Design (WSP Golder 2022a). Sample collection, laboratory analysis, and data analysis methods for each component are consistent with methods developed for the RAEMP (Minnow

² In 2020, samples were collected from supplemental stations CM_CM2, MIDAG S1, and MIDAG S2 between MIDCO and MIDAG (Golder 2020a) to improve characterization and delineation of nickel concentrations and BIC effects in Michel Creek as part of the Nickel Benchmark Study (Appendix C). Sampling was conducted in coordination with the CMm LAEMP field program for efficiency, but sampling at these stations was not intended to be a permanent change to the CMm LAEMP; sampling at the supplemental stations did not occur in 2021 or 2022.

2018b, 2020b) and are presented in Sections 2.1 to 2.6. To be consistent with previous monitoring and RAEMP methods, the BIC sampling was conducted in September.

Components monitored under the CMm LAEMP in 2022 were:

- 1) water quality
- 2) calcite index
- 3) sediment quality
- 4) BIT Se
- 5) BIC

These components, along with supporting physical habitat variables, were used to answer the two CMm LAEMP study questions (Section 1.2). The spatial distribution of the stations along Michel Creek supported the estimation of spatial extent of downstream influence from CMm on the monitoring components (Study Question #1). Reference stations enabled the characterization of local reference conditions and the magnitude of mine-related changes to monitoring components (Study Question #1). Historical data from the RAEMP and previous studies within the CMm area were used to assess how conditions have changed over time (Study Question #1). The CMm water and load balance report (SRK 2016) and updates (SRK 2019; 2022; 2023) were used to assess whether water quality conditions were as expected (Study Question #1).

Supporting environmental information (i.e., water quality, calcite, sediment quality, and physical habitat characteristics) gathered for Study Question #1 was considered alongside the BIC data to answer how spatial and temporal patterns correspond to the BIC data and to suggest which factors may be causing observed effects in the BIC (Study Question #2).

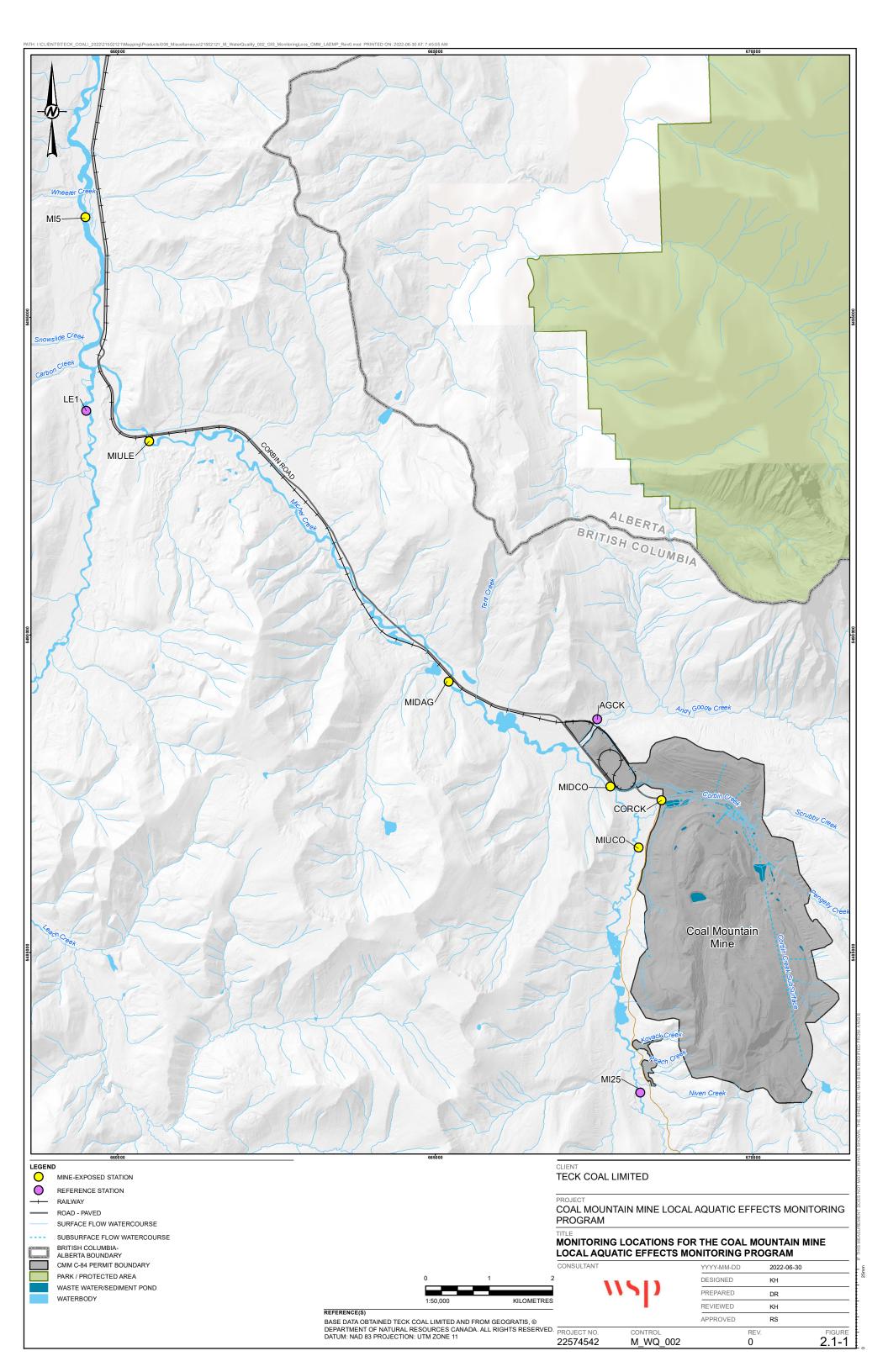
The discontinuation of the CMm LAEMP is recommended (Section 6). Monitoring that was completed under the LAEMP would transition to regional programs; however, should the LAEMP continue, discontinuation of sampling at station MI5 (18 km downstream of the Corbin Creek confluence) is recommended. LAEMP results have shown that effects to BIC are spatially restricted to the first few kilometres of Michel Creek downstream of the Corbin Creek confluence, do not persist past MIDCO, and are not observed at MIDAG, located 5.27 km downstream of the confluence. Therefore, the Michel Creek station located 13.84 km downstream of the confluence with Corbin Creek (i.e., MIULE) would adequately characterize the spatial extent of potential effects in Michel Creek. This recommendation received support at the May 2023 EMC meeting and was endorsed by ENV via written advice and input received 24 May 2023.

29 June 2023 Reference No. 22574542-001-R-Rev0-1000

Table 2.1-1: Monitoring Locations and Replication of Sampling Components for the 2022 CMm LAEMP

				Distance	UTM Coordinates ^(b)		Replication of Sampling Components				
	Biological	Teck Water		Downstream of Corbin				Calcit		Benthic Invertebrates	
Watercourse	Monitoring Stations	Monitorin g Code ^(a)	Location Description	Creek Confluence (km)	Eastin g	Northing	Water Chemistry	e Index	Sediment Chemistry	Communit y	Tissue Chemistry
Michel Creek	RG_MI25	CM_MC1	reference location, u/s of CMm	-6.3	668226	5482795	1	3	3	3	3
Andy Good Creek	RG_AGCK	CM_AG1	reference location, outside of CMm influence	-	667551	5488669	1	3	1	3	3
Leach Creek	RG_LE1	-	reference location, u/s of Michel Creek confluence	-	659512	5493527	1	3	3	3	3
Michel Creek	RG_MIUCO	-	u/s of Corbin Creek confluence	-0.82	668203	5486653	1	3	4 ^(c)	3	3
Corbin Creek	RG_CORCK	CM_CC1	Corbin Creek u/s of Michel Creek confluence	-	668563	5487395	1	2 ^(d)	5	3	3
Michel Creek	RG_MIDCO	1	d/s of Corbin Creek confluence	+0.94	667757	5487611	1	5	5	5	5
Michel Creek	RG_MIDAG	-	d/s of Corbin Creek and Andy Good Creek confluences	+5.27	665212	5489264	1	3	5	3	3
Michel Creek	RG_MIULE	-	d/s of Corbin Creek and Andy Good Creek confluences but u/s of Leach Creek confluence	+13.84	660503	5493048	1	3	5	3	3
Michel Creek	RG_MI5	-	d/s of Leach Creek confluence	+18.25	659497	5496573	1	3	5	3	3

Note: RG designation, which refers to monitoring locations in the Elk Valley is used in table but dropped from figures and text in the remainder of the document for ease of presentation.


⁽a) Teck Water Monitoring stations that are in the proximity of the biological monitoring stations are listed.

⁽b) UTM coordinates (NAD83, Zone 11U) represent coordinates for the biological monitoring stations (not the water monitoring stations).

⁽c) Five replicates were collected during sampling; however, the sample jar for replicate 2 broke during shipment to the laboratory. An additional sampling event occurred in October when four replicates were collected. Samples from the September event were used for the results and discussion, but all samples are included in Appendix I.

⁽d) Two out of three 100 pebble counts were performed at RG_CORCK in 2022.

^{- =} not applicable; u/s = upstream; d/s = downstream; CMm = Coal Mountain Mine, NAD = North American datum.

2.1 Water Quality

Water quality is routinely monitored by Teck at stations within the CMm LAEMP as required by Permit 107517 to support management decisions (Table 2.1-1; Figure 2.1-1). Data are reported annually in the Permit 107517 Annual Water Quality Monitoring Report (Teck 2019, 2020, 2021b, 2022, 2023) and incorporated into the annual CMm LAEMP where appropriate. Water quality samples are also collected in lentic areas as part of the RAEMP and at lotic benthic invertebrate sampling stations to support the biological data as part of the CMm LAEMP. Detailed methods for sampling and laboratory analysis of water quality samples collected to support the biological data are described in Section 3.0 of the RAEMP study design (Minnow 2020b) and are provided in brief below.

2.1.1 Sample Collection

In 2022, water quality samples were collected from mine-influenced and reference areas during biological monitoring, following the 2023 CMm LAEMP study design (WSP Golder 2022a). One sample was collected from each station in September 2022.

Temperature, pH, dissolved oxygen (DO), and specific conductivity were measured at each sampling station using a calibrated water quality meter. Water chemistry samples were collected by wading into a mid-channel area, moving from downstream to upstream to avoid disturbing the substrate. Clean sample bottles provided by the laboratory were filled to minimize the amount of air in the container, consistent with the *British Columbia Field Sampling Manual* (BC ENV 2013). Water samples for analysis of dissolved organic carbon and dissolved metals were field filtered with a 0.45 µm membrane and preserved according to laboratory specifications. Samples were kept cool until being shipped to a qualified laboratory for analysis.

2.1.2 Laboratory Analysis

Samples were shipped to ALS Environmental (ALS; Calgary, Alberta) for analysis of the analytes listed in Permit 107517. Analytical methods were consistent with the *British Columbia Environmental Laboratory Manual* (BC ENV 2020).

2.1.3 Data Analysis

Water quality data collected in 2022 were screened against the EVWQP benchmark for cadmium (Teck 2014), the updated effect concentrations for nitrate and sulphate (WSP Golder 2022b), and recently proposed benchmarks for nickel (WSP Golder 2022c; Table 2.2-1 and Appendix D). For other constituents, concentrations were screened against generic WQGs for the protection of freshwater aquatic life. WQGs derived by BC ENV (2021a,b) were used preferentially because BC ENV develops guidelines to be specifically protective of aquatic life in BC (BC ENV 2021a,b). In the absence of BC WQGs, guidelines were adopted from Canadian Council of Ministers of the Environment (CCME) Canadian Environmental Quality Guidelines (CCME 1999), Environment and Climate Change Canada (ECCC) Predicted No-effect Concentrations (PNECs; ECCC 2018), or ECCC draft Federal Environmental Quality Guidelines (FEQGs; ECCC 2017).

		- ш оршином =оо. о о					
December and Constituent	Unit	Benchmark, Proposed Benchmark or Effect Concentration (a)					
Receptor and Constituent	Unit	Level 1	Level 2	Level 3			
Invertebrates							
Sulphate	mg/L	892	1057	1413			
Nitrate	mg-N/L	$effect\ concentration = 10^{\left(\frac{\log\left(\frac{1}{x}-1\right)}{-2.64}\right) - (1.45-1.18 \times \log(Hardness))}$					
		x = 0.1	x = 0.2	x = 0.5			
Diagolysed Codynicus	//		=10 ^{(0.83*Log(hardness)-b)}				
Dissolved Cadmium	μg/L	b = 2.53	-	-			
Dissolved Nickel	μg/L	log(benchmark) = 0.547 x (logDOC) + 0.411 x (logHardness) – 0.520 x (logBicarbonate) + α					
	. 3	a = 0.856	a = 1.011	a = 2.551			

Table 2.2-1: Elk Valley Benchmarks and Updated Effect Concentrations for Invertebrates

Water quality data collected under Permit 107517 from 2018 to 2022, data collected from 2012 to 2022 for the RAEMP and its predecessor programs (Minnow et al. 2007, 2011, 2012, Minnow 2014, 2015, 2018a, 2020b, 2023), and samples collected from the Nickel Benchmark Study stations (CM_MC2, MIDAG-S1, and MIDAG-S2) in 2020 were plotted for comparison between reference and mine-influenced sites and to visualize spatial patterns. Additional water quality data collected by Teck during monthly or weekly routine monitoring at water quality monitoring locations CM_CC1, CM_CM1 and CM_MC2 were plotted for visual assessment of temporal trends and comparison to the 2013 to 2023 SRK modelled data (SRK 2023). Data from the closest monitoring stations CM_CC1, CM_MC1, and the compliance station CM_MC2 were used to represent potential temporal trends at LAEMP stations CORCK, MI25, and MIDCO, respectively. These SRK modelled data were used to determine if the water quality conditions in 2022 were expected.

To further evaluate the trends in aqueous nickel concentrations, and following EMC feedback, water quality data collected by Teck in 2022 were used to prepare two seasonal plots. The first plot presents dissolved nickel concentrations from January to December 2022 at each station, and the second plot presents toxic units (TU) for the proposed level 1 nickel benchmark for invertebrates (i.e., dissolved nickel concentration divided by the sample-specific proposed level 1 nickel benchmark). The second plot expresses the nickel exposure in each sample in terms of what fraction of the sample-specific level 1 benchmark was present in that sample (i.e., by definition, a value of 1 equals the proposed level 1 nickel benchmark; this is illustrated on the figure with a horizontal line of 1). The level 2 and level 3 nickel benchmarks are also shown as horizontal lines, corresponding to the level 1 TU associated with the level 2 benchmark (1.43) and level 3 benchmark (2.81)³.

2.2 Calcite Index

Teck initiated a regional calcite monitoring program in 2013 to document calcite conditions in tributary and mainstem areas of the Elk River watershed (Robinson and Atherton 2016). In 2022, the regional calcite program

³ The proposed level 2 and level 3 nickel benchmarks were calculated in relation to the prosed level 1 nickel benchmark. The proposed level 2 benchmark is always 1.43 times the level 1 benchmark and the level 3 benchmark is 2.81 times the level 1 benchmark.

16

⁽a) Value for cadmium is the EVWQP benchmark, values for nitrate and sulphate are updated effect concentrations and values for nickel are proposed benchmarks. Rationale for each value is provided in Appendix D.

[&]quot;-" = not derived; EVWQP = Elk Valley Water Quality Plan.

sampled 122 reaches and 317 sites. Of these, 26 reaches in mine-influenced streams had concretion scores above the 2024 Site Performance Objective of 0.5 (Smith and Robinson 2023). These calcite results are not co-located with biological monitoring under the RAEMP or LAEMPs and are not specific to the habitats sampled under those programs; calcite monitoring under the RAEMP and LAEMPs is conducted in riffle habitats within approximately 10 m of where each BIC replicate sample is collected, whereas the regional calcite monitoring program involves calcite measurements in 100 m long reaches that include multiple habitat units. Therefore, the calcite monitoring program results cannot be directly related to biological conditions to evaluate potential effects of calcite on biota. Rather, the regional calcite monitoring program focuses on evaluating broad stream reaches, integrating across habitat types to provide a regional overview of calcite conditions.

To evaluate potential effects of calcite on biota, site-specific calcite monitoring is also conducted as part of the RAEMP and other biological monitoring programs, including the CMm LAEMP. Because this monitoring is targeted to the riffle habitats that are sampled for biota, results of this monitoring are not directly comparable to the regional program. However, the methods for characterizing calcite are consistent with those used to monitor calcite as part of the regional calcite monitoring program (Lotic and Teck 2016; 2021a,b). Where the two programs give different results in the same watercourse, the calcite measurements taken under the biological monitoring programs are considered to be more directly relevant to potential effects of calcite on the BIC.

2.2.1 Sample Collection

Calcite was measured at areas where benthic invertebrate samples were collected in 2022. The calcite index was developed to provide a quantitative method of measuring and tracking calcite levels in a stream. The calcite index is determined by examining 100 pebbles at a station. For each of the 100 pebbles sampled the calcite index is a combined total of the calcite concretion score and the calcite presence score. The degree of concretion was assessed by determining if the pebble could be removed with negligible resistance (not concreted; score = 0), noticeable resistance but removable (partially concreted; score = 1), or immovable (fully concreted; score = 2). Calcite presence was assessed by determining the proportion of pebble that has visible calcite. Three measurements of calcite were collected from each mine-influenced and reference area, except at MIDCO where five measurements were collected and CORCK in 2022 where only two of the three measurements were performed.

Calcite presence has historically been assessed based on a binary collection method; as presence (score = 1) or absence (score = 0) of calcite for each of the 100 pebbles. An adapted method of assessing calcite presence was trialed by Teck in 2020 and 2021, and adopted fully in 2022; it is referred to as calcite presence prime (CP'; Lotic and Teck 2021a,b). Under CP', the surficial coverage of each pebble is assessed in 10% increments (e.g., a rock with 50% surficial coverage of calcite on all surfaces would get a presence score of 0.5).

Calcite was measured in association with BIC sampling, in riffle habitats within approximately 10 m of where each BIC replicate sample was collected. For the regional calcite monitoring, calcite measurements were taken in 100 m long reaches that included multiple habitat units.

2.2.2 Data Analysis

Calcite data were evaluated for spatial trends using both the historical calcite index values (2015 to 2020) and the calcite index values calculated using the CP^I method (2021 and 2022). Calcite presence in reference and mine-influenced areas was compared to the reference area normal range (i.e., 0 to 1) defined in the RAEMP study design (Minnow 2020b), which is based on calcite data collected as per the original calcite index method.

2.3 Sediment Quality

Methods for sampling and laboratory analysis of sediment samples are described in Section 4.0 of the RAEMP study design (Minnow 2020b) and are summarized in brief below.

2.3.1 Sample Collection

In 2022, sediment samples were collected from mine-influenced and reference areas where BIC samples were collected. Five samples were collected at CORCK, MIDCO, MIULE and MI5, four samples were collected at MIUCO⁴ and three samples were collected from reference areas MI25 and LE1. A single sediment sample was collected from reference station AGCK because of a lack of sediment at the station.

Sediment samples were collected using a spoon to gather deposits of sand and/or fines amongst the cobbles. When no such deposits were found, but there was evidence of fine deposits on rock surfaces, then the sediments were gently brushed off the rocks into sample containers. Supporting information (Section 2.5) was also recorded. Sediment samples were stored in a cooler with ice or ice packs and then transferred to a refrigerator at the end of the day.

2.3.2 Laboratory Analysis

Sediment samples were shipped to ALS for analysis of moisture content, particle size, pH, total organic carbon (TOC), and metals (<2 millimetre [mm] fractions). The laboratory homogenized each sediment sample before analysis according to standard laboratory protocols. Analysis methods were consistent with the *British Columbia Environmental Laboratory Manual* (BC ENV 2016).

2.3.3 Data Analysis

Sediment quality data were compared to BC working sediment quality guidelines (WSQG) for the protection of freshwater aquatic life (BC ENV 2017), reference area concentrations, and sediment quality previously observed in the same areas. In addition, sediment quality data were plotted for visual examination of spatial and temporal variation. Data from 2018 to 2022 were plotted for all constituents for which a BC WSQG was available and visually assessed for temporal changes.

For stations with total PAH concentrations exceeding the BC lower SQG, equilibrium-partitioning sediment benchmark toxic unit (ESBTU) values were calculated. ESBTU values are calculated based on the sample-specific fraction of total organic carbon and PAH concentrations per the "Procedures for the Dervivation of Equilibrium Partitioning Sediment Benchmarks (ESBs) for the Protection of Benthic Organisms: PAH Mixtures" (US EPA 2003).

2.4 Benthic Invertebrate Tissue

Methods for sampling and laboratory analysis of BIT are described in Section 7.3 of the RAEMP study design (Minnow 2020b) and summarized in brief below.

2.4.1 Sample Collection

BIT samples were collected as taxonomic composites from mine-influenced and reference areas where BIC samples were collected. Five samples were collected from MIDCO, while three samples were collected from all other stations.

⁴ Five sediment samples were planned at MIUCO, but only four samples were collected in 2022.

18

BIT samples were collected using a kick net as described for BIC samples (Section 2.6). Taxa were combined, excluding taxa from the phylum Annelida (annelids), and invertebrates were picked free of debris in the field until at least 2 grams of wet tissue was obtained. If annelids were observed in the sample, two separate samples were collected, one composite sample excluding annelids and one sample of only annelids, following methods outlined in the RAEMP study design (Minnow 2020b). BIT samples were kept cool until shipment to the analytical laboratory.

2.4.2 Laboratory Analysis

Samples were shipped to TrichAnalytics Inc. (Trich), Saanichton, BC for analysis of metals by laser ablation with inductively coupled plasma mass spectrometry (LA-ICP-MS). Trich is accredited by the Canadian Association for Laboratory Accreditation for metals analysis in biological samples. Results were reported on a dry weight (dw) basis along with moisture content.

2.4.3 Data Analysis

BIT Se concentrations were compared to available EVWQP benchmarks (Teck 2014) and BC tissue guidelines (BC ENV 2021a). BIT Se concentrations were also plotted relative to previous results and to the reference area normal range defined in the RAEMP (Minnow 2020a) to evaluate spatial and temporal variability.

2.5 Physical Habitat Characteristics

Physical habitat characteristics can influence aquatic biota (Rosenberg and Resh 1992); therefore, supporting data were collected concurrent with sediment and benthic invertebrate sampling in each sampling area. The characteristics documented included physical water characteristics (i.e., water depth, temperature, velocity, pH, DO, and specific conductivity), substrate composition, colour, texture, and presence of aquatic vegetation and TOC content (obtained from the sediment quality dataset).

2.6 Benthic Invertebrate Community

Potential mine-related effects on BIC were evaluated by comparing BIC endpoints at mine-influenced stations to reference stations and to the regional normal ranges. Methods for sampling and laboratory analysis of BIC samples are described in Section 7.0 of the RAEMP study design (Minnow 2020b) and are briefly summarized below.

2.6.1 Sample Collection

Three BIC samples were collected from each mine-influenced and reference station except for MIDCO, where five samples were collected. Each sample was collected from a separate riffle at each stream area or from 50 m apart if the sampling area was one long riffle. Supporting habitat information was collected concurrent with benthic sampling, including calcite presence and substrate concretion scores (Section 2.2), and stream habitat characteristics (Section 2.5).

Collection methods were consistent with the *CABIN Field Manual: Wadeable Streams* (ECCC 2012). A 400 micrometre (µm) mesh kick net was used to collect a time-integrated sample. The reach sampled was traversed from bank to bank in an upstream direction for a collection time of three minutes. The kick net was held downstream of the sampler while the top 5 to 10 centimetres (cm) of the substrate were disturbed and rocks were overturned to dislodge invertebrates clinging to interstitial spaces, and allow them to drift into the kick net. The collected material was transferred to labelled containers and preserved with 10% phosphate-buffered formalin.

2.6.2 Laboratory Analysis

BIC samples were sent to Cordillera Consulting, Summerland, BC for sorting and taxonomic identification. Organisms were identified to the lowest practical level of taxonomy (typically genus or species) using up-to-date taxonomic keys. Analysis methods were consistent with the *CABIN Laboratory Methods: Processing, Taxonomy, and Quality Control of Benthic Macroinvertebrate Samples* (ECCC 2014). Sorting efficiency and sub-sampling accuracy and precision were quantified using methods specified by Environment Canada (ECCC 2014).

2.6.3 Data Analysis

The BIC endpoints that were evaluated at reference and mine-influenced stations were consistent with those used in the RAEMP: abundance (i.e., the number of organisms per 3 minute [min] kick); richness; Ephemeroptera-Plecoptera-Trichoptera (EPT) abundance and proportion (% EPT); and Ephemeroptera abundance and proportion (% E).

EPT taxa are particularly sensitive to poor water quality conditions in rivers and streams (Rosenberg and Resh 1993) and active anthropogenic activities near rivers can affect the abundance and diversity of EPT (Dudgeon 1984). Often the presence of EPT taxa in a river or stream indicates that conditions are within the tolerance limit for a number of environmental factors (e.g., water temperature, DO, nutrients, toxic chemicals and metals, and can support a diverse BIC (Dudgeon 1984). Ephemeroptera (mayflies) are good bioindicators of freshwater quality because they are sensitive to elevated metal concentrations (Chapman 1996). Therefore, EPT taxa and Ephemeroptera taxa were used as biological indicators for evaluating water quality in Michel Creek.

BIC endpoints were plotted for visual examination of spatial and temporal variability. Mine-influenced stations were compared to reference stations, regional and site-specific normal ranges (Section 2.6.3.1), and to historical data presented in the RAEMP and its predecessor programs between 2012 to 2017 (Minnow et al. 2007, 2011, 2012, Minnow 2014, 2015, 2018a, 2020b). Statistical analyses were also conducted on the BIC endpoints to compare mine-influenced stations to reference stations and to delineate the spatial extent of effects (Section 2.6.3.2.1). Temporal changes were evaluated by comparing 2022 data to previous years' data (Section 2.6.3.2.2).

The relationship of % EPT and % E with aqueous nickel concentration was examined to further evaluate potential cause(s) of lower proportions of % EPT and % E. Nickel was chosen for follow-up comparisons because results from early chronic toxicity testing implicated nickel as the likely cause of BIC changes (Golder 2017). Because nickel toxicity is known to be influenced by other constituents (i.e., exposure and toxicity-modifying factors [ETMFs]), BIC endpoints were also plotted against dissolved nickel concentration as a proportion of the proposed level 1 nickel benchmark (i.e., proposed level 1 benchmark TU) for benthic invertebrates as described in Section 2.1.3. The proposed level 2 and level 3 nickel benchmarks were also plotted in relation to the proposed level 1 nickel benchmark to illustrate whether the sample also exceeded these benchmarks.

In addition, the relationships between % EPT, % E and, percent fines, sand, gravel, cobble, and boulder, which were used as a habitat indicators, was examined to evaluate whether habitat differences could be related to spatial differences in % EPT and % E downstream of CMm. As discussed in Section 1.5, there is no operable pathway for effects of sediment chemistry on EPT in the sampled erosional habitats of Michel Creek; therefore, the role of sediment chemistry was not assessed further herein.

2.6.3.1 Regional and Site-Specific Normal Ranges

The BIC data collected as part of the CMm LAEMP were compared to the regional and site-specific normal ranges for each community endpoint. Regional normal ranges were developed for the RAEMP using pooled reference area data from 2012 to 2019 (Table 2.5-1; Minnow 2020a). Updated regional normal ranges, based on data from 2012 to 2022, were not available at the time this report was prepared. Prediction intervals were calculated as 95th percentiles, and the upper and lower prediction intervals from each replicate sample were used, when applicable. Site-specific normal ranges are calculated annually and are specific to that year's data. The site-specific normal ranges were calculated using linear mixed-effects models to relate benthic invertebrate community endpoints to habitat variables, where applicable. Average lower and upper bounds were used to define the site-specific normal range as described in Appendix J of the RAEMP (Minnow 2020a).

Table 2.6-1: Benthic Invertebrate Community Regional Normal Ranges

Variable	Unit	Regional Normal Range			
variable	Ollit	Lower Limit	Upper Limit		
Benthic invertebrate taxonomic richness (lowest practical level)	no. of taxa per sample	25	48		
Benthic invertebrate abundance	no. of organisms per sample (per 3 min kick)	1,812	26,922		
Percent Ephemeroptera, Plecoptera, Trichoptera	%	50	98		
Ephemeroptera, Plecoptera, Trichoptera abundance	no. of organisms per sample (per 3 min kick)	909	26,270		
Percent Ephemeroptera	%	21	82		
Ephemeroptera Abundance	no. of organisms per sample (per 3 min kick)	387	21,949		

Source: 2017 to 2019 RAEMP (Minnow 2020a). min = minute; no. = number; % = percent.

2.6.3.2 Univariate Statistical Analysis

Statistical analyses of BIC endpoints followed a similar approach to that described in the RAEMP study design (Minnow 2020b), with the exception that planned linear orthogonal contrasts were used to assess differences among stations and years in place of Tukey's Honestly Significant Difference test. Statistical analyses were conducted in R version 4.2.2 (R Core Team 2022).

2.6.3.2.1 Spatial Evaluation

Spatial differences in BIC endpoints were evaluated among stations using an analysis of variance (ANOVA), with planned linear orthogonal contrasts to test whether effects exhibited linear spatial gradients; P-values ≤ 0.05 were considered significant.

For each endpoint, an overall ANOVA model was fit to the 2021 data as:

 $Y = Station + \epsilon$

Equation 2.6-1

where: Y = response variable; *Station* = a fixed factor for area; and $\mathcal{E} = \text{the error term}$.

Differences in BIC endpoints were then evaluated among stations using planned linear orthogonal contrasts per Hoke et al. (1990). Each mine-influenced station was compared to a combined group of downstream stations and

reference stations. For example, planned contrasts for MIDCO compared MIDCO to stations downstream and reference stations, but excluded MIUCO and CORCK from the comparisons because they are located upstream (Table 2.6-2). The best transformation for each endpoint (i.e., untransformed or ln[x+1]) was chosen as the transformation for which a Shapiro-Wilk test on the residuals gave the highest *P*-value. Contrasts were considered significant after applying the Dunn-Ŝidák correction for six planned comparisons, at *P*<0.009. With these comparisons, significant differences for a variable for all or most comparisons, with consistently negative magnitudes of difference would be consistent with a potential adverse effect originating at the mine-influenced stations closest to the mine, and extending through the entire reach; significant contrasts for upstream stations, which are no longer significant in downstream contrasts would be indicative of effects upstream, followed by recovery with distance downstream⁵.

The magnitude of the difference was calculated for each planned linear orthogonal contrast as the number of standard deviations (SD) from the contrast mean using the following equation:

where: SD = standard deviation; Contrast Mean = mean of the pooled replicates from downstream and reference stations included in the contrast; Contrast SD = standard deviation of the pooled replicates from downstream and reference stations included in the contrast.

The ecological significance of a statistical difference was assessed by determining if, for a particular endpoint, a station was within a magnitude of difference of 2 SD from downstream and reference stations (i.e., the contrast). This approach defines ecological significance in terms of the range of variability observed in the downstream and reference communities. If a statistical difference is observed between a station and its contrast group, but is within a magnitude of difference of 2 SDs, the statistical significance is not considered biologically meaningful or ecologically significant.

Table 2.6-2: Spatial Planned Linear Orthogonal Contrasts for Benthic Invertebrate Community Endpoints

Station	EXP/REF	MIUCO	CORCK	MIDCO	MIDAG	MIULE	MI5
MIUCO	EXP	8	0	0	0	0	0
CORCK	EXP	-1	7	0	0	0	0
MIDCO	EXP	-1	-1	6	0	0	0
MIDAG	EXP	-1	-1	-1	5	0	0
MIULE	EXP	-1	-1	-1	-1	4	0
MI5	EXP	-1	-1	-1	-1	-1	3
AGCK	REF	-1	-1	-1	-1	-1	-1
MI25	REF	-1	-1	-1	-1	-1	-1
LE1	REF	-1	-1	-1	-1	-1	-1

EXP = mine-influenced stations; REF = reference station.

⁵ Caution should be used when interpreting statistical results for MIUCO because this station is located upstream of Corbin Creek and is not part of the main exposure gradient. The pooled stations used to compare MIUCO represent a wide range of exposures, from highly exposed Corbin Creek to unexposed reference stations, which influences the contrast mean and SD.

_

2.6.3.2.2 Temporal Evaluation

Temporal changes in BIC endpoints were evaluated for data collected between 2012 and 2022. For each station, BIC endpoints were compared among years using ANOVA with planned linear orthogonal contrasts to test whether effects exhibited linear gradients over time; P-values ≤ 0.05 were considered significant.

For each endpoint, an overall ANOVA model was fit to the data as:

 $Y = Year + \epsilon$ Equation 2.6-3

where: Y = response variable; Year = a fixed factor for year; and ε = the error term.

Differences in BIC endpoints were evaluated among years separately for each station using planned linear orthogonal contrasts per Hoke et al. (1990). To evaluate the presence of a gradient response over time, BIC endpoints for each of the stations were compared to all previous years combined. For example, planned contrasts compared 2021 to 2012 to 2022, but did not compare 2022 data to itself (Table 2.6-3). The best transformation for each endpoint (i.e., untransformed or ln[x+1]) was chosen as the transformation for which a Shapiro-Wilk test on the residuals gave the highest *P*-value. The magnitude of the difference was calculated for each planned linear orthogonal contrast as the number of SD from the contrast mean following Equation 2.6-2, except Station Mean was replaced by the Year Mean in the equation.

Contrasts were considered significant after applying the Dunn-Ŝidák correction for four to nine planned comparisons, at *P*<0.013 to *P*<0.006. With these comparisons, significant differences for a variable for all or most comparisons, with consistent negative magnitudes of difference would be consistent with a potential adverse effect persisting throughout most of the sampling period; significant contrasts for later years, which are no longer significant in recent year contrasts would be indicative of effects in the past, followed by recovery since then.

The ecological significance of a statistical difference was assessed by determining if, for a particular endpoint, a year was within a magnitude of difference of 2 SD from previous years (i.e., the contrast). This approach defines ecological significance in terms of the range of variability observed in each year. If a statistical significance is observed between a year and its contrast group, but is within a magnitude of difference of 2 SDs, the statistical significance is not considered biologically meaningful or ecologically significant because the results for that endpoint are still within the typical range of variability.

Table 2.6-3: Temporal Planned Linear Orthogonal Contrasts for Benthic Invertebrate Community Endpoint

Year	2022	2021	2020	2019	2018	2017	2016	2015	2014	2013
2022	10	0	0	0	0	0	0	0	0	0
2021	-1	9	0	0	0	0	0	0	0	0
2020	-1	-1	8	0	0	0	0	0	0	0
2019	-1	-1	-1	7	0	0	0	0	0	0
2018	-1	-1	-1	-1	6	0	0	0	0	0
2017	-1	-1	-1	-1	-1	5	0	0	0	0
2016	-1	-1	-1	-1	-1	-1	4	0	0	0
2015	-1	-1	-1	-1	-1	-1	-1	3	0	0
2014	-1	-1	-1	-1	-1	-1	-1	-1	2	0
2013	-1	-1	-1	-1	-1	-1	-1	-1	-1	1
2012	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1

2.7 Quality Assurance and Quality Control

Quality assurance (QA) and quality control (QC) methods were consistent with methods developed for the RAEMP study design (Minnow 2020b, Section 10.0). Because CMm LAEMP data were collected by Minnow as part of data collection for the RAEMP, QA/QC procedures and samples for the RAEMP relate to the CMm LAEMP as well. Detailed QA/QC procedures and results are presented in the RAEMP on a three-year cycle (i.e., 2020 to 2022 RAEMP report). A summary of the QA/QC results relevant to the 2022 CMm LAEMP are provided in Appendix E and analytical reports are provided in Appendix F. Review of the QA/QC results for 2022 indicated that the data quality objectives were met, and that the data are appropriate for the purposes of this assessment (Appendix E).

2.8 Related Aquatic Programs

Teck conducts several additional programs to monitor, evaluate, and/or manage the aquatic effects of mining operations within the CMm area. The CMm LAEMP integrates information from these relevant studies (e.g., RAEMP, chronic toxicity testing program) and other supporting studies (i.e., environmental flow needs [EFN] Study) to better characterize and understand potential effects of CMm on aquatic receptors in the Michel Creek watershed. Summaries of relevant results from these reports are provided in Appendix C, while methods are presented within the specific monitoring reports.

Section 5.0 provides a brief history of the aquatic programs that initially identified adverse responses to sensitive invertebrates, investigations undertaken to identify potential causal factors, and the resulting actions initiated by Teck under the AMP response framework to better understand and assess potential effects at CMm. The purpose of this review is to highlight the investigative efforts undertaken since 2017 that corroborate nickel as a likely cause of invertebrate responses at CMm. The integration of these studies strengthens the characterization of potential effects of CMm on the aquatic environment.

3.0 RESULTS

3.1 Water Quality

Water quality screening and spatial and temporal trends (including comparisons to projections [SRK 2023]) are summarized in Sections 3.1.1 to 3.1.3. Supplementary plots and tabulated data are provided in Appendix D and Appendix G.

3.1.1 Data Screening

The water quality data collected concurrently with the benthic invertebrate samples (i.e., in September) were compared to site-specific benchmarks and generic WQGs in Appendix D, Table D-1. Constituents with concentrations greater than one or more of these values are summarized in Table 3.1-1 and described in brief below:

Dissolved nickel concentrations were above the proposed level 3 nickel benchmark for invertebrates at CORCK and MIDCO. MIDCO is 0.94 km downstream of the Corbin Creek confluence on Michel Creek. Dissolved nickel concentrations at MIDAG, which is 5.27 km downstream of the Corbin Creek confluence, were above the proposed level 2 nickel benchmark. Concentrations at stations downstream of MIDAG were below the proposed nickel benchmark values. Dissolved nickel concentrations were lower than proposed benchmarks for fish and amphibians at all stations.

- Total cobalt concentration was above the long-term chronic BC WQG at CORCK. All stations in the CMm LAEMP study area (including CORCK) were below the short-term acute BC WQG. Cobalt at CORCK was below chronic effect concentrations summarized by ECCC (2017) and unbounded effect concentrations from site-specific testing conducted with C. dubia and H. azteca in Michel Creek water (WSP Golder 2022c).6 Therefore, it is unlikely that cobalt represents a source of mine-influence that may negatively impact the BIC and cobalt is not included further in the evaluation of mine-related effects on the BIC in Michel Creek.
- Fluoride concentration was above the interim CCME WQG at CORCK and all stations downstream of CORCK on Michel Creek: however, at all stations in the CMm LAEMP study area, fluoride was below the chronic effects benchmark of 1.9 mg/L that was derived by MacPherson et al. (2014) to be protective of aquatic life. Fluoride concentrations above the interim CCME WQG are unlikely to be mine-related because there is a lack of a spatial pattern indicative of mine-influence (i.e., a decrease in fluoride with increasing distance) and the highest fluoride concentration was reported at the reference station on Andy Good Creek. Therefore, fluoride was not included further in the evaluation.
- Sulphate concentrations were below the level 1 updated effect concentrations for benthic invertebrates at all stations. However, sulphate concentrations in Corbin Creek were between the level 1 and 2 updated effect concentrations for early life stages of fish, indicating a potential for low-level effects of sulphate to embryos and alevins of fish that spawn in this creek. Sulphate concentrations were below the level 1 interim screening value for post-alevin life stages of fish of 1,225 mg/L, indicating that effects to older life stages of fish would not be expected (WSP 2023b). Because the focus of the CMm LAEMP is to evaluate potential effects to BIC, the sulphate screening results for fish are not discussed further herein. Rather, water quality screening results for fish will be evaluated as part of ongoing RAEMP investigations.

Based on the results presented above, nickel was the only constituent identified as having the potential to cause effects to the BIC in the CMm area. Therefore, nickel was carried forward herein for further evaluation of spatial and temporal trends. Plots for other constituents are provided in Appendix G.

⁶ The single exception was that the cobalt concentration at CORCK (5.3 µg/L) was above the chronic effect concentration reported by ECCC (2017a) for H. azteca growth (2.2 µg/L at hardness of 100 mg/L CaCO₃). However, the CORCK concentration was below the unbounded no effect concentration for H. azteca growth in Michel Creek water (>7.9 μg/L at hardness of 550 mg/L CaCO₃; WSP Golder 2022c).

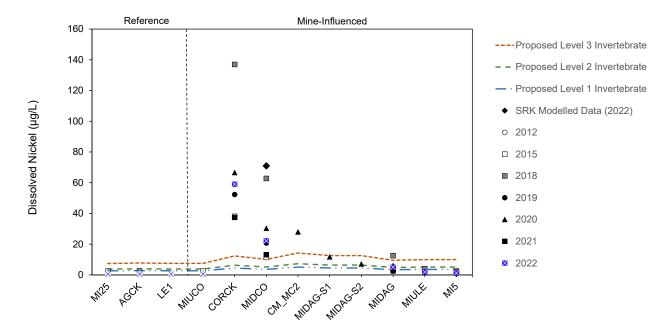
Table 3.1-1: Summary of Water Quality Screening Exceedances at Stations Downstream of CMm, September 2022

Constituent		Proposed Nickel Benchmarks ^(b,c)				Concentrations								
	Water Quality Guideline ^(a)	Invertebrates			MIOE	40016		MILLOO	CODOK	MIDOO	MIDAG		MALE	
		Level 1	Level 2	Level 3	WII25	AGCK	LE1	MIUCO	CORCK	MIDCO	MIDAG	MIULE	WII5	
Dissolved Nickel (µg/L)	-	2.6 to 4.4	3.7 to 6.3	7.3 to 12	<0.5	<0.5	<0.5	<0.5	59	22	5.0	2.0	1.2	
Total Cobalt (µg/L)	4.0	-	-	-	<0.1	<0.1	<0.1	<0.1	5.3	0.81	0.1	<0.1	<0.1	
Fluoride (mg/L)	0.12 ^(d,e)	-	-	-	0.07	0.30	0.06	0.08	0.19	0.15	0.19	0.16	0.13	

Notes: Stations are ordered from upstream to downstream. This table summarizes constituents and stations that have concentrations greater than a guideline, effect concentration, benchmark or proposed benchmark. Appendix D presents the remaining constituents, stations, guidelines, effect concentrations, benchmarks or proposed benchmarks, including the sulphate and nitrate effect concentrations, which are not presented here because concentrations were not exceeded in 2022.

- (a) Data were screened against BC Working and Approved Water Quality Guidelines (BC ENV 2021a,b).
- (b) Nickel concentrations were screened against the proposed nickel benchmarks (WSP Golder 2022c).
- (c) Proposed benchmark is hardness, pH, alkalinity, and dissolved organic carbon dependent (WSP Golder 2022c).
- (d) Guideline is hardness dependent.
- (e) In lieu of a BC WQG, the guideline was adopted from Canadian Council of Ministers of the Environment (CCME) Canadian Environmental Quality Guidelines (CCME 1999). **Bolded** values exceed the BC Long-term WQG (BC ENV 2021a,b).

Shaded values exceed an EVWQP benchmark, proposed benchmark, or effect concentration.


- = no data available or benchmark was not exceeded

3.1.2 Spatial Trends

The highest concentrations of mine-influenced water quality constituents in the September samples, collected concurrently with the BIC samples, were observed at the station closest to CMm on Corbin Creek (CORCK), followed by the first station downstream of CMm on Michel Creek (MIDCO) (nickel is shown in Figure 3.1-1; other constituents in Appendix G). A declining gradient of concentrations with distance downstream was observed for most mine-influenced water quality constituents, including metals (e.g., nickel) and major ions comprising total dissolved solids (e.g., calcium, sulphate). For nickel in particular, concentrations in September 2022 returned to concentrations similar to the reference areas by MIDAG, 5.27 km downstream of the Corbin Creek confluence. Dissolved nickel concentrations at MIUCO, the station upstream of CMm on Michel Creek, were similar to those observed at the reference stations MI25, AGCK, and LE1.

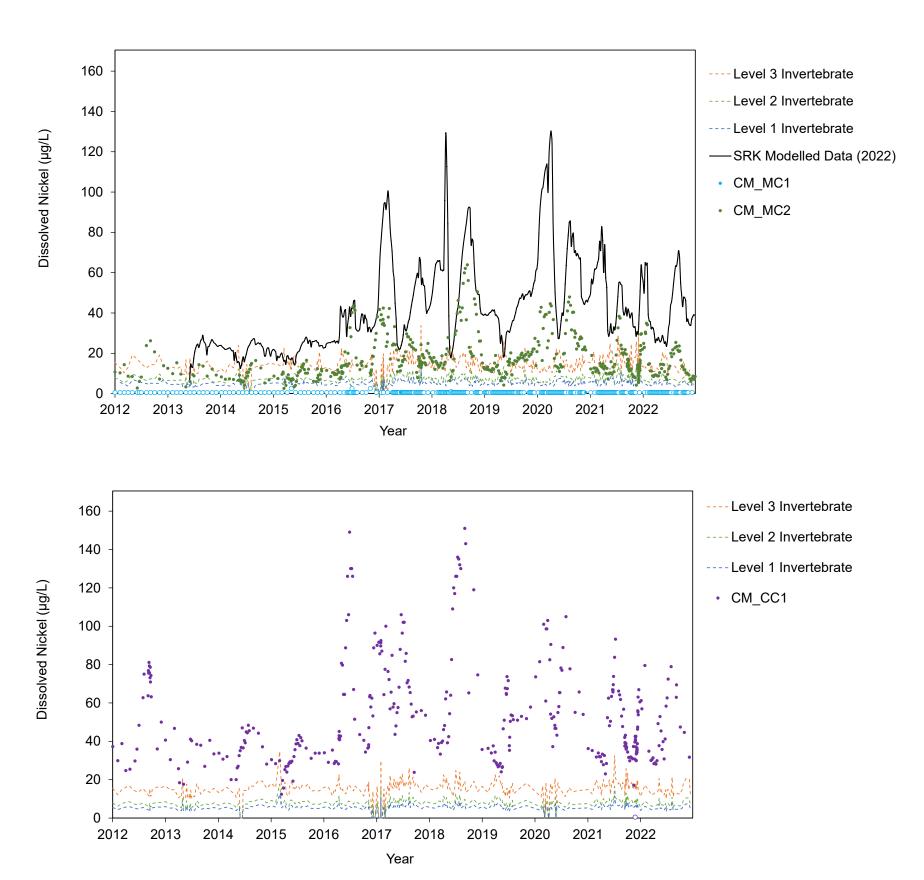
Figure 3.1-1: Spatial Variation in Total Nickel Concentrations Collected in the CMm LAEMP Study Area, September 2012 to 2022

Notes: The proposed nickel benchmarks are pH, dissolved organic carbon, hardness, and alkalinity dependent and calculated based on 2022 values.

CMm= Coal Mountain Mine; µg/L = micrograms per litre; BC WQG = British Columbia water quality guideline.

3.1.3 Projections and Temporal Trends

Temporal trends in dissolved nickel concentrations are presented in Figure 3.1-2 and discussed herein, while plots for all other monitored constituents are provided in Appendix G.


A common trend was observed for nickel and several other constituents in Michel Creek downstream of CORCK, in which concentrations increased between 2012 and 2018, and then decreased or remained consistent from 2018 to 2022. For nickel, this pattern was expected based on the concentrations modelled by SRK based on changes in mine water management with the transition to Care and Maintenance. In 2022, dissolved nickel was lower than projected based on the modelled data (SRK 2023). Concentrations of nickel were consistently above the proposed level 2 or level 3 nickel benchmark for invertebrates at CM_MC2 between 2012 and 2022 (Figure 3.1-2). At CM_CC1 in Corbin Creek, nickel concentrations between 2012 and 2022 were consistently above the proposed level 3 nickel benchmark.

Temporal trends and comparisons to projections for all other constituents are provided in Appendix G. Key trends for other constituents are:

- Concentrations of total selenium at CM_MC2 were lower than projected based on the modelled concentrations for dissolved selenium. Concentrations in 2022 were within the ranges observed between 2012 and 2021.
- Organoselenium concentrations in the Elk River and Michel Creek are generally below detection and below the Level 2 screening value of 0.025 μg/L (ADEPT et al. 2023). In 2022, organoselenium was below detection at CM_MC2 in Michel Creek downstream of CMm, with the exception of samples collected in the third quarter of 2022, where methylseleninic acid (MeSe IV) was detected at 0.011 μg/L, which is above the Level 1 screening value but below the Level 2 screening value. At concentrations below 0.025 μg/L, organoselenium is unlikely to cause a discernable shift in benthic invertebrate selenium concentrations (ADEPT et al. 2023).
- Concentrations of sulphate at CM_MC2 were similar to the modelled concentrations. Concentrations peaked in 2018 and remained similar between 2018 and 2022. Data were consistently below the level 1 effect concentrations for invertebrates at CM_MC1 and CM_CC1 between 2012 and 2022.
- Concentrations of nitrite at CM_MC2 were lower than the modelled concentrations. Concentrations of nitrate peaked in 2017 and have consistently declined from 2018 to 2022. Concentrations remained below the level 1 effect concentrations for invertebrates at CM_MC1 and CM_CC1 between 2012 and 2022.
- Similar trends were observed for total antimony, cobalt, molybdenum, manganese, uranium and nitrite. Concentrations peaked in 2017 or 2018, followed by a consistent decrease between 2018 and 2022.
- Total boron increased in 2020, and then returned to concentrations similar to those observed in 2018 and remained below relevant guidelines. The remaining constituents appeared consistent across years or were at concentrations below detection.

Figure 3.1-2: Weekly Dissolved Nickel Concentrations at CM_MC2 and CM_MC1 (top panel) and CM_CC1 (bottom panel), 2012 to 2022

Notes: SRK modelled projections for dissolved nickel (SRK 2023). These projections were included for comparisons to total nickel. Measured concentrations for CM_MC1, CM_MC2 and CM_CC1 are shown as blue, green, and purple circles, respectively, and SRK modelled data are represented by the solid black line in the upper panel. Open symbols indicate values below the detection limit.

BC WQG = British Columbia water quality guideline; $\mu g/L$ = micrograms per litre.

3.1.4 Seasonal Variation in Nickel Concentrations in 2022

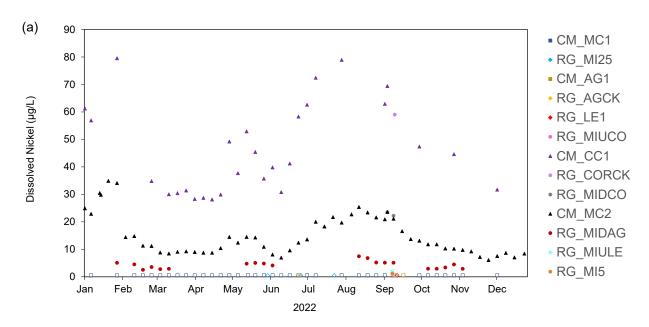
Dissolved nickel concentrations were greatest in January (approximately 80 μ g/L at CM_CC1 [CORCK] and 40 μ g/L at CM_MC2 [MIDCO]) August (approximately 80 μ g/L at CORCK and 25 μ g/L at MIDCO; Figure 3.1-3a). Dissolved nickel concentrations at MIDAG also peaked in August but remained below 10 μ g/L throughout 2022. Concentrations at the reference stations and at mine-influenced stations downstream of MIDAG were almost always below the detection limit throughout 2022.

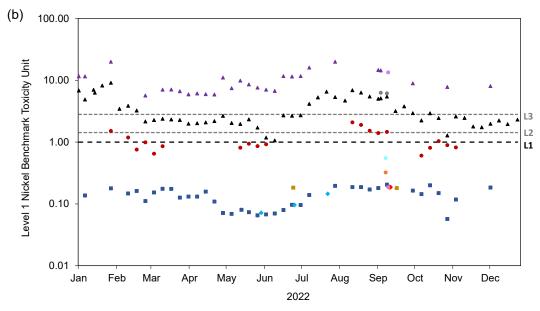
Dissolved nickel concentrations were also examined against the proposed level 1 nickel benchmark TU⁷ (Figure 3.1-3b), thereby accounting for ETMFs⁸ that vary across stations and samples. As discussed at the 3 May 2023 EMC meeting, peak nickel concentrations are used to evaluate potential effects to sensitive invertebrates (i.e., related to maximum exposure conditions in months preceding biological collection). Peak nickel concentrations in 2022 exceeded the proposed level 3 nickel benchmark at CORCK and MIDCO. Nickel concentrations at MIDAG occasionally exceeded the proposed level 2 nickel benchmark, whereas concentrations at reference and mine-influenced stations downstream of MIDAG were well below the proposed level 1 nickel benchmark (i.e., TU<1).

Based on the peak nickel concentrations described above and the narrative interpretation of chronic nickel benchmarks for invertebrates (WSP Golder 2022c), the following potential effects to BIC would be expected:

- Nickel concentrations were below the proposed level 1 benchmark at reference stations and mine-influenced stations downstream of MIDAG. At these stations, nickel would not be expected to cause measurable changes or ecologically meaningful effects to sensitive invertebrate species or the broader invertebrate community in BIC monitoring.
- Nickel concentrations were close to the proposed level 2 nickel benchmark at MIDAG. These results indicate a potential for low-level changes in the upper-bound of proportion of Ephemeroptera (i.e., % E) that would not likely be detectable and not expected change other community metrics.
- Nickel concentrations were above the proposed level 3 nickel benchmark immediately downstream of CMm at CORCK and MIDCO. These results indicate a potential for more than a 50% reduction in the upper-bound % E in the BIC, but effects to total abundance and richness of the BIC would not be expected. Nickel concentrations at the proposed level 3 nickel benchmark indicate a potential for measurable and ecologically-meaningful population-level changes in sensitive benthic invertebrates that could result in shifts in community structure (e.g., a shift in the dominant group from Ephemeroptera to Diptera).

Section 3.6 evaluates the extent to which expected nickel-related effects to invertebrates (based on 2022 water quality screening) aligns with measured BIC responses (based on 2022 BIC sampling).


Exposure modifying factors may include organism life stage, diet, and route of exposure. Toxicity modifying factors may include other water quality parameters (i.e., hardness, pH, bicarbonate, and dissolved organic carbon for nickel) that influence the speciation and concentration of available nickel to exhibit toxicity to the organism. Santore et al. 2021 provides a recent review of variation in nickel toxicity to aquatic organisms based on chemistry of the exposure conditions.



-

⁷ TU was calculated using EC10 rather than EC50.

Figure 3.1-3: Dissolved Nickel Concentrations (top panel) and the Proportion of the Proposed Level 1
Nickel Benchmark (bottom panel) in the CMm LAEMP Study Area, 2022

Note: Open symbols represent values below the detection limit. Values below the detection limit were substituted with the detection limit. The dissolved nickel concentrations as a proportion of the proposed level 1 nickel benchmark (L1) are shown and a value of 1 represents the calculated benchmark (black dashed vertical line). The sample-specific proposed level 2 (L2) and level 3 (L3) nickel benchmarks relative to the proposed level 1 nickel benchmarks are illustrated with the grey dashed horizontal lines. Reference stations from the CMm biological monitoring program are represented with diamond symbols, reference stations from the routine water quality monitoring program are represented by square symbols, mine-influenced station from CMm biological monitoring program are represented by circles, and mine-influenced stations from the routine water quality monitoring program are represented by triangles.

CMm = Coal Mountain Mine; µg/L = micrograms per litre.

3.1.5 Water Quality Summary

The highest concentrations of mine-influenced water quality constituents were observed at the station closest to CMm on Corbin Creek (CORCK), followed by the first station downstream of CMm on Michel Creek (0.94 km downstream of the Corbin Creek confluence; MIDCO). A declining gradient of concentrations with distance downstream was observed for most mine-influenced water quality constituents; for nickel in particular, concentrations returned to concentrations similar to the reference areas after MIDAG (5.27 km downstream of the Corbin Creek confluence). Dissolved nickel concentrations increased between 2012 and 2018, and then decreased between 2018 and 2022; this was expected based on the concentrations modelled by SRK which were based on changes in mine water management with the transition to Care and Maintenance. In 2022, nickel was the only constituent identified as having the potential to cause effects to BIC in Michel Creek. Peak nickel concentrations exceeded the proposed level 3 nickel benchmark for invertebrates in Corbin Creek at CORCK and the first station downstream on Michel Creek (MIDCO) and exceeded the proposed level 2 nickel benchmark at MIDAG. At other reference and mine-influenced stations, nickel concentrations were below the proposed level 1 nickel benchmark. This pattern indicates that the mine-related influence from nickel is likely localized to the area near the Corbin Creek confluence, immediately downstream of CMm (i.e., MIDCO and MIDAG). The potential impact of these dissolved nickel concentrations on the BIC is discussed further in Sections 3.6, 4.0, and 5.0.

3.2 Calcite Index

Calcite index values in 2022 were within the reference normal range of 0 to 1 at all reference stations and at all mine-influenced stations in Michel Creek; maximum calcite index among replicates was 0.24 (Figure 3.2-1; Appendix H). Calcite index values above the reference normal range were observed at CORCK in 2022 and all previous monitoring years except 2016. In Michel Creek, the average calcite index value was above the reference normal range only at MIDCO in 2018; calcite index values at MIDCO have been near the upper end of the reference normal range from 2016 to 2020, decreased in 2021 and 2022 to values below 0.1. Calcite index values have been greater in Corbin Creek (CORCK) relative to stations in Michel Creek; average calcite index values have been greater than 2.0 since 2017 and approached the maximum value of 3.0 (i.e., calcite present on all particles and fully concreted) in 2022.

33

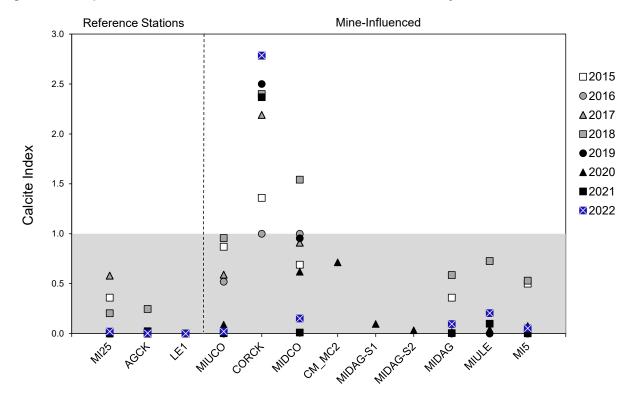


Figure 3.2-1: Spatial Variation in Calcite Index in the CMm LAEMP Study Area, 2012 to 2022

Notes: Grey shading represents the normal range defined as the 2.5th and 97.5th percentiles of the 2015 reference area data from the RAEMP (Minnow 2018b).

3.3 Sediment Quality

Sediment quality results are screened against the BC WSQG for the protection of aquatic life (BC ENV 2021a,b) in Appendix I. A summary of metal and polycyclic aromatic hydrocarbon (PAH) constituents with concentrations greater than BC WSQGs is provided in Tables 3.3-1 and 3.3-2. Plots showing spatial trends of metal constituents with concentrations higher than BC WSQGs are provided in Figure 3.3-1 and plots for the remaining constituents are provided in Appendix G. Substrate composition, sediment texture, grain size and sediment TOC content are provided in Section 3.5.

3.3.1 Spatial Trends

Metal concentrations⁹ above lower BC WSQGs were observed at both reference and mine-influenced stations in 2022 (Table 3.3-1; Figure 3.3-1). Metals above the lower BC WSQGs at mine-influenced stations were arsenic, cadmium, iron, manganese, nickel, selenium, and zinc; these metals were also above BC WSQGs at one or more reference stations. Metal concentrations that were above the upper BC WSQGs were cadmium, manganese, nickel and zinc at CORCK, and nickel concentrations at MIDCO and MIULE in Michel Creek downstream of

⁹ Metal concentrations used in data screening are the maximum of the replicate samples at each mine-influenced and reference station.

CORCK. Key spatial patterns in sediment quality results for metals in 2022 were:

- Concentrations of 15 constituents (i.e., aluminum, arsenic, beryllium, boron, chromium, copper, iron, lead, lithium, molybdenum, phosphorus, potassium, thallium, titanium, and vanadium) were lower at CORCK relative to stations in Michel Creek (Figure 3.3-1; Appendix G).
- Concentrations of 10 constituents (i.e., cadmium, calcium, cobalt, manganese, nickel, sodium, strontium, sulfur, uranium, and zinc) were highest at CORCK and declined downstream of the Corbin Creek confluence in Michel Creek (Figure 3.3-1; Appendix G). Of the 10 constituents showing a downstream gradient, metal concentrations were similar to or lower than concentrations at reference stations downstream of MIDCO, with the exceptions of cobalt, nickel, sodium, and sulfur, which had higher concentrations at one or more downstream stations compared to the reference stations (Figure 3.3-1; Appendix G).
- Concentrations of three sediment constituents (i.e., antimony, barium, and titanium) were highest at the two
 most downstream stations in Michel Creek (MIULE and MI5) (Appendix G).
- Concentrations of selenium were above the lower BC WSQG at CORCK and stations downstream of CORCK on Michel Creek (Figure 3.3-1). No spatial pattern in selenium was evident, and the highest concentrations were observed at MIDAG in Michel Creek, followed by CORCK and MIDCO.
- At CORCK, cadmium, manganese, and zinc concentrations were higher than at mine-influenced stations farther downstream on Michel Creek and were above the upper BC WSQG (Table 3.3-1).
- Concentrations of nickel were above the lower BC WSQG at all stations and above the upper BC WSQG at CORCK, MIDCO, and MIULE in 2022 (Figure 3.3-1). Nickel concentrations were highest at CORCK and declined in a downstream gradient, with the exception of one replicate observed at MIULE which had high nickel concentrations.
- Calcium, cobalt, sodium, sulphur, and strontium concentrations were all highest at CORCK and declined in a downstream gradient.

PAH concentrations were above the lower BC WSQGs at both reference and mine-influenced stations in 2022 (Table 3.3-2; Appendix G). PAH concentrations above the upper BC WSQG occurred at CORCK and at stations downstream of CORCK on Michel Creek (MIDCO, MIDAG and MIULE). Total PAH ESBTU values were less than 1.0 for stations with total PAH concentrations exceeding the BC lower WQG, indicating low bioavailability of PAHs and low potential for effects.

Concentrations of PAHs were generally highest at CORCK and declined in a downstream gradient in Michel Creek. These compounds are slow to degrade and tend to accumulate in habitats where they are found in association with fine sediments, and high TOC and detritus content (Newman and Unger 2003). However, substrates at reference and mine-influenced stations were mostly composed of cobble and gravel (>50%) or boulders, and TOC content in the small depositional areas near the erosional BIC habitat was <11% (Section 3.5). Considering these habitat variables, the PAH accumulation pattern observed does not align with the habitat variables in the study area.

3.3.2 Temporal Trends

Sediment constituent concentrations in 2022 were generally similar to or lower than those measured in previous years, indicating a lack of temporal trends (Figure 3.3-1; Appendix G).

Table 3.3-1: Summary of Sediment Quality Screening Exceedances for Metals at CMm, September 2022

	BC Lower	BC Upper					m Concer ng/kg dw) ⁽					
Constituent	WSQG	WSQG	Refere	nce Sta	tions	Mine-influenced Stations						
	(mg/kg dw)	(mg/kg dw)	MI25	AGCK	LE1	MIUCO(b)	CORCK	MIDC O	MIDA G	MIUL E	MI5	
Arsenic	5.9	17	12.1	6.97	8.97	9.45	-	6.78	-	5.98	-	
Cadmium	0.6	3.5	1.46	1.26	2.07	0.90	10.70	2.24	1.72	1.41	2.38	
Iron	21,200	43,766	27,400	-	-	31,300	-	-	-	-	-	
Manganese	460	1,100	708	-	-	700	2,200	751	-	-	-	
Nickel	16	75	36.1	24.6	31.4	26.9	284	134	64.4	427	35.1	
Selenium	2.0	-	-	2.14	-	-	4.55	4.20	6.19	3.88	2.75	
Zinc	123	315	156	147	133	-	831	176	125	-	-	

Note: Stations are ordered upstream to downstream.

Bolded values exceed the lower BC WSQG for the protection of aquatic life (BC ENV 2021a,b).

Shaded values exceed the upper BC WSQG for the protection of aquatic life (BC ENV 2021a,b).

⁽a) Concentrations shown are the maximum of the replicate samples at each station.

⁽b) MIUCO maximum concentrations are exclusive to the September sampling event. Additional October samples were not included.

^{- =} no data available or values below detection limit; mg/kg dw = milligrams per kilogram dry weight; WSQG = working sediment quality guideline; CMm = Coal Mountain Mine.

Table 3.3-2: Summary of Sediment Quality Screening Exceedances for Polycyclic Aromatic Hydrocarbons at CMm, September 2022

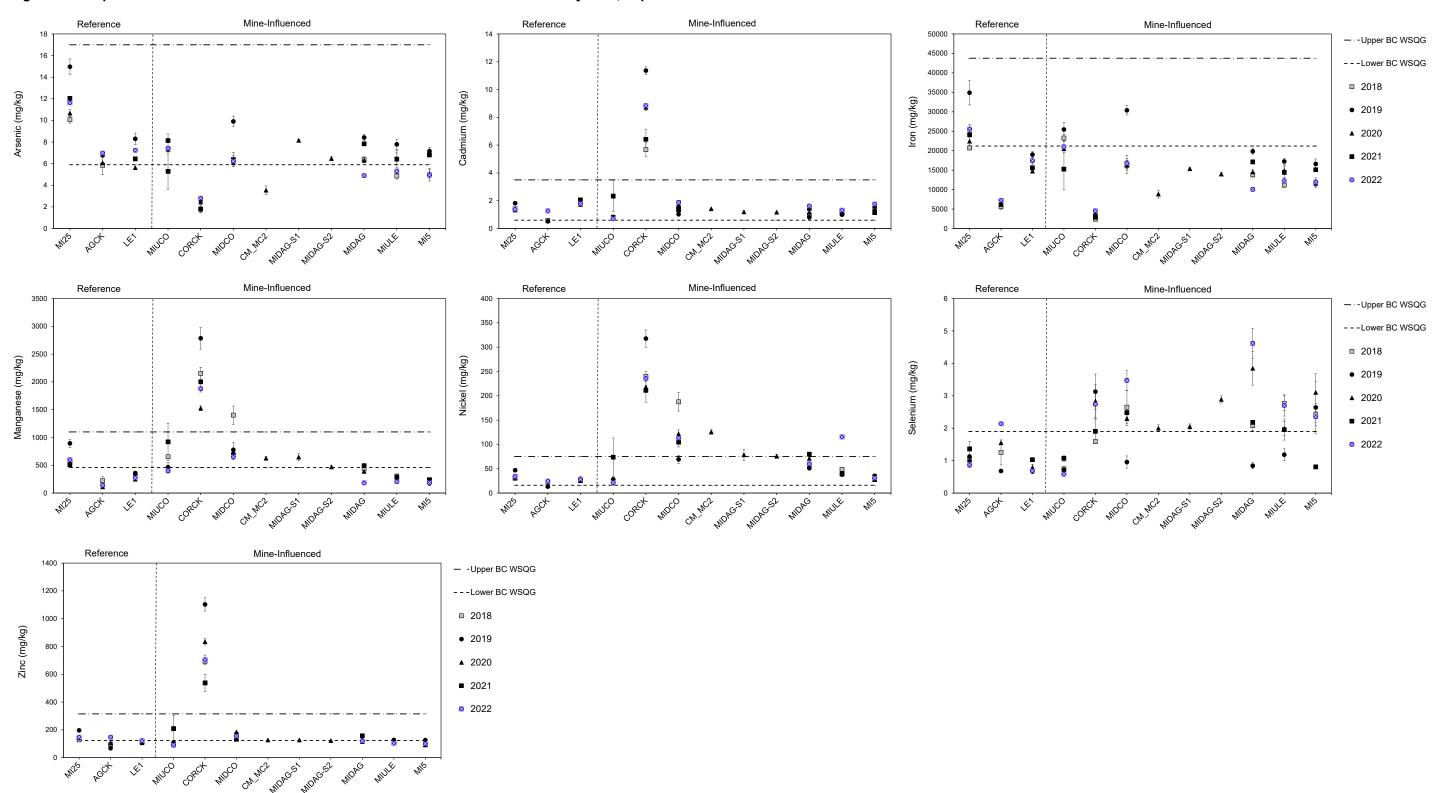
	BC Lower WSQG	BC Upper WSQG (mg/kg dw)	Maximum Concentration (mg/kg dw) ^(a)									
Constituent	(mg/kg dw)		Reference Stations									
			MI25	AGCK	LE1	MIUCO(b)	CORCK	MIDCO	MIDAG	MIULE	MI5	
Total Organic Carbon (%)	-	-	2.6	9.8	2.4	6.8	6.7	7.3	12.5	7.5	6.9	
Acenaphthene	0.0067	0.089	-	-	-	-	0.058	-	-	-	-	
Anthracene	0.047	0.25	-	-	-	-	-	-	-	0.357	0.204	
Benz(a)anthracene	0.032	0.39	-	-	-	-	0.076	-	-	-	-	
Benzo(a)pyrene	0.032	0.78	-	-	-	-	0.056	0.050	-	-	-	
Chrysene	0.057	0.86	-	-	0.082	0.060	0.421	0.325	0.243	0.150	0.084	
Fluorene	0.021	0.14	-	-	-	-	0.167	0.124	-	-	-	
2-Methylnaphthalene	0.020	0.2	-	0.086	0.140	0.103	2.370	1.380	0.676	0.394	0.184	
Naphthalene	0.035	0.39	-	0.040	0.068	0.044	0.881	0.594	0.333	0.192	0.096	
Phenanthrene	0.042	0.52	-	0.099	0.262	0.132	1.130	0.782	0.544	0.358	0.203	
Pyrene	0.053	0.88	-	-	-	-	0.134	0.095	0.079	-	-	
LMW PAH(c)	0.10	-	0.420	0.702	0.910	0.642	6.188	4.044	2.666	1.909	1.157	
HMW PAH ^(d)	1.00	-	-	-	-	-	1.589	1.297	1.787	-	-	
Total PAH	4.0	35	-	-	-	-	7.777	5.341	4.453	-	-	
PAHs, total (BC Sched 3.4)	4.0	35	-	-	-	-	5.300	-	-	-	-	
Total PAH (mg/kg OC)	-	-	-	-	-	-	119.8	90.8	45.9	-	-	
Total PAH ESBTU	-	-	-	-	-	-	0.22	0.16	0.08	-	-	

Note: Stations are ordered upstream to downstream. Concentrations in mg/kg, except total organic carbon which is presented in percent and ESBTU which is unitless.

(d) High molecular weight PAHs are comprised of benz(a)anthracene, benzo(b&j)fluoranthene, benzo(b+j+k)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, fluoranthene, indeno(1,2,3-c,d)pyrene, and pyrene.

Bolded values exceed the lower BC WSQG for the protection of aquatic life (BC ENV 2021a,b).

Shaded values exceed the upper BC WSQG for the protection of aquatic life (BC ENV 2021a,b).


⁽a) Concentrations shown are the maximum of the replicate samples at each station.

⁽b) MIUCO maximum concentrations are inclusive of both September and October samples as PAHs could not be analyzed by the lab for the majority of the September samples.

⁽c) Low molecular weight PAHs are comprised of acenaphthene, acenaphthylene, acridine, anthracene, fluorene, 1-methylnaphthalene, 2-methylnaphthalene, naphthalene, phenanthrene, and quinoline.

^{- =} values below WSQG or detection limit; mg/kg dw = milligrams per kilogram dry weight; HMW = high molecular weight; LMW = low molecular weight; PAH = polycyclic aromatic hydrocarbon; OC = organic cabron; ESBTU = equilibrium-partitioning sediment benchmark toxic unit; BC = British Columbia; WSQG = working sediment quality guidelines; CMm = Coal Mountain Mine.

Figure 3.3-1: Spatial Variation in Sediment Metal Concentrations in the CMm LAEMP Study Area, September 2018 to 2022

Notes: WSQG = working sediment quality guideline; mg/kg = milligrams per kilogram dry weight; CMm = Coal Mountain Mine.

3.3.3 Sediment Quality Summary

Sediment constituent concentrations in 2022 were generally within the ranges measured in previous years. Metal and PAH concentrations were above the lower BC WSQG at both reference and mine-influenced stations in 2022, and a subset of these were above the upper BC WSQG at CORCK and at stations downstream of CORCK on Michel Creek (MIDCO, MIDAG and MIULE). As with water quality, the highest concentrations generally occurred at CORCK and then decreased downstream.

As discussed in Section 1.5, sediment is unlikely to be a relevant exposure pathway for BIC in the CMm area, because the BIC are collected from riffle habitats that are highly erosional and contain very little to no surficial fines. The dominant taxa in these areas (i.e., Ephemeroptera, Plecoptera, Trichoptera) tend to be associated with the hard gravel and cobble substrates that predominate in erosional areas. Depositional areas are small and uncommon on Michel Creek, and sediment samples for the sediment quality analysis, although collected within the same general reaches as the BIC samples, are located in low-energy areas along the margins of the creek, or in small side channels that do not represent the habitat where the BIC samples are collected. Therefore, there is no significant operable pathway for exposure of the sampled BIC to the measured sediment quality and even in habitats where sediment is an exposure pathway, aqueous nickel exposure is the dominant pathway for BIC effects rather than sediment exposure (Brix et al. 2017). Despite the lack of exposure pathway, sediment quality has been collected as a supporting measurement endpoint in the CMm LAEMP. The sediment quality results have continued to be broadly consistent among years for the CMm LAEMP with negligible spatiotemporal patterns.

A concern raised during the 3 May 2023 EMC meeting was the potential for sediments to be a source of nickel to Michel Creek through resuspension. It is unlikely that resuspension of nickel from the sediment is occurring in the erosional habitat of Michel Creek due to a number of factors. Mainly, given the pH conditions required for nickel resuspension from sediment are at a range below 4 (Swennen and Devivier 2006) and pH in Michel Creek ranges between 8.0 to 8.4, nickel is not expected to mobilize. Also, the minimal sediment in Michel Creek is located in low-energy areas along the margins of the creeks that do not represent areas that are prone to resuspension; therefore, it is unlikely that nickel resuspension from the sediment is occurring.

Consistent with the discussions that occurred at the 3 May 2023 EMC meeting, it is recommended that sediment quality monitoring be discontinued, if the CMm LAEMP continues. Sediment chemistry will continue to be monitored under the RAEMP.

3.4 Benthic Invertebrate Tissue Chemistry

BIT Se concentrations were plotted relative to historical data and relative to the reference normal range (Golder 2019) to help interpret results of water quality and BIC monitoring. BIT Se concentrations provide a direct indication of the bioaccumulative potential of aqueous selenium and a direct, tissue-based measure of exposure to evaluate potential effects of selenium to other biota (i.e., fish). Results for other constituents in BIT are provided in Appendix L.

Between 2012 and 2022, BIT Se concentrations were within or below the regional normal range at reference and mine-influenced stations, with the exception of MIULE in 2018 and MIDAG in 2019 and 2022, which were slightly above the regional normal range (Figure 3.4-1). In 2022, with the exception of MIDAG, BIT Se concentrations at mine-influenced stations was within the range measured at CMm reference stations. The higher BIT Se concentrations observed at MIDAG in 2019 and 2022 and MIULE in 2018, are unlikely to be ecologically relevant because they were just slightly above the regional normal range. These results will be compared against the updated regional normal range in the 2020 to 2022 RAEMP (Minnow 2023) to confirm whether they are outside the range of natural variation. BIT Se concentrations were less than the lowest level 1 benchmark at all stations, in all years. Overall, none of the BIT Se replicates in 2022 had selenium concentrations above the biological trigger thresholds or above the level 1 benchmarks for juvenile fish. These findings do not indicate a need to track BIT Se under the AMP framework.

Reference Mine-Influenced 16 -Level 1 Bird Benchmark Composite Benthic Invertebrate Selenium Tissue 14 ---- Level 1 Benthic Invertebrate Benchmark Level 1 Fish Benchmark Concentration (mg/kg dw) 12 0 2012 10 ■ 2018 8 • 2019 2020 6 2021 4 **2022** 2 2022-INVOLI 0

Figure 3.4-1: Composite Benthic Invertebrate Tissue Selenium Concentrations from the CMm LAEMP Study Area, 2012 to 2022

Notes: Grey shading represents the normal range defined as the 2.5th and 97.5th percentiles of the 2012 and 2019 reference area data from the RAEMP (Minnow 2020a).

CMm = Coal Mountain Mine; mg/kg dw = milligrams per kilogram dry weight; INVOLI = taxon-specific tissue sample that includes only annelid tissue.

3.5 Physical Habitat Characteristics

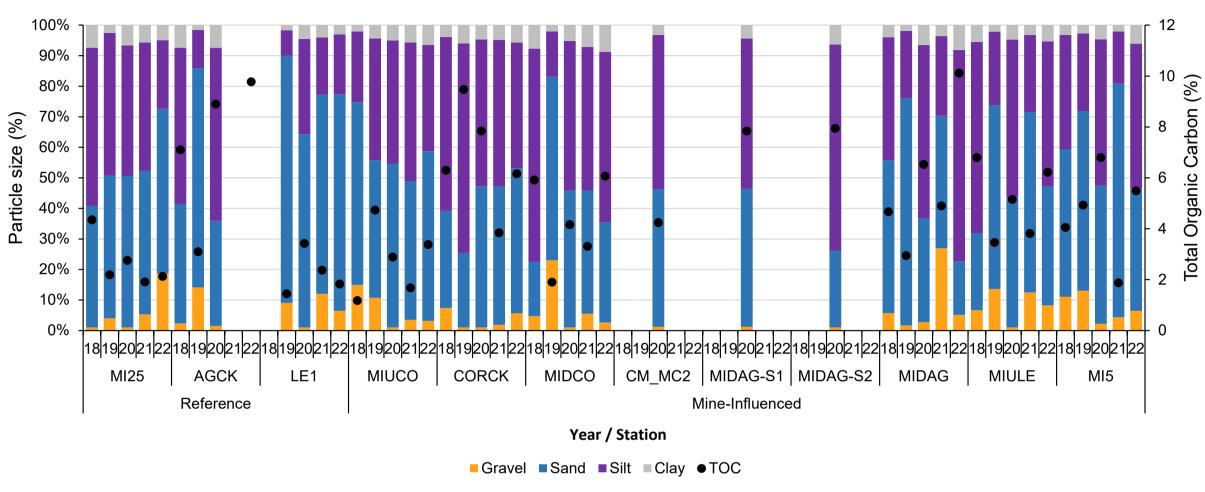
Variation in physical habitat characteristics such as water depth, velocity, sediment particle size, and TOC can influence BIC structure in streams (Rosenberg and Resh 1992). Water depth ranged between 11 cm and 27 cm among sampling stations in 2022, and stream velocity ranged from 0.25 to 0.48 m/s (Table 3.5-1).

Field water quality measurements taken at the BIC sampling stations in Michel Creek in 2022 indicated that pH was neutral to slightly basic (i.e., 8.0 to 8.5), the water was well oxygenated (i.e., 9.6 to 10.6 mg/L of DO), and these constituents were similar among stations (Table 3.5-1). Specific conductivity was lower at the reference stations and at MIUCO upstream of CMm (i.e., 196 to 300 μ S/cm), and was higher at CORCK and MIDCO (i.e., 1,183 to 1,652 μ S/cm), consistent with previous years. Water temperature was relatively similar among stations, with slightly higher temperatures at CORCK and MIDCO, temperature ranged from 7.0°C to 12.3°C.

Based on visual examination of the area, substrates at both reference and mine-influenced stations were mostly composed of cobble and gravel (>50%), with the exception of CORCK and MIDAG, where substrates were primarily composed of boulder (Table 3.5-1; Figure 3.5-1; Appendix J). Sediment particle size distribution, based on samples collected near BIC stations (but not within the erosional habitat where BIC samples were collected) was generally dominated by sand and silt, with low proportions of gravel and clay (Table 3.5-1; Figure 3.5-1; Appendix J). Sediment TOC content was similar among stations and was generally below 7% between 2018 and 2022, with the exception of AGCK (2018, 2020, and 2022), CORCK (2019 and 2020), MIDAG (2022), MIDAG-S1 (2020), and MIDAG-S2 (2020), which had higher sediment TOC content, ranging from 7.1% to 10.1%.

Overall, physical habitat characteristics were similar between reference and mine-influenced stations (Table 3.5-1; Figure 3.5-1; Appendix J).

Table 3.5-1: Habitat Characteristics at Benthic Invertebrate Sampling Stations in the CMm LAEMP Study Area, September 2022


Variable			Refe	rence Sta	tions	Mine-Influenced Stations					
			MI25	AGCK	LE1	MIUCO	CORCK	MIDCO	MIDAG	MIULE	MI5
	Sample water depth	cm	10.6	17.3	15.1	15.2	13.5	18.6	26.5	26.3	21.6
	Velocity	m/s	0.28	0.48	0.39	0.25	0.30	0.31	0.37	0.42	0.40
Physical Variables	Water temperature	°C	7.7	9.2	8.4	7.0	11.5	12.3	9.8	10.9	9.5
Friysical Valiables	Dissolved oxygen	mg/L	9.7	10.2	10.2	10.6	9.8	9.6	9.8	9.7	10.0
	Specific conductivity	μS/cm	290	252	196	300	1,652	1,183	734	622	511
	рН	-	8.2	8.5	8.0	8.4	8.1	8.1	8.2	8.4	8.3
Organic Carbon (in depositional samples)	Total organic carbon	%	2.1	9.8	1.8	3.5	6.2	6.1	10.1	6.2	5.5
	Clay (<0.004 mm)	%	5	-	3	6	6	9	8	5	6
	Silt (0.004 to 0.06 mm)	%	23	-	20	42	41	56	70	47	48
Sediment Particle Size distribution (in depositional samples)	Fine sand (0.06 to 0.25 mm)	%	21	-	36	29	31	11	13	17	21
adpositional dampios)	Coarse sand (0.25 to 2.0 mm)	%	33	-	35	19	17	22	11	22	21
	Gravel (>2.0 mm)	%	19	-	7	4	6	3	11	8	6
	Bedrock	%	0	0	0	0	0	0	5	0	0
	Boulder	%	10	20	10	5	90 ^(a)	10	40	20	30
Substants Commonities	Cobble	%	70	60	50	80	0	50	30	30	30
Substrate Composition	Gravel	%	10	20	20	10	0	20	20	30	30
	Sand	%	5	0	10	0	5 ^(a)	10	0	10	0
	Finer	%	5	0	10	5	5 ^(a)	10	5	10	10

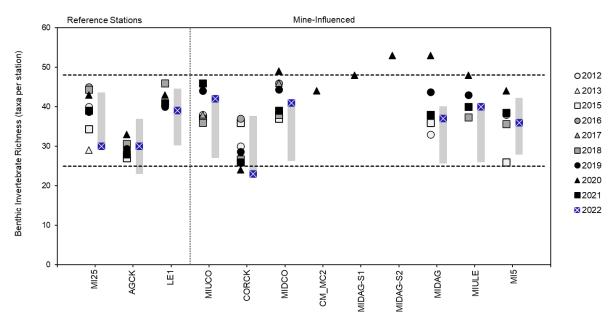
⁽a) Calcite covered majority of the substrate.

 μ S/cm = microsiemens per centimetre; - = no data.

Figure 3.5-1: Mean Particle Size and Total Organic Carbon in Sediment in the CMm LAEMP Study Area, September 2018 to 2022

CMm = Coal Mountain Mine.

3.6 Benthic Invertebrate Community


3.6.1 Richness and Abundance

Benthic invertebrate richness was similar among stations between 2012 and 2022, with the highest richness observed in 2020 at most mine-influenced stations compared to other years. With one exception (i.e., reference station MI25), there were no significant differences in richness in 2022 relative to previous years (Appendix K, Table K-5). Richness was significantly greater at MIDCO in 2020 compared to previous years and although the overall ANOVA was not statistically significant, a similar trend (i.e., a significantly higher richness in 2020 compared to prior years) was also observed at MIDAG and MI5. At MI25, there was a significant decrease in richness in 2022 compared to previous years but richness remained within the regional and site-specific normal ranges (Figure 3.5-1). Richness was within or above the site-specific and regional normal ranges at mine-influenced stations and reference stations in 2022, including at CORCK where the average was at the lower end of the site-specific normal range (i.e., 23 taxa per station) (Figure 3.6-1; (Appendix K). Richness at CORCK was significantly lower compared to downstream stations (i.e., MIDCO to MI5) and reference stations (Appendix K, Table K-4), and the magnitude of difference was -2.3 SD based on the contrast mean.

Benthic invertebrate abundance was similar among years between 2012 and 2022 (Figure 3.62), although occasional significant differences were detected between years at some stations. There were no significant differences in abundance in 2022 compared to previous years (Appendix K, Table K5). Benthic invertebrate abundance was within or above the upper bound of the site-specific and regional normal ranges at all stations in 2022, except at MIUCO, where it was below the lower bound of the site-specific normal range (Figure 3.62). Spatially, benthic invertebrate abundance was significantly lower at MIUCO and CORCK compared to downstream and reference stations, with a magnitude of difference of -1.8 and -1.4 SD, respectively (Appendix K, Table K4). Abundance at MIUCO has been historically lower compared to other stations in Michel Creek, which may be related to habitat (e.g., habitat parameters not included in Minnow's habitat model used to predict site-specific normal ranges), or other mine-related influences unrelated to inputs from Corbin Creek because this station is located 0.82 km upstream of the confluence with Corbin Creek and is adjacent to CMm.

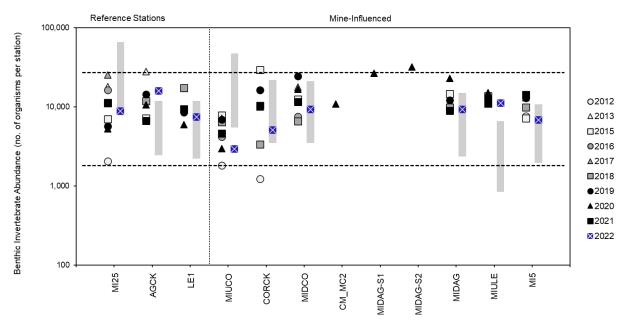


Figure 3.6-1: Benthic Invertebrate Taxonomic Richness in the CMm LAEMP Study Area, September 2012 to 2022

Notes: Grey shading represents the 2022 site-specific normal ranges for comparisons to 2022 results only; data from 2012 to 2022 compared to each year's site-specific normal range are presented in Appendix K. The dotted line represents the regional normal range defined as the 2.5th and 97.5th percentiles of the 2012 to 2019 reference area data from the RAEMP (Minnow 2020a).

Figure 3.6-2: Benthic Invertebrate Abundance in the CMm LAEMP Study Area, September 2012 to 2022

Notes: Grey shading represents the 2022 site-specific normal ranges for comparisons to 2022 results only; data from 2012 to 2022 compared to each year's site-specific normal range are presented in Appendix K. The dotted line represents the regional normal range defined as the 2.5th and 97.5th percentiles of the 2012 to 2019 reference area data from the RAEMP (Minnow 2020a).

3.6.2 Community Composition

Ephemeroptera dominated the communities at all reference stations and most mine-influenced stations in Michel Creek between 2012 and 2022 (Figure 3.6-3). The communities in Corbin Creek and in Michel Creek at MIDCO were dominated by Diptera, with higher proportions of Chironomidae compared to reference stations and stations in Michel Creek farther downstream from CMm. Higher proportions of Oligochaeta compared to other stations were observed at CORCK from 2016 to 2022 and at MIDCO in 2019. Relative proportions of other major taxonomic groups have generally remained similar from 2012 to 2022, with greater variability among stations than years (Figure 3.6-4).

Acari (i.e., mites) have also been considered in the CMm LAEMP following review of the 2019 report and interest from the EMC (Golder 2020a). There were no clear spatial or temporal patterns in the proportion of Acari indicating mine-related effects between 2012 and 2022. Acari was a minor taxon in all years, and in 2022, average percent Acari was less than 3% at mine-influenced stations and less than 1% at reference stations.

Figure 3.6-3: Benthic Invertebrate Community Composition at Reference Stations in the CMm LAEMP Study Area, September 2012 to 2022

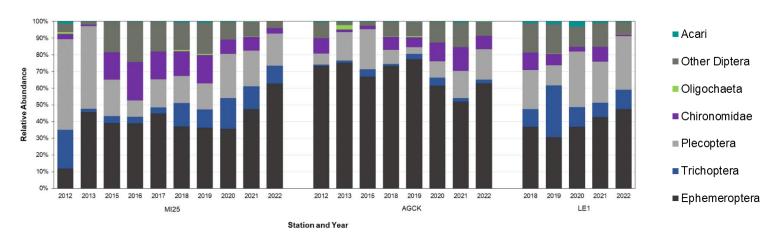
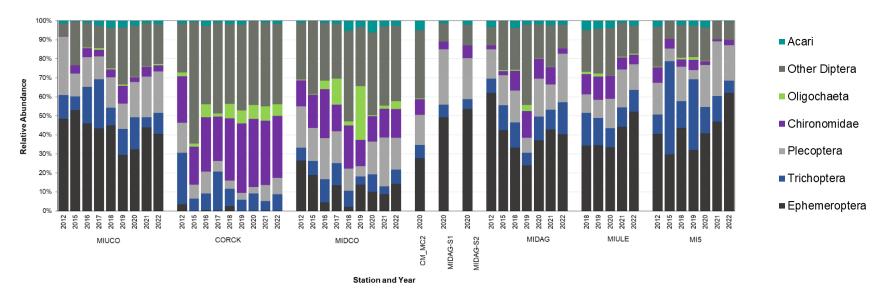



Figure 3.6-4: Benthic Invertebrate Community Composition at Mine-influenced Stations in the CMm LAEMP Study Area, September 2012 to 2022

3.6.3 Ephemeroptera, Plecoptera, Trichoptera Abundance

Key spatial and temporal patterns in the abundance and proportion of EPT were as follows:

- EPT abundance was generally within or above the site-specific and regional normal ranges at reference and mine-influenced stations in Michel Creek between 2012 and 2022, except at MIUCO and CORCK where it was below the site-specific normal range in 2022 (Figure 3.6-5). At CORCK, EPT abundance was also below the lower boundary of the regional normal range in 2012 and 2018, and was significantly lower than the mean of the reference stations by a magnitude of difference greater than 2 SDs in 2022 (Appendix K, Table K-4).
- EPT abundance in 2022 was significantly lower at MIUCO, CORCK, and MIDCO compared to downstream and reference stations; however, the magnitude of difference at MIUCO (-1.3 SD) and MIDCO (1.9 SD) was less than 2 SD, indicating limited ecological significance.
- EPT abundance was significantly lower at various reference stations in 2015, 2016, 2020, and 2021 compared to previous years, with magnitudes of difference up to -1.3 SD (Appendix K, Table K-5), these differences at reference stations indicate changes were unrelated to the Mine.
- EPT abundance at mine-influenced stations did not significantly differ in recent years (i.e., 2019, 2020, 2021, and 2022) compared to previous years, except for a decrease in EPT abundance at MIUCO in 2020 compared to prior years (magnitude of difference of -1.6 SD; (Appendix K, Table K-5), indicating that EPT abundance has not changed considerably from previous years since 2019.
- At reference stations and at mine-influenced stations, % EPT was within or above the site-specific and regional normal ranges in 2022, except at CORCK and MIDCO (Figure 3.6-6; Appendix K). Throughout the time series, % EPT was below the regional normal range at CORCK (2012 to 2022), MIDCO (2017 to 2022), CM MC2 (2020) and MIDAG (2019).
- At CORCK, MIDCO, and MIULE, % EPT was significantly lower in 2022 compared to downstream and reference stations, with magnitudes of difference greater than 2 SD (Appendix K, Table K-4).
- No significant differences in % EPT between 2022 and previous years were observed (Appendix K, Table K-5). At stations, MIUCO, MIDCO, MIDAG, and MIULE, % EPT was significantly lower in some years between 2018 and 2021 compared to previous years, with magnitudes of difference ranging from -0.7 to -5.8 SD. At reference station AGCK, % EPT n 2021 was significantly lower compared to previous years (i.e., 2012 to 2020), but the magnitude of difference was within 2 SD, indicating this difference was not biologically meaningful (Section 2.6.3).

All replicates at CORCK and MIDCO had % EPT results that resulted in a biological trigger event (Appendix A). These findings are consistent with results of sampling and evaluation in previous years that prompted management action under the AMP response framework. Teck continues to evaluate nickel treatment options and proposed nickel benchmarks have been developed (WSP Golder 2022c). These activities are reported annually in AMP reporting.

Reference Mine-Influenced 100,000 Ephemeroptera, Plecoptera, Trichoptera Abundance 10,000 02012 Δ2013 (organisms per station) □2015 1,000 **Q**2016 △2017 **■**2018 ●2019 100 ▲2020 **2021** 2022 10 MI5 MIDCO MIDAG 딢 MIULE CM_MC2 MIDAG-S2 MIDAG-S1

Figure 3.6-5: Ephemeroptera, Plecoptera, Trichoptera Abundance in the CMm LAEMP Study Area, September 2012 to 2022

Notes: Grey shading represents the 2022 site-specific normal ranges for comparisons to 2022 results only; data from 2012 to 2022 compared to each year's site-specific normal range are presented in Appendix K. The dotted line represents the regional normal range defined as the 2.5th and 97.5th percentiles of the 2012 to 2019 reference area data from the RAEMP (Minnow 2020a).

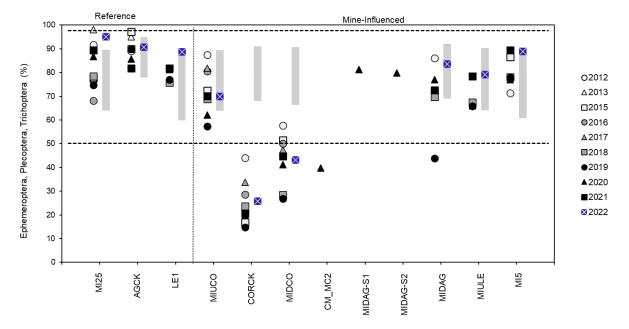


Figure 3.6-6: Ephemeroptera, Plecoptera, Trichoptera Proportion in the CMm LAEMP Study Area, September 2012 to 2022

Notes: Grey shading represents the 2022 site-specific normal ranges for comparisons to 2022 results only; data from 2012 to 2022 compared to each year's site-specific normal range are presented in Appendix K. The dotted line represents the regional normal range defined as the 2.5th and 97.5th percentiles of the 2012 to 2019 reference area data from the RAEMP (Minnow 2020a).

wsp

3.6.4 Ephemeroptera Abundance

Key spatial and temporal patterns in the abundance and proportion of Ephemeroptera were:

- Ephemeroptera abundance in 2022 was significantly lower immediately downstream of CMm compared to downstream and reference stations, with magnitudes of difference of -11.9 SD at CORCK and and -2.8 SD at MIDCO (Appendix K, Table K-4).
- Ephemeroptera were not detected in samples collected at CORCK in 2015, 2020, and 2022 (Figure 3.6-7).
- Ephemeroptera abundance was within or above the site-specific and regional normal ranges in 2022 at reference and mine-influenced stations, except for MIUCO and CORCK which were below site-specific normal ranges. Samples below the regional normal range were observed at CORCK (2012 to 2022), MIDCO (2016 and 2018), and MI25 (2012) (Figure 3.6-7).
- No significant differences were observed in Ephemeroptera abundance between 2022 and previous years (Appendix K, Table K-5). Ephemeroptera abundance at MIDCO was significantly lower in 2016 and 2018, compared to previous years, with magnitudes of difference greater than 2 SD; there were no significant differences in recent years (i.e., 2020, 2021, and 2022; Appendix K, Table K-5).
- Percent E was within or above the site-specific and regional normal ranges in 2022 at reference and all mine-influenced stations, except CORCK and MIDCO. Throughout the time series, % E was below the regional normal range at CORCK (2012 to 2022), MIDCO (2016 to 2022), CM_MC2 (2020), and MI25 (2012) (Figure 3.6-8).
- In 2022, % E was significantly lower at CORCK (-2.6 SD) and MIDCO (-3.7 SD; Appendix K, Table K-4).
- In 2022, % E was significantly greater in 2022 compared to previous years at MIULE and MI5, with magnitude of differences of 2.4 SD (MIULE) and 3.5 SD (MI5; Appendix K, Table K-5).
- At MIUCO, % E was significantly lower in 2019 and 2020 compared to previous years (2012 to 2018), at MIDCO in 2016 and 2018 compared to previous years, and at MIDAG in 2019 compared to 2012 to 2018, with magnitudes of difference between -1.3 and -5.5 SD.

Reference Mine-Influenced 100,000 Ephemeroptera Abundance (organisms per station) 10,000 02012 Δ2013 □2015 1,000 **2016** △2017 0 **■**2018 100 ●2019 ▲2020 **2021** ×2022 10 AGCK CORCK MIDCO MIDAG MIULE MI5 LE1 MIUCO CM_MC2 MIDAG-S2 MIDAG-S1

Figure 3.6-7: Ephemeroptera Abundance in the CMm LAEMP Study Area, September 2012 to 2022

Notes: Grey shading represents the 2022 site-specific normal ranges for comparisons to 2022 results only; data from 2012 to 2022 compared to each year's site-specific normal range are presented in Appendix K. The dotted line represents the regional normal range defined as the 2.5th and 97.5th percentiles of the 2012 to 2019 reference area data from the RAEMP (Minnow 2020a). No Ephemeroptera were collected at CORCK in 2015, 2020, and 2022; therefore, these years are not shown on the plot for these locations.

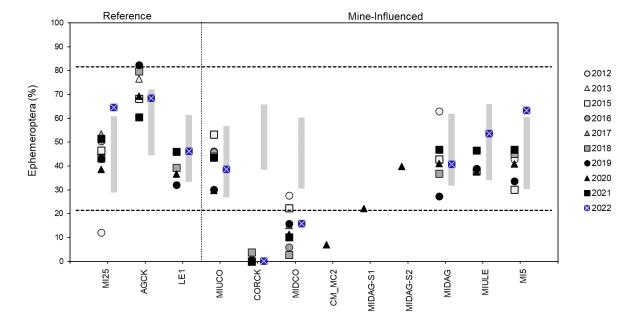
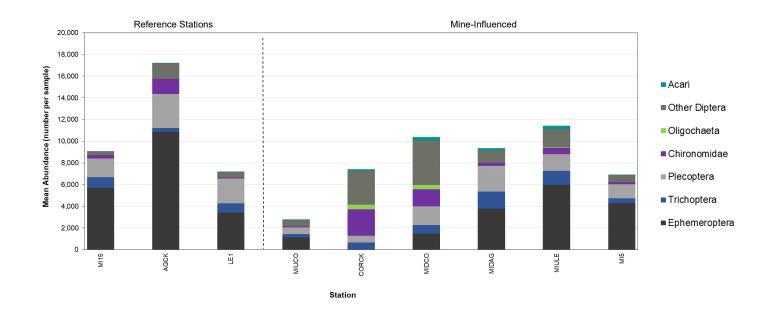


Figure 3.6-8: Ephemeroptera Proportion in the CMm LAEMP Study Area, September 2012 to 2022

Notes: Grey shading represents the 2022 site-specific normal ranges for comparisons to 2022 results only; data from 2012 to 2022 compared to each year's site-specific normal range are presented in Appendix K. The dotted line represents the regional normal range defined as the 2.5th and 97.5th percentiles of the 2012 to 2019 reference area data from the RAEMP (Minnow 2020a).

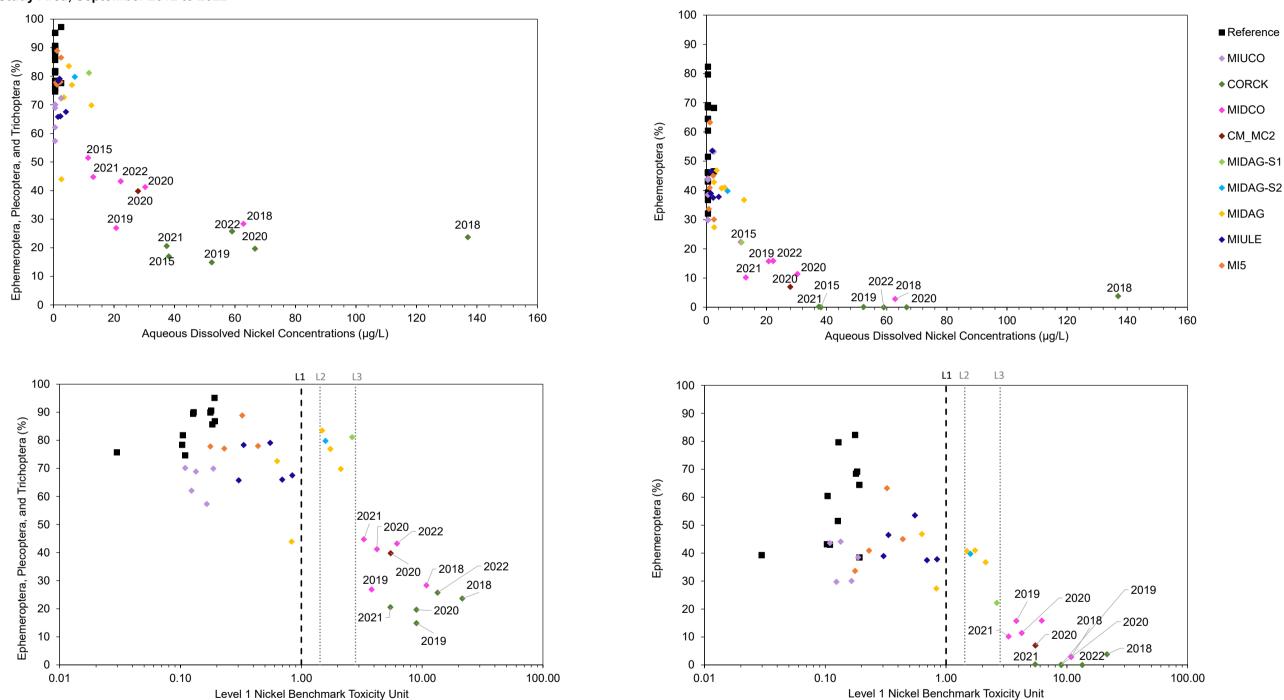

Percent E, below the regional and site-specific normal ranges, has consistently been observed at CORCK and MIDCO between 2012 and 2022 (Figure 3.6-8). The effect on community structure at MIDCO did not result in Ephemeroptera abundance below the site-specific or regional normal ranges (Figure 3.6-7; Appendix K). As noted in Section 3.6.2, the BIC at reference stations and at MIUCO, MIDAG, MIULE, and MI5 was dominated by Ephemeroptera. In contrast, the community at MIDCO was dominated by Diptera (Chironomidae and other dipteran taxa), which were higher in proportion (Figure 3.6-4) and abundance relative to stations other than CORCK in 2022 (Figure 3.6-9). However, higher dipteran abundance was not associated with lower Ephemeroptera abundance. Ephemeroptera abundance at MIDCO remained within the range of natural variability expected in the Elk Valley and within the range expected based on habitat parameters, although near the lower limit (Figure 3.6-7). Notably, Ephemeroptera abundance at MIDCO was similar to MIUCO.

Within the Diptera, the dominant families were Psychodidae (moth flies; 58% of all dipterans) and Chironomidae (38% of all dipterans), specifically the subfamily Orthocladiinae (78% of Chironomidae) at MIDCO in 2022. Together, these two families contributed 43% of total abundance at MIDCO, whereas the proportions of these two families at the other stations on Michel Creek were < 25% of total abundance. Psychodidae is reported to be tolerant of metals and organic pollution (Cadmus et al. 2016; Klemm et al. 1990). A number of common genera within Orthocladiinae are also reported to be dominant in metal contaminated streams (Clements 1994; Mousavi et al. 2003). The dominance of these dipterans at MIDCO suggests an increase in abundances of metal-tolerant taxa that may have a competitive advantage under the water quality conditions immediately downstream of CMm. Although Ephemeroptera abundance was within the site-specific normal range and regional normal range at MIDCO, it was at the lower limit of the former, and lower compared to all three reference stations and all downstream stations.

Family-level changes within the order Ephemeroptera and functional feeding group data were also explored to evaluate the variation in community composition among stations. At the family-level, Baetidae or Heptageniidae dominated the Ephemeroptera assemblage at most stations other than MIDCO (noting that Ephemeroptera were not detected at CORCK). Ephemeroptera at MIDCO was dominated by Ephemerellidae with fewer Heptageniidae compared to reference and other mine-influenced stations, where fewer Heptageniidae were identified per sample in 2022 (Appendix K). These family level differences may reflect habitat variation among stations or potentially, varying levels of metal sensitivity among the families present. Functional feeding group data from 2022 did not provide useful insight into the differences in community composition among stations. Relative abundances of different functional feeding groups were highly variable, and did not show a clear difference between reference and the mine-influenced stations in Michel Creek. This is consistent with findings of Carlisle and Clements (1999), who reached similar conclusions in a study of a stream subject to metal contamination.

Figure 3.6-9: Benthic Invertebrate Community Composition by Abundance of Major Groups at CMm LAEMP Stations, September 2022

3.6.5 Benthic Invertebrate Community Relationships to Habitat Variables and Aqueous Nickel


Habitat variables were similar between reference and mine-influenced stations, as were substrate composition and sediment particle size distribution. The spatial relationships between percent fines, sand, gravel, cobble, and boulder and % EPT and % E indicate that it is unlikely, based on visual evaluation, that differences in habitat characteristics caused the differences observed in BIC downstream of CMm in Michel Creek (Appendix G). It is unlikely that calcite presence and concretion in Michel Creek was a factor in the lower % EPT and % E, because calcite index values were low between 2012 and 2022 and within the reference normal range in Michel Creek. However, calcite could be a habitat driver contributing to lower % EPT and % E in Corbin Creek (calcite index >1; concretion scores between 2 and 3).

An inverse relationship was observed between % EPT and % E and aqueous nickel concentrations, and constituents such as selenium and cobalt that are collinear with nickel (Figure 3.6-10). Nickel has been identified as the primary contributor to the spatial patterns observed in % EPT and % E in the CMm area based on comparison to site-specific nickel benchmarks (Section 3.1), a visual evaluation of the spatial patterns in BIC endpoints (Sections 3.6.1 to 3.6.3), and results of the chronic toxicity testing program that have implicated nickel (Appendix C). This interpretation is consistent with expected effects associated with the proposed nickel benchmarks. Specifically, at concentrations below the proposed level 1 nickel benchmark, even the most sensitive species are not expected to be affected, and at concentrations exceeding the proposed level 3 nickel benchmarks, measurable and ecologically meaningful changes to % E are expected.

The expected patterns outlined above are most clearly evident in Figure 3.6-10 in the bottom panels, where % EPT and % E are plotted as a function of level 1 TUs. Exposure levels less than 1 TU indicate that nickel concentrations, in the context of co-occurring ETMFs, were less than the proposed level 1 nickel benchmark. TUs associated with proposed level 2 and 3 nickel benchmarks are also shown on Figure 3.6-10 as vertical dashed lines. There is no indication of effects on % EPT or % E below the proposed level 1 nickel benchmark, a possible indication of effects on % E (but not % EPT) between the proposed level 2 and 3 nickel benchmarks, and clear indications of effects on both % EPT and % E above the proposed level 3 nickel benchmark. These patterns are consistent with those described in the Nickel Benchmark Derivation Report (WSP Golder 2022c).

Figure 3.6-10: Proportion of Ephemeroptera, Plecoptera, and Trichoptera and Proportion of Ephemeroptera versus Nickel Concentrations (top panels) and versus the Level 1 Nickel Benchmark Toxicity Units (bottom panels) in the CMm LAEMP Study Area, September 2012 to 2022

Note: Replicates were averaged prior to calculating the proposed benchmarks, values below detection limit, bata prior to 2010 are not shown on the proposed level 1 nickel benchmark (L1) are shown and a value of 1 represents the calculated benchmark (black dashed vertical line), where the sample-specific proposed level 2 (L2) and level 3 (L3) nickel benchmarks relative to the level 1 benchmarks are illustrated with the gray dashed vertical lines.

CMm = Coal Mountain Mine.

3.6.6 Benthic Invertebrate Community Summary

Benthic invertebrate abundance, richness, and overall community composition in Michel Creek were similar at most mine-influenced stations and reference stations in 2022, and followed similar spatial patterns among years, with the exception of MIDCO on Michel Creek and CORCK on Corbin Creek. All community variables analyzed were significantly lower at CORCK compared to downstream and reference stations with magnitudes of difference above 2 SD for five out of six of the endpoints assessed. Richness and abundance were generally within or above the site-specific and regional normal ranges in Michel Creek between 2012 and 2022. Percent EPT and % E were lower at CORCK and MIDCO compared to the downstream and reference stations and below the regional and site-specific normal ranges in 2022. All other stations on Michel Creek had % EPT and % E values within the normal ranges. Ephemeroptera dominated the community at reference and most mine-influenced stations, with the exceptions of CORCK and MIDCO, where Diptera dominated. These patterns indicate that the mine-related influence on EPT taxa is localized to the area immediately downstream of CMm.

4.0 Study QUESTIONS

The objective of the CMm LAEMP is to assess the magnitude and spatial extent of influence from CMm on water quality, calcite, sediment quality, and benthic invertebrate communities downstream of CMm, and to assess what factors are contributing to the observed effects. This objective is met through answering the two study questions presented in Section 1.2. A summary of the results is presented in Table 4.1-1 and an integrated evaluation of CMm LAEMP data is presented below to address each study question (Sections 4.1 and 4.2).

4.1 Study Question 1

What are the magnitude and spatial extent of influence from CMm on water quality, calcite, sediment quality, and benthic invertebrate communities in Michel Creek downstream of CMm, how are these conditions changing over time, and are the conditions expected?

The highest concentrations of mine-influenced water quality constituents were observed at the station closest to CMm on Corbin Creek (CORCK), followed by the first station downstream of CMm on Michel Creek (MIDCO; 0.94 km downstream of the Corbin Creek confluence). A declining gradient of concentrations with distance downstream was observed for most mine-influenced water quality constituents; for nickel in particular, concentrations returned to reference conditions after MIDAG (5.27 km downstream of the Corbin Creek confluence). Dissolved nickel concentrations increased between 2012 and 2018, and then decreased between 2018 and 2022 as expected based on changes in mine water management with the transition to Care and Maintenance. In 2022, nickel was the only constituent identified as having the potential to cause effects to BIC in Michel Creek. Peak nickel concentrations exceeded the proposed level 3 nickel benchmark for invertebrates at CORCK and MIDCO, and exceeded the proposed level 2 nickel benchmark at MIDAG. At other reference and mine-influenced stations, nickel concentrations were below the proposed level 1 nickel benchmark.

Calcite presence in 2022 in Corbin Creek was higher than in Michel Creek where it remained consistently low in 2022 compared to previous years and was within the regional normal range.

Sediment quality in 2022 was generally within the range measured in previous years. Metal and PAH concentrations were above the lower BC WSQG at both reference and mine-influenced stations in 2022, and a subset of these were above the upper BC WSQG at CORCK and at stations downstream of CORCK on Michel Creek (MIDCO, MIDAG and MIULE). As with water quality, the highest metal and PAH concentrations generally occurred at CORCK and then decreased downstream. Sediment quality is considered unlikely to affect BIC due to

the predominantly erosional habitat in Michel Creek and limited potential for exposure of the BIC to sedimentassociated constituents.

In 2022, organoselenium was below detection at the CM_MC2, with the exception of samples collected in the third quarter of 2022, where MeSe IV was detected above the Level 1 screening value but below the Level 2 screening value. At concentrations below 0.025 µg/L, organoselenium is unlikely to cause a discernable shift in benthic invertebrate selenium concentrations (ADEPT et al. 2023). Concentrations of BIT Se were within the regional normal range at reference and almost all mine-influenced stations in 2022, and did not exhibit a spatial pattern consistent with observed effects to the BIC. BIT Se concentrations were less than the lowest level 1 benchmark at all stations, below the biological trigger thresholds, and lower than expected based on water quality data from stations on Corbin and Michel creeks. Based on these results, selenium concentrations are not expected to negatively impact the benthic invertebrate or fish communities in Michel Creek; therefore, BIT Se doe not need to be tracked under the AMP framework.

Richness and abundance of the BIC were generally similar among reference and mine-influenced stations and were generally within or above the site-specific and/or regional normal ranges in Michel Creek in 2022. Percent EPT and % E were lower at CORCK and MIDCO compared to the downstream and reference stations and below the regional and site-specific normal ranges in 2022. All other stations on Michel Creek had % EPT and % E values within the normal ranges. Benthic invertebrate endpoint values in 2022 were not significantly lower compared to previous years at mine-influenced stations. Ephemeroptera dominated the communities at mine-influenced stations in Michel Creek and at the reference stations, except at MIDCO and CORCK, where Diptera dominated. These patterns in BIC endpoints indicate that the mine-related influence on EPT taxa is localized to the area, immediately downstream of CMm. BIC endpoints were all within the regional and site-specific normal ranges by MIDAG, which is 5.27 km downstream of the Corbin Creek confluence.

Overall, in Michel Creek, water quality (as indicated by nickel) is improving, as expected based on the SRK modelled data. Calcite is within the regional normal range. Sediment quality data were generally within the range measured in previous years and declined in a downstream gradient from the Corbin Creek confluence in Michel Creek. Generally, BIC endpoints and BIT Se concentrations were within or above the regional and/or site-specific normal ranges in 2022, except for % EPT and % E, which were below normal ranges at the station closest to the Corbin Creek confluence, indicating the effects on the BIC are localized to the area around CMm.

Table 4.1-1: Summary of 2021 CMm LAEMP Results

Study Questions	Water Quality ^(a)	Calcite ^(b)	Sediment Quality ^(c)	BIC	BIT Se
Study Question 1: What are the magnitude and spatial extent of influence from CMm in 2021?		Within the reference normal range (0 to 1) at all stations in Michel Creek.	2-Methylnaphthalene, Naphthalene,	% EPT and % E were below habitat-adjusted normal range and significantly lower than downstream and reference stations at MIDCO (0.94 km ds), with magnitudes of difference of -7.2 and -3.7 SD, respectively.	BIT Se above normal range at MIDAG but lower than level 1 benchmark BIT Se within normal range and lower than level 1 benchmark at over stations
Study Question 1: Are the conditions changing over time?		Calcite index was similar to previous years in 2022.	No clear temporal trend, generally consistent	% EPT and % E are variable across years at MIDCO, which appears to relate to variation in aqueous Ni. There was no significant decrease in benthic invertebrate endpoints in 2022 compared to prior years at mine-influenced stations.	No
Study Question 1: Are the 2021 results expected based on projections, historical conditions, or habitat conditions?		Consistent with previous RAEMP and LAEMP results.	LAFMP results	% EPT and % E are consistent with expected effects of aqueous Ni evident in monitoring since 2015.	BIT Se spatial patterns are consistent with aqueous Se spatial patterns and historical conditions.
Study Question 2: Are spatial and temporal patterns in exposure variables correlated with BIC?	Yes, for Ni.	Not in Michel Creek.	Yes, because sediment quality is correlated with water quality ^(d) .	n/a	No
Study Question 2: What factors may be causing effects?	Water quality, calcite, and sediment quality in I pumping.	Aqueous Ni is the most likely cause of observed BIC effects.	BIT Se reflects low aqueous Se at CMm.		

⁽a) Only constituents with exceedances of a benchmark or effect concentration considered; BC WQG exceedances not shown when below the EVWQP benchmarks derived for the Elk Valley because they are not expected to negatively impact the benthic invertebrate community (Section 3.6).

BIC = benthic invertebrate community; BIT = benthic invertebrate tissue; CMm = Coal Mountain Mine; Ni = nickel; ds = downstream; BC WSQG = British Columbia Working Sediment Quality Guideline; % EPT = percent Ephemeroptera, Plecoptera, Trichoptera; % E = percent Ephemeroptera; SS NR = site-specific normal range; RNR = regional normal range; SD = standard deviation; Se = selenium; n/a = not applicable; >= greater than; <= less than; μg/L = micrograms per kilogram; dw = dry weight; km = kilometers.

⁽b) Calcite data collected during the RAEMP/CMm LAEMP do not apply to the Regional Calcite Monitoring Program data.

⁽c) Only constituents exceeding the upper BC WSQG shown; those constituents below the lower BC WSQG not shown.

⁽d) BIC collected in erosional habitat, not depositional habitat; therefore, unlikely pathway for mine-effects.

4.2 Study Question 2

How do spatial and temporal patterns in the benthic invertebrate communities correspond to water quality, calcite, sediment quality, and other potential stressors, and what does this tell us about what factors are causing observed effects?

Habitat variables (e.g., water depth, velocity, sediment particle size, and TOC) were similar between reference and mine-influenced stations and were unlikely to have caused the differences observed in % EPT and % E at the stations downstream of CMm in Michel Creek. It is also unlikely that calcite presence and concretion in Michel Creek was a factor in the lower % EPT and % E at MIDCO, because calcite index values were low between 2012 and 2022 and within the reference normal range in Michel Creek. However, calcite presence may have been a factor in effects observed in BIC endpoints in Corbin Creek because the presence of calcite in Corbin Creek may reduce habitat availability for benthic invertebrates.

Spatial and temporal patterns in BIC endpoints corresponded more closely with mine-influenced water quality than with sediment quality or calcite, supporting the interpretation that observed patterns in the BIC are linked to water quality. Sediment quality is unlikely to be a pathway for BIC effects, because as noted in Sections 1.5 and 3.3.3, Michel Creek is a highly erosional creek that contains very little to no surficial fines and the BIC found in Michel Creek are characteristic of erosional habitats. Spatial comparisons indicated correlations of % EPT and % E with aqueous concentrations of nickel across stations and nickel was the only water quality constituent with concentrations in Michel Creek above invertebrate benchmarks. In 2022, peak nickel concentrations were above the proposed level 3 nickel benchmark for invertebrates in Corbin Creek (CORCK) and at the first Michel Creek station downstream of CMm (MIDCO; 0.94 km downstream of the Corbin Creek confluence), and above the proposed level 2 nickel benchmark for invertebrates at Michel Creek downstream of Andy Good Creek (MIDAG; 5.27 km downstream of the Corbin Creek confluence). Stations downstream of MIDAG had nickel concentrations below the proposed level 1 nickel benchmark for invertebrates. Patterns of % E relative to nickel concentrations were consistent with those described in the Nickel Benchmark Derivation Report (WSP Golder 2022c).

Early studies in the area further support the interpretation that nickel is responsible for BIC changes. The findings of the 2019 to 2022 CMm LAEMPs and the chronic toxicity testing program support findings that nickel is likely responsible for the BIC changes. Results of the 2022 LAEMP suggest that BIC effects from nickel in Michel Creek are localized near CMm on Michel Creek, and do not extend farther on Michel Creek than 5.27 km downstream.

5.0 DISCUSSION

This section provides a brief history of nickel at CMm, including an overview of earlier studies that identified nickel as a constituent of concern for invertebrates, and the resulting actions initiated by Teck under the AMP response framework to better understand and assess potential nickel effects at CMm. The purpose of this review is to highlight the investigative efforts undertaken since 2017 that corroborate aqueous nickel as a likely cause of invertebrate responses at CMm. The culmination of these studies strengthens the characterization of potential effects of CMm on the aquatic environment.

Nickel was identified as a constituent of concern in mine-influenced waters of the Elk Valley through an investigation into unexpected results of routine chronic toxicity monitoring in 2017 at CMm compliance location CM_MC2 on Michel Creek. Monitoring at CM_MC2 had intermittently reported effects on reproduction of the water flea *C. dubia* since the program began in 2015, although at that time no cause could be identified, and effects had also sometimes been observed in testing with the amphipod *H. azteca* (Appendix C). The 2017 investigation

included a phased toxicity identification evaluation (TIE) study that identified a divalent cationic metal as the cause of toxicity, reviewed water chemistry to identify potential toxicants, and conducted spiking studies to confirm the cause of toxicity (Nautilus 2018). The TIE identified nickel as the likely cause of toxicity in the CM_MC2 tests and demonstrated chronic nickel effects on *C. dubia* and *H. azteca* at concentrations reported for CM_MC2 (Nautilus 2018). Attribution of effects to nickel was supported by published toxicity data that indicated effects on sensitive invertebrate test species at these concentrations (Golder 2017), and also by a correlation of chronic toxicity monitoring results for invertebrate test species with nickel concentrations at CM_MC2 between 2015 and 2017 (Golder 2018a). Effects on invertebrate test species at CM_MC2 were higher in magnitude in 2018, coinciding with higher nickel concentrations in 2018 compared to previous years (Golder 2019), and were less frequent and lower in magnitude in 2019 and 2020, coinciding with lower nickel concentrations (Golder 2021b; see Section 1.4 and Appendix B for discussion of site activities associated with changes in aqueous nickel, and Appendix C for summary of chronic toxicity monitoring results). TIEs and correlation analyses conducted in subsequent chronic toxicity programs have continued to identify nickel as the causal agent (e.g., WSP 2023a; Appendix C).

The interpretation of chronic toxicity monitoring results for CM_MC2 informed an aquatic health assessment undertaken to support closure planning for Coal Mountain Operations (CMO), which additionally concluded that nickel concentrations at CM_MC2 could potentially affect benthic invertebrates in Michel Creek immediately downstream of CMO (Golder 2017). A review of available toxicity information did not indicate a risk of effects on fish or amphibians, and this was consistent with the absence of effects in chronic toxicity tests with fish (WSP 2023a; Appendix C). The interpretation of nickel concentrations in 2017 was corroborated by biological monitoring results from 2015 and 2016 in portions of Michel Creek evaluated under the RAEMP (Minnow 2018b; Appendix C). Specifically, monitoring areas in Michel Creek immediately downstream of Corbin Creek (MIDCO, near CM_MC2) exhibited lower abundance and proportion of Ephemeroptera relative to Michel Creek upstream of Corbin Creek (MIUCO), Michel Creek downstream of Andy Good Creek (MIDAG), or reference locations elsewhere in the Elk Valley. Low proportions of Ephemeroptera at MIDCO were confirmed in subsequent annual monitoring (Minnow 2018b; 2020a; Golder 2019; 2020; 2021a).

As an initial step towards understanding and assessing nickel effects, Golder (2017) established interim screening values for nickel. Teck further responded to the findings above via the AMP Response Framework (Teck 2018). Responses included reporting responses to the EMC, development of the CMm LAEMP, conducting a series of special investigations to refine understanding of nickel toxicity in Elk Valley water (Golder 2018a), initiation of a program to evaluate mitigation technologies for nickel (Golder 2018b, followed by an internal evaluation program on treatment technologies developed by Teck), and development of chronic nickel benchmarks for the Elk Valley nickel benchmark derivation report (WSP Golder 2022c).

The nickel benchmarks were developed to be applied in-stream, as scientific best estimates of dissolved nickel concentrations associated with no effect or defined levels of potential chronic effects on sensitive species and stages of aquatic life under Elk Valley water quality conditions (WSP Golder 2022c; Appendix C). The benchmarks incorporated current scientific approaches to modelling nickel effects, published and site-specific laboratory toxicity information on more than 50 aquatic species, and biological monitoring data collected over more than a decade at dozens of sites in the Elk Valley. For invertebrate benchmarks, the approach was to utilize a well-studied laboratory test species (*C. dubia*) to model effects of ETMFs on chronic, sublethal nickel toxicity, and then apply this model to study nickel effects on BIC in the field to derive benchmarks for sensitive benthic invertebrate taxa, with a focus on % E. The resulting nickel benchmarks, which were used herein, provide greater confidence in estimating potential effects of nickel to BIC in the field.

In 2022, monitoring areas in Corbin Creek and Michel Creek immediately downstream of Corbin Creek (MIDCO) had nickel concentrations that exceeded the proposed level 3 nickel benchmark for invertebrates year-round (CORCK) or seasonally (MIDCO) (Section 3.1.4). Analyses presented in the nickel benchmark report indicate that nickel concentrations above the proposed level 3 nickel benchmark are associated with reductions in % E and occasionally % EPT, but effects to richness or total abundance would not be expected. The 2022 BIC monitoring results aligned with these expectations, in that CORCK and MIDCO had reductions in % E and % EPT but richness and total abundance remained within site-specific and/or regional normal ranges. Taken together, these results support the interpretation of nickel-related effects to BIC. This finding aligns with the investigative efforts undertaken since 2017, which have implicated nickel as the likely cause of the observed effects to BIC in the CMm area. The confidence in this conclusion is strengthened by the incorporation of site-specific benchmarks for nickel, the reproducibility of results across multiple study years, and the corroboration of data across multiple lines of evidence (e.g., water quality, toxicity testing, BIC monitoring).

6.0 CONCLUSION AND RECOMMENDATIONS

The study questions for the CMm LAEMP have been adequately addressed and it is considered unlikely that further investigation will provide any new insights or change the interpretation outlined in this LAEMP report. Confidence in this conclusion is strengthened by the incorporation of results from the comprehensive analysis used to derive site-specific benchmarks for nickel (WSP Golder 2022c), the reproducibility of results across multiple study years (Golder 2019; 2020a; 2021a; WSP Golder 2022a), and the corroboration of data across multiple lines of evidence (e.g., water quality, toxicity testing, BIC monitoring). Further, the results of the 2022 CMm LAEMP are supported by findings from other monitoring conducted by Teck such as the routine water quality and chronic toxicity monitoring programs.

It is recommended that monitoring of the aquatic environment at CMm continue, to provide a basis for tracking expected improvement over time related to mine water management and other factors, and to allow detection of potential unexpected changes. However, the study questions for ongoing monitoring align with those of the regional monitoring programs, and it is therefore recommended that further monitoring, interpretation, and reporting be conducted under the RAEMP, calcite, surface water quality, and chronic toxicity monitoring programs. Because the CMm LAEMP study questions have been answered, it is recommended that reporting under the CMm LAEMP be discontinued.

Should the LAEMP continue, it is recommended that sampling at station MI5 (18 km downstream of the Corbin Creek confluence) and sediment quality monitoring be removed from the CMm LAEMP. These recommendations received support at the May 2023 EMC meeting.

7.0 CLOSURE

The reader is referred to the Study Limitations, which follows the text and forms an integral part of this report.

We trust the above meets your present requirements. If you have any questions or comments, please contact the undersigned.

WSP Canada Inc.

Jennifer Arens, Ph.D.

Experienced, Aquatic Biologist

Zsolt Kovats, MSc, PBiol.

Senior Principal, Aquatic Ecologist

Samantha Lundquist, B.Sc., BIT

Intermediate, Environmental Scientist

Kelly Hille, MSc, PBiol, RPBio

Senior Aquatic Scientist

JA/ZK/KH/SL

https://golderassociates.sharepoint.com/sites/169409/project files/5 technical work/2022 cmm laemp report client comments addressed/03. ready for finalization/22574542-001-r-revb-1000-2022 cmm laemp report-clean.docx

8.0 REFERENCES

- ADEPT Environmental Sciences Ltd. (ADEPT), Windward Environmental LLC, Minnow Environmental Inc. 2023. Elk Valley Selenium Speciation Monitoring Program 2022 Annual Report. Prepared for Teck Coal Limited. May 2023.
- British Columbia Ministry of Environment (BC ENV). 2013. British Columbia Field Sampling Manual for continuous monitoring plus the collection of air, air-emission, water, wastewater, soil, sediment, and biological samples. Water, Air and Climate Change Branch, Ministry of Environment. 2013 Edition.
- BC ENV. 2016. British Columbia Environmental Laboratory Manual. Prepared and published by: Environmental monitoring, reporting and economics knowledge manage branch Ministry of Environment Province of British Columbia. February 2016.
- BC ENV. 2017. BC working sediment quality guidelines (WSQG) for the protection of freshwater aquatic life. Environmental Protection and Sustainability Branch, Ministry of Environment.
- BC ENV. 2020. British Columbia Environmental Laboratory Manual. Knowledge Management Branch, Ministry of Environment. 2020 Edition.
- BC ENV. 2021a. British Columbia Approved Water Quality Guidelines: aquatic life, wildlife and agriculture. Environmental Protection and Sustainability Branch, Ministry of Environment. February 2021.
- BC ENV. 2021b. British Columbia Working Water Quality Guidelines: aquatic life, wildlife and agriculture. Environmental Protection and Sustainability Branch, Ministry of Environment. February 2021.
- Brix KV, Schlekat CE, Garman ER. 2017. The mechanisms of nickel toxicity in aquatic environments: an adverse outcome pathway analysis. Environmental Toxicology and Chemistry 35: 1128-1137.
- Cadmus P, Clements WH, Williamson JL, Ranville JF, Meyer JS, Jesus Gutierrez Gines M. 2016. The use of field and mesocosm experiments to quantify effects of physical and chemical stressors in mining-contaminated streams. Envion Sci Techno. 50(14): 7825-7833.
- Carlisle DM, Clements WH. 1999. Sensitivity and variability of metrics used in biological assessments of running waters. Environmental Toxicology and Chemistry 18:285–291.
- CCME (Canadian Council of Ministers of the Environment). 1999. Canadian Environmental Quality Guidelines, including updates to 2016. Winnipeg, MB. Available online at: http://st-ts.ccme.ca/.
- Chapman D. 1996. Water quality assessments. A guide to the use of biota, sediments and water in environmental monitoring, 2nd Ed. Chapman and Hall, New York, NY.
- Clements WH. 1994. Benthic invertebrate community responses to heavy metals in the upper Arkansas River basin, Colorado. Journal of the North American Benthological Society 13(1): 30-44.
- Dudgeon D. 1984. Longitudinal and temporal changes in functional organization of the macroinvertebrate communities in the Tsuen River, Hong Kong. Hydrobiologia 111: 207–317.
- ECCC (Environment and Climate Change Canada). 2012. Canadian Aquatic Biomonitoring Network (CABIN) field manual: wadeable streams. April 2012.

- ECCC. 2014. Canadian Aquatic Biomonitoring Network (CABIN) laboratory methods: processing, taxonomy, and quality control of benthic macroinvertebrate samples. May 2014.
- ECCC. 2017. Federal Environmental Quality Guidelines (FEQG) Summary Table. Version 1.0 (January 2021). Accessed 19 May 2021: https://www.canada.ca/en/environment-climate-change/services/evaluating-existing-substances/federal-environmental-quality-guidelines-summary-table.html
- ECCC. 2018. Science Approach Document: Ecological Risk Classification of Inorganic Substances. May 2018. Accessed 19 May 2021: https://www.canada.ca/en/environment-climate-change/services/evaluating-existing-substances/science-approach-ecological-risk-classification-inorganic-substances.html
- Golder (Golder Associates Ltd). 2017. Aquatic health assessment Coal Mountain Operations. Prepared for Teck Coal Limited. December 2017.
- Golder. 2018a. 2017 Chronic toxicity program Elk Valley testing to satisfy Permit requirements interpretive report. Prepared for Teck Coal Limited. April 2018 (updated July 2018).
- Golder. 2018b. Draft proposal Coal Mountain Operations Nickel and Cobalt Testing and Treatment. Submitted to Teck Coal Mountain Operations. 29 June 2018.
- Golder. 2019. Coal Mountain Operations local aquatic effects monitoring program 2019 study design. Prepared for Teck Coal Limited. February 2019.
- Golder. 2020a. Coal Mountain Operations local aquatic effects monitoring program 2020 study design. Prepared for Teck Coal Limited. June 2020.
- Golder. 2020b. Fall 2020 Sediment Toxicity Supporting Study. Prepared for Teck Coal Limited. August 2019.
- Golder. 2021a. 2020 Coal Mountain Mine Local Aquatic Effects Monitoring Program (LAEMP) Report. Submitted to Cait Good, Teck Coal Limited. June 2021.
- Golder. 2021b. State of the Science Review of Nickel Toxicity for the Elk Valley. Submitted to Teck Coal Limited. August 2021.
- Hoke RA, Giesy JP, Adams JR. 1990. Use of linear orthogonal contrasts in analysis of environmental data. Environmental Toxicology and Chemistry, 9: 815-819.
- Klemm DJ, Lewis PA, Fulk F, Lazorchak JM. 1990. Macroinvertebrate Field and Laboratory Methods for Evaluating the Biological Integrity of Surface Waters. United States Environmental Protection Agency, Cincinnati, OH, USA.
- Lotic and Teck (Lotic Environmental Ltd. and Teck Coal Limited). 2016. Teck Coal Ltd 2016 to 2018 Calcite monitoring program. Submitted to the British Columbia Ministry of Environment and Climate Change Strategy, May 2016.
- Lotic and Teck. 2021a. Teck Coal Ltd. Calcite monitoring program. Submitted to the British Columbia Ministry of Environment and Climate Change Strategy, May 2021.
- Lotic and Teck. 2021b. Teck Coal Ltd. Regional Calcite Monitoring Plan Field Manual. May 2021.

- MacPherson CA, Lee DHY, Chapman PM. 2014. Development of a Fluoride Chronic Effects Benchmark for Aquatic Life in Freshwater. Environ Toxicol Chem. 33: 2621-2627.
- Minnow (Minnow Environmental Inc.). 2014. 2012 Aquatic monitoring program report. Prepared for Teck Coal Ltd., Sparwood, BC. Project #2456.
- Minnow. 2015. Design for the Regional Aquatic Effects Monitoring Program (RAEMP), Elk River watershed. Prepared for Teck Coal Limited, Sparwood, B.C. March 2015. Project #2529
- Minnow. 2018a. Elk River watershed Regional Aquatic Effects Monitoring Program (RAEMP) Report, 2015 to 2016. Prepared for Teck Coal Limited. January 2018.
- Minnow. 2018b. Study design for the Regional Aquatic Effects Monitoring Program (RAEMP), 2018 to 2020. Prepared for Teck Coal Limited and Environmental Monitoring Committee. March 2018.
- Minnow. 2020a. Regional Aquatic Effects Monitoring Program (RAEMP) Report, 2017 to 2019. Prepared for Teck Coal Limited. November 2020.
- Minnow. 2020b. Study design for the Regional Aquatic Effects Monitoring Program (RAEMP), 2021 to 2023. Prepared for Teck Coal Limited and Environmental Monitoring Committee. March 2020.
- Minnow. 2023. Elk River watershed Regional Aquatic Effects Monitoring Program (RAEMP) Report, 2020 to 2022. In preparation for Teck Coal Limited.
- Minnow Environmental Inc., Interior Reforestation Co. Ltd., and Paine Ledge and Associates. 2007. Selenium in the Elk River Watershed, BC. (2006). Prepared for Elk Valley Selenium Task Force. December. Project #2160.
- Minnow Environmental Inc., Interior Reforestation Co. Ltd., and Paine Ledge and Associates. 2011. Selenium monitoring in the Elk River Watershed, BC. (2009). Prepared for Teck Coal Limited. February. Project #2275.
- Minnow Environmental Inc. and Paine, Ledge and Associates (PLA). 2012. Surface Water Quality Evaluation for Teck's Coal Mining Operations in the Elk River Valley, BC. Prepared for Teck Coal Limited. August. Project #2386.
- Mousavi SK, Primicerio R, Amundsen P-A. 2003. Diversity and structure of Chironomidae (Diptera) communities along a gradient of heavy metal contamination in a subarctic watercourse. Science of The Total Environment 307(1-3): 93-110.
- Nautilus Environmental. 2018. Toxicity identification evaluation for CM_MC2. Final Report. Submitted to Teck Coal Limited. September 2018.
- Newman MC, Unger MA. 2003. Fundamentals of Ecotoxicology, 2nd Ed. CRC Press LLC, Boca Raton, FL.
- R Core Team. 2022. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL: https://www.R-project.org/.
- Robinson M, Atherton K. 2016. Teck Coal Limited 2016 to 2018 calcite monitoring program. Prepared by Lotic Environmental Ltd. and Teck Coal Limited.

- Rosenberg DM, Resh VH. 1992. Freshwater biomonitoring and benthic macroinvertebrates. Chapman and Hall, New York, NY.
- Santore RC, Croteau K, Ryan AC, Schlekat C, Middleton E, Garman E. 2021. A review of water quality factors that affect nickel bioavailability to aquatic organisms: refinement of the biotic ligand model for nickel in actue and chronic exposures. Environmental Toxicology and Chemistry 40:2121-2134.
- Smit, R. and M.D. Robinson. 2023. Teck Coal Ltd. 2022 Calcite Monitoring Program Annual Report. Prepared for Teck Coal Ltd. by Lotic Environmental Ltd. 48 pp + appendices.
- SRK (SRK Consulting Inc). 2016. Coal Mountain Operations 2016 water and load balance revision. Prepared for Teck Coal Ltd. Project No. 1CT017.125. December 2016.
- SRK 2019. Coal Mountain Operations water and load balance model 2019 comprehensive update. Report prepared by SRK Consulting for Teck Coal Limited Coal Mountain Operations. March 2019.
- SRK 2022. Coal Mountain Mine water and load balance model 2022 comprehensive update. Report prepared by SRK Consulting for Teck Coal Limited Coal Mountain Mine. March 2022.
- SRK 2023. Coal Mountain Mine water and load balance model 2023 comprehensive update. Report prepared by SRK Consulting for Teck Coal Limited Coal Mountain Mine. March 2023.
- Swennen R, Devivier A. 2006. Dredge River Sediments: potential chemical time bombs? A case study. Water, air, and soil pollution 171: 49-66
- Teck (Teck Coal Limited). 2014. Elk Valley water quality plan. July 2014.
- Teck. 2017. Coal Mountain Operations care and maintenance integrated water management plan. December 2017.
- Teck. 2018. Water Quality Adaptive Management Plan for Teck Coal Operations in the Elk Valley. December 2018.
- Teck. 2019. Permit 107517 annual water quality monitoring report. Teck Coal Limited. 31 March 2019.
- Teck. 2020. Permit 107517 annual water quality monitoring report. Teck Coal Limited. 31 March 2020.
- Teck 2021a. Water Quality Adaptive Management Plan for Teck Coal Operations in the Elk Valley 2021 Update. 15 December 2021.
- Teck. 2021b. Permit 107517 annual water quality monitoring report. Teck Coal Limited. 31 March 2021.
- Teck. 2022. Permit 107517 annual water quality monitoring report. Teck Coal Limited. 31 March 2022.
- Teck. 2023. Permit 107517 annual water quality monitoring report. Teck Coal Limited. 31 March 2023.
- WSP. 2021. Elk Valley Lentic Sediment Toxicity 2021 Lentic Study Results. Draft Prepared for Teck Resources Limited. June 2023.
- WSP. 2023a. 2022 Chronic Toxicity Testing Program. Elk Valley Testing to Satisfy Permit Requirements. Submitted to Teck Coal Limited. April 2023.

- WSP. 2023b. Reducing Uncertainty Related To Management Question 2 Task 8b: Derivation of Chronic Nitrate and Sulphate Screening Values for Post-Alevin Fish Life Stages. Draft Prepared for Teck Coal Limited. April 2023.
- WSP Golder. 2022a. Coal Mountain mine local aquatic effects monitoring program 2023 study design. Prepared for Teck Coal Limited. June 2022.
- WSP Golder. 2022b. Task 1: Elk Valley Water Quality Plan Benchmark Validation Nitrate, Sulphate, and Selenium. Prepared for Teck Coal Limited. December 2022.
- WSP Golder. 2022c. Chronic Nickel Benchmarks for the Elk Valley Nickel Benchmark Derivation Report. Submitted to Teck Coal Limited August 2022.
- US EPA (United States Environmental Protection Agency). 2003. Procedures for the Derivation of Equilibrium Partitioning Sediment Benchmarks (ESBs) for the Protection of Benthic Organisms: PAH Mixtures. EPA-600-R-02-013. November. 2003.

9.0 STUDY LIMITATIONS

WSP Canada Inc. (WSP) has prepared this document in a manner consistent with that level of care and skill ordinarily exercised by members of the engineering and science professions currently practising under similar conditions in the jurisdiction in which the services are provided, subject to the time limits and physical constraints applicable to this document. No warranty, express or implied, is made.

This document, including all text, data, tables, plans, figures, drawings and other documents contained herein, has been prepared by WSP for the sole benefit of Teck Coal Limited. All third parties relying on this document do so at their own risk.

This document represents WSP's professional judgement based on the knowledge and information available at the time of completion. The factual data, interpretations, suggestions, recommendations and opinions expressed pertain to the specific project, site conditions, design objective, development and purpose described to WSP by Teck Coal Limited, and are not applicable to any other project or site location. In order to properly understand the factual data, interpretations, suggestions, recommendations and opinions expressed in this document, reference must be made to the entire document.

Teck Coal Limited may make copies of the document in such quantities as are reasonably necessary for those parties conducting business specifically related to the subject of this document or in support of or in response to regulatory inquiries and proceedings. WSP is not responsible for any unauthorized use or modification of this document. Electronic media is susceptible to unauthorized modification, deterioration and incompatibility and therefore no party can rely solely on the electronic media versions of this document.

APPENDIX A

Adaptive Management Plan – Biotriggers

Table of Contents

A1.0	INTF	RODUCTION	1
	A1.1	Background	1
A2.0	MET	HODS	2
·	A2.1	Overview	2
	A2.2	Percent EPT	3
	A2.3	Benthic Invertebrate Tissue Selenium	4
A3.0	RES	ULTS	4
	A3.1	Percent EPT	4
	A3.2	Benthic Invertebrate Tissue Selenium	7
A4.0	SUN	IMARY	.10
A5.0	REF	ERENCES	10
TABI	LES		
Table	e A-1:	Biological Trigger Analysis for Percent Ephemeroptera, Plecoptera, and Trichoptera (EPT) at CMm LAEMP Sampling Stations, 2022	5
Table	e A-2:	Biological Trigger Analysis for Selenium Concentration in Benthic Invertebrate Tissue at CMm LAEMP Sampling Stations, 2022	8
FIGU	RES		
Figur	e A-1:	Percent Ephemeroptera, Plecoptera, and Trichoptera Compared to Predicted Values at CMm LAEMP Sampling Stations, 2022	6
Figur	e A-2:	Selenium Concentration in Benthic Invertebrate Composite Taxa Samples Compared to Predicted Values at CMm LAFMP Sampling Stations, 2022	9

Abbreviations and Units of Measure

Abbreviation	Definition
%	percent
>	greater than
≥	equal to or greater than
mg/kg dw	milligram per kilogram dry weight
μg/L	micrograms per litre
ADIT	Aquatic Data Integration Tool
AMP	Water Quality Adaptive Management Plan for Teck Coal in the Elk Valley
BIC	Benthic Invertebrate Community
BIT	Benthic Invertebrate Tissue
BIT Se	Benthic Invertebrate Tissue selenium
CABIN	Canadian Aquatic Biomonitoring Network
CMm	Coal Mountain mine
EPT	Ephemeroptera, Plecoptera, and Trichoptera
EVWQP	Elk Valley Water Quality Plan
Golder	Golder Associates Ltd.
i.e.	That is
KUs	key uncertainties
LAEMP	Local Aquatic Effects Monitoring Program
MQ	Management Question
RAEMP	Regional Aquatic Effects Monitoring Program
SPO	Site Performance Objective
WCT Se	Westslope Cutthroat Trout muscle tissue selenium
WSP	WSP Canada Inc.

A ADAPTIVE MANAGEMENT - BIOLOGICAL TRIGGERS

A1.0 INTRODUCTION

A1.1 Background

As required in Permit 107517 Section 10, Teck developed an Adaptive Management Plan (AMP) to support implementation of the Elk Valley Water Quality Plan (EVWQP) to achieve water quality targets including calcite targets, ensure that human health and the environment are protected, and where necessary, restored, and to facilitate continuous improvement of water quality in the Elk Valley. The AMP was most recently updated in December 2021 (Teck 2021). Adaptive management is a systematic, rigorous approach to environmental management that maximises learning about uncertainties while simultaneously striving to meet multiple management objectives and adapt management actions based on what is learned. The adaptive management cycle comprises six stages: assess, design, implement, monitor, evaluate and adjust. The AMP identifies six Management Questions (MQ) that are re-evaluated at regular intervals. Evaluating these MQs collectively articulates whether Teck is on track to meet the environmental objectives of the EVWQP.

The Coal Mountain mine (CMm) local aquatic effects monitoring program (LAEMP) was designed to monitor conditions in Michel Creek to assess the magnitude and extent of influence from CMm on water quality, calcite, and benthic invertebrate communities downstream of CMm, and to assess what factors are contributing to the observed effects. The annual LAEMP (results are reported on 30 June of each year for the preceding calendar year) is used to track issues for which a potential need for an adjustment, using the response framework, has been identified, including biological trigger assessments. Evaluation of biological triggers is intended as a simple and consistent way to flag unexpected monitoring results that may require additional investigation and adjustment.

In addition to addressing questions specific to the CMm LAEMP on an annual basis, aquatic monitoring data from the LAEMP will contribute to the broader data set assessed every three years within the RAEMP. The RAEMP is designed to evaluate MQ 5: "Does monitoring indicate that mine-related changes in aquatic ecosystem conditions are consistent with expectations?" Data from the LAEMP and regional aquatic effects monitoring program (RAEMP) also contribute to answering MQ 2: "Will aquatic ecosystem health be protected by meeting the long-term Site Performance Objectives (SPO)?"

Biological triggers were finalized in 2021 (Teck 2021) under Management Question 5. Biological triggers were developed for three measurement endpoints:

- Percent EPT (% EPT; Ephemeroptera, Plecoptera, and Trichoptera) based on travelling kick samples
 (CABIN protocol), generally three replicates per location per sampling event
- Benthic invertebrate tissue selenium (BIT Se) generally several replicates collected per location per sampling event, where each replicate is a composite sample of invertebrates
- Westslope Cutthroat Trout muscle tissue selenium (WCT Se) generally eight replicates collected per location per sampling event, where each replicate corresponds to a sample from a single fish

The third trigger does not apply directly to the CMm LAEMP, because fish tissue selenium is not included in the CMm LAEMP, but is considered as supporting information.

Results from this report will also be used to determine whether a biological trigger has been reached. Reaching a trigger may lead to an adjustment (Stage 6: Adjust) using the response framework. This is the main report for conveying biological trigger results under the AMP. Implementation of management actions is not constrained to the AMP or LAEMP annual reporting cycles but may be (and has been) triggered at any time during the monitoring and reporting cycle.

Identifying and reducing environmental management uncertainty is a foundational aspect of adaptive management. Therefore, the AMP identifies key uncertainties (KUs) that, as reduced, fill gaps in current understanding to support the achievement of the EVWQP objectives. Aquatic monitoring data assist in reducing KU 5.1: "How will monitoring data be used to identify potentially important mine-related effects on the aquatic ecosystem?" and KU 2.1 "How will the science-based benchmarks be validated and updated?" Progress on reducing these KUs, and associated learnings, are described in annual AMP reports (Teck 2021). Please refer to the 2021 AMP Update (Teck 2021) for more information on the adaptive management framework, including Management Questions, key uncertainties, continuous improvement; linkages between the AMP and other EVWQP programs; and AMP reporting. Progress on gaining new knowledge and reducing KUs is described in annual AMP reports (submitted July 31), and evaluating the answers to MQs are reported in MQ evaluation reports (various submission dates).

The 2022 CMm LAEMP represents the third time that biological triggers are evaluated and reported for CMm. Through future iterative biological trigger evaluations, the process and/or biological triggers may be adjusted over time. Following the adaptive management framework, data collected as part of the CMm LAEMP will also be used to inform:

- 1) understanding of conditions in Michel Creek
- 2) interpretation of information collected under routine chronic toxicity testing and other programs
- 3) decisions on environmental management at CMm
- 4) potential adjustments to the CMm LAEMP study design

A2.0 METHODS

A2.1 Overview

Biological trigger analyses for the 2022 CMm LAEMP included two of the three measurement endpoints (i.e., % EPT and BIT Se) because fish tissue sampling is not conducted as part of the CMm LAEMP. Expected conditions for these endpoints were developed using projected water quality (rather than measured water quality) so that the triggers would detect biological results that were unexpected, regardless of whether those results relate to unexpected water quality or unexpected relationships between water quality and biological endpoints. Therefore, biological triggers were applied at locations where water quality projections were available 1. Specifically, one mine-influenced station on Michel Creek (MIDCO) and one on Corbin Creek (CORCK; CM_CC1) were evaluated for biological triggers within the CMm LAEMP.

wsp

Biological triggers have not been developed for lentic areas because the complex and site-specific hydrology of lentic areas precludes the development of useful water quality projections, and because the highly variable and site-specific habitat of lentic areas precludes the development of useful normal ranges for benthic invertebrate community metrics that would be appropriate for all lentic areas.

A2.2 Percent EPT

Data for percent EPT were compared to:

- **Normal range:** the lower limit of habitat-adjusted normal range (2.5th percentile).
- Expectations: the % EPT corresponding to the predicted Aquatic Data Integration Tool (ADIT) score. Predicted ADIT scores correspond to modelled potential effects on benthic invertebrate community (BIC) endpoints, based on relationships between concentrations of nitrate, sulphate, and nickel² and sensitive toxicity test endpoints that are interpreted to be predictive of potential effects on BIC endpoints. A predicted ADIT score of 3 corresponds to >50% potential effects on the sensitive toxicity test endpoint, 2 corresponds to 20% to 50% potential effects, 1 corresponds to 10% to 20% potential effects, and 0 corresponds to potential effect levels of 10% or less.

Predicted ADIT scores were compared to measured ADIT scores, which are calculated in the ADIT as follows (Golder 2020):

- an ADIT score of 0 corresponds to measured % EPT greater than or equal to the 10th percentile of the habitat-adjusted normal range;
- an ADIT score of 1 corresponds to measured % EPT between the 10th percentile and the 2.5th percentile of the habitat-adjusted normal range;
- an ADIT score of 2 corresponds to measured % EPT between the 2.5th percentile and half of the
 2.5th percentile of the habitat-adjusted normal range; and
- an ADIT score of 3 corresponds to measured % EPT less than or equal to half of the 2.5th percentile and ≥ 0.

Habitat-adjusted normal ranges for individual replicates were used at each location for establishing the % EPT percentiles associated with each ADIT score.

In summary, this component of the biological trigger for % EPT asks whether the measured ADIT score, calculated based on measured % EPT relative to normal ranges, is greater than the ADIT score that was predicted based on water quality projections.

Benthic invertebrate community data for % EPT collected in September for the 2022 CMm LAEMP were included in the biological trigger analysis.

WSD

Projections were based on the highest maximum monthly mean across all flow scenarios (i.e., low, average, high). Selenium was not included because selenium effects on BIC endpoints are not expected under the range of conditions evaluated herein.

A2.3 Benthic Invertebrate Tissue Selenium

Data for BIT Se were compared to:

- **Normal range:** The upper limit of regional normal range (97.5th percentile).
- **Expectations:** The upper limit of the 95% prediction interval based on the water to BIT bioaccumulation model. The model was originally developed in the EVWQP (Golder 2014) and was updated (Golder 2020). The updated best fit relationship is $log_{10}[Se]_{inv} = 0.720 + 0.071 \times log_{10}[Se]_{aq}$. Prediction intervals were calculated based on the *t*-distribution with n=2 degrees of freedom. Prediction intervals were estimated for BIT Se for individual replicates, taking into account that the data points for the original model were based on geometric means rather than individual replicates (Teck 2021).

Benthic invertebrate tissue selenium data collected during the September 2022 CMm LAEMP sampling program were included in the biological trigger analysis and compared to the normal range based on samples collected in September between 1996 and 2021.

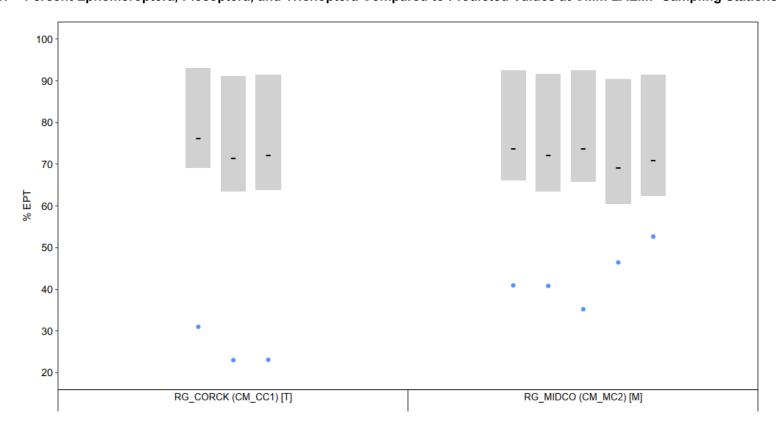
Although effects benchmarks are not part of the trigger, they are relevant for interpreting potential significance and responses. Consequently, the level 1, 2 and 3 benchmarks (11, 18 and 26 mg/kg dw selenium in BIT, respectively) for the most sensitive receptor (i.e., juvenile fish growth via dietary exposure) are included in plots.

A3.0 RESULTS

A3.1 Percent EPT

Percent EPT for each replicate from two mine-influenced stations was assessed against its respective biological trigger criterion (Table A-1 and Figure A-1). All replicates at CORCK and MIDCO had % EPT values lower than the 2.5th percentile of the habitat-adjusted normal range (i.e., indicating a change from the reference normal range), and measured ADIT scores greater than the predicted ADIT score based on projected water quality (i.e., indicating a greater than expected change from the reference normal range), resulting in biological triggers at each station.

Table A-1: Biological Trigger Analysis for Percent Ephemeroptera, Plecoptera, and Trichoptera (EPT) at CMm LAEMP Sampling Stations, 2022


Watercourse		Station	Туре	Replicate	Date	Measured % EPT	Measured ADIT scores	Predicted ADIT Score	2.5 th Percentile of the Habitat Adjusted Normal Range	Biological Trigger Event?
S		CORCK	Т	1	14-Sep-2022	31.0	3 (34.6)	0 (76.1)	69.1	Yes
Stations	Corbin Creek	CORCK	Т	2	14-Sep-2022	23.0	3 (31.8)	0 (71.5)	63.6	Yes
Sta		CORCK	Т	3	14-Sep-2022	23.1	3 (31.9)	0 (72.1)	63.8	Yes
ced	Michel Creek	MIDCO	М	1	13-Sep-2022	41.0	2 (66.2)	0 (73.6)	66.2	Yes
Influenced		MIDCO	М	2	13-Sep-2022	40.8	2 (63.5)	0 (72.1)	63.5	Yes
		MIDCO	М	3	13-Sep-2022	35.2	2 (65.8)	0 (73.7)	65.8	Yes
Mine		MIDCO	М	4	13-Sep-2022	46.5	2 (60.6)	0 (69.0)	60.6	Yes
2		MIDCO	М	5	13-Sep-2022	52.7	2 (62.5)	0 (70.9)	62.5	Yes

Note: The % EPT percentile value associated with each ADIT score are presented in parentheses.

M = mainstem; T = tributary; ADIT = Aquatic Data Integration Tool.

Figure A-1: Percent Ephemeroptera, Plecoptera, and Trichoptera Compared to Predicted Values at CMm LAEMP Sampling Stations, 2022

Note: Black bars indicate the lower limit of the predicted ADIT score for the location. Grey shading represents the habitat-adjusted site-specific normal range for each replicate. Grey dots for CORCK and blue dots for MIDCO represent values exceeding the trigger (below 2.5th percentile of the normal range and below the lower limit of the predicted ADIT score). The water quality projection for RG CM MC2 was used for biological trigger calculations for RG MIDCO.

M = mainstem; T = tributary; ADIT = Aquatic Data Integration Tool.

A3.2 Benthic Invertebrate Tissue Selenium

Concentrations of BIT Se for each mine-influenced replicate were assessed against their respective biological trigger criteria (Table A-2 and Figure A-2). None of the replicates in 2022 had concentrations of BIT Se above the biological trigger threshold (i.e., higher than both the upper 95% prediction limit based on predicted water quality, and the upper 97.5th percentile normal range), or above the level 1 benchmarks for juvenile fish (i.e., 11 mg/kg dw); resulting in no biological trigger for BIT Se.

Appendix A Reference No. 22574542-001-R-Rev0-1000

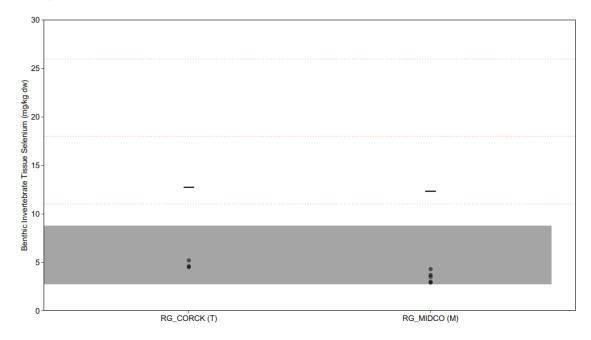

Adaptive Management – Biological Triggers

Table A-2: Biological Trigger Analysis for Selenium Concentration in Benthic Invertebrate Tissue at CMm LAEMP Sampling Stations, 2022

Watercourse		Chatian Watersana Tu	Wateressures Tune	Danliasta	Date	Predicted Aqueous Selenium Concentration (μg/L)	Benthic Invertebrate Tissue Selenium Concentration (mg/kg dw)			Biological
		Station	tion Watercourse Type	Replicate			Reported Concentration	Upper 95% Prediction Limit	97.5 th Percentile of Normal Range	Trigger Event?
		CORCK	Т	1	14-Sep-2022	13.2	4.6	12.7	9.1	No
	Corbin Creek	CORCK	Т	2	14-Sep-2022	13.2	5.2	12.7	9.1	No
		CORCK	Т	3	14-Sep-2022	13.2	4.5	12.7	9.1	No
Mine Influenced Stations		MIDCO	M	1	13-Sep-2022	8.3	4.3	12.3	8.7	No
Mille initidenced Stations		MIDCO	M	2	13-Sep-2022	8.3	3.5	12.3	8.7	No
	Michel Creek MI	MIDCO	M	3	13-Sep-2022	8.3	3.0	12.3	8.7	No
		MIDCO	M	4	13-Sep-2022	8.3	2.9	12.3	8.7	No
		MIDCO	M	5	13-Sep-2022	8.3	3.7	12.3	8.7	No

M = mainstem; T = tributary; mg/kg = milligrams per kilogram; mg/L = milligrams per litre; dw = dry weight.

Figure A-2: Selenium Concentration in Benthic Invertebrate Composite Taxa Samples Compared to Predicted Values at CMm LAEMP Sampling Stations, 2022

Note: Black bar indicates the upper 95th prediction interval of the bioaccumulation model. Dotted lines indicate level 1, 2, and 3 benchmarks for juvenile fish (11, 18, and 26 mg/kg, respectively). Grey shading represents the reference area normal range defined as the 2.5th and 97.5th percentiles of the distribution of the reference area data (pooled 1996 to 2019 data) reported in the RAEMP. The water quality projection for CM_MC2 was used for biological trigger calculation at MIDCO.

M = mainstem; T = tributary; mg/kg = milligrams per kilogram; dw = dry weight; RAEMP = regional aquatic effects monitoring program.

A4.0 SUMMARY

All replicates at CORCK and MIDCO had % EPT values that resulted in a biological trigger event. These findings are consistent with results of sampling and evaluation in previous years, including in the 2021 CMm LAEMP, that prompted management action under the AMP response framework. Teck first investigated localized effects on % EPT at CMm in 2017 as part of the Integrated Water Management Plan for Closure for CMO (Golder 2017). Analyses presented by Golder (2017) attributed the localized effects in large part to nickel, although effects in Corbin Creek are interpreted to also reflect calcite conditions there. Since 2017, Teck has conducted a series of laboratory and field investigations to better understand nickel toxicity and effects to % EPT, with the objective of deriving benchmarks to guide assessment and management of nickel in the Elk Valley. Teck also initiated the CMm LAEMP (of which this assessment of biological triggers is a part) and initiated ongoing evaluations of nickel treatment options. These activities are reported annually in AMP reporting.

None of the replicates in 2021 had concentrations of BIT Se above the biological trigger threshold or above the level 1 benchmarks for juvenile fish, similar to 2021 results. These findings do not indicate a need to track BIT Se under the AMP framework.

A5 REFERENCES

- Golder (Golder Associates Ltd.) 2014. Benchmark Derivation Report for Selenium. Annex E of the Elk Valley Water Quality Plan. Prepared for Teck Coal Limited. July.
- Golder. 2017. Aquatic health assessment Coal Mountain Operations. Prepared for Teck Coal Limited. December 2017.
- Golder. 2020. Updates to the lotic and lentic statistical bioaccumulation models for selenium in the Elk Valley. Technical memorandum to Teck Coal Limited, 27 November 2020.
- Teck (Teck Coal Limited). 2018. Water Quality Adaptive Management Plan for Teck Coal Operations in the Elk Valley. December 2018.
- Teck. 2021. Water Quality Adaptive Management Plan for Teck Coal Operations in the Elk Valley 2021 Update.

 December 2021.

APPENDIX B

Site Conditions and Water Management

Table of Contents

B1.0	SITE CONDITIONS AND WATER MANAGEMENT	1
R2 0	REFERENCES	6
DZ.0	NEI ENERGEO	. •
FIGUR	RES	
Figure	B-1: Timeline of Mining Water Management, and Monitoring in the CMm Area	3

Abbreviations and Units of Measure

Abbreviation	Definition
%	percent
L/s	litres per second - delete
mg/L	milligrams per litre
hr	hour
BOD	Biochemical oxygen demand
C&M	Care and Maintenance
CMm	Coal Mountain mine
e.g.	For example
ENV	British Columbia Ministry of Environment and Climate Change Strategy
EPH	extractable petroleum hydrocarbons
EWT	early warning trigger
i.e.,	That is
SRK	SRK Consulting Inc.
TARP	Trigger Action Response Plan
TDS	Total Dissolved Solids
Teck	Teck Coal Limited
TSS	total suspended solids

B1.0 SITE CONDITIONS AND WATER MANAGEMENT

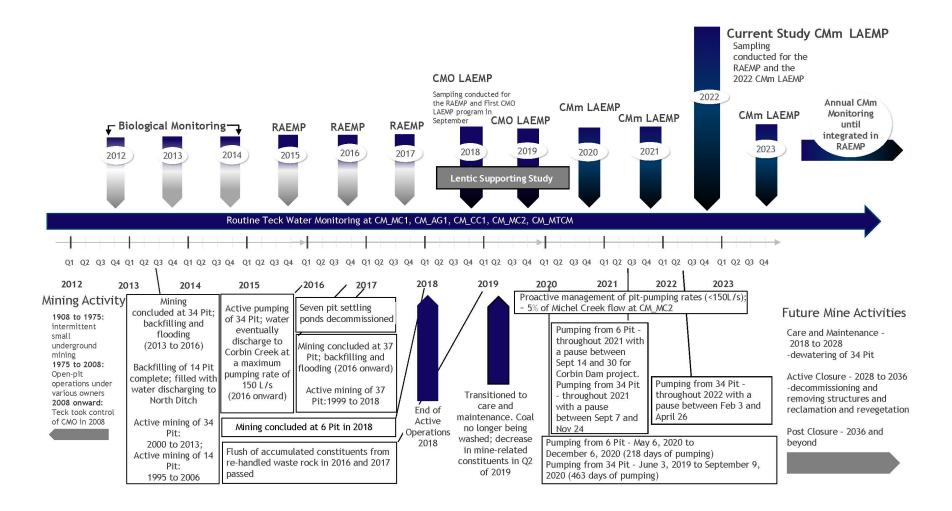
Mining activity at Coal Mountain began around 1908 with small underground mines and has continued intermittently for over a century. Open pit operations began in 1975 and mining progressed under various owners until Teck Coal Ltd. (Teck) took ownership of Coal Mountain Mine (CMm) in 2008 (Teck 2017). Coal Mountain mine ceased active mining and processing operations on 30 April 2019 and made the transition to a care and maintenance (C&M) phase on 1 May 2019 (Figure B-1). Reclamation efforts will increase through C&M and will be guided by the plans outlined in Coal Mountain's 2022 Closure Plan (Teck 2023a). Following C&M, closure (2028 to 2036) and post closure (2036 and beyond) activities will be carried out at CMm, which will include decommissioning of infrastructure, remediation, and revegetation, as appropriate.

During operations between 2008 and 2019, CMm consisted of four pits: 6 Pit, 14 Pit, 34 Pit, and 37 Pit (Teck 2023a). Mining concluded in 14 Pit in 2006, 34 Pit in 2013, and in 37 Pit and 6 Pit in 2018. Backfilling has occurred since the pits closed; 14 Pit, 34 Pit, and 37 Pit have been fully (14 Pit) and partially (34 Pit and 37 Pit) backfilled with waste rock and refuse. Water storage capacity of the pits has been maximized and pit pumping is required for geotechnical safety. Current pit dewatering practices at CMm direct water to established and permitted mining contact water collection systems, which eventually discharge to Corbin Creek.

The surface water management system at CMm is designed to capture all mine contact surface water. The water management system includes:

- a three pond system for settling out total suspended solids (Corbin Creek Dam and the west and east Main Interceptor Sedimentation Ponds)
- 2) clean water diversions to move clean water around mine disturbed areas
- 3) North and West ditches to convey contact water to the ponds
- 4) rock drains utilized in creeks where waste rock spoils are placed
- 5) infiltration sumps used to collect additional runoff from other structures

Runoff from the local waste rock spoils, pit wall runoff, groundwater inflow and direct precipitation is received by 6 Pit. Outflows include evaporation and pumping. Teck's preferred water management strategy is to maintain 6 Pit empty of water, if safe to do so. Teck intends to pump continuously to maintain water levels at or below the recommended target maximum volume; however, during some periods, such as during extremely low flows, pumping may pause temporarily. Though some periods of intermittent pumping may occur, pumping rates are planned to match rates of inflow into 6 Pit. Water is pumped from 6 Pit to the Corbin Creek rock drain and then flows to the Corbin Pond, Corbin Creek, and eventually Michel Creek. Water quality in 6 Pit has historically had higher concentrations of sodium and chloride than are observed in other water on site (SRK 2022a).


Excess water from 37 Pit and runoff from local waste rock spoils, pit wall runoff, runoff from waste rock backfill within 34 Pit, groundwater inflow, and direct precipitation are received by 34 Pit. Outflows from 34 Pit include evaporation and active pumping to maintain the water level below the passive decant level. Water from 34 Pit is pumped to a sump downstream of the 14 Pit horizontal drain discharge, eventually flowing to the North Ditch and reporting to Michel Creek. The volume of water that is dewatered annually is equal to the total inflows to the pit, because the pit water elevation is already near its maximum level. Pumping of 34 Pit occurs at a rate synchronized to seasonal flow in Michel Creek at monitoring location CM MC2, targeting a pump rate of 5% of

projected flow in Michel Creek at CM_MC2 up to the current maximum pumping infrastructure capacity (approximately 150 L/s) to maintain target pit water levels for geotechnical stability. Following the 2021 update to the 34 Pit Pumping Plan (SRK 2022b), pumping limits were set as a percentage of flow at CM_MC2, allowing pumping rates to exceed 150 L/s at high flow times of the year (e.g., freshet). Therefore, additional pumping infrastructure may be brought in if required to satisfy the Geotechnical Trigger Action Response Plan (TARP).

Pit dewatering occurred between 2019 and 2022. In 2019, pumping rates from 34 Pit were below the maximum authorized rate (i.e., 150 L/s) and no pumping from 6 Pit occurred; 6 Pit filled in naturally but did not decant. Active dewatering of 34 Pit and 6 Pit occurred between 2020 and 2022 at rates below the maximum authorized rates. Pumping from 6 Pit began in May 2020 when 6 Pit reached its storage capacity and continued into 2022. It was paused for a short period from 14 September to 30 September 2021 to support the Corbin Dam Dewatering Project associated with the Corbin Dam Spillway Upgrade Project. Pumping from 34 Pit began in June 2019 and continued until fall 2020. Pumping resumed in May 2021 and continued throughout 2021, with a short pause during the Corbin Dam Dewatering project, between September and November 2021. Pit pumping at 34 Pit was suspended between 3 February 2022 and 26 April 2022 following submission of the 34 Pit Pumping Plan update (SRK 2022b), and notification to the British Columbia Ministry of Environment (ENV). Pumping resumed on 26 April 2022 and continued throughout 2022 until 31 December 2022. Throughout 2021 and 2022, pit pumping at 34 Pit did not exceed the pumping limits set out in the 34 Pit Pumping Plan (SRK 2022b).

The main source of nickel to Michel Creek is 34 Pit and the Corbin Creek Rock Drain. Proactive water management and pit-pumping of 34 Pit in recent years has resulted in an improvement in water quality and nickel concentrations downstream of CMm since 2017 (Teck 2019). However, even under a no pumping scenario, Teck is projected to exceed the interim screening values for nickel. Pumping of 34 Pit is required to mitigate the geotechnical risk associated with water reporting to the west spoils passively. The pumping plan has been optimized to manage constituent loads to Corbin Creek and the competing need to manage geotechnical risk. The current proactive pit pumping management at CMm that has occurred since 2019 has given Teck the ability to actively manage the release of mining-related constituents to Corbin Creek and manage geotechnical risk. CMm is working towards re-sloping of the west spoils to support passive discharge over active pumping in the future.

Figure B-1: Timeline of Mining, Water Management, and Monitoring in the CMm Area

Water quality is monitored at CMm as required under Permits 4750 and 107517. Limits for total suspended solids (TSS), extractable petroleum hydrocarbons (EPH), and biochemical oxygen demand (BOD) are specified in Permit 4750 for specific discharge locations; limits for selenium, nitrate, and sulphate are specified in Permit 107517 for CM_MC2. Acute toxicity is monitored at CM_SPD, CM_CCPD (or CCOFF)¹, and CM_PC2 (when it is flowing) as per Permit 107517. The collected water samples must not cause greater than 50% mortality in the 96-hour Rainbow Trout (*Oncorhynchus mykiss*) single concentration toxicity tests (EPS 1/RM/13 2nd edition, December 2000) or the 48-hour *Daphnia magna* single concentration toxicity tests (EPS 1/RM/14 2nd edition, December 2000), as per Section 6.2 in Permit 107517(Ministry of Environment and Climate Change Strategy 2023).

Between 2016 and 2018, concentrations of several constituents were identified as increasing in water discharged from Corbin Dam at monitoring station CM_CCPD and at the Main Interceptor Sedimentation Ponds (CM_SPD; Teck 2019). The constituents were associated with the flush of blasting residues (i.e., nitrate, ammonia, and nitrite) and with metal leaching (i.e., sulphate, boron, calcium, cobalt, lithium, magnesium, manganese, molybdenum, nickel, potassium, selenium, sodium, and hardness). In addition, the onset of pumping from 6 Pit and 34 Pit started in 2016 because water started accumulating in these pits as they got deeper and narrower.

Between 2018 and 2019, a decrease in mining related constituents (i.e., nitrate, cobalt, sulphate, and total dissolved solids [TDS]) was measured at CM_CCPD and at CM_SPD, resulting in an improvement to water quality downstream of CMm in Corbin Creek and Michel Creek (Teck 2019). The decrease was in part attributed to the completion of the flush of accumulated constituents resulting from rehandled waste rock in 2016 and 2017. It was suspected that rehandling of waste rock disturbed constituents that had accumulated in the rock and caused a flush of constituents downstream of CMm when the waste rock was being disturbed. In addition, coal was no longer being washed as CMm transitioned to C&M in May 2019; therefore, plant washdown discharge to the North Ditch or Main Interceptor Sedimentation Ponds had ceased.

Between 2018 and 2022, there has only been one exceedance of compliance limits at CMm's compliance point, CM_MC2 (nitrate monthly average in January 2017; Teck 2023b). The source discharge analysis revealed a long-term increasing trend for sulphate in Corbin Creek (CM_CC1), but concentrations of most constituents were lower in 2020, 2021, and 2022 compared to previous years at CM MC2 (Teck 2023b).

Recent trends of increasing sulphate concentrations in 2019 and 2020 appear to have stabilized, with 2021 and 2022 concentrations similar to, or lower than, previous years. Sulphate typically fluctuates seasonally, with peaks occurring in winter and fall, coinciding with lower flows in Michel Creek, when relative loading of sulphate from pit pumping is higher. Sulphate concentrations were elevated in 6 Pit (400 to 600 mg/L) and 34 Pit (600 to 966 mg/L) in 2022, and individual samples occasionally exceeded the permit limit of 500 mg/L at CM_MC2. However, the permit limit is based on the monthly average, which was not exceeded. The Corbin Creek Rock Drain (CCRD) is the main source of sulphate loading at CMm, which may partly be attributable to upstream East Spoils re-sloping works, as part of ongoing reclamation activities (Teck 2022a). There were no exceedances of compliance limits at CMm's compliance point, CM MC2 in 2022 (Teck 2021; 2022a).

wsp

CM_CCPD could not be safely accessed during and after the Corbin Dam Spillway Project (October 2021); therefore, monitoring of the Corbin Sediment Pond decant was conducted at CM_CCOFF. In permit amendments dated 27 January 2023 (for Permits 4650 and 107517), ENV changed the permitted location from CM_CCPD (E206438) to CM_CCOFF (E330652).

The 2022 monitoring data from CM_MC2 were compared to early warning trigger (EWT) values to identify constituents that reached one or both of the EWT test criteria. Cobalt, sulphate, and TDS reached both EWT test criteria, similar to previous years. Examination of trends at discharge locations of CM_MC2 revealed significant increasing trends in cobalt, sulphate, and TDS at CM_CCPD/CM_CCOFF; sulphate, TDS, and cobalt (to a lesser extent) at CM_SPD; and a marginally significant trend in TDS at CM_PC2 (Teck 2023b).

Consistent with the Chronic Toxicity Testing Program and Adaptive Management Plan response framework, Teck has taken steps to manage the release of mining-related constituents to Michel Creek. Teck updated the Coal Mountain Operations Water and Load Balance Model (Teck 2022b) and conducted a detailed evaluation of data from 2016 to 2018 to optimize the pumping plans for 34 Pit and 6 Pit. The thresholds set out in these optimized plans were designed to help Teck meet permit limits at CM_MC2 and meet the aquatic effects benchmarks in Michel and Corbin creeks. Proactive pit pumping management since 2019 has had an overall positive effect on Teck's ability to manage the release of mining-related constituents to Corbin Creek.

In addition to the influence of past and current activities at CMm on Michel Creek, there are other anthropogenic influences such as logging and other industry in the watershed that may also impact water quality in Michel Creek. However, these influences are considered minor contributors and the greatest influence on water quality in Michel Creek has been mining activities.

B2.0 REFERENCES

Ministry of Environment and Climate Change Strategy. 2023. Permit 107517. Teck Coal Limited. January 2023.

- SRK. 2022a. 34 Pit Pumping Plan 2022 Update. Report prepared for Teck Coal Ltd. by SRK Consulting (Canada) Inc. Project Number CAPR001823. April 2022.
- SRK 2022b. Coal Mountain Mine water and load balance model 2022 comprehensive update. Report prepared by SRK Consulting for Teck Coal Limited Coal Mountain Mine. March 2022
- Teck (Teck Coal Limited). 2017. Coal Mountain Operations care and maintenance integrated water management plan. December 2017.
- Teck. 2019. Permit 107517 annual water quality monitoring report. Teck Coal Limited. 31 March 2019.
- Teck. 2021. Permit 107517 annual water quality monitoring report. Teck Coal Limited. 31 March 2021.
- Teck. 2022a. Permit 107517 annual water quality monitoring report. Teck Coal Limited. 31 March 2022.
- Teck. 2022b. Coal Mountain WLBM_1CT017.356_Rev11
- Teck. 2023a. 2022 Annual Reclamation Report Coal Mountain mine. Report by Teck Coal Ltd. March 2023.
- Teck. 2023b. Permit 107517 annual water quality monitoring report. Teck Coal Limited. 31 March 2023.

APPENDIX C

Integrated Aquatic Programs

Table of Contents

C1.0 I	INTRO	DDUCTION	. 1
C2.0 I	REGI	ONAL AQUATIC EFFECTS MONITORING PROGRAM (RAEMP)	1
C	2.1	Overview	. 1
C	2.2	Aquatic Data Integration Tool (ADIT)	.3
C	2.3	Westslope Cutthroat Trout Tissue Selenium Concentrations	.7
C	2.4	Chronic Toxicity Testing Program	.8
C3.0 (CHRC	ONIC NICKEL BENCHMARK STUDIES	12
C4.0 I	ENVII	RONMENTAL FLOW NEEDS STUDY	14
C5.0 I	REFE	RENCES	16
TABL	ES		
Table	C-1: I	nterpretation of Aquatic Data Integration Tool (ADIT) Scores	3
Table		Subset of Supporting Variables used in Aquatic Data Integration Tool (ADIT) Scores for the CMm LAEMP Stations, 2022	5
Table		Aquatic Data Integration Tool (ADIT) Scores for Benthic Invertebrate Community Endpoints at CMm LAEMP Stations, 2022	6
Table		Area-weighted Summaries for Measurement Unit 4 from the Aquatic Data Integration Tool (ADIT)	7
Table	C-5: \$	Summary of Nickel Benchmarks with Example Values for Average CM-MC2 Water Quality	13
Table		nterpretation of Nickel Benchmarks for Benthic Invertebrates – Potential Effects on the Benthic nvertebrate Community	14
FIGUF	RES		
Figure	C-1:	Integrated Monitoring Locations for Historic and Recent Sampling Programs near CMm	.2
Figure		Westslope Cutthroat Trout Muscle Selenium Concentrations in Upper Michel Creek, 2006 to 2021	8
Figure	C-3:	Summary of Test Results by Category at CM_MC2, 2015 to 2022	10
Figure	C-4:	Summary of Test Results by Category at CM_MC3 and RG_MIDAG, 2018 to 2022	11

Abbreviations and Units of Measure

Abbreviation	Definition					
%	percent					
<	less than					
μS/cm	microsiemens per centimetre					
km	kilometre					
m ³ /s	cubic metres per second					
#	number					
n	number					
mg/L	milligrams per litre					
mg/kg dw	milligram per kilogram dry weight					
μg/kg dw	microgram per kilogram dry weight -delete					
ADIT	Aquatic Data Integration Tool					
AEMP	Aquatic Effects Monitoring Program					
AMP	Water Quality Adaptive Management Plan for Teck Coal in the Elk Valley					
BC WQGs	British Columbia Water Quality Guidelines					
BIC	Benthic Invertebrate Community					
CMm	Coal Mountain mine					
DO	dissolved oxygen					
Е	Ephemeroptera					
EA	Environmental Assessment					
Ecofish	Ecofish Research Ltd.					
EFN	Environmental Flow Needs					
ENV	British Columbia Ministry of Environment and Climate Change Strategy					
EPT	Ephemeroptera, Plecoptera, and Trichoptera					
EVO	Elkview Operations					
EVWQP	Elk Valley Water Quality Plan					
IFN	Instream Flow Study					
i.e.,	that is					
LAEMP	Local Aquatic Effects Monitoring Program					
Minnow	Minnow Environmental Inc.					
MU	Management Unit					
Q	quarter					
QC	Quality Control					
RAEMP	Regional Aquatic Effects Monitoring Program					
TDS	Total Dissolved Solids					
Teck	Teck Coal Limited					
TIE	toxicity identification evaluation					
TN	Total Nitrogen					

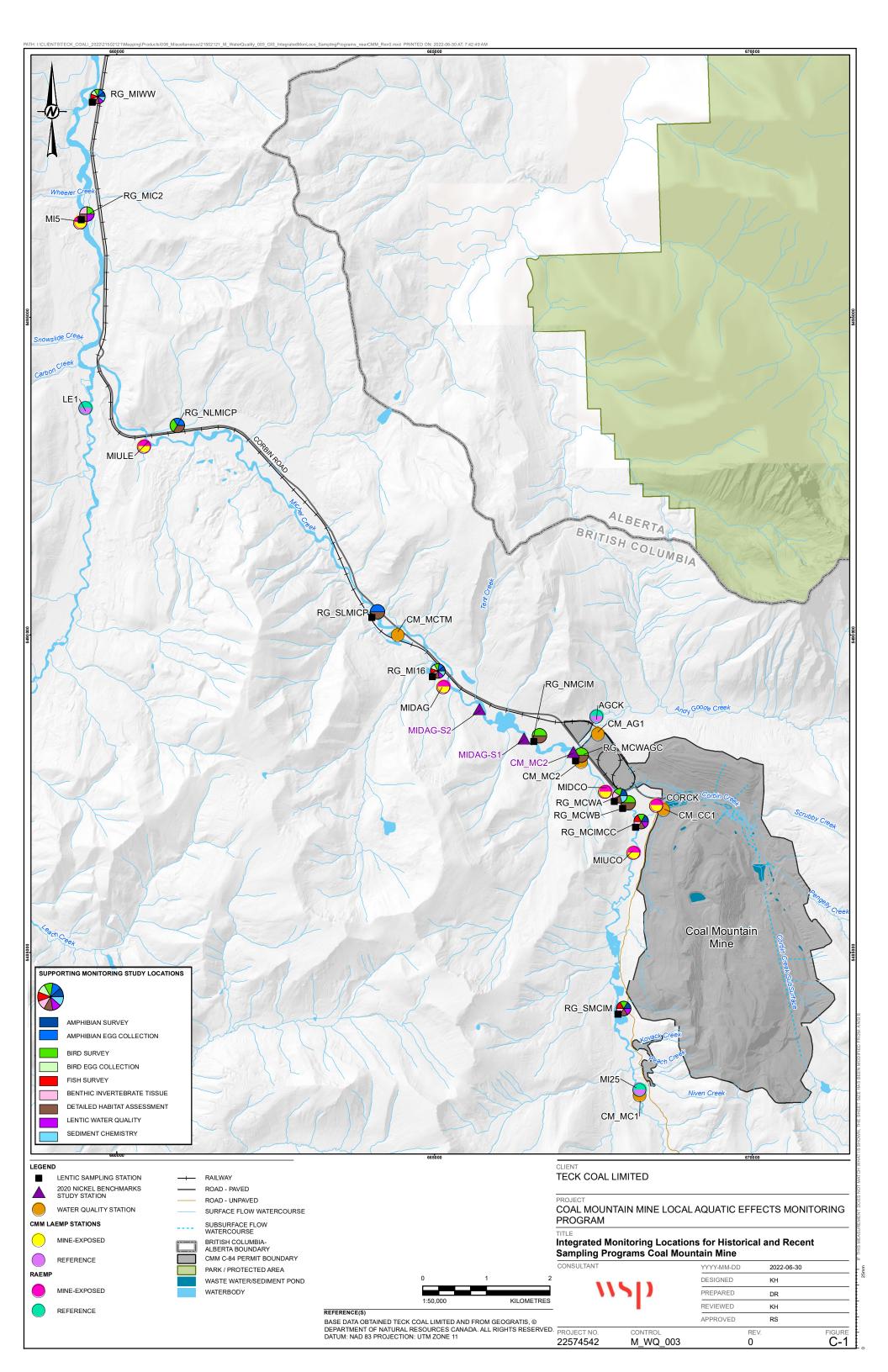
Abbreviation	Definition
TP	Total Phosphorus
UTM	Universal Transverse Mercator
YOY	Young-of-the-Year

C INTEGRATED AQUATIC PROGRAMS C1.0 INTRODUCTION

Teck Coal Ltd. (Teck) conducts several programs to monitor, evaluate, and/or manage the aquatic effects of mining operations within the Coal Mountain Mine (CMm) area (Figure C-1). The CMm Local Aquatic Effects Monitoring Program (LAEMP) integrates information from the Regional Aquatic Effects Monitoring Program (RAEMP), chronic toxicity testing program, environmental flow needs [EFN] Study, and nickel benchmark study to better characterize and understand potential effects of CMm on the aquatic environment in Michel Creek. Summaries of relevant results from these reports are provided herein, while methods are presented within the specific monitoring reports.

C2.0 REGIONAL AQUATIC EFFECTS MONITORING PROGRAM (RAEMP) C2.1 Overview

Teck's RAEMP provides spatially comprehensive monitoring and assessment of potential mine-related effects on the aquatic environment downstream from Teck's coal mines in the Elk Valley. The RAEMP reporting encompasses monitoring data for the six management units associated with Teck's five coal mines (Minnow 2018a). Management Unit (MU) 4 applies to the CMm and Elkview Operations (EVO) areas.


The objective of the RAEMP is to monitor, assess, and interpret indicators of aquatic ecosystem condition related to mine operations, and to inform adaptive management relative to expectations established in approved plans for mine development and in Permit 107517 (Minnow 2020a). Another objective of the RAEMP is to determine if conditions in the aquatic environment are consistent with expectations outlined in Environmental Assessments (EAs) supporting approved mine development applications.

The 2017 to 2019 RAEMP represents the second comprehensive RAEMP cycle (Minnow 2020a) and follows the 2015 to 2018 and the 2018 to 2020 RAEMP Study Designs (Minnow 2018a,b). The 2020 to 2022 RAEMP is currently in preparation and will be submitted in late fall 2023 (Minnow 2023); where possible, data from the 2020 to 2022 RAEMP cycle have been incorporated herein.

The RAEMP collects monitoring data to answer the following study questions:

- 1) Has there been a change in condition since previous monitoring cycles with respect to fish and benthic invertebrate population/community indicators, water quality, sediment quality, calcite, and/or tissue selenium concentrations?
- 2) Were any identified changes unexpected (i.e., inconsistent with model predictions or general expectations)?
- 3) Does the weight of evidence indicate the unexpected changes are mine-related?
- 4) What does the weight of evidence indicate about current or future ecosystem conditions in each management unit and regionally, considering the observed type, magnitude, spatial extent, and/or rate of change?

The RAEMP data evaluation incorporates data from all lines of evidence applicable to each assessment endpoint. The data are interpreted relative to the RAEMP study questions, and in support of the Adaptive Management Plan (AMP; Appendix A). An Aquatic Data Integration Tool (ADIT) was also developed to integrate applicable lines of evidence and help Teck use their monitoring data to inform environmental management decisions (Section C2.2; Golder 2020); the ADIT is updated annually.

The 2022 ADIT results applicable to the CMm are presented in Section C2.2, Westslope Cutthroat Trout (*Oncorhynchus clarkii lewisi*) selenium tissue concentrations are discussed in Section C2.3, and chronic toxicity testing program results are summarized in Section C2.4.

C2.2 Aquatic Data Integration Tool (ADIT)

The RAEMP data evaluation incorporates data from all lines of evidence applicable to each assessment endpoint. The ADIT was developed to integrate the applicable lines of evidence and help Teck use their monitoring data to inform environmental management decisions (Golder 2020). The ADIT summarizes data in a consistent format for all parts of the Elk Valley. Multiple types of monitoring information are presented side-by-side to allow comparisons and to support an integrated interpretation of what types of effects might be occurring and what might be causing those effects. Potential stressors are assigned ADIT scores by comparing monitoring data to a series of applicable benchmarks, toxicity screening values, or critical effect sizes. Biological response involved comparing monitoring data to a "normal range" of conditions based on monitoring in the reference areas (i.e., habitat-adjusted normal ranges, or regional normal ranges if habitat-adjusted normal ranges are not available, that are based on a linear mixed-effects model that uses reference data with individual samples). The interpretation for each score and the associated colour used to shade cells in the ADIT are described in Table C-1.

Table C-1: Interpretation of Aquatic Data Integration Tool (ADIT) Scores

ADIT Score	Indication of Change	Indication of Potential Effect
0	No apparent change; well within normal range	No effect; less than lowest benchmark
1	Possible change, still consistent with reference; within normal range but near edge	Possible low-level effect on chronic, sublethal endpoint for most sensitive species; not expected to be measurable or ecologically meaningful
2	Probable change, possibly different from reference; sometimes outside the normal range or often near the edge, in the direction of adverse effects	Probable effect, potentially measurable and ecologically meaningful; potential for changes to populations of sensitive species
3	Likely change, likely different from reference; often or always outside the normal range in the direction of adverse effects	Likely effect, expected to be measurable and ecologically meaningful; potential for changes to benthic invertebrate communities and fish populations

Source: Golder 2020.

A subset of the supporting monitoring data used in the ADIT and ADIT scores are provided in Table C-2. The key biological receptors included in the ADIT are BIC and fish. In 2022, biological monitoring under the RAEMP and CMm LAEMP focused on BIC (Table C-3); monitoring of fish did not occur in 2022. Overall, the ADIT also provides a current snapshot of conditions and is updated annually as new data become available from the RAEMP, LAEMPs or other monitoring programs.

Overall, the greatest effects on the BIC (i.e., ADIT scores of three) were observed in Corbin Creek (CORCK) and Michel Creek downstream of Corbin Creek (MIDCO). Specifically, low % EPT, % E, and EPT and Ephemeroptera

abundances were observed at CORCK (Table C-3). Lower % EPT and % E than normal ranges were also observed at MIDCO, located downstream of Corbin Creek, and lower total abundance, and EPT and Ephemeroptera abundances were observed at MIUCO, upstream of Corbin Creek.

Integrated Aquatic Programs

June 2023

Table C-2: Subset of Supporting Variables used in Aquatic Data Integration Tool (ADIT) Scores for the CMm LAEMP Stations, 2022

Exposure	Station Name	F	eak Nicke	l (mg/L)	BIT Selenium	C. dubia Reproduction (%)		H. azteca (%		P. subc	Calcite Index ^(c)	
		Winter	Spring	Summer-Fall	(mg/kg dw)	Mean ^(a)	Min ^(b)	Mean ^(a)	Min ^(b)	Mean ^(a)	Min ^(b)	IIIuex.
	RG_AGCK	-	0.07	0.12	7.4	-	-	-	-	-	-	0.003
Reference	RG_LE1	-	-	0.01	8.9	-	-	-	-	-	-	0.000
	RG_MI25	0.11	0.03	0.03	9.2	105	99	94	93	98	90	0.020
	RG_MIUCO	-	-	0.01	4.7	-	1	-	-	-	-	0.021
	RG_CORCK	4.8	4.0	3.3	5.2	-	1	-	-	ı	ı	2.80
Mine-	RG_MIDCO	2.7	1.7	1.9	4.3	83	46	92	74	78	31	0.150
Influenced	RG_MIDAG	1.2	0.62	0.84	8.8	97	78	-	84	ı	ı	0.096
	RG_MIULE	-	-	0.43	8.9	-	-	-	-	-	-	0.210
	RG_MI5	-	-	0.28	9.3	-	-	-	-	-	-	0.053

Source: Minnow 2023

⁽a) Mean response relative to reference stations.

⁽b) Minimum response relative to references stations.

⁽c) Based on proportional data.

BI = benthic invertebrate; *C. dubia* = *Ceriodaphnia dubia*; *H. azteca* = *Hyalella azteca*; *P. subcapitata* = *Pseudokirchneriella subcapitata*; - = not available; mg/L = milligrams per litre; mg/kg dw = milligrams per kilogram dry weight; min = minimum.

Integrated Aquatic Programs

June 2023

Table C-3: Aquatic Data Integration Tool (ADIT) Scores for Benthic Invertebrate Community Endpoints at CMm LAEMP Stations, 2022

Exposure	Station Name	Abundance	Richness	EPT		Ephemeroptera	
Exposure	Station Name	(Total no. of org/station)	(LPL taxa/station)	Total no. of org/station	%	Total no. of org/station	%
	RG_AGCK	15,835	30	14,345	91	10,839	69
Reference	RG_LE1	6,793	38	6,023	89	3,067	45
	RG_MI25	8,485	30	8,071	95	5,427	64
	RG_MIUCO	2,913	42	2,036	70	1,121	39
	RG_CORCK	4,905	27	1,313	27	0	0
Mine-	RG_MIDCO	9,157	41	3,922	43	1,401	15
Influenced	RG_MIDAG	9,235	37	7,714	84	3,742	41
	RG_MIULE	10,903	40	8,606	79	5,824	53
	RG_MI5	6,793	35	14,345	89	4,262	63

Source: Minnow 2023

Note: Biological response metrics compare the geometric mean of a given station's replicates to habitat-adjusted normal ranges (or regional normal ranges when not available), which are based on a linear mixed-effects model that uses reference data with individual samples.

no. = number; org/station = organisms per station; LPL = lowest practical level; % = percent; EPT = Ephemeroptera, Plecoptera and Trichoptera.

The ADIT also calculates area-weighted summary metrics, which spatially integrate effects for each MU by estimating potential effects in each subunit of the MU and then calculating an average across the MU, weighted for the habitat area of each subunit. All MUs are described in the ADIT but the MU applicable to the CMm LAEMP is MU4, which includes EVO. Area-weighted summaries for MU4 are provided in Table C-4. These area-weighted summary metrics are used to assess regional protection goals established in the Elk Valley Water Quality Plan (EVWQP; Teck 2014), which include attainment of a spatially integrated potential effects of less than 20% for BIC on the most sensitive species and life-stage.

Within MU4, on average 6% of the assessed habitat area had an ADIT score of 3 for %E (i.e., the most sensitive species) and an ADIT score of 1 or 2 was observed for <1% of the assessed habitat area (Table C-4). An ADIT score of 0 for %E, indicating no effects and no apparent change in condition from the normal reference ranges, was observed for 94% of the assessed habitat area in the lotic portion of the watershed evaluated.

Table C-4: Area-weighted Summaries for Measurement Unit 4 from the Aquatic Data Integration Tool (ADIT)

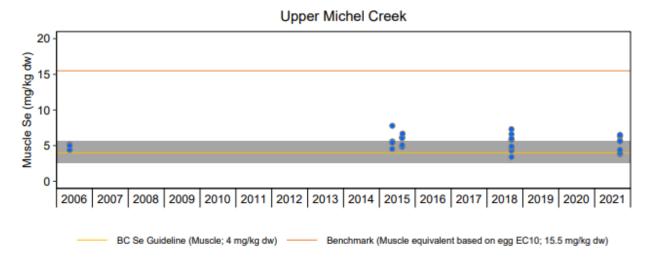
%Rating	Abundanaa (Tatal na)	Richness (LPL taxa)	EPT		Ephemeroptera		
76Ratilig	Abundance (Total no.)	Ricilless (LPL laxa)	Total no.	%	Total no.	%	
0	94%	98%	93%	96%	91%	94%	
1	0%	0%	0%	<1%	5%	0%	
2	0%	1%	5%	0%	0%	0%	
3	6%	1%	2%	4%	4%	6%	

Source: Minnow 2023.

Note: Biological response metrics compare the geometric mean of a given station's replicates to habitat-adjusted normal ranges (or regional normal ranges when not available), which are based on a linear mixed-effects model that uses reference data with individual samples.

no. = number; LPL = lowest practical level; % = percent; EPT = Ephemeroptera, Plecoptera and Trichoptera.

C2.3 Westslope Cutthroat Trout Tissue Selenium Concentrations


Westslope Cutthroat Trout muscle samples were collected using non-lethal methods under the RAEMP at MIDCO in 2018 and 2021 to evaluate tissue selenium concentrations and compare them to normal ranges, EVWQP benchmarks, and predictions (Minnow 2020a). In 2018, selenium concentrations in four out of the eight samples collected were at or above the upper limit of the normal range, and concentrations in all samples were less than the site-specific benchmark of 15.5 mg/kg dw (Nautilus Environmental and Interior Reforestation 2011; Figure C-2). In 2021, selenium concentrations in five out of the eight samples collected were at or above the upper limit of the normal range, and concentrations in all samples were less than the site-specific benchmark of 15.5 mg/kg dw. Westslope Cutthroat Trout muscle selenium concentrations have been similar over time in the upper Michel Creek area near CMm, with no significant differences detected among years (Minnow 2020a).

Non-lethal opportunistic fish tissue sampling was also carried out in 2019 in Corbin Creek at CM_CC1 (CORCK) and CM_CC2 (upstream of CORCK). Two Westslope Cutthroat Trout were captured and muscle plug samples were collected, during the September EFN electrofishing survey by Ecofish Research Ltd. (Ecofish). Tissue selenium concentrations were 4.2 mg/kg dw in both samples, and were below the lowest level 1 benchmark for fish (i.e., 11 mg/kg dw).

June 2023

Figure C-2: Westslope Cutthroat Trout Muscle Selenium Concentrations in Upper Michel Creek, 2006 to 2021

Source: 2020 to 2022 RAEMP report (Minnow 2023).

Notes: Gray shading represents the reference area normal range defined as the 2.5th and 97.5th percentiles of the distribution of reference area data (pooled 1996 to 2019 data) reported in the RAEMP. Fish were collected from lotic areas only.

C2.4 Chronic Toxicity Testing Program

The chronic toxicity testing program supports AMP Management Questions #2 and #5 (WSP 2023a). The program reviews data quality to confirm that results meet acceptability criteria and standardizes the data to help discern toxicological responses from other sources of variability in data. The program also interprets chronic toxicity test results by comparing site water to reference water, and evaluates correspondence between water chemistry and toxicological responses. It considers the size of response in each test and how that compares to responses in tests of reference waters (not influenced by mining) to categorize each result as a "no", "possible", or "likely" adverse response, and evaluates the correspondence between test responses and indicators of mine-related water quality. This evaluation includes statistical assessment of patterns and specialized laboratory tests (i.e., toxicity identification evaluations [TIEs]) designed to identify causes of toxicity.

Chronic toxicity tests were performed quarterly using a water flea (*Ceriodaphnia dubia*) and an alga (*Pseudokirchneriella subcapitata*), and semi-annually using an amphipod (*Hyalella azteca*), early-life stage Rainbow Trout (*Oncorhynchus mykiss*) and early-life stage Fathead Minnow (*Pimephales promelas*). Tests were conducted using reference and mine-influenced water that was collected from two stations on Michel Creek near CMm between 2015 and 2022: one station was located 1.80 km downstream of CMm (CM_MC2), and the second station was located 5.27 km downstream (MIDAG), which was originally sampled at CM_MC3 (2018). Test results for CM_MC2 from 2015 to 2022 are summarized in Figure C-3. Test results for CM_MC3 (2018) and MIDAG (2019 to 2022) are summarized in Figure C-4. Chronic toxicity results for CM_MC2 have shown consistent patterns of response over time for *C. dubia* reproduction and *H. azteca* survival and dry weight. A likely adverse response was observed for *C. dubia* in Q4 of 2022, and a possible response for *H. azteca* dry weight was observed in Q2 of 2022 (WSP 2023a). These two crustacean species are known to be sensitive to dissolved

nickel exposure, and multiple lines of evidence have implicated nickel as contributing to adverse responses at this sampling location.

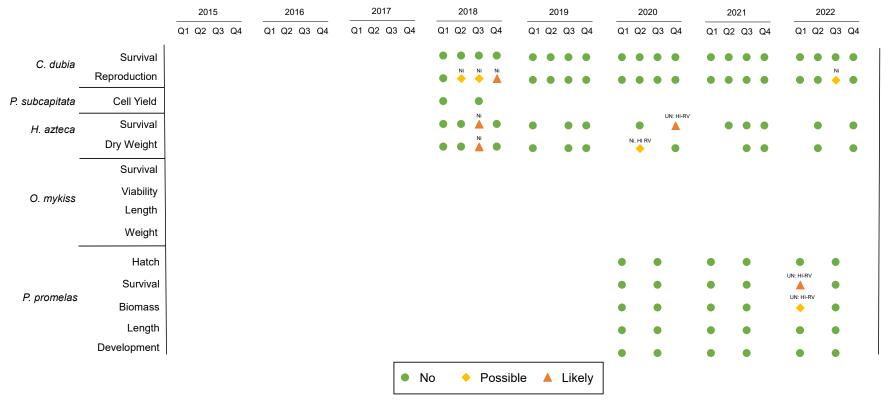
For other test species, CM_MC2 has shown few adverse responses, with no apparent consistent pattern of responses over time and no clear evidence of causal factors (WSP 2023a). Likely adverse responses were observed for *P. subcapitata* in Q4; however, no adverse response was observed in follow-up testing with water collected two weeks after the original test date. Possible adverse responses were observed at MIDAG in 2022 for *P. promelas* biomass (Q1) and *C. dubia* reproduction (Q3) and a likely adverse response was observed for *P. promelas* survival (Q1); there was high inter-replicate variability in the Q1 *P. promelas* test. Chronic toxicity results at MIDAG have shown few adverse responses since 2018, with no apparent consistent pattern of responses over time, a high inter-replicate variability, and no clear evidence of causal factors other than nickel. Observations at these stations align with the interpretation that the influence of nickel in Michel Creek is limited spatially, as the testing with sensitive crustaceans at RG_MIDAG (possible adverse response) showed improvement relative to CM MC2 (likely adverse response).

Integrated Aquatic Programs

June 2023

Figure C-3: Summary of Test Results by Category at CM_MC2, 2015 to 2022

Source: 2022 Chronic Toxicity Report (WSP 2023a).


Note: Possible and likely symbols are annotated with constituent(s) identified as potentially contributing to observed response. HI-RV = high inter-replicate variability; Ni = nickel; UN = unknown: no water quality constituent was identified; Recat = category was previously assigned as "no adverse response"; Microbes = test had evidence of microbes in one or more replicates. Toxicity Identification Evaluations were conducted to support the causation assessment for *C. dubia* tests in 2017 (Q3 and Q4), 2018 (Q1 to Q4), 2019 (Q1 to Q4), 2020 (Q1 to Q4), 2021 (Q1 to Q4), and 2022 (Q1 and Q3); *P. subcapitata* tests in 2019 (Q3), 2021 (Q1 and Q4), and 2022 (Q4); and *H. azteca* tests in 2018 (Q1 to Q4), 2019 (Q1, Q3, and Q4), 2020 (Q2 and Q4), and 2021 (Q2 and Q4).

Integrated Aquatic Programs

June 2023

Figure C-4: Summary of Test Results by Category at CM_MC3 and RG_MIDAG, 2018 to 2022

Source: 2022 Chronic Toxicity Report (WSP 2023a).

Note: 2018 test results are for CM_MC3. In 2019, CM_MC3 was replaced by RG_MIDAG Possible and likely symbols are annotated with constituent(s) identified as potentially contributing to observed response. Toxicity Identification Evaluations were conducted to support the causation assessment for *C. dubia* tests in 2022 (Q1). HI-RV = high inter-replicate variability; Ni = nickel; UN = unknown: no water quality constituent was identified.

C3.0 CHRONIC NICKEL BENCHMARK STUDIES

Teck undertook a series of investigations to refine their understanding of nickel toxicity in Elk Valley water and to derive chronic nickel benchmarks. The reader is referred to the Chronic Nickel Benchmarks for the Elk Valley – Nickel Benchmark Derivation Report (WSP Golder 2022) for detailed background information on nickel toxicity and the approach for benchmark development and for guidance on the nickel benchmark calculation method the reader is referred to the Guidance on calculation of chronic nickel benchmarks for the Elk Valley technical memorandum (WSP 2023b).

The proposed nickel benchmarks were derived following the overall approach to benchmark development (WSP Golder 2022; Teck 2014) to derive scientific best estimates of dissolved nickel concentrations associated with no effect or defined levels of potential chronic effects on sensitive species and stage of aquatic life under Elk Valley water quality conditions. Technical studies were undertaken to reduce uncertainties in species sensitivity, the influence of exposure and toxicity modifying factors, and the use of laboratory toxicity data to model potential effects on biota in the field. Benchmarks were developed separately for benthic invertebrates, fish, and amphibians to account for differences in sensitivity to nickel and to align with receptor-specific approaches to water quality assessment developed for the EVWQP (Teck 2014).

Benchmark equations are provided in Table C-5, with calculated values for compliance station CM_MC2 as a representative example of Elk Valley conditions. The proposed nickel benchmarks were used in the assessment of dissolved nickel concentrations at CMm in the 2022 CMm LAEMP. Additional context for interpreting benchmarks is provided in Table C-6 and was consulted when interpreting the proposed nickel benchmark exceedances in the CMm LAEMP.

Integrated Aquatic Programs

June 2023

Table C-5: Summary of Nickel Benchmarks with Example Values for Average CM-MC2 Water Quality

	Barrer of the Constitution of Tark Tark		Dissolved Nickel Concentration (μg/L)				
Receptor Group	Representative Species and Test Type Used to Derive Benchmark	Equation	Level 1 (~10% effect)	Level 2 (~30% effect)	Level 3 (~50% effect)		
	Water flea (C. dubia) three brood		5.8	8.3	16.2		
Benthic Invertebrates	reproduction from site-specific and literature studies Critical effects sizes for effects on %E are 22% (level 1), 37% (level 2), and 70% (level 3) effects on <i>C. dubia</i> reproduction	Equation 3: log(benchmark) = 0.547 x (logDOC) + 0.411 x (logHardness) - 0.520 x (logBicarbonate) + a	a = 0.856	a = 1.011	a = 1.304		
-	Fathead minnow (Pimephales promelas)		196	298	618		
Fish	32-day survival to early life stages (calculated from Birge et al. 1984 data)	Equation 4:	a = 2.052	a = 2.234	a = 2.551		
	African clawed frog (Xenopus laevis) 96-	log(benchmark) = 0.278 x (logDOC) + 0.498 x (logHardness) – 0.139 x (pH) + a	157	185	271		
Amphibians	hour embryo malformation (Hopfer et al. 1991)		a = 1.956	a = 2.027	a = 2.193		

Source: WSP Golder 2022

Benchmark values shown are for average Michel Creek conditions at CM_MC2 between January 2019 and March 2022 (hardness = 500 mg/L as CaCO₃; DOC = 1.2 mg/L; bicarbonate = 249 mg/L as HCO₃; pH = 8.1). Benchmarks for other water quality conditions can be calculated using the receptor-specific equations and intercepts. ETMFs are DOC (mg/L), hardness (mg/L as CaCO₃), and bicarbonate (mg/L as HCO₃) or pH. Equation 3 applies across the following ETMF ranges: hardness = 15 to 1,020 mg/L as CaCO₃; DOC = 0.4 to 40 mg/L; pH = 6.6 to 8.7; and bicarbonate = 8 to 366 mg/L as HCO₃. Equation 4 was based on the Croteau et al. (2021) pooled species chronic MLR model calibrated data with the following ETMF ranges: hardness = 14 to 848 mg/L as CaCO₃; DOC = 0.2 to 18 mg/L; and pH = 5.5 to 8.7.

μg/L = micrograms per litre; mg/L = milligrams per litre; ~ = approximately; % = percent; %E = percent Ephemeroptera; *C.dubia* = *Ceriodaphnia dubia*; ETMF = exposure and toxicity modifying factors; MLR = multiple linear regression.

Table C-6: Interpretation of Nickel Benchmarks for Benthic Invertebrates – Potential Effects on the Benthic Invertebrate Community

	Benthic Invertebrate Community Monitoring								
Level	Effect to Upper Bound of Mayflies	Interpretation							
Level 1	10%	No expected changes to abundances of Ephemeroptera, other taxa, or community endpoints. Nickel concentrations at or below the level 1 benchmark would not be expected to cause measurable changes at any site or ecologically meaningful effects to sensitive benthic invertebrates or the broader BIC.							
Level 2	20%	Potentially detectable change to the upper-bound %E, but no expected change in abundances of Ephemeroptera or other taxa at most sites and no change to other community metrics. Nickel concentrations at the level 2 benchmark indicate a potential for low-level effects on sensitive invertebrate species, but population changes are unlikely and community-level effects would not be expected.							
Level 3	50%	Measurable and ecologically meaningful change to the upper-bound %E, and potential to affect less sensitive taxa such as Plecoptera and Trichoptera. No indication of effects on total benthic invertebrate abundance or taxonomic richness. Nickel concentrations at the level 3 benchmark indicate potential for measurable and ecologically meaningful population-level changes in sensitive benthic invertebrates that could translate to community-level effects.							

Source: adapted from WSP Golder 2022.

%E = percent Ephemeroptera; BIC = benthic invertebrate community; %= percent.

C4.0 ENVIRONMENTAL FLOW NEEDS STUDY

Teck retained Ecofish to develop and evaluate alternative EFN thresholds for Corbin Creek. To support this work, Ecofish completed three background studies between 2019 and 2020:

- Fish Community Survey (Regehr et al. 2020a)
- Fisheries Habitat Assessment Procedure (Regehr et al. 2020b)
- Instream Flow Study (IFN; Healey and Hatfield 2020)

Existing information on fish species documented in Corbin Creek and the surrounding area was also reviewed.

Fish species documented in Corbin Creek were Brook Trout¹, Mountain Whitefish, and Westslope Cutthroat Trout (BC ENV 2019a). Downstream in Michel Creek, Bull Trout², Mountain Whitefish, Westslope Cutthroat Trout and Longnose Sucker (Golder 2015, BC ENV 2019b) were documented. Westslope Cutthroat Trout was the most common species observed in these two streams (Golder 2015, BC ENV 2019b). Tributaries such as Corbin Creek provide spawning, juvenile rearing, and high flow velocity refuge habitats that are limited in the frequently confined mainstem of Michel Creek (Golder 2015).

During the fish community survey, electrofishing captures were mostly Westslope Cutthroat Trout (81%, 96%, and 91% of captures for open-site electrofishing, closed-site electrofishing, and minnow trapping, respectively),

Numerous FIDQ records note the presence of Dolly Varden in Michel Creek; however, based on known provincial Dolly Varden distribution, Golder (2015) assumed that these records referred to incorrectly identified Bull Trout.

¹ Brook Trout is an introduced species, native to eastern North America.

although a few Longnose Sucker and Brook Trout were also captured (Regehr et al. 2020a). Analysis of density and biomass by age class, as determined from closed-site electrofishing results, indicated that fry (0+ years), parr (1+ years), parr (2+ years), and sub-adult (3+ years) age classes were present in Corbin Creek; adults (\geq 4+ years) were not captured. Mountain Whitefish, which were previously documented in Corbin Creek (BC ENV 2019b), were not detected during the fish community survey.

Fry, parr, and sub-adult age classes of Westslope Cutthroat Trout were captured in Corbin Creek; no adult fish were captured (Regehr et al. 2020a). Three redds were identified in June and July 2020 downstream of the Mine. The presence of fry during the growing season sampling program indicated that spawning had occurred in the vicinity of Corbin Creek despite spawners not being observed in 2020. Spawners and redds were not observed in Corbin Creek during spawning surveys in 2019.

Westslope Cutthroat Trout were present in Corbin Creek during the winter and accounted for 95% of the fish observed during the overwintering assessment (Regehr et al. 2020a). A comparison of numbers of fish observed and habitat characteristics by sub-site (defined as a section of stream that had similar habitat characteristics within an overwintering site) suggested that sub-sites with cover tended to have higher numbers of fish, and that fish presence was associated with the presence of cover (Regehr et al. 2020b).

Physical habitat parameters (i.e., wetted area, water depth, and water velocity) were identified as potentially limiting for fish, as well as water temperature (Regehr et al. 2020a,b). Because calcite concretion has been observed in Corbin Creek, overwintering cover in the substrate may be limiting; habitats with other cover sources (i.e., small woody debris, deep pool, undercut banks, overhanging vegetation, and organics) were identified as important for overwintering. Based on water temperature data, the growing season for Westslope Cutthroat Trout in Corbin Creek is estimated as April 16 to October 15 (Regehr et al. 2020a).

The IFN study (Healey and Hatfield 2020) provided an evaluation of prospective minimum flow thresholds for Corbin Creek, considering the quantity of water available for Teck Coal and the habitat available for fish. The proposed minimum flow thresholds were designed as the maximum instream flow rates that will provide 0.001 cubic metres per second (m³/s) for water use by Teck Coal.

C_{5.0} REFERENCES

- British Columbia Ministry of Environment and Climate Change Strategy (BC ENV). 2019a. Fish Inventories Data Queries Corbin Creek. Available online at: http://a100.gov.bc.ca/pub/fidq/infoSingleWaterbody.do. Accessed on December 11, 2019.
- BC ENV. 2019b. Fish Inventories Data Queries Michel Creek. Available online at: http://a100.gov.bc.ca/pub/fidq/infoSingleWaterbody.do. Accessed on December 11, 2019.
- Birge WJ, Black JA, Hobson JF, Westerman AG, Short TM. 1984. Toxicological studies on aquatic contaminants originating from coal production and utilization: the induction of tolerance to silver in laboratory populations of fish and the chronic toxicity of nickel to fish early-life stages. Research report July 1983-August 1984 (No. PB-85-214666/XAB; RR-151). Kentucky Water Resources Research Institution, Lexington, USA.
- Croteau K, Ryan AC, Snatore R, DeForest D, Schlekat C, Middleton E, Garman E. 2021. Comparison of multiple linear regression and biotic ligand models to predict the toxicity of nickel to aquatic freshwater organisms. Environmental Toxicology and Chemistry. 40:2189-2205.
- Golder (Golder Associates Ltd.). 2015. Coal Mountain Phase 2 Project. Annex I: Fish and Fish Habitat Baseline Report. Consultant's report prepared for Teck Coal Limited by Golder Associates (Golder), October 2015.
- Golder. 2020. User's Manual-Aquatic Data Integration Tool (ADIT) for the Elk Valley. Draft submitted to Mariah Arnold, Teck Coal Limited. 17 January 2020.
- Healey K, Hatfield T. 2020. Corbin Creek Environmental Flow Needs Evaluation of Minimum Flow Thresholds Assessment Consultant's report prepared by Ecofish Research Ltd. for Teck Coal Limited. November 30, 2020
- Hopfer SM, Plowman MC, Sweeney KR, Bantle JA, Sunderman FW Jr. 1991. Teratogenicity of Ni2 in Xenopus laevis, assayed by the FETAX Procedure. Biological Trace Element Research. 29:2013-216.
- Minnow (Minnow Environmental Inc.). 2018a. Elk River watershed Regional Aquatic Effects Monitoring Program (RAEMP) Report, 2015 to 2016. Prepared for Teck Coal Limited. January 2018.
- Minnow. 2018b. Study design for the Regional Aquatic Effects Monitoring Program (RAEMP), 2018 to 2020. Prepared for Teck Coal Limited and Environmental Monitoring Committee. March 2018.
- Minnow. 2020a. Regional Aquatic Effects Monitoring Program (RAEMP) Report, 2017 to 2019. Prepared for Teck Coal Limited. November 2020.
- Minnow. 2023 (In preparation). Elk River watershed Regional Aquatic Effects Monitoring Program (RAEMP) Report, 2020 to 2022. Prepared for Teck Coal Limited.
- Nautilus Environmental and Interior Reforestation 2011. Elk River Fish Distribution and Longnose Dace Tissue Assessment. Final report.
- Teck (Teck Coal Limited). 2014. Elk Valley Water Quality Plan. July 2014.
- Regehr H, Chambers K, Swain N, Jensma T, Tamminga A, Faulkner S. 2020a. Corbin Creek EFN Fish Community Report. Consultant's report prepared for Teck Coal Limited by Ecofish Research Ltd.

- Regehr H, Chambers K, Faulkner S. 2020b. Corbin Creek EFN Fish Habitat Assessment Procedure. Draft V1. Consultant's report prepared for Teck Coal Limited by Ecofish Research Ltd, May 1, 2020.
- WSP. 2023a. 2022 Chronic Toxicity Testing Program. Elk Valley Testing to Satisfy Permit Requirements. Submitted to Teck Coal Limited. April 2023.
- WSP. 2023b. Guidance on calculation of chronic nickel benchmarks for the Elk Valley. Technical Memorandum prepared for Teck Coal Limited. 11 May 2023.
- WSP Golder. 2022. Chronic Nickel Benchmarks for the Elk Valley Nickel Benchmark Derivation Report. Prepared for Teck Coal Limited. 31 August 2022.

APPENDIX D

Water Quality Screening Data

Table D-1: Water Quality Data Screening, CMm LAEMP 2022

Table D-1: Water Quality Da	ata Screenin	g, CMm LAEMP 20:	22															
		•	Guidelines for the of Aquatic Life	Elk Vali	ley Water Quality Pl	lan Benchmarks	and Effect C	oncentratio	ns	Michel Creek MI25	Reference Stations Andy Goode Creek AGCK	Leech Creek LE1	Michel Creek MIUCO	Corbin Creek CORCK	Mine-influer Michel Creek MIDCO	nced Stations Michel Creek MIDAG	Michel Creek MIULE	Michel Creek MI5
Parameter	Unit																	
		Long-term Chronic	Short-term Acute	Invertebrate Level 1	Invertebrate Level 2	Invertebrate Level 3	Fish Level 1	Fish Level 2	Fish Level 3	O_2022-09_N_ALS	MO_2022-09_N_ALS	_2022-09_N_ALS	MO_2022-09_N_ALS	RG_CORCK_WS_LAEMP_ CMO_2022-09_N_ALS 09-14-2022	MO_2022-09_N_ALS	MO_2022-09_N_ALS	RG_MIULE_WS_LAEMP_C MP_2022-09_N_ALS	O_2022-09_N_ALS
Field Measured										09-15-2022	09-15-2022	09-16-2022	09-14-2022	09-14-2022	09-13-2022	09-13-2022	09-12-2022	09-12-2022
рН	- 1	6.5 - 9.0	6.5 - 9.0	-	-	-	-	-	-	8.2	8.5	8.0	8.4	8.1	8.1	8.2	8.4	8.3
Specific conductivity	μS/cm	-	-	-	-	-	-	-	-	290	252	196	300	1,652	1,183	734	622	511
Temperature	°C	-	-	-	-	-	-	-	-	7.7	9.2	8.4	7.0	12	12	9.8	11	9.5
Dissolved oxygen	mg/L	8.0	5.0	-	-	-	-	-	-	9.7 81	10 89	10 87	11 88	9.8 90	9.6 92	9.8 86	9.7 88	10 88
Dissolved oxygen Conductivity	μS/cm	-	-	-	-	-	-	-	-	193	176	134	197	1,226	894	521	454	359
Conventional Parameters	рогот		ļ	ļ				<u> </u>		100	110	104	107	1,220	004	021	404	
pН	-	6.5 - 9.0	6.5 - 9.0	-	-	-	-	-	-	8.3	8.3	8.2	8.3	8.1	8.3	8.3	8.4	8.4
Specific conductivity	μS/cm	-	-	-	-	-	-	-	-	282	245	193	287	1,540	1,140	732	607	508
Hardness, as CaCO ₃	mg/L	- 20 ^(a)	-	-	-	-	-	-	-	160	142	111	161	986	669	386	329	265
Total alkalinity, as CaCO ₃	mg/L		-	-	-	-	-	-	-	155 188	127 158	111 113	151 165	300 1,340	260 908	189 512	175 434	167 345
Total dissolved solids Total suspended solids	mg/L mg/L	-	-	-	-	-	+ -	 -	-	188 <1.0	158 <1.0	113 <1.0	165 <1.0	1,340	908	512 <1.0	1.5	345 <1.0
Total organic carbon	mg/L		-	-	-	-	-	-	-	<0.5	<0.5	<0.5	<0.5	0.69	0.52	<0.5	0.89	0.56
Dissolved organic carbon	mg/L	-	-	-	-	-	-	-	-	<0.5	<0.5	<0.5	<0.5	0.62	<0.5	<0.5	0.56	0.64
Turbidity	NTU	-	-	-	-	ı	-	-	-	0.12	0.13	0.53	0.31	0.30	0.42	0.37	0.20	0.48
Total acidity	mg/L	-	-	-	-	-	-	-	-	<2.0	<2.0	<2.0	<2.0	2.9	<2.0	<2.0	<2.0	<2.0
Major lons Bicarbonate	mg/L	_	_	_	_	-	T -	1 -	Ι.	190	155	136	176	366	311	230	198	191
Bicarbonate, as CaCO ₃	mg/L	-	-	-	-	-	-	-	-	155	127	111	144	300	255	189	163	157
Bromide	mg/L	-	-	-	-	-	-	-	-	<0.05	<0.05	<0.05	<0.05	<0.25	<0.25	<0.05	<0.05	<0.05
Calcium	mg/L	=	-	-	-	-	-	-	-	43	41	29	43	210	139	91	80	66
Carbonate	mg/L	-	-	-	-	-	-	-	-	<1.0	<1.0	<1.0	4.1	<1.0	2.5	<1.0	7.2	6.0
Carbonate, as CaCO ₃	mg/L		-	-	-	-	-	-	-	<1.0	<1.0	<1.0	6.8	<1.0	4.2	<1.0	12	10
Chloride Fluoride	mg/L mg/L	150 0.12 ^(b)	600 1.4 - 2.3 ^(c)	-	-	-	-	-	-	0.66 0.070	0.45 0.30 ^(Mn)	0.19 0.062	0.25 0.080	2.2 0.19 ^(Mn)	1.7 0.15 ^(Mn)	1.0 0.19 ^(Mn)	1.1 0.16 ^(Mn)	0.89 0.13^(Mn)
Hydroxide	mg/L	-	1.4 - 2.5	-	-	-	-	-	-	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Hydroxide, as CaCO ₃	mg/L	-	-	-	-	-	-	-	-	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Magnesium	mg/L	-	-	-	-	-	-	-	-	13	9.4	9.3	13	112	78	39	32	25
Potassium	mg/L	-	-	-	-	-	-	-	-	0.53	0.23	0.57	0.47	3.7	2.6	1.3	1.00	0.86
Sodium	mg/L	- 400(C, d)	-	-	- 4.057	-	-	-	-	3.3	0.66	0.92	2.6	32 752 ^(Mn, FA)	22 470 ^(Mn)	11	8.0	5.9
Sulphate Nutrients	mg/L	309 - 429 ^(c, d)	-	892	1,057	1,413	617	764	1,099	15	19	4	15	752	470	230	168	120
Nitrate	mg-N/L	3.0	33	6.5 - 36 ^(c)	8.8 - 48 ^(c)	15 - 82 ^(c)	T -	T -	-	0.019	0.077	0.014	0.0088	3.1 ^(Mn)	1.7	0.73	0.43	0.28
Nitrite	mg-N/L	0.020 - 0.040 ^(e)	0.060 - 0.12 ^(e)	-	-	-	-	-	-	<0.001	<0.001	<0.001	<0.001	0.026	0.0068	0.0013	<0.001	0.0011
Total ammonia	mg-N/L	0.37 - 1.2 ^(t)	1.9 - 6.0 ^(g)	-	-	-	-	-	-	0.0060	<0.005	0.005	<0.005	0.026	<0.005	0.0058	<0.005	<0.005
Total Kjeldahl nitrogen	mg-N/L	-		-	-		-	-	-	<0.5	<0.5	<0.5	<0.05	0.30	0.10	<0.5	<0.5	0.61
Total phosphorus Total Metals	mg-P/L	-	-	-	-	-	-	-	-	0.0051	0.0021	0.0128	0.0033	0.0022	0.0035	0.0050	0.0036	0.0065
Aluminum	μg/L	84.5-113 ^(h, i, b)	-	_	_	-	T -	Τ -		7.5	6.5	7.4	13	6.6	7.3	6.6	5.7	6.9
Antimony	μg/L	9.0	-	-	-	-	-	-	-	<0.1	<0.1	<0.1	<0.1	0.52	0.31	0.17	0.13	0.12
Arsenic	μg/L	5 ^(b)	5.0	-	-	-	-			0.26	0.54	0.24	0.18	0.28	0.28	0.30	0.36	0.27
Barium	μg/L	1,000	-	-	-	-	-	-	-	57	23	150	75	40	76	80	115	127
Beryllium	μg/L	0.13	-	-	-	-	-	-	-	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Bismuth Boron	μg/L μg/L	0.5 ^(j)	29000 ^(b)	-	-	-	-	-	-	<0.05 19	<0.05 <10	<0.05 <10	<0.05 12	<0.05 95	<0.05 72	<0.05 33	<0.05 24	<0.05 18
Cadmium	μg/L μg/L	-	-	-	-	-	-	-	-	0.014	0.017	0.033	0.0058	0.074	0.029	0.023	0.028	0.026
Calcium	μg/L	-	-	-	-	-	-	-	-	41,800	39,800	28,800	41,700	206,000	135,000	87,900	90,800	73,200
Chromium	μg/L	1.0 ^(K)	-	-	-	-	-	-	-	0.20	0.32	<0.10	0.19	0.13	0.15	0.18	0.17	0.15
Cobalt	μg/L	4.0	110	-	-	-	-	-	-	<0.1	<0.1	<0.1	<0.1	5.3 ^(Mn)	0.81	0.10	<0.1	<0.1
Copper	μg/L	- 658 - 669 ^(h, i, i)	- 1.000	-	-	-	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Iron Lead	μg/L μg/L	6.9 - 20 ^(c)	1,000 93 - 417 ^(c)	-	-	-	-	-	-	<10 <0.05	<10 <0.05	<10 <0.05	15 <0.05	13 <0.05	<10 <0.05	<10 <0.05	<10 <0.05	<10 <0.05
Lithium	μg/L μg/L	121.6 ^(l)	-	-	-	-	-	-	-	6.1	2.4	1.9	4.0	47	32	16	11	8.5
Magnesium	μg/L	-	-	-	-	-	-	-	-	12,700	9,280	9,400	12,900	121,000	71,200	37,800	30,800	24,200
Manganese	μg/L	1,093 - 2,585 ^(c)	1,763 - 3,394 ^(c)	-	-	-	-	-	-	0.41	0.13	0.84	1.8	23	4.4	1.7	0.97	0.70
Mercury	μg/L	0.010	-	-	-	-	-	-	-	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Molybdenum Niekol	μg/L	7,600 103 - 150 ^(c)	46,000	-	-	-	-	-	-	0.94	0.77	0.67	0.71	1.5 63	1.2	0.90	0.88	0.87 1.3
Nickel Potassium	μg/L μg/L	103 - 150* /	-	-	-	-	-	-	-	<0.5 545	<0.5 247	<0.5 576	<0.5 450	3,840	2,280	5.1 1,180	1,040	1.3 898
Selenium	μg/L μg/L	<u> </u>	-	-	-	-	-	-	-	0.18	1.5	0.5	0.25	17	11	5.1	3.2	2.2
Silicon	μg/L	-	-	-	-	-	-	-	-	2,390	1,470	2,340	2,380	2,550	1,760	1,720	2,380	2,330
-	, , ,		•		•		•	•		<u> </u>	•	•	•	* *	•	•	•	

Table D-1: Water Quality Data Screening, CMm LAEMP 2022

		BC Water Quality	Cuidalinas for the								Reference Stations				Mine-influence	ced Stations		
		Protection of		Elk Valle	ey Water Quality P	lan Benchmarks a	nd Effect C	oncentratio	ns	Michel Creek	Andy Goode Creek	Leech Creek	Michel Creek	Corbin Creek	Michel Creek	Michel Creek	Michel Creek	Michel Creek
		1 1010011011 01	Aquatio Elic							MI25	AGCK	LE1	MIUCO	CORCK	MIDCO	MIDAG	MIULE	MI5
Parameter	Unit																	
		Long-term Chronic	Short-term Acute	Invertebrate	Invertebrate	Invertebrate	Fish	Fish	Fish	RG MI25 WS LAEMP CM	RG AGCK WS LAEMP C	RG LE1 WS LAEMP CMC	O RG MIUCO WS LAEMP O	RG CORCK WS LAEMP	RG MIDCO WS LAEMP C	RG MIDAG WS LAEMP C	RG_MIULE_WS_LAEMP_C	RG M15 WS LAEMP CM
				Level 1	Level 2	Level 3	Level 1	Level 2	Level 3	O_2022-09_N_ALS	MO_2022-09_N_ALS	_2022-09_N_ALS	MO_2022-09_N_ALS	CMO_2022-09_N_ALS	MO_2022-09_N_ALS	MO_2022-09_N_ALS	MP_2022-09_N_ALS	O_2022-09_N_ALS
										09-15-2022	09-15-2022	09-16-2022	09-14-2022	09-14-2022	09-13-2022	09-13-2022	09-12-2022	09-12-2022
Silver	μg/L	1.5 ^(c)	3.0 ^(c)	1	-	-	-	-	-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Sodium	μg/L	-	-	1	-	-	-	-	-	3,270	651	851	2,490	32,800	20,600	10,300	8,340	5,950
Strontium	μg/L	-	-	-	-	-	-	-	-	175	148	69	140	849	574	352	284	225
Sulphur	μg/L	-	-	-	-	-	-	-	-	5,610	6,590	1,930	5,510	241,000	162,000	81,300	62,900	43,100
Thallium	μg/L	0.80	-	-	-	-	-	-	-	<0.01	0.043	<0.010	<0.01	0.045	0.022	0.020	0.011	<0.01
Tin	μg/L	300(1)	-	-	-	-	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Titanium	μg/L	850 ⁽ⁱ⁾	-	-	-	-	-	-	-	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Uranium	μg/L	8.5	33 ^(b)	-	-	-	-	-	-	0.23	0.70	0.21	0.24	6.1	4.0	2.0	1.3	0.96
Vanadium	μg/L	120 ^(l)	-	-	-	-	-	-	-	<0.5	0.53	0.59	<0.5	<0.5	<2.5	<2.5	0.56	0.62
	μg/L	23 - 188	49 - 341	-	-	-	-	-	-	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0
Dissolved Metals																		
	μg/L	-	-	-	-	-	-	-	-	<1.0	1.2	1.3	1.6	1.1	1.2	1.2	<1.0	<1.0
	μg/L	-	-	-	-	-	-	-	-	<0.1	<0.1	<0.1	<0.1	0.53	0.29	0.17	0.11	0.12
Arsenic	μg/L	-	-	-	-	-	-	-	-	0.20	0.49	0.18	0.12	0.20	0.20	0.24	0.20	0.18
Barium	μg/L	-	-	-	-	-	-	-	-	57	23	159	78	40	87	88	114	128
Beryllium	μg/L	-	-	-	-	-	-	-	-	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Bismuth	μg/L	-	-	-	-	-	-	-	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Boron	μg/L	-	-	-	-	-	-	-	-	18	<10	<10	11	88	60	29	21	15
Cadmium	μg/L	0.23 - 0.46 ^(c)	0.65 - 2.8 ^(c)	0.15 - 0.32 ^(c)	0.29 - 0.63 ^(c)	2.6 - 5.7 ^(c)	-	-	-	0.0088	0.0093	0.0263	<0.005	0.058	0.028	0.020	0.028	0.029
Chromium	μg/L	-	-	-	-	-	-	-	-	0.18	0.26	<0.10	0.18	<0.1	0.13	0.17	0.15	0.11
Cobalt	μg/L	-	-	-	-	-	-	-	-	<0.1	<0.1	<0.1	<0.1	4.7	0.86	0.10	<0.1	<0.1
Copper	μg/L	0.3 - 0.6 ^(m)	1.7 - 3.4 ^(m)	-	-	-	-	-	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Iron	μg/L	-	350	-	-	-	-	-	-	<10	<10	<10	<10	<10	<10	<10	<10	<10
Lead	μg/L	-	-	-	-	-	-	-	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Lithium	μg/L	-	-	-	-	-	-	-	-	5.3	1.8	1.4	4.7	54	31	15	11	8.5
Manganese	μg/L	-	-	-	-	-	-	-	-	0.12	<0.1	0.7	1.3	20	5.0	1.9	0.89	0.51
Mercury	μg/L	-	-	-	-	-	-	-	-	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
	μg/L	-	-		-		-	-	-	1.0	0.78	0.68	0.77	1.7	1.3	0.95	0.83	0.78
Nickel	μg/L	-	-	2.6 - 4.4 ^(c, n, i)	3.7 - 6.3 ^(c, n, i)	7.3 - 12 ^(c, n, i)	-	-	-	<0.5	<0.5	<0.5	<0.5	59 ^(IA, IB, IC)	22 ^(IA, IB, IC)	5.0 ^(IA, IB)	2.0	1.2
	μg/L	-	-	-	-	-	-	-	-	0.25	2.0	0.6	0.29	19	11	5.0	3.5	2.4
	μg/L	-	-	-	-	-	-	-	-	2,540	1,530	2,380	2,550	2,640	2,380	2,110	2,220	2,240
Silver	μg/L	- 75	-	-	-	-	-	-	-	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Strontium	μg/L	2500 ^(l)	-	-	-	-	-	-	-	185	150	71	155	921	597	364	285	227
Sulphur	μg/L	-	-	-	-	-	-	-	-	4,710	6,110	<500	5,170	214,000	188,000	84,300	60,800	45,100
Thallium	μg/L	-	-	-	-	-	-	-	-	<0.01	0.045	<0.010	<0.01	0.048	0.021	0.021	0.011	<0.01
Tin	μg/L	-	-	-	-	-	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Titanium	μg/L	-	-	-	-	-	-	-	-	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Uranium	μg/L	-	-	-	-	-	-	-	-	0.23	0.74	0.19	0.28	6.7	4.0	2.0	1.3	0.93
Vanadium	μg/L	-	-	-	-	-	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Zinc	μg/L	-	-	-	-	-	-	-	-	<1.0	1.0	<1.0	<1.0	2.4	<1.0	<1.0	<1.0	<1.0
Molybdenum	μg/L	-	-	-	-	-	-	-	-	1.0	0.78	0.68	0.77	1.7	1.3	0.95	0.83	0.78

Table D-1: Water Quality Data Screening, CMm LAEMP 2022

		BC Water Quality	Guidelines for the								Reference Stations				Mine-influen	ced Stations		
			f Aquatic Life	Elk Valle	ey Water Quality P	lan Benchmarks a	nd Effect C	Concentrati	ons	Michel Creek	Andy Goode Creek	Leech Creek	Michel Creek	Corbin Creek	Michel Creek	Michel Creek	Michel Creek	Michel Creek
		Protection	Aquatic Life							MI25	MI25 AGCK	LE1	MIUCO	CORCK	MIDCO	MIDAG	MIULE	MI5
Parameter	Unit	Long-term Chronic	Short-term Acute	Invertebrate Level 1	Invertebrate Level 2	Invertebrate Level 3	Fish Level 1	Fish Level 2	Fish Level 3	RG_MI25_WS_LAEMP_CM O_2022-09_N_ALS 09-15-2022	RG_AGCK_WS_LAEMP_C MO_2022-09_N_ALS 09-15-2022	RG_LE1_WS_LAEMP_CMC _2022-09_N_ALS 09-16-2022	O RG_MIUCO_WS_LAEMP_(MO_2022-09_N_ALS 09-14-2022	C RG_CORCK_WS_LAEMP_ CMO_2022-09_N_ALS 09-14-2022	RG_MIDCO_WS_LAEMP_C MO_2022-09_N_ALS 09-13-2022	RG_MIDAG_WS_LAEMP_(MO_2022-09_N_ALS 09-13-2022	RG_MIULE_WS_LAEMP_C MP_2022-09_N_ALS 09-12-2022	RG_M15_WS_LAEMP O_2022-09_N_ALS 09-12-2022
or lons																		
ion Sum	meq/L	-	-	-	-	-	-	-	-	3.4	3.0	2.3	3.3	22	15	8.7	7.1	5.9
ion Sum	meq/L	-	-	-	-	-	-	-	-	3.4	2.9	2.3	3.3	21	14	8.2	7.0	5.6
Balance	%	-	-	-	-	-	-	-	-	0.88	1.5	0.9	0.15	1.6	2.7	2.5	0.79	2.7
tion - Anion Balance	%	-	-	-	-	-	-	-	-	98	97	98	100	97	95	95	98	95
nventional Parameters																		
RP.	mV	-	-	-	-	-	-	-	-	336	306	341	268	274	320	315	297	292
trients	•	•			•	•	•	•	•			•	•	•	•	•	•	-
issolved Orthophosphate	ma-P/L	_	_		_	_	_	_	_	<0.001	<0.001	0.010	<0.001	<0.001	<0.001	<0.001	<0.001	0.0019

Note: Data were screened against BC Working and Approved WQGs (BC ENV 2021a, b) where available, EVWQP benchmarks, and effects concentrations. In the absence of BC WQGs, guidelines were adopted from CCME 1999), Environmental Quality Guidelines (ECCC) Predicted No Effect Concentration (PNECs; ECCC 2018), or ECCC draft Federal Environmental Quality Guideline (FEQG; ECCC 2017).

Value (Mn) = concentration is higher than the 30-day mean BC ENV guideline or outside the recommended pH, DO or total alkalinity range.

Value (IA) = concentration is higher than the invertebrate level 1 guideline.

Value (IB) = concentration is higher than the invertebrate level 1 guideline.

Value (IC) = concentration is higher than the invertebrate level 1 guideline.

Value (FA) = concentration is higher than the fish level 1 guideline.

Bolded concentrations are higher than water quality guidelines.

Water quality data and guidelines shown in this table were rounded to reflect laboratory or field instrument precision after comparisons to guidelines may be displayed as being equal to the guidelines and identified as exceedances. Concentrations equal to the guideline values were not identified as exceedances.

- = no guideline or no data; °C = degree Celsius; µs/cm = microsiemens per centimetre; µg/L = micrograms per litre; BC WQGs = British Columbia water quality guidelines; CaCO₃ = calcium carbonate; my/L = millivolt; NTU = nephelometric turbidity unit; PNEC = Predicted No-effect Concentration; FEQG = Federal Environmental Quality Guideline.

⁽a) = guideline is a minimum value, unless the background concentration or value is lower.

⁽b) = guideline is adopted from Canadian Council of Ministers of the Environment (CCME) Canadian Environmental Quality Guidelines (CCME 1999).

⁽c) = guideline is hardness dependent. The guideline range shown is based on the hardness range observed in the dataset (111 to 986 mg/L). The guideline is calculated based on the individual hardness value for each sample.

⁽d) = for some samples, water hardness was greater than 250 mg/L. At this hardness, no BC ENV water quality guideline has been established for sulphate; however, the observed data were screened against the guideline for very hard water (i.e., 429 mg/L.) for comparative purposes.

⁽e) = guideline is chloride dependent. The guideline range shown is based on the chloride concentration range observed in the dataset (0.1900 to 2.1600 mg/L). The guideline is calculated based on the individual chloride concentration in each sample.

⁽f) = the ammonia guideline is pH and temperature dependent. The guideline that results in the minimum ammonia guideline (0.37 mg-N/L) is based on the combination of field pH (8.5) and water temperature (9.2°C). Guidelines calculated with temperature on the findividual field pH and temperature extremes. The guideline is calculated based on the individual field pH and temperature measurements for each sample.

⁽g) = the ammonia guideline is pH and temperature (9.2°C). Guidelines calculated with temperature on the combination of field pH (8.5) and water temperature (9.2°C). Guidelines calculated with temperature on the combination of field pH (8.5) and water temperature on the combination of field pH (8.5) and water temperature extremes. The guideline is calculated based on the individual field pH and temperature extremes. The guideline is calculated based on the individual field pH and temperature extremes.

⁽n) = guideline is pH dependent. The guideline range shown is based on the pH range observed in the dataset (8.0 to 8.5). The guideline is calculated based on the individual pH for each sample.

⁽i) = guideline is DOC dependent. The guideline range shown is based on the DOC observed in the dataset (0.5 mg/L). The guideline is calculated based on the individual DOC value for each sample.

⁽i) = quideline is adopted from Environment and Climate Change Canada's (ECCC) PNEC (ECCC 2018).

⁽k) = guideline is for chromium VI.

⁽i) = guideline is adopted from Environment and Climate Change Canada's (ECCC) FEQG (ECCC 2017).
(m) = guideline was calculated using the Biotic Ligand Model for dissolved copper.

Table of Contents

D1.0	RATIONALE FOR BENCHMARKS, EFFECT CONCENTRATIONS AND PROPOSED	
	BENCHMARKS	. 1
D2.0	REFERENCES	.5
TAB	LES	
Table	e D-1: Chronic Benchmarks and Updated Effect Concentrations for the Elk Valley	.3

Abbreviations and Units of Measure

Abbreviation	Definition
%	percent
mg/L	milligrams per litre
mg-N/L	milligrams nitrogen per litre
mg/kg dw	milligrams per kilogram dry weight
μg/L	micrograms per litre
BC	British Columbia
CaCO ₃	calcium carbonate
DOC	dissolved organic carbon
EC	effect concentration
EC ₁₀	concentration causing a 10% effect
EC ₁₆	concentration causing a 16% effect
EC ₂₀	concentration causing a 20% effect
EC ₅₀	concentration causing a 50% effect
ETMF	exposure and toxicity modifying factor
EVWQP	Elk Valley Water Quality Plan
HCO ₃	bicarbonate
i.e.,	that is
LOEC	lowest observed effect concentration
MLR	multiple linear regression
MQ	Management Question
SPO	Site Performance Objective

D1.0 RATIONALE FOR BENCHMARKS, EFFECT CONCENTRATIONS AND PROPOSED BENCHMARKS

Table D-1 summarizes the rationale for site-specific benchmarks and updated effect concentrations used to evaluate water quality data collected in 2022. Values were obtained from the three sources summarized below, reflecting the most recent scientific and site-relevant data that have been evaluated for each receptor group and constituent.

- The cadmium benchmark was obtained from the Elk Valley Water Quality Plan (EVWQP; Teck 2014). Preparation of the EVWQP required derivation of a science-based benchmark for cadmium. Risks associated with some constituents (e.g., nitrate, sulphate, cadmium) depend on their concentrations, concentrations of other water chemistry parameters known as exposure and toxicity modifying factors (ETMFs), and the sensitivity of aquatic receptors that could be exposed. The EVWQP benchmark was derived, using a large body of published and site-specific information available at that time, to represent scientific best estimates of concentrations associated with no effects and defined levels of potential effect on chronic, sublethal endpoints for sensitive aquatic species. Margins of safety were incorporated in benchmark derivation to account for uncertainty and Teck committed to undertaking further study and periodic updates to progressively reduce that uncertainty and improve confidence in the EVWQP benchmarks.
- Updated effects concentrations for nitrate and sulphate were obtained from work undertaken to answer Management Question (MQ) 2 under Teck's Adaptive Management Plan. A key outcome of the MQ2 program was the development of an updated compilation of chronic toxicity information for nitrate, sulphate, and selenium, including information available at the time of the EVWQP and studies conducted after the EVWQP.¹ For nitrate and sulphate, the updated compilation represented a substantial increase in available toxicity information for key test species. This updated compilation was used to validate the EVWQP benchmarks and, where warranted, to derive updated effects concentrations that incorporate this new information (WSP Golder 2022a). As in the EVWQP, the objective was to derive scientific best estimates of concentrations associated with no effects or defined levels of potential chronic, sublethal effect to sensitive species and life stages relevant to the Elk Valley. The analysis in WSP Golder (2022a) concluded that the updated effects concentrations for nitrate and sulphate are supported by a larger dataset covering a wider range of conditions than was available at the time of the EVWQP, and therefore provide an improved basis for evaluating potential effects of these constituents.

¹ Studies were not undertaken under the MQ2 program to update benchmarks for cadmium because work had already been conducted by the BC Ministry of Environment and Climate Change Strategy that supported the protectiveness of cadmium benchmarks and site performance objectives (SPOs). The British Columbia water quality guideline for cadmium, which was developed after the EVWQP, adopted a slightly higher concentration as protective of all species and stages of aquatic life across the province. Furthermore, Teck's water quality monitoring data have indicated that cadmium concentrations are consistently below both guidelines and SPOs, and cadmium has not been implicated in aquatic effects through chronic toxicity or biological monitoring programs in the Elk Valley.

Proposed nickel benchmarks were obtained from the Nickel Benchmark Derivation Report (WSP Golder 2022b). Technical studies were undertaken to reduce uncertainties in species sensitivity, the influence ETMFs, and the use of laboratory toxicity data to model potential effects on biota in the field. Benchmarks were developed separately for invertebrates, fish, and amphibians to account for differences in sensitivity to nickel and to align with receptor-specific approaches to water quality assessment developed for the EVWQP (Teck 2014). The proposed nickel benchmarks incorporate current scientific approaches to modelling nickel effects, published and site-specific laboratory toxicity information on more than 50 aquatic species, and biological monitoring information collected over more than a decade at dozens of sites in the Elk Valley.

Table D-1: Chronic Benchmarks and Updated Effect Concentrations for the Elk Valley

Receptor				Benchmark	Rationale
and Parameter	Unit	Level 1	Level 2	Level 3	
Invertebrat	tes				
Dissolved			=1	O(0.83*Log(hardness)-b)	The level 1 benchmark represents chronic, sublethal toxicity data for the most sensitive organism reviewed for the Elk Valley Water Quality Plan (EVWQP): the geometric mean of 7-day
Cadmium	μg/L	b = 2.53	-	-	reproduction effect concentration (EC) ₁₀ and 21-day reproduction EC ₁₆ for <i>Daphnia magna</i> (Teck 2014). The equation applies to hardness of 285 mg/L as CaCO ₃ .
			$=10^{\left(\frac{\log\left(\frac{1}{x}-\frac{1}{x}\right)}{-2.6}\right)}$	$ -\frac{1}{4} -\frac{1}{4} - (1.45 - 1.18 \times \log(Hardness)) $	Updated effect concentrations for nitrate represent chronic, sublethal toxicity data for the most sensitive invertebrate species reviewed for Management Question (MQ) 2 Task 1. Values were derived under MQ2 Task 1 (WSP Golder 2022a) from a pooled analysis of 11 site-specific
Nitrate	mg- N/L	x = 0.1	x = 0.2	x = 0.5	Ceriodaphnia dubia tests conducted at 11 hardness values. Level 1, 2, and 3 updated effect concentrations are associated with 10%, 20%, and 50% effect size to <i>C. dubia</i> reproduction, as generated from a pooled hardness-response model. The equation applies to hardness of 708 mg/L CaCO ₃ .
Sulphate	mg/L	892	1,057	1,413	Updated effect concentrations for sulphate represent chronic, sublethal toxicity data for the most sensitive invertebrate species reviewed for MQ2 Task 1. Values were derived under MQ2 Task 1 (WSP Golder 2022a) from a pooled analysis of one site-specific test and one site-relevant test with the mayfly <i>Neocloeon triangulifer</i> . Level 1, 2, and 3 updated effect concentrations are associated with 10%, 20%, and 50% effect size to <i>N. triangulifer</i> biomass.
		$=10^{0.547 \times \log}$	g(DOC) + 0.411 × l	og(Hardness) – 0.520 × log(Bicarbonate,as HCO3) + a	Nickel benchmarks for invertebrates were set equal to an estimated 10% (level 1), 20% (level 2),
Nickel	μg/L	a = 0.856	a = 1.011	a = 1.304	or 50% (level 3) change in the upper bound of percent mayflies in the field, corresponding to laboratory effects of nickel to C. <i>dubia</i> reproduction of 22% (level 1), 37% (level 2), and 70% (level 3) (WSP Golder 2022b). Benchmarks can be calculated using the equation and intercept <i>a</i> . Exposure and toxicity modifying factors (ETMF)s are DOC (mg/L), hardness (mg/L as CaCO ₃), and bicarbonate (mg/L as HCO ₃). The following ETMF ranges apply to this equation: DOC 0.4 to 40 mg/L; hardness 15 to 1,020 mg/L as CaCO ₃ ; bicarbonate 8.0 to 366 mg/L HCO ₃ ; and pH 6.6 to 8.7.
Fish					
			=1	O ^{(0.83*Log(hardness)-b)}	Cadmium benchmarks were derived in the EVWQP (Teck 2014) as hardness-dependent values
Dissolved Cadmium	μg/L	b = 2.02	-	-	expressed as an equation. The level 1 benchmark was derived using the lowest effect concentration for fish reported in Annex G of the EVWQP (Teck 2014), which was a LOEC for Rainbow Trout (<i>Oncorhynchus mykiss</i>) growth from a 62-day test with early life stages (embryo-alevin-fry).
Nitrata	mg-		$= 10^{\left(\frac{\log\left(\frac{1}{x}-1\right)}{-1.92}\right)}$		Updated effect concentrations for nitrate represent chronic, sublethal toxicity data for the most sensitive fish species reviewed for MQ2 Task 1. Values were derived under MQ2 Task 1 (WSP Golder 2022a) from a pooled analysis of four site-specific <i>O. mykiss</i> tests conducted at four
Nitrate	N/L	x = 0.1	x = 0.2	x = 0.5	hardness values. Level 1, 2, and 3 updated effect concentrations are associated with 10%, 20%, and 50% effect size to embryo-alevin development of <i>O. mykiss</i> development, as generated from a pooled hardness-response model. The equation applies to hardness of 448 mg/L CaCO ₃ .
Sulphate	mg/L	617	764	1,099	Updated effect concentrations for sulphate represent chronic toxicity data for the most sensitive fish species reviewed for MQ2 Task 1. Values were derived under MQ2 Task 1 (WSP Golder 2022a) from a pooled analysis of four site-specific tests with <i>O. mykiss</i> . Level 1, 2, and 3 updated

Table D-1: Chronic Benchmarks and Updated Effect Concentrations for the Elk Valley

Receptor		Benchmark			Rationale				
and Parameter	Unit	Level 1	Level 2	Level 3					
					effect concentrations are associated with 10%, 20%, and 50% effect size to embryo-alevin survival of <i>O. mykiss</i> .				
		1	0 ^{(0.278 × log(DOC)}	+ [0.498 × log(Hardness)] – [0.139 × pH] + a)	Values from the Nickel Benchmark Derivation Report (WSP Golder 2022b) are based on fatheau				
Nickel	μg/L	a = 2.052	052		minnow (<i>Pimephales promelas</i>) 32-day survival to early life stages (calculated from Birge et al. 1984 data). Benchmarks can be calculated for each water type using the equation and intercept a. The equation was based on the Croteau et al. (2021) pooled species chronic multiple linear regression (MLR) model calibrated to data with the following ETMF ranges: hardness 14 to 848 mg/L as CaCO ₃ ; DOC 0.2 to 18 mg/L; and pH 5.5 to 8.7.				
Amphibian	ıs								
Dissolved			=1	O ^{(0.83×Log(hardness)-b)}	The level 1 screening value was derived using the lowest effect concentration for amphibians				
Cadmium	μg/L	b = -0.914	-	-	reported in Annex G of the EVWQP (Teck 2014), which was a 24-day growth LOEC for Northwestern salamander (<i>Ambystoma gracile</i>).				
			= x × e	(1.0003 × (In(Hardness) - In(172)))	Updated effect concentrations for nitrate represent chronic toxicity data for the most sensitive				
Nitrate	mg- N/L	x = 17	x = 37	x = 148	amphibian species reviewed for MQ2 Task 1. Values were derived under MQ2 Task 1 (WSP Golder 2022a) from a site-specific test in simulated Fording River water (hardness of 172 mg/L CaCO ₃). Level 1, 2, and 3 updated effect concentrations are associated with 10%, 20%, and 50% effect size to length of Northern Leopard Frog (<i>Lithobates pipiens</i>) after 49 days of exposure. The pooled hardness slope from the EVWQP (1.0003) can be used to adjust to site-specific hardness conditions up to 500 mg/L as CaCO ₃ .				
Sulphate	mg/L	836	1,425 (>1,246)	3,548 (>1,246)	Updated effect concentrations for sulphate represent chronic toxicity data for the most sensitive amphibian species reviewed for MQ2 Task 1. Values were derived under MQ2 Task 1 (WSP Golder 2022a) from a site-specific test in simulated Fording River water. Level 1, 2, and 3 updated effect concentrations are associated with 10%, 20%, and 50% effect size to length of Northern Leopard Frog (<i>L. pipiens</i>) after 98 days of exposure. Updated level 2 and level 3 effect concentrations are shown as the estimated 20% and 50% effect concentrations, respectively from curve fitting with the maximum concentration tested in parentheses.				
		=1	0(0.278 × log(DOC)] + [0.498 × log(Hardness)] – [0.139 × pH] + <i>a</i>)	Values are from the Nickel Benchmark Derivation Report (WSP Golder 2022b) and are based on				
Nickel	μg/L	a = 1.956	a = 2.027	a = 2.193	African clawed frog (<i>Xenopus laevis</i>) 96-hour embryo malformation (Hopfer et al. 1991). Values can be calculated using the equation and intercept a. The equation was based on the Croteau et al. (2021) pooled species chronic MLR model calibrated to data with the following ETMF ranges: hardness 14 to 848 mg/L as CaCO ₃ ; DOC 0.2 to 18 mg/L; and pH 5.5 to 8.7.				

^{- =} not derived; μ g/L = micrograms per litre; μ g/L = milligrams per litre; μ g/L = mill

D2.0 REFERENCES

- Birge WJ, Black JA, Hobson JF, Westerman AG, Short TM. 1984. Toxicological studies on aquatic contaminants originating from coal production and utilization: the induction of tolerance to silver in laboratory populations of fish and the chronic toxicity of nickel to fish early-life stages. Research report July 1983-August 1984 (No. PB-85-214666/XAB; RR-151). Kentucky Water Resources Research Institution, Lexington, USA.
- Croteau K, Ryan AC, Snatore R, DeForest D, Schlekat C, Middleton E, Garman E. 2021. Comparison of multiple linear regression and biotic ligand models to predict the toxicity of nickel to aquatic freshwater organisms. Environmental Toxicology and Chemistry. 40:2189-2205.
- Hopfer SM, Plowman MC, Sweeney KR, Bantle JA, Sunderman FW Jr. 1991. Teratogenicity of Ni2+ in Xenopus laevis, assayed by the FETAX Procedure. Biological Trace Element Research. 29:2013-216.
- Teck (Teck Coal Limited). 2014. Elk Valley Water Quality Plan. Submitted to the British Columbia Ministry of Environment, July 22, 2014. Approved on November 18, 2014. Sparwood, BC. 290 pp.
- WSP Golder. 2022a. Task 1: Elk Valley Water Quality Plan Benchmark Validation Nitrate, Sulphate, and Selenium. Prepared for Teck Coal Limited. December 2022.
- WSP Golder. 2022b. Chronic Nickel Benchmarks for the Elk Valley Nickel Benchmark Derivation Report. Prepared for Teck Coal Limited. 31 August 2022.

APPENDIX E

Quality Assurance and Quality Control

Table of Contents

1.0	QUA	LITY ASSURANCE	1
2.0	QUA	LITY CONTROL	1
	2.1	Water Quality	1
	2.2	Sediment Quality	6
	2.3	Benthic Invertebrate Tissue Selenium	10
	2.4	Benthic Invertebrate Community	10
3.0	REFE	RENCES	11
TAE	BLES		
Tab	le E-1: C	Data Quality Objectives for the Water Quality, Sediment Quality, and Tissue Chemistry omponents of the CMm LAEMP, 2022	2
Tab	le E-2:	Field Duplicate Water Quality Results, CMm LAEMP, 2022	4
Tab	le E-3:	Field Duplicate Sediment Quality Results, CMm LAEMP, 2022	8

Abbreviations and Units of Measure

Abbreviation	Definition
%	percent
<	less than
≤	equal to or less than
≥	equal to or greater than
±	plus or minus
μS/cm	microsiemens per centimetre
NA	not applicable
NTU	nephelometric turbidity unit
mm	millimetre
mg/L	milligrams per litre
mg-N/L	milligrams nitrogen per litre
mg-P/L	milligrams phosphorus per litre
mg/kg	milligram per kilogram
meg/L	milliequivalents per litre
mV	millivolts
μg/kg dw	microgram per kilogram dry weight -delete
μg/L	micrograms per litre
ALS	ALS Environmental
Ag	silver
Ва	barium
BC	British Columbia
BC MOE	British Columbia Ministry of Environment
BC WQGs	British Columbia Water Quality Guidelines
BIC	Benthic Invertebrate Community
BIT	Benthic Invertebrate Tissue
В	boron
CABIN	Canadian Aquatic Biomonitoring Network
CCME	Canadian Council of Ministers of the Environment
CMm	Coal Mountain mine
Са	calcium
CaCO3	calcium carbonate
CO3	carbonate
CRM	Certified Reference Material
DQO	data Quality Objective
EVWQP	Elk Valley Water Quality Plan
HCO3	bicarbonate

Abbreviation	Definition
i.e.,	That is
LAEMP	Local Aquatic Effects Monitoring Program
LRL	Laboratory reporting limit
LOR	limit of reporting
Minnow	Minnow Environmental Inc.
Ni	nickel
ОН	hydroxide
PAH	polycyclic aromatic hydrocarbon
QA	Quality Assurance
QC	Quality Control
RAEMP	Regional Aquatic Effects Monitoring Program
RPD	relative percent difference
Sb	antimony
Se	selenium
SOP	standard operating procedure
Sn	tin
Sr	strontium
Teck	Teck Coal Limited
TIR	total identification error rate
Ti	titanium
Trich	TrichAnalytics Inc.
WSQG	Working Sediment Quality Guidelines

E QUALITY ASSURANCE AND QUALITY CONTROL 1.0 QUALITY ASSURANCE

Quality assurance and quality control (QA/QC) practices were implemented to assure the quality and integrity of the data produced by both the Coal Mountain mine (CMm) local aquatic effects monitoring program (LAEMP) and the regional aquatic effects monitoring program (RAEMP; Minnow 2020). Detailed QA procedures are presented in the RAEMP study design (Minnow 2020). Study personnel were appropriately trained and experienced for their respective technical responsibilities, whether in the field, laboratory, or office. To minimize errors and to maintain comparability of data over time, standard operating procedures (SOPs) were developed and followed for sample collection, calibration and maintenance of field instruments, sample handling, and sample submission to laboratories. The routine procedures followed are presented in detail in each SOP (Minnow 2020).

2.0 QUALITY CONTROL

Quality control samples were collected for the water quality, sediment quality and tissue chemistry components of the CMm LAEMP. Quality control procedures and results are discussed for each component in Sections E2.1 to E2.4. The data quality objectives (DQOs) for the water quality, sediment quality, and tissue chemistry data are presented in Table E-1

2.1 Water Quality

Laboratory Reporting Limits

The analytical reports from ALS Environmental (ALS) (Appendix F) were examined to provide an inventory of analytes for which the sample results were less than the laboratory reporting limit (LRL). The LRLs for water quality analytes were assessed relative to working (BC MOE 2021a) and approved (BC MOE 2021b) British Columbia Water Quality Guidelines (BC WQG) for the protection of freshwater aquatic life, Elk Valley Water Quality Plan (EVWQP) level 1 benchmarks for water quality (Teck 2014), and relevant site-specific benchmarks.

Constituents with reported concentrations less than the LRL in two or more samples in 2022 were total suspended solids, total and dissolved organic carbon, total acidity, bromide, carbonate, hydroxide, nitrite, total ammonia, total Kjeldahl nitrogen, dissolved aluminum, dissolved and total antimony, dissolved and total beryllium, dissolved and total bismuth, dissolved and total boron, dissolved chromium, dissolved and total cobalt, dissolved and total copper, dissolved and total iron, dissolved and total lead, dissolved and total mercury, dissolved and total nickel, dissolved and total silver, dissolved and total thallium, dissolved and total tin, dissolved and total titanium, dissolved and total vanadium, dissolved and total zinc. Total chromium, dissolved cadmium, dissolved manganese, and dissolved sulphur concentrations were detectable in all but one sample in 2022. The LRLs achieved for water samples were lower than the BC WQG and the lowest level 1 EVWQP benchmark for all analytes. In summary, the achieved LRLs were appropriate for this study.

Appendix E Reference No. 22574542-001-R-Rev0-1000

Quality Assurance and Quality Control

Table E-1: Data Quality Objectives for the Water Quality, Sediment Quality, and Tissue Chemistry Components of the CMm LAEMP, 2022

		Component						
Quality Control Measure	Sample Type	Water Quality	Sediment Quality	Tissue Chemistry				
		ALS	ALS	Trich				
Analytical laboratory LRLs	Comparison of actual LRL to target LRL	LRL for each parameter should be at least as low as the applicable guidelines, benchmarks, and screening values		LRL for each parameter should be at least as low as the applicable guidelines and benchmarks				
Blank analysis	Laboratory and field blanks	Concentrations measured in blank samples should be <	:LRL	-				
Laboratory precision	Laboratory duplicates	RPDs ≤ 20%, when at least one result is greater than five time	es the LRL	RPDs ≤ 40% for all elements except Ca and Sr for which the DQO is RPD ≤ 60%, when at least one result is greater than five times the LRL				
	Recovery of laboratory control samples	The result should lie within ± 1 times the LOR for the target co	ncentration	-				
	Recovery of method blank	Concentrations measured in method blank samples should l	be <lor< td=""><td>-</td></lor<>	-				
Accuracy	Recovery of matrix spike	Calculated recovery results of matrix spikes should lie within the DQO f	for the given sample	-				
	Recovery of certified reference material	Calculated recovery results of CRMs should lie within the specified limit	its for the given test	DQO of 60% to 140% of the certified values for B, Ti, Ag, Sn, Sb, and Ba; 90% to 110% of the certified values for Se, and 70% to 130% of the certified values for all other elements including Ni				

ALS = ALS Laboratories; Trich = TrichAnalytics Inc.; LRL = laboratory reporting limit; <= less than; LOR = limit of reporting; ≤ = less than or equal to; DQO = data quality objective; CRM = certified reference materials; Ca = calcium; Sr = strontium; B = boron; Ti = titanium; Ag = silver; Sn = tin; Sb = antimony; Ba = barium; Se = selenium; Ni = nickel.

Laboratory and Field Blanks

A total of 72 laboratory method blank samples were analyzed by ALS (see Appendix F for applicable laboratory reports). Of the reported method blank results, no analyte concentrations were greater than the LRL.

One trip blank and one field blank sample were used to assess the potential for contamination during field sampling (Appendix F). The same DQOs that were used for the laboratory assessment were used for the trip, and field blanks (Table E-1).

In the trip blank, the concentration of total sulfur was the only analyte greater than the LRL. For the field blank, three analytes were greater than the LRL in one sample:

- total barium
- total sodium
- total tin

Of the reported concentrations that were detected, none of the analytes in the field blanks had concentrations greater than five-times the LRL. Detectable concentrations in the blank samples were not reported for selenium, sulphate, or cadmium, which have long-term water quality targets as part of the EVWQP (Teck 2014). Overall, these results are expected to have a negligible impact on data quality for this study.

Data Precision

A total of 65 laboratory duplicate samples were used to evaluate analytical precision in 2022 (Appendix F). For all paired samples, comparisons were within the DQO set by the analytical laboratory (Table E-1), indicating that laboratory analytical precision was excellent.

One field duplicate sample was collected at MIDCO to assess field sampling precision. Field precision and reproducibility were considered good for all parameters, where the relative percent difference (RPD) between the concentration in the parent and duplicate samples were below 20% (Table E-2). All parameters had an RPD less than 20%, except for ion balance (cation-anion difference; RPD of 41%). The higher RPD is not considered impactful, as it does not extend to anion sum, cation sum, and ion balance as a ratio. Overall, field sampling precision was considered acceptable for the purposes of this study.

Data Quality Statement

Water chemistry data collected for the CMm LAEMP in 2022 were of acceptable quality as characterized by good detectability, concentrations below LRLs in all laboratory blank samples, good laboratory precision and accuracy, and good field sampling precision. Therefore, the associated data are considered acceptable for this study.

Table E-2: Field Duplicate Water Quality Results, CMm LAEMP, 2022

Location				Mine-Influenced Sites			
Watercourse				Michel Creek			
Station		LOR		MIDCO			
Date		LOR	13-Sep-22				
Sample Identification Parameter	Unit		RG_MIDCO_WS_LAEMP_CMO_2022- 09_N	RG_RIVER_WS_LAEMP_CMO_2022-09_N	Mean	RPD (%)	
Conventional Parameters	Unit		651				
pH	_	0.1	8.30	8.30	8.30	0%	
Conductivity	μS/cm	2	1140	1130	1135	1%	
Acidity (as CaCO ₃)	mg/L	2	<2.0	<2.0	<2.0	NA	
Alkalinity, bicarbonate (as CaCO ₃)	mg/L	1	255	261	258	2%	
Alkalinity, bicarbonate (as HCO ₃)	mg/L	1	311	318	315	2%	
Alkalinity, carbonate (as CO ₃)	mg/L	1	2.5	2.6	2.6	NA	
Alkalinity, carbonate (as CaCO ₃)	mg/L	1	4.2	4.4	4.3	NA	
Alkalinity, hydroxide (as CaCO ₃)	mg/L	1	<1.0	<1.0	<1.0	NA	
Alkalinity, hydroxide (as OH)	mg/L	1	<1.0	<1.0	<1.0	NA 00/	
Total alkalinity (as CaCO ₃)	mg/L	0.5	260 669	265 649	263 650	2% 3%	
Dissolved hardness (as CaCO ₃) Total dissolved solids	mg/L mg/L	20	908	892	659 900	2%	
Total suspended solids	mg/L	1	1.6	1.70	1.65	NA	
Turbidity	NTU	0.1	0.42	0.29	0.36	NA	
Dissolved organic carbon	mg/L	0.5	<0.50	<0.50	<0.50	NA	
Total organic carbon	mg/L	0.5	0.52	<0.50	0.52	NA	
Major lons							
Bromide	mg/L	0.05	<0.250	<0.250	<0.250	NA	
Chloride	mg/L	0.1	1.74	1.78	1.76	2%	
Fluoride	mg/L	0.02	0.15	0.15	0.146	1%	
Sulfate (as SO ₄)	mg/L	0.3	470	469	470	0%	
Anion sum	meq/L	0.1	15.2	15.2	15.2	0%	
Cation sum	meq/L	0.1	14.4	14.0	14.2	3%	
Oxidation-reduction potential Nutrients	mV	0.1	320	320	320	0%	
Nitrate	mg-N/L	0.005	1.73	1.73	1.73	0%	
Nitrite	mg-N/L	0.001	0.01	0.01	0.01	6%	
Total ammonia	mg-N/L	0.005	<0.0050	0.01	0.01	NA	
Total Kjeldahl nitrogen	mg-N/L	0.5	0.10	<0.500	0.1	NA	
Orthophosphate	mg-P/L	0.001	<0.0010	<0.0010	<0.0010	NA	
Total phosphorus	mg-P/L	0.002	0.0035	0.0029	0.0032	NA	
Total Metals							
Aluminum	mg/L	0.003	0.0073	0.0064	0.0069	NA	
Antimony	mg/L	0.0001	0.00031	0.00044	0.00038	NA	
Arsenic	mg/L	0.0001	0.00028	0.00027	0.00028	NA 10/	
Barium	mg/L	0.0001	0.076	0.078	0.077	1% NA	
Beryllium Bismuth	μg/L mg/L	0.02	<0.020 <0.00050	<0.020 <0.000050	<0.020 <0.000050	NA NA	
Boron	mg/L	0.00003	0.07	0.07	0.071	4%	
Cadmium	μg/L	0.005	0.029	0.035	0.032	19%	
Calcium	mg/L	0.05	135	131	133	3%	
Chromium	mg/L	0.0001	0.00015	0.00014	0.00015	NA	
Cobalt	μg/L	0.1	0.81	0.83	0.82	2%	
Copper	mg/L	0.0005	<0.00050	<0.00050	<0.00050	NA	
Iron	mg/L	0.01	<0.010	<0.010	<0.010	NA	
Lead	mg/L	0.00005	<0.000050	<0.000050	<0.000050	NA	
Lithium	mg/L	0.001	0.032	0.033	0.032	0%	
Magnesium	mg/L	0.005	71.2	73.6	72.4	3%	
Manganese Mercury	mg/L mg/L	0.0001	0.0044 <0.000050	0.0043 <0.000050	0.0044 <0.0000050	1% NA	
Molybdenum	mg/L	0.00005	0.0012	0.0013	0.0000	1%	
Nickel	mg/L	0.0005	0.0213	0.0213	0.0012	0%	
Potassium	mg/L	0.05	2.28	2.36	2.3	3%	
Selenium	μg/L	0.05	10.7	10.5	10.6	2%	
Silicon	mg/L	0.1	1.76	1.87	1.80	6%	
Silver	mg/L	0.00001	<0.000010	<0.000010	<0.000010	NA	
Sodium	mg/L	0.05	20.6	21.0	20.8	2%	
Strontium	mg/L	0.0002	0.574	0.580	0.577	1%	
Sulfur	mg/L	0.5	162	167	165	3%	
Thallium	mg/L	0.00001	0.000022	0.000025	0.000024	NA	
Tin	mg/L	0.0001	<0.00010	<0.00010	<0.00010	NA NA	
Titanium	mg/L	0.0003	<0.00030	<0.00030	<0.00030	NA 40/	
Uranium	mg/L	0.00001	0.004	0.004	0.004	1%	
Vanadium Zinc	mg/L	0.0025 0.003	<0.00250 <0.0030	<0.00250 <0.0030	<0.00250 <0.0030	NA NA	
Dissolved Metals	mg/L	0.003	\ 0.0030	\0.0030	~U.UU3U	INA	
Aluminum mg/L 0.001 0.0012 <0.0010 0.0012 NA							
Antimony	mg/L	0.0001	0.00029	0.00029	0.00029	NA NA	
Arsenic	mg/L	0.0001	0.00020	0.00019	0.00020	NA	
<u>L</u>		ı		1	-		

Table E-2: Field Duplicate Water Quality Results, CMm LAEMP, 2022

Location				Mine-Influenced Sites			
Watercourse		LOR	Michel Creek				
Station			MIDCO 13-Sep-22				
Date							
Sample Identification			RG_MIDCO_WS_LAEMP_CMO_2022-	RG_RIVER_WS_LAEMP_CMO_2022-09_N	Mean	RPD (%)	
Parameter	Unit		09_N	10_1111_113_EALINIT_01110_2022-03_11	Weall	KFD (70)	
Barium	mg/L	0.0001	0.09	0.08	0.08	6%	
Beryllium	μg/L	0.02	<0.020	<0.020	<0.020	NA	
Bismuth	mg/L	0.00005	<0.000050	<0.000050	<0.000050	NA	
Boron	mg/L	0.01	0.060	0.059	0.0595	2%	
Cadmium	μg/L	0.005	0.0282	0.0244	0.0263	NA	
Calcium	mg/L	0.05	139	136	138	2%	
Chromium	mg/L	0.0001	0.00013	0.00010	0.00012	NA	
Cobalt	μg/L	0.1	0.86	0.85	0.86	1%	
Copper	mg/L	0.0002	<0.00020	<0.00020	<0.00020	NA	
Iron	mg/L	0.01	<0.010	<0.010	<0.010	NA	
Lead	mg/L	0.00005	<0.000050	<0.000050	<0.000050	NA	
Lithium	mg/L	0.001	0.0309	0.0312	0.0311	1%	
Magnesium	mg/L	0.005	78.1	75.1	76.6	4%	
Manganese	mg/L	0.0001	0.00499	0.00502	0.00501	1%	
Mercury	mg/L	0.000005	<0.000050	<0.000050	<0.000050	NA	
Molybdenum	mg/L	0.00005	0.00132	0.00132	0.00132	0%	
Nickel	mg/L	0.0005	0.0222	0.0220	0.0221	1%	
Potassium	mg/L	0.05	2.630	2.580	2.605	2%	
Selenium	μg/L	0.05	11.4	11.1	11.3	3%	
Silicon	mg/L	0.05	2.38	2.36	2.37	1%	
Silver	mg/L	0.00001	<0.000010	<0.000010	<0.000010	NA	
Sodium	mg/L	0.05	22.2	21.9	22.1	1%	
Strontium	mg/L	0.0002	0.60	0.58	0.591	2%	
Sulfur	mg/L	0.5	188	172	180	9%	
Thallium	mg/L	0.00001	0.000021	0.000020	0.000021	NA	
Tin	mg/L	0.0001	<0.00010	<0.00010	<0.00010	NA	
Titanium	mg/L	0.0003	<0.00030	<0.00030	<0.00030	NA	
Uranium	mg/L	0.00001	0.0040	0.0042	0.00409	3%	
Vanadium	mg/L	0.0005	<0.00050	<0.00050	<0.00050	NA	
Zinc	mg/L	0.001	<0.0010	<0.0010	<0.0010	NA	

Notes: Bolding identifies RPDs greater than 20%.

^{- =} no guideline or no data; μS/cm = microsiemens per centimetre; μg/L = micrograms per litre; CaCO₃ = calcium carbonate; CO₃ = carbonate; HCO₃ = bicarbonate; OH = hydroxide; meq/L = milliequivalents per litre; mg/L = milligrams per litre; mV = millivolts; NTU = nephelometric turbidity unit; < = less than; NA = not applicable; RPD = relative percent difference; CMm = Coal Mountain Mine; LAEMP = local aquatic effects monitoring program.

2.2 Sediment Quality Laboratory Reporting Limits

The analytical reports from ALS for sediment samples collected in 2022 were examined to provide an inventory of analytes for which sample results were less than the LRL (Appendix F). The LRLs for these analytes were assessed relative to existing British Columbia Working Sediment Quality Guidelines (BC WSQG) and the alert concentration for selenium (BC MOE 2021a).

Nine of the 35 metals and all the polycyclic aromatic hydrocarbons (PAHs) measured in sediment samples from 2022 had at least one reported value below the LRL. Tungsten, acenaphthylene, dibenz(a,h)anthracene, indeno(1,2,3-c,d)pyrene, and quinoline were consistently less than the LRL in 2022 (i.e., no detectable concentrations). Additionally, tin, acenaphthene, anthracene, benz(a)anthracene, benzo(a)pyrene, and benzo(k)fluoranthene were generally less than the LRL in 2022 (i.e., concentrations were less than the LRL in 90% or more of the samples). All samples had detectable concentrations of selenium and nickel in 2022.

The LRLs for metal concentrations measured in sediment samples in 2022 were consistently less than applicable BC WSQG and the alert concentration for selenium. The LRLs for acenaphthene, acenaphthylene, anthracene, benz(a)anthracene, benzo(a)pyrene, dibenz(a,h)anthracene, fluorene, 2-methylnaphthalene, and phenanthrene exceeded the lower BC WSQG for one or more samples collected in 2022 (BC MOE 2021a). The LRLs for these analytes were below the BC WSQG in more than 50% of the samples. None of the analytes had LRLs greater than the upper BC WSQG in 2022 (BC MOE 2021a). Overall, the LRLs for most analytes were considered appropriate for this study.

Laboratory Blanks

A total of 24 laboratory method blank samples were analyzed by ALS (Appendix F). All reported method blank results were within the laboratory DQO (Table E-1). Thus, the method blank results for this study indicated no inadvertent contamination of sediment samples within the laboratory during analysis.

Data Precision

A total of 29 laboratory duplicate samples were used to evaluate laboratory precision (Appendix F). The RPDs between all laboratory duplicate measurements were within the laboratory DQO (Table E-1), indicating that laboratory analytical precision was excellent.

Two duplicate samples were collected at MUICO on both 14 September 2022 and 22 October 2022 to assess the precision of field sampling (Table E-3). The samples were collected as split samples (i.e., a larger sample was homogenized and split into two duplicate subsamples). For the samples collected on 14 September 2022, twenty-five parameters had RPDs ≥ 100%, 2 parameters had an RPDs ≥ 50%, and 6 parameters had RPDs ≥ 20%. During transport of the samples for laboratory report CG2213078, including RG_MIUCO_SE-1_2022-09-14_N, RG_RIVER_SE-1_2022-09-14_N, RG_MIUCO_SE-4_2022-09-14_N, and RG_RIVER_SE-4_2022-09-14_N, multiple sample jars were broken, and PAH and moisture analysis could not be completed. The high RPDs observed for these samples could potentially be attributed to shipment issues. Anomalous concentrations were only observed in the RG_RIVER split samples, and furthermore the original RG_MIUCO samples collected on 14 September 2022 were within the range of the concentrations from RG_MIUCO samples collected on 22 October 2022. Therefore, despite the anomalous split sample results, the RG_MIUCO data collected on 14 September 2022 were considered acceptable for this study. For the samples collected on 22 October 2022, all

samples had RPDs ≤ 20%, except for total carbon (25%) and total organic carbon (27%). Overall, field precision and reproducibility were considered adequate for the sediment samples because sediment samples are inherently heterogeneous, and some sample variability is expected.

Data Quality Statement

Sediment chemistry data collected for the CMm LAEMP in 2022 were of acceptable quality as characterized by good detectability, no analyte concentrations in method blanks, good laboratory precision and accuracy, and adequate field sampling precision. Overall, the associated data were considered acceptable for this study.

Table E-3: Field Duplicate Sediment Quality Results, CMm LAEMP, 2022

Location			Mi	ne-Influenced Sites			Mir	e-Influenced Sites			Mir	ne-Influenced Sites			Mine-Influenced Sites			
Watercourse				Michel Creek				Michel Creek				Michel Creek			Michel Creek			
Station				MUICO				MUICO				MUICO				MUICO		
Date		LRL		14-Sep-22				14-Sep-22				22-Oct-22				22-Oct-22		
Sample Identification			RG_MIUCO_SE-	RG_RIVER_SE-	Mean	RPD	RG_MIUCO_SE-	RG_RIVER_SE-	Mean	RPD	RG_MIUCO_SE-	RG_RIVER_SE-	Mean	RPD	RG_MIUCO_SE-	RG_RIVER_SE-	Mean	RPD
Parameter	Unit		1_2022-09-14_N	1_2022-09-14_N	Weali	(%)	4_2022-09-14_N	4_2022-09-14_N	Wicaii	(%)	1_2022-10-22_N	1_2022-10-22_N		(%)	2_2022-10-22_N	2_2022-10-22_N	Wicaii	(%)
Moisture	%	0.25	-	62.2	62.2	NA	-	72.2	72.2	NA	33.9	33.1	33.5	2%	41.6	42.1	41.9	1%
pH (1:2 soil:water)	рН	0.1	8.23	8.09	8.16	2%	8.02	7.32	7.67	9%	8.33	8.25	8.29	1%	8.23	8.1	8.17	2%
% Gravel (>2mm)	%	1.0	5	5.4	5	8%	2	13	8	<u>147%</u>	3	2.3	3	NA	2.2	1.8	2	NA
% Sand (0.125mm - 0.063mm)	%	1.0	19.3	14.6	17.0	28%	19.1	5.8	12.5	<u>107%</u>	16.2	15.8	16.0	2%	10.6	10	10.3	6%
% Sand (0.25mm - 0.125mm)	%	1.0	8.7	16.1	12.4	<u>60%</u>	18.5	4.5	11.5	NA	20.7	22.3	21.5	7%	14.8	15.3	15.1	3%
% Sand (0.5mm - 0.25mm)	%	1.0	3.7	11.4	7.6	<u>102%</u>	12.8	3.7	8.3	NA	14.1	15	14.6	6%	15.6	17.4	16.5	11%
% Sand (1.0mm - 0.50mm)	%	1.0	1.2	7.6	4.4	<u>145%</u>	6.1	9.6	7.9	45%	10.9	11.7	11.3	7%	16.4	19.1	17.8	15%
% Sand (2.0mm - 1.0mm)	%	1.0	1.4	2.5	2.0	NA	2.1	17.4	9.8	<u>157%</u>	7.7	7.6	7.7	1%	8.4	8.9	8.7	6%
% Silt (0.063mm - 0.0312mm)	%	1.0	25.5	16.1	20.8	45%	17.7	19.3	18.5	9%	10.3	9.3	9.8	10%	11	9.6	10.3	14%
% Silt (0.0312mm - 0.004mm)	%	1.0	28.8	21.0	25	31%	17.1	21.1	19	21%	11.2	10.4	11	7%	14.6	12.6	14	15%
% Clay (<4um)	%	1.0	6.4	5.3	5.9	19%	4.6	5.6	5.1	20%	5.9	5.6	5.8	5%	6.4	5.3	5.9	19%
Inorganic carbon	%	0.05	0.77	6.7	3.7	<u>159%</u>	0.36	1.81	1.1	<u>134%</u>	0.405	0.416	0.4	3%	0.357	0.385	0.4	8%
Total carbon	%	0.05	3.49	13.7	8.6	<u>119%</u>	2	8.47	5.2	<u>124%</u>	2.65	2.47	2.6	7%	6.74	5.25	6.0	25%
Total organic carbon	%	0.05	2.72	7.00	5	<u>88%</u>	1.64	6.66	4	<u>121%</u>	2.24	2.05	2	9%	6.38	4.86	6	27%
Inorganic carbon (as CaCO ₃ equivalent)	%	0.4	6.42	55.9	31.2	<u>159%</u>	3	15.1	9.1	<u>134%</u>	3.38	3.47	3.4	3%	2.98	3.21	3.1	7%
Metals																		
Aluminum	mg/kg	50	9400	2210	5805	<u>124%</u>	10300	5700	8000	<u>58%</u>	12600	12200	12400	3%	11700	11400	11550	
Antimony	mg/kg	0.1	0.39	0.33	0.36	NA	0.4	0.59	0.50	38%	0.33	0.36	0.35	NA	0.35	0.37	0.36	NA
Arsenic	mg/kg	0.1	7.23	3.06	5.15	<u>81%</u>	7.72	6.15	6.94	23%	8.01	7.73	7.87	4%	6.41	6.58	6.50	3%
Barium	mg/kg	0.5	558	163	361	<u>110%</u>	209	179	194	15%	156	145	151	7%	148	153	151	3%
Beryllium	mg/kg	0.1	0.66	0.4	0.5	NA	0.75	0.38	0.6	NA	0.87	0.84	0.9	4%	0.84	0.84	8.0	0%
Bismuth	mg/kg	0.2	<0.20	<0.20	<0.20	NA	0.22	<0.20	0.22	NA	0.22	0.21	0.22	NA	0.21	0.21	0.21	NA
Boron	mg/kg	5	8.3	6.6	7.5	NA	6.1	6.8	6.5	NA	10.1	9.4	9.8	NA	8.7	10	9.4	NA
Cadmium	mg/kg	0.02	0.761	10	5	<u>172%</u>	0.673	1.5	1	<u>76%</u>	0.583	0.6	1	3%	0.695	0.69	1	1%
Calcium	mg/kg	50	25300	336000	180650		13200	45200	29200	<u>110%</u>	14800	14200	14500	4%	13900	12600	13250	10%
Chromium	mg/kg	0.5	12.8	3.55	8.2	<u>113%</u>	14.1	10.4	12.3	30%	14.7	14.7	14.7	0%	14.1	13.9	14.0	1%
Cobalt	mg/kg	0.1	7.15	301	154	<u>191%</u>	8.83	6.01	7	38%	7.09	7.43	7	5%	6.97	7.19	7	3%
Copper	mg/kg	0.5	17.9	8	13.0	<u>76%</u>	18.3	11.7	15.0	44%	16.8	17.5	17.2	4%	18	17	17.5	6%
Iron	mg/kg	50	21000	4780	12890	<u>126%</u>	23200	11900	17550	<u>64%</u>	20200	20600	20400	2%	17600	17800	17700	1%
Lead	mg/kg	0.5	12.4	3.14	7.8	<u>119%</u>	14.6	6.71	10.7	<u>74%</u>	12.3	12.5	12.4	2%	12.5	12.3	12.4	2%
Lithium	mg/kg	2	19.4	3.0	11.2	NA	20.5	7.8	14.2	NA	24.6	24.1	24.4	2%	23.5	22.2	22.9	6%
Magnesium	mg/kg	20	6470	7110	6790	9%	6020	3930	4975	42%	6120	6050	6085	1%	5490	5100	5295	7%
Manganese	mg/kg		302	2250	1276	<u>153%</u>	576	147	362	<u>119%</u>	431	450	441	4%	298	298	298	0%
Mercury		0.005	0.0284	0.0261	0.0273		0.0223	0.0319	0.0271		0.0193	0.0191	0.0192		0.0275	0.0275	0.0275	
Molybdenum	mg/kg		2.07	0.71	1.39	<u>98%</u>	2.32	1.35	1.84	<u>53%</u>	1.94	2	1.97	3%	1.72	1.51	1.62	13%
Nickel	mg/kg		21.3	277	149	<u>171%</u>	24.3	29.5	27	19%	19.7	20.1	20	2%	20.4	19.7	20	3%
Phosphorus	mg/kg		1320	313	817	<u>123%</u>	1370	1050	1210	26%	1260	1260	1260	0%	1140	1220	1180	7%
Potassium	mg/kg		1630	660	1145	<u>85%</u>	1620	1090	1355	39%	2260	2170	2215	4%	2030	2060	2045	1%
Selenium	mg/kg	0.2	0.72	2.9	1.8	<u>120%</u>	0.57	2.03	1.3	<u>112%</u>	0.48	0.54	0.5	NA	0.55	0.63	0.6	NA
Silver	mg/kg		0.12	<0.10	0.12	NA	<0.10	0.14	0.14	NA	<0.10	<0.10	<0.10	NA	<0.10	<0.10	<0.10	NA
Sodium	mg/kg	50	244	379	312	43%	81	127	104	NA	86	82	84	NA	74	74	74	NA
Strontium	mg/kg		98.5	406	252	<u>122%</u>	39.8	74.9	57	<u>61%</u>	37.9	37.4	38	1%	44.8	42.2	44	6%
Sulfur	mg/kg	1000	1000	4900	2950	NA	<1000	<1000	<1000	NA	<1000	<1000	<1000	NA	<1000	<1000	<1000	NA
Thallium	mg/kg	0.05	0.301	0.316	0.309	5%	0.322	0.195	0.259	NA	0.304	0.306	0.305	1%	0.283	0.29	0.287	2%
Tin	mg/kg	2	<2.0	<2.0	<2.0	NA	2.5	<2.0	2.50	NA	<2.0	<2.0	<2.0	NA	<2.0	<2.0	<2.0	NA

Appendix E

Reference No. 22574542-001-R-Rev0-1000

Table E-3: Field Duplicate Sediment Quality Results, CMm LAEMP, 2022

Location		Mir	ne-Influenced Sites			Miı	ne-Influenced Sites			Mir	ne-Influenced Sites			Mir	ne-Influenced Sites		
Watercourse			Michel Creek				Michel Creek				Michel Creek				Michel Creek		
Station			MUICO				MUICO				MUICO				MUICO		
Date	LRL		14-Sep-22				14-Sep-22				22-Oct-22				22-Oct-22		
Sample Identification		RG MIUCO SE-	RG_RIVER_SE-	Mass	RPD	RG_MIUCO_SE-	RG_RIVER_SE-	Maga	RPD	RG MIUCO SE-	RG_RIVER_SE-	Mass	RPD	RG_MIUCO_SE-	RG_RIVER_SE-	Mass	RPD
Parameter	Unit	1_2022-09-14_N	1_2022-09-14_N	Mean	(%)	4_2022-09-14_N	4_2022-09-14_N	Mean	(%)	1_2022-10-22_N	1_2022-10-22_N	Mean	(%)	2_2022-10-22_N	2_2022-10-22_N	Mean	(%)
Titanium	mg/kg 1	29.1	8.1	18.6	<u>113%</u>	28.5	18.3	23.4	44%	7.6	9.2	8.4	19%	7.8	7.8	7.8	0%
Tungsten	mg/kg 0.5	<0.50	<0.50	<0.50	NA	<0.50	<0.50	<0.50	NA	<0.50	<0.50	<0.50	NA	<0.50	<0.50	<0.50	NA
Uranium	mg/kg 0.05	0.628	2.34	1.48	<u>115%</u>	0.604	0.862	0.73	35%	0.579	0.526	0.55	10%	0.534	0.625	0.58	16%
Vanadium	mg/kg 0.2	20.8	7.38	14.1	<u>95%</u>	21.9	26.7	24.3	20%	24.7	23.6	24.2	5%	22.4	23.1	22.8	3%
Zinc	mg/kg 2	88.4	777	433	<u>159%</u>	93.6	99.1	96	6%	88.4	89.4	89	1%	92.3	88.8	91	4%
Zirconium	mg/kg 1	1.7	<1.0	1.7	NA	1.3	<1.0	1.3	NA	1	<1.0	1.0	NA	1.2	1.3	1.3	NA
Polycyclic Aromatic Hydrocarbons	3																
Acenaphthene	mg/kg 0.05	-	<0.050	-	NA	-	<0.050	-	NA	<0.050	<0.050	<0.050	_	<0.050	<0.050	<0.050	
Acenaphthylene	mg/kg 0.05	-	<0.050	-	NA	-	<0.050	-	NA	<0.050	<0.050	<0.050	NA	<0.050	<0.050	<0.050	NA
Acridine	mg/kg 0.05	-	0.095	-	NA	-	<0.050	-	NA	<0.050	<0.050	<0.050	NA	<0.050	<0.050	<0.050	
Anthracene	mg/kg 0.05	-	<0.050	-	NA	-	<0.050	-	NA	<0.050	<0.050	<0.050	NA	<0.050	<0.050	<0.050	NA
Benz(a)anthracene	mg/kg 0.05	-	0.053	-	NA	-	<0.050	-	NA	<0.050	<0.050	<0.050	NA	<0.050	<0.050	<0.050	
Benzo(a)pyrene	mg/kg 0.05	-	0.056	-	NA	-	<0.050	-	NA	<0.050	<0.050	<0.050	NA	<0.050	<0.050	<0.050	
Benzo(b&j)fluoranthene	mg/kg 0.05	-	0.2	-	NA	-	<0.050	-	NA	<0.050	<0.050	<0.050	NA	<0.050	<0.050	<0.050	NA
Benzo(b+j+k)fluoranthene	mg/kg 0.075	-	0.2	-	NA	-	<0.075	-	NA	<0.075	<0.075	<0.075	NA	<0.075	<0.075	<0.075	
Benzo(g,h,i)perylene	mg/kg 0.05	-	0.11	-	NA	-	<0.050	-	NA	<0.050	<0.050	<0.050	NA	<0.050	<0.050	<0.050	
Benzo(k)fluoranthene	mg/kg 0.05	-	<0.050	-	NA	-	<0.050	-	NA	<0.050	<0.050	<0.050	NA	<0.050	<0.050	<0.050	NA
Chrysene	mg/kg 0.05	-	0.325	-	NA	-	0.054	-	NA	<0.050	<0.050	<0.050	NA	0.06	<0.050	0.060	NA
Dibenz(a,h)anthracene	mg/kg 0.05	-	<0.050	-	NA	-	<0.050	-	NA	<0.050	<0.050	<0.050	NA	<0.050	<0.050	<0.050	NA
Fluoranthene	mg/kg 0.05	-	0.065	-	NA	-	<0.050	-	NA	<0.050	<0.050	<0.050	NA	<0.050	<0.050	<0.050	NA
Fluorene	mg/kg 0.05	-	0.142	-	NA	-	<0.050	-	NA	<0.050	<0.050	<0.050	NA	<0.050	<0.050	<0.050	NA
Indeno(1,2,3-c,d)pyrene	mg/kg 0.05	-	<0.050	-	NA	-	<0.050	-	NA	<0.050	<0.050	<0.050	NA	<0.050	<0.050	<0.050	NA
1-Methylnaphthalene	mg/kg 0.03	-	1.02	-	NA	-	0.097	-	NA	<0.030	<0.030	<0.030	NA	0.078	0.07	0.07	NA
2-Methylnaphthalene	mg/kg 0.03	-	1.65	-	NA	-	0.132	-	NA	<0.030	<0.030	<0.030	NA	0.103	0.093	0.10	NA
Naphthalene	mg/kg 0.01	-	0.595	-	NA	-	0.064	-	NA	<0.010	<0.010	<0.010	NA	0.029	0.025	0.027	NA
Phenanthrene	mg/kg 0.05	-	0.886	-	NA	-	0.115	-	NA	<0.050	<0.050	<0.050	NA	0.132	0.112	0.122	
Pyrene	mg/kg 0.05	-	0.1	-	NA	-	<0.050	-	NA	<0.050	<0.050	<0.050	NA	<0.050	<0.050	<0.050	NA
Quinoline	mg/kg 0.05	-	<0.050	-	NA	-	<0.050	-	NA	<0.050	<0.050	<0.050	NA	<0.050	<0.050	<0.050	NA
d9-Acridine	% 0.1	-	108	-	NA	-	119	-	NA	97.4	88.6	93	9%	86.9	80.9	84	7%
d12-Chrysene	% 0.1	-	124	-	NA	-	122	-	NA	99.4	95.2	97	4%	90.4	89	90	2%
d8-Naphthalene	% 0.1	-	118	-	NA	-	128	-	NA	102	99.4	101	3%	94.3	93.5	94	1%
d10-Phenanthrene	% 0.1	-	117	-	NA	-	126	-	NA	111	104	108	7%	99.9	95.7	98	4%
IACR:Coarse	- 0.1	-	<0.10	-	NA	•	<0.10	-	NA	<0.10	<0.10	<0.10	NA	<0.10	<0.10	<0.10	NA
IACR:Fine	- 0.1	-	0.14	-	NA	-	<0.10	-	NA	<0.10	<0.10	<0.10	NA	<0.10	<0.10	<0.10	NA
B(a)P total potency equivalent	mg/kg 0.065	-	0.116	-	NA	-	<0.065	-	NA	<0.065	<0.065	<0.065	NA	<0.065	<0.065	<0.065	NA
IACR (CCME)	- 0.6	-	2.01	-	NA	-	0.6	-	NA	<0.60	<0.60	<0.60	NA	0.61	<0.60	0.61	NA
Total PAH (BC Sched 3.4)	mg/kg 0.2	-	3.87	-	NA	-	0.36	-	NA	<0.20	<0.20	<0.20	NA	0.32	0.23	0.28	NA
Total PAH (EPA 16)	mg/kg 0.2	-	2.53	-	NA	-	0.23	-	NA	<0.20	<0.20	<0.20	NA	0.22	<0.20	0.22	NA

Notes: **Bolding** identifies RPDs greater than 20%. Grey cells with underlined values represent values with RPDs greater than 50%.

^{- =} no guideline or no data; % = percent; mg/kg = milligrams per kilogram; <= less than; >= greater than; mm = millimetres; MDL = method detection limit; RPD = relative percent difference; NA = not applicable; CCME = Canadian Council of the Ministers of Environment; CMm = Coal Mountain Mine; LAEMP = local aquatic effects monitoring program; PAH = polycyclic aromatic hydrocarbons.

2.3 Benthic Invertebrate Tissue Selenium Laboratory Reporting Limits

The analytical reports (Appendix F) were examined to provide an inventory of analytes for which the sample results were less than the LRL. Selenium concentrations were greater than the LRL in benthic invertebrate tissue (BIT) chemistry samples for all samples and selenium LRLs were below the BC MOE (2021b) interim selenium guideline for BIT of 4 μ g/g dw. Therefore, the achieved LRLs were considered appropriate for the study.

Data Precision

Laboratory precision was evaluated based on duplicate analysis of three BIT samples (Appendix F). The laboratory DQO (Table E-1) was met for all parameters. Furthermore, the RPD of four samples using certified reference material values met the laboratory DQO for all analytes. Laboratory precision and reproducibility were considered acceptable for the study.

Data Accuracy

Data accuracy was evaluated based on results within the analytical reports from TrichAnalytics Inc. (Trich) associated with certified reference material values; the DQO was met for all analytes in the four samples. The accuracy achieved by the laboratory in this study was considered acceptable.

Data Quality Statement

Benthic invertebrate tissue data collected for the CMm LAEMP in 2022 were of acceptable quality as characterized by good detectability, appropriate LRLs, and good laboratory precision and accuracy. Therefore, the associated data were considered acceptable for this study.

2.4 Benthic Invertebrate Community

The benthic invertebrate community (BIC) quality control reports are provided in Appendix F. Organism sorting efficiency was compared to the laboratory's DQO (≥ 90%). The average recovery was 98.9% with the lowest percent recovery for any given sample equal to 98.6%. Therefore, organism sorting efficiency was considered excellent.

All BIC samples collected in 2022 were subject to subsampling; the percentage of material sorted in each sample ranged from 5% to 20% of the total sample material. Both the precision and accuracy of the sub-samples randomly chosen for subsample error assessment met the DQO (≤ 20%; Appendix F). Thus, the precision and accuracy for subsampling of BIC samples were acceptable.

The laboratory performed an internal audit of taxonomic identification for roughly 10% of all samples. The analysts reported a total identification error rate (TIR) of 0.00% for all three QC samples; a percent difference in enumeration of 0.00 to 0.14%; percent taxonomic disagreement of 0.31 to 0.56%, and a Bray-Curtis dissimilarity index (a measure of the differences in identifications between different analysts) of 0.003 to 0.004 (Appendix F). The laboratory DQO was a TIR of <5%, per Canadian Aquatic Biomonitoring Network (CABIN) laboratory methods (Environment Canada 2014). Since TIR was zero for all samples in 2022, the taxonomic accuracy of the analysis was considered excellent.

Data Quality Statement

Benthic community data collected in 2022 were of acceptable quality, as characterized by excellent sorting efficiency, subsampling precision and accuracy, and taxonomic identification accuracy. Therefore, the associated data can be used with a high level of confidence in the derivation of conclusions.

3.0 REFERENCES

- British Columbia Ministry of Environment (BC MOE). 2021a. British Columbia Working Water Quality Guidelines: Aquatic Life, Wildlife and Agriculture. Environmental Protection and Sustainability Branch, Ministry of Environment.
- BC MOE. 2021b. British Columbia Approved Water Quality Guidelines: Aquatic Life, Wildlife & Agriculture Summary Report. Environmental Protection and Sustainability Branch, Ministry of Environment.
- Environment Canada. 2014. Canadian Aquatic Biomonitoring Network (CABIN) laboratory methods: processing, taxonomy, and quality control of benthic macroinvertebrate samples. May 2014.
- Minnow (Minnow Environmental Inc.). 2020. Study design for the Regional Aquatic Effects Monitoring Program (RAEMP), 2021 to 2023. Prepared for Teck Coal Limited and Environmental Monitoring Committee.

 December 2020.
- Teck (Teck Resources Limited). 2014. Elk Valley Water Quality Plan. Submitted to BC Ministry of Environment on 22 July 2014.

APPENDIX F

Laboratory Reports

CERTIFICATE OF ANALYSIS

Work Order : CG2212553

Client : Teck Coal Limited

: Cybele Heddle Address : 421 Pine Avenue

Sparwood BC Canada V0B2G0

Telephone

Contact

Project : REGIONAL EFFECTS PROGRAM

: VPO00816101

C-O-C number : REP LAEMP CMm 2022-09 ALS

Sampler : Jennifer Ings

Site

Quote number : Teck Coal Master Quote

No. of samples received : 2 : 2 No. of samples analysed

Page : 1 of 6

Laboratory : Calgary - Environmental

Account Manager : Lyudmyla Shvets Address

: 2559 29th Street NE

Calgary AB Canada T1Y 7B5

Telephone : +1 403 407 1800 **Date Samples Received** : 15-Sep-2022 17:02

Date Analysis Commenced : 15-Sep-2022

Issue Date : 19-Sep-2022 13:25

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Page : 2 of 6

Work Order : CG2212553

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Description
No Unit
percent
micrograms per litre
Microsiemens per centimetre
milliequivalents per litre
milligrams per litre
millivolts
nephelometric turbidity units
pH units

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Page : 3 of 6
Work Order : CG2212553
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Sub-Matrix: Water			Ci	lient sample ID	RG_M15_WS_L AEMP_CMO_20	RG_MIULE_WS _LAEMP_CMP_	 	
(Matrix: Water)					22-09_N	2022-09_N		
			Client samp	oling date / time	12-Sep-2022 12:20	12-Sep-2022 15:50	 	
Analyte	CAS Number	Method	LOR	Unit	CG2212553-001	CG2212553-002	 	
					Result	Result	 	
Physical Tests		E283	2.0	no a /I	<2.0	<2.0	 	
acidity (as CaCO3)				mg/L				
alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	157	163	 	
alkalinity, bicarbonate (as HCO3)	71-52-3	E290	1.0	mg/L	191	198	 	
alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	10.0	12.0	 	
alkalinity, carbonate (as CO3)	3812-32-6	E290	1.0	mg/L	6.0	7.2	 	
alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	 	
alkalinity, hydroxide (as OH)	14280-30-9	E290	1.0	mg/L	<1.0	<1.0	 	
alkalinity, total (as CaCO3)		E290	1.0	mg/L	167	175	 	
conductivity		E100	2.0	μS/cm	508	607	 	
hardness (as CaCO3), dissolved		EC100	0.50	mg/L	265	329	 	
oxidation-reduction potential [ORP]		E125	0.10	mV	292	297	 	
pH		E108	0.10	pH units	8.36	8.42	 	
solids, total dissolved [TDS]		E162	10	mg/L	345	434	 	
solids, total suspended [TSS]		E160-L	1.0	mg/L	<1.0	1.5	 	
turbidity		E121	0.10	NTU	0.48	0.20	 	
Anions and Nutrients								
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	<0.0050	<0.0050	 	
bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	<0.050	 	
chloride	16887-00-6	E235.CI-L	0.10	mg/L	0.89	1.07	 	
fluoride	16984-48-8	E235.F	0.020	mg/L	0.134	0.158	 	
Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	0.614	<0.500	 	
nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	0.278	0.428	 	
nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	0.0011	<0.0010	 	
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	0.0019	<0.0010	 	
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0065	0.0036	 	
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	120	168	 	
Organic / Inorganic Carbon								
carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	0.64	0.56	 	
carbon, total organic [TOC]		E355-L	0.50	mg/L	0.56	0.89	 	

Page : 4 of 6
Work Order : CG2212553
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Clear Sampling date / Line LaEMP_CMIP_2 LaEMP_CMIP_2 22-99, 2022-49 12-5ep-2022 15-50 20-94 2023-49 12-5ep-2022 15-50 20-94	Sub-Matrix: Water			Cli	ient sample ID	RG_M15_WS_L	RG_MIULE_WS	 	
	(Matrix: Water)								
Nesual				Client samp	ling date / time	•	·	 	
Continue Continue	Analyte	CAS Number	Method	LOR	Unit				
Section sum	The Paris of the P					Result	Result	 	
Cation sum			FC101	0.10	mea/l	5.89	7.06	 	
In balance (cations/anions)									
Total Mistle Tota					·				
Total Metals T429-90-5									
Stuminum, total 7429-90-8 E420 0.0030 mg/L 0.0069 0.0057			20101	0.010	70	2.70	0.700		
artimony, total 7440-36-0 E420 0.00010 mg/L 0.00012 0.00013 arsenic, total 7440-38-2 E420 0.00010 mg/L 0.00027 0.00036 berjillum, total 7440-38-3 E420 0.00010 mg/L 0.020 </th <td></td> <td>7420 00 5</td> <td>F420</td> <td>0.0030</td> <td>ma/l</td> <td>0.0069</td> <td>0.0057</td> <td> </td> <td></td>		7420 00 5	F420	0.0030	ma/l	0.0069	0.0057	 	
arsanic, total 7440-38-2	· ·								
barlium, total 7440-39-3 E420 0.00010 mg/L 0.127 0.115	-				-				
Deryllium, total T440-41-7									
bismuth, total 7446-69-9					-				
boron, total 7440-42-8 E420 0.010 mg/L 0.018 0.024 cadium, total 7440-43-9 E420 0.050 μg/L 0.0257 0.0276 calcium, total 7440-70-2 E420 0.050 mg/L 73.2 90.8 chromium, total 7440-47-3 E420 Cr-L 0.00010 mg/L 0.00015 0.00017 cobalt, total 7440-48-4 E420 0.10 μg/L <0.10 ~0.10 copper, total 7440-45-8 E420 0.00050 mg/L <0.00050 <0.00050 ~0.00050 iron, total 7439-89-6 E420 0.010 mg/L <0.010 <0.010	· ·								
cadmium, total 7440-43-9 E420 0.0050 µg/L 0.0257 0.0276 <th< th=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>									
calcium, total 7440-70-2 E420 0.050 mg/L 73.2 90.8	'								
chromium, total 7440-47-3 E420. Cr-L 0.00010 mg/L 0.00015 0.00017	·								
cobalt, total 7440-48-4 E420 0.10 μg/L <0.10	·								
copper, total 7440-50-8 iron, total E420 0.00050 mg/L <0.00050	· ·								
Iron, total 7439-89-6	·								
Fead, total T439-92-1 E420 0.00050 mg/L <0.00050 <0.000050					-				
lithium, total 7439-93-2 E420 0.0010 mg/L 0.0085 0.0114									
magnesium, total 7439-95-4 E420 0.0050 mg/L 24.2 30.8 -									
manganese, total 7439-96-5 E420 0.00010 mg/L 0.00070 0.00097	i i				-				
mercury, total 7439-97-6 E508 0.000050 mg/L <0.000050	• ·				-			 	
molybdenum, total 7439-98-7 E420 0.000050 mg/L 0.000873 0.000877					-				
nickel, total 7440-02-0 E420 0.00050 mg/L 0.00130 0.00201 <t< th=""><th>•</th><th></th><th></th><th></th><th></th><th></th><th></th><th> </th><th></th></t<>	•							 	
potassium, total 7440-09-7 E420 0.050 mg/L 0.898 1.04 selenium, total 7782-49-2 E420 0.050 µg/L 2.17 3.22 silicon, total 7440-21-3 E420 0.10 mg/L 2.33 2.38 silver, total 7440-22-4 E420 0.000010 mg/L <0.000010 <0.000010	· ·				-			 	
selenium, total 7782-49-2 E420 0.050 µg/L 2.17 3.22 silicon, total 7440-21-3 E420 0.10 mg/L 2.33 2.38 silver, total 7440-22-4 E420 0.000010 mg/L <0.000010	· ·							 	
silicon, total 7440-21-3 E420 0.10 mg/L 2.33 2.38 </th <th>l'</th> <th>7440-09-7</th> <th></th> <th></th> <th>mg/L</th> <th></th> <th></th> <th> </th> <th></th>	l'	7440-09-7			mg/L			 	
silver, total 7440-22-4 E420 0.000010 mg/L <0.000010	selenium, total	7782-49-2	E420	0.050	μg/L	2.17	3.22	 	
	silicon, total	7440-21-3			mg/L			 	
	silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	 	
sodium, total 7440-23-5 E420 0.050 mg/L 5.95 8.34	sodium, total	7440-23-5	E420	0.050	mg/L	5.95	8.34	 	

Page : 5 of 6
Work Order : CG2212553
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Sub-Matrix: Water			Cli	ient sample ID	RG_M15_WS_L	RG_MIULE_WS		
(Matrix: Water)					AEMP_CMO_20 22-09_N	_LAEMP_CMP_ 2022-09_N		
			Client samp	ling date / time	12-Sep-2022 12:20	12-Sep-2022 15:50		
Analyte	CAS Number	Method	LOR	Unit	CG2212553-001 Result	CG2212553-002		
Total Metals					Result	Result		
strontium, total	7440-24-6	E420	0.00020	mg/L	0.225	0.284		
sulfur, total	7704-34-9	E420	0.50	mg/L	43.1	62.9		
thallium, total	7440-28-0	E420	0.000010	mg/L	<0.00010	0.000011		
tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010		
titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030		
uranium, total	7440-61-1	E420	0.000010	mg/L	0.000958	0.00134		
vanadium, total	7440-62-2	E420	0.00050	mg/L	0.00062	0.00056		
zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	<0.0030		
Dissolved Metals	1110 00 0			3				
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	<0.0010	<0.0010		
antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00012	0.00011		
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00018	0.00020		
barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.128	0.114		
beryllium, dissolved	7440-41-7	E421	0.020	μg/L	<0.020	<0.020		
bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050		
boron, dissolved	7440-42-8	E421	0.010	mg/L	0.015	0.021		
cadmium, dissolved	7440-43-9	E421	0.0050	μg/L	0.0294	0.0280		
calcium, dissolved	7440-70-2	E421	0.050	mg/L	65.5	79.6		
chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	0.00011	0.00015		
cobalt, dissolved	7440-48-4	E421	0.10	μg/L	<0.10	<0.10		
copper, dissolved	7440-50-8	E421	0.00020	mg/L	<0.00020	<0.00020		
iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010		
lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050		
lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0085	0.0112		
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	24.7	31.6		
manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00051	0.00089		
mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.000050	<0.0000050		
molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.000784	0.000828		
nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.00115	0.00195		
potassium, dissolved	7440-09-7	E421	0.050	mg/L	0.859	0.999		
I control of the cont	1		1	'			1	1

Page : 6 of 6
Work Order : CG2212553
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Sub-Matrix: Water			CI	ient sample ID	RG_M15_WS_L	RG_MIULE_WS	 	
(Matrix: Water)					AEMP_CMO_20	_LAEMP_CMP_		
					22-09_N	2022-09_N		
			Client samp	ling date / time	12-Sep-2022 12:20	12-Sep-2022 15:50	 	
Analyte	CAS Number	Method	LOR	Unit	CG2212553-001	CG2212553-002	 	
					Result	Result	 	
Dissolved Metals								
selenium, dissolved	7782-49-2	E421	0.050	μg/L	2.37	3.51	 	
silicon, dissolved	7440-21-3	E421	0.050	mg/L	2.24	2.22	 	
silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	 	
sodium, dissolved	7440-23-5	E421	0.050	mg/L	5.89	8.04	 	
strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.227	0.285	 	
sulfur, dissolved	7704-34-9	E421	0.50	mg/L	45.1	60.8	 	
thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	0.000011	 	
tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	 	
titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	 	
uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.000934	0.00127	 	
vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	 	
zinc, dissolved	7440-66-6	E421	0.0010	mg/L	<0.0010	<0.0010	 	
dissolved mercury filtration location		EP509	-	-	Field	Field	 	
dissolved metals filtration location		EP421	-	-	Field	Field	 	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : **CG2212553** Page : 1 of 15

 Client
 : Teck Coal Limited
 Laboratory
 : Calgary - Environmental

 Contact
 : Cybele Heddle
 Account Manager
 : Lyudmyla Shvets

: 421 Pine Avenue Address : 2559 29th Street NE

Calgary, Alberta Canada T1Y 7B5

 Telephone
 : -- Telephone
 : +1 403 407 1800

 Project
 : REGIONAL EFFECTS PROGRAM
 Date Samples Received
 : 15-Sep-2022 17:02

 PO
 : VPO00816101
 Issue Date
 : 19-Sep-2022 13:25

C-O-C number : REP_LAEMP_CMm_2022-09_ALS

Sparwood BC Canada V0B2G0

Sampler : Jennifer Ings

Site : ---

Quote number : Teck Coal Master Quote

No. of samples received : 2
No. of samples analysed : 2

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Address

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers: Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers: Frequency of Quality Control Samples

• No Quality Control Sample Frequency Outliers occur.

Page : 3 of 15 Work Order : CG2212553

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					Eva	aluation: × =	Holding time exce	edance ; 🔻	= Within	Holding Time
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid) RG_M15_WS_LAEMP_CMO_2022-09_N	E298	12-Sep-2022	15-Sep-2022				15-Sep-2022	28 days	3 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid) RG_MIULE_WS_LAEMP_CMP_2022-09_N	E298	12-Sep-2022	15-Sep-2022				15-Sep-2022	28 days	3 days	✓
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE RG_M15_WS_LAEMP_CMO_2022-09_N	E235.Br-L	12-Sep-2022	15-Sep-2022				15-Sep-2022	28 days	3 days	✓
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE RG_MIULE_WS_LAEMP_CMP_2022-09_N	E235.Br-L	12-Sep-2022	15-Sep-2022				15-Sep-2022	28 days	3 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE RG_M15_WS_LAEMP_CMO_2022-09_N	E235.CI-L	12-Sep-2022	15-Sep-2022				15-Sep-2022	28 days	3 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE RG_MIULE_WS_LAEMP_CMP_2022-09_N	E235.CI-L	12-Sep-2022	15-Sep-2022				15-Sep-2022	28 days	3 days	✓
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace Le	vel 0.001									
HDPE RG_M15_WS_LAEMP_CMO_2022-09_N	E378-U	12-Sep-2022	15-Sep-2022				15-Sep-2022	3 days	3 days	* EHTL

Page : 4 of 15 Work Order : CG2212553

Client : Teck Coal Limited

latrix: Water						aluation: 🗴 =	Holding time exce	edance ; 🔻	/ = Within	Holding Ti
Analyte Group	Method	Sampling Date	Ex	traction / Pr	on / Preparation			Analys	sis	
Container / Client Sample ID(s)			Preparation Date	Holding Rec	g Times Actual	Eval	Analysis Date	Holding Rec	g Times Actual	Eval
nions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra	Frace Level 0.001						<u> </u>			
HDPE	F070 !!	40.0 0000								
RG_MIULE_WS_LAEMP_CMP_2022-09_N	E378-U	12-Sep-2022	15-Sep-2022				15-Sep-2022	3 days	3 days	# EHTL
nions and Nutrients : Fluoride in Water by IC										
HDPE RG_M15_WS_LAEMP_CMO_2022-09_N	E235.F	12-Sep-2022	15-Sep-2022				15-Sep-2022	28 days	3 days	✓
nions and Nutrients : Fluoride in Water by IC										
HDPE RG_MIULE_WS_LAEMP_CMP_2022-09_N	E235.F	12-Sep-2022	15-Sep-2022				15-Sep-2022	28 days	3 days	✓
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE RG_M15_WS_LAEMP_CMO_2022-09_N	E235.NO3-L	12-Sep-2022	15-Sep-2022	3 days	3 days	✓	15-Sep-2022	3 days	0 days	✓
nions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE RG_MIULE_WS_LAEMP_CMP_2022-09_N	E235.NO3-L	12-Sep-2022	15-Sep-2022	3 days	3 days	✓	15-Sep-2022	3 days	0 days	✓
nions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE RG_M15_WS_LAEMP_CMO_2022-09_N	E235.NO2-L	12-Sep-2022	15-Sep-2022				15-Sep-2022	3 days	3 days	# EHTL
nions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE RG_MIULE_WS_LAEMP_CMP_2022-09_N	E235.NO2-L	12-Sep-2022	15-Sep-2022				15-Sep-2022	3 days	3 days	x EHTL
nions and Nutrients : Sulfate in Water by IC										
HDPE RG_M15_WS_LAEMP_CMO_2022-09_N	E235.SO4	12-Sep-2022	15-Sep-2022				15-Sep-2022	28 days	3 days	✓
nions and Nutrients : Sulfate in Water by IC										
HDPE RG_MIULE_WS_LAEMP_CMP_2022-09_N	E235.SO4	12-Sep-2022	15-Sep-2022				15-Sep-2022	28 days	3 days	✓

Page : 5 of 15 Work Order : CG2212553

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

Matrix: Water					L\	raiuation. * -	Holding time exce	euance, •	– vviuiiii	Holding Tim
Analyte Group	Method	Sampling Date	Ext	traction / P	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation Date	Holdin Rec	g Times Actual	Eval	Analysis Date	Holding Rec	7 Times Actual	Eval
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid) RG_M15_WS_LAEMP_CMO_2022-09_N	E318	12-Sep-2022	17-Sep-2022				17-Sep-2022	28 days	5 days	✓
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid) RG_MIULE_WS_LAEMP_CMP_2022-09_N	E318	12-Sep-2022	17-Sep-2022				17-Sep-2022	28 days	5 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid) RG_M15_WS_LAEMP_CMO_2022-09_N	E372-U	12-Sep-2022	16-Sep-2022				17-Sep-2022	28 days	5 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)							1			
Amber glass total (sulfuric acid) RG_MIULE_WS_LAEMP_CMP_2022-09_N	E372-U	12-Sep-2022	16-Sep-2022				17-Sep-2022	28 days	5 days	✓
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE dissolved (nitric acid) RG_M15_WS_LAEMP_CMO_2022-09_N	E421.Cr-L	12-Sep-2022	16-Sep-2022				16-Sep-2022	180 days	4 days	✓
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE dissolved (nitric acid) RG_MIULE_WS_LAEMP_CMP_2022-09_N	E421.Cr-L	12-Sep-2022	16-Sep-2022				16-Sep-2022	180 days	4 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS							1			
Glass vial dissolved (hydrochloric acid) RG_M15_WS_LAEMP_CMO_2022-09_N	E509	12-Sep-2022	16-Sep-2022				16-Sep-2022	28 days	4 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid) RG_MIULE_WS_LAEMP_CMP_2022-09_N	E509	12-Sep-2022	16-Sep-2022				16-Sep-2022	28 days	4 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid) RG_M15_WS_LAEMP_CMO_2022-09_N	E421	12-Sep-2022	16-Sep-2022				16-Sep-2022	180 days	4 days	✓

Page : 6 of 15 Work Order : CG2212553

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

					aluation. • -	i lolding time exce	cuarice , •	- vvitiiiii	riolaling rillie
Method	Sampling Date	Ext	traction / Pi	reparation			Analys	is	
		Preparation Date	Holdin Rec	g Times Actual	Eval	Analysis Date	Holding Rec	7 Times Actual	Eval
E421	12-Sep-2022	16-Sep-2022				16-Sep-2022	180 days	4 days	✓
el)									
E358-L	12-Sep-2022	15-Sep-2022				15-Sep-2022	28 days	3 days	✓
1)									
E358-L	12-Sep-2022	15-Sep-2022				15-Sep-2022	28 days	3 days	✓
n (Low Level)									
E355-L	12-Sep-2022	15-Sep-2022				15-Sep-2022	28 days	3 days	✓
n (Low Level)									
E355-L	12-Sep-2022	15-Sep-2022				15-Sep-2022	28 days	3 days	✓
E283	12-Sep-2022	16-Sep-2022				16-Sep-2022	14 days	4 days	✓
E283	12-Sep-2022	16-Sep-2022				16-Sep-2022	14 days	4 days	✓
							1		
E290	12-Sep-2022	16-Sep-2022				16-Sep-2022	14 days	4 days	✓
E290	12-Sep-2022	16-Sep-2022				16-Sep-2022	14 days	4 days	✓
	E421 E358-L I) E358-L In (Low Level) E355-L E283 E283	E421 12-Sep-2022 il) E358-L 12-Sep-2022 il) E358-L 12-Sep-2022 in (Low Level) E355-L 12-Sep-2022 in (Low Level) E355-L 12-Sep-2022 E283 12-Sep-2022 E283 12-Sep-2022	Preparation Date	Preparation Holdin Rec	Method Sampling Date Extraction / Preparation Preparation Date Rec Actual	Method Sampling Date Extraction / Preparation Preparation Holding Times Rec Actual	Method Sampling Date Extraction / Preparation Holding Times Rec Actual Analysis Date Analy	Method Sampling Date Extraction / Preparation Holding Times Rec Actual Analysis Date Holding Times Rec Actual Analysis Date Holding Rec Actual Rec Actual Holding Rec Holding Rec	Preparation Holding Times Rec Actual Analysis Date Holding Times Rec Actual

Page : 7 of 15 Work Order : CG2212553

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

 Matrix: Water
 Evaluation: x = Holding time exceedance; √ = Within Holding Time

 Analyte Group
 Method
 Sampling Date
 Extraction / Preparation
 Analysis

Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation					
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	1
Physical Tests : Conductivity in Water										
HDPE										
RG_M15_WS_LAEMP_CMO_2022-09_N	E100	12-Sep-2022	16-Sep-2022				16-Sep-2022	28 days	4 days	✓
Physical Tests : Conductivity in Water										
HDPE										
RG_MIULE_WS_LAEMP_CMP_2022-09_N	E100	12-Sep-2022	16-Sep-2022				16-Sep-2022	28 days	4 days	✓
Physical Tests : ORP by Electrode								T T	I	
HDPE RG_MIULE_WS_LAEMP_CMP_2022-09_N	E125	12-Sep-2022					16-Sep-2022	0.25	92 hrs	*
NG_WIOLE_WO_EALWIF_CWIF_2022-09_W	L 123	12-0ep-2022					10-0ep-2022	0.25 hrs	32 1113	EHTR-FM
Physical Tests : ORP by Electrode								1110		
HDPE								<u> </u>		
RG_M15_WS_LAEMP_CMO_2022-09_N	E125	12-Sep-2022					16-Sep-2022	0.25	95 hrs	3¢
								hrs		EHTR-FM
Physical Tests : pH by Meter										
HDPE										
RG_M15_WS_LAEMP_CMO_2022-09_N	E108	12-Sep-2022	16-Sep-2022				16-Sep-2022	0.25	0.26	*
								hrs	hrs	EHTR-FM
Physical Tests : pH by Meter										
HDPE	E108	40.0 0000	40 0 0000				16-Sep-2022			×
RG_MIULE_WS_LAEMP_CMP_2022-09_N	E108	12-Sep-2022	16-Sep-2022				16-Sep-2022	0.25 hrs	0.26 hrs	EHTR-FM
								1115	1115	LITTIX-I IVI
Physical Tests : TDS by Gravimetry HDPE								I		
RG_M15_WS_LAEMP_CMO_2022-09_N	E162	12-Sep-2022					15-Sep-2022	7 days	3 days	✓
								,	,-	
Physical Tests : TDS by Gravimetry										
HDPE										
RG_MIULE_WS_LAEMP_CMP_2022-09_N	E162	12-Sep-2022					15-Sep-2022	7 days	3 days	✓
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE										
RG_M15_WS_LAEMP_CMO_2022-09_N	E160-L	12-Sep-2022					15-Sep-2022	7 days	3 days	✓

Page : 8 of 15 Work Order : CG2212553

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: **Water**Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

naturx: water						aluation. • -	nolding time exce	suarice , .	- vvicinii	riolaling i
Analyte Group	Method	Sampling Date	Ext	raction / Pr	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE										
RG_MIULE_WS_LAEMP_CMP_2022-09_N	E160-L	12-Sep-2022					15-Sep-2022	7 days	3 days	✓
Physical Tests : Turbidity by Nephelometry										
HDPE										
RG_M15_WS_LAEMP_CMO_2022-09_N	E121	12-Sep-2022					15-Sep-2022	3 days	3 days	✓
Physical Tests : Turbidity by Nephelometry										
HDPE										
RG_MIULE_WS_LAEMP_CMP_2022-09_N	E121	12-Sep-2022					15-Sep-2022	3 days	3 days	✓
otal Metals : Total Chromium in Water by CRC ICPMS (Low Level)										
HDPE total (nitric acid)										
RG_M15_WS_LAEMP_CMO_2022-09_N	E420.Cr-L	12-Sep-2022	16-Sep-2022				17-Sep-2022	180	5 days	✓
								days		
Fotal Metals : Total Chromium in Water by CRC ICPMS (Low Level)										
HDPE total (nitric acid)										
RG_MIULE_WS_LAEMP_CMP_2022-09_N	E420.Cr-L	12-Sep-2022	16-Sep-2022				17-Sep-2022	180	5 days	✓
								days		
Fotal Metals : Total Mercury in Water by CVAAS										
Glass vial total (hydrochloric acid)										
RG_M15_WS_LAEMP_CMO_2022-09_N	E508	12-Sep-2022	16-Sep-2022				16-Sep-2022	28 days	4 days	✓
otal Metals : Total Mercury in Water by CVAAS										
Glass vial total (hydrochloric acid)										
RG_MIULE_WS_LAEMP_CMP_2022-09_N	E508	12-Sep-2022	16-Sep-2022				16-Sep-2022	28 days	4 days	✓
otal Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid)										
RG_M15_WS_LAEMP_CMO_2022-09_N	E420	12-Sep-2022	16-Sep-2022				17-Sep-2022	180	5 days	✓
								days		
otal Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid)										
RG_MIULE_WS_LAEMP_CMP_2022-09_N	E420	12-Sep-2022	16-Sep-2022				17-Sep-2022	180	5 days	✓
								days		

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended

EHTL: Exceeded ALS recommended hold time prior to analysis. Sample was received less than 24 hours prior to expiry.

Page : 9 of 15 Work Order : CG2212553

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Rec. HT: ALS recommended hold time (see units).

Page : 10 of 15 Work Order : CG2212553

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Quality Control Sample Type			Co	ount		Frequency (%))
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Acidity by Titration	E283	650894	1	20	5.0	5.0	1
Alkalinity Species by Titration	E290	650901	1	20	5.0	5.0	✓
Ammonia by Fluorescence	E298	649577	1	17	5.8	5.0	1
Bromide in Water by IC (Low Level)	E235.Br-L	649518	1	8	12.5	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	649519	1	8	12.5	5.0	1
Conductivity in Water	E100	650900	1	20	5.0	5.0	✓
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	650493	1	4	25.0	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	650161	1	8	12.5	5.0	1
Dissolved Metals in Water by CRC ICPMS	E421	650494	1	4	25.0	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	649550	1	17	5.8	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	649627	1	20	5.0	5.0	✓
Fluoride in Water by IC	E235.F	649517	1	8	12.5	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	649520	1	8	12.5	5.0	1
Nitrite in Water by IC (Low Level)	E235.NO2-L	649521	1	8	12.5	5.0	✓
ORP by Electrode	E125	650423	1	7	14.2	5.0	✓
pH by Meter	E108	650899	1	20	5.0	5.0	✓
Sulfate in Water by IC	E235.SO4	649522	1	8	12.5	5.0	✓
TDS by Gravimetry	E162	649536	1	16	6.2	5.0	1
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	650166	1	2	50.0	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	650756	1	9	11.1	5.0	1
Total Mercury in Water by CVAAS	E508	650164	1	20	5.0	5.0	✓
Total Metals in Water by CRC ICPMS	E420	650167	1	2	50.0	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	649551	1	18	5.5	5.0	1
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	650784	1	16	6.2	5.0	✓
Turbidity by Nephelometry	E121	649571	1	20	5.0	5.0	1
Laboratory Control Samples (LCS)							
Acidity by Titration	E283	650894	1	20	5.0	5.0	✓
Alkalinity Species by Titration	E290	650901	1	20	5.0	5.0	
Ammonia by Fluorescence	E298	649577	1	17	5.8	5.0	<u> </u>
Bromide in Water by IC (Low Level)	E235.Br-L	649518	1	8	12.5	5.0	
Chloride in Water by IC (Low Level)	E235.CI-L	649519	1	8	12.5	5.0	<u> </u>
Conductivity in Water	E100	650900	1	20	5.0	5.0	<u> </u>
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	650493	1	4	25.0	5.0	<u> </u>
Dissolved Mercury in Water by CVAAS	E509	650161	1	8	12.5	5.0	<u> </u>
Dissolved Metals in Water by CRC ICPMS	E421	650494	1	4	25.0	5.0	<u> </u>
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	649550	1	17	5.8	5.0	<u> </u>
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	649627	1	20	5.0	5.0	

Page : 11 of 15 Work Order : CG2212553

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: WaterEvaluation: × = QC frequency outside specification; √ = QC frequency within specification.Quality Control Sample TypeCountFrequency (%)

Quality Control Sample Type				ount		Frequency (%))
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Control Samples (LCS) - Continued							
Fluoride in Water by IC	E235.F	649517	1	8	12.5	5.0	1
Nitrate in Water by IC (Low Level)	E235.NO3-L	649520	1	8	12.5	5.0	√
Nitrite in Water by IC (Low Level)	E235.NO2-L	649521	1	8	12.5	5.0	1
ORP by Electrode	E125	650423	1	7	14.2	5.0	
pH by Meter	E108	650899	1	20	5.0	5.0	<u> </u>
Sulfate in Water by IC	E235.SO4	649522	1	8	12.5	5.0	
TDS by Gravimetry	E162	649536	1	16	6.2	5.0	<u> </u>
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	650166	1	2	50.0	5.0	
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	650756	1	9	11.1	5.0	<u> </u>
Total Mercury in Water by CVAAS	E508	650164	1	20	5.0	5.0	
Total Metals in Water by CRC ICPMS	E420	650167	1	2	50.0	5.0	
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	649551	1	18	5.5	5.0	
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	650784	1	16	6.2	5.0	
TSS by Gravimetry (Low Level)	E160-L	649523	1	12	8.3	5.0	
Turbidity by Nephelometry	E121	649571	1	20	5.0	5.0	<u>√</u>
Method Blanks (MB)							
Acidity by Titration	E283	650894	1	20	5.0	5.0	1
Alkalinity Species by Titration	E290	650901	1	20	5.0	5.0	
Ammonia by Fluorescence	E298	649577	1	17	5.8	5.0	<u> </u>
Bromide in Water by IC (Low Level)	E235.Br-L	649518	1	8	12.5	5.0	
Chloride in Water by IC (Low Level)	E235.CI-L	649519	1	8	12.5	5.0	<u> </u>
Conductivity in Water	E100	650900	1	20	5.0	5.0	<u> </u>
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	650493	1	4	25.0	5.0	
Dissolved Mercury in Water by CVAAS	E509	650161	1	8	12.5	5.0	<u> </u>
Dissolved Metals in Water by CRC ICPMS	E421	650494	1	4	25.0	5.0	
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	649550	1	17	5.8	5.0	
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	649627	1	20	5.0	5.0	
Fluoride in Water by IC	E235.F	649517	1	8	12.5	5.0	
Nitrate in Water by IC (Low Level)	E235.NO3-L	649520	1	8	12.5	5.0	<u>√</u>
Nitrite in Water by IC (Low Level)	E235.NO2-L	649521	1	8	12.5	5.0	<u> </u>
Sulfate in Water by IC	E235.SO4	649522	1	8	12.5	5.0	√
TDS by Gravimetry	E162	649536	1	16	6.2	5.0	<u> </u>
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	650166	1	2	50.0	5.0	√
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	650756	1	9	11.1	5.0	<u>√</u>
Total Mercury in Water by CVAAS	E508	650164	1	20	5.0	5.0	
Total Metals in Water by CRC ICPMS	E420	650167	1	2	50.0	5.0	<u> </u>
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	649551	1	18	5.5	5.0	
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	650784	1	16	6.2	5.0	
TSS by Gravimetry (Low Level)	E160-L	649523	1	12	8.3	5.0	
Turbidity by Nephelometry	E121	649571	1	20	5.0	5.0	

Page : 12 of 15 Work Order : CG2212553

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: Water Evaluation: × = QC frequency outside specification, ✓ = QC frequency within specification.

Wattis. Water		Lvaidati	on Qo nega	crity outside spe	Jointoution,	QO nequency wit	imi opoomoan
Quality Control Sample Type			Co	ount		Frequency (%))
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Matrix Spikes (MS)							
Ammonia by Fluorescence	E298	649577	1	17	5.8	5.0	✓
Bromide in Water by IC (Low Level)	E235.Br-L	649518	1	8	12.5	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	649519	1	8	12.5	5.0	✓
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	650493	1	4	25.0	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	650161	1	8	12.5	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	650494	1	4	25.0	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	649550	1	17	5.8	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	649627	1	20	5.0	5.0	✓
Fluoride in Water by IC	E235.F	649517	1	8	12.5	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	649520	1	8	12.5	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	649521	1	8	12.5	5.0	✓
Sulfate in Water by IC	E235.SO4	649522	1	8	12.5	5.0	√
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	650166	1	2	50.0	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	650756	1	9	11.1	5.0	√
Total Mercury in Water by CVAAS	E508	650164	1	20	5.0	5.0	√
Total Metals in Water by CRC ICPMS	E420	650167	1	2	50.0	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	649551	1	18	5.5	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	650784	1	16	6.2	5.0	✓

Page : 13 of 15 Work Order : CG2212553

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Conductivity in Water	E100	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is
	O James Facilities			measured by immersion of a conductivity cell with platinum electrodes into a water
mili bu Makan	Calgary - Environmental	10/-4	ADUA 4500 H (sample. Conductivity measurements are temperature-compensated to 25°C.
pH by Meter	E108	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted
	Calgary - Environmental			at ambient laboratory temperature (normally 20 ± 5°C). For high accuracy test results, pH should be measured in the field within the recommended 15 minute hold time.
Turbidity by Nephelometry	E121	Water	APHA 2130 B (mod)	Turbidity is measured by the nephelometric method, by measuring the intensity of light
Taiblaity by Nophlolemony	LIZI	Water	74 11/12 100 B (mod)	scatter under defined conditions.
	Calgary - Environmental			Social dilasi delinod estidiatione.
ORP by Electrode	E125	Water	ASTM D1498 (mod)	Oxidation redution potential is reported as the oxidation-reduction potential of the
				platinum metal-reference electrode employed, measured in mV. For high accuracy test
	Calgary - Environmental			results, it is recommended that this analysis be conducted in the field.
TSS by Gravimetry (Low Level)	E160-L	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre
	Calgary - Environmental			filter, following by drying of the filter at 104 ± 1°C, with gravimetric measurement of the
	Calgary - Environmental			filtered solids. Samples containing very high dissolved solid content (i.e. seawaters,
				brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples.
TDS by Gravimetry	E162	Water	APHA 2540 C (mod)	Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre
, ,				filter, with evaporation of the filtrate at $180 \pm 2^{\circ}$ C for 16 hours or to constant weight,
	Calgary - Environmental			with gravimetric measurement of the residue.
Bromide in Water by IC (Low Level)	E235.Br-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
				detection.
	Calgary - Environmental	147.4	EDA 000 4 (1)	
Chloride in Water by IC (Low Level)	E235.CI-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
	Calgary - Environmental			detection.
Fluoride in Water by IC	E235.F	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
, ,	2200.1		,	detection.
	Calgary - Environmental			
Nitrite in Water by IC (Low Level)	E235.NO2-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
				detection.
Nitrate is Metallical (Level 1991)	Calgary - Environmental	147.4	EDA 000 4 (*** 1)	
Nitrate in Water by IC (Low Level)	E235.NO3-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
	Calgary - Environmental			detection.
Sulfate in Water by IC	E235.SO4	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
ĺ			, ,	detection.
	Calgary - Environmental			
Acidity by Titration	E283	Water	APHA 2310 B (mod)	Acidity is determined by potentiometric titration to pH endpoint of 8.3
	Outrom Francisco			
	Calgary - Environmental			

Page : 14 of 15 Work Order : CG2212553

Client : Teck Coal Limited

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Alkalinity Species by Titration	E290 Calgary - Environmental	Water	APHA 2320 B (mod)	Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values.
Ammonia by Fluorescence	E298 Calgary - Environmental	Water	Method Fialab 100, 2018	Ammonia in water is determined by automated continuous flow analysis with membrane diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde). This method is approved under US EPA 40 CFR Part 136 (May 2021)
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318 Calgary - Environmental	Water	Method Fialab 100, 2018	TKN in water is determined by automated continuous flow analysis with membrane diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde). This method is approved under US EPA 40 CFR Part 136 (May 2021).
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L Calgary - Environmental	Water	APHA 5310 B (mod)	Total Organic Carbon (Non-Purgeable), also known as NPOC (total), is a direct measurement of TOC after an acidified sample has been purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of total carbon (TC) is comprised of IC (which is common), this method is more accurate and more reliable than the TOC by subtraction method (i.e. TC minus TIC).
Dissolved Organic Carbon by Combustion (Low Level)	E358-L Calgary - Environmental	Water	APHA 5310 B (mod)	Dissolved Organic Carbon (Non-Purgeable), also known as NPOC (dissolved), is a direct measurement of DOC after a filtered (0.45 micron) sample has been acidified and purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of DC (dissolved carbon) is comprised of IC (which is common), this method is more accurate and more reliable than the DOC by subtraction method (i.e. DC minus DIC).
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U Calgary - Environmental	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U Calgary - Environmental	Water	APHA 4500-P F (mod)	Dissolved Orthophosphate is determined colourimetrically on a sample that has been lab or field filtered through a 0.45 micron membrane filter. Field filtration is recommended to ensure test results represent conditions at time of sampling.
Total Metals in Water by CRC ICPMS	E420 Calgary - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L Calgary - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS.
Dissolved Metals in Water by CRC ICPMS	E421 Calgary - Environmental	Water	APHA 3030B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

Page : 15 of 15 Work Order : CG2212553

Client : Teck Coal Limited

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L Calgary - Environmental	Water	APHA 3030 B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS
Total Mercury in Water by CVAAS	E508 Calgary - Environmental	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS
Dissolved Mercury in Water by CVAAS	E509 Calgary - Environmental	Water	APHA 3030B/EPA 1631E (mod)	Water samples are filtered (0.45 um), preserved with HCl, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.
Dissolved Hardness (Calculated)	EC100 Calgary - Environmental	Water	APHA 2340B	"Hardness (as CaCO3), dissolved" is calculated from the sum of dissolved Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations.
Ion Balance using Dissolved Metals	EC101 Calgary - Environmental	Water	APHA 1030E	Cation Sum, Anion Sum, and Ion Balance are calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis). Dissolved species are used where available. Minor ions are included where data is present. Ion Balance cannot be calculated accurately for waters with very low electrical conductivity (EC).
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298 Calgary - Environmental	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
Digestion for TKN in water	EP318 Calgary - Environmental	Water	APHA 4500-Norg D (mod)	Samples are digested at high temperature using Sulfuric Acid with Copper catalyst, which converts organic nitrogen sources to Ammonia, which is then quantified by the analytical method as TKN. This method is unsuitable for samples containing high levels of nitrate. If nitrate exceeds TKN concentration by ten times or more, results may be biased low.
Preparation for Total Organic Carbon by Combustion	EP355 Calgary - Environmental	Water		Preparation for Total Organic Carbon by Combustion
Preparation for Dissolved Organic Carbon for Combustion	EP358 Calgary - Environmental	Water	APHA 5310 B (mod)	Preparation for Dissolved Organic Carbon
Digestion for Total Phosphorus in water	EP372 Calgary - Environmental	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.
Dissolved Metals Water Filtration	EP421 Calgary - Environmental	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HNO3.
Dissolved Mercury Water Filtration	EP509 Calgary - Environmental	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HCl.

QUALITY CONTROL REPORT

Work Order CG2212553

Client : Teck Coal Limited Contact : Cybele Heddle Address 421 Pine Avenue

Sparwood BC Canada V0B2G0

Telephone

Project : REGIONAL EFFECTS PROGRAM

PO : VPO00816101

C-O-C number :REP LAEMP CMm 2022-09 ALS

Sampler : Jennifer Ings

Site

Quote number : Teck Coal Master Quote

No. of samples received No. of samples analysed : 2 Page : 1 of 18

Date Samples Received

Laboratory : Calgary - Environmental

Account Manager : Lyudmyla Shvets Address

: 2559 29th Street NE

Calgary, Alberta Canada T1Y 7B5

Telephone :+1 403 407 1800

:15-Sep-2022 17:02 **Date Analysis Commenced** :15-Sep-2022

: 19-Sep-2022 13:25 Issue Date

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives

- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Anthony Calero	Supervisor - Inorganic	Calgary Inorganics, Calgary, Alberta
Anthony Calero	Supervisor - Inorganic	Calgary Metals, Calgary, Alberta
Elke Tabora		Calgary Inorganics, Calgary, Alberta
Harpreet Chawla	Team Leader - Inorganics	Calgary Inorganics, Calgary, Alberta
Harpreet Chawla	Team Leader - Inorganics	Calgary Metals, Calgary, Alberta
Mackenzie Lamoureux	Laboratory Analyst	Calgary Metals, Calgary, Alberta
Millicent Brentnall	Laboratory Analyst	Calgary Metals, Calgary, Alberta
Parker Sgarbossa	Laboratory Analyst	Calgary Inorganics, Calgary, Alberta
Sara Niroomand		Calgary Inorganics, Calgary, Alberta
Sara Niroomand		Calgary Metals, Calgary, Alberta
Vladka Stamenova	Analyst	Calgary Inorganics, Calgary, Alberta

 Page
 : 2 of 18

 Work Order
 : CG2212553

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

 Page
 : 3 of 18

 Work Order
 : CG2212553

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

ub-Matrix: Water							Labora	ntory Duplicate (D	UP) Report		
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Physical Tests (QC	Lot: 649536)										
CG2212460-001	Anonymous	solids, total dissolved [TDS]		E162	20	mg/L	1540	1550	0.453%	20%	
Physical Tests (QC	Lot: 649571)										
CG2212531-001	Anonymous	turbidity		E121	0.10	NTU	0.95	1.01	0.05	Diff <2x LOR	
Physical Tests (QC	Lot: 650423)										
CG2212553-001	RG_M15_WS_LAEMP_CM O_2022-09_N	oxidation-reduction potential [ORP]		E125	0.10	mV	292	293	0.308%	15%	
hysical Tests (QC	Lot: 650894)										
CG2212553-001	RG_M15_WS_LAEMP_CM O_2022-09_N	acidity (as CaCO3)		E283	2.0	mg/L	<2.0	<2.0	0	Diff <2x LOR	
Physical Tests (QC	Lot: 650899)										
CG2212553-001	RG_M15_WS_LAEMP_CM O_2022-09_N	pH		E108	0.10	pH units	8.36	8.41	0.596%	4%	
Physical Tests (QC	Lot: 650900)										
G2212553-001	RG_M15_WS_LAEMP_CM O_2022-09_N	conductivity		E100	2.0	μS/cm	508	499	1.79%	10%	
hysical Tests (QC	Lot: 650901)										
CG2212553-001	RG_M15_WS_LAEMP_CM O_2022-09_N	alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	157	154	2.06%	20%	
		alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	10.0	11.6	14.8%	20%	
		alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, total (as CaCO3)		E290	1.0	mg/L	167	165	0.964%	20%	
nions and Nutrien	ts (QC Lot: 649517)										
CG2212553-001	RG_M15_WS_LAEMP_CM O_2022-09_N	fluoride	16984-48-8	E235.F	0.020	mg/L	0.134	0.132	0.002	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 649518)										
CG2212553-001	RG_M15_WS_LAEMP_CM O_2022-09_N	bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 649519)										
CG2212553-001	RG_M15_WS_LAEMP_CM O_2022-09_N	chloride	16887-00-6	E235.CI-L	0.10	mg/L	0.89	0.88	0.01	Diff <2x LOR	
	ts (QC Lot: 649520)										
CG2212553-001	RG_M15_WS_LAEMP_CM O_2022-09_N	nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	0.278	0.277	0.504%	20%	
	ts (QC Lot: 649521)										
CG2212553-001	RG_M15_WS_LAEMP_CM O_2022-09_N	nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	0.0011	0.0012	0.0001	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 649522)										

Page : 4 of 18
Work Order : CG2212553
Client : Teck Coal Limited

Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Anions and Nutrien	nts (QC Lot: 649522) - co	ontinued									
CG2212553-001	RG_M15_WS_LAEMP_CM O_2022-09_N	sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	120	122	0.981%	20%	
Anions and Nutrien	its (QC Lot: 649577)										
CG2212550-001	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	<0.0050	<0.0050	0	Diff <2x LOR	
Anions and Nutrien	nts (QC Lot: 649627)										
CG2212545-001	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
Anions and Nutrien	nts (QC Lot: 650756)										
CG2212553-001	RG_M15_WS_LAEMP_CM O_2022-09_N	Kjeldahl nitrogen, total [TKN]		E318	0.500	mg/L	0.614	<0.500	0.114	Diff <2x LOR	
Anions and Nutrien	nts (QC Lot: 650784)										
CG2212553-001	RG_M15_WS_LAEMP_CM O_2022-09_N	phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0065	0.0066	0.0002	Diff <2x LOR	
Organic / Inorganic	Carbon (QC Lot: 649550	0)									
CG2212550-001	Anonymous	carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	<0.50	<0.50	0	Diff <2x LOR	
Organic / Inorganic	Carbon (QC Lot: 64955	1)									
CG2212550-001	Anonymous	carbon, total organic [TOC]		E355-L	0.50	mg/L	<0.50	<0.50	0	Diff <2x LOR	
Total Metals (QC L	ot: 650164)										
CG2212515-001	Anonymous	mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	
Total Metals (QC L	ot: 650166)										
CG2212553-001	RG_M15_WS_LAEMP_CM O 2022-09 N	chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00015	0.00015	0.000002	Diff <2x LOR	
Total Metals (QC L	ot: 650167)										
CG2212553-001	RG_M15_WS_LAEMP_CM O 2022-09 N	aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0069	0.0072	0.0002	Diff <2x LOR	
		antimony, total	7440-36-0	E420	0.00010	mg/L	0.00012	0.00012	0.0000002	Diff <2x LOR	
		arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00027	0.00034	0.00006	Diff <2x LOR	
		barium, total	7440-39-3	E420	0.00010	mg/L	0.127	0.124	2.26%	20%	
		beryllium, total	7440-41-7	E420	0.000020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR	
		bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, total	7440-42-8	E420	0.010	mg/L	0.018	0.017	0.0005	Diff <2x LOR	
		cadmium, total	7440-43-9	E420	0.0000050	mg/L	0.0257 μg/L	0.0000227	0.0000030	Diff <2x LOR	
		calcium, total	7440-70-2	E420	0.050	mg/L	73.2	71.5	2.34%	20%	
		cobalt, total	7440-48-4	E420	0.00010	mg/L	<0.10 µg/L	<0.00010	0	Diff <2x LOR	
		copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		iron, total	7439-89-6	E420	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		lithium, total	7439-93-2	E420	0.0010	mg/L	0.0085	0.0084	0.00010	Diff <2x LOR	
		magnesium, total	7439-95-4	E420	0.0050	mg/L	24.2	23.9	1.29%	20%	

 Page
 : 5 of 18

 Work Order
 : CG2212553

 Client
 : Teck Coal Limited

ub-Matrix: Water							Labora	ntory Duplicate (D	UP) Report		
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Total Metals (QC Lo	ot: 650167) - continued										
CG2212553-001	RG_M15_WS_LAEMP_CM O_2022-09_N	manganese, total	7439-96-5	E420	0.00010	mg/L	0.00070	0.00069	0.00001	Diff <2x LOR	
		molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.000873	0.000860	1.45%	20%	
		nickel, total	7440-02-0	E420	0.00050	mg/L	0.00130	0.00123	0.00007	Diff <2x LOR	
		potassium, total	7440-09-7	E420	0.050	mg/L	0.898	0.886	1.34%	20%	
		selenium, total	7782-49-2	E420	0.000050	mg/L	2.17 μg/L	0.00241	10.6%	20%	
		silicon, total	7440-21-3	E420	0.10	mg/L	2.33	2.33	0.0737%	20%	
		silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, total	7440-23-5	E420	0.050	mg/L	5.95	5.69	4.54%	20%	
		strontium, total	7440-24-6	E420	0.00020	mg/L	0.225	0.220	2.52%	20%	
		sulfur, total	7704-34-9	E420	0.50	mg/L	43.1	43.1	0.101%	20%	
		thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		uranium, total	7440-61-1	E420	0.000010	mg/L	0.000958	0.000997	4.06%	20%	
		vanadium, total	7440-62-2	E420	0.00050	mg/L	0.00062	0.00065	0.00003	Diff <2x LOR	
		zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	<0.0030	0	Diff <2x LOR	
Dissolved Metals (C	QC Lot: 650161)										
CG2212553-001	RG_M15_WS_LAEMP_CM O_2022-09_N	mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	
issolved Metals (C	QC Lot: 650493)										
CG2212553-001	RG_M15_WS_LAEMP_CM O_2022-09_N	chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	0.00011	<0.00010	0.00001	Diff <2x LOR	
issolved Metals (C	QC Lot: 650494)										
CG2212553-001	RG_M15_WS_LAEMP_CM O 2022-09 N	aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
	-2	antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00012	0.00012	0.000008	Diff <2x LOR	
		arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00018	0.00017	0.00001	Diff <2x LOR	
		barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.128	0.123	4.45%	20%	
		beryllium, dissolved	7440-41-7	E421	0.000020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR	
		bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		boron, dissolved	7440-42-8	E421	0.010	mg/L	0.015	0.015	0.0004	Diff <2x LOR	
		cadmium, dissolved	7440-43-9	E421	0.0000050	mg/L	0.0294 μg/L	0.0000220	0.0000074	Diff <2x LOR	
		calcium, dissolved	7440-70-2	E421	0.050	mg/L	65.5	65.4	0.186%	20%	
		cobalt, dissolved	7440-48-4	E421	0.00010	mg/L	<0.10 µg/L	<0.00010	0	Diff <2x LOR	
		copper, dissolved	7440-50-8	E421	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
	The second secon			1			1	1		I .	

 Page
 : 6 of 18

 Work Order
 : CG2212553

 Client
 : Teck Coal Limited

Sub-Matrix: Water				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Dissolved Metals (QC Lot: 650494) - contin	ued									
CG2212553-001	RG_M15_WS_LAEMP_CM O_2022-09_N	lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0085	0.0087	0.0002	Diff <2x LOR	
		magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	24.7	24.3	1.38%	20%	
		manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00051	0.00047	0.00004	Diff <2x LOR	
		molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.000784	0.000783	0.114%	20%	
		nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.00115	0.00114	0.000006	Diff <2x LOR	
		potassium, dissolved	7440-09-7	E421	0.050	mg/L	0.859	0.842	1.94%	20%	
		selenium, dissolved	7782-49-2	E421	0.000050	mg/L	2.37 µg/L	0.00245	3.08%	20%	
		silicon, dissolved	7440-21-3	E421	0.050	mg/L	2.24	2.17	3.12%	20%	
		silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, dissolved	7440-23-5	E421	0.050	mg/L	5.89	5.77	1.96%	20%	
		strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.227	0.227	0.180%	20%	
		sulfur, dissolved	7704-34-9	E421	0.50	mg/L	45.1	44.6	1.19%	20%	
		thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.000934	0.000945	1.25%	20%	
		vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		zinc, dissolved	7440-66-6	E421	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	

 Page
 : 7 of 18

 Work Order
 : CG2212553

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Water

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 649523)					
solids, total suspended [TSS]	E160-L	1	mg/L	<1.0	
Physical Tests (QCLot: 649536)					
solids, total dissolved [TDS]	E162	10	mg/L	<10	
Physical Tests (QCLot: 649571)					
urbidity	E121	0.1	NTU	<0.10	
Physical Tests (QCLot: 650894)					
acidity (as CaCO3)	E283	2	mg/L	<2.0	
Physical Tests (QCLot: 650900)					
conductivity	E100	1	μS/cm	<1.0	
Physical Tests (QCLot: 650901)					
alkalinity, bicarbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, carbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, hydroxide (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, total (as CaCO3)	E290	1	mg/L	<1.0	
Anions and Nutrients (QCLot: 649517)					
luoride	16984-48-8 E235.F	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 649518)					
promide	24959-67-9 E235.Br-L	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 649519)					
chloride	16887-00-6 E235.CI-L	0.1	mg/L	<0.10	
Anions and Nutrients (QCLot: 649520)					
nitrate (as N)	14797-55-8 E235.NO3-L	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 649521)					
nitrite (as N)	14797-65-0 E235.NO2-L	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 649522)					
sulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	<0.30	
Anions and Nutrients (QCLot: 649577)					
ammonia, total (as N)	7664-41-7 E298	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 649627)					
phosphate, ortho-, dissolved (as P)	14265-44-2 E378-U	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 650756)					
Kjeldahl nitrogen, total [TKN]	E318	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 650784)					

 Page
 : 8 of 18

 Work Order
 : CG2212553

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water

					
Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Anions and Nutrients (QCLot: 6507					
phosphorus, total	7723-14-0 E372-U	0.002	mg/L	<0.0020	
Organic / Inorganic Carbon(QCLot					
carbon, dissolved organic [DOC]	E358-L	0.5	mg/L	<0.50	
Organic / Inorganic Carbon(QCLot	t: 649551)				
carbon, total organic [TOC]	E355-L	0.5	mg/L	<0.50	
Total Metals (QCLot: 650164)					
mercury, total	7439-97-6 E508	0.000005	mg/L	<0.0000050	
Total Metals (QCLot: 650166)					
chromium, total	7440-47-3 E420.Cr-L	0.0001	mg/L	<0.00010	
Total Metals (QCLot: 650167)					
aluminum, total	7429-90-5 E420	0.003	mg/L	<0.0030	
antimony, total	7440-36-0 E420	0.0001	mg/L	<0.00010	
arsenic, total	7440-38-2 E420	0.0001	mg/L	<0.00010	
parium, total	7440-39-3 E420	0.0001	mg/L	<0.00010	
peryllium, total	7440-41-7 E420	0.00002	mg/L	<0.000020	
pismuth, total	7440-69-9 E420	0.00005	mg/L	<0.000050	
ooron, total	7440-42-8 E420	0.01	mg/L	<0.010	
cadmium, total	7440-43-9 E420	0.000005	mg/L	<0.0000050	
calcium, total	7440-70-2 E420	0.05	mg/L	<0.050	
cobalt, total	7440-48-4 E420	0.0001	mg/L	<0.00010	
copper, total	7440-50-8 E420	0.0005	mg/L	<0.00050	
ron, total	7439-89-6 E420	0.01	mg/L	<0.010	
ead, total	7439-92-1 E420	0.00005	mg/L	<0.000050	
ithium, total	7439-93-2 E420	0.001	mg/L	<0.0010	
magnesium, total	7439-95-4 E420	0.005	mg/L	<0.0050	
manganese, total	7439-96-5 E420	0.0001	mg/L	<0.00010	
nolybdenum, total	7439-98-7 E420	0.00005	mg/L	<0.000050	
nickel, total	7440-02-0 E420	0.0005	mg/L	<0.00050	
potassium, total	7440-09-7 E420	0.05	mg/L	<0.050	
selenium, total	7782-49-2 E420	0.00005	mg/L	<0.000050	
silicon, total	7440-21-3 E420	0.1	mg/L	<0.10	
silver, total	7440-22-4 E420	0.00001	mg/L	<0.000010	
sodium, total	7440-23-5 E420	0.05	mg/L	<0.050	
strontium, total	7440-24-6 E420	0.0002	mg/L	<0.00020	
sulfur, total	7704-34-9 E420	0.5	mg/L	<0.50	
thallium, total	7440-28-0 E420	0.00001	mg/L	<0.000010	

Page : 9 of 18
Work Order : CG2212553
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Total Metals (QCLot: 650167) - cont	inued				
in, total	7440-31-5 E420	0.0001	mg/L	<0.00010	
itanium, total	7440-32-6 E420	0.0003	mg/L	<0.00030	
ıranium, total	7440-61-1 E420	0.00001	mg/L	<0.000010	
vanadium, total	7440-62-2 E420	0.0005	mg/L	<0.00050	
zinc, total	7440-66-6 E420	0.003	mg/L	<0.0030	
Dissolved Metals (QCLot: 650161)					
nercury, dissolved	7439-97-6 E509	0.000005	mg/L	<0.000050	
Dissolved Metals (QCLot: 650493)					
chromium, dissolved	7440-47-3 E421.Cr-L	0.0001	mg/L	<0.00010	
Dissolved Metals (QCLot: 650494)					
lluminum, dissolved	7429-90-5 E421	0.001	mg/L	<0.0010	
antimony, dissolved	7440-36-0 E421	0.0001	mg/L	<0.00010	
rsenic, dissolved	7440-38-2 E421	0.0001	mg/L	<0.00010	
arium, dissolved	7440-39-3 E421	0.0001	mg/L	<0.00010	
peryllium, dissolved	7440-41-7 E421	0.00002	mg/L	<0.000020	
ismuth, dissolved	7440-69-9 E421	0.00005	mg/L	<0.000050	
oron, dissolved	7440-42-8 E421	0.01	mg/L	<0.010	
admium, dissolved	7440-43-9 E421	0.000005	mg/L	<0.0000050	
alcium, dissolved	7440-70-2 E421	0.05	mg/L	<0.050	
obalt, dissolved	7440-48-4 E421	0.0001	mg/L	<0.00010	
opper, dissolved	7440-50-8 E421	0.0002	mg/L	<0.00020	
on, dissolved	7439-89-6 E421	0.01	mg/L	<0.010	
ead, dissolved	7439-92-1 E421	0.00005	mg/L	<0.000050	
thium, dissolved	7439-93-2 E421	0.001	mg/L	<0.0010	
nagnesium, dissolved	7439-95-4 E421	0.005	mg/L	<0.0050	
nanganese, dissolved	7439-96-5 E421	0.0001	mg/L	<0.00010	
nolybdenum, dissolved	7439-98-7 E421	0.00005	mg/L	<0.000050	
ickel, dissolved	7440-02-0 E421	0.0005	mg/L	<0.00050	
ootassium, dissolved	7440-09-7 E421	0.05	mg/L	<0.050	
elenium, dissolved	7782-49-2 E421	0.00005	mg/L	<0.000050	
ilicon, dissolved	7440-21-3 E421	0.05	mg/L	<0.050	
ilver, dissolved	7440-22-4 E421	0.00001	mg/L	<0.000010	
odium, dissolved	7440-23-5 E421	0.05	mg/L	<0.050	
strontium, dissolved	7440-24-6 E421	0.0002	mg/L	<0.00020	
sulfur, dissolved	7704-34-9 E421	0.5	mg/L	<0.50	
thallium, dissolved	7440-28-0 E421	0.00001	mg/L	<0.000010	

 Page
 : 10 of 18

 Work Order
 : CG2212553

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

ALS

Sub-Matrix: Water

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Dissolved Metals (QCLot: 650494) - c	ontinued					
tin, dissolved	7440-31-5	E421	0.0001	mg/L	<0.00010	
titanium, dissolved	7440-32-6	E421	0.0003	mg/L	<0.00030	
uranium, dissolved	7440-61-1 I	E421	0.00001	mg/L	<0.000010	
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	<0.00050	
zinc, dissolved	7440-66-6	E421	0.001	mg/L	<0.0010	

 Page
 : 11 of 18

 Work Order
 : CG2212553

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water	Laboratory Control Sample (LCS) Report										
					Spike						
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier		
Physical Tests (QCLot: 649523)											
solids, total suspended [TSS]		E160-L	1	mg/L	150 mg/L	95.7	85.0	115			
Physical Tests (QCLot: 649536)											
solids, total dissolved [TDS]		E162	10	mg/L	1000 mg/L	95.0	85.0	115			
Physical Tests (QCLot: 649571)											
turbidity		E121	0.1	NTU	200 NTU	98.2	85.0	115			
Physical Tests (QCLot: 650423)											
oxidation-reduction potential [ORP]		E125		mV	220 mV	101	95.4	104			
Physical Tests (QCLot: 650894)									1		
acidity (as CaCO3)		E283	2	mg/L	50 mg/L	103	85.0	115			
Physical Tests (QCLot: 650899)									1		
рН		E108		pH units	7 pH units	101	98.6	101			
Physical Tests (QCLot: 650900)											
conductivity		E100	1	μS/cm	146.9 μS/cm	97.5	90.0	110			
Physical Tests (QCLot: 650901)											
alkalinity, total (as CaCO3)		E290	1	mg/L	500 mg/L	100	85.0	115			
Anions and Nutrients (QCLot: 649517)											
fluoride	16984-48-8	E235.F	0.02	mg/L	1 mg/L	103	90.0	110			
Anions and Nutrients (QCLot: 649518)											
bromide	24959-67-9	E235.Br-L	0.05	mg/L	0.5 mg/L	102	85.0	115			
Anions and Nutrients (QCLot: 649519)											
chloride	16887-00-6	E235.CI-L	0.1	mg/L	100 mg/L	100	90.0	110			
Anions and Nutrients (QCLot: 649520)											
nitrate (as N)	14797-55-8	E235.NO3-L	0.005	mg/L	2.5 mg/L	101	90.0	110			
Anions and Nutrients (QCLot: 649521)											
nitrite (as N)	14797-65-0	E235.NO2-L	0.001	mg/L	0.5 mg/L	101	90.0	110			
Anions and Nutrients (QCLot: 649522)											
sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mg/L	100 mg/L	101	90.0	110			
Anions and Nutrients (QCLot: 649577)									I		
ammonia, total (as N)	7664-41-7	E298	0.005	mg/L	0.2 mg/L	99.2	85.0	115			
Anions and Nutrients (QCLot: 649627)									1		
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.001	mg/L	0.03 mg/L	102	80.0	120			
Anions and Nutrients (QCLot: 650756)					-						
Amons and Nathents (QCEOL 030730)											

 Page
 : 12 of 18

 Work Order
 : CG2212553

 Client
 : Teck Coal Limited

Sub-Matrix: Water	Laboratory Control Sample (LCS) Report								
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number M	lethod	LOR	Unit	Concentration	LCS	Low	High	Qualifie
Anions and Nutrients (QCLot: 650756) - cont	tinued								
Kjeldahl nitrogen, total [TKN]	E	318	0.05	mg/L	4 mg/L	102	75.0	125	
Anions and Nutrients (QCLot: 650784)									
phosphorus, total	7723-14-0 E	372-U	0.002	mg/L	0.03 mg/L	96.8	80.0	120	
Organic / Inorganic Carbon (QCLot: 649550)									'
carbon, dissolved organic [DOC]	E	358-L	0.5	mg/L	8.57 mg/L	90.6	80.0	120	
Organic / Inorganic Carbon (QCLot: 649551)						1			
carbon, total organic [TOC]	E:	355-L	0.5	mg/L	8.57 mg/L	97.1	80.0	120	
Total Metals (QCLot: 650164)									
mercury, total	7439-97-6 E	508	0.000005	mg/L	0.0001 mg/L	101	80.0	120	
Total Metals (QCLot: 650166)									1
chromium, total	7440-47-3 E	420.Cr-L	0.0001	mg/L	0.25 mg/L	98.4	80.0	120	
Total Metals (QCLot: 650167)									
aluminum, total	7429-90-5 E4	420	0.003	mg/L	2 mg/L	98.9	80.0	120	
antimony, total	7440-36-0 E	420	0.0001	mg/L	1 mg/L	108	80.0	120	
arsenic, total	7440-38-2 E	420	0.0001	mg/L	1 mg/L	95.5	80.0	120	
barium, total	7440-39-3 E	420	0.0001	mg/L	0.25 mg/L	101	80.0	120	
beryllium, total	7440-41-7 E	420	0.00002	mg/L	0.1 mg/L	98.5	80.0	120	
bismuth, total	7440-69-9 E	420	0.00005	mg/L	1 mg/L	93.7	80.0	120	
boron, total	7440-42-8 E	420	0.01	mg/L	1 mg/L	98.6	80.0	120	
cadmium, total	7440-43-9 E	420	0.000005	mg/L	0.1 mg/L	94.4	80.0	120	
calcium, total	7440-70-2 E	420	0.05	mg/L	50 mg/L	97.2	80.0	120	
cobalt, total	7440-48-4 E	420	0.0001	mg/L	0.25 mg/L	95.8	80.0	120	
copper, total	7440-50-8 E	420	0.0005	mg/L	0.25 mg/L	94.7	80.0	120	
ron, total	7439-89-6 E	420	0.01	mg/L	1 mg/L	92.6	80.0	120	
ead, total	7439-92-1 E4	420	0.00005	mg/L	0.5 mg/L	97.2	80.0	120	
ithium, total	7439-93-2 E	420	0.001	mg/L	0.25 mg/L	100	80.0	120	
magnesium, total	7439-95-4 E	420	0.005	mg/L	50 mg/L	103	80.0	120	
manganese, total	7439-96-5 E4	420	0.0001	mg/L	0.25 mg/L	96.9	80.0	120	
molybdenum, total	7439-98-7 E	420	0.00005	mg/L	0.25 mg/L	98.9	80.0	120	
nickel, total	7440-02-0 E	420	0.0005	mg/L	0.5 mg/L	95.2	80.0	120	
potassium, total	7440-09-7 E	420	0.05	mg/L	50 mg/L	100	80.0	120	
selenium, total	7782-49-2 E	420	0.00005	mg/L	1 mg/L	94.7	80.0	120	
silicon, total	7440-21-3 E	420	0.1	mg/L	10 mg/L	101	60.0	140	
silver, total	7440-22-4 E	420	0.00001	mg/L	0.1 mg/L	101	80.0	120	
sodium, total	7440-23-5 E		0.05	mg/L	50 mg/L	97.3	80.0	120	

 Page
 : 13 of 18

 Work Order
 : CG2212553

 Client
 : Teck Coal Limited

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report						
					Spike	Recovery (%)	Recovery	Limits (%)			
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier		
Total Metals (QCLot: 650167) - continu	ued										
strontium, total	7440-24-6 E	E420	0.0002	mg/L	0.25 mg/L	97.0	80.0	120			
sulfur, total	7704-34-9 E	E420	0.5	mg/L	50 mg/L	92.3	80.0	120			
thallium, total	7440-28-0 E	E420	0.00001	mg/L	1 mg/L	96.9	80.0	120			
tin, total	7440-31-5 E	E420	0.0001	mg/L	0.5 mg/L	99.6	80.0	120			
titanium, total	7440-32-6 E	E420	0.0003	mg/L	0.25 mg/L	88.5	80.0	120			
uranium, total	7440-61-1 E	E420	0.00001	mg/L	0.005 mg/L	92.0	80.0	120			
vanadium, total	7440-62-2 E	E420	0.0005	mg/L	0.5 mg/L	99.4	80.0	120			
zinc, total	7440-66-6 E	E 420	0.003	mg/L	0.5 mg/L	90.1	80.0	120			
mercury, dissolved	7439-97-6 E	E509	0.000005	mg/L	0.0001 mg/L	82.7	80.0	120			
Discoluted Matela (OCI at: 650402)											
Dissolved Metals (QCLot: 650493) chromium, dissolved	7440-47-3 E	E421.Cr-L	0.0001	mg/L	0.25 mg/L	94.5	80.0	120			
·					5.24g/2	3					
Dissolved Metals (QCLot: 650494) aluminum, dissolved	7429-90-5 E	E421	0.001	mg/L	2 mg/L	102	80.0	120			
antimony, dissolved	7440-36-0 E		0.0001	mg/L	1 mg/L	104	80.0	120			
arsenic, dissolved	7440-38-2 E		0.0001	mg/L	1 mg/L	96.5	80.0	120			
barium, dissolved	7440-39-3 E		0.0001	mg/L	0.25 mg/L	98.2	80.0	120			
beryllium, dissolved	7440-41-7 E		0.00002	mg/L	0.1 mg/L	95.5	80.0	120			
bismuth, dissolved	7440-69-9 E		0.00005	mg/L	1 mg/L	97.2	80.0	120			
boron, dissolved	7440-42-8 E		0.01	mg/L	1 mg/L	95.5	80.0	120			
cadmium, dissolved	7440-43-9 E		0.000005	mg/L	0.1 mg/L	97.1	80.0	120			
calcium, dissolved	7440-70-2 E		0.05	mg/L	50 mg/L	97.2	80.0	120			
cobalt, dissolved	7440-48-4		0.0001	mg/L	0.25 mg/L	97.1	80.0	120			
copper, dissolved	7440-50-8 E		0.0002	mg/L	0.25 mg/L	96.0	80.0	120			
iron, dissolved	7439-89-6 E		0.01	mg/L	1 mg/L	99.4	80.0	120			
lead, dissolved	7439-92-1 E		0.00005	mg/L	0.5 mg/L	97.9	80.0	120			
lithium, dissolved	7439-93-2 E		0.001	mg/L	0.25 mg/L	99.0	80.0	120			
magnesium, dissolved	7439-95-4 E		0.005	mg/L	50 mg/L	103	80.0	120			
manganese, dissolved	7439-96-5 E		0.0001	mg/L	0.25 mg/L	102	80.0	120			
molybdenum, dissolved	7439-98-7 E		0.00005	mg/L	0.25 mg/L	101	80.0	120			
nickel, dissolved	7440-02-0 E		0.0005	mg/L	0.25 mg/L	96.8	80.0	120			
potassium, dissolved	7440-09-7 E		0.05	mg/L	50 mg/L	96.5	80.0	120			
selenium, dissolved	7782-49-2		0.00005	mg/L	1 mg/L	92.8	80.0	120			
silicon, dissolved	7440-21-3 E		0.05	mg/L	10 mg/L	99.6	60.0	140			
silver, dissolved	7440-22-4		0.00001	mg/L	0.1 mg/L	95.2	80.0	120			
sodium, dissolved	7440-23-5 E		0.05	mg/L	50 mg/L	97.1	80.0	120			
	7440-24-6 E		0.002	mg/L	_		80.0	120			
strontium, dissolved	7440-24-0	_74	0.0002	mg/L	0.25 mg/L	98.6	00.0	120			

 Page
 : 14 of 18

 Work Order
 : CG2212553

 Client
 : Teck Coal Limited

Sub-Matrix: Water	o-Matrix: Water					Laboratory Control Sample (LCS) Report					
					Spike	Recovery (%)	Recovery Limits (%)				
Analyte	CAS Number N	/lethod	LOR	Unit	Concentration	LCS	Low	High	Qualifier		
Dissolved Metals (QCLot: 650494) - cor	ntinued										
sulfur, dissolved	7704-34-9 E	421	0.5	mg/L	50 mg/L	101	80.0	120			
thallium, dissolved	7440-28-0 E	421	0.00001	mg/L	1 mg/L	98.9	80.0	120			
tin, dissolved	7440-31-5 E	421	0.0001	mg/L	0.5 mg/L	96.8	80.0	120			
titanium, dissolved	7440-32-6 E	421	0.0003	mg/L	0.25 mg/L	99.6	80.0	120			
uranium, dissolved	7440-61-1 E	421	0.00001	mg/L	0.005 mg/L	96.0	80.0	120			
vanadium, dissolved	7440-62-2 E	421	0.0005	mg/L	0.5 mg/L	99.8	80.0	120			
zinc, dissolved	7440-66-6 E	421	0.001	mg/L	0.5 mg/L	97.3	80.0	120			

 Page
 : 15 of 18

 Work Order
 : CG2212553

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

ub-Matrix: Water					Matrix Spike (MS) Report						
					Spi	ike	Recovery (%)	Recovery	Limits (%)		
Laboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier	
	ients (QCLot: 649517)										
CG2212553-002	RG_MIULE_WS_LAEMP_C MP_2022-09_N	fluoride	16984-48-8	E235.F	1.02 mg/L	1 mg/L	102	75.0	125		
Anions and Nutr	ients (QCLot: 649518)										
CG2212553-002	RG_MIULE_WS_LAEMP_C MP_2022-09_N	bromide	24959-67-9	E235.Br-L	0.501 mg/L	0.5 mg/L	100	75.0	125		
Anions and Nutr	ients (QCLot: 649519)										
CG2212553-002	RG_MIULE_WS_LAEMP_C MP_2022-09_N	chloride	16887-00-6	E235.CI-L	101 mg/L	100 mg/L	101	75.0	125		
Anions and Nutr	ients (QCLot: 649520)										
CG2212553-002	RG_MIULE_WS_LAEMP_C MP_2022-09_N	nitrate (as N)	14797-55-8	E235.NO3-L	2.53 mg/L	2.5 mg/L	101	75.0	125		
Anions and Nutr	ients (QCLot: 649521)										
CG2212553-002	RG_MIULE_WS_LAEMP_C MP_2022-09_N	nitrite (as N)	14797-65-0	E235.NO2-L	0.512 mg/L	0.5 mg/L	102	75.0	125		
Anions and Nutr	ients (QCLot: 649522)										
CG2212553-002	RG_MIULE_WS_LAEMP_C MP_2022-09_N	sulfate (as SO4)	14808-79-8	E235.SO4	ND mg/L	100 mg/L	ND	75.0	125		
Anions and Nutr	ients (QCLot: 649577)										
CG2212550-002	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.102 mg/L	0.1 mg/L	102	75.0	125		
Anions and Nutr	ients (QCLot: 649627)										
CG2212545-002	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0468 mg/L	0.05 mg/L	93.6	70.0	130		
Anions and Nutr	ients (QCLot: 650756)										
CG2212553-002	RG_MIULE_WS_LAEMP_C MP_2022-09_N	Kjeldahl nitrogen, total [TKN]		E318	2.60 mg/L	2.5 mg/L	104	70.0	130		
Anions and Nutr	ients (QCLot: 650784)										
CG2212553-002	RG_MIULE_WS_LAEMP_C MP_2022-09_N	phosphorus, total	7723-14-0	E372-U	0.0490 mg/L	0.05 mg/L	97.9	70.0	130		
Organic / Inorga	nic Carbon (QCLot: 649	550)									
CG2212550-001	Anonymous	carbon, dissolved organic [DOC]		E358-L	5.18 mg/L	5 mg/L	104	70.0	130		
Organic / Inorga	nic Carbon (QCLot: 649	551)									
CG2212550-001	Anonymous	carbon, total organic [TOC]		E355-L	5.41 mg/L	5 mg/L	108	70.0	130		
Fotal Metals (QC	Lot: 650164)										
CG2212515-002	Anonymous	mercury, total	7439-97-6	E508	0.0000968 mg/L	0.0001 mg/L	96.8	70.0	130		

 Page
 : 16 of 18

 Work Order
 : CG2212553

 Client
 : Teck Coal Limited

Sub-Matrix: Water							Matrix Spik	re (MS) Report		
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
aboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie
otal Metals (QC	Lot: 650166)									
CG2212553-002	RG_MIULE_WS_LAEMP_C MP_2022-09_N	chromium, total	7440-47-3	E420.Cr-L	0.388 mg/L	0.4 mg/L	97.1	70.0	130	
otal Metals (QC	Lot: 650167)									
CG2212553-002	RG_MIULE_WS_LAEMP_C	aluminum, total	7429-90-5	E420	1.91 mg/L	2 mg/L	95.3	70.0	130	
	MP_2022-09_N	antimony, total	7440-36-0	E420	0.209 mg/L	0.2 mg/L	104	70.0	130	
		arsenic, total	7440-38-2	E420	0.191 mg/L	0.2 mg/L	95.4	70.0	130	
		barium, total	7440-39-3	E420	0.196 mg/L	0.2 mg/L	98.0	70.0	130	
		beryllium, total	7440-41-7	E420	0.410 mg/L	0.4 mg/L	102	70.0	130	
		bismuth, total	7440-69-9	E420	0.0966 mg/L	0.1 mg/L	96.6	70.0	130	
		boron, total	7440-42-8	E420	1.01 mg/L	1 mg/L	101	70.0	130	
		cadmium, total	7440-43-9	E420	0.0394 mg/L	0.04 mg/L	98.5	70.0	130	
		calcium, total	7440-70-2	E420	ND mg/L	40 mg/L	ND	70.0	130	
		cobalt, total	7440-48-4	E420	0.192 mg/L	0.2 mg/L	95.9	70.0	130	
		copper, total	7440-50-8	E420	0.194 mg/L	0.2 mg/L	97.3	70.0	130	
		iron, total	7439-89-6	E420	19.1 mg/L	20 mg/L	95.4	70.0	130	
		lead, total	7439-92-1	E420	0.201 mg/L	0.2 mg/L	100	70.0	130	
		lithium, total	7439-93-2	E420	1.05 mg/L	1 mg/L	105	70.0	130	
		magnesium, total	7439-95-4	E420	ND mg/L	10 mg/L	ND	70.0	130	
		manganese, total	7439-96-5	E420	0.200 mg/L	0.2 mg/L	99.8	70.0	130	
		molybdenum, total	7439-98-7	E420	0.206 mg/L	0.2 mg/L	103	70.0	130	
		nickel, total	7440-02-0	E420	0.390 mg/L	0.4 mg/L	97.4	70.0	130	
		potassium, total	7440-09-7	E420	39.8 mg/L	40 mg/L	99.4	70.0	130	
		selenium, total	7782-49-2	E420	0.405 mg/L	0.4 mg/L	101	70.0	130	
		silicon, total	7440-21-3	E420	100 mg/L	100 mg/L	100	70.0	130	
		silver, total	7440-22-4	E420	0.0443 mg/L	0.04 mg/L	111	70.0	130	
		sodium, total	7440-23-5	E420	18.6 mg/L	20 mg/L	93.2	70.0	130	
		strontium, total	7440-24-6	E420	ND mg/L	0.2 mg/L	ND	70.0	130	
		sulfur, total	7704-34-9	E420	193 mg/L	200 mg/L	96.5	70.0	130	
		thallium, total	7440-28-0	E420	0.0390 mg/L	0.04 mg/L	97.5	70.0	130	
		tin, total	7440-31-5	E420	0.204 mg/L	0.2 mg/L	102	70.0	130	
		titanium, total	7440-32-6	E420	0.346 mg/L	0.4 mg/L	86.4	70.0	130	
		uranium, total	7440-61-1	E420	0.0388 mg/L	0.04 mg/L	96.9	70.0	130	
		vanadium, total	7440-62-2	E420	0.983 mg/L	1 mg/L	98.3	70.0	130	
		zinc, total	7440-66-6	E420	3.79 mg/L	4 mg/L	94.9	70.0	130	
ssolved Metals	(QCLot: 650161)									
G2212553-002	RG_MIULE_WS_LAEMP_C MP 2022-09 N	mercury, dissolved	7439-97-6	E509	0.000100 mg/L	0.0001 mg/L	100	70.0	130	

 Page
 : 17 of 18

 Work Order
 : CG2212553

 Client
 : Teck Coal Limited

ALS

Sub-Matrix: Water							Matrix Spil	ke (MS) Report		
					Spi	ike	Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
	(QCLot: 650493)									
CG2212553-002	RG_MIULE_WS_LAEMP_C MP 2022-09 N	chromium, dissolved	7440-47-3	E421.Cr-L	0.384 mg/L	0.4 mg/L	95.9	70.0	130	
Dissolved Metals	(QCLot: 650494)									
CG2212553-002	RG_MIULE_WS_LAEMP_C	aluminum, dissolved	7429-90-5	E421	1.77 mg/L	2 mg/L	88.6	70.0	130	
	MP_2022-09_N	antimony, dissolved	7440-36-0	E421	0.205 mg/L	0.2 mg/L	102	70.0	130	
		arsenic, dissolved	7440-38-2	E421	0.195 mg/L	0.2 mg/L	97.3	70.0	130	
		barium, dissolved	7440-39-3	E421	0.189 mg/L	0.2 mg/L	94.7	70.0	130	
		beryllium, dissolved	7440-41-7	E421	0.362 mg/L	0.4 mg/L	90.5	70.0	130	
		bismuth, dissolved	7440-69-9	E421	0.0978 mg/L	0.1 mg/L	97.8	70.0	130	
		boron, dissolved	7440-42-8	E421	0.928 mg/L	1 mg/L	92.8	70.0	130	
		cadmium, dissolved	7440-43-9	E421	0.0391 mg/L	0.04 mg/L	97.7	70.0	130	
		calcium, dissolved	7440-70-2	E421	ND mg/L	40 mg/L	ND	70.0	130	
		cobalt, dissolved	7440-48-4	E421	0.200 mg/L	0.2 mg/L	99.8	70.0	130	
		copper, dissolved	7440-50-8	E421	0.196 mg/L	0.2 mg/L	97.8	70.0	130	
		iron, dissolved	7439-89-6	E421	17.8 mg/L	20 mg/L	88.9	70.0	130	
		lead, dissolved	7439-92-1	E421	0.195 mg/L	0.2 mg/L	97.6	70.0	130	
		lithium, dissolved	7439-93-2	E421	0.915 mg/L	1 mg/L	91.5	70.0	130	
		magnesium, dissolved	7439-95-4	E421	ND mg/L	10 mg/L	ND	70.0	130	
		manganese, dissolved	7439-96-5	E421	0.198 mg/L	0.2 mg/L	98.9	70.0	130	
		molybdenum, dissolved	7439-98-7	E421	0.200 mg/L	0.2 mg/L	100	70.0	130	
		nickel, dissolved	7440-02-0	E421	0.394 mg/L	0.4 mg/L	98.4	70.0	130	
		potassium, dissolved	7440-09-7	E421	38.1 mg/L	40 mg/L	95.2	70.0	130	
		selenium, dissolved	7782-49-2	E421	0.397 mg/L	0.4 mg/L	99.4	70.0	130	
		silicon, dissolved	7440-21-3	E421	92.3 mg/L	100 mg/L	92.3	70.0	130	
		silver, dissolved	7440-22-4	E421	0.0428 mg/L	0.04 mg/L	107	70.0	130	
		sodium, dissolved	7440-23-5	E421	18.4 mg/L	20 mg/L	92.2	70.0	130	
		strontium, dissolved	7440-24-6	E421	ND mg/L	0.2 mg/L	ND	70.0	130	
		sulfur, dissolved	7704-34-9	E421	163 mg/L	200 mg/L	81.5	70.0	130	
		thallium, dissolved	7440-28-0	E421	0.0393 mg/L	0.04 mg/L	98.2	70.0	130	
		tin, dissolved	7440-31-5	E421	0.192 mg/L	0.2 mg/L	96.0	70.0	130	
		titanium, dissolved	7440-32-6	E421	0.396 mg/L	0.4 mg/L	98.9	70.0	130	
		uranium, dissolved	7440-61-1	E421	0.0387 mg/L	0.04 mg/L	96.8	70.0	130	
		vanadium, dissolved	7440-62-2	E421	0.980 mg/L	1 mg/L	98.0	70.0	130	
		zinc, dissolved	7440-66-6	E421	4.12 mg/L	4 mg/L	103	70.0	130	

 Page
 : 18 of 18

 Work Order
 : CG2212553

 Client
 : Teck Coal Limited

RUSH: Priorty REP LAEMP CMm 2022-09 ALS TURNAROUND TIME: COC ID: 2-3 Business Days OTHER INFO PROJECT/CLIENT INFO LABORATORY Lab Name ALS Calgary Facility Name / Job# Regional Effects Program Report Format / Distribution Excel Lab Contact Lyudmyla Shvets Project Manager Cybele Heddle Email 1: AguaSciLab@Teck.com Email Lyudmyla.Shvets@ALSGlobal.com Email 2: Email Cybele.Heddle@teck.com teckcoal@equisonline.com Address 2559 29 Street NE Address 421 Pine Avenue Email 3: Teck Lab_Results@teck.com X Email 4: Lisa.Bowron@mlnnow.ca City Calgary Province AB City Sparwood Provinc BC Email 5: Tyler.Mehler@minnow.ca Postal Code T1Y 7B5 Country Canada Country Canada Email 6: Postal Code V0B 2G0 Hannah Penner@Teck.com X VPO00816101 Phone Number 403 407 1794 Phone Number 1-250-865-3048 PO number Filtered - F: Field, L: Lab, FL: Field & Lab, N SAMPLE DETAILS ANALYSIS REQUESTED HNO3 HNO3 H2SO4 H2SO4 HCL HCL Hazardous Material (Yes/No) FECKCOAL_ROUTINE TECKCOAL_METNHG _D TECKCOAL_METNHG_T Mercury_Dissolved TOC_TKN_PT G=Grab #Of DOC Sample Location Field Time C=Com Sample ID (sys loc code) Matrix Date (24hr)Cont D **Environmental Division** RG MI5 WS LAEMP CMO 2022-09 N RG MI5 WS 2022/09/12 12:20 G 7 1 Calgary Work Order Reference 2022/09/12 WS G 7 1 RG MIULE WS LAEMP CMO 2022-09 N RG_MIULE 15:50 1 1 1 CG2212553 Telephone: +1 403 407 1600 RELINQUISHED BY/AFFILIATION DATE/TIME ACCEPTED BY/AFFILIATION ADDITIONAL COMMENTS/SPECIAL INSTRUCTIONS DATE/TIME Jennifer Ings/Minnow SERVICE REQUEST (rush - subject to availability) Regular (default) Sampler's Name Jennifer Ings Møbile# 519-500-3444 Priority (2-3 business days) - 50% surcharge X femily Aro Emergency (1 Business Day) - 100% surcharge Sampler's Signature September 13, 2022 Date/Time For Emergency <1 Day, ASAP or Weekend - Contact ALS

CERTIFICATE OF ANALYSIS

Work Order : CG2212617

Client : Teck Coal Limited

Contact : Cybele Heddle

Address : 421 Pine Avenue

Sparwood BC Canada V0B2G0

Telephone : ---

Project : REGIONAL EFFECTS PROGRAM

PO : VPO00816101

C-O-C number : REP_LAEMP_CMm_2022-09_ALS

Sampler : Jennifer Ings

Site : --

Quote number : Teck Coal Master Quote

No. of samples received : 3
No. of samples analysed : 3

Page : 1 of 6

Laboratory : Calgary - Environmental

Account Manager : Lyudmyla Shvets

Address : 2559 29th Street NE

Calgary AB Canada T1Y 7B5

Telephone : +1 403 407 1800

Date Samples Received : 15-Sep-2022 08:50

Date Analysis Commenced : 16-Sep-2022

Issue Date : 17-Sep-2022 18:01

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Anthony Calero	Supervisor - Inorganic	Metals, Calgary, Alberta
Harpreet Chawla	Team Leader - Inorganics	Inorganics, Calgary, Alberta
Mackenzie Lamoureux	Laboratory Analyst	Metals, Calgary, Alberta
Sara Niroomand		Inorganics, Calgary, Alberta
Sara Niroomand		Metals, Calgary, Alberta
Sheida Aria	Lab Assistant	Metals, Calgary, Alberta

Page : 2 of 6 Work Order : CG2212617 Client

: Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
%	percent
μg/L	micrograms per litre
μS/cm	Microsiemens per centimetre
meq/L	milliequivalents per litre
mg/L	milligrams per litre
mV	millivolts
NTU	nephelometric turbidity units
pH units	pH units

<: less than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

Qualifier	Description
DLB	Detection Limit Raised. Analyte detected at comparable level in Method Blank.
DLDS	Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical
	Conductivity.
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference,
	colour, turbidity).
DTC	Dissolved concentration exceeds total. Results were confirmed by re-analysis.
HTA	Analytical holding time was exceeded.

>: greater than.

Page : 3 of 6
Work Order : CG2212617
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Sub-Matrix: Water (Matrix: Water)			CI	lient sample ID	RG_MIDAG_WS _LAEMP_CMO_ 2022-09_N	RG_MIDCO_WS _LAEMP_CMO_ 2022-09_N	RG_RIVER_WS _LAEMP_CMO_ 2022-09_N	
			Client samp	oling date / time	13-Sep-2022 11:15	13-Sep-2022 11:15	13-Sep-2022 11:15	
Analyte	CAS Number	Method	LOR	Unit	CG2212617-001	CG2212617-002	CG2212617-003	
					Result	Result	Result	
Physical Tests		E283	2.0	ma/l	<2.0	<2.0	<2.0	
acidity (as CaCO3)				mg/L		255	261	
alkalinity, bicarbonate (as CaCO3)	 74 50 0	E290	1.0 1.0	mg/L	189 230	311	318	
alkalinity, bicarbonate (as HCO3)	71-52-3	E290		mg/L				
alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	4.2	4.4	
alkalinity, carbonate (as CO3)	3812-32-6	E290	1.0	mg/L	<1.0	2.5	2.6	
alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	<1.0	
alkalinity, hydroxide (as OH)	14280-30-9	E290	1.0	mg/L	<1.0	<1.0	<1.0	
alkalinity, total (as CaCO3)		E290	1.0	mg/L	189	260	265	
conductivity		E100	2.0	μS/cm	732	1140	1130	
hardness (as CaCO3), dissolved		EC100	0.50	mg/L	386	669	649	
oxidation-reduction potential [ORP]		E125	0.10	mV	315	320	320	
pH		E108	0.10	pH units	8.25	8.30	8.30	
solids, total dissolved [TDS]		E162	10	mg/L	512	908	892	
solids, total suspended [TSS]		E160-L	1.0	mg/L	<1.0	1.6	1.7	
turbidity		E121	0.10	NTU	0.37 HTA	0.42 HTA	0.29 HTA	
Anions and Nutrients								
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0058	<0.0050	0.0074	
bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	<0.250 DLDS	<0.250 DLDS	
chloride	16887-00-6	E235.CI-L	0.10	mg/L	1.00	1.74	1.78	
fluoride	16984-48-8	E235.F	0.020	mg/L	0.192	0.145	0.146	
Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	<0.500 DLM	0.102	<0.500 DLM	
nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	0.728	1.73	1.73	
nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	0.0013	0.0068	0.0064	
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	<0.0010	<0.0010	<0.0010	
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0050	0.0035	0.0029	
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	230	470	469	
Organic / Inorganic Carbon								
carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	<0.50	<0.50	<0.50	
carbon, total organic [TOC]		E355-L	0.50	mg/L	<0.50	0.52	<0.50	

Page : 4 of 6
Work Order : CG2212617
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Sub-Matrix: Water (Matrix: Water)			Cli	ient sample ID	RG_MIDAG_WS _LAEMP_CMO_ 2022-09 N	RG_MIDCO_WS _LAEMP_CMO_ 2022-09 N	RG_RIVER_WS _LAEMP_CMO_ 2022-09 N	
			Client samp	ling date / time	13-Sep-2022 11:15	13-Sep-2022 11:15	13-Sep-2022 11:15	
Analyte	CAS Number	Method	LOR	Unit	CG2212617-001 Result	CG2212617-002 Result	CG2212617-003 Result	
Ion Balance					Result	Result	Result	
anion sum		EC101	0.10	meq/L	8.66	15.2	15.2	
cation sum		EC101	0.10	meq/L	8.24	14.4	14.0	
ion balance (cations/anions)		EC101	0.010	%	95.2	94.7	92.1	
ion balance (APHA)		EC101	0.010	%	2.48	2.70	4.11	
Total Metals								
aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0066	0.0073	0.0064	
antimony, total	7440-36-0	E420	0.00010	mg/L	0.00017	0.00031	0.00044	
arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00030	0.00028	0.00027	
barium, total	7440-39-3	E420	0.00010	mg/L	0.0803	0.0764	0.0775	
beryllium, total	7440-41-7	E420	0.020	μg/L	<0.020	<0.020	<0.020	
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	
boron, total	7440-42-8	E420	0.010	mg/L	0.033	0.072	0.069	
cadmium, total	7440-43-9	E420	0.0050	μg/L	0.0226	0.0289	0.0350	
calcium, total	7440-70-2	E420	0.050	mg/L	87.9	135	131	
chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00018	0.00015	0.00014	
cobalt, total	7440-48-4	E420	0.10	μg/L	0.10	0.81	0.83	
copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	
iron, total	7439-89-6	E420	0.010	mg/L	<0.010	<0.010	<0.010	
lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	
lithium, total	7439-93-2	E420	0.0010	mg/L	0.0156	0.0324	0.0325	
magnesium, total	7439-95-4	E420	0.0050	mg/L	37.8	71.2	73.6	
manganese, total	7439-96-5	E420	0.00010	mg/L	0.00168	0.00439	0.00434	
mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050	<0.0000050	<0.000050	
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.000895	0.00124	0.00125	
nickel, total	7440-02-0	E420	0.00050	mg/L	0.00507	0.0213	0.0213	
potassium, total	7440-02-0	E420	0.050	mg/L	1.18	2.28	2.36	
selenium, total	7782-49-2	E420	0.050	μg/L	5.06	10.7	10.5	
silicon, total	7440-21-3	E420	0.10	mg/L	1.72	1.76 DTC	1.87	
silver, total	7440-21-3	E420	0.000010	mg/L	<0.000010	<0.000010	<0.00010	
sodium, total	7440-22-4	E420	0.050	mg/L	10.3	20.6	21.0	
1	1 ++0-20-0	2.20	0.000	g/L	10.0	20.0	21.0	

Page : 5 of 6
Work Order : CG2212617
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Sub-Matrix: Water			Cli	ient sample ID	RG_MIDAG_WS	RG_MIDCO_WS	RG_RIVER_WS	
(Matrix: Water)					_LAEMP_CMO_ 2022-09_N	_LAEMP_CMO_ 2022-09_N	_LAEMP_CMO_ 2022-09_N	
			Client samp	ling date / time	13-Sep-2022 11:15	13-Sep-2022 11:15	13-Sep-2022 11:15	
Analyte	CAS Number	Method	LOR	Unit	CG2212617-001	CG2212617-002	CG2212617-003	
Total Metals					Result	Result	Result	
strontium, total	7440-24-6	E420	0.00020	mg/L	0.352	0.574	0.580	
sulfur, total	7704-34-9	E420	0.50	mg/L	81.3	162	167	
thallium, total	7440-28-0	E420	0.000010	mg/L	0.000020	0.000022	0.000025	
tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	
titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	<0.00030	
uranium, total	7440-61-1	E420	0.000010	mg/L	0.00196	0.00398	0.00400	
vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00250 DLB	<0.00250 DLB	<0.00250 DLB	
zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	<0.0030	<0.0030	
Dissolved Metals				-				
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0012	0.0012	<0.0010	
antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00017	0.00029	0.00029	
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00024	0.00020	0.00019	
barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0877	0.0870	0.0822	
beryllium, dissolved	7440-41-7	E421	0.020	μg/L	<0.020	<0.020	<0.020	
bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050	
boron, dissolved	7440-42-8	E421	0.010	mg/L	0.029	0.060	0.059	
cadmium, dissolved	7440-43-9	E421	0.0050	μg/L	0.0202	0.0282	0.0244	
calcium, dissolved	7440-70-2	E421	0.050	mg/L	91.0	139	136	
chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	0.00017	0.00013	0.00010	
cobalt, dissolved	7440-48-4	E421	0.10	μg/L	0.10	0.86	0.85	
copper, dissolved	7440-50-8	E421	0.00020	mg/L	<0.00020	<0.00020	<0.00020	
iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	<0.010	
lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050	
lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0153	0.0309	0.0312	
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	38.7	78.1	75.1	
manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00191	0.00499	0.00502	
mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	<0.0000050	
molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.000953	0.00132	0.00132	
nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.00503	0.0222	0.0220	
potassium, dissolved	7440-09-7	E421	0.050	mg/L	1.30	2.63	2.58	

Page : 6 of 6
Work Order : CG2212617
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Sub-Matrix: Water			CI	lient sample ID	RG_MIDAG_WS	RG_MIDCO_WS	RG_RIVER_WS	
(Matrix: Water)					_LAEMP_CMO_ 2022-09 N	_LAEMP_CMO_ 2022-09 N	_LAEMP_CMO_ 2022-09 N	
			Client samp	oling date / time	13-Sep-2022 11:15	13-Sep-2022 11:15	13-Sep-2022 11:15	
Analyte	CAS Number	Method	LOR	Unit	CG2212617-001	CG2212617-002	CG2212617-003	
					Result	Result	Result	
Dissolved Metals								
selenium, dissolved	7782-49-2	E421	0.050	μg/L	5.03	11.4	11.1	
silicon, dissolved	7440-21-3	E421	0.050	mg/L	2.11	2.38 DTC	2.36	
silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	<0.000010	
sodium, dissolved	7440-23-5	E421	0.050	mg/L	11.0	22.2	21.9	
strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.364	0.597	0.584	
sulfur, dissolved	7704-34-9	E421	0.50	mg/L	84.3	188	172	
thallium, dissolved	7440-28-0	E421	0.000010	mg/L	0.000021	0.000021	0.000020	
tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	
titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	<0.00030	
uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.00204	0.00402	0.00415	
vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	<0.00050	
zinc, dissolved	7440-66-6	E421	0.0010	mg/L	<0.0010	<0.0010	<0.0010	
dissolved mercury filtration location		EP509	-	-	Field	Field	Field	
dissolved metals filtration location		EP421	-	-	Field	Field	Field	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : **CG2212617** Page : 1 of 18

 Client
 : Teck Coal Limited
 Laboratory
 : Calgary - Environmental

 Contact
 : Cybele Heddle
 Account Manager
 : Lyudmyla Shvets

Address : 421 Pine Avenue Address : 2559 29th Street NE

Calgary, Alberta Canada T1Y 7B5

 Telephone
 : -- Telephone
 : +1 403 407 1800

 Project
 : REGIONAL EFFECTS PROGRAM
 Date Samples Received
 : 15-Sep-2022 08:50

 PO
 : VPO00816101
 Issue Date
 : 17-Sep-2022 18:01

C-O-C number : REP_LAEMP_CMm_2022-09_ALS

Sparwood BC Canada V0B2G0

Sampler : Jennifer Ings

Site : ---

Quote number : Teck Coal Master Quote

No. of samples received : 3
No. of samples analysed : 3

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers: Quality Control Samples

- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- Method Blank value outliers occur please see following pages for full details.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

• No Quality Control Sample Frequency Outliers occur.

Page : 3 of 18 Work Order : CG2212617

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Outliers : Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: Water

Analyte Group	Laboratory sample ID	Client/Ref Sample ID	Analyte	CAS Number	Method	Result	Limits	Comment
Method Blank (MB) Values								
Total Metals	QC-MRG2-6516750		vanadium, total	7440-62-2	E420	0.00052 MB-LOR	0.0005 mg/L	Blank result exceeds
	01					mg/L		permitted value

Result Qualifiers

Qualifier	Description
MB-LOR	Method Blank exceeds ALS DQO. Limits of Reporting have been adjusted for samples with positive hits below 5x blank level.

Page : 4 of 18 Work Order : CG2212617

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					E	/aluation: 🗴 =	Holding time exce	edance ; 🔻	= Within	Holding Time
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
RG_MIDAG_WS_LAEMP_CMO_2022-09_N	E298	13-Sep-2022	16-Sep-2022				16-Sep-2022	28 days	3 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
RG_MIDCO_WS_LAEMP_CMO_2022-09_N	E298	13-Sep-2022	16-Sep-2022				16-Sep-2022	28 days	3 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
RG_RIVER_WS_LAEMP_CMO_2022-09_N	E298	13-Sep-2022	16-Sep-2022				16-Sep-2022	28 days	3 days	✓
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE	E005 B. I	40.0 0000	40.0				40.0	00.1		,
RG_MIDAG_WS_LAEMP_CMO_2022-09_N	E235.Br-L	13-Sep-2022	16-Sep-2022				16-Sep-2022	28 days	3 days	✓
Anions and Nutrients : Bromide in Water by IC (Low Level)				I	I			I		
HDPE RG MIDCO WS LAEMP CMO 2022-09 N	E235.Br-L	13-Sep-2022	16-Sep-2022				16-Sep-2022	28 days	2 days	1
RG_MIDCO_WS_EAEMIF_CMO_2022-09_N	L233.BI-L	13-3ер-2022	10-3ep-2022				10-Зер-2022	20 days	5 days	•
Anions and Nutrients : Bromide in Water by IC (Low Level) HDPE								I		
RG RIVER WS LAEMP CMO 2022-09 N	E235.Br-L	13-Sep-2022	16-Sep-2022				16-Sep-2022	28 days	3 days	✓
1.0_1.1.0_1.1.0.1.1.0.1.1.0.1.1.0.1.1.1.1		10 000 2022	10 GGP 2022				10 000 2022	20 dayo	o dayo	
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE										
RG MIDAG WS LAEMP CMO 2022-09 N	E235.CI-L	13-Sep-2022	16-Sep-2022				16-Sep-2022	28 days	3 days	✓
	75.5.		. , ==						,-	

Page : 5 of 18 Work Order : CG2212617

Client : Teck Coal Limited

Matrix: Water						/aluation: × =	Holding time exce			Holding T
Analyte Group	Method	Sampling Date		traction / Pr	·			Analys		
Container / Client Sample ID(s)			Preparation Date	Holding Rec	7 Times Actual	Eval	Analysis Date	Holding Rec	Actual	Eval
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE RG_MIDCO_WS_LAEMP_CMO_2022-09_N	E235.CI-L	13-Sep-2022	16-Sep-2022				16-Sep-2022	28 days	3 days	✓
Anions and Nutrients : Chloride in Water by IC (Low Level)										
HDPE RG_RIVER_WS_LAEMP_CMO_2022-09_N	E235.CI-L	13-Sep-2022	16-Sep-2022				16-Sep-2022	28 days	3 days	✓
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace	Level 0.001									
HDPE RG_MIDAG_WS_LAEMP_CMO_2022-09_N	E378-U	13-Sep-2022	16-Sep-2022				16-Sep-2022	3 days	3 days	✓
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace	Level 0.001									
HDPE										
RG_MIDCO_WS_LAEMP_CMO_2022-09_N	E378-U	13-Sep-2022	16-Sep-2022				16-Sep-2022	3 days	3 days	✓
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra Trace	Level 0.001									
HDPE RG_RIVER_WS_LAEMP_CMO_2022-09_N	E378-U	13-Sep-2022	16-Sep-2022				16-Sep-2022	3 days	3 days	✓
Anions and Nutrients : Fluoride in Water by IC										
HDPE RG_MIDAG_WS_LAEMP_CMO_2022-09_N	E235.F	13-Sep-2022	16-Sep-2022				16-Sep-2022	28 days	3 days	✓
Anions and Nutrients : Fluoride in Water by IC										
HDPE RG_MIDCO_WS_LAEMP_CMO_2022-09_N	E235.F	13-Sep-2022	16-Sep-2022				16-Sep-2022	28 days	3 days	✓
Anions and Nutrients : Fluoride in Water by IC										
HDPE RG_RIVER_WS_LAEMP_CMO_2022-09_N	E235.F	13-Sep-2022	16-Sep-2022				16-Sep-2022	28 days	3 days	✓
nions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE RG_MIDAG_WS_LAEMP_CMO_2022-09_N	E235.NO3-L	13-Sep-2022	16-Sep-2022	3 days	3 days	✓	16-Sep-2022	3 days	0 days	✓

 Page
 : 6 of 18

 Work Order
 : CG2212617

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: **Water** Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

watis. Water					L.	aluation. • –	riolaling time excel	suarice,	- vviti iii i	Holding H
Analyte Group	Method	Sampling Date	Ex	traction / Pr	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE										
RG_MIDCO_WS_LAEMP_CMO_2022-09_N	E235.NO3-L	13-Sep-2022	16-Sep-2022	3 days	3 days	✓	16-Sep-2022	3 days	0 days	✓
Anions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE	Eggs NOO I	40.0 0000	40.0 0000				40.0			,
RG_RIVER_WS_LAEMP_CMO_2022-09_N	E235.NO3-L	13-Sep-2022	16-Sep-2022	3 days	3 days	✓	16-Sep-2022	3 days	0 days	✓
Anions and Nutrients : Nitrite in Water by IC (Low Level)								T		
HDPE RG MIDAG WS LAEMP CMO 2022-09 N	E235.NO2-L	13-Sep-2022	16-Sep-2022				16-Sep-2022	3 days	3 days	1
NG_MIDAG_WS_LALIMF_CMO_2022-09_N	L200.NO2-L	10-0ер-2022	10-0ер-2022				10-0ep-2022	Juays	Juays	•
Anima and Nationa and Nitrita in Materials 10 (Land and)										
Anions and Nutrients : Nitrite in Water by IC (Low Level) HDPE							1			
RG MIDCO WS LAEMP CMO 2022-09 N	E235.NO2-L	13-Sep-2022	16-Sep-2022				16-Sep-2022	3 days	3 days	1
			,					,	,	
Anions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE										
RG_RIVER_WS_LAEMP_CMO_2022-09_N	E235.NO2-L	13-Sep-2022	16-Sep-2022				16-Sep-2022	3 days	3 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE										
RG_MIDAG_WS_LAEMP_CMO_2022-09_N	E235.SO4	13-Sep-2022	16-Sep-2022				16-Sep-2022	28 days	3 days	✓
Anions and Nutrients : Sulfate in Water by IC										
HDPE	E235.SO4	13-Sep-2022	16 Can 2022				16 Con 2022	28 days	2 days	1
RG_MIDCO_WS_LAEMP_CMO_2022-09_N	E235.5U4	13-Sep-2022	16-Sep-2022				16-Sep-2022	28 days	3 days	•
Anions and Nutrients : Sulfate in Water by IC							I			
HDPE RG_RIVER_WS_LAEMP_CMO_2022-09_N	E235.SO4	13-Sep-2022	16-Sep-2022				16-Sep-2022	28 days	3 davs	✓
	2200.004	.5 25p 2022	.0 00p 2022				.0 000 2022		- c aayo	•
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid)										
RG_MIDAG_WS_LAEMP_CMO_2022-09_N	E318	13-Sep-2022	17-Sep-2022				17-Sep-2022	28 days	4 days	1

Page : 7 of 18 Work Order : CG2212617

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: **Water** Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

Matrix: water						aldation. • -	Holding time exce	cuarioc , .	- vvicinii	Tiolaling Til
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid)										
RG_MIDCO_WS_LAEMP_CMO_2022-09_N	E318	13-Sep-2022	17-Sep-2022				17-Sep-2022	28 days	4 days	✓
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid)										
RG_RIVER_WS_LAEMP_CMO_2022-09_N	E318	13-Sep-2022	17-Sep-2022				17-Sep-2022	28 days	4 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid)										
RG_MIDAG_WS_LAEMP_CMO_2022-09_N	E372-U	13-Sep-2022	16-Sep-2022				17-Sep-2022	28 days	4 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid)										
RG_MIDCO_WS_LAEMP_CMO_2022-09_N	E372-U	13-Sep-2022	16-Sep-2022				17-Sep-2022	28 days	4 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid)										
RG_RIVER_WS_LAEMP_CMO_2022-09_N	E372-U	13-Sep-2022	16-Sep-2022				17-Sep-2022	28 days	4 days	✓
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE - dissolved (lab preserved)										
RG_MIDAG_WS_LAEMP_CMO_2022-09_N	E421.Cr-L	13-Sep-2022	17-Sep-2022				17-Sep-2022	180	4 days	✓
								days		
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE - dissolved (lab preserved)										
RG_MIDCO_WS_LAEMP_CMO_2022-09_N	E421.Cr-L	13-Sep-2022	17-Sep-2022				17-Sep-2022	180	4 days	✓
								days		
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE - dissolved (lab preserved)										
RG_RIVER_WS_LAEMP_CMO_2022-09_N	E421.Cr-L	13-Sep-2022	17-Sep-2022				17-Sep-2022	180	4 days	✓
								days		
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)										
RG_MIDAG_WS_LAEMP_CMO_2022-09_N	E509	13-Sep-2022	17-Sep-2022				17-Sep-2022	28 days	4 days	✓

Page : 8 of 18 Work Order : CG2212617

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: Water
Evaluation: x = Holding time exceedance; √ = Within Holding Time

Analyte Group
Method
Sampling Date
Extraction / Preparation
Analysis

Analyte Group	Method	Sampling Date	Ext	raction / Pr	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)										
RG_MIDCO_WS_LAEMP_CMO_2022-09_N	E509	13-Sep-2022	17-Sep-2022				17-Sep-2022	28 days	4 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)										
RG_RIVER_WS_LAEMP_CMO_2022-09_N	E509	13-Sep-2022	17-Sep-2022				17-Sep-2022	28 days	4 days	✓
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE - dissolved (lab preserved)										,
RG_MIDAG_WS_LAEMP_CMO_2022-09_N	E421	13-Sep-2022	17-Sep-2022				17-Sep-2022	180	4 days	✓
								days		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS				l	I			I		
HDPE - dissolved (lab preserved) RG_MIDCO_WS_LAEMP_CMO_2022-09_N	E421	13-Sep-2022	17-Sep-2022				17-Sep-2022	400	4 days	1
KG_MIDCO_WS_LAEMF_CMO_2022-09_N	L421	13-3ер-2022	17-3ep-2022				17-3ep-2022	180 days	4 days	•
Pinch almost Pinch almost West Appelopus								uays		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS HDPE - dissolved (lab preserved)										
RG RIVER WS LAEMP CMO 2022-09 N	E421	13-Sep-2022	17-Sep-2022				17-Sep-2022	180	4 days	✓
		,						days	, -	
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Lov	v Level)									
Amber glass dissolved (sulfuric acid)	1 20101/									
RG_MIDAG_WS_LAEMP_CMO_2022-09_N	E358-L	13-Sep-2022	16-Sep-2022				16-Sep-2022	28 days	3 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Lov	v Level)									
Amber glass dissolved (sulfuric acid)										
RG_MIDCO_WS_LAEMP_CMO_2022-09_N	E358-L	13-Sep-2022	16-Sep-2022				16-Sep-2022	28 days	3 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Lov	v Level)									
Amber glass dissolved (sulfuric acid)										
RG_RIVER_WS_LAEMP_CMO_2022-09_N	E358-L	13-Sep-2022	16-Sep-2022				16-Sep-2022	28 days	3 days	✓
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Com	bustion (Low Level)									
Amber glass total (sulfuric acid)	E055 :	10.0 0000	40.0 0000				40.0 0000	00.1	0.1	,
RG_MIDAG_WS_LAEMP_CMO_2022-09_N	E355-L	13-Sep-2022	16-Sep-2022				16-Sep-2022	28 days	3 days	✓

Page : 9 of 18 Work Order : CG2212617

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: **Water** Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

Analyte Group	Method	Sampling Date	Ext	raction / Pr	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustic	n (Low Level)									
Amber glass total (sulfuric acid) RG_MIDCO_WS_LAEMP_CMO_2022-09_N	E355-L	13-Sep-2022	16-Sep-2022				16-Sep-2022	28 days	3 days	✓
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combustic	n (Low Level)								'	
Amber glass total (sulfuric acid) RG_RIVER_WS_LAEMP_CMO_2022-09_N	E355-L	13-Sep-2022	16-Sep-2022				16-Sep-2022	28 days	3 days	✓
Physical Tests : Acidity by Titration									'	
HDPE RG_MIDAG_WS_LAEMP_CMO_2022-09_N	E283	13-Sep-2022	16-Sep-2022				16-Sep-2022	14 days	3 days	✓
Physical Tests : Acidity by Titration									1	
HDPE RG_MIDCO_WS_LAEMP_CMO_2022-09_N	E283	13-Sep-2022	16-Sep-2022				16-Sep-2022	14 days	3 days	✓
Physical Tests : Acidity by Titration										
HDPE RG_RIVER_WS_LAEMP_CMO_2022-09_N	E283	13-Sep-2022	16-Sep-2022				16-Sep-2022	14 days	3 days	✓
Physical Tests : Alkalinity Species by Titration										
HDPE RG_MIDAG_WS_LAEMP_CMO_2022-09_N	E290	13-Sep-2022	16-Sep-2022				16-Sep-2022	14 days	3 days	✓
Physical Tests : Alkalinity Species by Titration										
HDPE RG_MIDCO_WS_LAEMP_CMO_2022-09_N	E290	13-Sep-2022	16-Sep-2022				16-Sep-2022	14 days	3 days	✓
Physical Tests : Alkalinity Species by Titration										
HDPE RG_RIVER_WS_LAEMP_CMO_2022-09_N	E290	13-Sep-2022	16-Sep-2022				16-Sep-2022	14 days	3 days	√
Physical Tests : Conductivity in Water										
HDPE RG_MIDAG_WS_LAEMP_CMO_2022-09_N	E100	13-Sep-2022	16-Sep-2022				16-Sep-2022	28 days	3 days	✓

 Page
 : 10 of 18

 Work Order
 : CG2212617

Client : Teck Coal Limited

RG MIDAG WS LAEMP CMO 2022-09 N

Project : REGIONAL EFFECTS PROGRAM

16-Sep-2022

7 days

3 days

✓

Matrix: Water Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time Analyte Group Method Sampling Date Extraction / Preparation Analysis Container / Client Sample ID(s) Preparation **Holding Times** Eval Analysis Date Holding Times Eval Rec Actual Rec Actual Date **Physical Tests: Conductivity in Water** HDPE RG_MIDCO_WS_LAEMP_CMO_2022-09_N E100 13-Sep-2022 16-Sep-2022 16-Sep-2022 28 days ✓ 3 days **Physical Tests: Conductivity in Water** HDPE RG_RIVER_WS_LAEMP_CMO_2022-09_N E100 13-Sep-2022 16-Sep-2022 16-Sep-2022 28 days 3 days ✓ ----Physical Tests : ORP by Electrode **HDPE** E125 13-Sep-2022 16-Sep-2022 82 hrs RG MIDAG WS LAEMP CMO 2022-09 N 0.25 hrs EHTR-FM Physical Tests: ORP by Electrode HDPE RG_MIDCO_WS_LAEMP_CMO_2022-09_N E125 13-Sep-2022 16-Sep-2022 0.25 82 hrs EHTR-FM hrs Physical Tests: ORP by Electrode HDPE E125 13-Sep-2022 82 hrs 16-Sep-2022 x RG_RIVER_WS_LAEMP_CMO_2022-09_N 0.25 EHTR-FM hrs Physical Tests : pH by Meter HDPE RG_MIDAG_WS_LAEMP_CMO_2022-09_N E108 13-Sep-2022 16-Sep-2022 16-Sep-2022 0.25 0.25 EHTR-FM hrs hrs Physical Tests : pH by Meter **HDPE** RG_MIDCO_WS_LAEMP_CMO_2022-09_N E108 13-Sep-2022 16-Sep-2022 16-Sep-2022 æ 0.25 0.25 hrs hrs EHTR-FM Physical Tests : pH by Meter HDPE RG_RIVER_WS_LAEMP_CMO_2022-09_N E108 13-Sep-2022 16-Sep-2022 16-Sep-2022 0.25 0.25 EHTR-FM hrs hrs **Physical Tests: TDS by Gravimetry** HDPE

13-Sep-2022

E162

Page : 11 of 18 Work Order : CG2212617

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: **Water** Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

Analysis Group	unx: water						aluation. • -	Holding time excee	cuarioc ,	- vviciniii	riolaling rill
Physical Tests : TDS by Gravimetry	nalyte Group	Method	Sampling Date	Ext	raction / Pi	reparation			Analys	sis	
Physical Tests : TDS by Gravimetry HDPE RG_MIDCO_WS_LAEMP_CMO_2022-09_N E162 13-Sep-2022 .	Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
HDPE RG_MIDCO_WS_LAEMP_CMO_2022-09_N					Rec	Actual			Rec	Actual	
R6_MIDCO_WS_LAEMP_CMO_2022-09_N	nysical Tests : TDS by Gravimetry										
Physical Tests : TDS by Gravimetry HDPE RG_RIVER_WS_LAEMP_CMO_2022-09_N E162 13-Sep-2022 .	IDPE										
HOPE RG_RIVER_WS_LAEMP_CMO_2022-09_N	RG_MIDCO_WS_LAEMP_CMO_2022-09_N	E162	13-Sep-2022					16-Sep-2022	7 days	3 days	✓
HOPE RG_RIVER_WS_LAEMP_CMO_2022-09_N											
## HDPE	nysical Tests : TDS by Gravimetry										
Physical Tests : TSS by Gravimetry (Low Level)	<u> </u>										
HDPE RG_MIDAG_WS_LAEMP_CMO_2022-09_N	RG_RIVER_WS_LAEMP_CMO_2022-09_N	E162	13-Sep-2022					16-Sep-2022	7 days	3 days	✓
## HDPE RG_MIDAG_WS_LAEMP_CMO_2022-09_N											
## HDPE Table Tabl	nysical Tests : TSS by Gravimetry (Low Level)										
Physical Tests: TSS by Gravimetry (Low Level) HDPE RG_MIDCO_WS_LAEMP_CMO_2022-09_N E160-L 13-Sep-2022 16-Sep-2022 7 days 3 days Physical Tests: TSS by Gravimetry (Low Level) HDPE RG_RIVER_WS_LAEMP_CMO_2022-09_N E160-L 13-Sep-2022 16-Sep-2022 7 days 3 days Physical Tests: Turbidity by Nephelometry HDPE RG_MIDAG_WS_LAEMP_CMO_2022-09_N E121 13-Sep-2022 16-Sep-2022 3 days 3 days Physical Tests: Turbidity by Nephelometry HDPE HDPE RG_MIDAG_WS_LAEMP_CMO_2022-09_N E121 13-Sep-2022 16-Sep-2022 3 days 3 days											
Physical Tests : TSS by Gravimetry (Low Level)	RG MIDAG WS LAEMP CMO 2022-09 N	E160-L	13-Sep-2022					16-Sep-2022	7 days	3 days	✓
HDPE RG_MIDCO_WS_LAEMP_CMO_2022-09_N E160-L 13-Sep-2022 16-Sep-2022 7 days 3 days Physical Tests : TSS by Gravimetry (Low Level) HDPE RG_RIVER_WS_LAEMP_CMO_2022-09_N E160-L 13-Sep-2022 16-Sep-2022 7 days 3 days Physical Tests : Turbidity by Nephelometry RG_MIDAG_WS_LAEMP_CMO_2022-09_N E121 13-Sep-2022 16-Sep-2022 3 days 3 days											
HDPE RG_MIDCO_WS_LAEMP_CMO_2022-09_N E160-L 13-Sep-2022 16-Sep-2022 7 days 3 days Physical Tests: TSS by Gravimetry (Low Level) HDPE RG_RIVER_WS_LAEMP_CMO_2022-09_N E160-L 13-Sep-2022 16-Sep-2022 7 days 3 days Physical Tests: Turbidity by Nephelometry HDPE RG_MIDAG_WS_LAEMP_CMO_2022-09_N E121 13-Sep-2022 16-Sep-2022 3 days 3 days	nysical Tests : TSS by Gravimetry (Low Level)										
RG_MIDCO_WS_LAEMP_CMO_2022-09_N											
Physical Tests : TSS by Gravimetry (Low Level) HDPE		E160-L	13-Sep-2022					16-Sep-2022	7 davs	3 davs	1
HDPE RG_RIVER_WS_LAEMP_CMO_2022-09_N E160-L 13-Sep-2022 16-Sep-2022 7 days 3 days Physical Tests : Turbidity by Nephelometry RG_MIDAG_WS_LAEMP_CMO_2022-09_N E121 13-Sep-2022 16-Sep-2022 3 days 3 days Physical Tests : Turbidity by Nephelometry HDPE Image: Color of the color of									,		
## HDPE RG_RIVER_WS_LAEMP_CMO_2022-09_N	oveical Tosts : TSS by Gravimetry (Low Level)										
RG_RIVER_WS_LAEMP_CMO_2022-09_N E160-L 13-Sep-2022 16-Sep-2022 7 days 3 days Physical Tests: Turbidity by Nephelometry RG_MIDAG_WS_LAEMP_CMO_2022-09_N E121 13-Sep-2022 16-Sep-2022 3 days 3 days Physical Tests: Turbidity by Nephelometry HDPE <td< td=""><td>• • • • • • • • • • • • • • • • • • • •</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	• • • • • • • • • • • • • • • • • • • •										
Physical Tests : Turbidity by Nephelometry HDPE RG_MIDAG_WS_LAEMP_CMO_2022-09_N E121 13-Sep-2022 16-Sep-2022 3 days Physical Tests : Turbidity by Nephelometry HDPE Image: Color of the physical Tests in the		E160-L	13-Sep-2022					16-Sep-2022	7 davs	3 davs	✓
HDPE RG_MIDAG_WS_LAEMP_CMO_2022-09_N E121 13-Sep-2022 16-Sep-2022 3 days 3 days Physical Tests: Turbidity by Nephelometry HDPE Image: Color of the physical Tests in the phys			' '						, -		
HDPE RG_MIDAG_WS_LAEMP_CMO_2022-09_N E121 13-Sep-2022 16-Sep-2022 3 days 3 days Physical Tests: Turbidity by Nephelometry HDPE Image: Color of the color of th	pysical Tasts : Turbidity by Naphalamatry										
RG_MIDAG_WS_LAEMP_CMO_2022-09_N E121 13-Sep-2022 16-Sep-2022 3 days 3 days Physical Tests: Turbidity by Nephelometry HDPE <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td>								1			
Physical Tests : Turbidity by Nephelometry HDPE		F121	13-Sep-2022					16-Sep-2022	3 days	3 days	✓
HDPE	110_IIIB/10_110_E11EIIII		10 000 2022					10 000 2022	o aayo	o unjo	
HDPE	oveigel Tests - Trubidity by Naubalausetus										
10 00 2022 0 days 0 days		F121	13-Sen-2022					16-Sen-2022	3 days	3 days	✓
	NG_MIDCO_WG_LALIMF_CIMO_2022-09_N	L121	10-00p-2022					10-0ep-2022	Juays	Juays	·
	A STATE OF THE LABOR TO A STATE OF THE STATE										
Physical Tests : Turbidity by Nephelometry											
HDPE E121 13-Sep-2022 16-Sep-2022 3 days		F121	13-Sen-2022					16-Sep-2022	3 days	3 days	✓
10-0ep-2022 3 days 3 days	ING_INIVER_VVG_LAEIVIF_CIVIO_2022-09_IV	L121	10-0 c p-2022					10-36p-2022	3 days	Juays	•
Total Metals : Total Chromium in Water by CRC ICPMS (Low Level)											
HDPE - total (lab preserved) E420.Cr-L 13-Sep-2022 17-Sep-2022 17-Sep-2022 180 4 days	· · · · · · · · · · · · · · · · · · ·	E420 Cr I	13 Son 2022	17 San 2022				17 San 2022	400	4 days	✓
RG_MIDAG_WS_LAEMP_CMO_2022-09_N	UO_INIIDAO_WO_LAEINIP_CINIO_ZUZZ-U9_N	⊑420.UI-L	13-3 c p-2022	17-36h-2022				17-3ep-2022		4 uays	•

Page : 12 of 18 Work Order : CG2212617

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: Water Evaluation: × = Holding time exceedance; ✓ = Within Holding Time

latrix: water						aluation. * =	Holding time exce	euance , •	– vvitriiri	nolaling i
Analyte Group	Method	Sampling Date	Ext	Extraction / Preparation				Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
otal Metals : Total Chromium in Water by CRC ICPMS (Low Level)										
HDPE - total (lab preserved)										
RG_MIDCO_WS_LAEMP_CMO_2022-09_N	E420.Cr-L	13-Sep-2022	17-Sep-2022				17-Sep-2022	180	4 days	✓
								days		
otal Metals : Total Chromium in Water by CRC ICPMS (Low Level)										
HDPE - total (lab preserved)										
RG_RIVER_WS_LAEMP_CMO_2022-09_N	E420.Cr-L	13-Sep-2022	17-Sep-2022				17-Sep-2022	180	4 days	✓
								days		
otal Metals : Total Mercury in Water by CVAAS										
Glass vial total (hydrochloric acid)										
RG_MIDAG_WS_LAEMP_CMO_2022-09_N	E508	13-Sep-2022	17-Sep-2022				17-Sep-2022	28 days	4 days	✓
otal Metals : Total Mercury in Water by CVAAS										
Glass vial total (hydrochloric acid)	F500	40.0	17.0				47.0 0000	00.1		
RG_MIDCO_WS_LAEMP_CMO_2022-09_N	E508	13-Sep-2022	17-Sep-2022				17-Sep-2022	28 days	4 days	✓
otal Metals : Total Mercury in Water by CVAAS Glass vial total (hydrochloric acid)							I			
RG RIVER WS LAEMP CMO 2022-09 N	E508	13-Sep-2022	17-Sep-2022				17-Sep-2022	28 days	A days	1
NG_NIVEN_WO_LALIMIP_OMO_2022-09_N	2000	10-00p-2022	17-0cp-2022				17-0ep-2022	20 days	4 days	·
otal Metals : Total Metals in Water by CRC ICPMS										
HDPE - total (lab preserved)										
RG MIDAG WS LAEMP CMO 2022-09 N	E420	13-Sep-2022	17-Sep-2022				17-Sep-2022	180	4 days	1
		·	•				·	days	-	
otal Metals : Total Metals in Water by CRC ICPMS										
HDPE - total (lab preserved)										
RG_MIDCO_WS_LAEMP_CMO_2022-09_N	E420	13-Sep-2022	17-Sep-2022				17-Sep-2022	180	4 days	✓
								days		
otal Metals : Total Metals in Water by CRC ICPMS								1	1	
HDPE - total (lab preserved)										
RG_RIVER_WS_LAEMP_CMO_2022-09_N	E420	13-Sep-2022	17-Sep-2022				17-Sep-2022	180	4 days	✓
								days		

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended Rec. HT: ALS recommended hold time (see units).

Page : 13 of 18 Work Order : CG2212617

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Quality Control Sample Type	Co	ount		Frequency (%)			
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Acidity by Titration	E283	651426	1	17	5.8	5.0	1
Alkalinity Species by Titration	E290	651429	1	17	5.8	5.0	✓
Ammonia by Fluorescence	E298	651485	1	17	5.8	5.0	1
Bromide in Water by IC (Low Level)	E235.Br-L	651474	1	20	5.0	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	651475	1	20	5.0	5.0	✓
Conductivity in Water	E100	651428	1	17	5.8	5.0	1
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	652076	1	15	6.6	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	651966	1	18	5.5	5.0	1
Dissolved Metals in Water by CRC ICPMS	E421	652077	1	17	5.8	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	651436	1	15	6.6	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	651462	1	17	5.8	5.0	✓
Fluoride in Water by IC	E235.F	651473	1	20	5.0	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	651476	1	20	5.0	5.0	1
Nitrite in Water by IC (Low Level)	E235.NO2-L	651477	1	20	5.0	5.0	✓
ORP by Electrode	E125	651554	1	17	5.8	5.0	✓
pH by Meter	E108	651427	1	17	5.8	5.0	1
Sulfate in Water by IC	E235.SO4	651478	1	20	5.0	5.0	✓
TDS by Gravimetry	E162	651516	1	19	5.2	5.0	1
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	651675	1	17	5.8	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	651465	1	17	5.8	5.0	✓
Total Mercury in Water by CVAAS	E508	651965	1	16	6.2	5.0	✓
Total Metals in Water by CRC ICPMS	E420	651676	1	17	5.8	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	651437	1	17	5.8	5.0	1
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	651459	1	17	5.8	5.0	✓
Turbidity by Nephelometry	E121	651457	1	8	12.5	5.0	✓
Laboratory Control Samples (LCS)							
Acidity by Titration	E283	651426	1	17	5.8	5.0	1
Alkalinity Species by Titration	E290	651429	1	17	5.8	5.0	<u> </u>
Ammonia by Fluorescence	E298	651485	1	17	5.8	5.0	√
Bromide in Water by IC (Low Level)	E235.Br-L	651474	1	20	5.0	5.0	√
Chloride in Water by IC (Low Level)	E235.CI-L	651475	1	20	5.0	5.0	<u>√</u>
Conductivity in Water	E100	651428	1	17	5.8	5.0	√
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	652076	1	15	6.6	5.0	√
Dissolved Mercury in Water by CVAAS	E509	651966	1	18	5.5	5.0	√
Dissolved Metals in Water by CRC ICPMS	E421	652077	1	17	5.8	5.0	√
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	651436	1	15	6.6	5.0	<u>√</u>
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	651462	1	17	5.8	5.0	<u>√</u>

Page : 14 of 18 Work Order : CG2212617

Matrix: Water

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Total Kjeldahl Nitrogen by Fluorescence (Low Level)

Total Phosphorus by Colourimetry (0.002 mg/L)

Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)

Total Mercury in Water by CVAAS

TSS by Gravimetry (Low Level)

Turbidity by Nephelometry

Total Metals in Water by CRC ICPMS

Evaluation: **x** = QC frequency outside specification; ✓ = QC frequency within specification.

17

16

17

17

17

19

8

1

1

1

1

1

1

5.8

6.2

5.8

5.8

5.8

5.2

12.5

5.0

5.0

5.0

5.0

5.0

5.0

5.0

1

1

Matiliki Matol		Lvalaati	on. Qonoqui	only calciae op	oomounom,	ac noquency with	ann opcomoda	
Quality Control Sample Type	·	Co	Count		Frequency (%)			
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation	
Laboratory Control Samples (LCS) - Continued								
Fluoride in Water by IC	E235.F	651473	1	20	5.0	5.0	1	
Nitrate in Water by IC (Low Level)	E235.NO3-L	651476	1	20	5.0	5.0	✓	
Nitrite in Water by IC (Low Level)	E235.NO2-L	651477	1	20	5.0	5.0	✓	
ORP by Electrode	E125	651554	1	17	5.8	5.0	✓	
pH by Meter	E108	651427	1	17	5.8	5.0	✓	
Sulfate in Water by IC	E235.SO4	651478	1	20	5.0	5.0	✓	
TDS by Gravimetry	E162	651516	1	19	5.2	5.0	✓	
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	651675	1	17	5.8	5.0	✓	
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	651465	1	17	5.8	5.0	✓	
Total Mercury in Water by CVAAS	E508	651965	1	16	6.2	5.0	✓	
Total Metals in Water by CRC ICPMS	E420	651676	1	17	5.8	5.0	✓	
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	651437	1	17	5.8	5.0	✓	
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	651459	1	17	5.8	5.0	✓	
TSS by Gravimetry (Low Level)	E160-L	651515	1	19	5.2	5.0	✓	
Turbidity by Nephelometry	E121	651457	1	8	12.5	5.0	✓	
Method Blanks (MB)								
Acidity by Titration	E283	651426	1	17	5.8	5.0	✓	
Alkalinity Species by Titration	E290	651429	1	17	5.8	5.0	✓	
Ammonia by Fluorescence	E298	651485	1	17	5.8	5.0	✓	
Bromide in Water by IC (Low Level)	E235.Br-L	651474	1	20	5.0	5.0	✓	
Chloride in Water by IC (Low Level)	E235.CI-L	651475	1	20	5.0	5.0	✓	
Conductivity in Water	E100	651428	1	17	5.8	5.0	✓	
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	652076	1	15	6.6	5.0	✓	
Dissolved Mercury in Water by CVAAS	E509	651966	1	18	5.5	5.0	✓	
Dissolved Metals in Water by CRC ICPMS	E421	652077	1	17	5.8	5.0	✓	
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	651436	1	15	6.6	5.0	✓	
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	651462	1	17	5.8	5.0	✓	
Fluoride in Water by IC	E235.F	651473	1	20	5.0	5.0	✓	
Nitrate in Water by IC (Low Level)	E235.NO3-L	651476	1	20	5.0	5.0	✓	
Nitrite in Water by IC (Low Level)	E235.NO2-L	651477	1	20	5.0	5.0	✓	
Sulfate in Water by IC	E235.SO4	651478	1	20	5.0	5.0	✓	
TDS by Gravimetry	E162	651516	1	19	5.2	5.0	✓	
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	651675	1	17	5.8	5.0	✓	
	- 	1	- ·	·	1			

E318

E508

E420

E355-L

E372-U

E160-L

E121

651465

651965

651676

651437

651459

651515

651457

Page : 15 of 18 Work Order : CG2212617

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: Water Evaluation: × = QC frequency outside specification, ✓ = QC frequency within specification.

Wattis. Water		Lvaidati	on Qo nega	crity outside spe	cincultori, -	QO irequeries wit	min specimeane
Quality Control Sample Type		Co	ount	Frequency (%)			
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Matrix Spikes (MS)							
Ammonia by Fluorescence	E298	651485	1	17	5.8	5.0	✓
Bromide in Water by IC (Low Level)	E235.Br-L	651474	1	20	5.0	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	651475	1	20	5.0	5.0	✓
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	652076	1	15	6.6	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	651966	1	18	5.5	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	652077	1	17	5.8	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	651436	1	15	6.6	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	651462	1	17	5.8	5.0	✓
Fluoride in Water by IC	E235.F	651473	1	20	5.0	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	651476	1	20	5.0	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	651477	1	20	5.0	5.0	✓
Sulfate in Water by IC	E235.SO4	651478	1	20	5.0	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	651675	1	17	5.8	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	651465	1	17	5.8	5.0	✓
Total Mercury in Water by CVAAS	E508	651965	1	16	6.2	5.0	✓
Total Metals in Water by CRC ICPMS	E420	651676	1	17	5.8	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	651437	1	17	5.8	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	651459	1	17	5.8	5.0	✓

Page : 16 of 18 Work Order : CG2212617

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Conductivity in Water	E100	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a water
	Calgary - Environmental			sample. Conductivity measurements are temperature-compensated to 25°C.
pH by Meter	E108	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally 20 ± 5°C). For high accuracy test results,
	Calgary - Environmental			pH should be measured in the field within the recommended 15 minute hold time.
Turbidity by Nephelometry	E121	Water	APHA 2130 B (mod)	Turbidity is measured by the nephelometric method, by measuring the intensity of light scatter under defined conditions.
	Calgary - Environmental			
ORP by Electrode	E125 Calgary - Environmental	Water	ASTM D1498 (mod)	Oxidation redution potential is reported as the oxidation-reduction potential of the platinum metal-reference electrode employed, measured in mV. For high accuracy test
TSS by Gravimetry (Low Level)	0 7	Water	APHA 2540 D (mod)	results, it is recommended that this analysis be conducted in the field.
133 by Gravimeny (Low Lever)	E160-L	water	AFTIA 2540 D (IIIOU)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, following by drying of the filter at 104 ± 1°C, with gravimetric measurement of the
	Calgary - Environmental			filtered solids. Samples containing very high dissolved solid content (i.e. seawaters,
	3 ,			brackish waters) may produce a positive bias by this method. Alternate analysis
				methods are available for these types of samples.
TDS by Gravimetry	E162	Water	APHA 2540 C (mod)	Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre
	Calgary - Environmental			filter, with evaporation of the filtrate at 180 ± 2°C for 16 hours or to constant weight, with gravimetric measurement of the residue.
Bromide in Water by IC (Low Level)	E235.Br-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
2.6aca.c. 2 , (26 26)	L233.BI-L		/ t 00011 (04)	detection.
	Calgary - Environmental			dotodion.
Chloride in Water by IC (Low Level)	E235.CI-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
				detection.
	Calgary - Environmental			
Fluoride in Water by IC	E235.F	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
	Cologry Environmental			detection.
Nitrite in Water by IC (Low Level)	Calgary - Environmental	Water	EPA 300.1 (mod)	
Number of the feet	E235.NO2-L	water	LFA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
	Calgary - Environmental			detection.
Nitrate in Water by IC (Low Level)	E235.NO3-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
·			, , ,	detection.
	Calgary - Environmental			
Sulfate in Water by IC	E235.SO4	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
	Calgary - Environmental			detection.
Acidity by Titration	E283	Water	APHA 2310 B (mod)	Acidity is determined by potentiometric titration to pH endpoint of 8.3
	L203		(mod)	y 2223
	Calgary - Environmental			
	3 7			

Page : 17 of 18 Work Order : CG2212617

Client : Teck Coal Limited

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Alkalinity Species by Titration	E290 Calgary - Environmental	Water	APHA 2320 B (mod)	Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values.
Ammonia by Fluorescence	E298 Calgary - Environmental	Water	Method Fialab 100, 2018	Ammonia in water is determined by automated continuous flow analysis with membrane diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde). This method is approved under US EPA 40 CFR Part 136 (May 2021)
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318 Calgary - Environmental	Water	Method Fialab 100, 2018	TKN in water is determined by automated continuous flow analysis with membrane diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde). This method is approved under US EPA 40 CFR Part 136 (May 2021).
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L Calgary - Environmental	Water	APHA 5310 B (mod)	Total Organic Carbon (Non-Purgeable), also known as NPOC (total), is a direct measurement of TOC after an acidified sample has been purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of total carbon (TC) is comprised of IC (which is common), this method is more accurate and more reliable than the TOC by subtraction method (i.e. TC minus TIC).
Dissolved Organic Carbon by Combustion (Low Level)	E358-L Calgary - Environmental	Water	APHA 5310 B (mod)	Dissolved Organic Carbon (Non-Purgeable), also known as NPOC (dissolved), is a direct measurement of DOC after a filtered (0.45 micron) sample has been acidified and purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of DC (dissolved carbon) is comprised of IC (which is common), this method is more accurate and more reliable than the DOC by subtraction method (i.e. DC minus DIC).
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U Calgary - Environmental	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U Calgary - Environmental	Water	APHA 4500-P F (mod)	Dissolved Orthophosphate is determined colourimetrically on a sample that has been lab or field filtered through a 0.45 micron membrane filter. Field filtration is recommended to ensure test results represent conditions at time of sampling.
Total Metals in Water by CRC ICPMS	E420 Calgary - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L Calgary - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS.
Dissolved Metals in Water by CRC ICPMS	E421 Calgary - Environmental	Water	APHA 3030B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

Page : 18 of 18 Work Order : CG2212617

Client : Teck Coal Limited

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L Calgary - Environmental	Water	APHA 3030 B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS
Total Mercury in Water by CVAAS	E508 Calgary - Environmental	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS
Dissolved Mercury in Water by CVAAS	E509 Calgary - Environmental	Water	APHA 3030B/EPA 1631E (mod)	Water samples are filtered (0.45 um), preserved with HCl, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.
Dissolved Hardness (Calculated)	EC100 Calgary - Environmental	Water	APHA 2340B	"Hardness (as CaCO3), dissolved" is calculated from the sum of dissolved Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations.
Ion Balance using Dissolved Metals	EC101 Calgary - Environmental	Water	APHA 1030E	Cation Sum, Anion Sum, and Ion Balance are calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis). Dissolved species are used where available. Minor ions are included where data is present. Ion Balance cannot be calculated accurately for waters with very low electrical conductivity (EC).
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298 Calgary - Environmental	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
Digestion for TKN in water	EP318 Calgary - Environmental	Water	APHA 4500-Norg D (mod)	Samples are digested at high temperature using Sulfuric Acid with Copper catalyst, which converts organic nitrogen sources to Ammonia, which is then quantified by the analytical method as TKN. This method is unsuitable for samples containing high levels of nitrate. If nitrate exceeds TKN concentration by ten times or more, results may be biased low.
Preparation for Total Organic Carbon by Combustion	EP355 Calgary - Environmental	Water		Preparation for Total Organic Carbon by Combustion
Preparation for Dissolved Organic Carbon for Combustion	EP358 Calgary - Environmental	Water	APHA 5310 B (mod)	Preparation for Dissolved Organic Carbon
Digestion for Total Phosphorus in water	EP372 Calgary - Environmental	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.
Dissolved Metals Water Filtration	EP421 Calgary - Environmental	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HNO3.
Dissolved Mercury Water Filtration	EP509 Calgary - Environmental	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HCl.

QUALITY CONTROL REPORT

Work Order CG2212617

Client : Teck Coal Limited Contact : Cybele Heddle Address 421 Pine Avenue

Sparwood BC Canada V0B2G0

Telephone

Project : REGIONAL EFFECTS PROGRAM

PO : VPO00816101

C-O-C number :REP LAEMP CMm 2022-09 ALS

Sampler : Jennifer Ings

Site

Quote number : Teck Coal Master Quote

No. of samples received : 3 No. of samples analysed : 3 Page : 1 of 18

Laboratory : Calgary - Environmental

Account Manager : Lyudmyla Shvets

Address : 2559 29th Street NE

Calgary, Alberta Canada T1Y 7B5

Telephone :+1 403 407 1800 Date Samples Received

: 15-Sep-2022 08:50 **Date Analysis Commenced** :16-Sep-2022

:17-Sep-2022 18:01 Issue Date

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives

- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Anthony Calero	Supervisor - Inorganic	Calgary Metals, Calgary, Alberta
Harpreet Chawla	Team Leader - Inorganics	Calgary Inorganics, Calgary, Alberta
Mackenzie Lamoureux	Laboratory Analyst	Calgary Metals, Calgary, Alberta
Sara Niroomand		Calgary Inorganics, Calgary, Alberta
Sara Niroomand		Calgary Metals, Calgary, Alberta
Sheida Aria	Lab Assistant	Calgary Metals, Calgary, Alberta

 Page
 : 2 of 18

 Work Order
 : CG2212617

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

 Page
 : 3 of 18

 Work Order
 : CG2212617

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Water	b-Matrix: Water						Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier			
Physical Tests (QC	C Lot: 651426)													
CG2212617-001	RG_MIDAG_WS_LAEMP_ CMO_2022-09_N	acidity (as CaCO3)		E283	2.0	mg/L	<2.0	<2.0	0	Diff <2x LOR				
Physical Tests (QC	C Lot: 651427)													
CG2212617-001	RG_MIDAG_WS_LAEMP_ CMO_2022-09_N	pH		E108	0.10	pH units	8.25	8.25	0.00%	4%				
Physical Tests (QC	C Lot: 651428)													
CG2212617-001	RG_MIDAG_WS_LAEMP_ CMO_2022-09_N	conductivity		E100	2.0	μS/cm	732	724	1.10%	10%				
Physical Tests (QC	C Lot: 651429)													
CG2212617-001	RG_MIDAG_WS_LAEMP_ CMO_2022-09_N	alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	189	184	2.52%	20%				
		alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR				
		alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR				
		alkalinity, total (as CaCO3)		E290	1.0	mg/L	189	184	2.52%	20%				
Physical Tests (QC	C Lot: 651457)													
CG2212617-001	RG_MIDAG_WS_LAEMP_ CMO_2022-09_N	turbidity		E121	0.10	NTU	0.37	0.37	0.0002	Diff <2x LOR				
Physical Tests (QC	C Lot: 651516)													
CG2212617-001	RG_MIDAG_WS_LAEMP_ CMO_2022-09_N	solids, total dissolved [TDS]		E162	20	mg/L	512	523	2.03%	20%				
Physical Tests (QC	C Lot: 651554)													
CG2212617-001	RG_MIDAG_WS_LAEMP_ CMO_2022-09_N	oxidation-reduction potential [ORP]		E125	0.10	mV	315	318	0.854%	15%				
Anions and Nutrier	nts (QC Lot: 651459)													
CG2212617-001	RG_MIDAG_WS_LAEMP_ CMO_2022-09_N	phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0050	0.0048	0.0001	Diff <2x LOR				
Anions and Nutrier	nts (QC Lot: 651462)													
CG2212617-001	RG_MIDAG_WS_LAEMP_ CMO_2022-09_N	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR				
Anions and Nutrier	nts (QC Lot: 651465)													
CG2212617-001	RG_MIDAG_WS_LAEMP_ CMO_2022-09_N	Kjeldahl nitrogen, total [TKN]		E318	0.500	mg/L	<0.500	<0.500	0	Diff <2x LOR				
Anions and Nutrier	nts (QC Lot: 651473)													
CG2212617-001	RG_MIDAG_WS_LAEMP_ CMO_2022-09_N	fluoride	16984-48-8	E235.F	0.020	mg/L	0.192	0.195	0.003	Diff <2x LOR				
Anions and Nutrier	nts (QC Lot: 651474)													
CG2212617-001	RG_MIDAG_WS_LAEMP_ CMO_2022-09_N	bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR				

 Page
 : 4 of 18

 Work Order
 : CG2212617

 Client
 : Teck Coal Limited

Sub-Matrix: Water						Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier	
	ts (QC Lot: 651475)											
CG2212617-001	RG_MIDAG_WS_LAEMP_ CMO_2022-09_N	chloride	16887-00-6	E235.CI-L	0.10	mg/L	1.00	1.00	0.234%	20%		
Anions and Nutrien	ts (QC Lot: 651476)											
CG2212617-001	RG_MIDAG_WS_LAEMP_ CMO_2022-09_N	nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	0.728	0.726	0.316%	20%		
Anions and Nutrien	ts (QC Lot: 651477)											
CG2212617-001	RG_MIDAG_WS_LAEMP_ CMO_2022-09_N	nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	0.0013	0.0013	0	Diff <2x LOR		
Anions and Nutrien	ts (QC Lot: 651478)											
CG2212617-001	RG_MIDAG_WS_LAEMP_ CMO_2022-09_N	sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	230	230	0.0432%	20%		
Anions and Nutrien	ts (QC Lot: 651485)											
CG2212617-001	RG_MIDAG_WS_LAEMP_ CMO_2022-09_N	ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0058	0.0051	0.0007	Diff <2x LOR		
Organic / Inorganic	Carbon (QC Lot: 651430	6)										
CG2212617-001	RG_MIDAG_WS_LAEMP_ CMO_2022-09_N	carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	<0.50	<0.50	0	Diff <2x LOR		
Organic / Inorganic	Carbon (QC Lot: 65143)	7)										
CG2212617-001	RG_MIDAG_WS_LAEMP_ CMO_2022-09_N	carbon, total organic [TOC]		E355-L	0.50	mg/L	<0.50	<0.50	0	Diff <2x LOR		
Total Metals (QC Lo	ot: 651675)											
CG2212617-001	RG_MIDAG_WS_LAEMP_ CMO_2022-09_N	chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00018	0.00016	0.00001	Diff <2x LOR		
Total Metals (QC Lo	ot: 651676)											
CG2212617-001	RG_MIDAG_WS_LAEMP_ CMO_2022-09_N	aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0066	0.0066	0.00006	Diff <2x LOR		
		antimony, total	7440-36-0	E420	0.00010	mg/L	0.00017	0.00017	0.000005	Diff <2x LOR		
		arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00030	0.00032	0.00003	Diff <2x LOR		
		barium, total	7440-39-3	E420	0.00010	mg/L	0.0803	0.0784	2.39%	20%		
		beryllium, total	7440-41-7	E420	0.000020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR		
		bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR		
		boron, total	7440-42-8	E420	0.010	mg/L	0.033	0.034	0.001	Diff <2x LOR		
		cadmium, total	7440-43-9	E420	0.0000050	mg/L	0.0226 μg/L	0.0000234	0.0000008	Diff <2x LOR		
		calcium, total	7440-70-2	E420	0.050	mg/L	87.9	88.1	0.204%	20%		
		cobalt, total	7440-48-4	E420	0.00010	mg/L	0.10 µg/L	<0.00010	0.000004	Diff <2x LOR		
		copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR		
		iron, total	7439-89-6	E420	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR		
			7439-89-0	E420	0.000050	-	<0.00050	<0.00050	0	Diff <2x LOR		
		lead, total				mg/L						
		lithium, total	7439-93-2	E420	0.0010	mg/L	0.0156	0.0158	1.71%	20%		
		magnesium, total	7439-95-4	E420	0.0050	mg/L	37.8	36.6	3.10%	20%		

Page 5 of 18 CG2212617 Work Order Client : Teck Coal Limited

Sub-Matrix: Water	atrix: Water					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier	
Total Metals (QC Lo	ot: 651676) - continued											
CG2212617-001	RG_MIDAG_WS_LAEMP_ CMO 2022-09 N	manganese, total	7439-96-5	E420	0.00010	mg/L	0.00168	0.00167	0.701%	20%		
	1 1 1 1 1 1	molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.000895	0.000886	1.04%	20%		
		nickel, total	7440-02-0	E420	0.00050	mg/L	0.00507	0.00491	0.00016	Diff <2x LOR		
		potassium, total	7440-09-7	E420	0.050	mg/L	1.18	1.15	2.05%	20%		
		selenium, total	7782-49-2	E420	0.000050	mg/L	5.06 µg/L	0.00527	4.15%	20%		
		silicon, total	7440-21-3	E420	0.10	mg/L	1.72	1.62	6.41%	20%		
		silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR		
		sodium, total	7440-23-5	E420	0.050	mg/L	10.3	10.1	2.22%	20%		
		strontium, total	7440-24-6	E420	0.00020	mg/L	0.352	0.353	0.533%	20%		
		sulfur, total	7704-34-9	E420	0.50	mg/L	81.3	80.3	1.33%	20%		
		thallium, total	7440-28-0	E420	0.000010	mg/L	0.000020	0.000020	0.00000004	Diff <2x LOR		
		tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR		
		titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR		
		uranium, total	7440-61-1	E420	0.000010	mg/L	0.00196	0.00202	3.16%	20%		
		vanadium, total	7440-62-2	E420	0.00250	mg/L	<0.00250	<0.00250	0	Diff <2x LOR		
		zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	<0.0030	0	Diff <2x LOR		
Total Metals (QC L	ot: 651965)											
CG2212617-001	RG_MIDAG_WS_LAEMP_ CMO_2022-09_N	mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR		
Dissolved Metals (QC Lot: 651966)											
CG2212467-001	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR		
Dissolved Metals (QC Lot: 652076)											
CG2212617-001	RG_MIDAG_WS_LAEMP_ CMO 2022-09 N	chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	0.00017	0.00015	0.00002	Diff <2x LOR		
Dissolved Metals (QC Lot: 652077)											
CG2212617-001	RG_MIDAG_WS_LAEMP_ CMO 2022-09 N	aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0012	<0.0010	0.0002	Diff <2x LOR		
	00_2022 001	antimony, dissolved	7440-36-0	E421	0.00010	mg/L	0.00017	0.00017	0.000006	Diff <2x LOR		
		arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00024	0.00026	0.00001	Diff <2x LOR		
		barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0877	0.0868	0.999%	20%		
		beryllium, dissolved	7440-41-7	E421	0.000020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR		
		bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR		
		boron, dissolved	7440-42-8	E421	0.010	mg/L	0.029	0.031	0.002	Diff <2x LOR		
		cadmium, dissolved	7440-43-9	E421	0.0000050	mg/L	0.0202 μg/L	0.0000195	0.0000006	Diff <2x LOR		
		calcium, dissolved	7440-70-2	E421	0.050	mg/L	91.0	89.5	1.57%	20%		
		cobalt, dissolved	7440 49 4	E421	0.00040	no ar/1	0.10.00/1	0.00010	0.00000006	Diff <2x LOR		
		copail, dissolved	7440-48-4	E42 I	0.00010	mg/L	0.10 µg/L	0.00010	0.00000000	DIII \ZX LOK		

 Page
 : 6 of 18

 Work Order
 : CG2212617

 Client
 : Teck Coal Limited

Sub-Matrix: Water					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Dissolved Metals (QC Lot: 652077) - contin	ued									
CG2212617-001	RG_MIDAG_WS_LAEMP_ CMO_2022-09_N	iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR	
		lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0153	0.0155	1.53%	20%	
		magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	38.7	38.6	0.203%	20%	
		manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00191	0.00194	1.56%	20%	
		molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.000953	0.000939	1.42%	20%	
		nickel, dissolved	7440-02-0	E421	0.00050	mg/L	0.00503	0.00494	0.00009	Diff <2x LOR	
		potassium, dissolved	7440-09-7	E421	0.050	mg/L	1.30	1.28	1.79%	20%	
		selenium, dissolved	7782-49-2	E421	0.000050	mg/L	5.03 µg/L	0.00516	2.69%	20%	
		silicon, dissolved	7440-21-3	E421	0.050	mg/L	2.11	2.10	0.595%	20%	
		silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
		sodium, dissolved	7440-23-5	E421	0.050	mg/L	11.0	10.9	1.05%	20%	
		strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.364	0.368	1.28%	20%	
		sulfur, dissolved	7704-34-9	E421	0.50	mg/L	84.3	84.0	0.292%	20%	
		thallium, dissolved	7440-28-0	E421	0.000010	mg/L	0.000021	0.000020	0.000001	Diff <2x LOR	
		tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
		uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.00204	0.00204	0.194%	20%	
		vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		zinc, dissolved	7440-66-6	E421	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	

 Page
 : 7 of 18

 Work Order
 : CG2212617

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Water

* * *					
Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 651426)					
acidity (as CaCO3)	E283	2	mg/L	<2.0	
Physical Tests (QCLot: 651428)					
conductivity	E100	1	μS/cm	1.3	
Physical Tests (QCLot: 651429)					
alkalinity, bicarbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, carbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, hydroxide (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, total (as CaCO3)	E290	1	mg/L	<1.0	
Physical Tests (QCLot: 651457)					
turbidity	E121	0.1	NTU	<0.10	
Physical Tests (QCLot: 651515)					
solids, total suspended [TSS]	E160-L	1	mg/L	<1.0	
Physical Tests (QCLot: 651516)					
solids, total dissolved [TDS]	E162	10	mg/L	<10	
Anions and Nutrients (QCLot: 651459)					
phosphorus, total	7723-14-0 E372-U	0.002	mg/L	<0.0020	
Anions and Nutrients (QCLot: 651462)					
phosphate, ortho-, dissolved (as P)	14265-44-2 E378-U	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 651465)					
Kjeldahl nitrogen, total [TKN]	E318	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 651473)					
fluoride	16984-48-8 E235.F	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 651474)					
bromide	24959-67-9 E235.Br-L	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 651475)					
chloride	16887-00-6 E235.CI-L	0.1	mg/L	<0.10	
Anions and Nutrients (QCLot: 651476)					
nitrate (as N)	14797-55-8 E235.NO3-L	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 651477)					
nitrite (as N)	14797-65-0 E235.NO2-L	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 651478)					
sulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	<0.30	
		l l			

 Page
 : 8 of 18

 Work Order
 : CG2212617

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Anions and Nutrients (QCLot: 651485						
ammonia, total (as N)	7664-41-7	E298	0.005	mg/L	<0.0050	
Organic / Inorganic Carbon (QCLot: 6	51436)					
carbon, dissolved organic [DOC]		E358-L	0.5	mg/L	<0.50	
Organic / Inorganic Carbon (QCLot: 6						
carbon, total organic [TOC]		E355-L	0.5	mg/L	<0.50	
Total Metals (QCLot: 651675)						
chromium, total	7440-47-3	E420.Cr-L	0.0001	mg/L	<0.00010	
Total Metals (QCLot: 651676)						
aluminum, total	7429-90-5		0.003	mg/L	<0.0030	
antimony, total	7440-36-0		0.0001	mg/L	<0.00010	
arsenic, total	7440-38-2		0.0001	mg/L	<0.00010	
parium, total	7440-39-3		0.0001	mg/L	<0.00010	
peryllium, total	7440-41-7		0.00002	mg/L	<0.000020	
pismuth, total	7440-69-9		0.00005	mg/L	<0.000050	
boron, total	7440-42-8	E420	0.01	mg/L	<0.010	
cadmium, total	7440-43-9	E420	0.000005	mg/L	<0.0000050	
calcium, total	7440-70-2	E420	0.05	mg/L	<0.050	
cobalt, total	7440-48-4	E420	0.0001	mg/L	<0.00010	
copper, total	7440-50-8	E420	0.0005	mg/L	<0.00050	
ron, total	7439-89-6	E420	0.01	mg/L	<0.010	
ead, total	7439-92-1	E420	0.00005	mg/L	<0.000050	
ithium, total	7439-93-2	E420	0.001	mg/L	<0.0010	
nagnesium, total	7439-95-4	E420	0.005	mg/L	<0.0050	
manganese, total	7439-96-5	E420	0.0001	mg/L	<0.00010	
molybdenum, total	7439-98-7	E420	0.00005	mg/L	<0.000050	
nickel, total	7440-02-0	E420	0.0005	mg/L	<0.00050	
ootassium, total	7440-09-7	E420	0.05	mg/L	<0.050	
selenium, total	7782-49-2	E420	0.00005	mg/L	<0.000050	
silicon, total	7440-21-3	E420	0.1	mg/L	<0.10	
silver, total	7440-22-4	E420	0.00001	mg/L	<0.000010	
sodium, total	7440-23-5	E420	0.05	mg/L	<0.050	
strontium, total	7440-24-6	E420	0.0002	mg/L	<0.00020	
sulfur, total	7704-34-9	E420	0.5	mg/L	<0.50	
thallium, total	7440-28-0	E420	0.00001	mg/L	<0.000010	
tin, total	7440-31-5	E420	0.0001	mg/L	<0.00010	
titanium, total	7440-32-6	E420	0.0003	mg/L	<0.00030	

 Page
 : 9 of 18

 Work Order
 : CG2212617

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Total Metals (QCLot: 651676) - contin	ued				
uranium, total	7440-61-1 E420	0.00001	mg/L	<0.000010	
vanadium, total	7440-62-2 E420	0.0005	mg/L	# 0.00052	MB-LOR
zinc, total	7440-66-6 E420	0.003	mg/L	<0.0030	
Total Metals (QCLot: 651965)					
mercury, total	7439-97-6 E508	0.000005	mg/L	<0.000050	
Dissolved Metals (QCLot: 651966)					
mercury, dissolved	7439-97-6 E509	0.000005	mg/L	<0.000050	
Dissolved Metals (QCLot: 652076)					
chromium, dissolved	7440-47-3 E421.Cr-L	0.0001	mg/L	<0.00010	
Dissolved Metals (QCLot: 652077)					
aluminum, dissolved	7429-90-5 E421	0.001	mg/L	<0.0010	
antimony, dissolved	7440-36-0 E421	0.0001	mg/L	<0.00010	
arsenic, dissolved	7440-38-2 E421	0.0001	mg/L	<0.00010	
parium, dissolved	7440-39-3 E421	0.0001	mg/L	<0.00010	
eryllium, dissolved	7440-41-7 E421	0.00002	mg/L	<0.000020	
ismuth, dissolved	7440-69-9 E421	0.00005	mg/L	<0.000050	
oron, dissolved	7440-42-8 E421	0.01	mg/L	<0.010	
admium, dissolved	7440-43-9 E421	0.000005	mg/L	<0.000050	
alcium, dissolved	7440-70-2 E421	0.05	mg/L	<0.050	
obalt, dissolved	7440-48-4 E421	0.0001	mg/L	<0.00010	
copper, dissolved	7440-50-8 E421	0.0002	mg/L	<0.00020	
ron, dissolved	7439-89-6 E421	0.01	mg/L	<0.010	
ead, dissolved	7439-92-1 E421	0.00005	mg/L	<0.000050	
thium, dissolved	7439-93-2 E421	0.001	mg/L	<0.0010	
nagnesium, dissolved	7439-95-4 E421	0.005	mg/L	<0.0050	
nanganese, dissolved	7439-96-5 E421	0.0001	mg/L	<0.00010	
nolybdenum, dissolved	7439-98-7 E421	0.00005	mg/L	<0.000050	
ickel, dissolved	7440-02-0 E421	0.0005	mg/L	<0.00050	
otassium, dissolved	7440-09-7 E421	0.05	mg/L	<0.050	
elenium, dissolved	7782-49-2 E421	0.00005	mg/L	<0.000050	
ilicon, dissolved	7440-21-3 E421	0.05	mg/L	<0.050	
ilver, dissolved	7440-22-4 E421	0.00001	mg/L	<0.000010	
sodium, dissolved	7440-23-5 E421	0.05	mg/L	<0.050	
strontium, dissolved	7440-24-6 E421	0.0002	mg/L	<0.00020	
sulfur, dissolved	7704-34-9 E421	0.5	mg/L	<0.50	
thallium, dissolved	7440-28-0 E421	0.00001	mg/L	<0.000010	

 Page
 : 10 of 18

 Work Order
 : CG2212617

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Dissolved Metals (QCLot: 652077) - cor	tinued				
tin, dissolved	7440-31-5 E421	0.0001	mg/L	<0.00010	
titanium, dissolved	7440-32-6 E421	0.0003	mg/L	<0.00030	
uranium, dissolved	7440-61-1 E421	0.00001	mg/L	<0.000010	
vanadium, dissolved	7440-62-2 E421	0.0005	mg/L	<0.00050	
zinc, dissolved	7440-66-6 E421	0.001	mg/L	<0.0010	

Qualifiers

Qualifier Description

MB-LOR Method Blank exceeds ALS DQO. Limits of Reporting have been adjusted for samples with positive hits below 5x blank level.

Page : 11 of 18 Work Order : CG2212617

: Teck Coal Limited Client

: REGIONAL EFFECTS PROGRAM Project

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

ub-Matrix: Water					Laboratory Control Sample (LCS) Report					
					Spike	Recovery (%)	Recovery	Limits (%)		
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier	
Physical Tests (QCLot: 651426)										
acidity (as CaCO3)	E	283	2	mg/L	50 mg/L	106	85.0	115		
Physical Tests (QCLot: 651427)										
рН	E	108		pH units	7 pH units	101	98.6	101		
Physical Tests (QCLot: 651428)										
conductivity	E	100	1	μS/cm	146.9 μS/cm	100	90.0	110		
Physical Tests (QCLot: 651429)										
alkalinity, total (as CaCO3)	E	E290	1	mg/L	500 mg/L	103	85.0	115		
Physical Tests (QCLot: 651457)							,			
turbidity	E	121	0.1	NTU	200 NTU	110	85.0	115		
Physical Tests (QCLot: 651515)									1	
solids, total suspended [TSS]	E	160-L	1	mg/L	150 mg/L	93.9	85.0	115		
Physical Tests (QCLot: 651516)										
solids, total dissolved [TDS]	E	162	10	mg/L	1000 mg/L	93.0	85.0	115		
Physical Tests (QCLot: 651554)										
oxidation-reduction potential [ORP]	E	125		mV	220 mV	101	95.4	104		
Anions and Nutrients (QCLot: 651459)										
phosphorus, total	7723-14-0 E	372-U	0.002	mg/L	0.03 mg/L	103	80.0	120		
Anions and Nutrients (QCLot: 651462)										
phosphate, ortho-, dissolved (as P)	14265-44-2 E	378-U	0.001	mg/L	0.03 mg/L	93.9	80.0	120		
Anions and Nutrients (QCLot: 651465)										
Kjeldahl nitrogen, total [TKN]	E	318	0.05	mg/L	4 mg/L	104	75.0	125		
Anions and Nutrients (QCLot: 651473)										
fluoride	16984-48-8 E	E235.F	0.02	mg/L	1 mg/L	101	90.0	110		
Anions and Nutrients (QCLot: 651474)										
bromide	24959-67-9 E	235.Br-L	0.05	mg/L	0.5 mg/L	103	85.0	115		
Anions and Nutrients (QCLot: 651475)									1	
chloride	16887-00-6 E	E235.CI-L	0.1	mg/L	100 mg/L	100	90.0	110		
Anions and Nutrients (QCLot: 651476)									1	
nitrate (as N)	14797-55-8 E	E235.NO3-L	0.005	mg/L	2.5 mg/L	101	90.0	110		
Anions and Nutrients (QCLot: 651477)									I	
nitrite (as N)	14797-65-0 E	235.NO2-L	0.001	mg/L	0.5 mg/L	99.7	90.0	110		
Anions and Nutrients (QCLot: 651478)					-					
Amons and Nathents (QCLOL 031470)										

 Page
 : 12 of 18

 Work Order
 : CG2212617

 Client
 : Teck Coal Limited

National Processing	Sub-Matrix: Water	ıb-Matrix: Water					Laboratory Control Sample (LCS) Report					
					Spike	Recovery (%)	Recovery	Limits (%)				
untiles (as 90-y) 14(4)67-79 235-504 3.3 mg/L 100 mg/L 102 90.0 110	Analyte CAS N	ımber Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier			
Section Sect	Anions and Nutrients (QCLot: 651478) - continued											
Proposite Carbon (OCLot: 651436) Proposite Carbon (OCLot: 651436) Proposite Carbon (OCLot: 651436) Proposite Carbon (OCLot: 651437) Proposite Carbon (OCLot: 651676) Proposit	sulfate (as SO4) 1480	3-79-8 E235.SO4	0.3	mg/L	100 mg/L	102	90.0	110				
### Page Page	Anions and Nutrients (QCLot: 651485)											
graine / Inforganic Carbon (QCLot: 651437) Second Metals (QCLot: 651675) Informatic Carbon (QCLot: 651675) Informatic Carbon (QCLot: 651675) Informatic QCLot: 651675 Informatic QCLot: 651676 Informatic QCLot: 6		1-41-7 E298	0.005	mg/L	0.2 mg/L	97.8	85.0	115				
graine / Inforganic Carbon (QCLot: 651437) Second Metals (QCLot: 651675) Informatic Carbon (QCLot: 651675) Informatic Carbon (QCLot: 651675) Informatic QCLot: 651675 Informatic QCLot: 651676 Informatic QCLot: 6												
graine / Inforganic Carbon (QCLot: 651437) Second Metals (QCLot: 651675) Informatic Carbon (QCLot: 651675) Informatic Carbon (QCLot: 651675) Informatic QCLot: 651675 Informatic QCLot: 651676 Informatic QCLot: 6	Organic / Inorganic Carbon (QCLot: 651436)											
September Sept	carbon, dissolved organic [DOC]	E358-L	0.5	mg/L	8.57 mg/L	95.4	80.0	120				
September Sept	Organic / Inorganic Carbon (QCLot: 651437)											
Note	carbon, total organic [TOC]	E355-L	0.5	mg/L	8.57 mg/L	96.8	80.0	120				
Note												
Note	Total Metals (QCLot: 651675)											
Luminum, total 7429-90-5 E420 0.03 mpl. 2 mpl. 1 00 80.0 120		0-47-3 E420.Cr-L	0.0001	mg/L	0.25 mg/L	96.7	80.0	120				
Luminum, total 7429-90-5 E420 0.03 mpl. 2 mpl. 1 00 80.0 120	Total Metals (QCLot: 651676)								I			
ntimony, total 7440-38-0 E420 0.0001 mg/L 1 mg/L 97.1 80.0 120		9-90-5 E420	0.003	mg/L	2 mg/L	100	80.0	120				
arium, total 7440-39-3 E420 0.0001 mg/L 0.25 mg/L 98.0 80.0 120	antimony, total 744	0-36-0 E420	0.0001	mg/L	1 mg/L	97.1	80.0	120				
eryllium, total 7440-41-7 [420	arsenic, total 744	0-38-2 E420	0.0001	mg/L	1 mg/L	95.4	80.0	120				
Samuth, total 7440-69-9 E420 0.00005 mg/L 1 mg/L 91.2 80.0 120	barium, total 744	0-39-3 E420	0.0001	mg/L	0.25 mg/L	98.0	80.0	120				
rorn, total 7440-42-8 E420 0.01 mg/L 1 mg/L 99.7 80.0 120	beryllium, total 744	0-41-7 E420	0.00002	mg/L	0.1 mg/L	99.9	80.0	120				
rorn, total 7440-42-8 E420 0.01 mg/L 1 mg/L 99.7 80.0 120	bismuth, total 744	0-69-9 E420	0.00005	mg/L	1 mg/L	91.2	80.0	120				
alcium, total 7440-70-2 E420 0.05 mg/L 50 mg/L 92.1 80.0 120	boron, total 744	0-42-8 E420	0.01	mg/L	1 mg/L	99.7	80.0	120				
belati, total 7440-48-4 copper, total 7440-50-8 copper	cadmium, total 744	0-43-9 E420	0.000005	mg/L	0.1 mg/L	94.3	80.0	120				
poper, total 7440-50-8 E420 0.0005 mg/L 0.25 mg/L 92.9 80.0 120	calcium, total 744	0-70-2 E420	0.05	mg/L	50 mg/L	92.1	80.0	120				
on, total 7439-89-6 e420 0.01 mg/L 1 mg/L 106 80.0 120	cobalt, total 744	0-48-4 E420	0.0001	mg/L	0.25 mg/L	93.1	80.0	120				
on, total 7439-89-6 E420 0.01 mg/L 1 mg/L 106 80.0 120	copper, total 744	0-50-8 E420	0.0005	mg/L	0.25 mg/L	92.9	80.0	120				
ad, total 7439-92-1 E420 0.0005 mg/L 0.5 mg/L 93.3 80.0 120		9-89-6 E420	0.01	mg/L	_	106	80.0	120				
thium, total 7439-93-2 E420 0.001 mg/L 0.25 mg/L 108 80.0 120	lead, total 743	9-92-1 E420	0.00005	mg/L	_		80.0	120				
nanganese, total 7439-96-5 E420 0.0001 mg/L 0.25 mg/L 99.8 80.0 120 nolybdenum, total 7439-98-7 E420 0.0005 mg/L 0.25 mg/L 96.2 80.0 120 nolybdenum, total 7440-02-0 E420 0.0005 mg/L 0.5 mg/L 94.0 80.0 120 notassium, total 7440-09-7 E420 0.05 mg/L 50 mg/L 96.8 80.0 120 nelenium, total 7782-49-2 E420 0.0005 mg/L 1 mg/L 97.2 80.0 120 noliticon, total 7440-21-3 E420 0.0005 mg/L 10 mg/L 97.2 80.0 120 noliticon, total 7440-22-4 E420 0.0001 mg/L 10 mg/L 89.3 60.0 140 noliticon, total 7440-22-4 E420 0.00001 mg/L 0.1 mg/L 89.3 80.0 120 noliticon, total 7440-22-5 E420 0.00001 mg/L 0.1 mg/L 95.8 80.0 120 noliticon, total 7440-22-6 E420 0.00001 mg/L 0.25 mg/L 98.4 80.0 120 noliticon, total 7440-22-6 E420 0.0002 mg/L 0.25 mg/L 98.4 80.0 120 noliticon, total 99.8 80.0 12	lithium, total 743	9-93-2 E420	0.001	mg/L	0.25 mg/L	108	80.0	120				
The problem of the pr	magnesium, total 743	9-95-4 E420	0.005	mg/L	50 mg/L	96.7	80.0	120				
nolybdenum, total 7439-98-7 E420 0.0005 mg/L 0.25 mg/L 96.2 80.0 120 ickel, total 7440-02-0 E420 0.0005 mg/L 0.5 mg/L 94.0 80.0 120 otassium, total 7440-09-7 E420 0.05 mg/L 50 mg/L 96.8 80.0 120 elenium, total 7782-49-2 E420 0.0005 mg/L 1 mg/L 97.2 80.0 120 ilicon, total 7440-21-3 E420 0.1 mg/L 10 mg/L 89.3 60.0 140 iliver, total 7440-22-4 E420 0.00001 mg/L 0.1 mg/L 89.3 80.0 120 odium, total 7440-22-4 E420 0.0001 mg/L 0.1 mg/L 95.8 80.0 120 odium, total 7440-23-5 E420 0.0001 mg/L 0.1 mg/L 95.8 80.0 120 odium, total 7440-24-6 E420 0.0002 mg/L 0.25 mg/L 98.4 80.0 120 otassium, total 96.2 80.0 120 otassium, total	manganese, total 743	9-96-5 E420	0.0001	mg/L	0.25 mg/L	99.8	80.0	120				
ickel, total 7440-02-0 E420 0.0005 mg/L 0.5 mg/L 94.0 80.0 120 otassium, total 7440-09-7 E420 0.005 mg/L 50 mg/L 96.8 80.0 120 elenium, total 7782-49-2 E420 0.00005 mg/L 1 mg/L 97.2 80.0 120 elenium, total 7440-21-3 E420 0.1 mg/L 10 mg/L 89.3 60.0 140 eliver, total 7440-22-4 E420 0.00001 mg/L 0.1 mg/L 89.3 80.0 120 eliver, total 7440-23-5 E420 0.0001 mg/L 0.1 mg/L 95.8 80.0 120 eliver, total 7440-23-5 E420 0.0001 mg/L 50 mg/L 95.8 80.0 120 eliver, total 7440-23-5 E420 0.0002 mg/L 0.25 mg/L 98.4 80.0 120 eliver, total 7440-24-6 E420 0.0002 mg/L 0.25 mg/L 98.4 80.0 120 eliver, total 7440-24-6 E420 0.0002 mg/L 0.25 mg/L 98.4 80.0 120 eliver, total 7440-24-6 E420 0.0002 mg/L 0.25 mg/L 98.4 80.0 120		9-98-7 E420	0.00005	-	_		80.0	120				
totassium, total 7440-09-7 E420 0.05 mg/L 50 mg/L 96.8 80.0 120 elenium, total 7782-49-2 E420 0.00005 mg/L 1 mg/L 97.2 80.0 120 ilicon, total 7440-21-3 E420 0.1 mg/L 10 mg/L 89.3 60.0 140 elenium, total 7440-22-4 E420 0.00001 mg/L 0.1 mg/L 89.3 80.0 120 elenium, total 7440-23-5 E420 0.0001 mg/L 50 mg/L 95.8 80.0 120 trontium, total 7440-24-6 E420 0.0002 mg/L 0.25 mg/L 98.4 80.0 120 elenium, total 96.8 80.0 120 elenium, total 97.2 80.0 120			0.0005	-	_		80.0	120				
elenium, total 7782-49-2 E420 0.0005 mg/L 1 mg/L 97.2 80.0 120 ilicon, total 7440-21-3 E420 0.1 mg/L 10 mg/L 89.3 60.0 140 ilver, total 7440-22-4 E420 0.0001 mg/L 0.1 mg/L 89.3 80.0 120 trontium, total 7440-23-5 E420 0.0002 mg/L 50 mg/L 95.8 80.0 120 trontium, total 7440-24-6 E420 0.0002 mg/L 0.25 mg/L 98.4 80.0 120	potassium, total 744	0-09-7 E420	0.05	mg/L	_	96.8	80.0	120				
ilicon, total 7440-21-3 E420 0.1 mg/L 10 mg/L 89.3 60.0 140 ilver, total 7440-22-4 E420 0.00001 mg/L 0.1 mg/L 89.3 80.0 120 trontium, total 7440-23-5 E420 0.0002 mg/L 0.25 mg/L 95.8 80.0 120 trontium, total 7440-24-6 E420 0.0002 mg/L 0.25 mg/L 98.4 80.0 120		2-49-2 E420	0.00005	-	_		80.0	120				
ilver, total 7440-22-4 E420 0.00001 mg/L 0.1 mg/L 89.3 80.0 120 odium, total 7440-23-5 E420 0.05 mg/L 50 mg/L 95.8 80.0 120 trontium, total 7440-24-6 E420 0.0002 mg/L 0.25 mg/L 98.4 80.0 120			0.1	-			60.0	140				
odium, total 7440-23-5 E420 0.05 mg/L 50 mg/L 95.8 80.0 120 trontium, total 7440-24-6 E420 0.0002 mg/L 0.25 mg/L 98.4 80.0 120	l ·	0-22-4 E420	0.00001		_		80.0	120				
trontium, total 7440-24-6 E420 0.0002 mg/L 0.25 mg/L 98.4 80.0 120	·			-	_							
				-	_							
			0.5	mg/L	50 mg/L	107	80.0	120				

 Page
 : 13 of 18

 Work Order
 : CG2212617

 Client
 : Teck Coal Limited

ub-Matrix: Water					Laboratory Control Sample (LCS) Report					
					Spike	Recovery (%)	Recovery	Limits (%)		
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier	
Total Metals (QCLot: 651676) - continued	d									
thallium, total	7440-28-0	E420	0.00001	mg/L	1 mg/L	92.1	80.0	120		
tin, total	7440-31-5	E420	0.0001	mg/L	0.5 mg/L	96.3	80.0	120		
titanium, total	7440-32-6	E420	0.0003	mg/L	0.25 mg/L	97.2	80.0	120		
uranium, total	7440-61-1	E420	0.00001	mg/L	0.005 mg/L	94.3	80.0	120		
vanadium, total	7440-62-2	E420	0.0005	mg/L	0.5 mg/L	96.1	80.0	120		
zinc, total	7440-66-6	E420	0.003	mg/L	0.5 mg/L	94.8	80.0	120		
Total Metals (QCLot: 651965)										
mercury, total	7439-97-6	E508	0.000005	mg/L	0.0001 mg/L	101	80.0	120		
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	0.0001 mg/L	97.0	80.0	120		
Dissolved Metals (QCLot: 652076)										
chromium, dissolved	7440-47-3	E421.Cr-L	0.0001	mg/L	0.25 mg/L	99.0	80.0	120		
Dissolved Metals (QCLot: 652077)										
aluminum, dissolved	7429-90-5	E421	0.001	mg/L	2 mg/L	101	80.0	120		
antimony, dissolved	7440-36-0	E421	0.0001	mg/L	1 mg/L	97.7	80.0	120		
arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	1 mg/L	95.8	80.0	120		
barium, dissolved	7440-39-3	E421	0.0001	mg/L	0.25 mg/L	97.8	80.0	120		
beryllium, dissolved	7440-41-7	E421	0.00002	mg/L	0.1 mg/L	103	80.0	120		
bismuth, dissolved	7440-69-9	E421	0.00005	mg/L	1 mg/L	93.8	80.0	120		
boron, dissolved	7440-42-8	E421	0.01	mg/L	1 mg/L	104	80.0	120		
cadmium, dissolved	7440-43-9	E421	0.000005	mg/L	0.1 mg/L	102	80.0	120		
calcium, dissolved	7440-70-2	E421	0.05	mg/L	50 mg/L	94.7	80.0	120		
cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	0.25 mg/L	99.0	80.0	120		
copper, dissolved	7440-50-8	E421	0.0002	mg/L	0.25 mg/L	98.3	80.0	120		
iron, dissolved	7439-89-6	E421	0.01	mg/L	1 mg/L	111	80.0	120		
lead, dissolved	7439-92-1	E421	0.00005	mg/L	0.5 mg/L	97.8	80.0	120		
lithium, dissolved	7439-93-2	E421	0.001	mg/L	0.25 mg/L	106	80.0	120		
magnesium, dissolved	7439-95-4	E421	0.005	mg/L	50 mg/L	97.4	80.0	120		
manganese, dissolved	7439-96-5	E421	0.0001	mg/L	0.25 mg/L	101	80.0	120		
molybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	0.25 mg/L	100	80.0	120		
nickel, dissolved	7440-02-0	E421	0.0005	mg/L	0.5 mg/L	97.4	80.0	120		
potassium, dissolved	7440-09-7	E421	0.05	mg/L	50 mg/L	96.6	80.0	120		
selenium, dissolved	7782-49-2	E421	0.00005	mg/L	1 mg/L	92.8	80.0	120		
silicon, dissolved	7440-21-3	E421	0.05	mg/L	10 mg/L	106	60.0	140		
silver, dissolved	7440-22-4	E421	0.00001	mg/L	0.1 mg/L	94.2	80.0	120		
sodium, dissolved	7440-23-5	E421	0.05	mg/L	50 mg/L	98.2	80.0	120		
strontium, dissolved	7440-24-6	E421	0.0002	mg/L	0.25 mg/L	101	80.0	120		

 Page
 : 14 of 18

 Work Order
 : CG2212617

 Client
 : Teck Coal Limited

Sub-Matrix: Water	b-Matrix: Water					Laboratory Control Sample (LCS) Report						
					Spike	Recovery (%)	Recovery (%) Recovery Limits (%)					
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier			
Dissolved Metals (QCLot: 652077) - conf	tinued											
sulfur, dissolved	7704-34-9	E421	0.5	mg/L	50 mg/L	92.8	80.0	120				
thallium, dissolved	7440-28-0	E421	0.00001	mg/L	1 mg/L	94.0	80.0	120				
tin, dissolved	7440-31-5	E421	0.0001	mg/L	0.5 mg/L	101	80.0	120				
titanium, dissolved	7440-32-6	E421	0.0003	mg/L	0.25 mg/L	101	80.0	120				
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	0.005 mg/L	99.0	80.0	120				
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	0.5 mg/L	99.7	80.0	120				
zinc, dissolved	7440-66-6	E421	0.001	mg/L	0.5 mg/L	97.3	80.0	120				

Page : 15 of 18 Work Order : CG2212617 Client

: Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND - Recovery not determined, background level >= 1x spike level.

ub-Matrix: Water					Matrix Spike (MS) Report								
					Spi	ike	Recovery (%)	Recovery	Limits (%)				
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier			
	ents (QCLot: 651459)												
CG2212617-002	RG_MIDCO_WS_LAEMP_C MO_2022-09_N	phosphorus, total	7723-14-0	E372-U	0.0531 mg/L	0.05 mg/L	106	70.0	130				
Anions and Nutri	ents (QCLot: 651462)												
CG2212617-002	RG_MIDCO_WS_LAEMP_C MO_2022-09_N	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0510 mg/L	0.05 mg/L	102	70.0	130				
Anions and Nutri	ents (QCLot: 651465)												
CG2212617-002	RG_MIDCO_WS_LAEMP_C MO_2022-09_N	Kjeldahl nitrogen, total [TKN]		E318	2.68 mg/L	2.5 mg/L	107	70.0	130				
Anions and Nutri	ents (QCLot: 651473)												
CG2212630-006	Anonymous	fluoride	16984-48-8	E235.F	1.02 mg/L	1 mg/L	102	75.0	125				
Anions and Nutri	ents (QCLot: 651474)												
CG2212630-006	Anonymous	bromide	24959-67-9	E235.Br-L	0.516 mg/L	0.5 mg/L	103	75.0	125				
Anions and Nutri	ents (QCLot: 651475)												
CG2212630-006	Anonymous	chloride	16887-00-6	E235.CI-L	99.7 mg/L	100 mg/L	99.7	75.0	125				
Anions and Nutri	ents (QCLot: 651476)												
CG2212630-006	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	2.50 mg/L	2.5 mg/L	100	75.0	125				
Anions and Nutri	ents (QCLot: 651477)												
CG2212630-006	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.508 mg/L	0.5 mg/L	102	75.0	125				
Anions and Nutri	ents (QCLot: 651478)												
CG2212630-006	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	101 mg/L	100 mg/L	101	75.0	125				
Anions and Nutri	ents (QCLot: 651485)												
CG2212617-002	RG_MIDCO_WS_LAEMP_C MO_2022-09_N	ammonia, total (as N)	7664-41-7	E298	0.0997 mg/L	0.1 mg/L	99.7	75.0	125				
Organic / Inorga	nic Carbon (QCLot: 6514	136)											
CG2212617-001	RG_MIDAG_WS_LAEMP_C MO_2022-09_N	carbon, dissolved organic [DOC]		E358-L	5.35 mg/L	5 mg/L	107	70.0	130				
Organic / Inorga	nic Carbon (QCLot: 6514	137)											
CG2212617-001	RG_MIDAG_WS_LAEMP_C MO_2022-09_N	carbon, total organic [TOC]		E355-L	5.65 mg/L	5 mg/L	113	70.0	130				
Total Metals (QC	Lot: 651675)												
CG2212617-002	RG_MIDCO_WS_LAEMP_C MO_2022-09_N	chromium, total	7440-47-3	E420.Cr-L	0.402 mg/L	0.4 mg/L	100	70.0	130				

 Page
 : 16 of 18

 Work Order
 : CG2212617

 Client
 : Teck Coal Limited

ub-Matrix: Water						Matrix Spike (MS) Report								
					Spi	ke	Recovery (%)	Recovery Limits (%)						
aboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie				
otal Metals (QC	CLot: 651676)													
G2212617-002	RG_MIDCO_WS_LAEMP_C	aluminum, total	7429-90-5	E420	1.88 mg/L	2 mg/L	94.3	70.0	130					
	MO_2022-09_N	antimony, total	7440-36-0	E420	0.204 mg/L	0.2 mg/L	102	70.0	130					
		arsenic, total	7440-38-2	E420	0.189 mg/L	0.2 mg/L	94.4	70.0	130					
		barium, total	7440-39-3	E420	0.187 mg/L	0.2 mg/L	93.3	70.0	130					
		beryllium, total	7440-41-7	E420	0.420 mg/L	0.4 mg/L	105	70.0	130					
		bismuth, total	7440-69-9	E420	0.102 mg/L	0.1 mg/L	102	70.0	130					
		boron, total	7440-42-8	E420	1.13 mg/L	1 mg/L	113	70.0	130					
		cadmium, total	7440-43-9	E420	0.0413 mg/L	0.04 mg/L	103	70.0	130					
		calcium, total	7440-70-2	E420	ND mg/L	40 mg/L	ND	70.0	130					
		cobalt, total	7440-48-4	E420	0.199 mg/L	0.2 mg/L	99.6	70.0	130					
		copper, total	7440-50-8	E420	0.201 mg/L	0.2 mg/L	100	70.0	130					
		iron, total	7439-89-6	E420	20.4 mg/L	20 mg/L	102	70.0	130					
		lead, total	7439-92-1	E420	0.195 mg/L	0.2 mg/L	97.7	70.0	130					
	lithium, total	7439-93-2	E420	1.04 mg/L	1 mg/L	104	70.0	130						
		magnesium, total	7439-95-4	E420	ND mg/L	10 mg/L	ND	70.0	130					
		manganese, total	7439-96-5	E420	0.200 mg/L	0.2 mg/L	100	70.0	130					
		molybdenum, total	7439-98-7	E420	0.191 mg/L	0.2 mg/L	95.3	70.0	130					
		nickel, total	7440-02-0	E420	0.400 mg/L	0.4 mg/L	100	70.0	130					
		potassium, total	7440-09-7	E420	37.8 mg/L	40 mg/L	94.5	70.0	130					
		selenium, total	7782-49-2	E420	0.480 mg/L	0.4 mg/L	120	70.0	130					
		silicon, total	7440-21-3	E420	75.8 mg/L	100 mg/L	75.8	70.0	130					
		silver, total	7440-22-4	E420	0.0403 mg/L	0.04 mg/L	101	70.0	130					
		sodium, total	7440-23-5	E420	ND mg/L	20 mg/L	ND	70.0	130					
		strontium, total	7440-24-6	E420	ND mg/L	0.2 mg/L	ND	70.0	130					
		sulfur, total	7704-34-9	E420	151 mg/L	200 mg/L	75.7	70.0	130					
		thallium, total	7440-28-0	E420	0.0376 mg/L	0.04 mg/L	94.1	70.0	130					
		tin, total	7440-31-5	E420	0.204 mg/L	0.2 mg/L	102	70.0	130					
		titanium, total	7440-32-6	E420	0.386 mg/L	0.4 mg/L	96.4	70.0	130					
		uranium, total	7440-61-1	E420	0.0403 mg/L	0.04 mg/L	101	70.0	130					
		vanadium, total	7440-62-2	E420	0.970 mg/L	1 mg/L	97.0	70.0	130					
		zinc, total	7440-66-6	E420	4.02 mg/L	4 mg/L	100	70.0	130					
tal Metals (QC	CLot: 651965)													
G2212617-002	RG_MIDCO_WS_LAEMP_C	mercury, total	7439-97-6	E508	0.0000968 mg/L	0.0001 mg/L	96.8	70.0	130					
ssolved Metals	MO_2022-09_N (QCLot: 651966)													
G2212467-002	Anonymous	mercury, dissolved	7439-97-6	E509	0.000106 mg/L	0.0001 mg/L	106	70.0	130					

 Page
 : 17 of 18

 Work Order
 : CG2212617

 Client
 : Teck Coal Limited

Sub-Matrix: Water							Matrix Spil	ke (MS) Report		
					Spi	ike	Recovery (%)	Recovery	/ Limits (%)	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
	(QCLot: 652076)									
CG2212617-002	RG_MIDCO_WS_LAEMP_C MO 2022-09 N	chromium, dissolved	7440-47-3	E421.Cr-L	0.378 mg/L	0.4 mg/L	94.4	70.0	130	
Dissolved Metals	(QCLot: 652077)									
CG2212617-002	RG_MIDCO_WS_LAEMP_C	aluminum, dissolved	7429-90-5	E421	1.87 mg/L	2 mg/L	93.6	70.0	130	
	MO_2022-09_N	antimony, dissolved	7440-36-0	E421	0.188 mg/L	0.2 mg/L	94.1	70.0	130	
		arsenic, dissolved	7440-38-2	E421	0.183 mg/L	0.2 mg/L	91.6	70.0	130	
		barium, dissolved	7440-39-3	E421	0.169 mg/L	0.2 mg/L	84.7	70.0	130	
		beryllium, dissolved	7440-41-7	E421	0.372 mg/L	0.4 mg/L	92.9	70.0	130	
		bismuth, dissolved	7440-69-9	E421	0.0930 mg/L	0.1 mg/L	93.0	70.0	130	
		boron, dissolved	7440-42-8	E421	0.978 mg/L	1 mg/L	97.8	70.0	130	
		cadmium, dissolved	7440-43-9	E421	0.0398 mg/L	0.04 mg/L	99.5	70.0	130	
		calcium, dissolved	7440-70-2	E421	ND mg/L	40 mg/L	ND	70.0	130	
		cobalt, dissolved	7440-48-4	E421	0.192 mg/L	0.2 mg/L	95.8	70.0	130	
		copper, dissolved	7440-50-8	E421	0.191 mg/L	0.2 mg/L	95.4	70.0	130	
		iron, dissolved	7439-89-6	E421	18.9 mg/L	20 mg/L	94.4	70.0	130	
		lead, dissolved	7439-92-1	E421	0.189 mg/L	0.2 mg/L	94.4	70.0	130	
		lithium, dissolved	7439-93-2	E421	0.922 mg/L	1 mg/L	92.2	70.0	130	
		magnesium, dissolved	7439-95-4	E421	ND mg/L	10 mg/L	ND	70.0	130	
		manganese, dissolved	7439-96-5	E421	0.189 mg/L	0.2 mg/L	94.7	70.0	130	
		molybdenum, dissolved	7439-98-7	E421	0.191 mg/L	0.2 mg/L	95.6	70.0	130	
		nickel, dissolved	7440-02-0	E421	0.375 mg/L	0.4 mg/L	93.8	70.0	130	
		potassium, dissolved	7440-09-7	E421	36.6 mg/L	40 mg/L	91.5	70.0	130	
		selenium, dissolved	7782-49-2	E421	0.372 mg/L	0.4 mg/L	93.0	70.0	130	
		silicon, dissolved	7440-21-3	E421	93.6 mg/L	100 mg/L	93.6	70.0	130	
		silver, dissolved	7440-22-4	E421	0.0400 mg/L	0.04 mg/L	99.9	70.0	130	
		sodium, dissolved	7440-23-5	E421	ND mg/L	20 mg/L	ND	70.0	130	
		strontium, dissolved	7440-24-6	E421	ND mg/L	0.2 mg/L	ND	70.0	130	
		sulfur, dissolved	7704-34-9	E421	143 mg/L	200 mg/L	71.6	70.0	130	
		thallium, dissolved	7440-28-0	E421	0.0363 mg/L	0.04 mg/L	90.9	70.0	130	
		tin, dissolved	7440-31-5	E421	0.188 mg/L	0.2 mg/L	94.1	70.0	130	
		titanium, dissolved	7440-32-6	E421	0.378 mg/L	0.4 mg/L	94.6	70.0	130	
		uranium, dissolved	7440-61-1	E421	0.0379 mg/L	0.04 mg/L	94.8	70.0	130	
		vanadium, dissolved	7440-62-2	E421	0.935 mg/L	1 mg/L	93.5	70.0	130	
		zinc, dissolved	7440-66-6	E421	3.79 mg/L	4 mg/L	94.8	70.0	130	

 Page
 : 18 of 18

 Work Order
 : CG2212617

 Client
 : Teck Coal Limited

Emergency (For Emergency <1 Day, 1	Priority (2	SERVICE REQUEST (rush - subject to availability)	Dissolved metals were field filtered and to be lab preserved Total metals to be lab preserved	ADDITIONAL COMMENTS/SPECIAL INSTRUCTIONS	r	4.		RG_RIVER_WS_LAEMP_CMO_2022-09_NP	RG_MIDCO_WS_LAEMP_CMO_2022-09_N	RG_MIDAG_WS_LAEMP_CMO_2022-09_N	Sample ID		The state of the s	Phone Number	Postal Code V0B 2G0	City	Address	Email	Project Manager Cybele Heddle		Teck
Emergency (1 Business Day) - 100% surcharge For Emergency <1 Day, ASAP or Weekend - Contact ALS	Priority (2-3 business days) - 50% surcharge X	ubject to availability) Reonlar (de	d and to be lab preserved b preserved	CIAL INSTRUCTIONS				RG_RIVER	RG_MIDCO		Sample Location (sys loc code)		SAMPLE DETAILS	Phone Number 1-250-865-3048	V0B 2G0	City Sparwood	Address 421 Pinc Avenue	Email Cybele Heddle@teck.com	Project Manager Cybele Heddle	PROJECT/CLIENT INFO	COCID: REP
harge ALS	harge X	fault)						ws	ws	ws	A Field Hazardous Material (Yes/	No)	AHS		Coun	Provi					LAEMP
Sampler's Signature	Sampler's Name		Jennife	RELINQUISHED HY/AFFILIATION				2022/09/13	2022/09/13	2022/09/13	Date				Country Canada	Provinc BC					CMm_2022-09
ature *	me		Jennifer Ings/Minnow	ED BY/AFFILI				16:17	16:17	11:15	Time (24hr)	1	*	Phon	Po				La	T	09_ALS
d				ATION				G 7	G 7		G=Grab C=Com # Of p Cont.			Phone Number 403 407	Postal Code T1Y 7B5	City Calgary	Address 2559 29	Email Lyudo	Lab Contact Lyudmyla Shvets	LA Name AI S Calcary	TURNAROUND TIME:
motify they	` ≣	* *	#######################################	DATE/JIME	#-			-]	1	ANALYSIS .	PRESERV. Filt.		1794			29 Street NE		myla Shvets	LABORATORY	UND TIME:
	.so		####				3	1	1	ļ	Mercury_Dissolved Mercury_Total	HCL HCL	ANALYSIS		Country Canada	Province AB		obal com		TORY	
Date/Time	Mobile #			ACCERTED BY/AFFILIATION				-	-	_*	TECKCOAL_METNHG _D TECKCOAL_METNHG	স	ANALYSIS REQUESTED	PO number	Email 6:	Email 5:	Email 4:	Email 2:	Email 1:	Dancet	2-3 Business Days
ne	#			AFFILIATIO				-	1	1	_T TECKCOAL_ROUTINE	z		H	T		1-1	ļ.,.	01111		lays
September 14, 2022	519-500-3444				Telepho				-	- G	TOC_TKN_PT	H2SQ4	Filtered - F	VPO00816101	Hannah Penner@Teck.com X	yler.Mehler@minnow.ca X	3	13	AguaSgiLab@Teck.com X	OTHE	RUSH: Priorty
r 14, 2022	0-3444			DATE/TIME	Telephone: +1 403 407 1800				ののグングである。	Work Order Bar	Environmental Division		Filtered - F. Field, L.: Lab, FL. Field & Lab, N:	101	x	X		×	x FOI	PO ENT	rfy
		1		j.	90			. 0	クアイト erence	<u>,</u>	Division	Enviro			nta	al C) ivis	sior			

algary Work Order Reference CG2212617

CERTIFICATE OF ANALYSIS

Work Order : CG2212650

Client : Teck Coal Limited

: Cybele Heddle Address

: 421 Pine Avenue

Sparwood BC Canada V0B2G0

Telephone

Contact

Project : Regional Effects Program

: VPO00816101

C-O-C number : REP LAEMP CMm 2022-09 ALS

Sampler : Jenifer Ings

Site

Quote number : Teck Coal Master Quote

No. of samples received : 2 : 2 No. of samples analysed

Page : 1 of 6

Laboratory : Calgary - Environmental

Account Manager : Lyudmyla Shvets

Address : 2559 29th Street NE

Calgary AB Canada T1Y 7B5

Telephone : +1 403 407 1800 **Date Samples Received** : 16-Sep-2022 08:50

Date Analysis Commenced : 16-Sep-2022

Issue Date : 20-Sep-2022 16:26

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Anthony Calero	Supervisor - Inorganic	Inorganics, Calgary, Alberta
Anthony Calero	Supervisor - Inorganic	Metals, Calgary, Alberta
Elke Tabora		Inorganics, Calgary, Alberta
Harpreet Chawla	Team Leader - Inorganics	Inorganics, Calgary, Alberta
Mackenzie Lamoureux	Laboratory Analyst	Metals, Calgary, Alberta
Ruifang Zheng	Analyst	Inorganics, Calgary, Alberta
Sara Niroomand		Inorganics, Calgary, Alberta

Page : 2 of 6
Work Order : CG2212650
Client : Teck Coal Limited
Project : Regional Effects Program

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
%	percent
μg/L	micrograms per litre
μS/cm	Microsiemens per centimetre
meq/L	milliequivalents per litre
mg/L	milligrams per litre
mV	millivolts
NTU	nephelometric turbidity units
pH units	pH units

<: less than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

Qualifier	Description
DLDS	Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical
	Conductivity.
TKNI	TKN result may be biased low due to Nitrate interference. Nitrate-N is > 10x TKN.

>: greater than.

Page : 3 of 6
Work Order : CG2212650
Client : Teck Coal Limited
Project : Regional Effects Program

Analytical Results

Sub-Matrix: Water			Ci	lient sample ID	RG_MIUCO_WS	RG_CORCK_W	 	
(Matrix: Water)					_LAEMP_CMO_ 2022-09_N	S_LAEMP_CMO _2022-09_N		
			Client samp	oling date / time	14-Sep-2022 11:00	14-Sep-2022 14:45	 	
Analyte	CAS Number	Method	LOR	Unit	CG2212650-001	CG2212650-002	 	
					Result	Result	 	
Physical Tests acidity (as CaCO3)		E283	2.0	ma/l	<2.0	2.9	 	
		E290	1.0	mg/L	144	300		
alkalinity, bicarbonate (as CaCO3)	 74 50 0		1.0	mg/L	176	366	 	
alkalinity, bicarbonate (as HCO3)	71-52-3	E290		mg/L			 	
alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	6.8	<1.0	 	
alkalinity, carbonate (as CO3)	3812-32-6	E290	1.0	mg/L	4.1	<1.0	 	
alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	 	
alkalinity, hydroxide (as OH)	14280-30-9	E290	1.0	mg/L	<1.0	<1.0	 	
alkalinity, total (as CaCO3)		E290	1.0	mg/L	151	300	 	
conductivity		E100	2.0	μS/cm	287	1540	 	
hardness (as CaCO3), dissolved		EC100	0.50	mg/L	161	986	 	
oxidation-reduction potential [ORP]		E125	0.10	mV	268	274	 	
рН		E108	0.10	pH units	8.34	8.13	 	
solids, total dissolved [TDS]		E162	10	mg/L	165	1340	 	
solids, total suspended [TSS]		E160-L	1.0	mg/L	<1.0	<1.0	 	
turbidity		E121	0.10	NTU	0.31	0.30	 	
Anions and Nutrients								
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	<0.0050	0.0255	 	
bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	<0.250 DLDS	 	
chloride	16887-00-6	E235.CI-L	0.10	mg/L	0.25	2.16	 	
fluoride	16984-48-8	E235.F	0.020	mg/L	0.080	0.186	 	
Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	<0.050	0.296 TKNI	 	
nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	0.0088	3.08	 	
nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	<0.0010	0.0260	 	
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	<0.0010	<0.0010	 	
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0033	0.0022	 	
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	15.0	752	 	
Organic / Inorganic Carbon								
carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	<0.50	0.62	 	
carbon, total organic [TOC]		E355-L	0.50	mg/L	<0.50	0.69	 	

Page : 4 of 6
Work Order : CG2212650
Client : Teck Coal Limited
Project : Regional Effects Program

Analytical Results

Sub-Matrix: Water (Matrix: Water)			Cli	ient sample ID	RG_MIUCO_WS _LAEMP_CMO_ 2022-09_N	RG_CORCK_W S_LAEMP_CMO _2022-09_N	 	
			Client samp	ling date / time	14-Sep-2022 11:00	14-Sep-2022 14:45	 	
Analyte	CAS Number	Method	LOR	Unit	CG2212650-001	CG2212650-002	 	
					Result	Result	 	
Ion Balance								
anion sum		EC101	0.10	meq/L	3.34	21.9	 	
cation sum		EC101	0.10	meq/L	3.33	21.2	 	
ion balance (cations/anions)		EC101	0.010	%	99.7	96.8	 	
ion balance (APHA)		EC101	0.010	%	0.150	1.62	 	
Total Metals								
aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0128	0.0066	 	
antimony, total	7440-36-0	E420	0.00010	mg/L	<0.00010	0.00052	 	
arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00018	0.00028	 	
barium, total	7440-39-3	E420	0.00010	mg/L	0.0753	0.0399	 	
beryllium, total	7440-41-7	E420	0.020	μg/L	<0.020	<0.020	 	
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	 	
boron, total	7440-42-8	E420	0.010	mg/L	0.012	0.095	 	
cadmium, total	7440-43-9	E420	0.0050	μg/L	0.0058	0.0739	 	
calcium, total	7440-70-2	E420	0.050	mg/L	41.7	206	 	
chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00019	0.00013	 	
cobalt, total	7440-48-4	E420	0.10	μg/L	<0.10	5.25	 	
copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00050	 	
iron, total	7439-89-6	E420	0.010	mg/L	0.015	0.013	 	
lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	 	
lithium, total	7439-93-2	E420	0.0010	mg/L	0.0040	0.0468	 	
magnesium, total	7439-95-4	E420	0.0050	mg/L	12.9	121	 	
manganese, total	7439-96-5	E420	0.00010	mg/L	0.00182	0.0228	 	
mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050	<0.0000050	 	
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.000712	0.00154	 	
nickel, total	7440-02-0	E420	0.00050	mg/L	<0.00050	0.0630	 	
potassium, total	7440-09-7	E420	0.050	mg/L	0.450	3.84	 	
selenium, total	7782-49-2	E420	0.050	μg/L	0.247	17.1	 	
silicon, total	7440-21-3	E420	0.10	mg/L	2.38	2.55	 	
silver, total	7440-21-3	E420	0.000010	mg/L	<0.000010	<0.000010	 	
sodium, total	7440-23-5	E420	0.050	mg/L	2.49	32.8	 	
	1440-23-3	L 120	0.000	g/ L	2.70	02.0		

Page : 5 of 6
Work Order : CG2212650
Client : Teck Coal Limited
Project : Regional Effects Program

Analytical Results

Sub-Matrix: Water			Cli	ent sample ID	RG_MIUCO_WS	RG_CORCK_W	 	
(Matrix: Water)					_LAEMP_CMO_ 2022-09_N	S_LAEMP_CMO _2022-09_N		
			Client sampl	ling date / time	14-Sep-2022 11:00	14-Sep-2022 14:45	 	
Analyte	CAS Number	Method	LOR	Unit	CG2212650-001	CG2212650-002	 	
					Result	Result	 	
Total Metals								
strontium, total	7440-24-6	E420	0.00020	mg/L	0.140	0.849	 	
sulfur, total	7704-34-9	E420	0.50	mg/L	5.51	241	 	
thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	0.000045	 	
tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	 	
titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	 	
uranium, total	7440-61-1	E420	0.000010	mg/L	0.000244	0.00614	 	
vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	 	
zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	<0.0030	 	
Dissolved Metals								
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	0.0016	0.0011	 	
antimony, dissolved	7440-36-0	E421	0.00010	mg/L	<0.00010	0.00053	 	
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00012	0.00020	 	
barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0783	0.0397	 	
beryllium, dissolved	7440-41-7	E421	0.020	μg/L	<0.020	<0.020	 	
bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	 	
boron, dissolved	7440-42-8	E421	0.010	mg/L	0.011	0.088	 	
cadmium, dissolved	7440-43-9	E421	0.0050	μg/L	<0.0050	0.0583	 	
calcium, dissolved	7440-70-2	E421	0.050	mg/L	43.4	210	 	
chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	0.00018	<0.00010	 	
cobalt, dissolved	7440-48-4	E421	0.10	μg/L	<0.10	4.74	 	
copper, dissolved	7440-50-8	E421	0.00020	mg/L	<0.00020	<0.00020	 	
iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	 	
lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	 	
lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0047	0.0537	 	
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	12.7	112	 <u></u>	
manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00126	0.0198	 	
mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	 	
molybdenum, dissolved	7439-97-0	E421	0.000050	mg/L	0.000768	0.00166	 	
nickel, dissolved	7439-98-7 7440-02-0	E421	0.00050	mg/L	<0.000708	0.0590	 	
'		E421	0.050	-	0.472	3.72		
potassium, dissolved	7440-09-7	E421	0.050	mg/L	0.472	3.12	 	

Page : 6 of 6
Work Order : CG2212650
Client : Teck Coal Limited
Project : Regional Effects Program

Analytical Results

Sub-Matrix: Water			Cli	ient sample ID	RG_MIUCO_WS	RG_CORCK_W	 	
(Matrix: Water)					_LAEMP_CMO_	S_LAEMP_CMO		
					2022-09_N	_2022-09_N		
			Client samp	ling date / time	14-Sep-2022 11:00	14-Sep-2022 14:45	 	
Analyte	CAS Number	Method	LOR	Unit	CG2212650-001	CG2212650-002	 	
					Result	Result	 	
Dissolved Metals								
selenium, dissolved	7782-49-2	E421	0.050	μg/L	0.290	19.0	 	
silicon, dissolved	7440-21-3	E421	0.050	mg/L	2.55	2.64	 	
silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	 	
sodium, dissolved	7440-23-5	E421	0.050	mg/L	2.58	31.7	 	
strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.155	0.921	 	
sulfur, dissolved	7704-34-9	E421	0.50	mg/L	5.17	214	 	
thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	0.000048	 	
tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	 	
titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	 	
uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.000283	0.00674	 	
vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	 	
zinc, dissolved	7440-66-6	E421	0.0010	mg/L	<0.0010	0.0024	 	
dissolved mercury filtration location		EP509	-	-	Field	Field	 	
dissolved metals filtration location		EP421	-	-	Field	Field	 	

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : **CG2212650** Page : 1 of 15

 Client
 : Teck Coal Limited
 Laboratory
 : Calgary - Environmental

 Contact
 : Cybele Heddle
 Account Manager
 : Lyudmyla Shvets

: 421 Pine Avenue Address : 2559 29th Street NE

Sparwood BC Canada V0B2G0 Calgary, Alberta Canada T1Y 7B5

 Telephone
 : -- Telephone
 : +1 403 407 1800

 Project
 : Regional Effects Program
 Date Samples Received
 : 16-Sep-2022 08:50

 PO
 : VPO00816101
 Issue Date
 : 20-Sep-2022 16:26

C-O-C number : REP_LAEMP_CMm_2022-09_ALS

Sampler : Jenifer Ings

Site : ----

Quote number : Teck Coal Master Quote

No. of samples received : 2
No. of samples analysed : 2

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Address

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers: Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers: Frequency of Quality Control Samples

• No Quality Control Sample Frequency Outliers occur.

 Page
 : 3 of 15

 Work Order
 : CG2212650

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time Matrix: Water Analyte Group Extraction / Preparation Analysis Method Sampling Date Container / Client Sample ID(s) **Holding Times** Eval Analysis Date Holding Times Eval Preparation Rec Actual Date Rec Actual Anions and Nutrients: Ammonia by Fluorescence Amber glass total (sulfuric acid) F298 14-Sep-2022 1 RG CORCK WS LAEMP CMO 2022-09 N 16-Sep-2022 16-Sep-2022 28 days 2 days Anions and Nutrients : Ammonia by Fluorescence Amber glass total (sulfuric acid) E298 14-Sep-2022 16-Sep-2022 16-Sep-2022 28 days 2 days ✓ RG MIUCO WS LAEMP CMO 2022-09 N ----Anions and Nutrients: Bromide in Water by IC (Low Level) **HDPE** RG CORCK WS LAEMP CMO 2022-09 N E235.Br-L 14-Sep-2022 16-Sep-2022 16-Sep-2022 28 days 2 days Anions and Nutrients : Bromide in Water by IC (Low Level) RG_MIUCO_WS_LAEMP_CMO_2022-09_N E235.Br-L 14-Sep-2022 16-Sep-2022 16-Sep-2022 28 days 2 days Anions and Nutrients: Chloride in Water by IC (Low Level) HDPE RG CORCK WS LAEMP CMO 2022-09 N E235.CI-L 14-Sep-2022 16-Sep-2022 16-Sep-2022 28 days 2 days Anions and Nutrients: Chloride in Water by IC (Low Level) **HDPE** E235.CI-L 16-Sep-2022 14-Sep-2022 RG MIUCO WS LAEMP CMO 2022-09 N 16-Sep-2022 28 days 2 days Anions and Nutrients: Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 HDPE E378-U 14-Sep-2022 1 RG CORCK WS LAEMP CMO 2022-09 N 17-Sep-2022 17-Sep-2022 3 days 3 days

 Page
 : 4 of 15

 Work Order
 : CG2212650

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

Matrix: **Water** Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

							Troiting time oxec			
nalyte Group	Method	Sampling Date	Ex	traction / Pr	reparation		Analysis			
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eva
			Date	Rec	Actual			Rec	Actual	
nions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra	Trace Level 0.001									
HDPE										
RG_MIUCO_WS_LAEMP_CMO_2022-09_N	E378-U	14-Sep-2022	17-Sep-2022				17-Sep-2022	3 days	3 days	✓
nions and Nutrients : Fluoride in Water by IC										
HDPE RG_CORCK_WS_LAEMP_CMO_2022-09_N	E235.F	14-Sep-2022	16-Sep-2022				16-Sep-2022	28 days	2 days	/
NG_CONCN_W3_LAEMIF_CMO_2022-09_N	L233.1	14-36р-2022	10-0ер-2022				10-3ер-2022	20 days	2 days	ľ
nions and Nutrients : Fluoride in Water by IC										
HDPE RG_MIUCO_WS_LAEMP_CMO_2022-09_N	E235.F	14-Sep-2022	16-Sep-2022				16-Sep-2022	28 days	2 days	/
110_III000_110_L1			.0 00p 2022				10 000 2022	20 44,0	_ aujo	
nions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE RG CORCK WS LAEMP CMO 2022-09 N	E235.NO3-L	14-Sep-2022	16-Sep-2022	3 days	2 days	✓	16-Sep-2022	3 days	0 days	/
			, ,						,	
nions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE RG_MIUCO_WS_LAEMP_CMO_2022-09_N	E235.NO3-L	14-Sep-2022	16-Sep-2022	3 days	2 davs	✓	16-Sep-2022	3 days	0 days	/
			.0 00p 2022	o days	_ au,o		10 000 2022	o dayo	o days	
nions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE RG_CORCK_WS_LAEMP_CMO_2022-09_N	E235.NO2-L	14-Sep-2022	16-Sep-2022				16-Sep-2022	3 days	2 days	
								,-	,_	
nions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE RG_MIUCO_WS_LAEMP_CMO_2022-09_N	E235.NO2-L	14-Sep-2022	16-Sep-2022				16-Sep-2022	3 days	2 days	/
110_III000_110_L1		cop 2022	.0 000 2022				10 000 2022	o days	_ aujo	
nions and Nutrients : Sulfate in Water by IC										
HDPE RG_CORCK_WS_LAEMP_CMO_2022-09_N	E235.SO4	14-Sep-2022	16-Sep-2022				16-Sep-2022	28 days	2 days	
			. 3 557 2522				10 000 2022			
nions and Nutrients : Sulfate in Water by IC										
HDPE RG MIUCO WS LAEMP CMO 2022-09 N	E235.SO4	14-Sep-2022	16-Sep-2022				16-Sep-2022	28 days	2 days	/
1.0_1000_1.0_E1.E1.WII _0.WIO_2022-00_14	2200.504	7 1 33p 2322	.5 Cop 2022				.0 000 2022	auys	_ aa,s	

Page : 5 of 15
Work Order : CG2212650
Client : Teck Coal Limited
Project : Regional Effects Program

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

Matrix: Water					E	valuation: 🗴 =	Holding time exce	edance ; 🔻	/ = Within	Holding I in
Analyte Group	Method	Sampling Date	Ext	Extraction / Preparation Analysis					sis	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Lo	evel)									
Amber glass total (sulfuric acid)										
RG_CORCK_WS_LAEMP_CMO_2022-09_N	E318	14-Sep-2022	17-Sep-2022				17-Sep-2022	28 days	3 days	✓
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Lo	evel)									
Amber glass total (sulfuric acid)										
RG_MIUCO_WS_LAEMP_CMO_2022-09_N	E318	14-Sep-2022	17-Sep-2022				17-Sep-2022	28 days	3 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid)										
RG_CORCK_WS_LAEMP_CMO_2022-09_N	E372-U	14-Sep-2022	19-Sep-2022				20-Sep-2022	28 days	6 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid)										,
RG_MIUCO_WS_LAEMP_CMO_2022-09_N	E372-U	14-Sep-2022	19-Sep-2022				20-Sep-2022	28 days	6 days	✓
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low L	_evel)									
HDPE - dissolved (lab preserved)	E404.0	44.0 0000	40.0				40.0			,
RG_CORCK_WS_LAEMP_CMO_2022-09_N	E421.Cr-L	14-Sep-2022	19-Sep-2022				19-Sep-2022	180	5 days	✓
								days		
Dissolved Metals: Dissolved Chromium in Water by CRC ICPMS (Low L	_evel)									
HDPE - dissolved (lab preserved)	F424 Cr I	14 Can 2022	10 Can 2022				10 Can 2022	400	E dovo	1
RG_MIUCO_WS_LAEMP_CMO_2022-09_N	E421.Cr-L	14-Sep-2022	19-Sep-2022				19-Sep-2022	180	5 days	•
								days		
Dissolved Metals : Dissolved Mercury in Water by CVAAS								T		
Glass vial dissolved (hydrochloric acid)	E509	14-Sep-2022	20-Sep-2022				20-Sep-2022	28 days	6 days	✓
RG_CORCK_WS_LAEMP_CMO_2022-09_N	L309	14-3ep-2022	20-3ep-2022				20-Sep-2022	20 uays	0 uays	•
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid) RG_MIUCO_WS_LAEMP_CMO_2022-09_N	E509	14-Sep-2022	20-Sep-2022				20-Sep-2022	28 days	6 days	✓
TO_IVIIOOO_VVO_LALIVIF_OIVIO_2022-09_IV	2509	14-06p-2022	20-06p-2022				20-06p-2022	20 days	Juays	•
Discolved Metals : Discolved Metals in Water by CDC-IODMC										
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS HDPE - dissolved (lab preserved)										
RG_CORCK_WS_LAEMP_CMO_2022-09_N	E421	14-Sep-2022	19-Sep-2022				19-Sep-2022	180	5 days	1
								days	,,	
								aays		

 Page
 : 6 of 15

 Work Order
 : CG2212650

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

wattix: water							Holding time exce			riolanig riii
Analyte Group	Method	Sampling Date	Ext	traction / Pr	eparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE - dissolved (lab preserved)										
RG_MIUCO_WS_LAEMP_CMO_2022-09_N	E421	14-Sep-2022	19-Sep-2022				19-Sep-2022	180	5 days	✓
								days		
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Le	vel)									
Amber glass dissolved (sulfuric acid)										
RG CORCK WS LAEMP CMO 2022-09 N	E358-L	14-Sep-2022	16-Sep-2022				17-Sep-2022	28 days	3 davs	✓
									,-	
Onesia (Incomo in Combana Bisanbard Onesia Comban ba Combantian (Institut	1\									
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low Legamber glass dissolved (sulfuric acid)	ver)							<u> </u>		
RG_MIUCO_WS_LAEMP_CMO_2022-09_N	E358-L	14-Sep-2022	16-Sep-2022				17-Sep-2022	28 days	3 days	✓
RG_MIDCO_WS_LAEMIF_CMO_2022-09_N	L330-L	14-3ep-2022	10-3ep-2022				17-3 c p-2022	20 days	3 days	•
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combust	ion (Low Level)							1		
Amber glass total (sulfuric acid)										
RG_CORCK_WS_LAEMP_CMO_2022-09_N	E355-L	14-Sep-2022	16-Sep-2022				17-Sep-2022	28 days	3 days	✓
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combust	ion (Low Level)									
Amber glass total (sulfuric acid)										
RG_MIUCO_WS_LAEMP_CMO_2022-09_N	E355-L	14-Sep-2022	16-Sep-2022				17-Sep-2022	28 days	3 days	✓
Physical Tests : Acidity by Titration										
HDPE										
RG_CORCK_WS_LAEMP_CMO_2022-09_N	E283	14-Sep-2022	17-Sep-2022				17-Sep-2022	14 days	3 days	✓
		· ·	·							
Dhysical Tasta , Asidity by Titustian										
Physical Tests : Acidity by Titration HDPE								T		
RG_MIUCO_WS_LAEMP_CMO_2022-09_N	E283	14-Sep-2022	17-Sep-2022				17-Sep-2022	14 days	3 days	1
RG_MIOCO_WS_LAEMF_CMO_2022-09_N	L203	14-06p-2022	17-3ep-2022				17-3 c p-2022	14 days	3 days	•
Physical Tests : Alkalinity Species by Titration										
HDPE										,
RG_CORCK_WS_LAEMP_CMO_2022-09_N	E290	14-Sep-2022	17-Sep-2022				17-Sep-2022	14 days	3 days	✓
Physical Tests : Alkalinity Species by Titration										
HDPE										
RG_MIUCO_WS_LAEMP_CMO_2022-09_N	E290	14-Sep-2022	17-Sep-2022				17-Sep-2022	14 days	3 days	✓

Page : 7 of 15
Work Order : CG2212650
Client : Teck Coal Limited
Project : Regional Effects Program

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

Analyte Oracin		0 " 0 '	F.,	tua atia a 1 D		raidation. • –	Tiolding time exce			i i ioiding i iii
Analyte Group	Method	Sampling Date		Extraction / Preparation			Analysis			
Container / Client Sample ID(s)			Preparation		g Times	Eval	Analysis Date		g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : Conductivity in Water										
HDPE										_
RG_CORCK_WS_LAEMP_CMO_2022-09_N	E100	14-Sep-2022	17-Sep-2022				17-Sep-2022	28 days	3 days	✓
Physical Tests : Conductivity in Water										
HDPE										
RG_MIUCO_WS_LAEMP_CMO_2022-09_N	E100	14-Sep-2022	17-Sep-2022				17-Sep-2022	28 days	3 days	✓
Physical Tests : ORP by Electrode										
HDPE										
RG_CORCK_WS_LAEMP_CMO_2022-09_N	E125	14-Sep-2022					17-Sep-2022	0.25	67 hrs	3c
							· ·	hrs		EHTR-FM
Dhorical Tasta (ODD by Flactuada								1		
Physical Tests : ORP by Electrode HDPE							I	T	I	
RG_MIUCO_WS_LAEMP_CMO_2022-09_N	E125	14-Sep-2022					17-Sep-2022	0.25	71 hrs	×
RG_MIOCO_WG_LAEMF_CMO_2022-09_N	L123	14-3ep-2022					17-3ep-2022	0.25 hrs	711115	EHTR-FM
								1115		LIIIIX-IIV
Physical Tests : pH by Meter		,	ı							
HDPE	F100	44.0 0000	47.0				47.0 0000			
RG_CORCK_WS_LAEMP_CMO_2022-09_N	E108	14-Sep-2022	17-Sep-2022				17-Sep-2022	0.25	0.25	*
								hrs	hrs	EHTR-FM
Physical Tests : pH by Meter										
HDPE										
RG_MIUCO_WS_LAEMP_CMO_2022-09_N	E108	14-Sep-2022	17-Sep-2022				17-Sep-2022	0.25	0.25	æ
								hrs	hrs	EHTR-FM
Physical Tests : TDS by Gravimetry										
HDPE										
RG_CORCK_WS_LAEMP_CMO_2022-09_N	E162	14-Sep-2022					16-Sep-2022	7 days	2 days	✓
Physical Tests : TDS by Gravimetry										
HDPE										
RG_MIUCO_WS_LAEMP_CMO_2022-09_N	E162	14-Sep-2022					16-Sep-2022	7 days	2 days	✓
	2102	53p 2022						. 20,5		
Physical Tests : TSS by Gravimetry (Low Level)									I	I
HDPE [TSS-WB]	F460.1	44.0 0000					40.0 0000	7 -1-10	0 4	
RG_CORCK_WS_LAEMP_CMO_2022-09_N	E160-L	14-Sep-2022					16-Sep-2022	/ days	2 days	✓

Page : 8 of 15
Work Order : CG2212650
Client : Teck Coal Limited
Project : Regional Effects Program

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

Matrix: Water					E۱	/aluation: 🗴 =	Holding time exce	edance ; 🕦	✓ = Within	Holding
Analyte Group	Method	Sampling Date	Ex	traction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE [TSS-WB]										
RG_MIUCO_WS_LAEMP_CMO_2022-09_N	E160-L	14-Sep-2022					16-Sep-2022	7 days	2 days	✓
Physical Tests : Turbidity by Nephelometry										
HDPE										
RG_CORCK_WS_LAEMP_CMO_2022-09_N	E121	14-Sep-2022					16-Sep-2022	3 days	2 days	✓
Physical Tests : Turbidity by Nephelometry HDPE										
RG MIUCO WS LAEMP CMO 2022-09 N	E121	14-Sep-2022					16-Sep-2022	3 days	2 days	✓
		·					i i			
otal Metals : Total Chromium in Water by CRC ICPMS (Low Level)										
HDPE - total (lab preserved)										
RG_CORCK_WS_LAEMP_CMO_2022-09_N	E420.Cr-L	14-Sep-2022	18-Sep-2022				18-Sep-2022	180	4 days	✓
								days		
otal Metals : Total Chromium in Water by CRC ICPMS (Low Level)										
HDPE - total (lab preserved)	E420.Cr-L	14-Sep-2022	18-Sep-2022				18-Sep-2022	400	4 days	✓
RG_MIUCO_WS_LAEMP_CMO_2022-09_N	L420.CI-L	14-3ep-2022	16-3ep-2022				16-Sep-2022	180 days	4 uays	•
Fotal Metals : Total Mercury in Water by CVAAS								uayo		
Glass vial total (hydrochloric acid)										
RG_CORCK_WS_LAEMP_CMO_2022-09_N	E508	14-Sep-2022	20-Sep-2022				20-Sep-2022	28 days	6 days	✓
otal Metals : Total Mercury in Water by CVAAS										
Glass vial total (hydrochloric acid)										
RG_MIUCO_WS_LAEMP_CMO_2022-09_N	E508	14-Sep-2022	20-Sep-2022				20-Sep-2022	28 days	6 days	✓
Total Metals : Total Metals in Water by CRC ICPMS							I			
HDPE - total (lab preserved) RG CORCK WS LAEMP CMO 2022-09 N	E420	14-Sep-2022	18-Sep-2022				18-Sep-2022	180	4 days	1
NO_OONON_WO_LINEIWII _OWO_2022 00_W	2120	11 Cop 2022	10 000 2022				10 000 2022	days	, aayo	
otal Metals : Total Metals in Water by CRC ICPMS								, ,		
HDPE - total (lab preserved)										
RG_MIUCO_WS_LAEMP_CMO_2022-09_N	E420	14-Sep-2022	18-Sep-2022				18-Sep-2022	180	4 days	✓
								days		
		_		-				_		

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended

 Page
 : 9 of 15

 Work Order
 : CG2212650

 Client
 : Teck Coal Lir

Client : Teck Coal Limited
Project : Regional Effects Program

Rec. HT: ALS recommended hold time (see units).

 Page
 : 10 of 15

 Work Order
 : CG2212650

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Quality Control Sample Type			Co	ount		Frequency (%))
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Acidity by Titration	E283	652128	1	19	5.2	5.0	1
Alkalinity Species by Titration	E290	652131	1	19	5.2	5.0	✓
Ammonia by Fluorescence	E298	651651	1	12	8.3	5.0	1
Bromide in Water by IC (Low Level)	E235.Br-L	651629	1	11	9.0	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	651630	1	11	9.0	5.0	✓
Conductivity in Water	E100	652130	1	19	5.2	5.0	1
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	653362	1	19	5.2	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	655111	1	20	5.0	5.0	1
Dissolved Metals in Water by CRC ICPMS	E421	653363	1	19	5.2	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	651624	1	6	16.6	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	651928	1	20	5.0	5.0	✓
Fluoride in Water by IC	E235.F	651628	1	11	9.0	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	651631	1	11	9.0	5.0	1
Nitrite in Water by IC (Low Level)	E235.NO2-L	651632	1	11	9.0	5.0	✓
ORP by Electrode	E125	652149	1	19	5.2	5.0	✓
pH by Meter	E108	652129	1	19	5.2	5.0	1
Sulfate in Water by IC	E235.SO4	651633	1	11	9.0	5.0	✓
TDS by Gravimetry	E162	651516	1	19	5.2	5.0	1
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	652278	1	15	6.6	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	651592	1	4	25.0	5.0	✓
Total Mercury in Water by CVAAS	E508	655100	1	19	5.2	5.0	✓
Total Metals in Water by CRC ICPMS	E420	652279	1	15	6.6	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	651625	1	6	16.6	5.0	1
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	653712	1	20	5.0	5.0	✓
Turbidity by Nephelometry	E121	651627	1	20	5.0	5.0	✓
Laboratory Control Samples (LCS)							
Acidity by Titration	E283	652128	1	19	5.2	5.0	1
Alkalinity Species by Titration	E290	652131	1	19	5.2	5.0	<u> </u>
Ammonia by Fluorescence	E298	651651	1	12	8.3	5.0	<u>√</u>
Bromide in Water by IC (Low Level)	E235.Br-L	651629	1	11	9.0	5.0	1
Chloride in Water by IC (Low Level)	E235.CI-L	651630	1	11	9.0	5.0	<u>√</u>
Conductivity in Water	E100	652130	1	19	5.2	5.0	√
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	653362	1	19	5.2	5.0	<u>√</u>
Dissolved Mercury in Water by CVAAS	E509	655111	1	20	5.0	5.0	√
Dissolved Metals in Water by CRC ICPMS	E421	653363	1	19	5.2	5.0	√
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	651624	1	6	16.6	5.0	<u>√</u>
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	651928	1	20	5.0	5.0	1

Page : 11 of 15
Work Order : CG2212650
Client : Teck Coal Limited
Project : Regional Effects Program

Matrix: Water

Fvaluation: x = Q	C frequency	/ outside	specification:	\prime = 00	frequency within	n specification

Matrix: water		Lvaluati	ion Qo nequi	citey outside spi	concation, -	QC trequency wit	min specification	
Quality Control Sample Type				ount	Frequency (%)			
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation	
Laboratory Control Samples (LCS) - Continued								
Fluoride in Water by IC	E235.F	651628	1	11	9.0	5.0	✓	
Nitrate in Water by IC (Low Level)	E235.NO3-L	651631	1	11	9.0	5.0	✓	
Nitrite in Water by IC (Low Level)	E235.NO2-L	651632	1	11	9.0	5.0	✓	
ORP by Electrode	E125	652149	1	19	5.2	5.0	✓	
pH by Meter	E108	652129	1	19	5.2	5.0	✓	
Sulfate in Water by IC	E235.SO4	651633	1	11	9.0	5.0	✓	
TDS by Gravimetry	E162	651516	1	19	5.2	5.0	✓	
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	652278	1	15	6.6	5.0	✓	
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	651592	1	4	25.0	5.0	✓	
Total Mercury in Water by CVAAS	E508	655100	1	19	5.2	5.0	✓	
Total Metals in Water by CRC ICPMS	E420	652279	1	15	6.6	5.0	✓	
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	651625	1	6	16.6	5.0	✓	
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	653712	1	20	5.0	5.0	✓	
TSS by Gravimetry (Low Level)	E160-L	651515	1	19	5.2	5.0	✓	
Turbidity by Nephelometry	E121	651627	1	20	5.0	5.0	✓	
Method Blanks (MB)								
Acidity by Titration	E283	652128	1	19	5.2	5.0	✓	
Alkalinity Species by Titration	E290	652131	1	19	5.2	5.0	✓	
Ammonia by Fluorescence	E298	651651	1	12	8.3	5.0	✓	
Bromide in Water by IC (Low Level)	E235.Br-L	651629	1	11	9.0	5.0	√	
Chloride in Water by IC (Low Level)	E235.CI-L	651630	1	11	9.0	5.0	✓	
Conductivity in Water	E100	652130	1	19	5.2	5.0	✓	
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	653362	1	19	5.2	5.0	✓	
Dissolved Mercury in Water by CVAAS	E509	655111	1	20	5.0	5.0	✓	
Dissolved Metals in Water by CRC ICPMS	E421	653363	1	19	5.2	5.0	✓	
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	651624	1	6	16.6	5.0	✓	
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	651928	1	20	5.0	5.0	✓	
Fluoride in Water by IC	E235.F	651628	1	11	9.0	5.0	✓	
Nitrate in Water by IC (Low Level)	E235.NO3-L	651631	1	11	9.0	5.0	✓	
Nitrite in Water by IC (Low Level)	E235.NO2-L	651632	1	11	9.0	5.0	✓	
Sulfate in Water by IC	E235.SO4	651633	1	11	9.0	5.0	✓	
TDS by Gravimetry	E162	651516	1	19	5.2	5.0	✓	
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	652278	1	15	6.6	5.0	✓	
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	651592	1	4	25.0	5.0	✓	
Total Mercury in Water by CVAAS	E508	655100	1	19	5.2	5.0	✓	
Total Metals in Water by CRC ICPMS	E420	652279	1	15	6.6	5.0	✓	
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	651625	1	6	16.6	5.0	✓	
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	653712	1	20	5.0	5.0	✓	
TSS by Gravimetry (Low Level)	E160-L	651515	1	19	5.2	5.0	✓	
Turbidity by Nephelometry	E121	651627	1	20	5.0	5.0	✓	

Page : 12 of 15
Work Order : CG2212650
Client : Teck Coal Limited
Project : Regional Effects Program

Matrix: Water Evaluation: × = QC frequency outside specification, ✓ = QC frequency within specification.

Width. Water		Lvaldati	on Qo nega	crity outside spe	cincultori,	QO nequency wit	min specimeane	
Quality Control Sample Type			Count			Frequency (%)		
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation	
Matrix Spikes (MS)								
Ammonia by Fluorescence	E298	651651	1	12	8.3	5.0	✓	
Bromide in Water by IC (Low Level)	E235.Br-L	651629	1	11	9.0	5.0	✓	
Chloride in Water by IC (Low Level)	E235.CI-L	651630	1	11	9.0	5.0	✓	
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	653362	1	19	5.2	5.0	✓	
Dissolved Mercury in Water by CVAAS	E509	655111	1	20	5.0	5.0	✓	
Dissolved Metals in Water by CRC ICPMS	E421	653363	1	19	5.2	5.0	✓	
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	651624	1	6	16.6	5.0	✓	
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	651928	1	20	5.0	5.0	✓	
Fluoride in Water by IC	E235.F	651628	1	11	9.0	5.0	✓	
Nitrate in Water by IC (Low Level)	E235.NO3-L	651631	1	11	9.0	5.0	✓	
Nitrite in Water by IC (Low Level)	E235.NO2-L	651632	1	11	9.0	5.0	✓	
Sulfate in Water by IC	E235.SO4	651633	1	11	9.0	5.0	✓	
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	652278	1	15	6.6	5.0	✓	
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	651592	1	4	25.0	5.0	✓	
Total Mercury in Water by CVAAS	E508	655100	1	19	5.2	5.0	✓	
Total Metals in Water by CRC ICPMS	E420	652279	1	15	6.6	5.0	√	
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	651625	1	6	16.6	5.0	✓	
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	653712	1	20	5.0	5.0	✓	

 Page
 : 13 of 15

 Work Order
 : CG2212650

 Client
 : Teck Coal Limited

Project : Regional Effects Program

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Conductivity in Water	E100	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a water
	Calgary - Environmental			sample. Conductivity measurements are temperature-compensated to 25°C.
pH by Meter	E108	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted
	Calgary - Environmental			at ambient laboratory temperature (normally 20 ± 5°C). For high accuracy test results,
Trushidita ha Nasahalasa 4m.	0 7	\A/-4	A DUI A 0400 D ()	pH should be measured in the field within the recommended 15 minute hold time.
Turbidity by Nephelometry	E121	Water	APHA 2130 B (mod)	Turbidity is measured by the nephelometric method, by measuring the intensity of light scatter under defined conditions.
	Calgary - Environmental			scatter under defined conditions.
ORP by Electrode	E125	Water	ASTM D1498 (mod)	Oxidation redution potential is reported as the oxidation-reduction potential of the
				platinum metal-reference electrode employed, measured in mV. For high accuracy test
	Calgary - Environmental			results, it is recommended that this analysis be conducted in the field.
TSS by Gravimetry (Low Level)	E160-L	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre
				filter, following by drying of the filter at $104 \pm 1^{\circ}$ C, with gravimetric measurement of the
	Calgary - Environmental			filtered solids. Samples containing very high dissolved solid content (i.e. seawaters,
				brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples.
TDS by Gravimetry	E162	Water	APHA 2540 C (mod)	Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre
, ,	2102		,	filter, with evaporation of the filtrate at 180 ± 2°C for 16 hours or to constant weight,
	Calgary - Environmental			with gravimetric measurement of the residue.
Bromide in Water by IC (Low Level)	E235.Br-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
	Colorani. Faringana antal			detection.
Chlorida in Water by IC (Levy Leval)	Calgary - Environmental	Water	EDA 200.1 (mad)	
Chloride in Water by IC (Low Level)	E235.CI-L	water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
	Calgary - Environmental			detection.
Fluoride in Water by IC	E235.F	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
				detection.
	Calgary - Environmental			
Nitrite in Water by IC (Low Level)	E235.NO2-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
	Calgary - Environmental			detection.
Nitrate in Water by IC (Low Level)	E235.NO3-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
I with a te in water by 10 (Low Level)	E235.NO3-L	vvater	Li A 300.1 (mod)	detection.
	Calgary - Environmental			detection.
Sulfate in Water by IC	E235.SO4	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
				detection.
	Calgary - Environmental			
Acidity by Titration	E283	Water	APHA 2310 B (mod)	Acidity is determined by potentiometric titration to pH endpoint of 8.3
	Calgary - Environmental			
	Jaigary - Environmental			

 Page
 : 14 of 15

 Work Order
 : CG2212650

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Alkalinity Species by Titration	E290 Calgary - Environmental	Water	APHA 2320 B (mod)	Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values.
Ammonia by Fluorescence	E298 Calgary - Environmental	Water	Method Fialab 100, 2018	Ammonia in water is determined by automated continuous flow analysis with membrane diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde). This method is approved under US EPA 40 CFR Part 136 (May 2021)
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318 Calgary - Environmental	Water	Method Fialab 100, 2018	TKN in water is determined by automated continuous flow analysis with membrane diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde). This method is approved under US EPA 40 CFR Part 136 (May 2021).
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L Calgary - Environmental	Water	APHA 5310 B (mod)	Total Organic Carbon (Non-Purgeable), also known as NPOC (total), is a direct measurement of TOC after an acidified sample has been purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of total carbon (TC) is comprised of IC (which is common), this method is more accurate and more reliable than the TOC by subtraction method (i.e. TC minus TIC).
Dissolved Organic Carbon by Combustion (Low Level)	E358-L Calgary - Environmental	Water	APHA 5310 B (mod)	Dissolved Organic Carbon (Non-Purgeable), also known as NPOC (dissolved), is a direct measurement of DOC after a filtered (0.45 micron) sample has been acidified and purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of DC (dissolved carbon) is comprised of IC (which is common), this method is more accurate and more reliable than the DOC by subtraction method (i.e. DC minus DIC).
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U Calgary - Environmental	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U Calgary - Environmental	Water	APHA 4500-P F (mod)	Dissolved Orthophosphate is determined colourimetrically on a sample that has been lab or field filtered through a 0.45 micron membrane filter. Field filtration is recommended to ensure test results represent conditions at time of sampling.
Total Metals in Water by CRC ICPMS	E420 Calgary - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L Calgary - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS.
Dissolved Metals in Water by CRC ICPMS	E421 Calgary - Environmental	Water	APHA 3030B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

Page : 15 of 15
Work Order : CG2212650
Client : Teck Coal Limited
Project : Regional Effects Program

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L Calgary - Environmental	Water	APHA 3030 B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS
Total Mercury in Water by CVAAS	E508 Calgary - Environmental	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS
Dissolved Mercury in Water by CVAAS	E509 Calgary - Environmental	Water	APHA 3030B/EPA 1631E (mod)	Water samples are filtered (0.45 um), preserved with HCl, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.
Dissolved Hardness (Calculated)	EC100 Calgary - Environmental	Water	APHA 2340B	"Hardness (as CaCO3), dissolved" is calculated from the sum of dissolved Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations.
Ion Balance using Dissolved Metals	EC101 Calgary - Environmental	Water	APHA 1030E	Cation Sum, Anion Sum, and Ion Balance are calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis). Dissolved species are used where available. Minor ions are included where data is present. Ion Balance cannot be calculated accurately for waters with very low electrical conductivity (EC).
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298 Calgary - Environmental	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
Digestion for TKN in water	EP318 Calgary - Environmental	Water	APHA 4500-Norg D (mod)	Samples are digested at high temperature using Sulfuric Acid with Copper catalyst, which converts organic nitrogen sources to Ammonia, which is then quantified by the analytical method as TKN. This method is unsuitable for samples containing high levels of nitrate. If nitrate exceeds TKN concentration by ten times or more, results may be biased low.
Preparation for Total Organic Carbon by Combustion	EP355 Calgary - Environmental	Water		Preparation for Total Organic Carbon by Combustion
Preparation for Dissolved Organic Carbon for Combustion	EP358 Calgary - Environmental	Water	APHA 5310 B (mod)	Preparation for Dissolved Organic Carbon
Digestion for Total Phosphorus in water	EP372 Calgary - Environmental	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.
Dissolved Metals Water Filtration	EP421 Calgary - Environmental	Water	АРНА 3030В	Water samples are filtered (0.45 um), and preserved with HNO3.
Dissolved Mercury Water Filtration	EP509 Calgary - Environmental	Water	АРНА 3030В	Water samples are filtered (0.45 um), and preserved with HCl.

QUALITY CONTROL REPORT

Work Order : CG2212650

Client : Teck Coal Limited
Contact : Cybele Heddle
Address : 421 Pine Avenue

:421 Pine Avenue

Sparwood BC Canada V0B2G0

Telephone : ---

Project : Regional Effects Program

PO : VPO00816101

C-O-C number : REP_LAEMP_CMm_2022-09_ALS

Sampler : Jenifer Ings

Site :----

Quote number : Teck Coal Master Quote

No. of samples received : 2
No. of samples analysed : 2

Page : 1 of 18

Laboratory : Calgary - Environmental

Account Manager : Lyudmyla Shvets

Address : 2559 29th Street NE

Calgary, Alberta Canada T1Y 7B5

Telephone :+1 403 407 1800

Date Samples Received : 16-Sep-2022 08:50

Date Analysis Commenced : 16-Sep-2022

Issue Date : 20-Sep-2022 16:26

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives

- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Anthony Calero	Supervisor - Inorganic	Calgary Inorganics, Calgary, Alberta
Anthony Calero	Supervisor - Inorganic	Calgary Metals, Calgary, Alberta
Elke Tabora		Calgary Inorganics, Calgary, Alberta
Harpreet Chawla	Team Leader - Inorganics	Calgary Inorganics, Calgary, Alberta
Mackenzie Lamoureux	Laboratory Analyst	Calgary Metals, Calgary, Alberta
Ruifang Zheng	Analyst	Calgary Inorganics, Calgary, Alberta
Sara Niroomand		Calgary Inorganics, Calgary, Alberta

 Page
 : 2 of 18

 Work Order
 : CG2212650

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

 Page
 : 3 of 18

 Work Order
 : CG2212650

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Water							Labora	atory Duplicate (D	UP) Report		
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
hysical Tests (Q0	C Lot: 651516)										
CG2212617-001	Anonymous	solids, total dissolved [TDS]		E162	20	mg/L	512	523	2.03%	20%	
Physical Tests (QC	C Lot: 651627)										
CG2212619-005	Anonymous	turbidity		E121	0.10	NTU	<0.10	<0.10	0	Diff <2x LOR	
Physical Tests (QC	C Lot: 652128)							<u> </u>			
CG2212650-001	RG_MIUCO_WS_LAEMP_ CMO_2022-09_N	acidity (as CaCO3)		E283	2.0	mg/L	<2.0	<2.0	0	Diff <2x LOR	
Physical Tests (QC	C Lot: 652129)										
CG2212650-001	RG_MIUCO_WS_LAEMP_ CMO_2022-09_N	рН		E108	0.10	pH units	8.34	8.31	0.360%	4%	
Physical Tests (QC	C Lot: 652130)										
CG2212650-001	RG_MIUCO_WS_LAEMP_ CMO_2022-09_N	conductivity		E100	2.0	μS/cm	287	288	0.348%	10%	
Physical Tests (QC	C Lot: 652131)										
CG2212650-001	RG_MIUCO_WS_LAEMP_ CMO_2022-09_N	alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	144	156	7.92%	20%	
		alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	6.8	5.4	1.4	Diff <2x LOR	
		alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, total (as CaCO3)		E290	1.0	mg/L	151	162	6.72%	20%	
Physical Tests (QC	C Lot: 652149)										
CG2212650-001	RG_MIUCO_WS_LAEMP_ CMO_2022-09_N	oxidation-reduction potential [ORP]		E125	0.10	mV	268	269	0.186%	15%	
Anions and Nutrier	nts (QC Lot: 651592)										
CG2212650-001	RG_MIUCO_WS_LAEMP_ CMO_2022-09_N	Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
nions and Nutrier	nts (QC Lot: 651628)										
CG2212647-001	Anonymous	fluoride	16984-48-8	E235.F	0.020	mg/L	0.144	0.144	0.0003	Diff <2x LOR	
Anions and Nutrier	nts (QC Lot: 651629)										
CG2212647-001	Anonymous	bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
Anions and Nutrier	nts (QC Lot: 651630)										
CG2212647-001	Anonymous	chloride	16887-00-6	E235.CI-L	0.10	mg/L	0.17	0.18	0.009	Diff <2x LOR	
Anions and Nut <u>rier</u>	nts (QC Lot: 651631)										
CG2212647-001	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	0.0455	0.0466	0.0011	Diff <2x LOR	
Anions and Nutrier	nts (QC Lot: 651632)										
CG2212647-001	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	

 Page
 : 4 of 18

 Work Order
 : CG2212650

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Anions and Nutrien	ts (QC Lot: 651633) - co	ontinued									
CG2212647-001	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	46.8	46.7	0.379%	20%	
Anions and Nutrien	ts (QC Lot: 651651)										
CG2212588-001	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	<0.0050	<0.0050	0	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 651928)										
CG2212626-001	Anonymous	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	0.0048	0.0047	0.00008	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 653712)										
CG2212650-001	RG_MIUCO_WS_LAEMP_ CMO_2022-09_N	phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0033	0.0035	0.0002	Diff <2x LOR	
Organic / Inorganic	Carbon (QC Lot: 65162	4)									
CG2212650-001	RG_MIUCO_WS_LAEMP_ CMO_2022-09_N	carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	<0.50	<0.50	0	Diff <2x LOR	
Organic / Inorganic	Carbon (QC Lot: 65162	5)									
CG2212650-001	RG_MIUCO_WS_LAEMP_ CMO_2022-09_N	carbon, total organic [TOC]		E355-L	0.50	mg/L	<0.50	<0.50	0	Diff <2x LOR	
Total Metals (QC Lo	ot: 652278)										
CG2212385-001	Anonymous	chromium, total	7440-47-3	E420.Cr-L	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
Total Metals (QC Lo	ot: 652279)										
CG2212385-001	Anonymous	aluminum, total	7429-90-5	E420	0.0060	mg/L	0.0110	0.0110	0.00003	Diff <2x LOR	
		antimony, total	7440-36-0	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		arsenic, total	7440-38-2	E420	0.00020	mg/L	0.00031	0.00029	0.00001	Diff <2x LOR	
		barium, total	7440-39-3	E420	0.00020	mg/L	0.0320	0.0300	6.28%	20%	
		beryllium, total	7440-41-7	E420	0.000040	mg/L	<0.040 µg/L	<0.000040	0	Diff <2x LOR	
		bismuth, total	7440-69-9	E420	0.000100	mg/L	<0.000100	<0.000100	0	Diff <2x LOR	
		boron, total	7440-42-8	E420	0.020	mg/L	<0.020	<0.020	0	Diff <2x LOR	
		cadmium, total	7440-43-9	E420	0.0000100	mg/L	0.0406 µg/L	0.0000339	0.0000067	Diff <2x LOR	
		calcium, total	7440-70-2	E420	0.100	mg/L	318	304	4.43%	20%	
		cobalt, total	7440-48-4	E420	0.00020	mg/L	<0.20 μg/L	<0.00020	0	Diff <2x LOR	
		copper, total	7440-50-8	E420	0.00100	mg/L	<0.00100	<0.00100	0	Diff <2x LOR	
		iron, total	7439-89-6	E420	0.020	mg/L	<0.020	<0.020	0	Diff <2x LOR	
		lead, total	7439-92-1	E420	0.000100	mg/L	<0.000100	<0.000100	0	Diff <2x LOR	
		lithium, total	7439-93-2	E420	0.0020	mg/L	0.0380	0.0349	8.66%	20%	
		magnesium, total	7439-95-4	E420	0.0100	mg/L	186	178	4.04%	20%	
		manganese, total	7439-96-5	E420	0.00020	mg/L	0.0264	0.0255	3.63%	20%	
		molybdenum, total	7439-98-7	E420	0.000100	mg/L	0.00194	0.00175	9.93%	20%	
		nickel, total	7440-02-0	E420	0.00100	mg/L	0.00108	0.00106	0.00002	Diff <2x LOR	
		potassium, total	7440-09-7	E420	0.100	mg/L	3.69	3.52	4.69%	20%	
		selenium, total	7782-49-2	E420	0.000100	mg/L	225 μg/L	0.214	4.91%	20%	

 Page
 : 5 of 18

 Work Order
 : CG2212650

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Fotal Metals (QC Lo	t: 652279) - continued										
CG2212385-001	Anonymous	silicon, total	7440-21-3	E420	0.20	mg/L	6.30	5.96	5.64%	20%	
		silver, total	7440-22-4	E420	0.000020	mg/L	<0.000020	<0.000020	0	Diff <2x LOR	
		sodium, total	7440-23-5	E420	0.100	mg/L	20.2	19.4	3.98%	20%	
		strontium, total	7440-24-6	E420	0.00040	mg/L	0.208	0.200	3.65%	20%	
		sulfur, total	7704-34-9	E420	1.00	mg/L	350	329	6.05%	20%	
		thallium, total	7440-28-0	E420	0.000020	mg/L	0.000109	0.000105	0.000004	Diff <2x LOR	
		tin, total	7440-31-5	E420	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		titanium, total	7440-32-6	E420	0.00060	mg/L	<0.00060	<0.00060	0	Diff <2x LOR	
		uranium, total	7440-61-1	E420	0.000020	mg/L	0.00759	0.00737	2.94%	20%	
		vanadium, total	7440-62-2	E420	0.00100	mg/L	<0.00100	<0.00100	0	Diff <2x LOR	
		zinc, total	7440-66-6	E420	0.0060	mg/L	<0.0060	<0.0060	0	Diff <2x LOR	
otal Metals (QC Lo	t: 655100)										
CG2212650-001	RG_MIUCO_WS_LAEMP_ CMO_2022-09_N	mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050	0.0000055	0.0000005	Diff <2x LOR	
issolved Metals (C	C Lot: 653362)										
G2212385-001	Anonymous	chromium, dissolved	7440-47-3	E421.Cr-L	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
issolved Metals (C	C Lot: 653363)										
CG2212385-001	Anonymous	aluminum, dissolved	7429-90-5	E421	0.0020	mg/L	0.0029	0.0031	0.0002	Diff <2x LOR	
		antimony, dissolved	7440-36-0	E421	0.00020	mg/L	0.00022	0.00020	0.00002	Diff <2x LOR	
		arsenic, dissolved	7440-38-2	E421	0.00020	mg/L	0.00028	0.00028	0.000002	Diff <2x LOR	
		barium, dissolved	7440-39-3	E421	0.00020	mg/L	0.0378	0.0405	6.68%	20%	
		beryllium, dissolved	7440-41-7	E421	0.000040	mg/L	<0.040 µg/L	<0.000040	0	Diff <2x LOR	
		bismuth, dissolved	7440-69-9	E421	0.000100	mg/L	<0.000100	<0.000100	0	Diff <2x LOR	
		boron, dissolved	7440-42-8	E421	0.020	mg/L	<0.020	<0.020	0	Diff <2x LOR	
		cadmium, dissolved	7440-43-9	E421	0.0000100	mg/L	0.0295 µg/L	0.0000320	0.0000025	Diff <2x LOR	
		calcium, dissolved	7440-70-2	E421	0.100	mg/L	280	308	9.73%	20%	
		cobalt, dissolved	7440-48-4	E421	0.00020	mg/L	<0.20 µg/L	<0.00020	0	Diff <2x LOR	
		copper, dissolved	7440-50-8	E421	0.00040	mg/L	0.00181	0.00198	0.00017	Diff <2x LOR	
		iron, dissolved	7439-89-6	E421	0.020	mg/L	<0.020	<0.020	0	Diff <2x LOR	
		lead, dissolved	7439-92-1	E421	0.000100	mg/L	<0.000100	<0.000100	0	Diff <2x LOR	
		lithium, dissolved	7439-93-2	E421	0.0020	mg/L	0.0390	0.0382	2.27%	20%	
		magnesium, dissolved	7439-95-4	E421	0.0100	mg/L	158	164	4.09%	20%	
		manganese, dissolved	7439-96-5	E421	0.00020	mg/L	0.00567	0.00600	5.56%	20%	
		molybdenum, dissolved	7439-98-7	E421	0.000100	mg/L	0.00184	0.00196	6.25%	20%	
		, Sacriain, aloooivoa	' ' ' ' ' ' '								
		nickel, dissolved	7440-02-0	E421	0.00100	mg/L	<0.00100	0.00111	0.00011	Diff <2x LOR	

 Page
 : 6 of 18

 Work Order
 : CG2212650

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

Sub-Matrix: Water							Labora	tory Duplicate (D	JP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Dissolved Metals (QC Lot: 653363) - contin	ued									
CG2212385-001	Anonymous	selenium, dissolved	7782-49-2	E421	0.000100	mg/L	208 μg/L	0.220	5.88%	20%	
		silicon, dissolved	7440-21-3	E421	0.100	mg/L	5.95	6.13	2.99%	20%	
		silver, dissolved	7440-22-4	E421	0.000020	mg/L	<0.000020	<0.000020	0	Diff <2x LOR	
		sodium, dissolved	7440-23-5	E421	0.100	mg/L	19.8	20.7	4.78%	20%	
		strontium, dissolved	7440-24-6	E421	0.00040	mg/L	0.197	0.218	9.97%	20%	
		sulfur, dissolved	7704-34-9	E421	1.00	mg/L	279	289	3.57%	20%	
		thallium, dissolved	7440-28-0	E421	0.000020	mg/L	0.000101	0.000110	0.000009	Diff <2x LOR	
		tin, dissolved	7440-31-5	E421	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR	
		titanium, dissolved	7440-32-6	E421	0.00060	mg/L	<0.00060	<0.00060	0	Diff <2x LOR	
		uranium, dissolved	7440-61-1	E421	0.000020	mg/L	0.00684	0.00748	9.04%	20%	
		vanadium, dissolved	7440-62-2	E421	0.00100	mg/L	<0.00100	<0.00100	0	Diff <2x LOR	
		zinc, dissolved	7440-66-6	E421	0.0020	mg/L	0.0027	0.0027	0.00003	Diff <2x LOR	
Dissolved Metals (QC Lot: 655111)										
CG2212650-001	RG_MIUCO_WS_LAEMP_ CMO_2022-09_N	mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	

 Page
 : 7 of 18

 Work Order
 : CG2212650

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 651515)					
solids, total suspended [TSS]	E160-L	1	mg/L	<1.0	
Physical Tests (QCLot: 651516)					
solids, total dissolved [TDS]	E162	10	mg/L	<10	
Physical Tests (QCLot: 651627)					
turbidity	E121	0.1	NTU	<0.10	
Physical Tests (QCLot: 652128)					
acidity (as CaCO3)	E283	2	mg/L	<2.0	
Physical Tests (QCLot: 652130)					
conductivity	E100	1	μS/cm	<1.0	
Physical Tests (QCLot: 652131)					
alkalinity, bicarbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, carbonate (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, hydroxide (as CaCO3)	E290	1	mg/L	<1.0	
alkalinity, total (as CaCO3)	E290	1	mg/L	<1.0	
Anions and Nutrients (QCLot: 651592)					
Kjeldahl nitrogen, total [TKN]	E318	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 651628)					
fluoride	16984-48-8 E235.F	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 651629)					
promide	24959-67-9 E235.Br-L	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 651630)					
chloride	16887-00-6 E235.CI-L	0.1	mg/L	<0.10	
Anions and Nutrients (QCLot: 651631)					
nitrate (as N)	14797-55-8 E235.NO3-L	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 651632)					
nitrite (as N)	14797-65-0 E235.NO2-L	0.001	mg/L	<0.0010	
Anions and Nutrients (QCLot: 651633)					
sulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	<0.30	
Anions and Nutrients (QCLot: 651651)					
ammonia, total (as N)	7664-41-7 E298	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 651928)					
phosphate, ortho-, dissolved (as P)	14265-44-2 E378-U	0.001	mg/L	<0.0010	
		The state of the s			

Page : 8 of 18
Work Order : CG2212650
Client : Teck Coal Limited
Project : Regional Effects Program

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Anions and Nutrients (QCLot: 653712						
phosphorus, total	7723-14-0	E372-U	0.002	mg/L	<0.0020	
Organic / Inorganic Carbon (QCLot: 6	51624)					
carbon, dissolved organic [DOC]		E358-L	0.5	mg/L	<0.50	
Organic / Inorganic Carbon (QCLot: 6	51625)					
carbon, total organic [TOC]		E355-L	0.5	mg/L	<0.50	
Fotal Metals (QCLot: 652278)						
chromium, total	7440-47-3	E420.Cr-L	0.0001	mg/L	<0.00010	
Fotal Metals (QCLot: 652279)						
luminum, total	7429-90-5	E420	0.003	mg/L	<0.0030	
antimony, total	7440-36-0	E420	0.0001	mg/L	<0.00010	
arsenic, total	7440-38-2		0.0001	mg/L	<0.00010	
parium, total	7440-39-3	E420	0.0001	mg/L	<0.00010	
eryllium, total	7440-41-7	E420	0.00002	mg/L	<0.000020	
sismuth, total	7440-69-9	E420	0.00005	mg/L	<0.000050	
oron, total	7440-42-8	E420	0.01	mg/L	<0.010	
admium, total	7440-43-9	E420	0.000005	mg/L	<0.000050	
alcium, total	7440-70-2	E420	0.05	mg/L	<0.050	
obalt, total	7440-48-4	E420	0.0001	mg/L	<0.00010	
opper, total	7440-50-8	E420	0.0005	mg/L	<0.00050	
ron, total	7439-89-6	E420	0.01	mg/L	<0.010	
ead, total	7439-92-1	E420	0.00005	mg/L	<0.000050	
thium, total	7439-93-2	E420	0.001	mg/L	<0.0010	
nagnesium, total	7439-95-4	E420	0.005	mg/L	<0.0050	
nanganese, total	7439-96-5	E420	0.0001	mg/L	<0.00010	
nolybdenum, total	7439-98-7	E420	0.00005	mg/L	<0.000050	
ickel, total	7440-02-0	E420	0.0005	mg/L	<0.00050	
ootassium, total	7440-09-7	E420	0.05	mg/L	<0.050	
elenium, total	7782-49-2	E420	0.00005	mg/L	<0.000050	
silicon, total	7440-21-3	E420	0.1	mg/L	<0.10	
silver, total	7440-22-4	E420	0.00001	mg/L	<0.000010	
odium, total	7440-23-5	E420	0.05	mg/L	<0.050	
trontium, total	7440-24-6	E420	0.0002	mg/L	<0.00020	
sulfur, total	7704-34-9	E420	0.5	mg/L	<0.50	
hallium, total	7440-28-0	E420	0.00001	mg/L	<0.000010	
in, total	7440-31-5	E420	0.0001	mg/L	<0.00010	
itanium, total	7440-32-6	E420	0.0003	mg/L	<0.00030	

 Page
 : 9 of 18

 Work Order
 : CG2212650

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Total Metals (QCLot: 652279) - c						
uranium, total	7440-61-1	E420	0.00001	mg/L	<0.000010	
vanadium, total	7440-62-2	E420	0.0005	mg/L	<0.00050	
zinc, total	7440-66-6	E420	0.003	mg/L	<0.0030	
Fotal Metals (QCLot: 655100)						
mercury, total	7439-97-6	E508	0.000005	mg/L	<0.0000050	
Dissolved Metals (QCLot: 653362	2)					
chromium, dissolved	7440-47-3	E421.Cr-L	0.0001	mg/L	<0.00010	
Dissolved Metals (QCLot: 653363	3)					
aluminum, dissolved	7429-90-5	E421	0.001	mg/L	<0.0010	
antimony, dissolved	7440-36-0	E421	0.0001	mg/L	<0.00010	
arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	<0.00010	
parium, dissolved	7440-39-3	E421	0.0001	mg/L	<0.00010	
peryllium, dissolved	7440-41-7	E421	0.00002	mg/L	<0.000020	
pismuth, dissolved	7440-69-9	E421	0.00005	mg/L	<0.000050	
poron, dissolved	7440-42-8	E421	0.01	mg/L	<0.010	
admium, dissolved	7440-43-9	E421	0.000005	mg/L	<0.0000050	
alcium, dissolved	7440-70-2	E421	0.05	mg/L	<0.050	
cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	<0.00010	
copper, dissolved	7440-50-8	E421	0.0002	mg/L	<0.00020	
ron, dissolved	7439-89-6	E421	0.01	mg/L	<0.010	
ead, dissolved	7439-92-1	E421	0.00005	mg/L	<0.000050	
ithium, dissolved	7439-93-2	E421	0.001	mg/L	<0.0010	
nagnesium, dissolved	7439-95-4	E421	0.005	mg/L	<0.0050	
nanganese, dissolved	7439-96-5	E421	0.0001	mg/L	<0.00010	
nolybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	<0.000050	
nickel, dissolved	7440-02-0	E421	0.0005	mg/L	<0.00050	
ootassium, dissolved	7440-09-7	E421	0.05	mg/L	<0.050	
elenium, dissolved	7782-49-2	E421	0.00005	mg/L	<0.000050	
silicon, dissolved	7440-21-3	E421	0.05	mg/L	<0.050	
silver, dissolved	7440-22-4	E421	0.00001	mg/L	<0.000010	
sodium, dissolved	7440-23-5	E421	0.05	mg/L	<0.050	
strontium, dissolved	7440-24-6	E421	0.0002	mg/L	<0.00020	
sulfur, dissolved	7704-34-9	E421	0.5	mg/L	<0.50	
hallium, dissolved	7440-28-0	E421	0.00001	mg/L	<0.000010	
in, dissolved	7440-31-5	E421	0.0001	mg/L	<0.00010	
titanium, dissolved	7440-32-6	E421	0.0003	mg/L	<0.00030	

 Page
 : 10 of 18

 Work Order
 : CG2212650

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

Analyte	CAS Number I	Method	LOR	Unit	Result	Qualifier					
Dissolved Metals (QCLot: 653363) - continued											
uranium, dissolved	7440-61-1 E	E421	0.00001	mg/L	<0.000010						
vanadium, dissolved	7440-62-2 E	E421	0.0005	mg/L	<0.00050						
zinc, dissolved	7440-66-6 E	E421	0.001	mg/L	<0.0010						
Dissolved Metals (QCLot: 655111)											
mercury, dissolved	7439-97-6 E	E509	0.000005	mg/L	<0.0000050						

 Page
 : 11 of 18

 Work Order
 : CG2212650

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water					Laboratory Con	trol Sample (LCS)	Report	
				Spike	Recovery (%)	Recovery	Limits (%)	
Analyte CA	AS Number Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Physical Tests (QCLot: 651515)								
solids, total suspended [TSS]	E160-L	1	mg/L	150 mg/L	93.9	85.0	115	
Physical Tests (QCLot: 651516)								
solids, total dissolved [TDS]	E162	10	mg/L	1000 mg/L	93.0	85.0	115	
Physical Tests (QCLot: 651627)								
turbidity	E121	0.1	NTU	200 NTU	113	85.0	115	
Physical Tests (QCLot: 652128)								
acidity (as CaCO3)	E283	2	mg/L	50 mg/L	106	85.0	115	
Physical Tests (QCLot: 652129)								
рН	E108		pH units	7 pH units	100	98.6	101	
Physical Tests (QCLot: 652130)								
conductivity	E100	1	μS/cm	146.9 μS/cm	97.3	90.0	110	
Physical Tests (QCLot: 652131)								
alkalinity, total (as CaCO3)	E290	1	mg/L	500 mg/L	101	85.0	115	
Physical Tests (QCLot: 652149)								
oxidation-reduction potential [ORP]	E125		mV	220 mV	100	95.4	104	
Anions and Nutrients (QCLot: 651592)								
Kjeldahl nitrogen, total [TKN]	E318	0.05	mg/L	4 mg/L	99.1	75.0	125	
Anions and Nutrients (QCLot: 651628)								
fluoride 1	16984-48-8 E235.F	0.02	mg/L	1 mg/L	103	90.0	110	
Anions and Nutrients (QCLot: 651629)								
bromide 2	24959-67-9 E235.Br-L	0.05	mg/L	0.5 mg/L	102	85.0	115	
Anions and Nutrients (QCLot: 651630)								
chloride 1	16887-00-6 E235.CI-L	0.1	mg/L	100 mg/L	101	90.0	110	
Anions and Nutrients (QCLot: 651631)								
nitrate (as N)	14797-55-8 E235.NO3-L	0.005	mg/L	2.5 mg/L	102	90.0	110	
Anions and Nutrients (QCLot: 651632)								
nitrite (as N)	14797-65-0 E235.NO2-L	0.001	mg/L	0.5 mg/L	99.7	90.0	110	
Anions and Nutrients (QCLot: 651633)								
sulfate (as SO4)	14808-79-8 E235.SO4	0.3	mg/L	100 mg/L	104	90.0	110	
Anions and Nutrients (QCLot: 651651)								
ammonia, total (as N)	7664-41-7 E298	0.005	mg/L	0.2 mg/L	97.4	85.0	115	
, , ,	7004-41-7 L290	0.000	g/L	0.2 mg/L	97.4	00.0	110	

Page : 12 of 18
Work Order : CG2212650
Client : Teck Coal Limited
Project : Regional Effects Program

Sub-Matrix: Water						Laboratory Co.	ntrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte CA	S Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifie
Anions and Nutrients (QCLot: 651928) - continued									
	4265-44-2	E378-U	0.001	mg/L	0.03 mg/L	92.8	80.0	120	
Anions and Nutrients (QCLot: 653712)									
	7723-14-0	E372-U	0.002	mg/L	0.03 mg/L	95.2	80.0	120	
Organic / Inorganic Carbon (QCLot: 651624)									
carbon, dissolved organic [DOC]		E358-L	0.5	mg/L	8.57 mg/L	97.9	80.0	120	
Organic / Inorganic Carbon (QCLot: 651625)									
carbon, total organic [TOC]		E355-L	0.5	mg/L	8.57 mg/L	102	80.0	120	
Total Metals (QCLot: 652278)									
chromium, total	7440-47-3	E420.Cr-L	0.0001	mg/L	0.25 mg/L	89.3	80.0	120	
Total Metals (QCLot: 652279)									
•	7429-90-5		0.003	mg/L	2 mg/L	103	80.0	120	
antimony, total	7440-36-0	E420	0.0001	mg/L	1 mg/L	108	80.0	120	
arsenic, total	7440-38-2	E420	0.0001	mg/L	1 mg/L	90.0	80.0	120	
barium, total	7440-39-3	E420	0.0001	mg/L	0.25 mg/L	105	80.0	120	
beryllium, total	7440-41-7	E420	0.00002	mg/L	0.1 mg/L	88.2	80.0	120	
bismuth, total	7440-69-9	E420	0.00005	mg/L	1 mg/L	91.5	80.0	120	
boron, total	7440-42-8	E420	0.01	mg/L	1 mg/L	86.2	80.0	120	
cadmium, total	7440-43-9	E420	0.000005	mg/L	0.1 mg/L	88.6	80.0	120	
calcium, total	7440-70-2	E420	0.05	mg/L	50 mg/L	104	80.0	120	
cobalt, total	7440-48-4	E420	0.0001	mg/L	0.25 mg/L	87.4	80.0	120	
copper, total	7440-50-8	E420	0.0005	mg/L	0.25 mg/L	89.1	80.0	120	
iron, total	7439-89-6	E420	0.01	mg/L	1 mg/L	108	80.0	120	
lead, total	7439-92-1	E420	0.00005	mg/L	0.5 mg/L	90.7	80.0	120	
lithium, total	7439-93-2	E420	0.001	mg/L	0.25 mg/L	99.2	80.0	120	
magnesium, total	7439-95-4	E420	0.005	mg/L	50 mg/L	87.4	80.0	120	
manganese, total	7439-96-5	E420	0.0001	mg/L	0.25 mg/L	95.1	80.0	120	
molybdenum, total	7439-98-7	E420	0.00005	mg/L	0.25 mg/L	93.1	80.0	120	
nickel, total	7440-02-0	E420	0.0005	mg/L	0.5 mg/L	91.1	80.0	120	
potassium, total	7440-09-7	E420	0.05	mg/L	50 mg/L	90.4	80.0	120	
selenium, total	7782-49-2	E420	0.00005	mg/L	1 mg/L	84.0	80.0	120	
silicon, total	7440-21-3	E420	0.1	mg/L	10 mg/L	108	60.0	140	
silver, total	7440-22-4	E420	0.00001	mg/L	0.1 mg/L	86.2	80.0	120	
sodium, total	7440-23-5	E420	0.05	mg/L	50 mg/L	90.3	80.0	120	
strontium, total	7440-24-6	E420	0.0002	mg/L	0.25 mg/L	95.5	80.0	120	
sulfur, total	7704-34-9	E420	0.5	mg/L	50 mg/L	97.6	80.0	120	

Page : 13 of 18
Work Order : CG2212650
Client : Teck Coal Limited
Project : Regional Effects Program

Sub-Matrix: Water						Laboratory Co.	ntrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Total Metals (QCLot: 652279) - continued									
thallium, total	7440-28-0	E420	0.00001	mg/L	1 mg/L	91.5	80.0	120	
tin, total	7440-31-5	E420	0.0001	mg/L	0.5 mg/L	104	80.0	120	
titanium, total	7440-32-6	E420	0.0003	mg/L	0.25 mg/L	93.4	80.0	120	
uranium, total	7440-61-1	E420	0.00001	mg/L	0.005 mg/L	102	80.0	120	
vanadium, total	7440-62-2	E420	0.0005	mg/L	0.5 mg/L	89.7	80.0	120	
zinc, total	7440-66-6	E420	0.003	mg/L	0.5 mg/L	108	80.0	120	
Total Metals (QCLot: 655100)						,			
mercury, total	7439-97-6	E508	0.000005	mg/L	0.0001 mg/L	118	80.0	120	
Dissolved Metals (QCLot: 653362)						,			
chromium, dissolved	7440-47-3	E421.Cr-L	0.0001	mg/L	0.25 mg/L	90.7	80.0	120	
Dissolved Metals (QCLot: 653363)									
aluminum, dissolved	7429-90-5	E421	0.001	mg/L	2 mg/L	95.3	80.0	120	
antimony, dissolved	7440-36-0	E421	0.0001	mg/L	1 mg/L	98.4	80.0	120	
arsenic, dissolved	7440-38-2	E421	0.0001	mg/L	1 mg/L	87.9	80.0	120	
parium, dissolved	7440-39-3	E421	0.0001	mg/L	0.25 mg/L	91.6	80.0	120	
beryllium, dissolved	7440-41-7	E421	0.00002	mg/L	0.1 mg/L	98.8	80.0	120	
bismuth, dissolved	7440-69-9	E421	0.00005	mg/L	1 mg/L	94.4	80.0	120	
boron, dissolved	7440-42-8	E421	0.01	mg/L	1 mg/L	89.1	80.0	120	
cadmium, dissolved	7440-43-9	E421	0.000005	mg/L	0.1 mg/L	88.6	80.0	120	
calcium, dissolved	7440-70-2	E421	0.05	mg/L	50 mg/L	95.1	80.0	120	
cobalt, dissolved	7440-48-4	E421	0.0001	mg/L	0.25 mg/L	90.2	80.0	120	
copper, dissolved	7440-50-8	E421	0.0002	mg/L	0.25 mg/L	89.3	80.0	120	
iron, dissolved	7439-89-6	E421	0.01	mg/L	1 mg/L	105	80.0	120	
lead, dissolved	7439-92-1	E421	0.00005	mg/L	0.5 mg/L	94.6	80.0	120	
lithium, dissolved	7439-93-2	E421	0.001	mg/L	0.25 mg/L	105	80.0	120	
magnesium, dissolved	7439-95-4	E421	0.005	mg/L	50 mg/L	90.6	80.0	120	
manganese, dissolved	7439-96-5	E421	0.0001	mg/L	0.25 mg/L	91.6	80.0	120	
molybdenum, dissolved	7439-98-7	E421	0.00005	mg/L	0.25 mg/L	98.1	80.0	120	
nickel, dissolved	7440-02-0	E421	0.0005	mg/L	0.5 mg/L	88.1	80.0	120	
potassium, dissolved	7440-09-7	E421	0.05	mg/L	50 mg/L	92.4	80.0	120	
selenium, dissolved	7782-49-2	E421	0.00005	mg/L	1 mg/L	86.9	80.0	120	
silicon, dissolved	7440-21-3	E421	0.05	mg/L	10 mg/L	99.8	60.0	140	
silver, dissolved	7440-22-4	E421	0.00001	mg/L	0.1 mg/L	88.6	80.0	120	
sodium, dissolved	7440-23-5		0.05	mg/L	50 mg/L	94.0	80.0	120	
strontium, dissolved	7440-24-6		0.0002	mg/L	0.25 mg/L	96.2	80.0	120	
sulfur, dissolved	7704-34-9		0.5	mg/L	50 mg/L	84.0	80.0	120	

 Page
 : 14 of 18

 Work Order
 : CG2212650

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

Sub-Matrix: Water						Laboratory Co	ontrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Dissolved Metals (QCLot: 653363) - cor	ntinued								
thallium, dissolved	7440-28-0	E421	0.00001	mg/L	1 mg/L	94.2	80.0	120	
tin, dissolved	7440-31-5	E421	0.0001	mg/L	0.5 mg/L	93.9	80.0	120	
titanium, dissolved	7440-32-6	E421	0.0003	mg/L	0.25 mg/L	89.3	80.0	120	
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	0.005 mg/L	95.8	80.0	120	
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	0.5 mg/L	91.2	80.0	120	
zinc, dissolved	7440-66-6	E421	0.001	mg/L	0.5 mg/L	93.2	80.0	120	
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	0.0001 mg/L	95.8	80.0	120	

 Page
 : 15 of 18

 Work Order
 : CG2212650

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Water							Matrix Spik	e (MS) Report		
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
aboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie
	ents (QCLot: 651592)									
CG2212650-002	RG_CORCK_WS_LAEMP_ CMO_2022-09_N	Kjeldahl nitrogen, total [TKN]		E318	2.41 mg/L	2.5 mg/L	96.2	70.0	130	
Anions and Nutri	ents (QCLot: 651628)									
CG2212647-002	Anonymous	fluoride	16984-48-8	E235.F	1.02 mg/L	1 mg/L	102	75.0	125	
nions and Nutri	ents (QCLot: 651629)									
CG2212647-002	Anonymous	bromide	24959-67-9	E235.Br-L	0.510 mg/L	0.5 mg/L	102	75.0	125	
Anions and Nutri	ents (QCLot: 651630)									
CG2212647-002	Anonymous	chloride	16887-00-6	E235.Cl-L	100 mg/L	100 mg/L	100	75.0	125	
nions and Nutri	ents (QCLot: 651631)									
CG2212647-002	Anonymous	nitrate (as N)	14797-55-8	E235.NO3-L	2.53 mg/L	2.5 mg/L	101	75.0	125	
Anions and Nutri	ents (QCLot: 651632)									
CG2212647-002	Anonymous	nitrite (as N)	14797-65-0	E235.NO2-L	0.515 mg/L	0.5 mg/L	103	75.0	125	
Anions and Nutri	ents (QCLot: 651633)									
CG2212647-002	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	102 mg/L	100 mg/L	102	75.0	125	
Anions and Nutri	ents (QCLot: 651651)									
CG2212588-002	Anonymous	ammonia, total (as N)	7664-41-7	E298	0.106 mg/L	0.1 mg/L	106	75.0	125	
Anions and Nutri	ents (QCLot: 651928)						·			
CG2212650-001	RG_MIUCO_WS_LAEMP_C MO_2022-09_N	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0514 mg/L	0.05 mg/L	103	70.0	130	
Anions and Nutri	ents (QCLot: 653712)									
CG2212650-002	RG_CORCK_WS_LAEMP_ CMO_2022-09_N	phosphorus, total	7723-14-0	E372-U	0.0504 mg/L	0.05 mg/L	101	70.0	130	
Organic / Inorgan	ic Carbon (QCLot: 6516	624)								
CG2212650-001	RG_MIUCO_WS_LAEMP_C MO_2022-09_N	carbon, dissolved organic [DOC]		E358-L	5.19 mg/L	5 mg/L	104	70.0	130	
Organic / Inorgan	ic Carbon (QCLot: 6516	625)								
CG2212650-001	RG_MIUCO_WS_LAEMP_C MO_2022-09_N	carbon, total organic [TOC]		E355-L	5.52 mg/L	5 mg/L	110	70.0	130	
otal Metals (QC	Lot: 652278)									
CG2212385-002	Anonymous	chromium, total	7440-47-3	E420.Cr-L	0.459 mg/L	0.4 mg/L	115	70.0	130	

 Page
 : 16 of 18

 Work Order
 : CG2212650

 Client
 : Teck Coal Limited

 Project
 : Regional Effects Program

ub-Matrix: Water							Matrix Spik	e (MS) Report		
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
aboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie
otal Metals (QC	CLot: 652279) - continu	ied								
G2212385-002	Anonymous	aluminum, total	7429-90-5	E420	2.34 mg/L	2 mg/L	117	70.0	130	
		antimony, total	7440-36-0	E420	0.215 mg/L	0.2 mg/L	107	70.0	130	
		arsenic, total	7440-38-2	E420	0.224 mg/L	0.2 mg/L	112	70.0	130	
		barium, total	7440-39-3	E420	0.242 mg/L	0.2 mg/L	121	70.0	130	
		beryllium, total	7440-41-7	E420	0.414 mg/L	0.4 mg/L	103	70.0	130	
		bismuth, total	7440-69-9	E420	0.0981 mg/L	0.1 mg/L	98.1	70.0	130	
		boron, total	7440-42-8	E420	1.02 mg/L	1 mg/L	102	70.0	130	
		cadmium, total	7440-43-9	E420	0.0472 mg/L	0.04 mg/L	118	70.0	130	
		calcium, total	7440-70-2	E420	ND mg/L	40 mg/L	ND	70.0	130	
		cobalt, total	7440-48-4	E420	0.232 mg/L	0.2 mg/L	116	70.0	130	
		copper, total	7440-50-8	E420	0.224 mg/L	0.2 mg/L	112	70.0	130	
		iron, total	7439-89-6	E420	23.1 mg/L	20 mg/L	116	70.0	130	
		lead, total	7439-92-1	E420	0.202 mg/L	0.2 mg/L	101	70.0	130	
		lithium, total	7439-93-2	E420	1.03 mg/L	1 mg/L	103	70.0	130	
		magnesium, total	7439-95-4	E420	ND mg/L	10 mg/L	ND	70.0	130	
		manganese, total	7439-96-5	E420	ND mg/L	0.2 mg/L	ND	70.0	130	
		molybdenum, total	7439-98-7	E420	0.213 mg/L	0.2 mg/L	106	70.0	130	
		nickel, total	7440-02-0	E420	0.452 mg/L	0.4 mg/L	113	70.0	130	
		potassium, total	7440-09-7	E420	47.4 mg/L	40 mg/L	118	70.0	130	
		selenium, total	7782-49-2	E420	0.472 mg/L	0.4 mg/L	118	70.0	130	
		silicon, total	7440-21-3	E420	92.1 mg/L	100 mg/L	92.1	70.0	130	
		silver, total	7440-22-4	E420	0.0429 mg/L	0.04 mg/L	107	70.0	130	
		sodium, total	7440-23-5	E420	16.3 mg/L	20 mg/L	81.3	70.0	130	
		strontium, total	7440-24-6	E420	ND mg/L	0.2 mg/L	ND	70.0	130	
		sulfur, total	7704-34-9	E420	ND mg/L	200 mg/L	ND	70.0	130	
		thallium, total	7440-28-0	E420	0.0402 mg/L	0.04 mg/L	100	70.0	130	
		tin, total	7440-31-5	E420	0.208 mg/L	0.2 mg/L	104	70.0	130	
		titanium, total	7440-32-6	E420	0.450 mg/L	0.4 mg/L	112	70.0	130	
		uranium, total	7440-61-1	E420	0.0416 mg/L	0.04 mg/L	104	70.0	130	
		vanadium, total	7440-62-2	E420	1.17 mg/L	1 mg/L	117	70.0	130	
		zinc, total	7440-66-6	E420	4.52 mg/L	4 mg/L	113	70.0	130	
tal Metals (QC	CLot: 655100)									
G2212650-002	RG_CORCK_WS_LAEMP_ CMO 2022-09 N	mercury, total	7439-97-6	E508	0.0000937 mg/L	0.0001 mg/L	93.7	70.0	130	
ssolved Metals	(QCLot: 653362)									
G2212385-002	Anonymous	chromium, dissolved	7440-47-3	E421.Cr-L	0.354 mg/L	0.4 mg/L	88.6	70.0	130	

Page : 17 of 18
Work Order : CG2212650
Client : Teck Coal Limited
Project : Regional Effects Program

Sub-Matrix: Water							Matrix Spil	ke (MS) Report		
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
Laboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Dissolved Metals	(QCLot: 653363)									
CG2212385-002	Anonymous	aluminum, dissolved	7429-90-5	E421	1.76 mg/L	2 mg/L	88.2	70.0	130	
		antimony, dissolved	7440-36-0	E421	0.208 mg/L	0.2 mg/L	104	70.0	130	
		arsenic, dissolved	7440-38-2	E421	0.171 mg/L	0.2 mg/L	85.4	70.0	130	
		barium, dissolved	7440-39-3	E421	0.176 mg/L	0.2 mg/L	88.0	70.0	130	
		beryllium, dissolved	7440-41-7	E421	0.386 mg/L	0.4 mg/L	96.6	70.0	130	
		bismuth, dissolved	7440-69-9	E421	0.0933 mg/L	0.1 mg/L	93.3	70.0	130	
		boron, dissolved	7440-42-8	E421	0.976 mg/L	1 mg/L	97.6	70.0	130	
		cadmium, dissolved	7440-43-9	E421	0.0362 mg/L	0.04 mg/L	90.5	70.0	130	
		calcium, dissolved	7440-70-2	E421	ND mg/L	40 mg/L	ND	70.0	130	
		cobalt, dissolved	7440-48-4	E421	0.174 mg/L	0.2 mg/L	87.2	70.0	130	
		copper, dissolved	7440-50-8	E421	0.171 mg/L	0.2 mg/L	85.4	70.0	130	
		iron, dissolved	7439-89-6	E421	17.8 mg/L	20 mg/L	88.9	70.0	130	
		lead, dissolved	7439-92-1	E421	0.191 mg/L	0.2 mg/L	95.4	70.0	130	
		lithium, dissolved	7439-93-2	E421	1.02 mg/L	1 mg/L	102	70.0	130	
		magnesium, dissolved	7439-95-4	E421	ND mg/L	10 mg/L	ND	70.0	130	
		manganese, dissolved	7439-96-5	E421	ND mg/L	0.2 mg/L	ND	70.0	130	
		molybdenum, dissolved	7439-98-7	E421	0.205 mg/L	0.2 mg/L	102	70.0	130	
		nickel, dissolved	7440-02-0	E421	0.343 mg/L	0.4 mg/L	85.8	70.0	130	
		potassium, dissolved	7440-09-7	E421	35.0 mg/L	40 mg/L	87.4	70.0	130	
		selenium, dissolved	7782-49-2	E421	0.389 mg/L	0.4 mg/L	97.3	70.0	130	
		silicon, dissolved	7440-21-3	E421	78.0 mg/L	100 mg/L	78.0	70.0	130	
		silver, dissolved	7440-22-4	E421	0.0410 mg/L	0.04 mg/L	102	70.0	130	
		sodium, dissolved	7440-23-5	E421	17.2 mg/L	20 mg/L	85.8	70.0	130	
		strontium, dissolved	7440-24-6	E421	ND mg/L	0.2 mg/L	ND	70.0	130	
		sulfur, dissolved	7704-34-9	E421	ND mg/L	200 mg/L	ND	70.0	130	
		thallium, dissolved	7440-28-0	E421	0.0374 mg/L	0.04 mg/L	93.5	70.0	130	
		tin, dissolved	7440-31-5	E421	0.188 mg/L	0.2 mg/L	94.1	70.0	130	
		titanium, dissolved	7440-32-6	E421	0.344 mg/L	0.4 mg/L	85.9	70.0	130	
		uranium, dissolved	7440-61-1	E421	0.0390 mg/L	0.04 mg/L	97.6	70.0	130	
		vanadium, dissolved	7440-62-2	E421	0.876 mg/L	1 mg/L	87.6	70.0	130	
		zinc, dissolved	7440-66-6	E421	3.62 mg/L	4 mg/L	90.6	70.0	130	
issolved Metals	(QCLot: 655111)									
CG2212650-002	RG_CORCK_WS_LAEMP_ CMO_2022-09_N	mercury, dissolved	7439-97-6	E509	0.0000938 mg/L	0.0001 mg/L	93.8	70.0	130	

Page : 18 of 18
Work Order : CG2212650
Client : Teck Coal Limited
Project : Regional Effects Program

								2	•					charge	Emergency (1 Business Day) - 100% surcharge	Emarama (1	
		519-500-3444	519-		Mobile#	3		Jennifer Ings	Jeni		\	Sampler's Name		lefault) charge X	Regular (default) Priority (2-3 business days) - 50% surcharge X	Priority (2-3	
							100							St. 14	ject to availability)	SERVICE REQUEST (rush - subject to availability)	SERV
											•					-	•
X		110	<u></u>	(-					+					,	,		
				*					.		.				preserved	Total metals to be lab preserved	
٧	/ IMIE	DATE/TIME	1	LUALION	CCEPTED BY/AFFILIATION	ACCEPTE	####	######################################	#		Jennifer Ings/Minnow	Jennifer Ings/Minnow			and to be lab preserved	ADDITIONAL COMMENTS/SPECIAL INSTRUCTIONS Dissolved metals were field filtered and to be lab preserved	ADDITION DISSOLVED IN
		_			۰												
	3 407 1800	Telephone: +1 403 407 1800	Telepi							,							
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		_			-											
								-									
		•	- :			-											
							<u> </u>										
		•					-			-	-						
350	JG2212650	CG2		+			-			_							
T Ce	r Referer	Work Orde	1 Ca		1	1	-	-	7	င	14:45	2022/09/14		ws	RG_CORCK		RG_CORCK_WS_LAEMP_CMO_2022-09_N
ision	ntal Div	Environmental Division	2 5	-	_	1	1	-	-1	G	11:00	2022/09/14		ws	RG_MIUCO	P_CMO_2022-09_N	RG_MIUCO_WS_LAEMP_CMO_2022-09_N
			тос	 :	_D TECI _T	TEC		DOC	ont.	C=Com #	Time (24hr)	Date	Haza	Field Matrix	Sample Location (sys loc code)	Sample ID	Sam
	:		_TKN		KCOA	ury_T KCOA			AN	G=Grab			rdous				
Envii			_PT	L_RO	L_ME	otal	issolve		ALYSIS			· .	Materi				
				UTINI	TNHO	TNHC	d		15-				al (Ye				
				E:	<u> </u>		+		PRI				s/No)			· .	
			H2SO4	Ħ		HCT	HCL H	H2SO4 1	SERV.								
<u> </u>			z	z	z	Z =	=	7	Filt								
استندا	b, FL: Field & J.	Filtered - F. Field, L.: Lab, FU: Field & Jah, N	Filtere		TED	ANALYSIS REQUESTED	ANALYSI	200	Stant's		4			TAILS	SAMPLE DETAILS	1990	
	7		VPO00816101	Tallia St. C	PO number	4			3 407 17	Phone Number 403 407 1794	Phone		Comin) Camaca		-250-865-3048	Phone Number 1-250-865-3048	
	2 3		_1		Email 6:	+	Country Canada		17 7RS	Dootal Code TIY 7RS	Door	19.40			No oco	Bostol Code V	
	₹ ×	* *	Tyler Mehler@minnow.ca X	Tyler Mehi	Email 5:	E 10	Province AB	स्	algary	City Cal			Provinc BC		City Sparwood	City	
	×		Teck Lab Results@teck.com X	Teck Lab.Re	Email 3:	7 1-		cet NE	559 29 Str	Address 2559 29 Street NE					Address 421 Pine Avenue	Address 4	
	×		teckcoal@equisonline.com	teckcoal@e	Email 2:		bal.com	Email Lyudmyla Shvets@ALSGlobal.com	udmyla Shv	Email Ly	!				Email Cybele.Heddle@teck.com	Email 5	
		l	com	AguaSciLi	Email 1:	Е		hvets	vudmyla S	Lab Contact Lyudmyla Shvets	Lab				ybele Heddle	Project Manager Cybele Heddle	
	EDD	Excel PDF	bution E	nat / Distri	Report Format / Distribution			У	LS Calgar	Lab Name ALS Calgary	La				Facility Name / Job# Regional Effects Program	Facility Name / Job# 1	
		NFO	OTHER INFO		2-3 Business Days	2-3 Bu	ORY	LABORATORY		. 0000	į	A 7707					
		riorty	DI CH. Pring		,	,		TME.	CUNIC	THRUAROHUD TIME:	214	CMm 2022_00	AP CA	D I AEMD	COCID: DED		

CERTIFICATE OF ANALYSIS

Work Order : CG2212931

Client : Teck Coal Limited

Contact : Cybele Heddle

Address : 421 Pine Ave

Sparwood BC Canada

Telephone : ---

Project : REGIONAL EFFECTS PROGRAM

PO : VPO00816101

C-O-C number : REP_LAEMP_CMm_2022-09_ALS

Sampler : Jennifer Ings

Site : ---

Quote number : Teck Coal Master Quote

No. of samples received : 5
No. of samples analysed : 5

Page : 1 of 6

Laboratory : Calgary - Environmental

Account Manager : Lyudmyla Shvets

Address : 2559 29th Street NE

Calgary AB Canada T1Y 7B5

Telephone : +1 403 407 1800

Date Samples Received : 17-Sep-2022 11:38

Date Analysis Commenced : 22-Sep-2022

Issue Date : 26-Sep-2022 18:29

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Anthony Calero	Supervisor - Inorganic	Inorganics, Calgary, Alberta
Anthony Calero	Supervisor - Inorganic	Metals, Calgary, Alberta
Elke Tabora		Inorganics, Calgary, Alberta
Harpreet Chawla	Team Leader - Inorganics	Inorganics, Calgary, Alberta
Harpreet Chawla	Team Leader - Inorganics	Metals, Calgary, Alberta
Mackenzie Lamoureux	Laboratory Analyst	Metals, Calgary, Alberta
Millicent Brentnall	Laboratory Analyst	Metals, Calgary, Alberta
Parker Sgarbossa	Laboratory Analyst	Inorganics, Calgary, Alberta
Ruifang Zheng	Analyst	Inorganics, Calgary, Alberta
Sara Niroomand		Inorganics, Calgary, Alberta
Vladka Stamenova	Analyst	Inorganics, Calgary, Alberta

Page : 2 of 6 Work Order : CG2212931 Client

: Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
%	percent
μg/L	micrograms per litre
μS/cm	Microsiemens per centimetre
meq/L	milliequivalents per litre
mg/L	milligrams per litre
mV	millivolts
NTU	nephelometric turbidity units
pH units	pH units

<: less than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Qualifiers

Qualifier	Description
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity).
HTA	Analytical holding time was exceeded.
HTD	Hold time exceeded for re-analysis or dilution, but initial testing was conducted within hold time.
RRV	Reported result verified by repeat analysis.

>: greater than.

Page : 3 of 6
Work Order : CG2212931
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Sub-Matrix: Water (Matrix: Water)			Ci	lient sample ID	RG_MI25_WS_ LAEMP_CMO_2 022-09_N	RG_AGCK_WS_ LAEMP_CMO_2 022-09_N	RG_LE1_WS_L AEMP_CMO_20 22-09_N	RG_RG_FBLAN K_WS_LAEMP_ CMO_2022-09_ N	RG_RG_TRIP_ WS_LAEMP_C MO_2022-09_N
			Client samp	oling date / time	15-Sep-2022 11:30	15-Sep-2022 15:28	16-Sep-2022 10:45	16-Sep-2022 10:22	16-Sep-2022 10:45
Analyte	CAS Number	Method	LOR	Unit	CG2212931-001	CG2212931-002	CG2212931-003	CG2212931-004	CG2212931-005
					Result	Result	Result	Result	Result
Physical Tests		5000	0.0		10.0	-0.0	.0.0	-0.0	-0.0
acidity (as CaCO3)		E283	2.0	mg/L	<2.0	<2.0	<2.0	<2.0	<2.0
alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	155	127	111	<1.0	<1.0
alkalinity, bicarbonate (as HCO3)	71-52-3	E290	1.0	mg/L	190	155	136	<1.0	<1.0
alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
alkalinity, carbonate (as CO3)	3812-32-6	E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
alkalinity, hydroxide (as OH)	14280-30-9	E290	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
alkalinity, total (as CaCO3)		E290	1.0	mg/L	155	127	111	<1.0	<1.0
conductivity		E100	2.0	μS/cm	282	245	193	<2.0	<2.0
hardness (as CaCO3), dissolved		EC100	0.50	mg/L	160	142	111	<0.50	<0.50
oxidation-reduction potential [ORP]		E125	0.10	mV	336	306	341	509	531
pH		E108	0.10	pH units	8.30	8.29	8.16	5.73	5.00
solids, total dissolved [TDS]		E162	10	mg/L	188	158	113	<10	<10
solids, total suspended [TSS]		E160-L	1.0	mg/L	<1.0	<1.0	<1.0	<1.0	<1.0
turbidity		E121	0.10	NTU	0.12 HTA	0.13 HTA	0.53 HTA	<0.10 HTA	<0.10 HTA
Anions and Nutrients									201
ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0060	<0.0050	0.0050	<0.0050	0.0313 RRV
bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	<0.050	<0.050	<0.050	<0.050
chloride	16887-00-6	E235.CI-L	0.10	mg/L	0.66	0.45	0.19	<0.10	<0.10
fluoride	16984-48-8	E235.F	0.020	mg/L	0.070	0.298	0.062	<0.020	<0.020
Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	<0.500 DLM	<0.500 DLM	<0.500 DLM	<0.050	<0.050
nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	0.0186	0.0770	0.0141	<0.0050	<0.0050 HTD
nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	<0.0010 HTA	<0.0010 HTA	0.0104 HTA	<0.0010 HTA	<0.0010 HTA
phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0051	0.0021	0.0128	<0.0020	<0.0020
sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	14.9	18.7	4.15	<0.30	<0.30
Organic / Inorganic Carbon									
carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	<0.50	<0.50	<0.50	<0.50	

Page : 4 of 6
Work Order : CG2212931
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Sub-Matrix: Water (Matrix: Water)			Cli	ient sample ID	RG_MI25_WS_ LAEMP_CMO_2 022-09_N	RG_AGCK_WS_ LAEMP_CMO_2 022-09_N	RG_LE1_WS_L AEMP_CMO_20 22-09_N	RG_RG_FBLAN K_WS_LAEMP_ CMO_2022-09_ N	RG_RG_TRIP_ WS_LAEMP_C MO_2022-09_N
			Client samp	ling date / time	15-Sep-2022 11:30	15-Sep-2022 15:28	16-Sep-2022 10:45	16-Sep-2022 10:22	16-Sep-2022 10:45
Analyte	CAS Number	Method	LOR	Unit	CG2212931-001	CG2212931-002	CG2212931-003	CG2212931-004	CG2212931-005
					Result	Result	Result	Result	Result
Organic / Inorganic Carbon									
carbon, total organic [TOC]		E355-L	0.50	mg/L	<0.50	<0.50	<0.50	<0.50	<0.50
Ion Balance									
anion sum		EC101	0.10	meq/L	3.43	2.96	2.31	<0.10	<0.10
cation sum		EC101	0.10	meq/L	3.37	2.87	2.27	<0.10	<0.10
ion balance (cations/anions)		EC101	0.010	%	98.2	97.0	98.3	100	100
ion balance (APHA)		EC101	0.010	%	0.882	1.54	0.873	<0.010	<0.010
Total Metals									
aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0075	0.0065	0.0074	<0.0030	0.0041
antimony, total	7440-36-0	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00026	0.00054	0.00024	<0.00010	<0.00010
barium, total	7440-39-3	E420	0.00010	mg/L	0.0572	0.0228	0.150	0.00018 RRV	<0.00010
beryllium, total	7440-41-7	E420	0.020	μg/L	<0.020	<0.020	<0.020	<0.020	<0.020
bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
boron, total	7440-42-8	E420	0.010	mg/L	0.019	<0.010	<0.010	<0.010	<0.010
cadmium, total	7440-43-9	E420	0.0050	μg/L	0.0142	0.0165	0.0333	<0.0050	<0.0050
calcium, total	7440-70-2	E420	0.050	mg/L	41.8	39.8	28.8	<0.050	<0.050
chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00020	0.00032	<0.00010	<0.00010	<0.00010
cobalt, total	7440-48-4	E420	0.10	μg/L	<0.10	<0.10	<0.10	<0.10	<0.10
copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
iron, total	7439-89-6	E420	0.010	mg/L	<0.010	<0.010	<0.010	<0.010	<0.010
lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
lithium, total	7439-93-2	E420	0.0010	mg/L	0.0061	0.0024	0.0019	<0.0010	<0.0010
magnesium, total	7439-95-4	E420	0.0050	mg/L	12.7	9.28	9.40	<0.0050	0.0054
manganese, total	7439-96-5	E420	0.00010	mg/L	0.00041	0.00013	0.00084	<0.00010	<0.00010
mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.000050	<0.0000050	<0.000050	<0.000050	<0.000050
molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.000937	0.000770	0.000674	<0.000050	<0.000050
nickel, total	7440-02-0	E420	0.00050	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
potassium, total	7440-09-7	E420	0.050	mg/L	0.545	0.247	0.576	<0.050	<0.050
selenium, total	7782-49-2	E420	0.050	μg/L	0.176	1.52	0.513	<0.050	<0.050
1	7702 10-2			r:3/ =	- · · · -		3.2.12		

Page : 5 of 6
Work Order : CG2212931
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Sub-Matrix: Water			Cli	ient sample ID	RG_MI25_WS_ LAEMP_CMO_2	RG_AGCK_WS_ LAEMP_CMO_2	RG_LE1_WS_L AEMP_CMO_20	RG_RG_FBLAN K_WS_LAEMP_	RG_RG_TRIP_ WS_LAEMP_C
(Matrix: Water)					022-09_N	022-09_N	22-09_N	CMO_2022-09_ N	MO_2022-09_N
			Client samp	ling date / time	15-Sep-2022 11:30	15-Sep-2022 15:28	16-Sep-2022 10:45	16-Sep-2022 10:22	16-Sep-2022 10:45
Analyte	CAS Number	Method	LOR	Unit	CG2212931-001	CG2212931-002	CG2212931-003	CG2212931-004	CG2212931-005
					Result	Result	Result	Result	Result
Total Metals									
silicon, total	7440-21-3	E420	0.10	mg/L	2.39	1.47	2.34	<0.10	<0.10
silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
sodium, total	7440-23-5	E420	0.050	mg/L	3.27	0.651	0.851	0.227 RRV	<0.050
strontium, total	7440-24-6	E420	0.00020	mg/L	0.175	0.148	0.0686	<0.00020	<0.00020
sulfur, total	7704-34-9	E420	0.50	mg/L	5.61	6.59	1.93	<0.50	0.56
thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	0.000043	<0.000010	<0.000010	<0.000010
tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	<0.00010	0.00038 RRV	<0.00010
titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	<0.00030	<0.00030	<0.00030
uranium, total	7440-61-1	E420	0.000010	mg/L	0.000228	0.000696	0.000206	<0.000010	<0.000010
vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	0.00053	0.00059	<0.00050	<0.00050
zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030
Dissolved Metals									
aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	<0.0010	0.0012	0.0013	<0.0010	
antimony, dissolved	7440-36-0	E421	0.00010	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	
arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00020	0.00049	0.00018	<0.00010	
barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0570	0.0228	0.159	0.00014	
beryllium, dissolved	7440-41-7	E421	0.020	μg/L	<0.020	<0.020	<0.020	<0.020	
bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	
boron, dissolved	7440-42-8	E421	0.010	mg/L	0.018	<0.010	<0.010	<0.010	
cadmium, dissolved	7440-43-9	E421	0.0050	μg/L	0.0088	0.0093	0.0263	<0.0050	
calcium, dissolved	7440-70-2	E421	0.050	mg/L	43.2	41.3	29.1	<0.050	<0.050
chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	0.00018	0.00026	<0.00010	<0.00010	
cobalt, dissolved	7440-48-4	E421	0.10	μg/L	<0.10	<0.10	<0.10	<0.10	
copper, dissolved	7440-50-8	E421	0.00020	mg/L	<0.00020	<0.00020	<0.00020	0.00023	
iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	<0.010	<0.010	
lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	<0.000050	<0.000050	
lithium, dissolved	7439-93-2	E421	0.0010	mg/L	0.0053	0.0018	0.0014	<0.0010	
magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	12.8	9.37	9.29	<0.0050	<0.0050
manganese, dissolved	7439-95-4	E421	0.00010	mg/L	0.00012	<0.00010	0.00070	<0.00010	
	1 400-00-0		11130.0	9, ⊏		1.530.0	2.300.0	1.135.0	ı

Page : 6 of 6
Work Order : CG2212931
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analytical Results

Client sample ID Sub-Matrix: Water RG_MI25_WS_ RG_AGCK_WS_ RG LE1 WS L RG RG FBLAN RG_RG_TRIP_ LAEMP CMO 2 LAEMP CMO 2 **AEMP CMO 20** K WS LAEMP WS LAEMP C (Matrix: Water) 022-09 N 022-09 N 22-09 N CMO 2022-09 MO 2022-09 N Ν Client sampling date / time 15-Sep-2022 15-Sep-2022 16-Sep-2022 16-Sep-2022 16-Sep-2022 11:30 15:28 10:45 10:22 10:45 LOR Unit Method CG2212931-005 Analyte CAS Number CG2212931-001 CG2212931-002 CG2212931-003 CG2212931-004 Result Result Result Result Result **Dissolved Metals** 0.0000050 < 0.0000050 mercury, dissolved 7439-97-6 E509 mg/L < 0.0000050 < 0.0000050 < 0.0000050 E421 molybdenum, dissolved 7439-98-7 0.000050 0.00100 0.000782 0.000678 < 0.000050 mg/L E421 0.00050 < 0.00050 < 0.00050 < 0.00050 nickel, dissolved 7440-02-0 mg/L < 0.00050 0.526 0.228 0.568 <0.050 potassium, dissolved 7440-09-7 E421 0.050 mg/L < 0.050 0.246 selenium, dissolved E421 0.050 1.98 0.607 < 0.050 7782-49-2 μg/L silicon, dissolved E421 0.050 2.54 1.53 2.38 < 0.050 7440-21-3 mg/L silver, dissolved 7440-22-4 E421 0.000010 mg/L < 0.000010 < 0.000010 < 0.000010 < 0.000010 0.050 3.33 0.919 0.204 sodium, dissolved E421 0.658 < 0.050 7440-23-5 mg/L E421 0.00020 0.185 0.150 0.0710 <0.00020 strontium, dissolved 7440-24-6 mg/L sulfur, dissolved E421 0.50 4.71 6.11 < 0.50 < 0.50 7704-34-9 mq/L <0.000010 0.000045 <0.000010 < 0.000010 thallium, dissolved E421 0.000010 7440-28-0 mg/L E421 0.00010 < 0.00010 < 0.00010 <0.00010 0.00017 tin, dissolved 7440-31-5 mg/L titanium, dissolved 7440-32-6 E421 0.00030 mg/L < 0.00030 < 0.00030 < 0.00030 < 0.00030 uranium, dissolved E421 0.000010 mg/L 0.000234 0.000735 0.000193 < 0.000010 7440-61-1 E421 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 vanadium, dissolved 7440-62-2 mg/L 0.0010 <0.0010 0.0010 <0.0010 <0.0010 zinc, dissolved 7440-66-6 E421 mg/L EP509 Field dissolved mercury filtration location Field Field Field EP421 Field Field Field Field dissolved metals filtration location Laboratory

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL REPORT

Work Order : CG2212931

Client : Teck Coal Limited
Contact : Cybele Heddle
Address : 421 Pine Ave

Sparwood BC Canada

Telephone : ---

Project : REGIONAL EFFECTS PROGRAM

PO : VPO00816101

C-O-C number : REP_LAEMP_CMm_2022-09_ALS

Sampler : Jennifer Ings

Site :--

Quote number : Teck Coal Master Quote

No. of samples received : 5
No. of samples analysed : 5

Page : 1 of 18

Laboratory : Calgary - Environmental

Account Manager : Lyudmyla Shvets
Address : 2559 29th Street NE

2000 2011 011001112

Calgary, Alberta Canada T1Y 7B5

Telephone : +1 403 407 1800

Date Samples Received : 17-Sep-2022 11:38

Date Analysis Commenced 22-Sep-2022

Issue Date : 26-Sep-2022 18:30

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives

- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Anthony Calero	Supervisor - Inorganic	Calgary Inorganics, Calgary, Alberta
Anthony Calero	Supervisor - Inorganic	Calgary Metals, Calgary, Alberta
Elke Tabora		Calgary Inorganics, Calgary, Alberta
Harpreet Chawla	Team Leader - Inorganics	Calgary Inorganics, Calgary, Alberta
Harpreet Chawla	Team Leader - Inorganics	Calgary Metals, Calgary, Alberta
Mackenzie Lamoureux	Laboratory Analyst	Calgary Metals, Calgary, Alberta
Millicent Brentnall	Laboratory Analyst	Calgary Metals, Calgary, Alberta
Parker Sgarbossa	Laboratory Analyst	Calgary Inorganics, Calgary, Alberta
Ruifang Zheng	Analyst	Calgary Inorganics, Calgary, Alberta
Sara Niroomand		Calgary Inorganics, Calgary, Alberta
Vladka Stamenova	Analyst	Calgary Inorganics, Calgary, Alberta

 Page
 : 2 of 18

 Work Order
 : CG2212931

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

 Page
 : 3 of 18

 Work Order
 : CG2212931

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Water							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Physical Tests (QC	Lot: 661110)										
CG2212931-001	RG_MI25_WS_LAEMP_C MO_2022-09_N	turbidity		E121	0.10	NTU	0.12	0.14	0.02	Diff <2x LOR	
Physical Tests (QC	Lot: 661276)										
CG2212931-001	RG_MI25_WS_LAEMP_C MO_2022-09_N	solids, total dissolved [TDS]		E162	20	mg/L	188	173	16	Diff <2x LOR	
Physical Tests (QC	Lot: 661931)										
CG2212931-003	RG_LE1_WS_LAEMP_CM O_2022-09_N	solids, total dissolved [TDS]		E162	20	mg/L	113	111	2	Diff <2x LOR	
Physical Tests (QC	Lot: 662100)										
CG2212785-004	Anonymous	acidity (as CaCO3)		E283	2.0	mg/L	<2.0	<2.0	0	Diff <2x LOR	
Physical Tests (QC	Lot: 662106)							I			
CG2212785-004	Anonymous	conductivity		E100	2.0	μS/cm	<2.0	<2.0	0	Diff <2x LOR	
Physical Tests (QC	Lot: 662107)							ı			
CG2212785-004	Anonymous	рН		E108	0.10	pH units	5.15	5.11	0.780%	4%	
Physical Tests (QC	Lot: 662108)										
CG2212785-004	Anonymous	alkalinity, bicarbonate (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, carbonate (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, hydroxide (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
		alkalinity, total (as CaCO3)		E290	1.0	mg/L	<1.0	<1.0	0	Diff <2x LOR	
Physical Tests (QC	Lot: 662920)										
CG2212931-001	RG_MI25_WS_LAEMP_C MO_2022-09_N	oxidation-reduction potential [ORP]		E125	0.10	mV	336	337	0.297%	15%	
Anions and Nutrien	ts (QC Lot: 660985)										
CG2212931-001	RG_MI25_WS_LAEMP_C MO_2022-09_N	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
Anions and Nutrien	its (QC Lot: 661065)										
CG2212931-001	RG_MI25_WS_LAEMP_C MO_2022-09_N	fluoride	16984-48-8	E235.F	0.020	mg/L	0.070	0.070	0.0001	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 661066)										
CG2212931-001	RG_MI25_WS_LAEMP_C MO_2022-09_N	bromide	24959-67-9	E235.Br-L	0.050	mg/L	<0.050	<0.050	0	Diff <2x LOR	
Anions and Nutr <u>ien</u>	ts (QC Lot: 661067)										
CG2212931-001	RG_MI25_WS_LAEMP_C MO_2022-09_N	chloride	16887-00-6	E235.CI-L	0.10	mg/L	0.66	0.54	0.12	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 661068)										

 Page
 : 4 of 18

 Work Order
 : CG2212931

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water						Labora	tory Duplicate (D	UP) Report			
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
	ts (QC Lot: 661068) - co	ontinued									
CG2212931-001	RG_MI25_WS_LAEMP_C MO_2022-09_N	nitrate (as N)	14797-55-8	E235.NO3-L	0.0050	mg/L	0.0186	0.0200	0.0014	Diff <2x LOR	
Anions and Nutrien	its (QC Lot: 661069)										
CG2212931-001	RG_MI25_WS_LAEMP_C MO_2022-09_N	nitrite (as N)	14797-65-0	E235.NO2-L	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 661070)										
CG2212931-001	RG_MI25_WS_LAEMP_C MO_2022-09_N	sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	14.9	14.8	0.469%	20%	
Anions and Nutrien	ts (QC Lot: 661142)										
CG2212931-001	RG_MI25_WS_LAEMP_C MO_2022-09_N	ammonia, total (as N)	7664-41-7	E298	0.0050	mg/L	0.0060	0.0058	0.0002	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 661206)										
CG2212931-001	RG_MI25_WS_LAEMP_C MO_2022-09_N	Kjeldahl nitrogen, total [TKN]		E318	0.500	mg/L	<0.500	<0.500	0	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 661974)										
CG2212931-001	RG_MI25_WS_LAEMP_C MO_2022-09_N	phosphorus, total	7723-14-0	E372-U	0.0020	mg/L	0.0051	0.0047	0.0004	Diff <2x LOR	
Organic / Inorganic	Carbon (QC Lot: 66096	1)									
CG2212931-001	RG_MI25_WS_LAEMP_C MO_2022-09_N	carbon, dissolved organic [DOC]		E358-L	0.50	mg/L	<0.50	<0.50	0	Diff <2x LOR	
Organic / Inorganic	Carbon (QC Lot: 660962	2)									
CG2212931-001	RG_MI25_WS_LAEMP_C MO_2022-09_N	carbon, total organic [TOC]		E355-L	0.50	mg/L	<0.50	<0.50	0	Diff <2x LOR	
Total Metals (QC L	ot: 662245)										
CG2212931-001	RG_MI25_WS_LAEMP_C MO_2022-09_N	mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.000050	<0.0000050	0	Diff <2x LOR	
Total Metals (QC Lo	ot: 662944)										
CG2212812-001	Anonymous	chromium, total	7440-47-3	E420.Cr-L	0.00010	mg/L	0.00025	0.00023	0.00002	Diff <2x LOR	
Total Metals (QC Lo	ot: 662945)										
CG2212812-001	Anonymous	aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0182	0.0179	0.0002	Diff <2x LOR	
		antimony, total	7440-36-0	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00015	0.00016	0.00002	Diff <2x LOR	
		barium, total	7440-39-3	E420	0.00010	mg/L	0.0476	0.0477	0.283%	20%	
		beryllium, total	7440-41-7	E420	0.000020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR	
		bismuth, total	7440-69-9	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		,	7440-09-9	E420	0.010	mg/L	<0.010	<0.000	0	Diff <2x LOR	
		boron, total	7440-42-8	E420	0.000050	•		0.0000122	0.00000007	Diff <2x LOR	,
		cadmium, total				mg/L	0.0121 µg/L				
		calcium, total	7440-70-2	E420	0.050	mg/L	43.1	43.1	0.131%	20%	
		cobalt, total	7440-48-4	E420	0.00010	mg/L	<0.10 µg/L	<0.00010	0	Diff <2x LOR	
		copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	

 Page
 : 5 of 18

 Work Order
 : CG2212931

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

ıb-Matrix: Water						Laboratory Duplicate (DUP) Report						
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifi	
	t: 662945) - continued											
G2212812-001	Anonymous	iron, total	7439-89-6	E420	0.010	mg/L	0.016	0.017	0.00008	Diff <2x LOR		
		lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR		
		lithium, total	7439-93-2	E420	0.0010	mg/L	0.0020	0.0021	0.00010	Diff <2x LOR		
		magnesium, total	7439-95-4	E420	0.0050	mg/L	11.2	11.0	1.08%	20%		
		manganese, total	7439-96-5	E420	0.00010	mg/L	0.00340	0.00344	1.23%	20%		
		molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.00106	0.00108	1.31%	20%		
		nickel, total	7440-02-0	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR		
		potassium, total	7440-09-7	E420	0.050	mg/L	0.384	0.386	0.002	Diff <2x LOR		
		selenium, total	7782-49-2	E420	0.000050	mg/L	0.730 μg/L	0.000737	0.973%	20%		
		silicon, total	7440-21-3	E420	0.10	mg/L	1.77	1.77	0.161%	20%		
		silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR		
		sodium, total	7440-23-5	E420	0.050	mg/L	0.668	0.672	0.627%	20%		
		strontium, total	7440-24-6	E420	0.00020	mg/L	0.209	0.214	2.15%	20%		
	sulfur, total	7704-34-9	E420	0.50	mg/L	6.52	6.41	1.77%	20%			
	thallium, total	7440-28-0	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR			
	tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR			
		titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR		
		uranium, total	7440-61-1	E420	0.000010	mg/L	0.000685	0.000700	2.11%	20%		
		vanadium, total	7440-62-2	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR		
		zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	<0.0030	0	Diff <2x LOR		
issolved Metals (C	C L et: CC44.40\											
G2212931-001	RG_MI25_WS_LAEMP_C MO 2022-09 N	aluminum, dissolved	7429-90-5	E421	0.0010	mg/L	<0.0010	0.0010	0.00005	Diff <2x LOR		
	MO_2022 00_11	antimony, dissolved	7440-36-0	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR		
		arsenic, dissolved	7440-38-2	E421	0.00010	mg/L	0.00020	0.00020	0.0000002	Diff <2x LOR		
		barium, dissolved	7440-39-3	E421	0.00010	mg/L	0.0570	0.0568	0.301%	20%		
		beryllium, dissolved	7440-41-7	E421	0.000020	mg/L	<0.020 µg/L	<0.000020	0	Diff <2x LOR		
		bismuth, dissolved	7440-69-9	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR		
		boron, dissolved	7440-42-8	E421	0.010	mg/L	0.018	0.018	0.0006	Diff <2x LOR		
		cadmium, dissolved	7440-43-9	E421	0.0000050	mg/L	0.0088 µg/L	0.0000105	0.0000018	Diff <2x LOR		
		calcium, dissolved	7440-70-2	E421	0.050	mg/L	43.2	43.2	0.0925%	20%		
	cobalt, dissolved	7440-48-4	E421	0.00010	mg/L	<0.10 µg/L	<0.00010	0	Diff <2x LOR			
		copper, dissolved	7440-50-8	E421	0.00020	mg/L	<0.00020	<0.00020	0	Diff <2x LOR		
		iron, dissolved	7439-89-6	E421	0.010	mg/L	<0.010	<0.010	0	Diff <2x LOR		
		I IIUII. UISSUIVEU	1400-00-0	L74 I	0.010	my/L	~0.010	~0.010	U	DIII YZA LON		
		lead, dissolved	7439-92-1	E421	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR		

 Page
 : 6 of 18

 Work Order
 : CG2212931

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Commonweight Comm	Sub-Matrix: Water							Labora	tory Duplicate (DI	UP) Report		
RG_MI25_WS_LAEMP_C MQ_2022-09_N magnesium, dissolved 7439-95-4 E421 0.0050 mg/L 12.8 13.0 1.84% 20	Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit					Qualifier
maganese, dissolved 7439-96-5 E421 0.00010 mg/L 0.00012 0.00014 0.00020 Diff <2x LOR nolybdenum, dissolved 17439-98-7 E421 0.00050 mg/L 0.00100 0.00100 0.802% 20% nickel, dissolved 17440-02-0 E421 0.00050 mg/L 0.00050 <0.00050 0 Diff <2x LOR potassium, dissolved 77440-09-7 E421 0.00050 mg/L 0.526 0.532 1.19% 20% selenium, dissolved 7782-49-2 E421 0.00050 mg/L 0.246 µg/L 0.000261 0.000015 Diff <2x LOR silicon, dissolved 7740-21-3 E421 0.050 mg/L 0.526 0.532 1.19% 20% silicon, dissolved 7740-21-3 E421 0.050 mg/L 0.54 2.57 1.33% 20% silver, dissolved 7740-22-4 E421 0.000010 mg/L 0.000010 0 Diff <2x LOR sodium, dissolved 7740-24-6 E421 0.0000 mg/L 0.000010 0 Diff <2x LOR stornium, dissolved 7740-24-6 E421 0.0000 mg/L 0.185 0.183 1.19% 20% suffur, dissolved 7740-34-9 E421 0.0000 mg/L 0.185 0.183 1.19% 20% suffur, dissolved 7740-34-9 E421 0.000010 mg/L 0.000010 0 Diff <2x LOR thallum, dissolved 7440-34-6 E421 0.000010 mg/L 0.000010 0 Diff <2x LOR thallum, dissolved 7440-34-6 E421 0.000010 mg/L 0.000010 0 Diff <2x LOR thallum, dissolved 7440-31-6 E421 0.000010 mg/L 0.000010 0 Diff <2x LOR thallum, dissolved 7440-61-1 E421 0.000010 mg/L 0.000010 0 Diff <2x LOR vanadium, dissolved 7440-61-6 E421 0.000010 mg/L 0.000030 0 Diff <2x LOR vanadium, dissolved 7440-62-2 E421 0.000010 mg/L 0.000030 0 Diff <2x LOR vanadium, dissolved 7440-66-6 E421 0.000010 mg/L 0.000000 0 Diff <2x LOR vanadium, dissolved 7440-66-6 E421 0.000010 mg/L 0.00000 0 Diff <2x LOR Dissolved Metals (QC Lot: 661149) Chick control of the cont	Dissolved Metals (QC Lot: 661148) - contin	ued									
molybdenum, dissolved 7439-98-7 E421 0.000050 mg/L 0.00100 0.00100 0.602% 20%	CG2212931-001		magnesium, dissolved	7439-95-4	E421	0.0050	mg/L	12.8	13.0	1.84%	20%	
nickel, dissolved 7440-02-0 E421 0.00050 mg/L 0.00050 0 Diff <2x LOR potassium, dissolved 7440-09-7 E421 0.050 mg/L 0.526 0.532 1.19% 20% selenium, dissolved 7782-49-2 E421 0.00050 mg/L 0.246 µg/L 0.000261 0.000015 Diff <2x LOR silver, dissolved 7740-21-3 E421 0.050 mg/L 2.54 2.57 1.33% 20% silver, dissolved 7440-22-4 E421 0.00010 mg/L 0.000010 0 Diff <2x LOR sodium, dissolved 7440-23-5 E421 0.000 mg/L 0.185 0.183 1.19% 20% strontium, dissolved 7440-24-6 E421 0.000 mg/L 0.185 0.183 1.19% 20% suffur, dissolved 7740-24-6 E421 0.0000 mg/L 0.185 0.183 1.19% 20% suffur, dissolved 7740-34-9 E421 0.50 mg/L 4.71 4.51 0.20 Diff <2x LOR thallium, dissolved 7440-31-5 E421 0.00010 mg/L 0.000010 <0.00010 0 Diff <2x LOR thallium, dissolved 7440-31-5 E421 0.00010 mg/L 0.00010 <0.00010 0 Diff <2x LOR thallium, dissolved 7440-32-6 E421 0.00010 mg/L 0.000010 <0.00010 0 Diff <2x LOR thallium, dissolved 7440-32-6 E421 0.00010 mg/L 0.000010 <0.00010 0 Diff <2x LOR thallium, dissolved 7440-82-2 E421 0.00010 mg/L 0.000030 <0.00030 0 Diff <2x LOR thallium, dissolved 7440-82-2 E421 0.00010 mg/L 0.000030 <0.00030 0 Diff <2x LOR vanadium, dissolved 7440-82-2 E421 0.00010 mg/L 0.000030 <0.00030 0 Diff <2x LOR vanadium, dissolved 7440-82-2 E421 0.00010 mg/L 0.000010 <0.00010 0 Diff <2x LOR vanadium, dissolved 7440-82-2 E421 0.00010 mg/L 0.000030 0 Diff <2x LOR vanadium, dissolved 7440-82-2 E421 0.00010 mg/L 0.00010 0 Diff <2x LOR vanadium, dissolved 7440-82-8 E421 0.00010 mg/L 0.000030 0 Diff <2x LOR vanadium, dissolved 7440-82-8 E421 0.00010 mg/L 0.00010 0 Diff <2x LOR vanadium, dissolved 7440-82-8 E421 0.00010 mg/L 0.00010 0 Diff <2x LOR vanadium, dissolved 7440-82-8 E421 0.00010 mg/L 0.00010 0 Diff <2x LOR vanadium, dissolved 7440-82-8 E421 0.00010 mg/L 0.00010 0 Diff <2x LOR Dissolved Metals (QC Lot: 661149) Chromium, dissolved 7440-47-3 E421.Cr-L 0.00010 mg/L 0.00010 Diff <2x LOR Dissolved Metals (QC Lot: 662251)			manganese, dissolved	7439-96-5	E421	0.00010	mg/L	0.00012	0.00014	0.00002	Diff <2x LOR	
potassium, dissolved 7440-09-7 E421 0.050 mg/L 0.526 0.532 1.19% 20% selenium, dissolved 7782-49-2 E421 0.000050 mg/L 0.246 µg/L 0.000261 0.000015 Diff <2x LOR sillcon, dissolved 7440-21-3 E421 0.050 mg/L 2.54 2.57 1.33% 20% silver, dissolved 7440-22-4 E421 0.00010 mg/L <0.000010 <0.000010 0 Diff <2x LOR sodium, dissolved 7440-24-6 E421 0.000 mg/L 0.185 0.183 1.19% 20% strontium, dissolved 7440-24-6 E421 0.0000 mg/L 0.185 0.183 1.19% 20% strontium, dissolved 7740-24-8 E421 0.0000 mg/L 0.185 0.183 1.19% 20% strontium, dissolved 7740-24-8 E421 0.0000 mg/L 4.71 4.51 0.20 Diff <2x LOR thallium, dissolved 7440-34-9 E421 0.00010 mg/L <0.000010 c.000010 0 Diff <2x LOR thallium, dissolved 7440-31-5 E421 0.00010 mg/L <0.00010 c.000010 0 Diff <2x LOR titanium, dissolved 1740-32-6 E421 0.00010 mg/L <0.00010 c.000010 0 Diff <2x LOR titanium, dissolved 1740-32-6 E421 0.000010 mg/L <0.00030 c.000030 0 Diff <2x LOR uranium, dissolved 7440-61-1 E421 0.000010 mg/L <0.00030 c.00030 0 Diff <2x LOR vanadium, dissolved 7440-66-6 E421 0.000010 mg/L <0.000050 c.000050 0 Diff <2x LOR vanadium, dissolved 7440-66-6 E421 0.00010 mg/L <0.000050 c.000050 0 Diff <2x LOR vanadium, dissolved 7440-66-6 E421 0.00010 mg/L <0.00010 c.00010 0 Diff <2x LOR Diff <2x LOR vanadium, dissolved 7440-66-6 E421 0.00010 mg/L <0.00010 c.00010 0 Diff <2x LOR			molybdenum, dissolved	7439-98-7	E421	0.000050	mg/L	0.00100	0.00100	0.602%	20%	
selenium, dissolved silicon, dissolved sodium, dissolved sodium, dissolved strontium, dissolved strontium, dissolved strontium, dissolved strontium, dissolved suffur, dissolved sulfur, dissolved sin, dissolved sin, dissolved sin, dissolved strontium, dissolved sulfur, dissolved surfur, dissolved sulfur, duotonio sulfur, duotonio sulfur, duotonio sulfur, duotonio sulfur, du		nickel, dissolved	7440-02-0	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR		
silicon, dissolved silver, dissolved silver, dissolved silver, dissolved silver, dissolved sodium, dis		potassium, dissolved	7440-09-7	E421	0.050	mg/L	0.526	0.532	1.19%	20%		
silver, dissolved 7440-22-4 E421 0.000010 mg/L <0.000010 <0.000010 0 Diff <2x LOR sodium, dissolved strontium, dissolved 7440-23-5 E421 0.00020 mg/L 0.185 0.183 1.19% 20% strontium, dissolved 7740-24-6 E421 0.00020 mg/L 0.185 0.183 1.19% 20% sulfur, dissolved 7740-34-9 E421 0.50 mg/L 4.71 4.51 0.20 Diff <2x LOR thallium, dissolved tin, dissolved 7440-28-0 E421 0.00010 mg/L <0.00010 <0.000010 0 Diff <2x LOR tin, dissolved tin, dissolved tin, dissolved titanium, dissolved transium, dissolved uranium, dissolved 7440-32-6 E421 0.00030 mg/L <0.00030 <0.00030 0 Diff <2x LOR transium, dissolved vanadium, dissolved 7440-61-1 E421 0.00010 mg/L <0.00030 <0.00030 0 Diff <2x LOR vanadium, dissolved vanadium, dissolved 7440-66-6 E421 0.00050 mg/L <0.00050 <0.00050 0 Diff <2x LOR vanadium, dissolved 7440-66-6 E421 0.00050 mg/L <0.00050 <0.00050 0 Diff <2x LOR vanadium, dissolved 7440-66-6 E421 0.00010 mg/L <0.00010 <0.0010 0 Diff <2x LOR vanadium, dissolved 7440-66-6 E421 0.00010 mg/L <0.00010 <0.0010 0 Diff <2x LOR Dissolved Metals (QC Lot: 661149) CGG2212931-001 RG MIZ5_WS_LAEMP_C MO_2022-09_N Chromium, dissolved 7440-47-3 E421.Cr-L 0.00010 mg/L 0.00018 0.00019 0.000004 Diff <2x LOR Dissolved Metals (QC Lot: 662251)			selenium, dissolved	7782-49-2	E421	0.000050	mg/L	0.246 μg/L	0.000261	0.000015	Diff <2x LOR	
sodium, dissolved 7440-23-5 E421 0.050 mg/L 3.33 3.40 2.02% 20% strontium, dissolved 7440-24-6 E421 0.00020 mg/L 0.185 0.183 1.19% 20% sulfur, dissolved 7704-34-9 E421 0.50 mg/L 4.71 4.51 0.20 Diff <2x LOR thallium, dissolved tin, dissolved 7440-28-0 E421 0.000010 mg/L <0.000010 <0.000010 0 Diff <2x LOR tin, dissolved titanium, dissolved titanium, dissolved uranium, dissolved 7440-31-5 E421 0.00030 mg/L <0.00010 <0.000010 0 Diff <2x LOR 0.00010 Diff <2x LOR 0.		silicon, dissolved	7440-21-3	E421	0.050	mg/L	2.54	2.57	1.33%	20%		
strontium, dissolved 7440-24-6 E421 0.00020 mg/L 0.185 0.183 1.19% 20% sulfur, dissolved 7704-34-9 E421 0.50 mg/L 4.71 4.51 0.20 Diff <2x LOR thallium, dissolved 7440-28-0 E421 0.000010 mg/L <0.000010 c0.000010 0 Diff <2x LOR tin, dissolved (11, dissolved 14, dissolved 14, dissolved 14, dissolved 14, dissolved (14, dissolved 14, dissolv		silver, dissolved	7440-22-4	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR		
sulfur, dissolved 7704-34-9 E421 0.50 mg/L 4.71 4.51 0.20 Diff <2x LOR thallium, dissolved thallium, dissolved 7440-28-0 E421 0.000010 mg/L <0.000010 <0.000010 0 Diff <2x LOR 0.00010			sodium, dissolved	7440-23-5	E421	0.050	mg/L	3.33	3.40	2.02%	20%	
thallium, dissolved tin, dissolved 7440-28-0 E421 0.00010 mg/L <0.00010 <0.000010 0 Diff <2x LOR tin, dissolved titanium, dissolved 7440-31-5 E421 0.00010 mg/L <0.00010 <0.00010 0 Diff <2x LOR titanium, dissolved uranium, dissolved vanadium, dissolved 7440-61-1 E421 0.00030 mg/L <0.00030 0 Diff <2x LOR 0.00030 Diff <2x LOR 0.000			strontium, dissolved	7440-24-6	E421	0.00020	mg/L	0.185	0.183	1.19%	20%	
tin, dissolved			sulfur, dissolved	7704-34-9	E421	0.50	mg/L	4.71	4.51	0.20	Diff <2x LOR	
titanium, dissolved titanium, dissolved 7440-32-6 E421 0.00030 mg/L <0.00030 0 Diff <2x LOR 0.00030 0.000247 5.75% 20% vanadium, dissolved 7440-62-2 E421 0.00050 mg/L <0.00050 0 Diff <2x LOR vanadium, dissolved 7440-66-6 E421 0.0010 mg/L <0.00050 <0.00050 0 Diff <2x LOR 0.00050 Diff <2x LOR 0.0			thallium, dissolved	7440-28-0	E421	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	
uranium, dissolved 7440-61-1 E421 0.000010 mg/L 0.000234 0.000247 5.75% 20% vanadium, dissolved zinc, dissolved 7440-62-2 E421 0.00050 mg/L <0.00050 0 Diff <2x LOR 2 vanadium, dissolved zinc, dissolved 7440-66-6 E421 0.0010 mg/L <0.0010 0 Diff <2x LOR 0.0010 vanadium, dissolved vanadiu			tin, dissolved	7440-31-5	E421	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
vanadium, dissolved 7440-62-2 E421 0.00050 mg/L <0.00050 0 Diff <2x LOR 2 inc, dissolved 7440-66-6 E421 0.0010 mg/L <0.0010 0 Diff <2x LOR 0.0010 mg/L <0.0010 0 Diff <2x LOR 0.0010 mg/L <0.0010 0 Diff <2x LOR 0.0010 Di			titanium, dissolved	7440-32-6	E421	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR	
zinc, dissolved 7440-66-6 E421 0.0010 mg/L <0.0010 0 Diff <2x LOR Dissolved Metals (QC Lot: 661149) CG2212931-001 RG_MI25_WS_LAEMP_C chromium, dissolved 7440-47-3 E421.Cr-L 0.00010 mg/L 0.00018 0.00019 0.00004 Diff <2x LOR Dissolved Metals (QC Lot: 662251)			uranium, dissolved	7440-61-1	E421	0.000010	mg/L	0.000234	0.000247	5.75%	20%	
Dissolved Metals (QC Lot: 661149) CG2212931-001 RG_MI25_WS_LAEMP_C chromium, dissolved MO_2022-09_N RO_2022-09_N RO_2022-			vanadium, dissolved	7440-62-2	E421	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
CG2212931-001 RG_MI25_WS_LAEMP_C chromium, dissolved 7440-47-3 E421.Cr-L 0.00010 mg/L 0.00018 0.00019 0.000004 Diff <2x LOR MO_2022-09_N Dissolved Metals (QC Lot: 662251)			zinc, dissolved	7440-66-6	E421	0.0010	mg/L	<0.0010	<0.0010	0	Diff <2x LOR	
MO_2022-09_N Dissolved Metals (QC Lot: 662251)	Dissolved Metals (QC Lot: 661149)									1	
	CG2212931-001		chromium, dissolved	7440-47-3	E421.Cr-L	0.00010	mg/L	0.00018	0.00019	0.000004	Diff <2x LOR	
CG2212715-001 Annymous mercury dissolved 7439-97-6 F509 0.0000050 mg/l <0.0000050 <0.0000050 0 Diff <2x LOR	issolved Metals (QC Lot: 662251)										
mercury, dissolved 7400 0 200 0.000000 0 0 0 0 0 0 0 0 0 0 0	CG2212715-001	Anonymous	mercury, dissolved	7439-97-6	E509	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR	

 Page
 : 7 of 18

 Work Order
 : CG2212931

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

E121	0.1	NTU	<0.10	
E162	10	mg/L	<10	
E160-L	1	mg/L	<1.0	
5400.1		,		
E160-L	1	mg/L	<1.0	
E162	10	ma/l	~10	
= 102	10	IIIg/L	<10	
F283	2	ma/l	<2.0	
LEGO CONTRACTOR OF THE CONTRAC		mg/L	-2.0	
E100	1	uS/cm	<1.0	
		F-7		
E290	1	mg/L	<1.0	
E290	1	mg/L	<1.0	
E290	1	mg/L	<1.0	
E290	1	mg/L	<1.0	
5-44-2 E378-U	0.001	mg/L	<0.0010	
4-48-8 E235.F	0.02	mg/L	<0.020	
9-67-9 E235.Br-L	0.05	mg/L	<0.050	
7-00-6 E235.CI-L	0.1	mg/L	<0.10	
7-55-8 E235.NO3-L	0.005	mg/L	<0.0050	
7-65-0 E235.NO2-L	0.001	mg/L	<0.0010	
70.0 5005.004	0.0	,	.0.00	
8-79-8 E235.SU4	0.3	mg/L	<0.30	
7	E290 E290	E160-L 1 E160-L 1 E160-L 1 E162 10 E283 2 E100 1 E290 1	E160-L 1 mg/L E162 10 mg/L E162 10 mg/L E283 2 mg/L E100 1 μS/cm E290 1 mg/L	

 Page
 : 8 of 18

 Work Order
 : CG2212931

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Anions and Nutrients (QCLot: 661					
ammonia, total (as N)	7664-41-7 E298	0.005	mg/L	<0.0050	
Anions and Nutrients (QCLot: 661					
(jeldahl nitrogen, total [TKN]	E318	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 661	·				
phosphorus, total	7723-14-0 E372-U	0.002	mg/L	<0.0020	
Organic / Inorganic Carbon(QCLo					
arbon, dissolved organic [DOC]	E358-L	0.5	mg/L	<0.50	
Organic / Inorganic Carbon(QCLo					
arbon, total organic [TOC]	E355-L	0.5	mg/L	<0.50	
Total Metals (QCLot: 662245)					
nercury, total	7439-97-6 E508	0.000005	mg/L	<0.000050	
Fotal Metals (QCLot: 662944)					
hromium, total	7440-47-3 E420.Cr-L	0.0001	mg/L	<0.00010	
otal Metals (QCLot: 662945)					
luminum, total	7429-90-5 E420	0.003	mg/L	<0.0030	
ntimony, total	7440-36-0 E420	0.0001	mg/L	<0.00010	
rsenic, total	7440-38-2 E420	0.0001	mg/L	<0.00010	
arium, total	7440-39-3 E420	0.0001	mg/L	<0.00010	
eryllium, total	7440-41-7 E420	0.00002	mg/L	<0.000020	
ismuth, total	7440-69-9 E420	0.00005	mg/L	<0.000050	
oron, total	7440-42-8 E420	0.01	mg/L	<0.010	
admium, total	7440-43-9 E420	0.000005	mg/L	<0.000050	
alcium, total	7440-70-2 E420	0.05	mg/L	<0.050	
obalt, total	7440-48-4 E420	0.0001	mg/L	<0.00010	
opper, total	7440-50-8 E420	0.0005	mg/L	<0.00050	
ron, total	7439-89-6 E420	0.01	mg/L	<0.010	
ead, total	7439-92-1 E420	0.00005	mg/L	<0.000050	
thium, total	7439-93-2 E420	0.001	mg/L	<0.0010	
nagnesium, total	7439-95-4 E420	0.005	mg/L	<0.0050	
nanganese, total	7439-96-5 E420	0.0001	mg/L	<0.00010	
nolybdenum, total	7439-98-7 E420	0.00005	mg/L	<0.000050	
ickel, total	7440-02-0 E420	0.0005	mg/L	<0.00050	
ootassium, total	7440-09-7 E420	0.05	mg/L	<0.050	
selenium, total	7782-49-2 E420	0.00005	mg/L	<0.000050	
silicon, total	7440-21-3 E420	0.1	mg/L	<0.10	
silver, total	7440-22-4 E420	0.00001	mg/L	<0.00010	

 Page
 : 9 of 18

 Work Order
 : CG2212931

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

ALS

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Total Metals (QCLot: 662945) - co	ontinued				
sodium, total	7440-23-5 E420	0.05	mg/L	<0.050	
strontium, total	7440-24-6 E420	0.0002	mg/L	<0.00020	
sulfur, total	7704-34-9 E420	0.5	mg/L	<0.50	
thallium, total	7440-28-0 E420	0.00001	mg/L	<0.000010	
tin, total	7440-31-5 E420	0.0001	mg/L	<0.00010	
itanium, total	7440-32-6 E420	0.0003	mg/L	<0.00030	
uranium, total	7440-61-1 E420	0.00001	mg/L	<0.000010	
vanadium, total	7440-62-2 E420	0.0005	mg/L	<0.00050	
zinc, total	7440-66-6 E420	0.003	mg/L	<0.0030	
Dissolved Metals (QCLot: 661148)				
aluminum, dissolved	7429-90-5 E421	0.001	mg/L	<0.0010	
antimony, dissolved	7440-36-0 E421	0.0001	mg/L	<0.00010	
arsenic, dissolved	7440-38-2 E421	0.0001	mg/L	<0.00010	
parium, dissolved	7440-39-3 E421	0.0001	mg/L	<0.00010	
peryllium, dissolved	7440-41-7 E421	0.00002	mg/L	<0.000020	
pismuth, dissolved	7440-69-9 E421	0.00005	mg/L	<0.000050	
oron, dissolved	7440-42-8 E421	0.01	mg/L	<0.010	
admium, dissolved	7440-43-9 E421	0.000005	mg/L	<0.0000050	
alcium, dissolved	7440-70-2 E421	0.05	mg/L	<0.050	
obalt, dissolved	7440-48-4 E421	0.0001	mg/L	<0.00010	
copper, dissolved	7440-50-8 E421	0.0002	mg/L	<0.00020	
ron, dissolved	7439-89-6 E421	0.01	mg/L	<0.010	
ead, dissolved	7439-92-1 E421	0.00005	mg/L	<0.000050	
thium, dissolved	7439-93-2 E421	0.001	mg/L	<0.0010	
magnesium, dissolved	7439-95-4 E421	0.005	mg/L	<0.0050	
nanganese, dissolved	7439-96-5 E421	0.0001	mg/L	<0.00010	
molybdenum, dissolved	7439-98-7 E421	0.00005	mg/L	<0.000050	
nickel, dissolved	7440-02-0 E421	0.0005	mg/L	<0.00050	
ootassium, dissolved	7440-09-7 E421	0.05	mg/L	<0.050	
selenium, dissolved	7782-49-2 E421	0.00005	mg/L	<0.000050	
ilicon, dissolved	7440-21-3 E421	0.05	mg/L	<0.050	
silver, dissolved	7440-22-4 E421	0.00001	mg/L	<0.000010	
sodium, dissolved	7440-23-5 E421	0.05	mg/L	<0.050	
strontium, dissolved	7440-24-6 E421	0.0002	mg/L	<0.00020	
sulfur, dissolved	7704-34-9 E421	0.5	mg/L	<0.50	
thallium, dissolved	7440-28-0 E421	0.00001	mg/L	<0.00010	

 Page
 : 10 of 18

 Work Order
 : CG2212931

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Water

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Dissolved Metals (QCLot: 661148) - continue	d				
tin, dissolved	7440-31-5 E421	0.0001	mg/L	<0.00010	
titanium, dissolved	7440-32-6 E421	0.0003	mg/L	<0.00030	
uranium, dissolved	7440-61-1 E421	0.00001	mg/L	<0.000010	
vanadium, dissolved	7440-62-2 E421	0.0005	mg/L	<0.00050	
zinc, dissolved	7440-66-6 E421	0.001	mg/L	<0.0010	
Dissolved Metals (QCLot: 661149)					
chromium, dissolved	7440-47-3 E421.Cr-L	0.0001	mg/L	<0.00010	
Dissolved Metals (QCLot: 662251)					
mercury, dissolved	7439-97-6 E509	0.000005	mg/L	<0.000050	

 Page
 : 11 of 18

 Work Order
 : CG2212931

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water				Laboratory Control Sample (LCS) Report							
				Spike	Recovery (%)	Recovery	Limits (%)				
Analyte CAS I	lumber Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier			
Physical Tests (QCLot: 661110)											
turbidity	E121	0.1	NTU	200 NTU	109	85.0	115				
Physical Tests (QCLot: 661276)											
solids, total dissolved [TDS]	E162	10	mg/L	1000 mg/L	99.0	85.0	115				
Physical Tests (QCLot: 661277)											
solids, total suspended [TSS]	E160-L	1	mg/L	150 mg/L	94.6	85.0	115				
Physical Tests (QCLot: 661926)											
solids, total suspended [TSS]	E160-L	1	mg/L	150 mg/L	101	85.0	115				
Physical Tests (QCLot: 661931)											
solids, total dissolved [TDS]	E162	10	mg/L	1000 mg/L	95.1	85.0	115				
Physical Tests (QCLot: 662100)											
acidity (as CaCO3)	E283	2	mg/L	50 mg/L	106	85.0	115				
Physical Tests (QCLot: 662106)											
conductivity	E100	1	μS/cm	146.9 μS/cm	95.9	90.0	110				
Physical Tests (QCLot: 662107)											
pH	E108		pH units	7 pH units	101	98.6	101				
Physical Tests (QCLot: 662108)											
alkalinity, total (as CaCO3)	E290	1	mg/L	500 mg/L	105	85.0	115				
Physical Tests (QCLot: 662920)											
oxidation-reduction potential [ORP]	E125		mV	220 mV	102	95.4	104				
Anions and Nutrients (QCLot: 660985)				_							
phosphate, ortho-, dissolved (as P)	65-44-2 E378-U	0.001	mg/L	0.03 mg/L	102	80.0	120				
Anions and Nutrients (QCLot: 661065)											
fluoride 169	84-48-8 E235.F	0.02	mg/L	1 mg/L	101	90.0	110				
Anions and Nutrients (QCLot: 661066)											
bromide 249	59-67-9 E235.Br-L	0.05	mg/L	0.5 mg/L	98.3	85.0	115				
Anions and Nutrients (QCLot: 661067)								ı			
chloride 168	87-00-6 E235.CI-L	0.1	mg/L	100 mg/L	99.7	90.0	110				
Anions and Nutrients (QCLot: 661068)											
nitrate (as N) 147	97-55-8 E235.NO3-L	0.005	mg/L	2.5 mg/L	100	90.0	110				
Anions and Nutrients (QCLot: 661069)											
nitrite (as N) 147	97-65-0 E235.NO2-L	0.001	mg/L	0.5 mg/L	95.5	90.0	110				
Anions and Nutrients (QCLot: 661070)											

 Page
 : 12 of 18

 Work Order
 : CG2212931

 Client
 : Teck Coal Limited

Sub-Matrix: Water						Laboratory Cor	trol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number Meth	hod	LOR	Unit	Concentration	LCS	Low	High	Qualific
Anions and Nutrients (QCLot: 661070)	- continued								
sulfate (as SO4)	14808-79-8 E235	5.SO4	0.3	mg/L	100 mg/L	102	90.0	110	
Anions and Nutrients (QCLot: 661142)									
ammonia, total (as N)	7664-41-7 E298	8	0.005	mg/L	0.2 mg/L	99.0	85.0	115	
Anions and Nutrients (QCLot: 661206)									
Kjeldahl nitrogen, total [TKN]	E318	8	0.05	mg/L	4 mg/L	104	75.0	125	
Anions and Nutrients (QCLot: 661974)									
phosphorus, total	7723-14-0 E372	2-U	0.002	mg/L	0.03 mg/L	91.3	80.0	120	
Organic / Inorganic Carbon (QCLot: 66	0961)								
carbon, dissolved organic [DOC]	E358	8-L	0.5	mg/L	8.57 mg/L	102	80.0	120	
Organic / Inorganic Carbon (QCLot: 66	0962)								
carbon, total organic [TOC]	E355	5-L	0.5	mg/L	8.57 mg/L	104	80.0	120	
Total Metals (QCLot: 662245)									
mercury, total	7439-97-6 E508	8	0.000005	mg/L	0.0001 mg/L	103	80.0	120	
Total Metals (QCLot: 662944)									
chromium, total	7440-47-3 E420	0.Cr-L	0.0001	mg/L	0.25 mg/L	96.3	80.0	120	
Total Metals (QCLot: 662945)									
aluminum, total	7429-90-5 E420	0	0.003	mg/L	2 mg/L	101	80.0	120	
antimony, total	7440-36-0 E420	0	0.0001	mg/L	1 mg/L	101	80.0	120	
arsenic, total	7440-38-2 E420	0	0.0001	mg/L	1 mg/L	97.5	80.0	120	
barium, total	7440-39-3 E420	0	0.0001	mg/L	0.25 mg/L	98.1	80.0	120	
beryllium, total	7440-41-7 E420	0	0.00002	mg/L	0.1 mg/L	102	80.0	120	
bismuth, total	7440-69-9 E420	0	0.00005	mg/L	1 mg/L	95.5	80.0	120	
boron, total	7440-42-8 E420	0	0.01	mg/L	1 mg/L	96.9	80.0	120	
cadmium, total	7440-43-9 E420	0	0.000005	mg/L	0.1 mg/L	95.4	80.0	120	
calcium, total	7440-70-2 E420	0	0.05	mg/L	50 mg/L	95.9	80.0	120	
cobalt, total	7440-48-4 E420	0	0.0001	mg/L	0.25 mg/L	96.2	80.0	120	
copper, total	7440-50-8 E420	0	0.0005	mg/L	0.25 mg/L	94.6	80.0	120	
iron, total	7439-89-6 E420	0	0.01	mg/L	1 mg/L	104	80.0	120	
ead, total	7439-92-1 E420	0	0.00005	mg/L	0.5 mg/L	94.8	80.0	120	
ithium, total	7439-93-2 E420	0	0.001	mg/L	0.25 mg/L	104	80.0	120	
magnesium, total	7439-95-4 E420	0	0.005	mg/L	50 mg/L	97.8	80.0	120	
manganese, total	7439-96-5 E420	0	0.0001	mg/L	0.25 mg/L	97.9	80.0	120	
molybdenum, total	7439-98-7 E420	0	0.00005	mg/L	0.25 mg/L	98.4	80.0	120	
nickel, total	7440-02-0 E420	0	0.0005	mg/L	0.5 mg/L	95.5	80.0	120	
potassium, total	7440-09-7 E420	0	0.05	mg/L	50 mg/L	100	80.0	120	

 Page
 : 13 of 18

 Work Order
 : CG2212931

 Client
 : Teck Coal Limited

Sub-Matrix: Water		Laboratory Co	ontrol Sample (LCS)	Report	
	Spike	Recovery (%)	Recovery	Limits (%)	
Analyte CAS Number Method LOR Unit	Concentration	LCS	Low	High	Qualifier
Total Metals (QCLot: 662945) - continued					
selenium, total 7782-49-2 E420 0.00005 mg/L	1 mg/L	92.3	80.0	120	
silicon, total 7440-21-3 E420 0.1 mg/L	10 mg/L	93.0	60.0	140	
silver, total 7440-22-4 E420 0.00001 mg/L	0.1 mg/L	94.5	80.0	120	
sodium, total 7440-23-5 E420 0.05 mg/L	50 mg/L	101	80.0	120	
strontium, total 7440-24-6 E420 0.0002 mg/L	0.25 mg/L	98.6	80.0	120	
sulfur, total 7704-34-9 E420 0.5 mg/L	50 mg/L	104	80.0	120	
thallium, total 7440-28-0 E420 0.00001 mg/L	1 mg/L	93.4	80.0	120	
tin, total 7440-31-5 E420 0.0001 mg/L	0.5 mg/L	95.7	80.0	120	
titanium, total 7440-32-6 E420 0.0003 mg/L	0.25 mg/L	99.2	80.0	120	
uranium, total 7440-61-1 E420 0.00001 mg/L	0.005 mg/L	95.3	80.0	120	
vanadium, total 7440-62-2 E420 0.0005 mg/L	0.5 mg/L	98.0	80.0	120	
zinc, total 7440-66-6 E420 0.003 mg/L	0.5 mg/L	92.4	80.0	120	
Dissolved Metals (QCLot: 661148)					I
aluminum, dissolved 7429-90-5 E421 0.001 mg/L	2 mg/L	104	80.0	120	
antimony, dissolved 7440-36-0 E421 0.0001 mg/L	1 mg/L	89.4	80.0	120	
arsenic, dissolved 7440-38-2 E421 0.0001 mg/L	1 mg/L	98.6	80.0	120	
barium, dissolved 7440-39-3 E421 0.0001 mg/L	0.25 mg/L	101	80.0	120	
beryllium, dissolved 7440-41-7 E421 0.00002 mg/L	0.1 mg/L	90.9	80.0	120	
bismuth, dissolved 7440-69-9 E421 0.00005 mg/L	1 mg/L	85.8	80.0	120	
boron, dissolved 7440-42-8 E421 0.01 mg/L	1 mg/L	88.5	80.0	120	
cadmium, dissolved 7440-43-9 E421 0.000005 mg/L	0.1 mg/L	97.5	80.0	120	
calcium, dissolved 7440-70-2 E421 0.05 mg/L	50 mg/L	87.2	80.0	120	
cobalt, dissolved 7440-48-4 E421 0.0001 mg/L	0.25 mg/L	97.3	80.0	120	
copper, dissolved 7440-50-8 E421 0.0002 mg/L	0.25 mg/L	96.8	80.0	120	
iron, dissolved 7439-89-6 E421 0.01 mg/L	1 mg/L	99.7	80.0	120	
lead, dissolved 7439-92-1 E421 0.00005 mg/L	0.5 mg/L	88.0	80.0	120	
lithium, dissolved 7439-93-2 E421 0.001 mg/L	0.25 mg/L	93.3	80.0	120	
magnesium, dissolved 7439-95-4 E421 0.005 mg/L	50 mg/L	106	80.0	120	
manganese, dissolved 7439-96-5 E421 0.0001 mg/L	0.25 mg/L	102	80.0	120	
molybdenum, dissolved 7439-98-7 E421 0.00005 mg/L	0.25 mg/L	89.0	80.0	120	
nickel, dissolved 7440-02-0 E421 0.0005 mg/L	0.5 mg/L	97.4	80.0	120	
potassium, dissolved 7440-09-7 E421 0.05 mg/L	50 mg/L	102	80.0	120	
selenium, dissolved 7782-49-2 E421 0.00005 mg/L	1 mg/L	96.9	80.0	120	
silicon, dissolved 7440-21-3 E421 0.05 mg/L	10 mg/L	106	60.0	140	
silver, dissolved 7440-22-4 E421 0.00001 mg/L	0.1 mg/L	85.2	80.0	120	
sodium, dissolved 7440-23-5 E421 0.05 mg/L	50 mg/L	106	80.0	120	
strontium, dissolved 7440-24-6 E421 0.0002 mg/L	0.25 mg/L	92.1	80.0	120	

 Page
 : 14 of 18

 Work Order
 : CG2212931

 Client
 : Teck Coal Limited

Sub-Matrix: Water						Laboratory Co	ntrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Dissolved Metals (QCLot: 661148) - co	ontinued								
sulfur, dissolved	7704-34-9	E421	0.5	mg/L	50 mg/L	94.0	80.0	120	
thallium, dissolved	7440-28-0	E421	0.00001	mg/L	1 mg/L	87.2	80.0	120	
tin, dissolved	7440-31-5	E421	0.0001	mg/L	0.5 mg/L	88.0	80.0	120	
titanium, dissolved	7440-32-6	E421	0.0003	mg/L	0.25 mg/L	98.6	80.0	120	
uranium, dissolved	7440-61-1	E421	0.00001	mg/L	0.005 mg/L	80.4	80.0	120	
vanadium, dissolved	7440-62-2	E421	0.0005	mg/L	0.5 mg/L	101	80.0	120	
zinc, dissolved	7440-66-6	E421	0.001	mg/L	0.5 mg/L	95.2	80.0	120	
Dissolved Metals (QCLot: 661149)									
chromium, dissolved	7440-47-3	E421.Cr-L	0.0001	mg/L	0.25 mg/L	98.9	80.0	120	
mercury, dissolved	7439-97-6	E509	0.000005	mg/L	0.0001 mg/L	91.5	80.0	120	

 Page
 : 15 of 18

 Work Order
 : CG2212931

 Client
 : Teck Coal Lie

Client : Teck Coal Limited
Project : REGIONAL EFFECTS PROGRAM

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

	• •		•							
Sub-Matrix: Water							Matrix Spik	e (MS) Report		
					Spi	ike	Recovery (%)	Recovery	Limits (%)	
Laboratory sample D	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie
	ients (QCLot: 660985)									
CG2212931-002	RG_AGCK_WS_LAEMP_C MO_2022-09_N	phosphate, ortho-, dissolved (as P)	14265-44-2	E378-U	0.0511 mg/L	0.05 mg/L	102	70.0	130	
Anions and Nutr	ients (QCLot: 661065)									
CG2212931-005	RG_RG_TRIP_WS_LAEMP _CMO_2022-09_N	fluoride	16984-48-8	E235.F	1.00 mg/L	1 mg/L	100	75.0	125	
Anions and Nutr	ients (QCLot: 661066)									
CG2212931-005	RG_RG_TRIP_WS_LAEMP _CMO_2022-09_N	bromide	24959-67-9	E235.Br-L	0.486 mg/L	0.5 mg/L	97.1	75.0	125	
Anions and Nutr	ients (QCLot: 661067)									
CG2212931-005	RG_RG_TRIP_WS_LAEMP _CMO_2022-09_N	chloride	16887-00-6	E235.CI-L	99.0 mg/L	100 mg/L	99.0	75.0	125	
Anions and Nutr	ients (QCLot: 661068)									
CG2212931-005	RG_RG_TRIP_WS_LAEMP _CMO_2022-09_N	nitrate (as N)	14797-55-8	E235.NO3-L	2.49 mg/L	2.5 mg/L	99.7	75.0	125	
Anions and Nutr	ients (QCLot: 661069)									
CG2212931-005	RG_RG_TRIP_WS_LAEMP _CMO_2022-09_N	nitrite (as N)	14797-65-0	E235.NO2-L	0.506 mg/L	0.5 mg/L	101	75.0	125	
Anions and Nutr	ients (QCLot: 661070)									
CG2212931-005	RG_RG_TRIP_WS_LAEMP _CMO_2022-09_N	sulfate (as SO4)	14808-79-8	E235.SO4	102 mg/L	100 mg/L	102	75.0	125	
Anions and Nutr	ients (QCLot: 661142)									
CG2212931-002	RG_AGCK_WS_LAEMP_C MO_2022-09_N	ammonia, total (as N)	7664-41-7	E298	0.0998 mg/L	0.1 mg/L	99.8	75.0	125	
nions and Nutr	ients (QCLot: 661206)									
CG2212931-002	RG_AGCK_WS_LAEMP_C MO_2022-09_N	Kjeldahl nitrogen, total [TKN]		E318	2.62 mg/L	2.5 mg/L	105	70.0	130	
Anions and Nutr	ients (QCLot: 661974)									
CG2212931-002	RG_AGCK_WS_LAEMP_C MO_2022-09_N	phosphorus, total	7723-14-0	E372-U	0.0457 mg/L	0.05 mg/L	91.4	70.0	130	
Organic / Inorga	nic Carbon (QCLot: 660	961)								
CG2212931-001	RG_MI25_WS_LAEMP_CM O_2022-09_N	carbon, dissolved organic [DOC]		E358-L	5.63 mg/L	5 mg/L	113	70.0	130	
Organic / Inorga	nic Carbon (QCLot: 660	962)								
CG2212931-001	RG_MI25_WS_LAEMP_CM O_2022-09_N	carbon, total organic [TOC]		E355-L	5.65 mg/L	5 mg/L	113	70.0	130	

 Page
 : 16 of 18

 Work Order
 : CG2212931

 Client
 : Teck Coal Limited

Sub-Matrix: Water							Matrix Spik	e (MS) Report		
					Spi	ike	Recovery (%)	Recovery	y Limits (%)	
Laboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Total Metals (QC	Lot: 662245)									
CG2212931-002	RG_AGCK_WS_LAEMP_C MO_2022-09_N	mercury, total	7439-97-6	E508	0.0000976 mg/L	0.0001 mg/L	97.6	70.0	130	
Total Metals (QC	Lot: 662944)									
CG2212931-001	RG_MI25_WS_LAEMP_CM O_2022-09_N	chromium, total	7440-47-3	E420.Cr-L	0.409 mg/L	0.4 mg/L	102	70.0	130	
Total Metals (QC	Lot: 662945)									
CG2212931-001	RG_MI25_WS_LAEMP_CM	aluminum, total	7429-90-5	E420	2.05 mg/L	2 mg/L	102	70.0	130	
	O_2022-09_N	antimony, total	7440-36-0	E420	0.209 mg/L	0.2 mg/L	104	70.0	130	
		arsenic, total	7440-38-2	E420	0.205 mg/L	0.2 mg/L	102	70.0	130	
		barium, total	7440-39-3	E420	0.208 mg/L	0.2 mg/L	104	70.0	130	
		beryllium, total	7440-41-7	E420	0.412 mg/L	0.4 mg/L	103	70.0	130	
		bismuth, total	7440-69-9	E420	0.103 mg/L	0.1 mg/L	103	70.0	130	
		boron, total	7440-42-8	E420	1.05 mg/L	1 mg/L	105	70.0	130	
		cadmium, total	7440-43-9	E420	0.0424 mg/L	0.04 mg/L	106	70.0	130	
		calcium, total	7440-70-2	E420	ND mg/L	40 mg/L	ND	70.0	130	
		cobalt, total	7440-48-4	E420	0.207 mg/L	0.2 mg/L	103	70.0	130	
		copper, total	7440-50-8	E420	0.205 mg/L	0.2 mg/L	102	70.0	130	
		iron, total	7439-89-6	E420	20.5 mg/L	20 mg/L	103	70.0	130	
		lead, total	7439-92-1	E420	0.204 mg/L	0.2 mg/L	102	70.0	130	
		lithium, total	7439-93-2	E420	1.02 mg/L	1 mg/L	102	70.0	130	
		magnesium, total	7439-95-4	E420	ND mg/L	10 mg/L	ND	70.0	130	
		manganese, total	7439-96-5	E420	0.209 mg/L	0.2 mg/L	104	70.0	130	
		molybdenum, total	7439-98-7	E420	0.208 mg/L	0.2 mg/L	104	70.0	130	
		nickel, total	7440-02-0	E420	0.409 mg/L	0.4 mg/L	102	70.0	130	
		potassium, total	7440-09-7	E420	40.9 mg/L	40 mg/L	102	70.0	130	
		selenium, total	7782-49-2	E420	0.392 mg/L	0.4 mg/L	98.0	70.0	130	
		silicon, total	7440-21-3	E420	86.9 mg/L	100 mg/L	86.9	70.0	130	
		silver, total	7440-22-4	E420	0.0456 mg/L	0.04 mg/L	114	70.0	130	
		sodium, total	7440-23-5	E420	21.3 mg/L	20 mg/L	107	70.0	130	
		strontium, total	7440-24-6	E420	0.216 mg/L	0.2 mg/L	108	70.0	130	
		sulfur, total	7704-34-9	E420	173 mg/L	200 mg/L	86.7	70.0	130	
		thallium, total	7440-28-0	E420	0.0389 mg/L	0.04 mg/L	97.3	70.0	130	
		tin, total	7440-31-5	E420	0.206 mg/L	0.2 mg/L	103	70.0	130	
		titanium, total	7440-32-6	E420	0.416 mg/L	0.4 mg/L	104	70.0	130	
		uranium, total	7440-61-1	E420	0.0400 mg/L	0.04 mg/L	100	70.0	130	
		vanadium, total	7440-62-2	E420	1.02 mg/L	1 mg/L	102	70.0	130	
		zinc, total	7440-66-6	E420	4.02 mg/L	4 mg/L	100	70.0	130	

 Page
 : 17 of 18

 Work Order
 : CG2212931

 Client
 : Teck Coal Limited

ub-Matrix: Water							Matrix Spike	e (MS) Report		
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
aboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifie
	(QCLot: 661148)									
G2212931-002	RG_AGCK_WS_LAEMP_C	aluminum, dissolved	7429-90-5	E421	1.93 mg/L	2 mg/L	96.4	70.0	130	
	MO_2022-09_N	antimony, dissolved	7440-36-0	E421	0.168 mg/L	0.2 mg/L	83.8	70.0	130	
		arsenic, dissolved	7440-38-2	E421	0.191 mg/L	0.2 mg/L	95.4	70.0	130	
		barium, dissolved	7440-39-3	E421	0.193 mg/L	0.2 mg/L	96.6	70.0	130	
		beryllium, dissolved	7440-41-7	E421	0.356 mg/L	0.4 mg/L	88.9	70.0	130	
		bismuth, dissolved	7440-69-9	E421	0.0816 mg/L	0.1 mg/L	81.6	70.0	130	
		boron, dissolved	7440-42-8	E421	0.901 mg/L	1 mg/L	90.1	70.0	130	
		cadmium, dissolved	7440-43-9	E421	0.0387 mg/L	0.04 mg/L	96.8	70.0	130	
		calcium, dissolved	7440-70-2	E421	ND mg/L	40 mg/L	ND	70.0	130	
		cobalt, dissolved	7440-48-4	E421	0.193 mg/L	0.2 mg/L	96.5	70.0	130	
		copper, dissolved	7440-50-8	E421	0.194 mg/L	0.2 mg/L	97.0	70.0	130	
		iron, dissolved	7439-89-6	E421	19.1 mg/L	20 mg/L	95.7	70.0	130	
		lead, dissolved	7439-92-1	E421	0.183 mg/L	0.2 mg/L	91.5	70.0	130	
		lithium, dissolved	7439-93-2	E421	0.898 mg/L	1 mg/L	89.8	70.0	130	
		magnesium, dissolved	7439-95-4	E421	8.06 mg/L	10 mg/L	80.6	70.0	130	
		manganese, dissolved	7439-96-5	E421	0.195 mg/L	0.2 mg/L	97.4	70.0	130	
		molybdenum, dissolved	7439-98-7	E421	0.181 mg/L	0.2 mg/L	90.5	70.0	130	
		nickel, dissolved	7440-02-0	E421	0.388 mg/L	0.4 mg/L	97.0	70.0	130	
		potassium, dissolved	7440-09-7	E421	38.6 mg/L	40 mg/L	96.5	70.0	130	
		selenium, dissolved	7782-49-2	E421	0.381 mg/L	0.4 mg/L	95.3	70.0	130	
		silicon, dissolved	7440-21-3	E421	102 mg/L	100 mg/L	102	70.0	130	
		silver, dissolved	7440-22-4	E421	0.0345 mg/L	0.04 mg/L	86.3	70.0	130	
		sodium, dissolved	7440-23-5	E421	20.5 mg/L	20 mg/L	102	70.0	130	
		strontium, dissolved	7440-24-6	E421	0.170 mg/L	0.2 mg/L	85.0	70.0	130	
		sulfur, dissolved	7704-34-9	E421	176 mg/L	200 mg/L	87.8	70.0	130	
		thallium, dissolved	7440-28-0	E421	0.0322 mg/L	0.04 mg/L	80.5	70.0	130	
		tin, dissolved	7440-31-5	E421	0.164 mg/L	0.2 mg/L	82.2	70.0	130	
		titanium, dissolved	7440-32-6	E421	0.376 mg/L	0.4 mg/L	94.1	70.0	130	
		uranium, dissolved	7440-61-1	E421	0.0322 mg/L	0.04 mg/L	80.6	70.0	130	
		vanadium, dissolved	7440-62-2	E421	0.973 mg/L	1 mg/L	97.3	70.0	130	
		zinc, dissolved	7440-66-6	E421	3.76 mg/L	4 mg/L	94.0	70.0	130	
	(QCLot: 661149)									
G2212931-002	RG_AGCK_WS_LAEMP_C MO 2022-09 N	chromium, dissolved	7440-47-3	E421.Cr-L	0.384 mg/L	0.4 mg/L	95.9	70.0	130	
issolved Metals	(QCLot: 662251)									
G2212715-002	Anonymous	mercury, dissolved	7439-97-6	E509	0.000104 mg/L	0.0001 mg/L	104	70.0	130	

 Page
 : 18 of 18

 Work Order
 : CG2212931

 Client
 : Teck Coal Limited

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : **CG2212931** Page : 1 of 23

 Client
 : Teck Coal Limited
 Laboratory
 : Calgary - Environmental

 Contact
 : Cybele Heddle
 Account Manager
 : Lyudmyla Shvets

Address : 421 Pine Ave Address : 2559 29th Street NE

Sparwood BC Canada Calgary, Alberta Canada T1Y 7B5

 Telephone
 : -- Telephone
 : +1 403 407 1800

 Project
 : REGIONAL EFFECTS PROGRAM
 Date Samples Received
 : 17-Sep-2022 11:38

PO : VPO00816101 | Issue Date : 26-Sep-2022 18:30

C-O-C number : REP_LAEMP_CMm_2022-09_ALS

Sampler : Jennifer Ings

Site : ----

Quote number : Teck Coal Master Quote

No. of samples received : 5
No. of samples analysed : 5

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers: Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers: Frequency of Quality Control Samples

• No Quality Control Sample Frequency Outliers occur.

Page : 3 of 23 Work Order : CG2212931

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					Ev	/aluation: × =	Holding time exce	edance ; 🔻	= Within	Holding Time
Analyte Group	Method	Sampling Date	Ext	raction / Pro	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
RG_LE1_WS_LAEMP_CMO_2022-09_N	E298	16-Sep-2022	22-Sep-2022				22-Sep-2022	28 days	6 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
RG_RG_FBLANK_WS_LAEMP_CMO_2022-09_N	E298	16-Sep-2022	22-Sep-2022				22-Sep-2022	28 days	6 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)										
RG_RG_TRIP_WS_LAEMP_CMO_2022-09_N	E298	16-Sep-2022	22-Sep-2022				22-Sep-2022	28 days	6 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)	F000	45.0 0000								,
RG_AGCK_WS_LAEMP_CMO_2022-09_N	E298	15-Sep-2022	22-Sep-2022				22-Sep-2022	28 days	7 days	✓
Anions and Nutrients : Ammonia by Fluorescence										
Amber glass total (sulfuric acid)	F200	45 0 2000	00.0 0000				00.0 0000	00 4	7 -1	√
RG_MI25_WS_LAEMP_CMO_2022-09_N	E298	15-Sep-2022	22-Sep-2022				22-Sep-2022	28 days	7 days	∀
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE	E235.Br-L	16-Sep-2022	00.0 0000				00.0 0000	00 4	0 4	√
RG_LE1_WS_LAEMP_CMO_2022-09_N	EZ33.DI-L	16-Sep-2022	22-Sep-2022				22-Sep-2022	28 days	6 days	•
Anions and Nutrients : Bromide in Water by IC (Low Level)										
HDPE	E235.Br-L	16-Sep-2022	22-Sep-2022				22-Sep-2022	28 days	6 days	✓
RG_RG_FBLANK_WS_LAEMP_CMO_2022-09_N	EZ33.DI-L	10-3ep-2022	22-3ep-2022				22-3ep-2022	20 uays	o uays	•

Page : 4 of 23 Work Order : CG2212931

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: Water Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Analyte Group Method Sampling Date Extraction / Preparation Analysis Container / Client Sample ID(s) Preparation Holding Times Eval Analysis Date Holding Times Eval Actual Rec Actual Date Anions and Nutrients : Bromide in Water by IC (Low Level) HDPE RG_RG_TRIP_WS_LAEMP_CMO_2022-09_N E235.Br-L 16-Sep-2022 22-Sep-2022 22-Sep-2022 28 days 6 days ✓ Anions and Nutrients : Bromide in Water by IC (Low Level) HDPE RG_AGCK_WS_LAEMP_CMO_2022-09_N E235.Br-L 15-Sep-2022 22-Sep-2022 22-Sep-2022 28 days 7 days ✓ ----Anions and Nutrients : Bromide in Water by IC (Low Level) **HDPE** E235.Br-L 15-Sep-2022 22-Sep-2022 22-Sep-2022 28 days 7 days ✓ RG MI25 WS LAEMP CMO 2022-09 N Anions and Nutrients : Chloride in Water by IC (Low Level) HDPE E235.CI-L RG LE1 WS LAEMP CMO 2022-09 N 16-Sep-2022 22-Sep-2022 22-Sep-2022 28 days 6 days Anions and Nutrients : Chloride in Water by IC (Low Level) HDPE E235.CI-L 16-Sep-2022 22-Sep-2022 22-Sep-2022 ✓ RG RG FBLANK WS LAEMP CMO 2022-09 N 28 days 6 days Anions and Nutrients : Chloride in Water by IC (Low Level) HDPE E235.CI-L 22-Sep-2022 22-Sep-2022 ✓ RG_RG_TRIP_WS_LAEMP_CMO_2022-09_N 16-Sep-2022 28 days 6 davs Anions and Nutrients : Chloride in Water by IC (Low Level) HDPE RG AGCK WS LAEMP CMO 2022-09 N E235.CI-L 15-Sep-2022 22-Sep-2022 22-Sep-2022 28 days 7 days ✓ Anions and Nutrients : Chloride in Water by IC (Low Level) HDPE RG_MI25_WS_LAEMP_CMO_2022-09_N E235.CI-L 15-Sep-2022 22-Sep-2022 22-Sep-2022 28 days 7 days ✓ Anions and Nutrients: Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 **HDPE** RG_LE1_WS_LAEMP_CMO_2022-09_N E378-U 16-Sep-2022 22-Sep-2022 22-Sep-2022 3 days 6 days × EHT

Page : 5 of 23 Work Order : CG2212931

Client : Teck Coal Limited

Matrix: Water Analyte Group	Method	Sampling Date	Ext	raction / Pr			Holding time exce	Analys		Jidinig I
Container / Client Sample ID(s)	Wethou	Camping Bate	Preparation Date		g Times Actual	Eval	Analysis Date		Times Actual	Eval
nions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra 1	Frace Level 0.001									
HDPE RG_RG_FBLANK_WS_LAEMP_CMO_2022-09_N	E378-U	16-Sep-2022	22-Sep-2022				22-Sep-2022	3 days	6 days	* EHT
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra T	Frace Level 0.001									
HDPE RG_RG_TRIP_WS_LAEMP_CMO_2022-09_N	E378-U	16-Sep-2022	22-Sep-2022				22-Sep-2022	3 days	6 days	* EHT
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra T	Frace Level 0.001									
HDPE RG_AGCK_WS_LAEMP_CMO_2022-09_N	E378-U	15-Sep-2022	22-Sep-2022				22-Sep-2022	3 days	7 days	* EHT
Anions and Nutrients : Dissolved Orthophosphate by Colourimetry (Ultra 1	Frace Level 0.001									
HDPE RG_MI25_WS_LAEMP_CMO_2022-09_N	E378-U	15-Sep-2022	22-Sep-2022				22-Sep-2022	3 days	7 days	* EHT
Anions and Nutrients : Fluoride in Water by IC										
HDPE RG_LE1_WS_LAEMP_CMO_2022-09_N	E235.F	16-Sep-2022	22-Sep-2022				22-Sep-2022	28 days	6 days	✓
Anions and Nutrients : Fluoride in Water by IC										
HDPE RG_RG_FBLANK_WS_LAEMP_CMO_2022-09_N	E235.F	16-Sep-2022	22-Sep-2022				22-Sep-2022	28 days	6 days	✓
Anions and Nutrients : Fluoride in Water by IC										
HDPE RG_RG_TRIP_WS_LAEMP_CMO_2022-09_N	E235.F	16-Sep-2022	22-Sep-2022				22-Sep-2022	28 days	6 days	✓
Anions and Nutrients : Fluoride in Water by IC										
HDPE RG_AGCK_WS_LAEMP_CMO_2022-09_N	E235.F	15-Sep-2022	22-Sep-2022				22-Sep-2022	28 days	7 days	✓
nions and Nutrients : Fluoride in Water by IC										
HDPE RG_MI25_WS_LAEMP_CMO_2022-09_N	E235.F	15-Sep-2022	22-Sep-2022				22-Sep-2022	28 days	7 days	✓

 Page
 : 6 of 23

 Work Order
 : CG2212931

Client : Teck Coal Limited

maluta Crassa	Ad-th-	0	F	traction / Pr			Holding time exceedance; Analysis			
Inalyte Group	Method	Sampling Date				E I	Analosis Data			F 1
Container / Client Sample ID(s)			Preparation Date	Rec	g Times Actual	Eval	Analysis Date	Rec	g Times Actual	Eval
nions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE RG_LE1_WS_LAEMP_CMO_2022-09_N	E235.NO3-L	16-Sep-2022	22-Sep-2022	3 days	6 days	* EHT	22-Sep-2022	3 days	0 days	✓
nions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE RG_RG_FBLANK_WS_LAEMP_CMO_2022-09_N	E235.NO3-L	16-Sep-2022	22-Sep-2022	3 days	6 days	# EHT	22-Sep-2022	3 days	0 days	✓
nions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE RG_RG_TRIP_WS_LAEMP_CMO_2022-09_N	E235.NO3-L	16-Sep-2022	22-Sep-2022	3 days	6 days	# EHT	26-Sep-2022	3 days	4 days	* EHT
nions and Nutrients : Nitrate in Water by IC (Low Level)								I		
HDPE RG_AGCK_WS_LAEMP_CMO_2022-09_N	E235.NO3-L	15-Sep-2022	22-Sep-2022	3 days	7 days	x EHT	22-Sep-2022	3 days	0 days	1
nions and Nutrients : Nitrate in Water by IC (Low Level)										
HDPE RG_MI25_WS_LAEMP_CMO_2022-09_N	E235.NO3-L	15-Sep-2022	22-Sep-2022	3 days	7 days	* EHT	22-Sep-2022	3 days	0 days	✓
nions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE RG_LE1_WS_LAEMP_CMO_2022-09_N	E235.NO2-L	16-Sep-2022	22-Sep-2022				22-Sep-2022	3 days	6 days	x EHT
nions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE RG_RG_FBLANK_WS_LAEMP_CMO_2022-09_N	E235.NO2-L	16-Sep-2022	22-Sep-2022				22-Sep-2022	3 days	6 days	x EHT
nions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE RG_RG_TRIP_WS_LAEMP_CMO_2022-09_N	E235.NO2-L	16-Sep-2022	22-Sep-2022				22-Sep-2022	3 days	6 days	* EHT
nions and Nutrients : Nitrite in Water by IC (Low Level)										
HDPE RG_AGCK_WS_LAEMP_CMO_2022-09_N	E235.NO2-L	15-Sep-2022	22-Sep-2022				22-Sep-2022	3 days	7 days	* EHT

Page : 7 of 23 Work Order : CG2212931

Client : Teck Coal Limited

: REGIONAL EFFECTS PROGRAM Project

Matrix: Water Evaluation: **x** = Holding time exceedance ; ✓ = Within Holding Time Analyte Group Sampling Date Extraction / Preparation Analysis Method Container / Client Sample ID(s) **Holding Times** Preparation **Holding Times** Eval Analysis Date Eval Rec Actual Rec Actual

			Date	Rec	Actual		Rec	Actual	l
Anions and Nutrients : Nitrite in Water by IC (Low Level)									
HDPE RG_MI25_WS_LAEMP_CMO_2022-09_N	E235.NO2-L	15-Sep-2022	22-Sep-2022			22-Sep-2022	3 days	7 days	* EHT
Anions and Nutrients : Sulfate in Water by IC									
HDPE RG_LE1_WS_LAEMP_CMO_2022-09_N	E235.SO4	16-Sep-2022	22-Sep-2022			22-Sep-2022	28 days	6 days	✓
Anions and Nutrients : Sulfate in Water by IC									
HDPE RG_RG_FBLANK_WS_LAEMP_CMO_2022-09_N	E235.SO4	16-Sep-2022	22-Sep-2022			22-Sep-2022	28 days	6 days	✓
Anions and Nutrients : Sulfate in Water by IC									
HDPE RG_RG_TRIP_WS_LAEMP_CMO_2022-09_N	E235.SO4	16-Sep-2022	22-Sep-2022			22-Sep-2022	28 days	6 days	✓
Anions and Nutrients : Sulfate in Water by IC									
HDPE RG_AGCK_WS_LAEMP_CMO_2022-09_N	E235.SO4	15-Sep-2022	22-Sep-2022			22-Sep-2022	28 days	7 days	✓
Anions and Nutrients : Sulfate in Water by IC					<u> </u>				
HDPE RG_MI25_WS_LAEMP_CMO_2022-09_N	E235.SO4	15-Sep-2022	22-Sep-2022			22-Sep-2022	28 days	7 days	✓
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)									
Amber glass total (sulfuric acid) RG_LE1_WS_LAEMP_CMO_2022-09_N	E318	16-Sep-2022	23-Sep-2022			23-Sep-2022	28 days	7 days	✓
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)							1		
Amber glass total (sulfuric acid) RG_RG_FBLANK_WS_LAEMP_CMO_2022-09_N	E318	16-Sep-2022	23-Sep-2022			23-Sep-2022	28 days	7 days	✓
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)									
Amber glass total (sulfuric acid) RG_RG_TRIP_WS_LAEMP_CMO_2022-09_N	E318	16-Sep-2022	23-Sep-2022			23-Sep-2022	28 days	7 days	✓
4									

 Page
 : 8 of 23

 Work Order
 : CG2212931

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: Water						raiuation. * -	Holding time exce	euance , •	– vvitriiri	Holding Tim
Analyte Group	Method	Sampling Date	Ext	traction / P	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation Date	Holdin Rec	g Times Actual	Eval	Analysis Date	Holding Rec	7 Times Actual	Eval
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid) RG_AGCK_WS_LAEMP_CMO_2022-09_N	E318	15-Sep-2022	23-Sep-2022				23-Sep-2022	28 days	8 days	✓
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid) RG_MI25_WS_LAEMP_CMO_2022-09_N	E318	15-Sep-2022	23-Sep-2022				23-Sep-2022	28 days	8 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)									1	
Amber glass total (sulfuric acid) RG_LE1_WS_LAEMP_CMO_2022-09_N	E372-U	16-Sep-2022	23-Sep-2022				24-Sep-2022	28 days	8 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid) RG_RG_FBLANK_WS_LAEMP_CMO_2022-09_N	E372-U	16-Sep-2022	23-Sep-2022				24-Sep-2022	28 days	8 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid) RG_RG_TRIP_WS_LAEMP_CMO_2022-09_N	E372-U	16-Sep-2022	23-Sep-2022				24-Sep-2022	28 days	8 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid) RG_AGCK_WS_LAEMP_CMO_2022-09_N	E372-U	15-Sep-2022	23-Sep-2022				24-Sep-2022	28 days	9 days	✓
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)										
Amber glass total (sulfuric acid) RG_MI25_WS_LAEMP_CMO_2022-09_N	E372-U	15-Sep-2022	23-Sep-2022				24-Sep-2022	28 days	9 days	✓
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)									1	
HDPE dissolved (nitric acid) RG_LE1_WS_LAEMP_CMO_2022-09_N	E421.Cr-L	16-Sep-2022	22-Sep-2022				23-Sep-2022	180 days	6 days	✓
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Level)										
HDPE dissolved (nitric acid) RG_RG_FBLANK_WS_LAEMP_CMO_2022-09_N	E421.Cr-L	16-Sep-2022	22-Sep-2022				23-Sep-2022	180 days	6 days	✓

Page : 9 of 23 Work Order : CG2212931

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: Water						aldation. • -	Holding time exce	cuarioc , .	- VVICIIII	riolaling riii
Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual		,	Rec	Actual	
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Leve	1)									
HDPE dissolved (nitric acid)										
RG_AGCK_WS_LAEMP_CMO_2022-09_N	E421.Cr-L	15-Sep-2022	22-Sep-2022				23-Sep-2022	180	7 days	✓
								days		
Dissolved Metals : Dissolved Chromium in Water by CRC ICPMS (Low Leve	1)									
HDPE dissolved (nitric acid)										
RG_MI25_WS_LAEMP_CMO_2022-09_N	E421.Cr-L	15-Sep-2022	22-Sep-2022				23-Sep-2022	180	7 days	✓
								days		
Dissolved Metals : Dissolved Mercury in Water by CVAAS									'	
Glass vial dissolved (hydrochloric acid)										
RG_LE1_WS_LAEMP_CMO_2022-09_N	E509	16-Sep-2022	24-Sep-2022				24-Sep-2022	28 days	8 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)										,
RG_RG_FBLANK_WS_LAEMP_CMO_2022-09_N	E509	16-Sep-2022	24-Sep-2022				24-Sep-2022	28 days	8 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS										
Glass vial dissolved (hydrochloric acid)	F500	45 0 0000	04.0 0000				04.0 0000	00.1	0.1	,
RG_AGCK_WS_LAEMP_CMO_2022-09_N	E509	15-Sep-2022	24-Sep-2022				24-Sep-2022	28 days	9 days	✓
Dissolved Metals : Dissolved Mercury in Water by CVAAS							I			
Glass vial dissolved (hydrochloric acid) RG_MI25_WS_LAEMP_CMO_2022-09_N	E509	15-Sep-2022	24-Sep-2022				24-Sep-2022	28 days	0 days	√
RG_MI25_WS_LAEMIP_CMO_2022-09_N	L309	13-3ер-2022	24-3 6 p-2022				24-3ep-2022	20 days	9 uays	•
Discribed Matels - Discribed Matels in Water by CDO IODMO										
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS HDPE dissolved (nitric acid)										
RG_LE1_WS_LAEMP_CMO_2022-09_N	E421	16-Sep-2022	22-Sep-2022				23-Sep-2022	180	6 days	1
110_EE1_110_E1EIIII _01II0_E022 00_11		10 33, 2022					20 000 2022	days	o uuyo	
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS								,-		
HDPE dissolved (nitric acid)										
RG RG FBLANK WS LAEMP CMO 2022-09 N	E421	16-Sep-2022	22-Sep-2022				23-Sep-2022	180	6 days	1
		, ,	,					days	'	
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS								,		
HDPE - dissolved (lab preserved)										
RG_RG_TRIP_WS_LAEMP_CMO_2022-09_N	E421	16-Sep-2022	22-Sep-2022				23-Sep-2022	180	6 days	✓
			•				·	days		

Page : 10 of 23 Work Order : CG2212931

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

viatrix; water						diddion.	Holding time exce	oddiioo ,	***************************************	riolanig riii
Analyte Group	Method	Sampling Date	Ex	traction / P	reparation		Analysis			
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)										
RG_AGCK_WS_LAEMP_CMO_2022-09_N	E421	15-Sep-2022	22-Sep-2022				23-Sep-2022	180	7 days	✓
								days		
Dissolved Metals : Dissolved Metals in Water by CRC ICPMS										
HDPE dissolved (nitric acid)										
RG_MI25_WS_LAEMP_CMO_2022-09_N	E421	15-Sep-2022	22-Sep-2022				23-Sep-2022	180	7 days	✓
								days		
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low l	Level)								1	
Amber glass dissolved (sulfuric acid)										
RG_LE1_WS_LAEMP_CMO_2022-09_N	E358-L	16-Sep-2022	22-Sep-2022				22-Sep-2022	28 days	6 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low l	Level)									
Amber glass dissolved (sulfuric acid)										
RG_RG_FBLANK_WS_LAEMP_CMO_2022-09_N	E358-L	16-Sep-2022	22-Sep-2022				22-Sep-2022	28 days	6 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low	Level)									
Amber glass dissolved (sulfuric acid)										
RG_AGCK_WS_LAEMP_CMO_2022-09_N	E358-L	15-Sep-2022	22-Sep-2022				22-Sep-2022	28 days	7 days	✓
Organic / Inorganic Carbon : Dissolved Organic Carbon by Combustion (Low	Level)									
Amber glass dissolved (sulfuric acid)										
RG_MI25_WS_LAEMP_CMO_2022-09_N	E358-L	15-Sep-2022	22-Sep-2022				22-Sep-2022	28 days	7 days	✓
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combւ	ıstion (Low Level)									
Amber glass total (sulfuric acid)										
RG_LE1_WS_LAEMP_CMO_2022-09_N	E355-L	16-Sep-2022	22-Sep-2022				22-Sep-2022	28 days	6 days	✓
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combւ	stion (Low Level)									
Amber glass total (sulfuric acid)										
RG_RG_FBLANK_WS_LAEMP_CMO_2022-09_N	E355-L	16-Sep-2022	22-Sep-2022				22-Sep-2022	28 days	6 days	✓
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Combւ	ıstion (Low Level)									
Amber glass total (sulfuric acid)										
RG_RG_TRIP_WS_LAEMP_CMO_2022-09_N	E355-L	16-Sep-2022	22-Sep-2022				22-Sep-2022	28 days	6 days	✓

Page : 11 of 23 Work Order : CG2212931

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: water						aldation. • -	noiding time exce	oudinoo ,	- vvicinii	Tiolaing Till
Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual		-	Rec	Actual	
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Con	bustion (Low Level)									
Amber glass total (sulfuric acid)										
RG_AGCK_WS_LAEMP_CMO_2022-09_N	E355-L	15-Sep-2022	22-Sep-2022				22-Sep-2022	28 days	7 days	✓
Organic / Inorganic Carbon : Total Organic Carbon (Non-Purgeable) by Con	bustion (Low Level)									
Amber glass total (sulfuric acid)										
RG_MI25_WS_LAEMP_CMO_2022-09_N	E355-L	15-Sep-2022	22-Sep-2022				22-Sep-2022	28 days	7 days	✓
Physical Tests : Acidity by Titration										
HDPE										
RG_LE1_WS_LAEMP_CMO_2022-09_N	E283	16-Sep-2022	23-Sep-2022				23-Sep-2022	14 days	7 days	✓
Physical Tests : Acidity by Titration										
HDPE										
RG_RG_FBLANK_WS_LAEMP_CMO_2022-09_N	E283	16-Sep-2022	23-Sep-2022				23-Sep-2022	14 days	7 days	✓
Physical Tests : Acidity by Titration										
HDPE										
RG_RG_TRIP_WS_LAEMP_CMO_2022-09_N	E283	16-Sep-2022	23-Sep-2022				23-Sep-2022	14 days	7 days	✓
Physical Tests : Acidity by Titration										
HDPE										
RG_AGCK_WS_LAEMP_CMO_2022-09_N	E283	15-Sep-2022	23-Sep-2022				23-Sep-2022	14 days	8 days	✓
Physical Tests : Acidity by Titration										
HDPE										
RG_MI25_WS_LAEMP_CMO_2022-09_N	E283	15-Sep-2022	23-Sep-2022				23-Sep-2022	14 days	8 days	✓
Physical Tests : Alkalinity Species by Titration										
HDPE										
RG_LE1_WS_LAEMP_CMO_2022-09_N	E290	16-Sep-2022	23-Sep-2022				23-Sep-2022	14 days	7 days	✓
Physical Tests : Alkalinity Species by Titration										
HDPE										
RG_RG_FBLANK_WS_LAEMP_CMO_2022-09_N	E290	16-Sep-2022	23-Sep-2022				23-Sep-2022	14 days	7 days	✓
·								_		

Page : 12 of 23 Work Order : CG2212931

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Wattix. Water						aldation. • –	riolaling time excel	suarroc , .	- *************************************	riolaling rii
Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : Alkalinity Species by Titration										
HDPE	5000	40.0 0000	00.00000				00.00000	44 1	7	
RG_RG_TRIP_WS_LAEMP_CMO_2022-09_N	E290	16-Sep-2022	23-Sep-2022				23-Sep-2022	14 days	7 days	✓
Physical Tests : Alkalinity Species by Titration										
HDPE										
RG_AGCK_WS_LAEMP_CMO_2022-09_N	E290	15-Sep-2022	23-Sep-2022				23-Sep-2022	14 days	8 days	✓
Physical Tests : Alkalinity Species by Titration										
HDPE										
RG_MI25_WS_LAEMP_CMO_2022-09_N	E290	15-Sep-2022	23-Sep-2022				23-Sep-2022	14 days	8 days	✓
Physical Tests : Conductivity in Water										
HDPE										
RG_LE1_WS_LAEMP_CMO_2022-09_N	E100	16-Sep-2022	23-Sep-2022				23-Sep-2022	28 days	7 days	✓
Physical Tests : Conductivity in Water										
HDPE										
RG_RG_FBLANK_WS_LAEMP_CMO_2022-09_N	E100	16-Sep-2022	23-Sep-2022				23-Sep-2022	28 days	7 days	✓
Physical Tests : Conductivity in Water										
HDPE										
RG_RG_TRIP_WS_LAEMP_CMO_2022-09_N	E100	16-Sep-2022	23-Sep-2022				23-Sep-2022	28 days	7 days	✓
Physical Tests : Conductivity in Water										
HDPE										
RG_AGCK_WS_LAEMP_CMO_2022-09_N	E100	15-Sep-2022	23-Sep-2022				23-Sep-2022	28 days	8 days	✓
Physical Tests : Conductivity in Water										
HDPE										
RG_MI25_WS_LAEMP_CMO_2022-09_N	E100	15-Sep-2022	23-Sep-2022				23-Sep-2022	28 days	8 days	✓
Physical Tests : ORP by Electrode										
HDPE	F405	40.0 0000					04.0 0000		400 h	4-
RG_LE1_WS_LAEMP_CMO_2022-09_N	E125	16-Sep-2022					24-Sep-2022	0.25 hrs	192 hrs	EHTR-FM
								1113		∟\ IV

Page : 13 of 23 Work Order : CG2212931

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: Water Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time Analyte Group Method Sampling Date Extraction / Preparation Analysis Container / Client Sample ID(s) Preparation **Holding Times** Eval Analysis Date Holding Times Eval Rec Actual Rec Actual Date Physical Tests : ORP by Electrode HDPE RG_RG_FBLANK_WS_LAEMP_CMO_2022-09_N E125 16-Sep-2022 24-Sep-2022 192 hrs æ 0.25 EHTR-FM hrs Physical Tests : ORP by Electrode HDPE RG_RG_TRIP_WS_LAEMP_CMO_2022-09_N E125 16-Sep-2022 24-Sep-2022 0.25 192 hrs æ ---hrs EHTR-FM Physical Tests: ORP by Electrode **HDPE** E125 15-Sep-2022 24-Sep-2022 RG AGCK WS LAEMP CMO 2022-09 N 211 hrs 0.25 hrs EHTR-FM Physical Tests: ORP by Electrode HDPE RG_MI25_WS_LAEMP_CMO_2022-09_N E125 15-Sep-2022 24-Sep-2022 0.25 215 hrs EHTR-FM hrs Physical Tests : pH by Meter HDPE E108 15-Sep-2022 23-Sep-2022 23-Sep-2022 RG_AGCK_WS_LAEMP_CMO_2022-09_N x 0.25 0.26 EHTR-FM hrs hrs Physical Tests : pH by Meter HDPE 23-Sep-2022 RG_LE1_WS_LAEMP_CMO_2022-09_N E108 16-Sep-2022 23-Sep-2022 0.25 0.26 EHTR-FM hrs hrs Physical Tests : pH by Meter **HDPE** E108 15-Sep-2022 23-Sep-2022 23-Sep-2022 æ RG_MI25_WS_LAEMP_CMO_2022-09_N 0.25 0.26 hrs hrs EHTR-FM Physical Tests : pH by Meter **HDPE** RG_RG_FBLANK_WS_LAEMP_CMO_2022-09_N E108 16-Sep-2022 23-Sep-2022 23-Sep-2022 0.25 0.26 hrs EHTR-FM hrs Physical Tests : pH by Meter HDPE RG RG TRIP WS LAEMP CMO 2022-09 N E108 16-Sep-2022 23-Sep-2022 23-Sep-2022 æ ----0.25 0.26 EHTR-FM hrs hrs

Page : 14 of 23 Work Order : CG2212931

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analyte Group	Method	Sampling Date	g Date Extraction / Preparation				Analysis			
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : TDS by Gravimetry										
HDPE RG_AGCK_WS_LAEMP_CMO_2022-09_N	E162	15-Sep-2022					22-Sep-2022	7 days	7 days	✓
Physical Tests : TDS by Gravimetry										
HDPE RG_LE1_WS_LAEMP_CMO_2022-09_N	E162	16-Sep-2022					23-Sep-2022	7 days	7 days	√
Physical Tests : TDS by Gravimetry										
HDPE RG_MI25_WS_LAEMP_CMO_2022-09_N	E162	15-Sep-2022					22-Sep-2022	7 days	7 days	✓
Physical Tests : TDS by Gravimetry								1	1	
HDPE RG_RG_FBLANK_WS_LAEMP_CMO_2022-09_N	E162	16-Sep-2022					23-Sep-2022	7 days	7 days	✓
Physical Tests : TDS by Gravimetry									1	
HDPE RG_RG_TRIP_WS_LAEMP_CMO_2022-09_N	E162	16-Sep-2022					23-Sep-2022	7 days	7 days	✓
Physical Tests : TSS by Gravimetry (Low Level)									1	
HDPE RG_AGCK_WS_LAEMP_CMO_2022-09_N	E160-L	15-Sep-2022					22-Sep-2022	7 days	7 days	✓
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE RG_LE1_WS_LAEMP_CMO_2022-09_N	E160-L	16-Sep-2022					23-Sep-2022	7 days	7 days	✓
Physical Tests : TSS by Gravimetry (Low Level)									1	
HDPE RG_MI25_WS_LAEMP_CMO_2022-09_N	E160-L	15-Sep-2022					22-Sep-2022	7 days	7 days	✓
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE RG_RG_FBLANK_WS_LAEMP_CMO_2022-09_N	E160-L	16-Sep-2022					23-Sep-2022	7 days	7 days	✓

Page : 15 of 23 Work Order : CG2212931

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

 Matrix: Water
 Evaluation: x = Holding time exceedance; √ = Within Holding Time

 Analyte Group
 Method
 Sampling Date
 Extraction / Preparation
 Analysis

Analyte Group	Method	Sampling Date			Analysis					
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : TSS by Gravimetry (Low Level)										
HDPE RG_RG_TRIP_WS_LAEMP_CMO_2022-09_N	E160-L	16-Sep-2022					23-Sep-2022	7 days	7 days	✓
Physical Tests : Turbidity by Nephelometry										
HDPE RG_LE1_WS_LAEMP_CMO_2022-09_N	E121	16-Sep-2022					22-Sep-2022	3 days	6 days	* EHT
Physical Tests : Turbidity by Nephelometry										
HDPE RG_RG_FBLANK_WS_LAEMP_CMO_2022-09_N	E121	16-Sep-2022					22-Sep-2022	3 days	6 days	* EHT
Physical Tests : Turbidity by Nephelometry										
HDPE RG_RG_TRIP_WS_LAEMP_CMO_2022-09_N	E121	16-Sep-2022					22-Sep-2022	3 days	6 days	* EHT
Physical Tests : Turbidity by Nephelometry										
HDPE RG_AGCK_WS_LAEMP_CMO_2022-09_N	E121	15-Sep-2022					22-Sep-2022	3 days	7 days	* EHT
Physical Tests : Turbidity by Nephelometry										
HDPE RG_MI25_WS_LAEMP_CMO_2022-09_N	E121	15-Sep-2022					22-Sep-2022	3 days	7 days	* EHT
Total Metals : Total Chromium in Water by CRC ICPMS (Low Level)										
HDPE total (nitric acid) RG_LE1_WS_LAEMP_CMO_2022-09_N	E420.Cr-L	16-Sep-2022	24-Sep-2022				24-Sep-2022	180 days	8 days	√
Total Metals : Total Chromium in Water by CRC ICPMS (Low Level)									'	
HDPE total (nitric acid) RG_RG_FBLANK_WS_LAEMP_CMO_2022-09_N	E420.Cr-L	16-Sep-2022	24-Sep-2022				24-Sep-2022	180 days	8 days	✓
Total Metals : Total Chromium in Water by CRC ICPMS (Low Level)										
HDPE total (nitric acid) RG_RG_TRIP_WS_LAEMP_CMO_2022-09_N	E420.Cr-L	16-Sep-2022	24-Sep-2022				24-Sep-2022	180 days	8 days	✓

Page : 16 of 23 Work Order : CG2212931

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: Water						raidation. • -	Holding time exce	cuarioc , .	- *************************************	riolaling rill
Analyte Group	Method	Sampling Date	Ext	traction / P	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Rec	Actual	
Total Metals : Total Chromium in Water by CRC ICPMS (Low Level)										
HDPE total (nitric acid)										
RG_AGCK_WS_LAEMP_CMO_2022-09_N	E420.Cr-L	15-Sep-2022	24-Sep-2022				24-Sep-2022	180	9 days	✓
								days		
Total Metals : Total Chromium in Water by CRC ICPMS (Low Level)										
HDPE total (nitric acid)										
RG_MI25_WS_LAEMP_CMO_2022-09_N	E420.Cr-L	15-Sep-2022	24-Sep-2022				24-Sep-2022	180	9 days	✓
								days		
Total Metals : Total Mercury in Water by CVAAS										
Glass vial total (hydrochloric acid)										
RG_LE1_WS_LAEMP_CMO_2022-09_N	E508	16-Sep-2022	24-Sep-2022				24-Sep-2022	28 days	8 days	✓
Total Metals : Total Mercury in Water by CVAAS										
Glass vial total (hydrochloric acid)										
RG_RG_FBLANK_WS_LAEMP_CMO_2022-09_N	E508	16-Sep-2022	24-Sep-2022				24-Sep-2022	28 days	8 days	✓
Total Metals : Total Mercury in Water by CVAAS										
Glass vial total (hydrochloric acid)										
RG_RG_TRIP_WS_LAEMP_CMO_2022-09_N	E508	16-Sep-2022	24-Sep-2022				24-Sep-2022	28 days	8 days	✓
Total Metals : Total Mercury in Water by CVAAS										
Glass vial total (hydrochloric acid)										,
RG_AGCK_WS_LAEMP_CMO_2022-09_N	E508	15-Sep-2022	24-Sep-2022				24-Sep-2022	28 days	9 days	✓
Total Metals : Total Mercury in Water by CVAAS										
Glass vial total (hydrochloric acid)	E500	45.0 0000	04.0				0.4.0	00.1		,
RG_MI25_WS_LAEMP_CMO_2022-09_N	E508	15-Sep-2022	24-Sep-2022				24-Sep-2022	28 days	9 days	✓
Total Metals : Total Metals in Water by CRC ICPMS							1			
HDPE total (nitric acid)	E420	16 Can 2022	24 Can 2022				24 Con 2002	400	0 days	√
RG_LE1_WS_LAEMP_CMO_2022-09_N	E420	16-Sep-2022	24-Sep-2022				24-Sep-2022	180	8 days	•
								days		
Total Metals : Total Metals in Water by CRC ICPMS							I			
HDPE total (nitric acid)	E420	16-Sep-2022	24-Sep-2022				24-Sep-2022	400	9 days	4
RG_RG_FBLANK_WS_LAEMP_CMO_2022-09_N	E42U	10-Sep-2022	24-3ep-2022				24-Sep-2022	180	8 days	•
		·						days	-	

Page : 17 of 23 Work Order : CG2212931

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: Water Evaluation: ▼ = Holding time exceedance; ✓ = Within Holding Time

										-
Analyte Group	Method	Sampling Date	Ext	traction / Pr	eparation		Analysis		sis	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid)										
RG_RG_TRIP_WS_LAEMP_CMO_2022-09_N	E420	16-Sep-2022	24-Sep-2022				24-Sep-2022	180	8 days	✓
								days		
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid)										
RG_AGCK_WS_LAEMP_CMO_2022-09_N	E420	15-Sep-2022	24-Sep-2022				24-Sep-2022	180	9 days	✓
								days		
Total Metals : Total Metals in Water by CRC ICPMS										
HDPE total (nitric acid)										
RG_MI25_WS_LAEMP_CMO_2022-09_N	E420	15-Sep-2022	24-Sep-2022				24-Sep-2022	180	9 days	✓
								days		

Legend & Qualifier Definitions

EHTR-FM: Exceeded ALS recommended hold time prior to sample receipt. Field Measurement recommended

EHT: Exceeded ALS recommended hold time prior to analysis.

Rec. HT: ALS recommended hold time (see units).

Page : 18 of 23 Work Order : CG2212931

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Quality Control Sample Type			Co	ount		Frequency (%))
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Acidity by Titration	E283	662100	1	20	5.0	5.0	1
Alkalinity Species by Titration	E290	662108	1	20	5.0	5.0	1
Ammonia by Fluorescence	E298	661142	1	12	8.3	5.0	1
Bromide in Water by IC (Low Level)	E235.Br-L	661066	1	19	5.2	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	661067	1	19	5.2	5.0	1
Conductivity in Water	E100	662106	1	20	5.0	5.0	✓
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	661149	1	4	25.0	5.0	1
Dissolved Mercury in Water by CVAAS	E509	662251	1	20	5.0	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	661148	1	10	10.0	5.0	1
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	660961	1	19	5.2	5.0	1
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	660985	1	20	5.0	5.0	✓
Fluoride in Water by IC	E235.F	661065	1	19	5.2	5.0	1
Nitrate in Water by IC (Low Level)	E235.NO3-L	661068	1	20	5.0	5.0	1
Nitrite in Water by IC (Low Level)	E235.NO2-L	661069	1	19	5.2	5.0	1
ORP by Electrode	E125	662920	1	14	7.1	5.0	1
pH by Meter	E108	662107	1	20	5.0	5.0	1
Sulfate in Water by IC	E235.SO4	661070	1	19	5.2	5.0	✓
TDS by Gravimetry	E162	661276	2	5	40.0	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	662944	1	15	6.6	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	661206	1	5	20.0	5.0	✓
Total Mercury in Water by CVAAS	E508	662245	1	14	7.1	5.0	✓
Total Metals in Water by CRC ICPMS	E420	662945	1	15	6.6	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	660962	1	20	5.0	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	661974	1	14	7.1	5.0	✓
Turbidity by Nephelometry	E121	661110	1	5	20.0	5.0	1
Laboratory Control Samples (LCS)							
Acidity by Titration	E283	662100	1	20	5.0	5.0	1
Alkalinity Species by Titration	E290	662108	1	20	5.0	5.0	<u> </u>
Ammonia by Fluorescence	E298	661142	1	12	8.3	5.0	<u>√</u>
Bromide in Water by IC (Low Level)	E235.Br-L	661066	1	19	5.2	5.0	√
Chloride in Water by IC (Low Level)	E235.CI-L	661067	1	19	5.2	5.0	<u>√</u>
Conductivity in Water	E100	662106	1	20	5.0	5.0	√
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	661149	1	4	25.0	5.0	√
Dissolved Mercury in Water by CVAAS	E509	662251	1	20	5.0	5.0	1
Dissolved Metals in Water by CRC ICPMS	E421	661148	1	10	10.0	5.0	√
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	660961	1	19	5.2	5.0	√
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	660985	1	20	5.0	5.0	1

Page : 19 of 23 Work Order : CG2212931

Client : Teck Coal Limited

Matrix: Water	Evalu	ation: × = QC frequency outside sp	ecification; ✓ = QC frequency within specification.
Quality Control Sample Type		Count	Frequency (%)

Quality Control Sample Type			Co	unt		Frequency (%))
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Control Samples (LCS) - Continued							
Fluoride in Water by IC	E235.F	661065	1	19	5.2	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	661068	1	20	5.0	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	661069	1	19	5.2	5.0	✓
ORP by Electrode	E125	662920	1	14	7.1	5.0	✓
pH by Meter	E108	662107	1	20	5.0	5.0	✓
Sulfate in Water by IC	E235.SO4	661070	1	19	5.2	5.0	✓
TDS by Gravimetry	E162	661276	2	5	40.0	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	662944	1	15	6.6	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	661206	1	5	20.0	5.0	✓
Total Mercury in Water by CVAAS	E508	662245	1	14	7.1	5.0	✓
Total Metals in Water by CRC ICPMS	E420	662945	1	15	6.6	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	660962	1	20	5.0	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	661974	1	14	7.1	5.0	✓
TSS by Gravimetry (Low Level)	E160-L	661277	2	5	40.0	5.0	✓
Turbidity by Nephelometry	E121	661110	1	5	20.0	5.0	✓
Method Blanks (MB)							
Acidity by Titration	E283	662100	1	20	5.0	5.0	✓
Alkalinity Species by Titration	E290	662108	1	20	5.0	5.0	✓
Ammonia by Fluorescence	E298	661142	1	12	8.3	5.0	✓
Bromide in Water by IC (Low Level)	E235.Br-L	661066	1	19	5.2	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	661067	1	19	5.2	5.0	✓
Conductivity in Water	E100	662106	1	20	5.0	5.0	✓
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	661149	1	4	25.0	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	662251	1	20	5.0	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	661148	1	10	10.0	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	660961	1	19	5.2	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	660985	1	20	5.0	5.0	✓
Fluoride in Water by IC	E235.F	661065	1	19	5.2	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	661068	1	20	5.0	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	661069	1	19	5.2	5.0	✓
Sulfate in Water by IC	E235.SO4	661070	1	19	5.2	5.0	✓
TDS by Gravimetry	E162	661276	2	5	40.0	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	662944	1	15	6.6	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	661206	1	5	20.0	5.0	✓
Total Mercury in Water by CVAAS	E508	662245	1	14	7.1	5.0	✓
Total Metals in Water by CRC ICPMS	E420	662945	1	15	6.6	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	660962	1	20	5.0	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	661974	1	14	7.1	5.0	✓
TSS by Gravimetry (Low Level)	E160-L	661277	2	5	40.0	5.0	✓
Turbidity by Nephelometry	E121	661110	1	5	20.0	5.0	✓

Page : 20 of 23 Work Order : CG2212931

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: Water Evaluation: × = QC frequency outside specification, ✓ = QC frequency within specification.

Watth. Water		Lvaldati	on. Qo noque	oney catorac ope	John Gation,	ac inequency with	imi opodinounoi
Quality Control Sample Type			Co	ount		Frequency (%)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Matrix Spikes (MS)							
Ammonia by Fluorescence	E298	661142	1	12	8.3	5.0	✓
Bromide in Water by IC (Low Level)	E235.Br-L	661066	1	19	5.2	5.0	✓
Chloride in Water by IC (Low Level)	E235.CI-L	661067	1	19	5.2	5.0	✓
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L	661149	1	4	25.0	5.0	✓
Dissolved Mercury in Water by CVAAS	E509	662251	1	20	5.0	5.0	✓
Dissolved Metals in Water by CRC ICPMS	E421	661148	1	10	10.0	5.0	✓
Dissolved Organic Carbon by Combustion (Low Level)	E358-L	660961	1	19	5.2	5.0	✓
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U	660985	1	20	5.0	5.0	✓
Fluoride in Water by IC	E235.F	661065	1	19	5.2	5.0	✓
Nitrate in Water by IC (Low Level)	E235.NO3-L	661068	1	20	5.0	5.0	✓
Nitrite in Water by IC (Low Level)	E235.NO2-L	661069	1	19	5.2	5.0	✓
Sulfate in Water by IC	E235.SO4	661070	1	19	5.2	5.0	✓
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L	662944	1	15	6.6	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	661206	1	5	20.0	5.0	✓
Total Mercury in Water by CVAAS	E508	662245	1	14	7.1	5.0	✓
Total Metals in Water by CRC ICPMS	E420	662945	1	15	6.6	5.0	✓
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L	660962	1	20	5.0	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	661974	1	14	7.1	5.0	✓

Page : 21 of 23 Work Order : CG2212931

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Conductivity in Water	E100	Water	APHA 2510 (mod)	Conductivity, also known as Electrical Conductivity (EC) or Specific Conductance, is measured by immersion of a conductivity cell with platinum electrodes into a water
	Calgary - Environmental			sample. Conductivity measurements are temperature-compensated to 25°C.
pH by Meter	E108	Water	APHA 4500-H (mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally 20 ± 5°C). For high accuracy test results,
	Calgary - Environmental			pH should be measured in the field within the recommended 15 minute hold time.
Turbidity by Nephelometry	E121	Water	APHA 2130 B (mod)	Turbidity is measured by the nephelometric method, by measuring the intensity of light scatter under defined conditions.
	Calgary - Environmental			
ORP by Electrode	E125 Calgary - Environmental	Water	ASTM D1498 (mod)	Oxidation redution potential is reported as the oxidation-reduction potential of the platinum metal-reference electrode employed, measured in mV. For high accuracy test
TSS by Gravimetry (Low Level)	0 7	Water	APHA 2540 D (mod)	results, it is recommended that this analysis be conducted in the field.
133 by Gravimeny (Low Lever)	E160-L	water	AFTIA 2540 D (IIIOU)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, following by drying of the filter at 104 ± 1°C, with gravimetric measurement of the
	Calgary - Environmental			filtered solids. Samples containing very high dissolved solid content (i.e. seawaters,
	3 ,			brackish waters) may produce a positive bias by this method. Alternate analysis
				methods are available for these types of samples.
TDS by Gravimetry	E162	Water	APHA 2540 C (mod)	Total Dissolved Solids (TDS) are determined by filtering a sample through a glass fibre
	Calgary - Environmental			filter, with evaporation of the filtrate at 180 ± 2°C for 16 hours or to constant weight, with gravimetric measurement of the residue.
Bromide in Water by IC (Low Level)	E235.Br-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
2.6aca.c. 2 , (26 26)	L233.BI-L		/ t 00011 (04)	detection.
	Calgary - Environmental			dotodion.
Chloride in Water by IC (Low Level)	E235.CI-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
				detection.
	Calgary - Environmental			
Fluoride in Water by IC	E235.F	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
	Cologry Environmental			detection.
Nitrite in Water by IC (Low Level)	Calgary - Environmental	Water	EPA 300.1 (mod)	
Number of the feet	E235.NO2-L	water	LFA 300.1 (IIIou)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV detection.
	Calgary - Environmental			detection.
Nitrate in Water by IC (Low Level)	E235.NO3-L	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
·			, , ,	detection.
	Calgary - Environmental			
Sulfate in Water by IC	E235.SO4	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and/or UV
	Calgary - Environmental			detection.
Acidity by Titration	E283	Water	APHA 2310 B (mod)	Acidity is determined by potentiometric titration to pH endpoint of 8.3
	L203		(mod)	y 2
	Calgary - Environmental			
	3 7			

Page : 22 of 23
Work Order : CG2212931

Client : Teck Coal Limited

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Alkalinity Species by Titration	E290 Calgary - Environmental	Water	APHA 2320 B (mod)	Total alkalinity is determined by potentiometric titration to a pH 4.5 endpoint. Bicarbonate, carbonate and hydroxide alkalinity are calculated from phenolphthalein alkalinity and total alkalinity values.
Ammonia by Fluorescence	E298 Calgary - Environmental	Water	Method Fialab 100, 2018	Ammonia in water is determined by automated continuous flow analysis with membrane diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde). This method is approved under US EPA 40 CFR Part 136 (May 2021)
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318 Calgary - Environmental	Water	Method Fialab 100, 2018	TKN in water is determined by automated continuous flow analysis with membrane diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde). This method is approved under US EPA 40 CFR Part 136 (May 2021).
Total Organic Carbon (Non-Purgeable) by Combustion (Low Level)	E355-L Calgary - Environmental	Water	APHA 5310 B (mod)	Total Organic Carbon (Non-Purgeable), also known as NPOC (total), is a direct measurement of TOC after an acidified sample has been purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of total carbon (TC) is comprised of IC (which is common), this method is more accurate and more reliable than the TOC by subtraction method (i.e. TC minus TIC).
Dissolved Organic Carbon by Combustion (Low Level)	E358-L Calgary - Environmental	Water	APHA 5310 B (mod)	Dissolved Organic Carbon (Non-Purgeable), also known as NPOC (dissolved), is a direct measurement of DOC after a filtered (0.45 micron) sample has been acidified and purged to remove inorganic carbon (IC). Analysis is by high temperature combustion with infrared detection of CO2. NPOC does not include volatile organic species that are purged off with IC. For samples where the majority of DC (dissolved carbon) is comprised of IC (which is common), this method is more accurate and more reliable than the DOC by subtraction method (i.e. DC minus DIC).
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U Calgary - Environmental	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated persulfate digestion of the sample.
Dissolved Orthophosphate by Colourimetry (Ultra Trace Level 0.001 mg/L)	E378-U Calgary - Environmental	Water	APHA 4500-P F (mod)	Dissolved Orthophosphate is determined colourimetrically on a sample that has been lab or field filtered through a 0.45 micron membrane filter. Field filtration is recommended to ensure test results represent conditions at time of sampling.
Total Metals in Water by CRC ICPMS	E420 Calgary - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.
Total Chromium in Water by CRC ICPMS (Low Level)	E420.Cr-L Calgary - Environmental	Water	EPA 200.2/6020B (mod)	Water samples are digested with nitric and hydrochloric acids, and analyzed by Collision/Reaction Cell ICPMS.
Dissolved Metals in Water by CRC ICPMS	E421 Calgary - Environmental	Water	APHA 3030B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS. Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered by this method.

Page : 23 of 23 Work Order : CG2212931

Client : Teck Coal Limited

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Dissolved Chromium in Water by CRC ICPMS (Low Level)	E421.Cr-L Calgary - Environmental	Water	APHA 3030 B/EPA 6020B (mod)	Water samples are filtered (0.45 um), preserved with nitric acid, and analyzed by Collision/Reaction Cell ICPMS
Total Mercury in Water by CVAAS	E508 Calgary - Environmental	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS
Dissolved Mercury in Water by CVAAS	E509 Calgary - Environmental	Water	APHA 3030B/EPA 1631E (mod)	Water samples are filtered (0.45 um), preserved with HCl, then undergo a cold-oxidation using bromine monochloride prior to reduction with stannous chloride, and analyzed by CVAAS.
Dissolved Hardness (Calculated)	EC100 Calgary - Environmental	Water	APHA 2340B	"Hardness (as CaCO3), dissolved" is calculated from the sum of dissolved Calcium and Magnesium concentrations, expressed in CaCO3 equivalents. "Total Hardness" refers to the sum of Calcium and Magnesium Hardness. Hardness is normally or preferentially calculated from dissolved Calcium and Magnesium concentrations, because it is a property of water due to dissolved divalent cations.
Ion Balance using Dissolved Metals	EC101 Calgary - Environmental	Water	APHA 1030E	Cation Sum, Anion Sum, and Ion Balance are calculated based on guidance from APHA Standard Methods (1030E Checking Correctness of Analysis). Dissolved species are used where available. Minor ions are included where data is present. Ion Balance cannot be calculated accurately for waters with very low electrical conductivity (EC).
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Preparation for Ammonia	EP298 Calgary - Environmental	Water		Sample preparation for Preserved Nutrients Water Quality Analysis.
Digestion for TKN in water	EP318 Calgary - Environmental	Water	APHA 4500-Norg D (mod)	Samples are digested at high temperature using Sulfuric Acid with Copper catalyst, which converts organic nitrogen sources to Ammonia, which is then quantified by the analytical method as TKN. This method is unsuitable for samples containing high levels of nitrate. If nitrate exceeds TKN concentration by ten times or more, results may be biased low.
Preparation for Total Organic Carbon by Combustion	EP355 Calgary - Environmental	Water		Preparation for Total Organic Carbon by Combustion
Preparation for Dissolved Organic Carbon for Combustion	EP358 Calgary - Environmental	Water	APHA 5310 B (mod)	Preparation for Dissolved Organic Carbon
Digestion for Total Phosphorus in water	EP372 Calgary - Environmental	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.
Dissolved Metals Water Filtration	EP421 Calgary - Environmental	Water	APHA 3030B	Water samples are filtered (0.45 um), and preserved with HNO3.
Dissolved Mercury Water Filtration	EP509 Calgary - Environmental	Water	АРНА 3030В	Water samples are filtered (0.45 um), and preserved with HCl.

Teck RUSH Priorty REP LAEMP CMm 2022-09_ALS TURNAROUND TIME: COC ID: LABORATORY OTHER INFO PROJECT/CLIENT INFO EDD Lab Name ALS Calgary Excel PDF Report Format / Distribution Facility Name / Job# Regional Effects Program Lab Contact Lyudmyla Shvets Email 1: AquaSciLab@Teck.com Project Manager Cybele Heddle Email Lyudrityla.Shvets@ALSGlobal.com Email 2: teckcoal@equisonline.com Email Cybele Heddle@teck.com Address 2559 29 Street NE Email 3: Teck.Lab.Results@teck.com Address 421 Pine Avenue Email 4: Lisa Bowron@minnow.ca Email 5: City Calgary Province AB Provinc BC Tyler.Mehler@minnow.ca City Sparwood Postal Code T1Y 7B5 Country Canada Email 6: Hannah Penner@Teck.com X Postal Code V0B 2G0 Country Canada Phone Number 403 407 1794 VPO00816101 PO number **Environmental Division** Filtered - F: Field, L: Lab, FL: Field & Lab, N: None ANALYSIS REQUESTED SAMPLE DETAILS Calgary Work Order Reference CG2212931 H2SO4 HCL HCL H2SO4 Material (Yes/No) FECKCOAL_METNHG FECKCOAL_ROUTINE FECKCOAL_METNHG Mercury_Dissolved Telephone: +1 403 407 1800 G=Grab Time C=Com # Of - Dample Location Field (24hr)Cont Sample ID (sys_loc_code) Matrix Ğ 2022/09/15 1 1 RG M125 WS LAEMP_CMO_2022-09_N RG-MI25 - WS 11:30° 7 1 1 WS 2022/09/15 RG_AGCK G 7 1 15:28 1 RG AGCK WS LAEMP_CMO_2022-09_N WS 2022/09/16 - 7 1 1 RG LE1, RG_LE1_WS_LAEMP_CMO_2022-09_N G 🚭 RG RG FBLANK WS LAEMP CMO_2022-09_N , 1 7 RG FBLANK WS 2022/09/16 10:22 1 1 ব0:45[%] WS 2022/09/16 TO KEN RG_RG_EBLANK_WS_LAEMP_CMO_2022-09_N RG TRIP \mathbf{G} 4 1 DATE/TIME ACCEPTED BY/AFFILIATION ADDITIONAL COMMENTS/SPECIAL INSTRUCTIONS RELINQUISHED BY/AFFILIATION DATE/TIME ############### Dissolved metals were field filtered and to be lab preserved Jennifer Ings/Minnow Total metals to be lab preserved . SERVICE REQUEST (rush - subject to availability) Regular (default) Jennifer Ings Mobile # Sampler's Name 519-500-3444 Priority (2-3 business days) - 50% surcharge X Emergency (1 Business Day) - 100% surcharge Sampler's Signature Date/Time September 16, 2022 For Emergency <1 Day, ASAP or Weekend - Contact ALS

CERTIFICATE OF ANALYSIS

Work Order : CG2212740

Client : Teck Coal Limited

Contact : Cybele Heddle

Address : 421 Pine Ave

Sparwood BC Canada

Telephone : ---

Project : REGIONAL EFFECTS PROGRAM

PO : VPO00816101

C-O-C number : REP_LAEMP_CMm_2022-09_ALS

Sampler : Jennifer Ings

Site : ---

Quote number : Teck Coal Master Quote

No. of samples received : 18
No. of samples analysed : 18

Page : 1 of 19

Laboratory : Calgary - Environmental

Account Manager : Lyudmyla Shvets

Address : 2559 29th Street NE

Calgary AB Canada T1Y 7B5

Telephone : +1 403 407 1800

Date Samples Received : 15-Sep-2022 08:50

Date Analysis Commenced : 20-Sep-2022

Issue Date : 28-Sep-2022 16:32

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Amber Sheikh Anthony Calero Supervisor - Inorganic Hedy Lai Hedy Lai Feam Leader - Inorganics Sara Niroomand Sorina Motea Vishnu Patel Laboratory Assistant Organics, Calgary, Alberta Metals, Calgary, Alberta Sorinas, Calgary, Alberta Organics, Calgary, Alberta Inorganics, Calgary, Alberta Inorganics, Calgary, Alberta	Signatories	Position	Laboratory Department	
Hedy LaiTeam Leader - InorganicsInorganics, Saskatoon, SaskatchewanHedy LaiTeam Leader - InorganicsSask Soils, Saskatoon, SaskatchewanSara NiroomandMetals, Calgary, AlbertaSorina MoteaLaboratory AnalystOrganics, Calgary, Alberta	Amber Sheikh	Laboratory Assistant	Organics, Calgary, Alberta	
Hedy LaiTeam Leader - InorganicsSask Soils, Saskatoon, SaskatchewanSara NiroomandMetals, Calgary, AlbertaSorina MoteaLaboratory AnalystOrganics, Calgary, Alberta	Anthony Calero	Supervisor - Inorganic	Metals, Calgary, Alberta	
Sara Niroomand Sorina Motea Laboratory Analyst Organics, Calgary, Alberta	Hedy Lai	Team Leader - Inorganics	Inorganics, Saskatoon, Saskatchewan	
Sorina Motea Laboratory Analyst Organics, Calgary, Alberta	Hedy Lai	Team Leader - Inorganics	Sask Soils, Saskatoon, Saskatchewan	
	Sara Niroomand		Metals, Calgary, Alberta	
Vishnu Patel Inorganics, Calgary, Alberta	Sorina Motea	Laboratory Analyst	Organics, Calgary, Alberta	
	Vishnu Patel		Inorganics, Calgary, Alberta	

Page : 2 of 19 Work Order : CG2212740 Client

: Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description	
-	No Unit	
%	percent	
mg/kg	milligrams per kilogram	
pH units	pH units	

<: less than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Sample Comments

Sample	Client Id	Comment
CG2212740-002	RG_MI5_SE-2_2022-09-12_N	Sample(s) XXX: Limited sample was available for PSA (100g minimum is standard). Measurement Uncertainty for PSA results may be higher than usual.
CG2212740-003	RG_MI5_SE-3_2022-09-12_N	Sample(s) XXX: Limited sample was available for PSA (100g minimum is standard). Measurement Uncertainty for PSA results may be higher than usual.
CG2212740-007	RG_MIULE_SE-4_2022-09-12 _N	Sample(s) XXX: Limited sample was available for PSA (100g minimum is standard). Measurement Uncertainty for PSA results may be higher than usual.
CG2212740-009	RG_MIDAG_SE-1_2022-09-13 _N	Sample(s) XXX: Limited sample was available for PSA (100g minimum is standard). Measurement Uncertainty for PSA results may be higher than usual.
CG2212740-010	RG_MIDAG_SE-2_2022-09-13 _N	Sample(s) XXX: Limited sample was available for PSA (100g minimum is standard). Measurement Uncertainty for PSA results may be higher than usual.
CG2212740-011	RG_MIDAG_SE-3_2022-09-13 _N	Sample(s) XXX: Limited sample was available for PSA (100g minimum is standard). Measurement Uncertainty for PSA results may be higher than usual.
CG2212740-012	RG_MIDAG_SE-4_2022-09-13 _N	Sample(s) XXX: Limited sample was available for PSA (100g minimum is standard). Measurement Uncertainty for PSA results may be higher than usual.
CG2212740-013		Sample(s) XXX: Limited sample was available for PSA (100g minimum is standard). Measurement Uncertainty for PSA results may be higher than usual.

>: greater than.

Page : 3 of 19 Work Order : CG2212740 Client

: Teck Coal Limited

A	5

CG2212740-014	RG_MIDCO_SE-1_2022-09-13	Sample(s) XXX: Limited sample was available for PSA (100g minimum is standard). Measurement Uncertainty for PSA results may be
	_N	higher than usual.
CG2212740-016	RG_MIDCO_SE-3_2022-09-13	Sample(s) XXX: Limited sample was available for PSA (100g minimum is standard). Measurement Uncertainty for PSA results may be
	_N	higher than usual.

Page : 4 of 19
Work Order : CG2212740
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Client sampling date / time 12-Sep-2022 12-Sep-2022	_MIULE_SE- .2022-09-12_		RG_MIULE_SE- 1_2022-09-12_	RG_MI5_SE-3_2 022-09-12_N	RG_MI5_SE-2_2 022-09-12_N	RG_MI5_SE-1_2 022-09-12_N	ient sample ID	p-Matrix: Sediment Client sai atrix: Soil/Solid)					
Analyte CAS Number Method LOR Unit CG2127740-001 CG2127740-002 CG2217740-004 CG2127740-004 CG2127740-004	N	+	N										
Physical Tests	12-Sep-2022 14:31					•	ling date / time	Client samp					
Physical Tests	G2212740-005						Unit	LOR	Method	CAS Number	Analyte		
Description	Result		Result	Result	Result	Result							
PH (1:2 soil:water)	73.2		77.0	50.5	82.1	66.5	0/.	0.25	E144				
Particle Size grain size curve E185A - - See See Attached	7.49												
See See See See See Attached See Attached See See Attached Attached Attached Attached See See Attached Attached Attached Attached See Attached Attached See Attached See Attached See Attached Attached See See Attached Attached See See Attached Attached See See Attached Attached See							privatilita						
clay (<0.004mm)	e Attached	5		See Attached			-	-	E185A				
silt (0.0312mm - 0.004mm)	4.9			6.1			%	1.0	EC184A		clay (<0.004mm)		
sand (0.125mm - 0.063mm)	20.9		20.2	18.2	27.3	14.6	%	1.0	EC184A		silt (0.063mm - 0.0312mm)		
sand (0.25mm) - 0.125mm)	23.8		20.0	21.1	30.0	14.6	%	1.0	EC184A		silt (0.0312mm - 0.004mm)		
sand (0.5mm - 0.25mm)	7.8		14.4	11.0	7.5	17.4	%	1.0	EC184A		sand (0.125mm - 0.063mm)		
sand (1.0mm - 0.50mm)	8.0		15.0	13.1	4.7	27.8	%	1.0	EC184A		sand (0.25mm - 0.125mm)		
sand (2.0mm - 1.0mm)	13.1		6.5	14.2	3.4	16.9	%	1.0	EC184A		sand (0.5mm - 0.25mm)		
gravel (>2mm)	10.9		2.4	10.5	4.4	2.6	%	1.0	EC184A		sand (1.0mm - 0.50mm)		
Organic / Inorganic Carbon carbon, total [TC]	5.0		2.4	3.3	6.2	<1.0	%	1.0	EC184A		sand (2.0mm - 1.0mm)		
carbon, total [TC] E351 0.050 % 4.94 8.87 6.04 7.63 carbon, inorganic [IC] E354 0.050 % 1.12 2.24 1.42 1.71 carbon, inorganic [IC], (as CaCO3 equivalent) E354 0.40 % 9.36 18.6 11.8 14.3 carbon, total organic [TOC] EC356 0.050 % 3.82 6.63 4.62 5.92 Metals aluminum 7429-90-5 E440 50 mg/kg 7640 6310 6050 7070 antimony 7440-36-0 E440 0.10 mg/kg 0.74 0.49 0.66 0.56 arsenic 7440-38-2 E440 0.10 mg/kg 5.06 4.85 5.01 5.60	5.6		15.1	2.5	9.0	1.4	%	1.0	EC184A		gravel (>2mm)		
Carbon, inorganic [IC]											Organic / Inorganic Carbon		
Carbon, inorganic [IC], (as CaCO3 equivalent)	7.78		7.63	6.04	8.87	4.94	%	0.050	E351		carbon, total [TC]		
Carbon, total organic [TOC] EC356 0.050 % 3.82 6.63 4.62 5.92 Metals aluminum 7429-90-5 E440 50 mg/kg 7640 6310 6050 7070 antimony 7440-36-0 E440 0.10 mg/kg 0.74 0.49 0.66 0.56 arsenic 7440-38-2 E440 0.10 mg/kg 5.06 4.85 5.01 5.60	2.09		1.71	1.42	2.24	1.12	%	0.050	E354		carbon, inorganic [IC]		
Metals aluminum 7429-90-5 E440 50 mg/kg 7640 6310 6050 7070 antimony 7440-36-0 E440 0.10 mg/kg 0.74 0.49 0.66 0.56 arsenic 7440-38-2 E440 0.10 mg/kg 5.06 4.85 5.01 5.60	17.4		14.3	11.8	18.6	9.36	%	0.40	E354		carbon, inorganic [IC], (as CaCO3 equivalent)		
aluminum 7429-90-5 E440 50 mg/kg 7640 6310 6050 7070 antimony 7440-36-0 E440 0.10 mg/kg 0.74 0.49 0.66 0.56 arsenic 7440-38-2 E440 0.10 mg/kg 5.06 4.85 5.01 5.60	5.69		5.92	4.62	6.63	3.82	%	0.050	EC356		carbon, total organic [TOC]		
antimony 7440-36-0 E440 0.10 mg/kg 0.74 0.49 0.66 0.56 arsenic 7440-38-2 E440 0.10 mg/kg 5.06 4.85 5.01 5.60											Metals		
arsenic 7440-38-2 E440 0.10 mg/kg 5.06 4.85 5.01 5.60	6350		7070	6050	6310	7640	mg/kg	50	E440	7429-90-5	aluminum		
	0.60		0.56	0.66	0.49	0.74	mg/kg	0.10	E440	7440-36-0	antimony		
barium	5.98		5.60	5.01	4.85	5.06	mg/kg	0.10	E440	7440-38-2	arsenic		
	147		166	204	200	190	mg/kg	0.50	E440	7440-39-3	barium		
beryllium 7440-41-7 E440 0.10 mg/kg 0.61 0.44 0.54 0.62	0.60		0.62	0.54	0.44	0.61	mg/kg	0.10	E440	7440-41-7	beryllium		
bismuth 7440-69-9 E440 0.20 mg/kg <0.20 <0.20 <0.20 <0.20	<0.20		<0.20	<0.20	<0.20	<0.20	mg/kg	0.20	E440	7440-69-9	bismuth		
boron 7440-42-8 E440 5.0 mg/kg 7.9 9.1 7.9 8.8	8.5		8.8	7.9	9.1	7.9	mg/kg	5.0	E440	7440-42-8	boron		
cadmium 7440-43-9 E440 0.020 mg/kg 1.41 1.67 1.73 1.19	1.39		1.19	1.73	1.67	1.41	mg/kg	0.020	E440	7440-43-9	cadmium		
calcium 7440-70-2 E440 50 mg/kg 38700 65200 46100 55400	57900		55400	46100	65200	38700	mg/kg	50	E440	7440-70-2	calcium		
chromium 7440-47-3 E440 0.50 mg/kg 11.6 10.1 10.0 10.2	10.3		10.2	10.0	10.1	11.6	mg/kg	0.50	E440	7440-47-3	chromium		

Page : 5 of 19
Work Order : CG2212740
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Sediment (Matrix: Soil/Solid)		Client sai				RG_MI5_SE-2_2 022-09-12_N	RG_MI5_SE-3_2 022-09-12_N	RG_MIULE_SE- 1_2022-09-12_ N	RG_MIULE_SE- 2_2022-09-12_ N
			·	ling date / time	12-Sep-2022 09:30	12-Sep-2022 10:00	12-Sep-2022 10:30	12-Sep-2022 15:41	12-Sep-2022 14:31
Analyte	CAS Number	Method	LOR	Unit	CG2212740-001 Result	CG2212740-002 Result	CG2212740-003 Result	CG2212740-004 Result	CG2212740-005 Result
Metals					Nesuit	Nesuit	Result	Nesuit	Nesuit
cobalt	7440-48-4	E440	0.10	mg/kg	6.09	6.27	5.96	8.97	9.87
copper	7440-50-8	E440	0.50	mg/kg	11.2	10.2	10.7	11.3	13.4
iron	7439-89-6	E440	50	mg/kg	11900	10300	13900	11900	15400
lead	7439-92-1	E440	0.50	mg/kg	8.13	6.49	7.49	8.32	8.02
lithium	7439-93-2	E440	2.0	mg/kg	10.1	8.4	8.8	10.7	10.7
magnesium	7439-95-4	E440	20	mg/kg	4550	5450	4240	6520	5460
manganese	7439-96-5	E440	1.0	mg/kg	147	191	202	198	217
mercury	7439-97-6	E510	0.0050	mg/kg	0.0373	0.0277	0.0338	0.0325	0.0271
molybdenum	7439-98-7	E440	0.10	mg/kg	1.26	0.88	1.17	1.39	1.83
nickel	7440-02-0	E440	0.50	mg/kg	27.5	29.9	27.8	37.8	427
phosphorus	7723-14-0	E440	50	mg/kg	1220	1210	1190	1080	1160
potassium	7440-09-7	E440	100	mg/kg	1380	1130	1040	1370	1220
selenium	7782-49-2	E440	0.20	mg/kg	1.74	2.75	2.12	1.95	2.43
silver	7440-22-4	E440	0.10	mg/kg	0.17	0.15	0.17	0.16	0.14
sodium	7440-23-5	E440	50	mg/kg	87	123	79	103	105
strontium	7440-24-6	E440	0.50	mg/kg	73.3	107	93.2	86.1	93.4
sulfur	7704-34-9	E440	1000	mg/kg	<1000	<1000	<1000	1000	<1000
thallium	7440-28-0	E440	0.050	mg/kg	0.253	0.186	0.222	0.327	0.305
tin	7440-31-5	E440	2.0	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0
titanium	7440-32-6	E440	1.0	mg/kg	41.5	25.7	30.3	20.0	21.6
tungsten	7440-33-7	E440	0.50	mg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
uranium	7440-61-1	E440	0.050	mg/kg	1.28	0.857	1.02	0.854	0.862
vanadium	7440-62-2	E440	0.20	mg/kg	30.9	24.1	25.1	22.2	23.7
zinc	7440-66-6	E440	2.0	mg/kg	94.6	94.9	91.8	96.5	121
zirconium	7440-67-7	E440	1.0	mg/kg	1.1	<1.0	<1.0	1.2	<1.0
Polycyclic Aromatic Hydrocarbons									
acenaphthene	83-32-9	E641A	0.050	mg/kg	<0.050	<0.066	<0.050	<0.050	<0.050
acenaphthylene	208-96-8	E641A	0.050	mg/kg	<0.050	<0.066	<0.050	<0.050	<0.050
acridine	260-94-6	E641A	0.050	mg/kg	<0.050	<0.066	<0.050	<0.050	<0.050
anthracene	120-12-7	E641A	0.050	mg/kg	<0.050	0.204	0.099	<0.050	<0.050

Page : 6 of 19
Work Order : CG2212740
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Sediment		Client sample ID			RG_MI5_SE-2_2	RG_MI5_SE-3_2	RG_MIULE_SE-	RG_MIULE_SE-	
(Matrix: Soil/Solid)					022-09-12_N	022-09-12_N	022-09-12_N	1_2022-09-12_ N	2_2022-09-12_ N
			Client sampling date / time		12-Sep-2022 09:30	12-Sep-2022 10:00	12-Sep-2022 10:30	12-Sep-2022 15:41	12-Sep-2022 14:31
Analyte	CAS Number	Method	LOR	Unit	CG2212740-001	CG2212740-002	CG2212740-003	CG2212740-004	CG2212740-005
					Result	Result	Result	Result	Result
Polycyclic Aromatic Hydrocarbons									
benz(a)anthracene	56-55-3	E641A	0.050	mg/kg	<0.050	<0.066	<0.050	<0.050	<0.050
benzo(a)pyrene	50-32-8	E641A	0.050	mg/kg	<0.050	<0.066	<0.050	<0.050	<0.050
benzo(b+j)fluoranthene	n/a	E641A	0.050	mg/kg	<0.050	<0.066	<0.050	0.068	0.059
benzo(b+j+k)fluoranthene	n/a	E641A	0.075	mg/kg	<0.075	<0.093	<0.075	<0.075	<0.075
benzo(g,h,i)perylene	191-24-2	E641A	0.050	mg/kg	<0.050	<0.066	<0.050	<0.050	<0.050
benzo(k)fluoranthene	207-08-9	E641A	0.050	mg/kg	<0.050	<0.066	<0.050	<0.050	<0.050
chrysene	218-01-9	E641A	0.050	mg/kg	0.073	0.081	<0.050	0.105	0.100
dibenz(a,h)anthracene	53-70-3	E641A	0.050	mg/kg	<0.050	<0.066	<0.050	<0.050	<0.050
fluoranthene	206-44-0	E641A	0.050	mg/kg	<0.050	<0.066	<0.050	<0.050	<0.050
fluorene	86-73-7	E641A	0.050	mg/kg	<0.050	<0.066	<0.050	<0.050	<0.050
indeno(1,2,3-c,d)pyrene	193-39-5	E641A	0.050	mg/kg	<0.050	<0.066	<0.050	<0.050	<0.050
methylnaphthalene, 1-	90-12-0	E641A	0.030	mg/kg	0.118	0.140	0.064	0.215	0.163
methylnaphthalene, 1+2-		E641A	0.050	mg/kg	0.263	0.324	0.150	0.522	0.391
methylnaphthalene, 2-	91-57-6	E641A	0.030	mg/kg	0.145	0.184	0.086	0.307	0.228
naphthalene	91-20-3	E641A	0.010	mg/kg	0.073	0.096	0.041	0.154	0.117
phenanthrene	85-01-8	E641A	0.050	mg/kg	0.172	0.203	0.097	0.272	0.214
pyrene	129-00-0	E641A	0.050	mg/kg	<0.050	<0.066	<0.050	<0.050	<0.050
quinoline	91-22-5	E641A	0.050	mg/kg	<0.050	<0.066	<0.050	<0.050	<0.050
B(a)P total potency equivalents [B(a)P TPE]		E641A	0.065	mg/kg	< 0.065	0.080	<0.065	0.066	<0.065
IACR (CCME)		E641A	0.60	-	0.61	0.80	<0.60	0.90	0.84
IACR AB (coarse)		E641A	0.10	_	<0.10	<0.10	<0.10	<0.10	<0.10
IACR AB (fine)		E641A	0.10	-	<0.10	<0.10	<0.10	<0.10	<0.10
PAHs, total (BC Sched 3.4)	n/a	E641A	0.20	mg/kg	0.46	0.77	0.32	0.84	0.66
PAHs, total (EPA 16)	n/a	E641A	0.20	mg/kg	0.32	0.58	0.24	0.60	0.49
Polycyclic Aromatic Hydrocarbons Surrogates									I
acridine-d9	34749-75-2	E641A	0.1	%	90.9	105	96.7	98.5	95.9
chrysene-d12	1719-03-5	E641A	0.1	%	104	119	112	112	109
naphthalene-d8	1146-65-2	E641A	0.1	%	73.1	73.5	84.5	63.6	80.4
phenanthrene-d10	1517-22-2	E641A	0.1	%	92.8	109	102	101	101
I.			1	1 1		l	I	I	l l

Page : 7 of 19 Work Order : CG2212740

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Please refer to the General Comments section for an explanation of any qualifiers detected.

Page : 8 of 19
Work Order : CG2212740
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Sediment	lient sample ID	RG_MIULE_SE-	RG_MIULE_SE-	RG_MIULE_SE-	RG_MIDAG_SE-	RG_MIDAG_SE-			
(Matrix: Soil/Solid)					3_2022-09-12_	4_2022-09-12_	5_2022-09-12_	1_2022-09-13_	2_2022-09-13_
					N	N	N	N	N
			Client samp	oling date / time	12-Sep-2022	12-Sep-2022	12-Sep-2022	13-Sep-2022	13-Sep-2022
			1		13:40	16:25	15:00	11:07	10:17
Analyte	CAS Number	Method	LOR	Unit	CG2212740-006	CG2212740-007	CG2212740-008	CG2212740-009	CG2212740-010
Physical Tests					Result	Result	Result	Result	Result
moisture		E144	0.25	%	79.0	85.5	69.2	82.8	85.9
pH (1:2 soil:water)		E108	0.10	pH units	7.34	7.21	7.55	7.57	7.42
Particle Size				F				-	
grain size curve		E185A	-	-	See Attached	See Attached	See Attached	See Attached	See Attached
clay (<0.004mm)		EC184A	1.0	%	6.1	6.5	4.9	5.6	9.1
silt (0.063mm - 0.0312mm)		EC184A	1.0	%	24.7	30.3	17.4	23.6	36.8
silt (0.0312mm - 0.004mm)		EC184A	1.0	%	27.5	33.1	19.4	25.5	41.1
sand (0.125mm - 0.063mm)		EC184A	1.0	%	6.7	6.1	8.2	9.5	7.4
sand (0.25mm - 0.125mm)		EC184A	1.0	%	5.5	5.1	10.1	4.6	3.0
sand (0.5mm - 0.25mm)		EC184A	1.0	%	5.0	7.0	19.7	1.6	1.4
sand (1.0mm - 0.50mm)		EC184A	1.0	%	7.2	4.3	13.3	3.1	1.0
sand (2.0mm - 1.0mm)		EC184A	1.0	%	4.6	2.9	4.0	7.3	<1.0
gravel (>2mm)		EC184A	1.0	%	12.7	4.7	3.0	19.2	<1.0
Organic / Inorganic Carbon									
carbon, total [TC]		E351	0.050	%	9.50	9.97	6.86	10.2	12.9
carbon, inorganic [IC]		E354	0.050	%	2.48	2.50	1.89	2.55	2.49
carbon, inorganic [IC], (as CaCO3 equivalent)		E354	0.40	%	20.7	20.8	15.8	21.2	20.7
carbon, total organic [TOC]		EC356	0.050	%	7.02	7.47	4.97	7.65	10.4
Metals									
aluminum	7429-90-5	E440	50	mg/kg	5290	5410	6830	6160	6530
antimony	7440-36-0	E440	0.10	mg/kg	0.50	0.41	0.52	0.41	0.48
arsenic	7440-38-2	E440	0.10	mg/kg	4.72	4.30	5.93	4.90	5.45
barium	7440-39-3	E440	0.50	mg/kg	149	153	133	107	111
beryllium	7440-41-7	E440	0.10	mg/kg	0.51	0.49	0.61	0.58	0.61
bismuth	7440-69-9	E440	0.20	mg/kg	<0.20	<0.20	<0.20	<0.20	<0.20
boron	7440-42-8	E440	5.0	mg/kg	7.4	10.6	8.4	8.3	8.7
cadmium	7440-43-9	E440	0.020	mg/kg	1.41	1.40	1.20	1.54	1.68
calcium	7440-70-2	E440	50	mg/kg	79400	83400	56000	73400	76400
chromium	7440-47-3	E440	0.50	mg/kg	8.52	8.24	9.72	9.44	10.1

Page : 9 of 19
Work Order : CG2212740
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Sediment		C	lient sample ID	RG_MIULE_SE-	RG_MIULE_SE-	RG_MIULE_SE-	RG_MIDAG_SE-	RG_MIDAG_SE-	
(Matrix: Soil/Solid)					3_2022-09-12_ N	4_2022-09-12_ N	5_2022-09-12_ N	1_2022-09-13_ N	2_2022-09-13_ N
					14	14	14	14	14
			Client samp	ling date / time	12-Sep-2022	12-Sep-2022	12-Sep-2022	13-Sep-2022	13-Sep-2022
				11.7	13:40	16:25	15:00	11:07	10:17
Analyte	CAS Number	Method	LOR	Unit	CG2212740-006	CG2212740-007	CG2212740-008	CG2212740-009	CG2212740-010
Motolo					Result	Result	Result	Result	Result
Metals cobalt	7440-48-4	E440	0.10	mg/kg	9.50	10.9	9.54	16.1	17.5
copper	7440-50-8	E440	0.50	mg/kg	10.2	10.0	11.4	11.0	11.7
iron	7439-89-6	E440	50	mg/kg	11000	9640	13300	10300	10400
lead	7439-92-1	E440	0.50	mg/kg	6.92	6.63	8.21	7.38	7.34
lithium	7439-93-2	E440	2.0	mg/kg	9.8	10.0	11.0	10.8	11.3
magnesium	7439-95-4	E440	20	mg/kg	6430	5850	5770	7670	7770
manganese	7439-96-5	E440	1.0	mg/kg	212	213	182	156	194
mercury	7439-97-6	E510	0.0050	mg/kg	0.0277	0.0337	0.0315	0.0401	0.0352
molybdenum	7439-98-7	E440	0.10	mg/kg	1.29	1.15	1.37	1.18	1.23
nickel	7440-02-0	E440	0.50	mg/kg	36.6	39.3	35.8	57.7	62.7
phosphorus	7723-14-0	E440	50	mg/kg	1020	955	1080	955	1100
potassium	7440-09-7	E440	100	mg/kg	950	1360	1280	1160	1280
selenium	7782-49-2	E440	0.20	mg/kg	3.19	3.88	2.06	3.27	4.71
silver	7440-22-4	E440	0.10	mg/kg	0.15	0.15	0.13	0.17	0.19
sodium	7440-23-5	E440	50	mg/kg	125	158	90	116	175
strontium	7440-24-6	E440	0.50	mg/kg	114	114	85.5	106	114
sulfur	7704-34-9	E440	1000	mg/kg	1400	1600	1100	1700	1800
thallium	7440-28-0	E440	0.050	mg/kg	0.263	0.258	0.317	0.370	0.390
tin	7440-31-5	E440	2.0	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0
titanium	7440-31-6	E440	1.0	mg/kg	14.7	15.8	16.3	17.3	13.7
tungsten	7440-33-7	E440	0.50	mg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
uranium	7440-61-1	E440	0.050	mg/kg	0.776	0.755	0.806	0.871	0.967
vanadium	7440-62-2	E440	0.20	mg/kg	17.6	15.9	21.3	16.3	17.7
zinc	7440-66-6	E440	2.0	mg/kg	100	99.3	99.6	116	123
zirconium	7440-67-7	E440	1.0	mg/kg	1.2	1.1	1.1	1.3	1.5
Polycyclic Aromatic Hydrocarbons									
acenaphthene	83-32-9	E641A	0.050	mg/kg	<0.050	<0.068	<0.050	<0.071	<0.069
acenaphthylene	208-96-8	E641A	0.050	mg/kg	<0.050	<0.068	<0.050	<0.071	<0.069
acridine	260-94-6	E641A	0.050	mg/kg	<0.050	<0.068	<0.050	<0.071	<0.069
anthracene	120-12-7	E641A	0.050	mg/kg	<0.050	0.357	<0.050	<0.071	<0.069
I control of the cont	ı		1	1 1		ı	ı	I	ı

: 10 of 19 : CG2212740 Page Work Order Client

: Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Sediment Client sample					RG_MIULE_SE-	RG_MIULE_SE-	RG_MIULE_SE-	RG_MIDAG_SE-	RG_MIDAG_SE-
(Matrix: Soil/Solid)					3_2022-09-12_	4_2022-09-12_	5_2022-09-12_	1_2022-09-13_	2_2022-09-13_
					N	N	N	N	N
			Client samp	oling date / time	12-Sep-2022	12-Sep-2022	12-Sep-2022	13-Sep-2022	13-Sep-2022
					13:40	16:25	15:00	11:07	10:17
Analyte	CAS Number	Method	LOR	Unit	CG2212740-006	CG2212740-007	CG2212740-008	CG2212740-009	CG2212740-010
					Result	Result	Result	Result	Result
Polycyclic Aromatic Hydrocarbons									
benz(a)anthracene	56-55-3	E641A	0.050	mg/kg	<0.050	<0.068	<0.050	<0.071	<0.069
benzo(a)pyrene	50-32-8	E641A	0.050	mg/kg	<0.050	<0.068	<0.050	<0.071	<0.069
benzo(b+j)fluoranthene	n/a	E641A	0.050	mg/kg	0.084	0.085	<0.050	0.123	0.103
benzo(b+j+k)fluoranthene	n/a	E641A	0.075	mg/kg	0.084	<0.096	<0.075	0.123	0.103
benzo(g,h,i)perylene	191-24-2	E641A	0.050	mg/kg	<0.050	<0.068	<0.050	<0.071	<0.069
benzo(k)fluoranthene	207-08-9	E641A	0.050	mg/kg	<0.050	<0.068	<0.050	<0.071	<0.069
chrysene	218-01-9	E641A	0.050	mg/kg	0.115	0.150	0.064	0.191	0.146
dibenz(a,h)anthracene	53-70-3	E641A	0.050	mg/kg	<0.050	<0.068	<0.050	<0.071	<0.069
fluoranthene	206-44-0	E641A	0.050	mg/kg	0.058	0.075	<0.050	<0.071	0.074
fluorene	86-73-7	E641A	0.050	mg/kg	<0.050	<0.068	<0.050	<0.071	<0.069
indeno(1,2,3-c,d)pyrene	193-39-5	E641A	0.050	mg/kg	<0.050	<0.068	<0.050	<0.071	<0.069
methylnaphthalene, 1-	90-12-0	E641A	0.030	mg/kg	0.182	0.268	0.127	0.465	0.333
methylnaphthalene, 1+2-		E641A	0.050	mg/kg	0.441	0.662	0.304	1.14	0.819
methylnaphthalene, 2-	91-57-6	E641A	0.030	mg/kg	0.259	0.394	0.177	0.676	0.486
naphthalene	91-20-3	E641A	0.010	mg/kg	0.132	0.192	0.091	0.333	0.236
phenanthrene	85-01-8	E641A	0.050	mg/kg	0.243	0.358	0.166	0.523	0.416
pyrene	129-00-0	E641A	0.050	mg/kg	<0.050	<0.068	<0.050	<0.071	0.071
quinoline	91-22-5	E641A	0.050	mg/kg	<0.050	<0.068	<0.050	<0.071	<0.069
B(a)P total potency equivalents [B(a)P TPE]		E641A	0.065	mg/kg	0.067	0.088	<0.065	0.096	0.091
IACR (CCME)		E641A	0.60	-	1.00	1.18	0.61	1.46	1.29
IACR AB (coarse)		E641A	0.10	_	<0.10	<0.10	<0.10	<0.10	<0.10
IACR AB (fine)		E641A	0.10	-	<0.10	0.10	<0.10	0.12	0.11
PAHs, total (BC Sched 3.4)	n/a	E641A	0.20	mg/kg	0.81	1.53	0.50	1.72	1.43
PAHs, total (EPA 16)	n/a	E641A	0.20	mg/kg	0.63	1.22	0.32	1.17	1.05
Polycyclic Aromatic Hydrocarbons Surrogates								1	
acridine-d9	34749-75-2	E641A	0.1	%	109	122	102	105	92.7
chrysene-d12	1719-03-5	E641A	0.1	%	124	126	117	123	105
naphthalene-d8	1146-65-2	E641A	0.1	%	102	81.9	83.5	84.1	70.0
phenanthrene-d10	1517-22-2	E641A	0.1	%	115	124	106	111	96.7
I.	== =		I	1 1		I	I	I	l l

Page : 11 of 19 Work Order : CG2212740

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Please refer to the General Comments section for an explanation of any qualifiers detected.

: 12 of 19 : CG2212740 Page Work Order Client

: Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Sediment (Matrix: Soil/Solid)			C	ient sample ID	RG_MIDAG_SE- 3_2022-09-13_ N	RG_MIDAG_SE- 4_2022-09-13_ N	RG_MIDAG_SE- 5_2022-09-13_ N	RG_MIDCO_SE- 1_2022-09-13_ N	RG_MIDCO_SE- 2_2022-09-13_ N
			Client samp	ling date / time	13-Sep-2022 09:20	13-Sep-2022 10:37	13-Sep-2022 09:10	13-Sep-2022 14:07	13-Sep-2022 15:23
Analyte	CAS Number	Method	LOR	Unit	CG2212740-011	CG2212740-012	CG2212740-013	CG2212740-014	CG2212740-015
					Result	Result	Result	Result	Result
Physical Tests									
moisture		E144	0.25	%	83.9	90.0	88.0	75.7	67.6
pH (1:2 soil:water)		E108	0.10	pH units	7.28	7.42	7.65	7.85	7.89
Particle Size									
grain size curve		E185A	-	-	See Attached	See Attached	See Attached	See Attached	See Attached
clay (<0.004mm)		EC184A	1.0	%	8.5	9.7	8.1	10.9	7.1
silt (0.063mm - 0.0312mm)		EC184A	1.0	%	35.2	35.5	36.3	28.8	18.7
silt (0.0312mm - 0.004mm)		EC184A	1.0	%	36.7	39.8	39.4	39.4	25.6
sand (0.125mm - 0.063mm)		EC184A	1.0	%	10.6	8.1	6.4	7.2	8.9
sand (0.25mm - 0.125mm)		EC184A	1.0	%	5.4	4.4	3.4	4.0	5.6
sand (0.5mm - 0.25mm)		EC184A	1.0	%	1.6	1.6	1.3	2.5	6.2
sand (1.0mm - 0.50mm)		EC184A	1.0	%	<1.0	<1.0	<1.0	2.6	15.5
sand (2.0mm - 1.0mm)		EC184A	1.0	%	<1.0	<1.0	<1.0	3.4	10.0
gravel (>2mm)		EC184A	1.0	%	<1.0	<1.0	3.5	1.2	2.4
Organic / Inorganic Carbon									
carbon, total [TC]		E351	0.050	%	13.0	11.9	15.5	9.32	5.95
carbon, inorganic [IC]		E354	0.050	%	2.74	2.19	2.97	2.33	1.68
carbon, inorganic [IC], (as CaCO3 equivalent)		E354	0.40	%	22.8	18.2	24.7	19.4	14.0
carbon, total organic [TOC]		EC356	0.050	%	10.3	9.71	12.5	6.99	4.27
Metals									
aluminum	7429-90-5	E440	50	mg/kg	5800	6920	6680	7430	10900
antimony	7440-36-0	E440	0.10	mg/kg	0.38	0.50	0.46	0.31	0.36
arsenic	7440-38-2	E440	0.10	mg/kg	4.33	5.13	4.66	5.29	6.78
barium	7440-39-3	E440	0.50	mg/kg	111	123	117	142	150
beryllium	7440-41-7	E440	0.10	mg/kg	0.56	0.62	0.57	0.65	0.80
bismuth	7440-69-9	E440	0.20	mg/kg	<0.20	<0.20	<0.20	<0.20	<0.20
boron	7440-42-8	E440	5.0	mg/kg	8.0	10.0	10.2	10.3	12.8
cadmium	7440-43-9	E440	0.020	mg/kg	1.57	1.72	1.56	1.98	2.06
calcium	7440-70-2	E440	50	mg/kg	81500	67600	92000	75500	66200
chromium	7440-47-3	E440	0.50	mg/kg	8.97	10.4	10.4	9.34	13.6
I	. 110 11-0	-	I] 59		l '	•	l · · ·	

Page : 13 of 19
Work Order : CG2212740
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Sediment (Matrix: Soil/Solid)		Cl	ient sample ID	RG_MIDAG_SE- 3_2022-09-13_ N	RG_MIDAG_SE- 4_2022-09-13_ N	RG_MIDAG_SE- 5_2022-09-13_ N	RG_MIDCO_SE- 1_2022-09-13_ N	RG_MIDCO_SE- 2_2022-09-13_ N	
			·	ling date / time	13-Sep-2022 09:20	13-Sep-2022 10:37	13-Sep-2022 09:10	13-Sep-2022 14:07	13-Sep-2022 15:23
Analyte	CAS Number	Method	LOR	Unit	CG2212740-011 Result	CG2212740-012 Result	CG2212740-013 Result	CG2212740-014 Result	CG2212740-015 Result
Metals					Result	Result	Result	Result	Result
cobalt	7440-48-4	E440	0.10	mg/kg	15.2	20.2	14.2	81.0	64.0
copper	7440-50-8	E440	0.50	mg/kg	10.9	12.6	10.6	13.6	16.7
iron	7439-89-6	E440	50	mg/kg	9360	10400	9640	13200	17800
lead	7439-92-1	E440	0.50	mg/kg	6.96	7.75	6.82	9.36	10.9
lithium	7439-93-2	E440	2.0	mg/kg	11.1	11.1	11.3	13.8	19.1
magnesium	7439-95-4	E440	20	mg/kg	7200	7190	7290	5720	6680
manganese	7439-96-5	E440	1.0	mg/kg	132	282	148	751	584
mercury	7439-97-6	E510	0.0050	mg/kg	0.0326	0.0444	0.0334	0.0341	0.0319
molybdenum	7439-98-7	E440	0.10	mg/kg	1.09	1.25	1.19	1.48	1.67
nickel	7440-02-0	E440	0.50	mg/kg	57.9	64.4	57.2	119	114
phosphorus	7723-14-0	E440	50	mg/kg	984	1020	1010	1040	1230
potassium	7440-09-7	E440	100	mg/kg	1110	1390	1390	1320	2010
selenium	7782-49-2	E440	0.20	mg/kg	3.73	6.19	5.18	3.53	3.99
silver	7440-22-4	E440	0.10	mg/kg	0.17	0.21	0.17	0.10	0.10
sodium	7440-23-5	E440	50	mg/kg	145	149	162	160	181
strontium	7440-24-6	E440	0.50	mg/kg	116	102	129	133	120
sulfur	7704-34-9	E440	1000	mg/kg	1900	2100	2400	1800	2000
thallium	7440-28-0	E440	0.050	mg/kg	0.356	0.379	0.393	0.267	0.321
tin	7440-31-5	E440	2.0	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0
titanium	7440-32-6	E440	1.0	mg/kg	14.1	14.2	17.9	19.1	26.6
tungsten	7440-33-7	E440	0.50	mg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
uranium	7440-61-1	E440	0.050	mg/kg	0.885	1.02	0.975	0.987	0.955
vanadium	7440-62-2	E440	0.20	mg/kg	15.2	18.9	18.1	15.0	21.0
zinc	7440-66-6	E440	2.0	mg/kg	115	125	117	152	169
zirconium	7440-67-7	E440	1.0	mg/kg	1.3	1.4	1.7	1.0	1.3
Polycyclic Aromatic Hydrocarbons									
acenaphthene	83-32-9	E641A	0.050	mg/kg	<0.070	<0.140	<0.073	<0.050	<0.050
acenaphthylene	208-96-8	E641A	0.050	mg/kg	<0.070	<0.140	<0.073	<0.050	<0.050
acridine	260-94-6	E641A	0.050	mg/kg	<0.070	<0.140	<0.073	0.074	<0.050
anthracene	120-12-7	E641A	0.050	mg/kg	<0.070	<0.140	<0.073	<0.050	<0.050

Page : 14 of 19
Work Order : CG2212740
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Sediment		Client sample ID		RG_MIDAG_SE-	RG_MIDAG_SE-	RG_MIDAG_SE-	RG_MIDCO_SE-	RG_MIDCO_SE-	
(Matrix: Soil/Solid)					3_2022-09-13_	4_2022-09-13_	5_2022-09-13_	1_2022-09-13_	2_2022-09-13_
					N	N	N	N	N
			Client samp	oling date / time	13-Sep-2022	13-Sep-2022	13-Sep-2022	13-Sep-2022	13-Sep-2022
					09:20	10:37	09:10	14:07	15:23
Analyte	CAS Number	Method	LOR	Unit	CG2212740-011	CG2212740-012	CG2212740-013	CG2212740-014	CG2212740-015
					Result	Result	Result	Result	Result
Polycyclic Aromatic Hydrocarbons									
benz(a)anthracene	56-55-3	E641A	0.050	mg/kg	<0.070	<0.140	<0.073	<0.050	<0.050
benzo(a)pyrene	50-32-8	E641A	0.050	mg/kg	<0.070	<0.140	<0.073	<0.050	<0.050
benzo(b+j)fluoranthene	n/a	E641A	0.050	mg/kg	0.110	0.212	0.081	0.168	0.100
benzo(b+j+k)fluoranthene	n/a	E641A	0.075	mg/kg	0.110	0.212	<0.103	0.168	0.100
benzo(g,h,i)perylene	191-24-2	E641A	0.050	mg/kg	<0.070	<0.140	<0.073	0.086	0.058
benzo(k)fluoranthene	207-08-9	E641A	0.050	mg/kg	<0.070	<0.140	<0.073	<0.050	<0.050
chrysene	218-01-9	E641A	0.050	mg/kg	0.163	0.243	0.124	0.280	0.178
dibenz(a,h)anthracene	53-70-3	E641A	0.050	mg/kg	<0.070	<0.140	<0.073	<0.050	<0.050
fluoranthene	206-44-0	E641A	0.050	mg/kg	0.092	<0.140	<0.073	0.060	<0.050
fluorene	86-73-7	E641A	0.050	mg/kg	<0.070	<0.140	<0.073	0.108	0.072
indeno(1,2,3-c,d)pyrene	193-39-5	E641A	0.050	mg/kg	<0.070	<0.140	<0.073	<0.050	<0.050
methylnaphthalene, 1-	90-12-0	E641A	0.030	mg/kg	0.366	0.403	0.276	0.744	0.513
methylnaphthalene, 1+2-		E641A	0.050	mg/kg	0.876	0.986	0.660	1.91	1.33
methylnaphthalene, 2-	91-57-6	E641A	0.030	mg/kg	0.510	0.583	0.384	1.17	0.814
naphthalene	91-20-3	E641A	0.010	mg/kg	0.267	0.296	0.218	0.450	0.341
phenanthrene	85-01-8	E641A	0.050	mg/kg	0.440	0.544	0.335	0.681	0.449
pyrene	129-00-0	E641A	0.050	mg/kg	0.079	<0.140	<0.073	0.079	0.054
quinoline	91-22-5	E641A	0.050	mg/kg	<0.070	<0.140	<0.073	<0.050	<0.050
B(a)P total potency equivalents [B(a)P TPE]		E641A	0.065	mg/kg	0.093	0.185	0.094	0.078	0.070
IACR (CCME)		E641A	0.60	-	1.35	2.62	1.18	1.61	1.14
IACR AB (coarse)		E641A	0.10	_	<0.10	<0.14	<0.10	<0.10	<0.10
IACR AB (fine)		E641A	0.10	_	0.11	0.22	0.11	0.12	<0.10
PAHs, total (BC Sched 3.4)	n/a	E641A	0.20	mg/kg	1.55	1.67	1.06	2.83	1.91
PAHs, total (EPA 16)	n/a	E641A	0.20	mg/kg	1.15	1.30	0.76	1.91	1.25
Polycyclic Aromatic Hydrocarbons Surrogates				3 0					
acridine-d9	34749-75-2	E641A	0.1	%	99.5	99.8	99.3	98.1	90.3
chrysene-d12	1719-03-5	E641A	0.1	%	114	114	115	110	104
naphthalene-d8	1146-65-2	E641A	0.1	%	78.8	74.5	77.5	100	68.4
phenanthrene-d10	1517-22-2	E641A	0.1	%	102	102	103	104	95.4
I.			T.	1 1		I	I	I	ı l

Page : 15 of 19 Work Order : CG2212740

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Please refer to the General Comments section for an explanation of any qualifiers detected.

Page : 16 of 19
Work Order : CG2212740
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Sediment (Matrix: Soil/Solid)			C	lient sample ID	RG_MIDCO_SE- 3_2022-09-13_ N	RG_MIDCO_SE- 4_2022-09-13_ N	RG_MIDCO_SE- 5_2022-09-13_ N	
			Client samp	oling date / time	13-Sep-2022 14:34	13-Sep-2022 13:54	13-Sep-2022 13:13	
Analyte	CAS Number	Method	LOR	Unit	CG2212740-016	CG2212740-017	CG2212740-018	
					Result	Result	Result	
Physical Tests								
moisture		E144	0.25	%	78.4	76.6	73.8	
pH (1:2 soil:water)		E108	0.10	pH units	7.83	8.03	8.12	
Particle Size								
grain size curve		E185A	-	-	See Attached	See Attached	See Attached	
clay (<0.004mm)		EC184A	1.0	%	8.3	7.3	10.0	
silt (0.063mm - 0.0312mm)		EC184A	1.0	%	22.2	21.0	26.5	
silt (0.0312mm - 0.004mm)		EC184A	1.0	%	30.6	29.3	37.2	
sand (0.125mm - 0.063mm)		EC184A	1.0	%	6.6	4.5	5.2	
sand (0.25mm - 0.125mm)		EC184A	1.0	%	5.8	3.9	3.4	
sand (0.5mm - 0.25mm)		EC184A	1.0	%	7.1	6.0	3.9	
sand (1.0mm - 0.50mm)		EC184A	1.0	%	9.6	11.0	7.0	
sand (2.0mm - 1.0mm)		EC184A	1.0	%	6.4	13.0	4.5	
gravel (>2mm)		EC184A	1.0	%	3.4	4.0	2.3	
Organic / Inorganic Carbon								
carbon, total [TC]		E351	0.050	%	7.96	8.31	9.52	
carbon, inorganic [IC]		E354	0.050	%	2.09	2.43	2.22	
carbon, inorganic [IC], (as CaCO3 equivalent)		E354	0.40	%	17.4	20.2	18.5	
carbon, total organic [TOC]		EC356	0.050	%	5.87	5.88	7.30	
Metals								
aluminum	7429-90-5	E440	50	mg/kg	8370	9290	11400	
antimony	7440-36-0	E440	0.10	mg/kg	0.33	0.34	0.28	
arsenic	7440-38-2	E440	0.10	mg/kg	5.90	6.69	6.44	
barium	7440-39-3	E440	0.50	mg/kg	142	161	110	
beryllium	7440-41-7	E440	0.10	mg/kg	0.69	0.71	0.71	
bismuth	7440-69-9	E440	0.20	mg/kg	<0.20	<0.20	<0.20	
boron	7440-42-8	E440	5.0	mg/kg	10.1	9.9	9.9	
cadmium	7440-43-9	E440	0.020	mg/kg	1.84	2.24	1.27	
calcium	7440-70-2	E440	50	mg/kg	80000	73300	46400	
chromium	7440-47-3	E440	0.50	mg/kg	10.5	11.8	13.3	
l	7 110 71-0	-	1			l '		

Page : 17 of 19
Work Order : CG2212740
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Sediment C (Matrix: Soil/Solid)					RG_MIDCO_SE- 3_2022-09-13_ N	RG_MIDCO_SE- 4_2022-09-13_ N	RG_MIDCO_SE- 5_2022-09-13_ N	
			Client samp	oling date / time	13-Sep-2022 14:34	13-Sep-2022 13:54	13-Sep-2022 13:13	
Analyte	CAS Number	Method	LOR	Unit	CG2212740-016	CG2212740-017	CG2212740-018	
Metals					Result	Result	Result	
cobalt	7440-48-4	E440	0.10	mg/kg	65.9	82.6	48.8	
copper	7440-50-8	E440	0.50	mg/kg	14.8	16.4	16.4	
iron	7439-89-6	E440	50	mg/kg	15400	16100	21200	
lead	7439-92-1	E440	0.50	mg/kg	10.1	10.4	10.1	
lithium	7439-93-2	E440	2.0	mg/kg	16.1	15.7	21.6	
magnesium	7439-95-4	E440	20	mg/kg	6930	6670	7570	
manganese	7439-96-5	E440	1.0	mg/kg	629	684	605	
mercury	7439-97-6	E510	0.0050	mg/kg	0.0313	0.0332	0.0233	
molybdenum	7439-98-7	E440	0.10	mg/kg	1.58	1.58	1.36	
nickel	7440-02-0	E440	0.50	mg/kg	109	134	89.4	
phosphorus	7723-14-0	E440	50	mg/kg	1150	1300	1220	
potassium	7440-09-7	E440	100	mg/kg	1410	1550	1920	
selenium	7782-49-2	E440	0.20	mg/kg	3.40	4.20	2.25	
silver	7440-22-4	E440	0.10	mg/kg	0.10	0.11	<0.10	
sodium	7440-23-5	E440	50	mg/kg	163	186	151	
strontium	7440-24-6	E440	0.50	mg/kg	137	132	91.9	
sulfur	7704-34-9	E440	1000	mg/kg	1900	2100	<1000	
thallium	7440-28-0	E440	0.050	mg/kg	0.280	0.298	0.284	
tin	7440-31-5	E440	2.0	mg/kg	<2.0	<2.0	<2.0	
titanium	7440-32-6	E440	1.0	mg/kg	21.2	22.8	26.9	
tungsten	7440-33-7	E440	0.50	mg/kg	<0.50	<0.50	<0.50	
uranium	7440-61-1	E440	0.050	mg/kg	0.940	0.994	0.692	
vanadium	7440-62-2	E440	0.20	mg/kg	16.5	18.4	20.5	
zinc	7440-66-6	E440	2.0	mg/kg	147	176	128	
zirconium	7440-67-7	E440	1.0	mg/kg	1.1	1.1	1.2	
Polycyclic Aromatic Hydrocarbons								
acenaphthene	83-32-9	E641A	0.050	mg/kg	<0.050	<0.050	<0.050	
acenaphthylene	208-96-8	E641A	0.050	mg/kg	<0.050	<0.050	<0.050	
acridine	260-94-6	E641A	0.050	mg/kg	0.081	0.085	0.061	
anthracene	120-12-7	E641A	0.050	mg/kg	<0.050	<0.050	<0.050	

Page : 18 of 19
Work Order : CG2212740
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Sediment (Matrix: Soil/Solid)		CI	lient sample ID	RG_MIDCO_SE- 3_2022-09-13_ N	RG_MIDCO_SE- 4_2022-09-13_ N	RG_MIDCO_SE- 5_2022-09-13_ N	 	
			Client samp	oling date / time	13-Sep-2022 14:34	13-Sep-2022 13:54	13-Sep-2022 13:13	
Analyte	CAS Number	Method	LOR	Unit	CG2212740-016	CG2212740-017	CG2212740-018	
					Result	Result	Result	
Polycyclic Aromatic Hydrocarbons								
benz(a)anthracene	56-55-3	E641A	0.050	mg/kg	<0.050	<0.050	<0.050	
benzo(a)pyrene	50-32-8	E641A	0.050	mg/kg	<0.050	0.050	<0.050	
benzo(b+j)fluoranthene	n/a	E641A	0.050	mg/kg	0.171	0.203	0.174	
benzo(b+j+k)fluoranthene	n/a	E641A	0.075	mg/kg	0.171	0.257	0.174	
benzo(g,h,i)perylene	191-24-2	E641A	0.050	mg/kg	0.091	0.088	0.076	
benzo(k)fluoranthene	207-08-9	E641A	0.050	mg/kg	<0.050	0.054	<0.050	
chrysene	218-01-9	E641A	0.050	mg/kg	0.276	0.325	0.254	
dibenz(a,h)anthracene	53-70-3	E641A	0.050	mg/kg	<0.050	<0.050	<0.050	
fluoranthene	206-44-0	E641A	0.050	mg/kg	0.062	0.075	0.058	
fluorene	86-73-7	E641A	0.050	mg/kg	0.104	0.124	0.094	
indeno(1,2,3-c,d)pyrene	193-39-5	E641A	0.050	mg/kg	<0.050	<0.050	<0.050	
methylnaphthalene, 1-	90-12-0	E641A	0.030	mg/kg	0.741	0.879	0.699	
methylnaphthalene, 1+2-		E641A	0.050	mg/kg	1.91	2.26	1.79	
methylnaphthalene, 2-	91-57-6	E641A	0.030	mg/kg	1.17	1.38	1.09	
naphthalene	91-20-3	E641A	0.010	mg/kg	0.495	0.594	0.443	
phenanthrene	85-01-8	E641A	0.050	mg/kg	0.669	0.782	0.606	
pyrene	129-00-0	E641A	0.050	mg/kg	0.081	0.095	0.074	
quinoline	91-22-5	E641A	0.050	mg/kg	<0.050	<0.050	<0.050	
B(a)P total potency equivalents [B(a)P TPE]		E641A	0.065	mg/kg	0.078	0.110	0.078	
IACR (CCME)		E641A	0.60	-	1.63	2.10	1.64	
IACR AB (coarse)		E641A	0.10	_	<0.10	<0.10	<0.10	
IACR AB (fine)		E641A	0.10	-	0.12	0.18	0.12	
PAHs, total (BC Sched 3.4)	n/a	E641A	0.20	mg/kg	2.86	3.42	2.62	
PAHs, total (EPA 16)	n/a	E641A	0.20	mg/kg	1.95	2.39	1.78	
Polycyclic Aromatic Hydrocarbons Surrogates								
acridine-d9	34749-75-2	E641A	0.1	%	94.8	92.3	91.8	
chrysene-d12	1719-03-5	E641A	0.1	%	108	106	106	
naphthalene-d8	1146-65-2	E641A	0.1	%	76.8	83.1	78.7	
phenanthrene-d10	1517-22-2	E641A	0.1	%	100	97.9	97.1	

Page : 19 of 19 Work Order : CG2212740

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : **CG2212740** Page : 1 of 22

 Client
 : Teck Coal Limited
 Laboratory
 : Calgary - Environmental

 Contact
 : Cybele Heddle
 Account Manager
 : Lyudmyla Shvets

Address : 421 Pine Ave Address : 2559 29th Street NE

Sparwood BC Canada Calgary, Alberta Canada T1Y 7B5

 Telephone
 : -- Telephone
 : +1 403 407 1800

 Project
 : REGIONAL EFFECTS PROGRAM
 Date Samples Received
 : 15-Sep-2022 08:50

PO : VPO00816101 | Issue Date : 28-Sep-2022 16:33

C-O-C number : REP_LAEMP_CMm_2022-09_ALS

Sampler : Jennifer Ings

Site : ----

Quote number : Teck Coal Master Quote

No. of samples received : 18
No. of samples analysed : 18

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers: Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• No Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples

• No Quality Control Sample Frequency Outliers occur.

Page : 3 of 22 Work Order : CG2212740

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

 Matrix: Soil/Solid
 Evaluation: x = Holding time exceedance; √ = Within Holding Time

 Analyte Group
 Method
 Sampling Date
 Extraction / Preparation
 Analysis

Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	IS	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	j Times	Eval
			Date	Rec	Actual			Rec	Actual	
Metals : Mercury in Soil/Solid by CVAAS										
Glass soil jar/Teflon lined cap										
RG_MIDAG_SE-1_2022-09-13_N	E510	13-Sep-2022	21-Sep-2022				21-Sep-2022	28 days	8 days	✓
Metals : Mercury in Soil/Solid by CVAAS										
Glass soil jar/Teflon lined cap										
RG_MIDAG_SE-2_2022-09-13_N	E510	13-Sep-2022	21-Sep-2022				21-Sep-2022	28 days	8 days	✓
Metals : Mercury in Soil/Solid by CVAAS										
Glass soil jar/Teflon lined cap										
RG_MIDAG_SE-3_2022-09-13_N	E510	13-Sep-2022	21-Sep-2022				21-Sep-2022	28 days	8 days	✓
Metals : Mercury in Soil/Solid by CVAAS										
Glass soil jar/Teflon lined cap										
RG_MIDAG_SE-4_2022-09-13_N	E510	13-Sep-2022	21-Sep-2022				21-Sep-2022	28 days	8 days	✓
Metals : Mercury in Soil/Solid by CVAAS										
Glass soil jar/Teflon lined cap										
RG_MIDAG_SE-5_2022-09-13_N	E510	13-Sep-2022	21-Sep-2022				21-Sep-2022	28 days	8 days	✓
Metals : Mercury in Soil/Solid by CVAAS										
Glass soil jar/Teflon lined cap										
RG_MIDCO_SE-1_2022-09-13_N	E510	13-Sep-2022	21-Sep-2022				21-Sep-2022	28 days	8 days	✓
Metals : Mercury in Soil/Solid by CVAAS										
Glass soil jar/Teflon lined cap										
RG_MIDCO_SE-2_2022-09-13_N	E510	13-Sep-2022	21-Sep-2022				21-Sep-2022	28 days	8 days	✓

Page : 4 of 22 Work Order : CG2212740

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

						nolaing time exce	,		
Method	Sampling Date	Ext	traction / Pi	reparation			Analys	sis	
		Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
		Date	Rec	Actual			Rec	Actual	
E510	13-Sep-2022	21-Sep-2022				21-Sep-2022	28 days	8 days	✓
								1	
F540	42.0 2022	04.0 0000				04.0 0000	00.1		√
E510	13-Sep-2022	21-Sep-2022				21-Sep-2022	28 days	8 days	•
E510	13-Sep-2022	21-Sep-2022				21-Sep-2022	28 days	8 days	✓
F540	40.0 0000	04.0 0000				04.0 0000	00.1	0.1	
E510	12-Sep-2022	21-Sep-2022				21-Sep-2022	28 days	9 days	✓
						l			
E510	12-Sep-2022	21-Sep-2022				21-Sep-2022	28 davs	9 davs	✓
		•				, ,	,	,	
E510	12-Sep-2022	21-Sep-2022				21-Sep-2022	28 days	9 days	✓
E510	12-Sen-2022	21 San 2022				21 San 2022	28 days	0 days	√
2010	12-00p-2022	21-0ep-2022				21-0ep-2022	20 days	3 days	•
E510	12-Sep-2022	21-Sep-2022				21-Sep-2022	28 days	9 days	✓
E510	12-Sep-2022	21-Sep-2022				21-Sep-2022	00.1	0.1	✓
									./
	E510 E510 E510 E510 E510 E510 E510	E510 13-Sep-2022 E510 13-Sep-2022 E510 12-Sep-2022 E510 12-Sep-2022 E510 12-Sep-2022 E510 12-Sep-2022	E510 13-Sep-2022 21-Sep-2022 E510 13-Sep-2022 21-Sep-2022 E510 13-Sep-2022 21-Sep-2022 E510 12-Sep-2022 21-Sep-2022 E510 12-Sep-2022 21-Sep-2022 E510 12-Sep-2022 21-Sep-2022 E510 12-Sep-2022 21-Sep-2022	E510 13-Sep-2022 21-Sep-2022 E510 13-Sep-2022 21-Sep-2022 E510 13-Sep-2022 21-Sep-2022 E510 12-Sep-2022 21-Sep-2022	Preparation Date Holding Times Rec Actual	Preparation Date Holding Times Rec Actual Rec Actual	E510 13-Sep-2022 21-Sep-2022 21-Sep-2022 E510 13-Sep-2022 21-Sep-2022 21-Sep-2022 E510 13-Sep-2022 21-Sep-2022 21-Sep-2022 E510 12-Sep-2022 21-Sep-2022 21-Sep-2022	E510 13-Sep-2022 21-Sep-2022 21-Sep-2022 28 days	Preparation Date Holding Times Rec Actual Eval Analysis Date Holding Times Rec Actual

Page : 5 of 22 Work Order : CG2212740

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: Soli/Solid					L\	raiuation. * =	Holding time exce	euance , •	_ vviti iii i	riolaling rill
Analyte Group	Method	Sampling Date	Ex	traction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Metals : Mercury in Soil/Solid by CVAAS										
Glass soil jar/Teflon lined cap										
RG_MIULE_SE-4_2022-09-12_N	E510	12-Sep-2022	21-Sep-2022				21-Sep-2022	28 days	9 days	✓
Metals : Mercury in Soil/Solid by CVAAS										
Glass soil jar/Teflon lined cap										
RG_MIULE_SE-5_2022-09-12_N	E510	12-Sep-2022	21-Sep-2022				21-Sep-2022	28 days	9 days	✓
Metals : Metals in Soil/Solid by CRC ICPMS										
Glass soil jar/Teflon lined cap										
RG_MIDAG_SE-1_2022-09-13_N	E440	13-Sep-2022	21-Sep-2022				21-Sep-2022	180	8 days	✓
								days		
Metals : Metals in Soil/Solid by CRC ICPMS										
Glass soil jar/Teflon lined cap										
RG_MIDAG_SE-2_2022-09-13_N	E440	13-Sep-2022	21-Sep-2022				21-Sep-2022	180	8 days	✓
								days		
Metals : Metals in Soil/Solid by CRC ICPMS										
Glass soil jar/Teflon lined cap										
RG_MIDAG_SE-3_2022-09-13_N	E440	13-Sep-2022	21-Sep-2022				21-Sep-2022	180	8 days	✓
								days		
Metals : Metals in Soil/Solid by CRC ICPMS										
Glass soil jar/Teflon lined cap										
RG_MIDAG_SE-4_2022-09-13_N	E440	13-Sep-2022	21-Sep-2022				21-Sep-2022	180	8 days	✓
								days		
Metals : Metals in Soil/Solid by CRC ICPMS										
Glass soil jar/Teflon lined cap										,
RG_MIDAG_SE-5_2022-09-13_N	E440	13-Sep-2022	21-Sep-2022				21-Sep-2022	180	8 days	✓
								days		
Metals : Metals in Soil/Solid by CRC ICPMS										
Glass soil jar/Teflon lined cap	E415	40.0					04.0			
RG_MIDCO_SE-1_2022-09-13_N	E440	13-Sep-2022	21-Sep-2022				21-Sep-2022	180	8 days	✓
								days		
Metals : Metals in Soil/Solid by CRC ICPMS										
Glass soil jar/Teflon lined cap		40.0					04.0			
RG_MIDCO_SE-2_2022-09-13_N	E440	13-Sep-2022	21-Sep-2022				21-Sep-2022	180	8 days	✓
								days		

 Page
 : 6 of 22

 Work Order
 : CG2212740

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analyte Group	Method	Sampling Date	Ex	traction / P	reparation		J	Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Metals : Metals in Soil/Solid by CRC ICPMS										
Glass soil jar/Teflon lined cap RG_MIDCO_SE-3_2022-09-13_N	E440	13-Sep-2022	21-Sep-2022				21-Sep-2022	180 days	8 days	✓
Metals : Metals in Soil/Solid by CRC ICPMS										
Glass soil jar/Teflon lined cap RG_MIDCO_SE-4_2022-09-13_N	E440	13-Sep-2022	21-Sep-2022				21-Sep-2022	180 days	8 days	✓
Metals : Metals in Soil/Solid by CRC ICPMS										
Glass soil jar/Teflon lined cap RG_MIDCO_SE-5_2022-09-13_N	E440	13-Sep-2022	21-Sep-2022				21-Sep-2022	180 days	8 days	✓
Metals : Metals in Soil/Solid by CRC ICPMS										
Glass soil jar/Teflon lined cap RG_MI5_SE-1_2022-09-12_N	E440	12-Sep-2022	21-Sep-2022				21-Sep-2022	180 days	9 days	✓
Metals : Metals in Soil/Solid by CRC ICPMS										
Glass soil jar/Teflon lined cap RG_MI5_SE-2_2022-09-12_N	E440	12-Sep-2022	21-Sep-2022				21-Sep-2022	180 days	9 days	✓
Metals : Metals in Soil/Solid by CRC ICPMS										
Glass soil jar/Teflon lined cap RG_MI5_SE-3_2022-09-12_N	E440	12-Sep-2022	21-Sep-2022				21-Sep-2022	180 days	9 days	✓
Metals : Metals in Soil/Solid by CRC ICPMS										
Glass soil jar/Teflon lined cap RG_MIULE_SE-1_2022-09-12_N	E440	12-Sep-2022	21-Sep-2022				21-Sep-2022	180 days	9 days	✓
Metals : Metals in Soil/Solid by CRC ICPMS										
Glass soil jar/Teflon lined cap RG_MIULE_SE-2_2022-09-12_N	E440	12-Sep-2022	21-Sep-2022				21-Sep-2022	180 days	9 days	✓
Metals : Metals in Soil/Solid by CRC ICPMS										
Glass soil jar/Teflon lined cap RG_MIULE_SE-3_2022-09-12_N	E440	12-Sep-2022	21-Sep-2022				21-Sep-2022	180 days	9 days	✓

Page : 7 of 22 Work Order : CG2212740

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: Soil/Solid						/aluation. ^ –	Holding time excee	euance ,	– vviuiiii	Holding Tilli
Analyte Group	Method	Sampling Date	Ext	traction / P	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation Date	Holdin Rec	g Times Actual	Eval	Analysis Date	Holding Rec	7 Times Actual	Eval
Metals : Metals in Soil/Solid by CRC ICPMS										
Glass soil jar/Teflon lined cap RG_MIULE_SE-4_2022-09-12_N	E440	12-Sep-2022	21-Sep-2022				21-Sep-2022	180 days	9 days	✓
Metals : Metals in Soil/Solid by CRC ICPMS										
Glass soil jar/Teflon lined cap RG_MIULE_SE-5_2022-09-12_N	E440	12-Sep-2022	21-Sep-2022				21-Sep-2022	180 days	9 days	✓
Organic / Inorganic Carbon : Total Carbon by Combustion										
LDPE bag RG_MI5_SE-1_2022-09-12_N	E351	12-Sep-2022	23-Sep-2022				23-Sep-2022	180 days	0 days	✓
Organic / Inorganic Carbon : Total Carbon by Combustion										
LDPE bag RG_MI5_SE-2_2022-09-12_N	E351	12-Sep-2022	23-Sep-2022				23-Sep-2022	180 days	0 days	✓
Organic / Inorganic Carbon : Total Carbon by Combustion										
LDPE bag RG_MI5_SE-3_2022-09-12_N	E351	12-Sep-2022	23-Sep-2022				23-Sep-2022	180 days	0 days	✓
Organic / Inorganic Carbon : Total Carbon by Combustion										
LDPE bag RG_MIDAG_SE-1_2022-09-13_N	E351	13-Sep-2022	24-Sep-2022				24-Sep-2022	180 days	0 days	✓
Organic / Inorganic Carbon : Total Carbon by Combustion										
LDPE bag RG_MIDAG_SE-2_2022-09-13_N	E351	13-Sep-2022	24-Sep-2022				24-Sep-2022	180 days	0 days	✓
Organic / Inorganic Carbon : Total Carbon by Combustion										
LDPE bag RG_MIDAG_SE-3_2022-09-13_N	E351	13-Sep-2022	24-Sep-2022				24-Sep-2022	180 days	0 days	✓
Organic / Inorganic Carbon : Total Carbon by Combustion										
LDPE bag RG_MIDAG_SE-4_2022-09-13_N	E351	13-Sep-2022	24-Sep-2022				24-Sep-2022	180 days	0 days	✓

 Page
 : 8 of 22

 Work Order
 : CG2212740

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Watrix: Soil/Soild						raidation.	Holding time excee	Juanioo ,	***************************************	Troiding Time
Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Organic / Inorganic Carbon : Total Carbon by Combustion										
LDPE bag										
RG_MIDAG_SE-5_2022-09-13_N	E351	13-Sep-2022	24-Sep-2022				24-Sep-2022	180	0 days	✓
								days		
Organic / Inorganic Carbon : Total Carbon by Combustion										
LDPE bag										
RG MIDCO SE-1 2022-09-13 N	E351	13-Sep-2022	24-Sep-2022				24-Sep-2022	180	0 days	✓
10_111500_01 1_2022 00 10_11		17 234 2322	2. oop 2022				2 . 55p 2522	days	o days	
0 1								aayo		
Organic / Inorganic Carbon : Total Carbon by Combustion										
LDPE bag RG_MIDCO_SE-2_2022-09-13_N	E351	13-Sep-2022	24-Sep-2022				24-Sep-2022	400	0 days	✓
RG_MIDCO_SE-2_2022-09-13_N	E331	13-3ep-2022	24-3ep-2022				24-3ep-2022	180	0 uays	•
								days		
Organic / Inorganic Carbon : Total Carbon by Combustion								ı		
LDPE bag										,
RG_MIDCO_SE-3_2022-09-13_N	E351	13-Sep-2022	24-Sep-2022				24-Sep-2022	180	0 days	✓
								days		
Organic / Inorganic Carbon : Total Carbon by Combustion										
LDPE bag										
RG_MIDCO_SE-4_2022-09-13_N	E351	13-Sep-2022	24-Sep-2022				24-Sep-2022	180	0 days	✓
								days		
Organic / Inorganic Carbon : Total Carbon by Combustion										
LDPE bag										
RG_MIDCO_SE-5_2022-09-13_N	E351	13-Sep-2022	24-Sep-2022				24-Sep-2022	180	0 days	✓
								days		
Organic / Inorganic Carbon : Total Carbon by Combustion										
LDPE bag										
RG_MIULE_SE-1_2022-09-12_N	E351	12-Sep-2022	23-Sep-2022				23-Sep-2022	180	0 days	✓
		· ·					' '	days		
Organia / Inargania Carbon - Total Carbon by Cambustian								,-		
Organic / Inorganic Carbon : Total Carbon by Combustion							I			
RG_MIULE_SE-2_2022-09-12_N	E351	12-Sep-2022	23-Sep-2022				23-Sep-2022	180	0 days	√
NG_MIDLE_SE-2_2022-09-12_N	L331	12-3 c p-2022	23-3 e p-2022				23-3ep-2022		0 days	•
								days		
Organic / Inorganic Carbon : Total Carbon by Combustion										
LDPE bag	F054	40.0. 0000	00.00005				00.0			,
RG_MIULE_SE-3_2022-09-12_N	E351	12-Sep-2022	23-Sep-2022				23-Sep-2022	180	0 days	✓
								days		

Page : 9 of 22 Work Order : CG2212740

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

wattik. Golffoolia					L.	aluation	riolaling time exceed	suarroe,	- vviti iii i	riolaling riii
Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Organic / Inorganic Carbon : Total Carbon by Combustion										
LDPE bag										
RG_MIULE_SE-4_2022-09-12_N	E351	12-Sep-2022	23-Sep-2022				23-Sep-2022	180	0 days	✓
								days		
Organic / Inorganic Carbon : Total Carbon by Combustion										
LDPE bag										
RG_MIULE_SE-5_2022-09-12_N	E351	12-Sep-2022	24-Sep-2022				24-Sep-2022	180	0 days	✓
								days		
Organic / Inorganic Carbon : Total Inorganic Carbon by Acetic Acid pH Standard	d Curve									
LDPE bag										
RG_MI5_SE-1_2022-09-12_N	E354	12-Sep-2022					23-Sep-2022			
Organic / Inorganic Carbon : Total Inorganic Carbon by Acetic Acid pH Standard	d Curve									
LDPE bag										
RG_MI5_SE-2_2022-09-12_N	E354	12-Sep-2022					23-Sep-2022			
Organic / Inorganic Carbon : Total Inorganic Carbon by Acetic Acid pH Standard	d Curve									
LDPE bag										
RG_MI5_SE-3_2022-09-12_N	E354	12-Sep-2022					23-Sep-2022			
Organic / Inorganic Carbon : Total Inorganic Carbon by Acetic Acid pH Standard	d Curve									
LDPE bag										
RG_MIDAG_SE-1_2022-09-13_N	E354	13-Sep-2022					23-Sep-2022			
Organic / Inorganic Carbon : Total Inorganic Carbon by Acetic Acid pH Standard	d Curve									
LDPE bag										
RG_MIDAG_SE-2_2022-09-13_N	E354	13-Sep-2022					23-Sep-2022			
Organic / Inorganic Carbon : Total Inorganic Carbon by Acetic Acid pH Standard	d Curve									
LDPE bag										
RG_MIDAG_SE-3_2022-09-13_N	E354	13-Sep-2022					23-Sep-2022			
Organic / Inorganic Carbon : Total Inorganic Carbon by Acetic Acid pH Standard	d Curve									
LDPE bag										
RG_MIDAG_SE-4_2022-09-13_N	E354	13-Sep-2022					23-Sep-2022			
							1			

Page : 10 of 22 Work Order : CG2212740

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Contable of Clinic Hample (Dis) Example (D	aut. John John							Tiolding time excee	, ,	***********	riolaling
Part Rec Actual	nalyte Group	Method	Sampling Date	Ex	traction / Pr	eparation			Analys	sis	
Part Rec Actual	Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
LDPE bag RG_MIDAG_SE-5_2022-09-13_N				Date					Rec	Actual	
RG_MIDAG_SE-5_2022-09-13_N	rganic / Inorganic Carbon : Total Inorganic Carbon by Acetic Acid pH Standa	rd Curve									
Taganic Inorganic Carbon : Total Inorganic Carbon by Acetic Acid pH Standard Curve	DPE bag										
LipPE bag RG_MIDCO_SE-1_2022-09-13_N	RG_MIDAG_SE-5_2022-09-13_N	E354	13-Sep-2022					23-Sep-2022			
LipPE bag RG_MIDCO_SE-1_2022-09-13_N											
LipPE bag RG_MIDCO_SE-1_2022-09-13_N	rganic / Inorganic Carbon : Total Inorganic Carbon by Acetic Acid pH Standa	rd Curve									
RG_MIDCO_SE-1_2022-09-13_N								T			
Image Inorganic Carbon Total Inorganic Carbon by Acetic Acid pH Standard Curve	S .	E354	13-Sep-2022					23-Sep-2022			
Companic Carbon : Total Inorganic Carbon by Acetic Acid pH Standard Curve								' '			
Comparison Carbon Total Inorganic Carbon by Acetic Acid pH Standard Curve Carbon Ca	rganic / Inorganic Carbon : Total Inorganic Carbon by Acetic Acid pH Standa	rd Curve									
RG_MIDCO_SE-2_2022-09-13_N		ra Garve									
rganic / Inorganic Carbon : Total Inorganic Carbon by Acetic Acid pH Standard Curve Page	<u> </u>	E354	13-Sep-2022					23-Sep-2022			
Companie Carbon Total Inorganic Carbon by Acetic Acid pH Standard Curve								i '			
Companie Carbon Total Inorganic Carbon by Acetic Acid pH Standard Curve	rganic / Inorganic Carbon : Total Inorganic Carbon by Acotic Acid nH Standa	rd Curvo									
RG_MIDCO_SE-3_2022-09-13_N E354 13-Sep-2022		la Guive						T T			
Internation Total Inte	<u> </u>	E354	13-Sep-2022					23-Sep-2022			
Comparison Carbon Total Inorganic Carbon by Acetic Acid pH Standard Curve Carbon Total Inorganic Carbon Total								' '			
Companie Carbon Total Inorganic Carbon by Acetic Acid pH Standard Curve	rganic / Inorganic Carbon : Total Inorganic Carbon by Acotic Acid nH Standa	rd Curvo									
RG_MIDCO_SE-4_2022-09-13_N E354 13-Sep-2022		la Surve						T			
rganic / Inorganic Carbon : Total Inorganic Carbon by Acetic Acid pH Standard Curve LDPE bag RG_MIDCO_SE-5_2022-09-13_N E354 13-Sep-2022 23-Sep-2022 12-Sep-2022 23-Sep-2022 23-Sep-2022 23-Sep-2022 23-Sep-2022 LDPE bag RG_MIULE_SE-2_2022-09-12_N E354 12-Sep-2022 23-Sep-2022 23-Sep-2022 23-Sep-2022 23-Sep-2022 LDPE bag RG_MIULE_SE-2_2022-09-12_N E354 12-Sep-2022 LOPE bag	S .	E354	13-Sep-2022					23-Sep-2022			
Companie Inorganic Carbon Total Inorganic Carbon by Acetic Acid pH Standard Curve											
Companie Inorganic Carbon Total Inorganic Carbon by Acetic Acid pH Standard Curve	rganic / Inorganic Carbon : Total Inorganic Carbon by Acetic Acid pH Standa	rd Curve									
RG_MIDCO_SE-5_2022-09-13_N E354 13-Sep-2022 23-Sep-2022 brganic / Inorganic Carbon : Total Inorganic Carbon by Acetic Acid pH Standard Curve E354 12-Sep-2022 23-Sep-2022 brganic / Inorganic Carbon : Total Inorganic Carbon by Acetic Acid pH Standard Curve E354 12-Sep-2022 23-Sep-2022 brganic / Inorganic Carbon : Total Inorganic Carbon by Acetic Acid pH Standard Curve E354 12-Sep-2022 23-Sep-2022 brganic / Inorganic Carbon : Total Inorganic Carbon by Acetic Acid pH Standard Curve E354 12-Sep-2022 23-Sep-2022											
Inganic / Inorganic Carbon : Total Inorganic Carbon by Acetic Acid pH Standard Curve LDPE bag RG_MIULE_SE-1_2022-09-12_N E354 12-Sep-2022 Inganic / Inorganic Carbon : Total Inorganic Carbon by Acetic Acid pH Standard Curve LDPE bag RG_MIULE_SE-2_2022-09-12_N E354 12-Sep-2022 E354 E355 E354 E354 E354 E355 E354 E354 E355 E354 E355 E354 E355	S .	E354	13-Sep-2022					23-Sep-2022			
E354 12-Sep-2022 23-Sep-2022 23-Sep-2022			·					·			
### RG_MIULE_SE-1_2022-09-12_N ### E354 12-Sep-2022 23-Sep-2022 ### Indicators of the properties of	rganic / Inorganic Carbon : Total Inorganic Carbon by Acetic Acid pH Standa	rd Curve									
RG_MIULE_SE-1_2022-09-12_N E354 12-Sep-2022 23-Sep-2022 Inganic / Inorganic Carbon : Total Inorganic Carbon by Acetic Acid pH Standard Curve E354 12-Sep-2022 23-Sep-2022 Inorganic / Inorganic Carbon : Total Inorganic Carbon by Acetic Acid pH Standard Curve 23-Sep-2022 LDPE bag Inorganic Carbon : Total Inorganic Carbon by Acetic Acid pH Standard Curve											
Prganic / Inorganic Carbon : Total Inorganic Carbon by Acetic Acid pH Standard Curve LDPE bag RG_MIULE_SE-2_2022-09-12_N E354 12-Sep-2022 23-Sep-2022 Prganic / Inorganic Carbon : Total Inorganic Carbon by Acetic Acid pH Standard Curve LDPE bag	S .	E354	12-Sep-2022					23-Sep-2022			
Companie Carbon Total Inorganic Carbon by Acetic Acid pH Standard Curve Carbon Carb								' '			
Companie Carbon Total Inorganic Carbon by Acetic Acid pH Standard Curve Carbon Carb	rganic / Inorganic Carbon : Total Inorganic Carbon by Acotic Acid nH Standa	rd Curvo									
RG_MIULE_SE-2_2022-09-12_N E354 12-Sep-2022 123-Sep-2022 23-Sep-2022 123-Sep-2022		Ta Garve						T			
Prganic / Inorganic Carbon : Total Inorganic Carbon by Acetic Acid pH Standard Curve LDPE bag	<u> </u>	E354	12-Sep-2022					23-Sep-2022			
LDPE bag	·		50 - 50-2								
LDPE bag	rganic / Inorganic Carbon : Total Inorganic Carbon by Acetic Acid all Standa	rd Curvo									
		Tu Curve						T			
10 mole_oc o_cot 12 mole 12 mole	-	F354	12-Sep-2022					23-Sep-2022			
	110_mi0&&_0&-0_2022-00-12_11	2004	12 00p-2022					20 00p-2022			

Page : 11 of 22 Work Order : CG2212740

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: Soil/Soild							Holding time excee			riolaling i
Analyte Group	Method	Sampling Date	Ex	traction / Pr	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Organic / Inorganic Carbon : Total Inorganic Carbon by Acetic Acid pH Standa	rd Curve									
LDPE bag										
RG_MIULE_SE-4_2022-09-12_N	E354	12-Sep-2022					23-Sep-2022			
		·					i i			
No. 2. (1999) 10. (1997) 7. (1999) 10. (1997) 10. (1997)	10									
Organic / Inorganic Carbon : Total Inorganic Carbon by Acetic Acid pH Standa	ird Curve						I			
LDPE bag	E354	12-Sep-2022					23-Sep-2022			
RG_MIULE_SE-5_2022-09-12_N	E304	12-3ep-2022					23-Sep-2022			
article Size : Grain Size Report (Attachment) Pipet/Sieve Method										
LDPE bag										
RG_MI5_SE-1_2022-09-12_N	E185A	12-Sep-2022					28-Sep-2022	365		
								days		
Particle Size : Grain Size Report (Attachment) Pipet/Sieve Method										
LDPE bag										
RG_MI5_SE-2_2022-09-12_N	E185A	12-Sep-2022					28-Sep-2022	365		
		·					i i	days		
and the other control of the process of the control								aayo		
Particle Size : Grain Size Report (Attachment) Pipet/Sieve Method										
LDPE bag	E105A	10 Con 2022					00.0 0000			
RG_MI5_SE-3_2022-09-12_N	E185A	12-Sep-2022					28-Sep-2022	365		
								days		
article Size : Grain Size Report (Attachment) Pipet/Sieve Method										
LDPE bag										
RG_MIDAG_SE-1_2022-09-13_N	E185A	13-Sep-2022					28-Sep-2022	365		
								days		
article Size : Grain Size Report (Attachment) Pipet/Sieve Method										
LDPE bag										
RG_MIDAG_SE-2_2022-09-13_N	E185A	13-Sep-2022					28-Sep-2022	365		
		·					i i	days		
A CALLOS A CAST OF A DATA (A CAST A DATA (A CAST A DATA (A CAST A								,		
Particle Size : Grain Size Report (Attachment) Pipet/Sieve Method										
LDPE bag	E4054	42.0 2022					20.0 2000			
RG_MIDAG_SE-3_2022-09-13_N	E185A	13-Sep-2022					28-Sep-2022	365		
								days		
Particle Size : Grain Size Report (Attachment) Pipet/Sieve Method										
LDPE bag										
RG_MIDAG_SE-4_2022-09-13_N	E185A	13-Sep-2022					28-Sep-2022	365		
								days		

Page : 12 of 22 Work Order : CG2212740

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Wattix: Soll/Solid						aldation. *-	noiding time excee	duiloo ,	- vvicinii	riolaling Tilli
Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Particle Size : Grain Size Report (Attachment) Pipet/Sieve Method										
LDPE bag										
RG_MIDAG_SE-5_2022-09-13_N	E185A	13-Sep-2022					28-Sep-2022	365		
								days		
Particle Size : Grain Size Report (Attachment) Pipet/Sieve Method								-		
LDPE bag										
RG MIDCO SE-1 2022-09-13 N	E185A	13-Sep-2022					28-Sep-2022	365		
NO_MID00_0E-1_2022 00-10_N	2.007.	10 000 2022					20 000 2022	days		
								uays		
Particle Size : Grain Size Report (Attachment) Pipet/Sieve Method				I						
LDPE bag	E405A	40 0 0000					00.0 0000			
RG_MIDCO_SE-2_2022-09-13_N	E185A	13-Sep-2022					28-Sep-2022	365		
								days		
Particle Size : Grain Size Report (Attachment) Pipet/Sieve Method										
LDPE bag										
RG_MIDCO_SE-3_2022-09-13_N	E185A	13-Sep-2022					28-Sep-2022	365		
								days		
Particle Size : Grain Size Report (Attachment) Pipet/Sieve Method										
LDPE bag										
RG_MIDCO_SE-4_2022-09-13_N	E185A	13-Sep-2022					28-Sep-2022	365		
								days		
Particle Size : Grain Size Report (Attachment) Pipet/Sieve Method										
LDPE bag										
RG_MIDCO_SE-5_2022-09-13_N	E185A	13-Sep-2022					28-Sep-2022	365		
							·	days		
Particle Size : Grain Size Report (Attachment) Pipet/Sieve Method								,		
LDPE bag										
RG_MIULE_SE-1_2022-09-12_N	E185A	12-Sep-2022					28-Sep-2022	365		
110_WIGEE_GE-1_2022-00-12_14	2.007.	.2 33p 2022					20 000 2022	days		
								uays		
Particle Size : Grain Size Report (Attachment) Pipet/Sieve Method							I			
LDPE bag	E405A	10 04 - 0000					20 50- 2000	06-		
RG_MIULE_SE-2_2022-09-12_N	E185A	12-Sep-2022					28-Sep-2022	365		
								days		
Particle Size : Grain Size Report (Attachment) Pipet/Sieve Method										
LDPE bag										
RG_MIULE_SE-3_2022-09-12_N	E185A	12-Sep-2022					28-Sep-2022	365		
								days		

Page : 13 of 22 Work Order : CG2212740

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Wattix: Soli/Solid							Holding time excee	,,		
Analyte Group	Method	Sampling Date	Ex	traction / Pr	eparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Particle Size : Grain Size Report (Attachment) Pipet/Sieve Method										
LDPE bag										
RG_MIULE_SE-4_2022-09-12_N	E185A	12-Sep-2022					28-Sep-2022	365		
								days		
Particle Size : Grain Size Report (Attachment) Pipet/Sieve Method										
LDPE bag										
RG MIULE SE-5 2022-09-12 N	E185A	12-Sep-2022					28-Sep-2022	365		
NG_WIOLE_SE-5_2022-09-12_N	L 100/1	12-00p-2022					20-0ep-2022	days		
								uays		
Physical Tests : Moisture Content by Gravimetry								ı		
Glass soil jar/Teflon lined cap										
RG_MI5_SE-1_2022-09-12_N	E144	12-Sep-2022					20-Sep-2022			
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap										
RG_MI5_SE-2_2022-09-12_N	E144	12-Sep-2022					20-Sep-2022			
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap										
RG MI5 SE-3 2022-09-12 N	E144	12-Sep-2022					20-Sep-2022			
· · · · · · · · · · · · · · · · · · ·		'								
Physical Tests - Maisture Content by Crayimatur										
Physical Tests : Moisture Content by Gravimetry Glass soil jar/Teflon lined cap							I			
RG_MIDAG_SE-1_2022-09-13_N	E144	13-Sep-2022					20-Sep-2022			
KG_MIDAG_SE-1_2022-09-13_N	L144	13-3ep-2022					20-3ep-2022			
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap										
RG_MIDAG_SE-2_2022-09-13_N	E144	13-Sep-2022					20-Sep-2022			
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap										
RG_MIDAG_SE-3_2022-09-13_N	E144	13-Sep-2022					20-Sep-2022			
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap							1			
RG_MIDAG_SE-4_2022-09-13_N	E144	13-Sep-2022					20-Sep-2022			

Page : 14 of 22 Work Order : CG2212740

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: 3011/30110						aldation. • -	Holding time excee	dance,	- VVICIIIII	riolaling riii
Analyte Group	Method	Sampling Date	Ext	raction / Pr	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual		-	Rec	Actual	
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap										
RG_MIDAG_SE-5_2022-09-13_N	E144	13-Sep-2022					20-Sep-2022			
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap										
RG_MIDCO_SE-1_2022-09-13_N	E144	13-Sep-2022					20-Sep-2022			
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap										
RG_MIDCO_SE-2_2022-09-13_N	E144	13-Sep-2022					20-Sep-2022			
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap										
RG_MIDCO_SE-3_2022-09-13_N	E144	13-Sep-2022					20-Sep-2022			
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap										
RG_MIDCO_SE-4_2022-09-13_N	E144	13-Sep-2022					20-Sep-2022			
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap										
RG_MIDCO_SE-5_2022-09-13_N	E144	13-Sep-2022					20-Sep-2022			
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap										
RG_MIULE_SE-1_2022-09-12_N	E144	12-Sep-2022					20-Sep-2022			
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap										
RG_MIULE_SE-2_2022-09-12_N	E144	12-Sep-2022					20-Sep-2022			
Physical Tests : Moisture Content by Gravimetry				<u> </u>						
Glass soil jar/Teflon lined cap										
RG_MIULE_SE-3_2022-09-12_N	E144	12-Sep-2022					20-Sep-2022			

Page : 15 of 22 Work Order : CG2212740

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Watrix: Soil/Soild						diddion.	noiding time exce	oddiioo ,	***************************************	riolaling riiii	
Analyte Group	Method	Sampling Date	Ext	raction / Pi	reparation		Analysis				
Container / Client Sample ID(s)			Preparation	Holding Times		Eval	Analysis Date	Holding Times		Eval	
			Date	Rec	Actual		-	Rec	Actual		
Physical Tests : Moisture Content by Gravimetry											
Glass soil jar/Teflon lined cap											
RG_MIULE_SE-4_2022-09-12_N	E144	12-Sep-2022					20-Sep-2022				
Physical Tests : Moisture Content by Gravimetry											
Glass soil jar/Teflon lined cap											
RG_MIULE_SE-5_2022-09-12_N	E144	12-Sep-2022					20-Sep-2022				
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)									1		
Glass soil jar/Teflon lined cap											
RG_MIDAG_SE-1_2022-09-13_N	E108	13-Sep-2022	21-Sep-2022				21-Sep-2022	30 days	8 days	✓	
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)											
Glass soil jar/Teflon lined cap											
RG_MIDAG_SE-2_2022-09-13_N	E108	13-Sep-2022	21-Sep-2022				21-Sep-2022	30 days	8 days	✓	
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)											
Glass soil jar/Teflon lined cap											
RG_MIDAG_SE-3_2022-09-13_N	E108	13-Sep-2022	21-Sep-2022				21-Sep-2022	30 days	8 days	✓	
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)											
Glass soil jar/Teflon lined cap											
RG_MIDAG_SE-4_2022-09-13_N	E108	13-Sep-2022	21-Sep-2022				21-Sep-2022	30 days	8 days	✓	
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)											
Glass soil jar/Teflon lined cap											
RG_MIDAG_SE-5_2022-09-13_N	E108	13-Sep-2022	21-Sep-2022				21-Sep-2022	30 days	8 days	✓	
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)											
Glass soil jar/Teflon lined cap											
RG_MIDCO_SE-1_2022-09-13_N	E108	13-Sep-2022	21-Sep-2022				21-Sep-2022	30 days	8 days	✓	
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)											
Glass soil jar/Teflon lined cap											
RG_MIDCO_SE-2_2022-09-13_N	E108	13-Sep-2022	21-Sep-2022				21-Sep-2022	30 days	8 days	✓	

Page : 16 of 22 Work Order : CG2212740

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

							Holding time exce			
Analyte Group	Method	Sampling Date	Ext	raction / Pr	reparation		Analysis			
Container / Client Sample ID(s)			Preparation	Holding Times		Eval	Analysis Date	Holding Times		Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)										
Glass soil jar/Teflon lined cap										
RG_MIDCO_SE-3_2022-09-13_N	E108	13-Sep-2022	21-Sep-2022				21-Sep-2022	30 days	8 days	✓
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)										
Glass soil jar/Teflon lined cap										
RG_MIDCO_SE-4_2022-09-13_N	E108	13-Sep-2022	21-Sep-2022				21-Sep-2022	30 days	8 days	✓
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)									1	
Glass soil jar/Teflon lined cap										
RG_MIDCO_SE-5_2022-09-13_N	E108	13-Sep-2022	21-Sep-2022				21-Sep-2022	30 days	8 days	✓
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)										
Glass soil jar/Teflon lined cap										
RG_MI5_SE-1_2022-09-12_N	E108	12-Sep-2022	21-Sep-2022				21-Sep-2022	30 days	9 days	✓
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)										
Glass soil jar/Teflon lined cap										
RG_MI5_SE-2_2022-09-12_N	E108	12-Sep-2022	21-Sep-2022				21-Sep-2022	30 days	9 days	✓
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)										
Glass soil jar/Teflon lined cap										
RG_MI5_SE-3_2022-09-12_N	E108	12-Sep-2022	21-Sep-2022				21-Sep-2022	30 days	9 days	✓
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)										
Glass soil jar/Teflon lined cap										
RG_MIULE_SE-1_2022-09-12_N	E108	12-Sep-2022	21-Sep-2022				21-Sep-2022	30 days	9 days	✓
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)									ı	
Glass soil jar/Teflon lined cap	5 400	40.0 0000	04.0				04.0	00.1		
RG_MIULE_SE-2_2022-09-12_N	E108	12-Sep-2022	21-Sep-2022				21-Sep-2022	30 days	9 days	✓
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)									I	
Class soil jar/Toflan lined son	1	1					I			
Glass soil jar/Teflon lined cap RG_MIULE_SE-3_2022-09-12_N	E108	12-Sep-2022	21-Sep-2022				21-Sep-2022	30 days	0 -1	1

Page : 17 of 22 Work Order : CG2212740

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Analyte Group	Method Sampling Date Extraction / Preparation						Analysis			
Container / Client Sample ID(s)			Preparation	Holding Times		Eval	Analysis Date	Holding Times		Eval
			Date	Rec	Actual		-	Rec	Actual	
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)										
Glass soil jar/Teflon lined cap										
RG_MIULE_SE-4_2022-09-12_N	E108	12-Sep-2022	21-Sep-2022				21-Sep-2022	30 days	9 days	✓
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)										
Glass soil jar/Teflon lined cap										
RG_MIULE_SE-5_2022-09-12_N	E108	12-Sep-2022	21-Sep-2022				21-Sep-2022	30 days	9 days	✓
Polycyclic Aromatic Hydrocarbons : PAHs by Hex:Ace GC-MS										
Glass soil jar/Teflon lined cap	E641A	12 Can 2022	20 Can 2022		7 days	✓	20-Sep-2022	40 days	O days	✓
RG_MIDAG_SE-1_2022-09-13_N	E041A	13-Sep-2022	20-Sep-2022	14 days	/ days	•	20-Sep-2022	40 days	0 days	•
Polycyclic Aromatic Hydrocarbons : PAHs by Hex:Ace GC-MS										
Glass soil jar/Teflon lined cap										,
RG_MIDAG_SE-2_2022-09-13_N	E641A	13-Sep-2022	20-Sep-2022	14 days	7 days	✓	20-Sep-2022	40 days	0 days	✓
Polycyclic Aromatic Hydrocarbons : PAHs by Hex:Ace GC-MS										
Glass soil jar/Teflon lined cap RG_MIDAG_SE-3_2022-09-13_N	E641A	13-Sep-2022	20-Sep-2022	14	7 days	✓	20-Sep-2022	40 days	0 days	√
NG_MIDAG_SE-3_2022-09-13_N	20417	10-06μ-2022	20-36ρ-2022	days	1 days	Ť	20-3ep-2022	40 days	0 days	•
Polycyclic Aromatic Hydrocarbons : PAHs by Hex:Ace GC-MS										
Glass soil jar/Teflon lined cap										_
RG_MIDAG_SE-4_2022-09-13_N	E641A	13-Sep-2022	20-Sep-2022	14	7 days	✓	20-Sep-2022	40 days	0 days	✓
Polycyclic Aromatic Hydrocarbons : PAHs by Hex:Ace GC-MS				days						
Glass soil jar/Teflon lined cap										
RG_MIDAG_SE-5_2022-09-13_N	E641A	13-Sep-2022	20-Sep-2022	14	7 days	✓	20-Sep-2022	40 days	0 days	✓
				days	_				_	
Polycyclic Aromatic Hydrocarbons : PAHs by Hex:Ace GC-MS								1		
Glass soil jar/Teflon lined cap										
RG_MIDCO_SE-1_2022-09-13_N	E641A	13-Sep-2022	20-Sep-2022	14	7 days	✓	20-Sep-2022	40 days	0 days	✓
				days						
Polycyclic Aromatic Hydrocarbons : PAHs by Hex:Ace GC-MS							I			
Glass soil jar/Teflon lined cap RG MIDCO SE-2 2022-09-13 N	E641A	13-Sep-2022	20-Sep-2022	14	7 days	✓	20-Sep-2022	40 days	0 days	✓
10_MID00_0L-2_2022-08-10_IV	LOTIA	10-06ρ-2022	20-06p-2022		, uays	•	20-06p-2022	-o days	Juays	•
KG_NIIDCO_SE-2_2022-09-13_N	E041A	13-3ep-2022	20-Sep-2022	14 days	1 days	Y	20-3ep-2022	40 days	o days	

Page : 18 of 22 Work Order : CG2212740

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: Soli/Solid						aldation. • -	Holding time exce	cuarioc ,	- vvicinii	riolaling rill	
Analyte Group	Method	Sampling Date	Ex	traction / Pi	reparation		Analysis				
Container / Client Sample ID(s)			Preparation	Holding Times		Eval	Analysis Date	Holding Times		Eval	
			Date	Rec	Actual		-	Rec	Actual		
Polycyclic Aromatic Hydrocarbons : PAHs by Hex:Ace GC-MS											
Glass soil jar/Teflon lined cap											
RG_MIDCO_SE-3_2022-09-13_N	E641A	13-Sep-2022	20-Sep-2022	14	7 days	✓	20-Sep-2022	40 days	0 days	✓	
				days							
Polycyclic Aromatic Hydrocarbons : PAHs by Hex:Ace GC-MS											
Glass soil jar/Teflon lined cap											
RG_MIDCO_SE-4_2022-09-13_N	E641A	13-Sep-2022	20-Sep-2022	14	7 days	✓	20-Sep-2022	40 days	0 days	✓	
				days							
Polycyclic Aromatic Hydrocarbons : PAHs by Hex:Ace GC-MS											
Glass soil jar/Teflon lined cap											
RG_MIDCO_SE-5_2022-09-13_N	E641A	13-Sep-2022	20-Sep-2022	14	7 days	✓	20-Sep-2022	40 days	0 days	✓	
				days							
Polycyclic Aromatic Hydrocarbons : PAHs by Hex:Ace GC-MS											
Glass soil jar/Teflon lined cap											
RG_MI5_SE-1_2022-09-12_N	E641A	12-Sep-2022	20-Sep-2022	14	8 days	✓	20-Sep-2022	40 days	0 days	✓	
				days							
Polycyclic Aromatic Hydrocarbons : PAHs by Hex:Ace GC-MS											
Glass soil jar/Teflon lined cap											
RG_MI5_SE-2_2022-09-12_N	E641A	12-Sep-2022	20-Sep-2022	14	8 days	✓	20-Sep-2022	40 days	0 days	✓	
				days							
Polycyclic Aromatic Hydrocarbons : PAHs by Hex:Ace GC-MS											
Glass soil jar/Teflon lined cap											
RG_MI5_SE-3_2022-09-12_N	E641A	12-Sep-2022	20-Sep-2022	14	8 days	✓	20-Sep-2022	40 days	0 days	✓	
				days							
Polycyclic Aromatic Hydrocarbons : PAHs by Hex:Ace GC-MS											
Glass soil jar/Teflon lined cap											
RG_MIULE_SE-1_2022-09-12_N	E641A	12-Sep-2022	20-Sep-2022	14	8 days	✓	20-Sep-2022	40 days	0 days	✓	
				days							
Polycyclic Aromatic Hydrocarbons : PAHs by Hex:Ace GC-MS											
Glass soil jar/Teflon lined cap											
RG_MIULE_SE-2_2022-09-12_N	E641A	12-Sep-2022	20-Sep-2022	14	8 days	✓	20-Sep-2022	40 days	0 days	✓	
				days							
Polycyclic Aromatic Hydrocarbons : PAHs by Hex:Ace GC-MS									'		
Glass soil jar/Teflon lined cap											
RG_MIULE_SE-3_2022-09-12_N	E641A	12-Sep-2022	20-Sep-2022	14	8 days	✓	20-Sep-2022	40 days	0 days	✓	
				days							

Page : 19 of 22 Work Order : CG2212740

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Matrix: Soil/Solid Evaluation: × = Holding time exceedance; ✓ = Within Holding Time

Analyte Group	Method	Sampling Date	Extraction / Preparation				Analysis				
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval	
			Date	Rec	Actual			Rec	Actual		
Polycyclic Aromatic Hydrocarbons : PAHs by Hex:Ace GC-MS											
Glass soil jar/Teflon lined cap RG_MIULE_SE-4_2022-09-12_N	E641A	12-Sep-2022	20-Sep-2022	14 days	8 days	✓	20-Sep-2022	40 days	0 days	✓	
Polycyclic Aromatic Hydrocarbons : PAHs by Hex:Ace GC-MS											
Glass soil jar/Teflon lined cap RG_MIULE_SE-5_2022-09-12_N	E641A	12-Sep-2022	20-Sep-2022	14 days	8 days	✓	20-Sep-2022	40 days	0 days	✓	

Legend & Qualifier Definitions

Rec. HT: ALS recommended hold time (see units).

Page : 20 of 22 Work Order : CG2212740

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Soil/Solid		Evaluat	ion: × = QC frequ	ency outside sp	ecification; ✓ =	QC frequency wit	thin specification
Quality Control Sample Type			C	ount		Frequency (%))
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Mercury in Soil/Solid by CVAAS	E510	657176	2	40	5.0	5.0	✓
Metals in Soil/Solid by CRC ICPMS	E440	657175	2	40	5.0	5.0	✓
Moisture Content by Gravimetry	E144	655147	1	20	5.0	5.0	✓
PAHs by Hex:Ace GC-MS	E641A	655146	1	20	5.0	5.0	✓
pH by Meter (1:2 Soil:Water Extraction)	E108	658394	1	20	5.0	5.0	✓
Total Carbon by Combustion	E351	658685	2	40	5.0	5.0	✓
Total Inorganic Carbon by Acetic Acid pH Standard Curve	E354	662377	2	38	5.2	5.0	✓
Laboratory Control Samples (LCS)							
Mercury in Soil/Solid by CVAAS	E510	657176	4	40	10.0	10.0	1
Metals in Soil/Solid by CRC ICPMS	E440	657175	4	40	10.0	10.0	✓
Moisture Content by Gravimetry	E144	655147	1	20	5.0	5.0	✓
PAHs by Hex:Ace GC-MS	E641A	655146	1	20	5.0	5.0	✓
pH by Meter (1:2 Soil:Water Extraction)	E108	658394	2	20	10.0	10.0	✓
Total Carbon by Combustion	E351	658685	4	40	10.0	10.0	✓
Total Inorganic Carbon by Acetic Acid pH Standard Curve	E354	662377	4	38	10.5	10.0	✓
Method Blanks (MB)							
Mercury in Soil/Solid by CVAAS	E510	657176	2	40	5.0	5.0	1
Metals in Soil/Solid by CRC ICPMS	E440	657175	2	40	5.0	5.0	✓
Moisture Content by Gravimetry	E144	655147	1	20	5.0	5.0	✓
PAHs by Hex:Ace GC-MS	E641A	655146	1	20	5.0	5.0	✓
Total Carbon by Combustion	E351	658685	2	40	5.0	5.0	✓
Total Inorganic Carbon by Acetic Acid pH Standard Curve	E354	662377	2	38	5.2	5.0	1
Matrix Spikes (MS)							
PAHs by Hex:Ace GC-MS	E641A	655146	1	20	5.0	5.0	1

 Page
 : 21 of 22

 Work Order
 : CG2212740

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
pH by Meter (1:2 Soil:Water Extraction)	E108 Calgary - Environmental	Soil/Solid	BC Lab Manual	pH is determined by potentiometric measurement with a pH electrode at ambient laboratory temperature (normally 20 ± 5°C), and is carried out in accordance with procedures described in the BC Lab Manual (prescriptive method). The procedure involves mixing the dried (at <60 °C) and sieved (10mesh/2mm) sample with ultra pure water at a 1:2 ratio of sediment to water. The pH is then measured by a standard pH probe.
Moisture Content by Gravimetry	E144 Calgary - Environmental	Soil/Solid	CCME PHC in Soil - Tier 1	Moisture is measured gravimetrically by drying the sample at 105°C. Moisture content is calculated as the weight loss (due to water) divided by the wet weight of the sample, expressed as a percentage.
Grain Size Report (Attachment) Pipet/Sieve Method	E185A Saskatoon - Environmental	Soil/Solid	SSIR-51 Method 3.2.1	A grain size curve is a graphical representation of the particle sizing of a sample representing the percent passing against the effective particle size.
Total Carbon by Combustion	E351 Saskatoon - Environmental	Soil/Solid	CSSS (2008) 21.2 (mod)	Total Carbon is determined by the high temperature combustion method with measurement by an infrared detector.
Total Inorganic Carbon by Acetic Acid pH Standard Curve	E354 Saskatoon - Environmental	Soil/Solid	CSSS (2008) 20.2	Total Inorganic Carbon is determined by acetic acid pH standard curve, where a known quantity of acetic acid is consumed by reaction with carbonates in the soil. The pH of the resulting solution is measured and compared against a standard curve relating pH to weight of carbonate.
Metals in Soil/Solid by CRC ICPMS	E440 Calgary - Environmental	Soil/Solid	EPA 6020B (mod)	This method is intended to liberate metals that may be environmentally available. Samples are dried, then sieved through a 2 mm sieve, and digested with HNO3 and HCI. Dependent on sample matrix, some metals may be only partially recovered, including AI, Ba, Be, Cr, Sr, Ti, Tl, V, W, and Zr. Silicate minerals are not solubilized. Volatile forms of sulfur (including sulfide) may not be captured, as they may be lost during sampling, storage, or digestion. This method does not adequately recover elemental sulfur, and is unsuitable for assessment of elemental sulfur standards or guidelines. Analysis is by Collision/Reaction Cell ICPMS.
Mercury in Soil/Solid by CVAAS	E510 Calgary - Environmental	Soil/Solid	EPA 200.2/1631 Appendix (mod)	Samples are dried, then sieved through a 2 mm sieve, and digested with HNO3 and HCI, followed by CVAAS analysis.
PAHs by Hex:Ace GC-MS	E641A Calgary - Environmental	Soil/Solid	EPA 8270E (mod)	Polycyclic Aromatic Hydrocarbons (PAHs) are extracted with hexane/acetone and analyzed by GC-MS. If reported, IACR (index of additive cancer risk, unitless) and B(a)P toxic potency equivalent (in soil concentration units) are calculated as per CCME PAH Soil Quality Guidelines fact sheet (2010) or ABT1.

Page : 22 of 22 Work Order : CG2212740

Client : Teck Coal Limited

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Particle Size Analysis (Pipette) - Wentworth Classification	EC184A Saskatoon - Environmental	Soil/Solid	Modified Wentworth	The particle size determination is performed by various methods to generate a Grain Size curve. The data from the curve is then used to produce particle size ranges based on the Modified Wentworth Classification system.
Total Organic Carbon (Calculated) in soil	EC356 Saskatoon - Environmental	Soil/Solid	CSSS (2008) 21.2	Total Organic Carbon (TOC) is calculated by the difference between total carbon (TC) and total inorganic carbon (TIC).
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Leach 1:2 Soil:Water for pH/EC	EP108 Calgary - Environmental	Soil/Solid	BC WLAP METHOD: PH, ELECTROMETRIC, SOIL	The procedure involves mixing the dried (at <60°C) and sieved (No. 10 / 2mm) sample with deionized/distilled water at a 1:2 ratio of sediment to water.
Digestion for Metals and Mercury	EP440 Calgary - Environmental	Soil/Solid	EPA 200.2 (mod)	Samples are dried, then sieved through a 2 mm sieve, and digested with HNO3 and HCI. This method is intended to liberate metals that may be environmentally available.
PHCs and PAHs Hexane-Acetone Tumbler Extraction	EP601 Calgary - Environmental	Soil/Solid	CCME PHC in Soil - Tier 1 (mod)	Samples are subsampled and Petroleum Hydrocarbons (PHC) and PAHs are extracted with 1:1 hexane:acetone using a rotary extractor.
Dry and Grind	EPP442 Calgary - Environmental	Soil/Solid	Soil Sampling and Methods of Analysis, Carter 2008	After removal of any coarse fragments and reservation of wet subsamples a portion of homogenized sample is set in a tray and dried at less than 60°C until dry. The sample is then particle size reduced with an automated crusher or mortar and pestle, typically to <2 mm. Further size reduction may be needed for particular tests.

QUALITY CONTROL REPORT

Work Order CG2212740

Client : Teck Coal Limited Contact : Cybele Heddle Address

Sparwood BC Canada

421 Pine Ave

Telephone

Project : REGIONAL EFFECTS PROGRAM

PO : VPO00816101

C-O-C number :REP LAEMP CMm 2022-09 ALS

Sampler : Jennifer Ings

Site

Quote number : Teck Coal Master Quote

No. of samples received : 18 No. of samples analysed : 18 Page : 1 of 18

Laboratory : Calgary - Environmental

Account Manager : Lyudmyla Shvets

Address :2559 29th Street NE

Calgary, Alberta Canada T1Y 7B5

Telephone :+1 403 407 1800

Date Samples Received : 15-Sep-2022 08:50

Date Analysis Commenced :20-Sep-2022

:28-Sep-2022 16:33 Issue Date

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives
- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Reference Material (RM) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Amber Sheikh	Laboratory Assistant	Calgary Organics, Calgary, Alberta
Anthony Calero	Supervisor - Inorganic	Calgary Metals, Calgary, Alberta
Hedy Lai	Team Leader - Inorganics	Saskatoon Inorganics, Saskatoon, Saskatchewan
Hedy Lai	Team Leader - Inorganics	Saskatoon Sask Soils, Saskatoon, Saskatchewan
Sara Niroomand		Calgary Metals, Calgary, Alberta
Sorina Motea	Laboratory Analyst	Calgary Organics, Calgary, Alberta
Vishnu Patel		Calgary Inorganics, Calgary, Alberta

 Page
 : 2 of 18

 Work Order
 : CG2212740

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

 Page
 : 3 of 18

 Work Order
 : CG2212740

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Soil/Solid							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Physical Tests (QC	C Lot: 655147)										
CG2212740-001	RG_MI5_SE-1_2022-09-12 _N	moisture		E144	0.25	%	66.5	58.7	12.4%	20%	
Physical Tests (QC	C Lot: 658394)										
CG2212740-001	RG_MI5_SE-1_2022-09-12 _N	pH (1:2 soil:water)		E108	0.10	pH units	7.68	7.70	0.260%	5%	
Organic / Inorganic	Carbon (QC Lot: 65865	5)									
CG2212740-001	RG_MI5_SE-1_2022-09-12 _N	carbon, total [TC]		E351	0.050	%	4.94	4.69	5.13%	20%	
Organic / Inorganic	Carbon (QC Lot: 65868	5)									
CG2212740-008	RG_MIULE_SE-5_2022-09 -12_N	carbon, total [TC]		E351	0.050	%	6.86	6.80	0.835%	20%	
Organic / Inorganic	Carbon (QC Lot: 66232	6)									
CG2211503-002	Anonymous	carbon, inorganic [IC]		E354	0.050	%	0.110	0.109	0.0008	Diff <2x LOR	
Organic / Inorganic	Carbon (QC Lot: 66237	7)									
CG2212740-011	RG_MIDAG_SE-3_2022-09 -13 N	carbon, inorganic [IC]		E354	0.050	%	2.74	2.72	0.673%	20%	
Metals (QC Lot: 65	7173)										
CG2212737-015	Anonymous	mercury	7439-97-6	E510	0.0050	mg/kg	0.0226	0.0199	0.0027	Diff <2x LOR	
Metals (QC Lot: 65	7174)							1			
CG2212737-015	Anonymous	aluminum	7429-90-5	E440	50	mg/kg	17400	14800	16.4%	40%	
		antimony	7440-36-0	E440	0.10	mg/kg	0.43	0.38	0.04	Diff <2x LOR	
		arsenic	7440-38-2	E440	0.10	mg/kg	7.46	6.35	16.1%	30%	
		barium	7440-39-3	E440	0.50	mg/kg	266	231	13.9%	40%	
		beryllium	7440-41-7	E440	0.10	mg/kg	0.72	0.63	13.5%	30%	
		bismuth	7440-69-9	E440	0.20	mg/kg	<0.20	<0.20	0	Diff <2x LOR	
		boron	7440-42-8	E440	5.0	mg/kg	8.9	6.4	2.5	Diff <2x LOR	
		cadmium	7440-43-9	E440	0.020	mg/kg	0.431	0.409	5.15%	30%	
		calcium	7440-70-2	E440	50	mg/kg	83600	75800	9.76%	30%	
		chromium	7440-47-3	E440	0.50	mg/kg	18.3	15.4	16.8%	30%	
		conomium	7440-48-4	E440	0.30	mg/kg	7.20	6.40	11.7%	30%	
			7440-48-4	E440	0.10	mg/kg	14.8	13.2	11.7%	30%	
		copper		E440				14400		30%	
		iron	7439-89-6		50	mg/kg	16200		12.3%		
		lead	7439-92-1	E440	0.50	mg/kg	9.31	8.52	8.82%	40%	
		lithium	7439-93-2	E440	2.0	mg/kg	14.2	12.5	12.6%	30%	

Page : 4 of 18
Work Order : CG2212740
Client : Teck Coal Limited

ub-Matrix: Soil/Solid							Labora	atory Duplicate (D	UP) Report		
aboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Metals (QC Lot: 657	7174) - continued										
CG2212737-015	Anonymous	magnesium	7439-95-4	E440	20	mg/kg	12000	10600	11.8%	30%	
		manganese	7439-96-5	E440	1.0	mg/kg	331	295	11.5%	30%	
		molybdenum	7439-98-7	E440	0.10	mg/kg	0.49	0.45	0.04	Diff <2x LOR	
		nickel	7440-02-0	E440	0.50	mg/kg	19.8	17.5	12.3%	30%	
		phosphorus	7723-14-0	E440	50	mg/kg	673	572	16.3%	30%	
		potassium	7440-09-7	E440	100	mg/kg	2050	1690	19.5%	40%	
		selenium	7782-49-2	E440	0.20	mg/kg	0.28	0.23	0.05	Diff <2x LOR	
		silver	7440-22-4	E440	0.10	mg/kg	0.13	0.12	0.009	Diff <2x LOR	
		sodium	7440-23-5	E440	50	mg/kg	230	193	37	Diff <2x LOR	
		strontium	7440-24-6	E440	0.50	mg/kg	83.8	75.5	10.4%	40%	
		sulfur	7704-34-9	E440	1000	mg/kg	<1000	<1000	0	Diff <2x LOR	
		thallium	7440-28-0	E440	0.050	mg/kg	0.201	0.176	0.024	Diff <2x LOR	
		tin	7440-31-5	E440	2.0	mg/kg	<2.0	<2.0	0	Diff <2x LOR	
		titanium	7440-32-6	E440	1.0	mg/kg	50.4	54.8	8.34%	40%	
		tungsten	7440-33-7	E440	0.50	mg/kg	<0.50	<0.50	0	Diff <2x LOR	
		uranium	7440-61-1	E440	0.050	mg/kg	0.615	0.552	10.7%	30%	
		vanadium	7440-62-2	E440	0.20	mg/kg	36.1	30.9	15.4%	30%	
		zinc	7440-66-6	E440	2.0	mg/kg	59.9	51.9	14.2%	30%	
		zirconium	7440-67-7	E440	1.0	mg/kg	2.3	1.9	0.4	Diff <2x LOR	
letals (QC Lot: 657	7475)										
G2212740-018	RG MIDCO SE-5 2022-0	aluminum	7429-90-5	E440	50	mg/kg	11400	10000	13.3%	40%	
702212740 010	9-13_N	aluminum	7420 00 0	2440		mg/kg	11400	10000	10.070	4070	
		antimony	7440-36-0	E440	0.10	mg/kg	0.28	0.29	0.006	Diff <2x LOR	
		arsenic	7440-38-2	E440	0.10	mg/kg	6.44	6.53	1.28%	30%	
		barium	7440-39-3	E440	0.50	mg/kg	110	126	13.8%	40%	
		beryllium	7440-41-7	E440	0.10	mg/kg	0.71	0.71	0.221%	30%	
		bismuth	7440-69-9	E440	0.20	mg/kg	<0.20	<0.20	0	Diff <2x LOR	
		boron	7440-42-8	E440	5.0	mg/kg	9.9	10.3	0.4	Diff <2x LOR	
		cadmium	7440-43-9	E440	0.020	mg/kg	1.27	1.52	18.2%	30%	
		calcium	7440-70-2	E440	50	mg/kg	46400	62100	29.0%	30%	
		chromium	7440-47-3	E440	0.50	mg/kg	13.3	12.9	3.01%	30%	
		cobalt	7440-48-4	E440	0.10	mg/kg	48.8	61.3	22.7%	30%	
		copper	7440-50-8	E440	0.50	mg/kg	16.4	16.5	0.573%	30%	
		iron	7439-89-6	E440	50	mg/kg	21200	18600	13.0%	30%	
							1		1	The second secon	1
		lead	7439-92-1	E440	0.50	mg/kg	10.1	10.0	1.11%	40%	

Page : 5 of 18
Work Order : CG2212740
Client : Teck Coal Limited

Sub-Matrix: Soil/Solid							Labora	atory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Metals (QC Lot: 65	57175) - continued										
CG2212740-018	RG_MIDCO_SE-5_2022-0 9-13_N	magnesium	7439-95-4	E440	20	mg/kg	7570	9880	26.5%	30%	
		manganese	7439-96-5	E440	1.0	mg/kg	605	639	5.44%	30%	
		molybdenum	7439-98-7	E440	0.10	mg/kg	1.36	1.55	12.8%	40%	
		nickel	7440-02-0	E440	0.50	mg/kg	89.4	108	18.8%	30%	
		phosphorus	7723-14-0	E440	50	mg/kg	1220	1070	13.2%	30%	
		potassium	7440-09-7	E440	100	mg/kg	1920	1910	0.948%	40%	
		selenium	7782-49-2	E440	0.20	mg/kg	2.25	2.74	19.6%	30%	
		silver	7440-22-4	E440	0.10	mg/kg	<0.10	<0.10	0	Diff <2x LOR	
		sodium	7440-23-5	E440	50	mg/kg	151	157	6	Diff <2x LOR	
		strontium	7440-24-6	E440	0.50	mg/kg	91.9	105	13.6%	40%	
		sulfur	7704-34-9	E440	1000	mg/kg	<1000	<1000	0	Diff <2x LOR	
		thallium	7440-28-0	E440	0.050	mg/kg	0.284	0.273	0.011	Diff <2x LOR	
		tin	7440-31-5	E440	2.0	mg/kg	<2.0	<2.0	0	Diff <2x LOR	
		titanium	7440-32-6	E440	1.0	mg/kg	26.9	26.6	1.10%	40%	
		tungsten	7440-33-7	E440	0.50	mg/kg	<0.50	<0.50	0	Diff <2x LOR	
		uranium	7440-61-1	E440	0.050	mg/kg	0.692	0.838	19.1%	30%	
		vanadium	7440-62-2	E440	0.20	mg/kg	20.5	19.6	4.65%	30%	
		zinc	7440-66-6	E440	2.0	mg/kg	128	144	11.8%	30%	
		zirconium	7440-67-7	E440	1.0	mg/kg	1.2	1.2	0.07	Diff <2x LOR	
Metals (QC Lot: 65	57176)										
CG2212740-018	RG_MIDCO_SE-5_2022-0 9-13_N	mercury	7439-97-6	E510	0.0050	mg/kg	0.0233	0.0259	0.0026	Diff <2x LOR	
olycyclic Aromati	ic Hydrocarbons (QC Lo	t: 655146)									
CG2212740-001	RG_MI5_SE-1_2022-09-12 N	acenaphthene	83-32-9	E641A	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		acenaphthylene	208-96-8	E641A	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		acridine	260-94-6	E641A	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		anthracene	120-12-7	E641A	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		benz(a)anthracene	56-55-3	E641A	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		benzo(a)pyrene	50-32-8	E641A	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		benzo(b+j)fluoranthene	n/a	E641A	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		benzo(g,h,i)perylene	191-24-2	E641A	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		benzo(k)fluoranthene	207-08-9	E641A	0.050	mg/kg	<0.050	0.052	0.002	Diff <2x LOR	
		chrysene	218-01-9	E641A	0.050	mg/kg	0.073	0.106	0.033	Diff <2x LOR	
		,									
		dibenz(a,h)anthracene	53-70-3	E641A	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	

 Page
 : 6 of 18

 Work Order
 : CG2212740

 Client
 : Teck Coal Limited

Sub-Matrix: Soil/Solid							Labora	tory Duplicate (D	UP) Report		
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Polycyclic Aromatic	Hydrocarbons (QC Lot	: 655146) - continued									
CG2212740-001	RG_MI5_SE-1_2022-09-12 _N	fluorene	86-73-7	E641A	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
	_	indeno(1,2,3-c,d)pyrene	193-39-5	E641A	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		methylnaphthalene, 1-	90-12-0	E641A	0.030	mg/kg	0.118	0.132	11.4%	50%	
		methylnaphthalene, 2-	91-57-6	E641A	0.030	mg/kg	0.145	0.162	11.0%	50%	
		naphthalene	91-20-3	E641A	0.010	mg/kg	0.073	0.077	5.04%	50%	
		phenanthrene	85-01-8	E641A	0.050	mg/kg	0.172	0.212	0.040	Diff <2x LOR	
		pyrene	129-00-0	E641A	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		quinoline	91-22-5	E641A	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	

 Page
 : 7 of 18

 Work Order
 : CG2212740

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Soil/Solid

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 655147)						
moisture		E144	0.25	%	<0.25	
Organic / Inorganic Carbon (QCLot: 65	58655)					
carbon, total [TC]		E351	0.05	%	<0.050	
Organic / Inorganic Carbon (QCLot: 65	58685)					
carbon, total [TC]		E351	0.05	%	<0.050	
Organic / Inorganic Carbon (QCLot: 66						
carbon, inorganic [IC]		E354	0.05	%	<0.050	
Organic / Inorganic Carbon (QCLot: 66						
carbon, inorganic [IC]		E354	0.05	%	<0.050	
Metals (QCLot: 657173)						
mercury	7439-97-6	E510	0.005	mg/kg	<0.0050	
Metals (QCLot: 657174)						
aluminum	7429-90-5		50	mg/kg	<50	
antimony	7440-36-0	E440	0.1	mg/kg	<0.10	
arsenic	7440-38-2	E440	0.1	mg/kg	<0.10	
barium	7440-39-3	E440	0.5	mg/kg	<0.50	
beryllium	7440-41-7	E440	0.1	mg/kg	<0.10	
bismuth	7440-69-9	E440	0.2	mg/kg	<0.20	
boron	7440-42-8	E440	5	mg/kg	<5.0	
cadmium	7440-43-9	E440	0.02	mg/kg	<0.020	
calcium	7440-70-2	E440	50	mg/kg	<50	
chromium	7440-47-3	E440	0.5	mg/kg	<0.50	
cobalt	7440-48-4	E440	0.1	mg/kg	<0.10	
copper	7440-50-8	E440	0.5	mg/kg	<0.50	
iron	7439-89-6	E440	50	mg/kg	<50	
lead	7439-92-1	E440	0.5	mg/kg	<0.50	
lithium	7439-93-2	E440	2	mg/kg	<2.0	
magnesium	7439-95-4	E440	20	mg/kg	<20	
manganese	7439-96-5	E440	1	mg/kg	<1.0	
molybdenum	7439-98-7	E440	0.1	mg/kg	<0.10	
nickel	7440-02-0	E440	0.5	mg/kg	<0.50	
phosphorus	7723-14-0	E440	50	mg/kg	<50	
potassium	7440-09-7	E440	100	mg/kg	<100	

 Page
 : 8 of 18

 Work Order
 : CG2212740

 Client
 : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Soil/Solid

Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Metals (QCLot: 657174) - contin	ued				
elenium	7782-49-2 E440	0.2	mg/kg	<0.20	
silver	7440-22-4 E440	0.1	mg/kg	<0.10	
odium	7440-23-5 E440	50	mg/kg	<50	
trontium	7440-24-6 E440	0.5	mg/kg	<0.50	
ulfur	7704-34-9 E440	1000	mg/kg	<1000	
nallium	7440-28-0 E440	0.05	mg/kg	<0.050	
n	7440-31-5 E440	2	mg/kg	<2.0	
tanium	7440-32-6 E440	1	mg/kg	<1.0	
ungsten	7440-33-7 E440	0.5	mg/kg	<0.50	
ranium	7440-61-1 E440	0.05	mg/kg	<0.050	
anadium	7440-62-2 E440	0.2	mg/kg	<0.20	
inc	7440-66-6 E440	2	mg/kg	<2.0	
irconium	7440-67-7 E440	1	mg/kg	<1.0	
Metals (QCLot: 657175)					
luminum	7429-90-5 E440	50	mg/kg	<50	
ntimony	7440-36-0 E440	0.1	mg/kg	<0.10	
rsenic	7440-38-2 E440	0.1	mg/kg	<0.10	
arium	7440-39-3 E440	0.5	mg/kg	<0.50	
eryllium	7440-41-7 E440	0.1	mg/kg	<0.10	
ismuth	7440-69-9 E440	0.2	mg/kg	<0.20	
oron	7440-42-8 E440	5	mg/kg	<5.0	
admium	7440-43-9 E440	0.02	mg/kg	<0.020	
alcium	7440-70-2 E440	50	mg/kg	<50	
hromium	7440-47-3 E440	0.5	mg/kg	<0.50	
obalt	7440-48-4 E440	0.1	mg/kg	<0.10	
opper	7440-50-8 E440	0.5	mg/kg	<0.50	
on	7439-89-6 E440	50	mg/kg	<50	
ad	7439-92-1 E440	0.5	mg/kg	<0.50	
hium	7439-93-2 E440	2	mg/kg	<2.0	
nagnesium	7439-95-4 E440	20	mg/kg	<20	
anganese	7439-96-5 E440	1	mg/kg	<1.0	
nolybdenum	7439-98-7 E440	0.1	mg/kg	<0.10	
ickel	7440-02-0 E440	0.5	mg/kg	<0.50	
hosphorus	7723-14-0 E440	50	mg/kg	<50	
otassium	7440-09-7 E440	100	mg/kg	<100	
elenium	7782-49-2 E440	0.2	mg/kg	<0.20	

Page : 9 of 18
Work Order : CG2212740
Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Soil/Solid

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Metals (QCLot: 657175) - continu						
ilver	7440-22-4	E440	0.1	mg/kg	<0.10	
odium	7440-23-5	E440	50	mg/kg	<50	
trontium	7440-24-6	E440	0.5	mg/kg	<0.50	
ulfur	7704-34-9	E440	1000	mg/kg	<1000	
nallium	7440-28-0	E440	0.05	mg/kg	<0.050	
n	7440-31-5	E440	2	mg/kg	<2.0	
tanium	7440-32-6	E440	1	mg/kg	<1.0	
ungsten	7440-33-7	E440	0.5	mg/kg	<0.50	
ranium	7440-61-1	E440	0.05	mg/kg	<0.050	
anadium	7440-62-2	E440	0.2	mg/kg	<0.20	
zinc	7440-66-6	E440	2	mg/kg	<2.0	
tirconium	7440-67-7	E440	1	mg/kg	<1.0	
Metals (QCLot: 657176)						1
nercury	7439-97-6	E510	0.005	mg/kg	<0.0050	
Polycyclic Aromatic Hydrocarbon	s (QCLot: 655146)					
cenaphthene	83-32-9	E641A	0.05	mg/kg	<0.050	
cenaphthylene	208-96-8	E641A	0.05	mg/kg	<0.050	
cridine	260-94-6	E641A	0.05	mg/kg	<0.050	
nthracene	120-12-7	E641A	0.05	mg/kg	<0.050	
enz(a)anthracene	56-55-3	E641A	0.05	mg/kg	<0.050	
enzo(a)pyrene	50-32-8	E641A	0.05	mg/kg	<0.050	
enzo(b+j)fluoranthene	n/a	E641A	0.05	mg/kg	<0.050	
enzo(g,h,i)perylene	191-24-2	E641A	0.05	mg/kg	<0.050	
enzo(k)fluoranthene	207-08-9	E641A	0.05	mg/kg	<0.050	
chrysene	218-01-9	E641A	0.05	mg/kg	<0.050	
ibenz(a,h)anthracene	53-70-3	E641A	0.05	mg/kg	<0.050	
uoranthene	206-44-0	E641A	0.05	mg/kg	<0.050	
uorene	86-73-7	E641A	0.05	mg/kg	<0.050	
ndeno(1,2,3-c,d)pyrene	193-39-5	E641A	0.05	mg/kg	<0.050	
nethylnaphthalene, 1-	90-12-0	E641A	0.03	mg/kg	<0.030	
nethylnaphthalene, 2-	91-57-6	E641A	0.03	mg/kg	<0.030	
aphthalene	91-20-3	E641A	0.01	mg/kg	<0.010	
henanthrene	85-01-8	E641A	0.05	mg/kg	<0.050	
yrene	129-00-0	E641A	0.05	mg/kg	<0.050	
quinoline	91-22-5	E641A	0.05	mg/kg	<0.050	

 Page
 : 10 of 18

 Work Order
 : CG2212740

 Client
 : Teck Coal Limited

Page : 11 of 18
Work Order : CG2212740

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Soil/Solid						Laboratory Co	ntrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualific
Physical Tests (QCLot: 655147)									
moisture		E144	0.25	%	50 %	99.1	90.0	110	
Physical Tests (QCLot: 658394)									
pH (1:2 soil:water)		E108		pH units	7 pH units	100	97.0	103	
Organic / Inorganic Carbon (QCLot: 658655)									
carbon, total [TC]		E351	0.05	%	48 %	100	90.0	110	
Organic / Inorganic Carbon (QCLot: 658685)									
carbon, total [TC]		E351	0.05	%	48 %	99.2	90.0	110	
Organic / Inorganic Carbon (QCLot: 662326)									
carbon, inorganic [IC]		E354	0.05	%	0.5 %	95.8	90.0	110	
Organic / Inorganic Carbon (QCLot: 662377)									
carbon, inorganic [IC]		E354	0.05	%	0.5 %	95.5	90.0	110	
Metals (QCLot: 657173)									
mercury	7439-97-6	E510	0.005	mg/kg	0.1 mg/kg	89.7	80.0	120	
Metals (QCLot: 657174)									
aluminum	7429-90-5	E440	50	mg/kg	200 mg/kg	113	80.0	120	
antimony	7440-36-0	E440	0.1	mg/kg	100 mg/kg	108	80.0	120	
arsenic	7440-38-2	E440	0.1	mg/kg	100 mg/kg	91.1	80.0	120	
parium	7440-39-3	E440	0.5	mg/kg	25 mg/kg	96.1	80.0	120	
beryllium	7440-41-7	E440	0.1	mg/kg	10 mg/kg	108	80.0	120	
pismuth	7440-69-9	E440	0.2	mg/kg	100 mg/kg	102	80.0	120	
ooron	7440-42-8	E440	5	mg/kg	100 mg/kg	102	80.0	120	
cadmium	7440-43-9	E440	0.02	mg/kg	10 mg/kg	109	80.0	120	
calcium	7440-70-2	E440	50	mg/kg	5000 mg/kg	106	80.0	120	
chromium	7440-47-3	E440	0.5	mg/kg	25 mg/kg	90.4	80.0	120	
cobalt	7440-48-4	E440	0.1	mg/kg	25 mg/kg	90.1	80.0	120	
copper	7440-50-8	E440	0.5	mg/kg	25 mg/kg	88.7	80.0	120	
ron	7439-89-6	E440	50	mg/kg	100 mg/kg	100	80.0	120	
ead	7439-92-1	E440	0.5	mg/kg	50 mg/kg	102	80.0	120	
ithium	7439-93-2	E440	2	mg/kg	25 mg/kg	109	80.0	120	
magnesium	7439-95-4	E440	20	mg/kg	5000 mg/kg	91.3	80.0	120	
manganese	7439-96-5	E440	1	mg/kg	25 mg/kg	93.5	80.0	120	
molybdenum	7439-98-7	E440	0.1	mg/kg	25 mg/kg	105	80.0	120	

 Page
 : 12 of 18

 Work Order
 : CG2212740

 Client
 : Teck Coal Limited

Sub-Matrix: Soil/Solid		Laboratory Control Sample (LCS) Report						
				Spike	Recovery (%)	Recovery	Limits (%)	
Analyte CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Metals (QCLot: 657174) - continued								
nickel 7440-02-0		0.5	mg/kg	50 mg/kg	87.4	80.0	120	
phosphorus 7723-14-0	E440	50	mg/kg	1000 mg/kg	106	80.0	120	
potassium 7440-09-7	E440	100	mg/kg	5000 mg/kg	94.0	80.0	120	
selenium 7782-49-2	E440	0.2	mg/kg	100 mg/kg	101	80.0	120	
silver 7440-22-4	E440	0.1	mg/kg	10 mg/kg	95.5	80.0	120	
sodium 7440-23-5	E440	50	mg/kg	5000 mg/kg	89.7	80.0	120	
strontium 7440-24-6	E440	0.5	mg/kg	25 mg/kg	107	80.0	120	
sulfur 7704-34-9	E440	1000	mg/kg	5000 mg/kg	97.9	80.0	120	
thallium 7440-28-0	E440	0.05	mg/kg	100 mg/kg	102	80.0	120	
tin 7440-31-5	E440	2	mg/kg	50 mg/kg	104	80.0	120	
titanium 7440-32-6	E440	1	mg/kg	25 mg/kg	113	80.0	120	
tungsten 7440-33-7	E440	0.5	mg/kg	10 mg/kg	93.8	80.0	120	
uranium 7440-61-1	E440	0.05	mg/kg	0.5 mg/kg	99.0	80.0	120	
vanadium 7440-62-2	E440	0.2	mg/kg	50 mg/kg	93.6	80.0	120	
zinc 7440-66-6	E440	2	mg/kg	50 mg/kg	90.6	80.0	120	
zirconium 7440-67-7	E440	1	mg/kg	10 mg/kg	103	80.0	120	
Metals (QCLot: 657175)								
aluminum 7429-90-5	E440	50	mg/kg	200 mg/kg	116	80.0	120	
antimony 7440-36-0	E440	0.1	mg/kg	100 mg/kg	109	80.0	120	
arsenic 7440-38-2	E440	0.1	mg/kg	100 mg/kg	110	80.0	120	
barium 7440-39-3	E440	0.5	mg/kg	25 mg/kg	117	80.0	120	
beryllium 7440-41-7	E440	0.1	mg/kg	10 mg/kg	112	80.0	120	
bismuth 7440-69-9	E440	0.2	mg/kg	100 mg/kg	110	80.0	120	
boron 7440-42-8	E440	5	mg/kg	100 mg/kg	110	80.0	120	
cadmium 7440-43-9		0.02	mg/kg	10 mg/kg	109	80.0	120	
calcium 7440-70-2	E440	50	mg/kg	5000 mg/kg	112	80.0	120	
chromium 7440-47-3	E440	0.5	mg/kg	25 mg/kg	111	80.0	120	
cobalt 7440-48-4	E440	0.1	mg/kg	25 mg/kg	112	80.0	120	
copper 7440-50-8	E440	0.5	mg/kg	25 mg/kg	110	80.0	120	
iron 7439-89-6	E440	50	mg/kg	100 mg/kg	119	80.0	120	
lead 7439-92-1	E440	0.5	mg/kg	50 mg/kg	110	80.0	120	
lithium 7439-93-2	E440	2	mg/kg	25 mg/kg	113	80.0	120	
magnesium 7439-95-4	E440	20	mg/kg	5000 mg/kg	117	80.0	120	
manganese 7439-96-5	E440	1	mg/kg	25 mg/kg	109	80.0	120	
molybdenum 7439-98-7	E440	0.1	mg/kg	25 mg/kg	109	80.0	120	
nickel 7440-02-0	E440	0.5	mg/kg	50 mg/kg	111	80.0	120	
phosphorus 7723-14-0	E440	50	mg/kg	1000 mg/kg	111	80.0	120	

 Page
 : 13 of 18

 Work Order
 : CG2212740

 Client
 : Teck Coal Limited

Sub-Matrix: Soil/Solid	Laboratory Control Sample (LCS) Report								
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Metals (QCLot: 657175) - continued									
potassium	7440-09-7	E440	100	mg/kg	5000 mg/kg	114	80.0	120	
selenium	7782-49-2	E440	0.2	mg/kg	100 mg/kg	105	80.0	120	
silver	7440-22-4	E440	0.1	mg/kg	10 mg/kg	96.1	80.0	120	
sodium	7440-23-5	E440	50	mg/kg	5000 mg/kg	115	80.0	120	
strontium	7440-24-6	E440	0.5	mg/kg	25 mg/kg	111	80.0	120	
sulfur	7704-34-9	E440	1000	mg/kg	5000 mg/kg	97.9	80.0	120	
thallium	7440-28-0	E440	0.05	mg/kg	100 mg/kg	109	80.0	120	
tin	7440-31-5	E440	2	mg/kg	50 mg/kg	109	80.0	120	
titanium	7440-32-6	E440	1	mg/kg	25 mg/kg	119	80.0	120	
tungsten	7440-33-7	E440	0.5	mg/kg	10 mg/kg	105	80.0	120	
uranium	7440-61-1	E440	0.05	mg/kg	0.5 mg/kg	103	80.0	120	
vanadium	7440-62-2	E440	0.2	mg/kg	50 mg/kg	119	80.0	120	
zinc	7440-66-6	E440	2	mg/kg	50 mg/kg	108	80.0	120	
zirconium	7440-67-7	E440	1	mg/kg	10 mg/kg	106	80.0	120	
Metals (QCLot: 657176)									
mercury	7439-97-6	E510	0.005	mg/kg	0.1 mg/kg	91.5	80.0	120	
Polycyclic Aromatic Hydrocarbons (QCI	Lot: 655146)								
acenaphthene	83-32-9	E641A	0.05	mg/kg	0.5 mg/kg	112	60.0	130	
acenaphthylene	208-96-8	E641A	0.05	mg/kg	0.5 mg/kg	100	60.0	130	
acridine	260-94-6	E641A	0.05	mg/kg	0.5 mg/kg	104	60.0	130	
anthracene	120-12-7	E641A	0.05	mg/kg	0.5 mg/kg	100	60.0	130	
benz(a)anthracene	56-55-3	E641A	0.05	mg/kg	0.5 mg/kg	105	60.0	130	
benzo(a)pyrene	50-32-8	E641A	0.05	mg/kg	0.5 mg/kg	87.6	60.0	130	
benzo(b+j)fluoranthene	n/a	E641A	0.05	mg/kg	0.5 mg/kg	109	60.0	130	
benzo(g,h,i)perylene	191-24-2	E641A	0.05	mg/kg	0.5 mg/kg	90.9	60.0	130	
benzo(k)fluoranthene	207-08-9	E641A	0.05	mg/kg	0.5 mg/kg	108	60.0	130	
chrysene	218-01-9	E641A	0.05	mg/kg	0.5 mg/kg	106	60.0	130	
dibenz(a,h)anthracene	53-70-3	E641A	0.05	mg/kg	0.5 mg/kg	94.2	60.0	130	
fluoranthene	206-44-0	E641A	0.05	mg/kg	0.5 mg/kg	94.3	60.0	130	
fluorene	86-73-7	E641A	0.05	mg/kg	0.5 mg/kg	104	60.0	130	
indeno(1,2,3-c,d)pyrene	193-39-5	E641A	0.05	mg/kg	0.5 mg/kg	99.4	60.0	130	
methylnaphthalene, 1-	90-12-0	E641A	0.03	mg/kg	0.5 mg/kg	109	60.0	130	
methylnaphthalene, 2-	91-57-6	E641A	0.03	mg/kg	0.5 mg/kg	105	60.0	130	
naphthalene	91-20-3	E641A	0.01	mg/kg	0.5 mg/kg	116	50.0	130	
phenanthrene	85-01-8	E641A	0.05	mg/kg	0.5 mg/kg	112	60.0	130	
pyrene	129-00-0	E641A	0.05	mg/kg	0.5 mg/kg	89.8	60.0	130	

Page : 14 of 18

Work Order : CG2212740

Client Tack Could it

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Sub-Matrix: Soil/Solid						Laboratory Control Sample (LCS) Report						
					Spike	Recovery (%)	Recovery	Limits (%)				
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier			
Polycyclic Aromatic Hydrocarbons												
quinoline	91-22-5	E641A	0.05	mg/kg	0.5 mg/kg	98.6	60.0	130				

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Soil/So	Matrix: Soil/Solid					Matrix Spike (MS) Report							
					Spi	ke	Recovery (%)	Recovery	Limits (%)				
aboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier			
olycyclic Arom	atic Hydrocarbons (QCL	.ot: 655146)											
CG2212740-001	RG_MI5_SE-1_2022-09-12_	acenaphthene	83-32-9	E641A	0.424 mg/kg	0.5 mg/kg	113	50.0	140				
	N	acenaphthylene	208-96-8	E641A	0.388 mg/kg	0.5 mg/kg	103	50.0	140				
		acridine	260-94-6	E641A	0.421 mg/kg	0.5 mg/kg	112	50.0	140				
		anthracene	120-12-7	E641A	0.399 mg/kg	0.5 mg/kg	106	50.0	140				
		benz(a)anthracene	56-55-3	E641A	0.416 mg/kg	0.5 mg/kg	111	50.0	140				
		benzo(a)pyrene	50-32-8	E641A	0.370 mg/kg	0.5 mg/kg	98.5	50.0	140				
		benzo(b+j)fluoranthene	n/a	E641A	0.379 mg/kg	0.5 mg/kg	101	50.0	140				
		benzo(g,h,i)perylene	191-24-2	E641A	0.367 mg/kg	0.5 mg/kg	97.8	50.0	140				
		benzo(k)fluoranthene	207-08-9	E641A	0.405 mg/kg	0.5 mg/kg	108	50.0	140				
		chrysene	218-01-9	E641A	0.382 mg/kg	0.5 mg/kg	102	50.0	140				
		dibenz(a,h)anthracene	53-70-3	E641A	0.388 mg/kg	0.5 mg/kg	104	50.0	140				
		fluoranthene	206-44-0	E641A	0.427 mg/kg	0.5 mg/kg	114	50.0	140				
		fluorene	86-73-7	E641A	0.406 mg/kg	0.5 mg/kg	108	50.0	140				
		indeno(1,2,3-c,d)pyrene	193-39-5	E641A	0.365 mg/kg	0.5 mg/kg	97.2	50.0	140				
		methylnaphthalene, 1-	90-12-0	E641A	0.424 mg/kg	0.5 mg/kg	113	50.0	140				
		methylnaphthalene, 2-	91-57-6	E641A	0.422 mg/kg	0.5 mg/kg	112	50.0	140				
		naphthalene	91-20-3	E641A	0.408 mg/kg	0.5 mg/kg	109	50.0	140				
		phenanthrene	85-01-8	E641A	0.415 mg/kg	0.5 mg/kg	110	50.0	140				
		pyrene	129-00-0	E641A	0.441 mg/kg	0.5 mg/kg	118	50.0	140				
		quinoline	91-22-5	E641A	0.400 mg/kg	0.5 mg/kg	107	50.0	140				

 Page
 : 15 of 18

 Work Order
 : CG2212740

 Client
 : Teck Coal Limited

Page : 16 of 18
Work Order : CG2212740

Client : Teck Coal Limited

Project : REGIONAL EFFECTS PROGRAM

Reference Material (RM) Report

A Reference Material (RM) is a homogenous material with known and well-established analyte concentrations. RMs are processed in an identical manner to test samples, and are used to monitor and control the accuracy and precision of a test method for a typical sample matrix. RM results are expressed as percent recovery of the target analyte concentration. RM targets may be certified target concentrations provided by the RM supplier, or may be ALS long-term mean values (for empirical test methods).

Sub-Matrix:	p-Matrix:				Reference Material (RM) Report						
					RM Target	Recovery (%)	Recovery L	imits (%)			
Laboratory sample ID	Reference Material ID	Analyte	CAS Number	Method	Concentration	RM	Low	High	Qualifier		
Physical Tests	(QCLot: 658394)										
	RM	pH (1:2 soil:water)		E108	8.06 pH units	99.4	96.0	104			
Organic / Inorg	ganic Carbon (QCLot: 65	8655)									
	RM	carbon, total [TC]		E351	1.4 %	103	80.0	120			
Organic / Inorg	ganic Carbon (QCLot: 65	8685)									
	RM	carbon, total [TC]		E351	1.4 %	97.6	80.0	120			
Organic / Inorg	ganic Carbon (QCLot: 66	2326)									
	RM	carbon, inorganic [IC]		E354	0.383 %	110	80.0	120			
Organic / Inorg	ganic Carbon (QCLot: 66	2377)									
	RM	carbon, inorganic [IC]		E354	0.383 %	109	80.0	120			
letals (QCLot	: 657173)										
	RM	mercury	7439-97-6	E510	0.062 mg/kg	87.1	70.0	130			
letals (QCLot	: 657174)										
	RM	aluminum	7429-90-5	E440	9817 mg/kg	118	70.0	130			
	RM	antimony	7440-36-0	E440	3.99 mg/kg	107	70.0	130			
	RM	arsenic	7440-38-2	E440	3.73 mg/kg	98.7	70.0	130			
	RM	barium	7440-39-3	E440	105 mg/kg	100	70.0	130			
	RM	beryllium	7440-41-7	E440	0.349 mg/kg	118	70.0	130			
	RM	boron	7440-42-8	E440	8.5 mg/kg	130	40.0	160			
	RM	cadmium	7440-43-9	E440	0.91 mg/kg	103	70.0	130			
	RM	calcium	7440-70-2	E440	31082 mg/kg	104	70.0	130			
	RM	chromium	7440-47-3	E440	101 mg/kg	95.7	70.0	130			
	RM	cobalt	7440-48-4	E440	6.9 mg/kg	92.9	70.0	130			
	RM	copper	7440-50-8	E440	123 mg/kg	92.8	70.0	130			
	RM	iron	7439-89-6	E440	23558 mg/kg	90.6	70.0	130			
	RM	lead	7439-92-1	E440	267 mg/kg	104	70.0	130			
	RM	lithium	7439-93-2	E440	9.5 mg/kg	120	70.0	130			
	RM	magnesium	7439-95-4	E440	5509 mg/kg	94.3	70.0	130			
	RM	manganese	7439-96-5	E440	269 mg/kg	98.1	70.0	130			
	RM	molybdenum	7439-98-7	E440	1.03 mg/kg	114	70.0	130			

Page : 17 of 18
Work Order : CG2212740

Client : Teck Coal Limited

Sub-Matrix:	-Matrix:					Reference Material (RM) Report							
					RM Target	Recovery (%)	Recovery	Limits (%)					
Laboratory sample ID	Reference Material ID	Analyte	CAS Number	Method	Concentration	RM	Low	High	Qualifier				
	657174) - continued												
	RM	nickel	7440-02-0	E440	26.7 mg/kg	90.4	70.0	130					
	RM	phosphorus	7723-14-0	E440	752 mg/kg	94.8	70.0	130					
	RM	potassium	7440-09-7	E440	1587 mg/kg	105	70.0	130					
	RM	silver	7440-22-4	E440	4.06 mg/kg	108	70.0	130					
	RM	sodium	7440-23-5	E440	797 mg/kg	99.5	70.0	130					
	RM	strontium	7440-24-6	E440	86.1 mg/kg	108	70.0	130					
	RM	thallium	7440-28-0	E440	0.0786 mg/kg	110	40.0	160					
	RM	tin	7440-31-5	E440	10.6 mg/kg	108	70.0	130					
	RM	titanium	7440-32-6	E440	839 mg/kg	124	70.0	130					
	RM	uranium	7440-61-1	E440	0.52 mg/kg	104	70.0	130					
	RM	vanadium	7440-62-2	E440	32.7 mg/kg	95.5	70.0	130					
	RM	zinc	7440-66-6	E440	297 mg/kg	91.3	70.0	130					
	RM	zirconium	7440-67-7	E440	5.73 mg/kg	107	70.0	130					
Metals (QCLot:	657175)												
	RM	aluminum	7429-90-5	E440	9817 mg/kg	121	70.0	130					
	RM	antimony	7440-36-0	E440	3.99 mg/kg	110	70.0	130					
	RM	arsenic	7440-38-2	E440	3.73 mg/kg	102	70.0	130					
	RM	barium	7440-39-3	E440	105 mg/kg	117	70.0	130					
	RM	beryllium	7440-41-7	E440	0.349 mg/kg	117	70.0	130					
	RM	boron	7440-42-8	E440	8.5 mg/kg	140	40.0	160					
	RM	cadmium	7440-43-9	E440	0.91 mg/kg	104	70.0	130					
	RM	calcium	7440-70-2	E440	31082 mg/kg	111	70.0	130					
	RM	chromium	7440-47-3	E440	101 mg/kg	114	70.0	130					
	RM	cobalt	7440-48-4	E440	6.9 mg/kg	115	70.0	130					
	RM	copper	7440-50-8	E440	123 mg/kg	113	70.0	130					
	RM	iron	7439-89-6	E440	23558 mg/kg	111	70.0	130					
	RM	lead	7439-92-1	E440	267 mg/kg	108	70.0	130					
	RM	lithium	7439-93-2	E440	9.5 mg/kg	120	70.0	130					
	RM	magnesium	7439-95-4	E440	5509 mg/kg	115	70.0	130					
	RM	manganese	7439-96-5	E440	269 mg/kg	121	70.0	130					
	RM	molybdenum	7439-98-7	E440	1.03 mg/kg	120	70.0	130					
	RM	nickel	7440-02-0	E440	26.7 mg/kg	114	70.0	130					

Page : 18 of 18
Work Order : CG2212740
Client : Teck Coal Limited

Sub-Matrix:	b-Matrix:						Reference Material (RM) Report						
					RM Target	Recovery (%)	Recovery I	Limits (%)					
Laboratory sample ID	Reference Material ID	Analyte	CAS Number	Method	Concentration	RM	Low	High	Qualifier				
Metals (QCLot: (657175) - continued												
	RM	phosphorus	7723-14-0	E440	752 mg/kg	108	70.0	130					
	RM	potassium	7440-09-7	E440	1587 mg/kg	93.7	70.0	130					
	RM	silver	7440-22-4	E440	4.06 mg/kg	115	70.0	130					
	RM	sodium	7440-23-5	E440	797 mg/kg	96.6	70.0	130					
	RM	strontium	7440-24-6	E440	86.1 mg/kg	114	70.0	130					
	RM	thallium	7440-28-0	E440	0.0786 mg/kg	135	40.0	160					
	RM	tin	7440-31-5	E440	10.6 mg/kg	113	70.0	130					
	RM	titanium	7440-32-6	E440	839 mg/kg	130	70.0	130					
	RM	uranium	7440-61-1	E440	0.52 mg/kg	107	70.0	130					
	RM	vanadium	7440-62-2	E440	32.7 mg/kg	119	70.0	130					
	RM	zinc	7440-66-6	E440	297 mg/kg	108	70.0	130					
	RM	zirconium	7440-67-7	E440	5.73 mg/kg	123	70.0	130					
Metals (QCLot: (657176)												
	RM	mercury	7439-97-6	E510	0.062 mg/kg	100	70.0	130					

Teck

IECK	COC ID:	REP LAE	MP CMm_2022-	09 ALS	TURNA	AROUN	ND TI	IME:			2-3 Busine	ec Davs			RUSH	Priorty			700
	PROJECT/CLIENT	INFO				مدروس	Market Str.		TORY		Y	11				R INFO	-		august 1
Facility Name / Jo	b# Regional Effects Prog	ram	<u> </u>	_	Lab Name									stributio		Excel	PDF	EDD	ļ'
	ger Cybele Heddle		······································	La	ab Contact			<u>~</u>				ail 1:	AguaS	SciLab@Ted	k.com	х	X	X	
	ail Cybele Heddle@teck.com								Global.com	<u> </u>		ail 2:		l@eguison		 	,	X	
	ess 421 Pine Avenue	·		<u> </u>	Address	2559 2	9 Stre	et NE				ail 3:		b.Results@		<u>X</u>	X	<u> x</u>	
•			ln i Ino	<u> </u>	Cit	0.1			Province	4.0		ail 4: ail 5:		owron@min		X	X	X X	
	ity Sparwood de V0B 2G0		Provinc BC Country Canada	- D	ostal Code	Calgar			Country			ail 6:		Mehler@min		X	<u>x</u>	X	
	per 1-250-865-3048		Country Canada	-1	ie Number			4	Country	Canada		umber	Hannat	h.Penner@Te		1X 1816101	<u> X</u>	<u> </u>	
Thone Num		DETAILS		1 11011	ie ridilioei	103 40	T	-	ANAI	LYSIS RE						ered - F: Fiel	d. L.: Lab, F	L: Field & I	ab, N: None
						1	1,1					N							
·							1	N .	N	N	. N					l			
a significant and a significan			No)				PRESERV.	NONE	NONE	NONE	NONE	NONE		Cal V	gary Vork C	rder R	eferenc		
			Matcrial (Yes/No)				YSIS		FULL-CL	CT - %	DETAIL-SK	A-MS-CL-	,1	(CG	221	27 **•	40	
Sample ID	Sample Location (svs loc code)	Field Matrix	Hazardous Mi	Time (24hr)	G=Grab C=Com		ANAL)	C-TOC-SK	MET-CCME+FULL-CL	MOISTURE-CL Moisture	PSA-PIPET-DETAIL-SK Particle Size	PAH-TMB-D/A-MS-CL-PAHs	a.						
RG_MI5_SE-1_2022-09-12_N	RG_MI5	SE	2022/09/12	9:30	G	2		1	1 ,	. 1	1	1		Teleph	one; +	1 403 407	1800		
RG_MI5_SE-2_2022-09-12_N	RG_MI5	SE	2022/09/12	10:00	G	2	1 -	1	1	1	1	1	_	1 1		/	1	اعمدا	r -
RG_MI5_SE-3_2022-09-12_N	RG_MI5	SE	2022/09/12	10:30	G	2	1	1	1	1	1	1							
RG_MIULE_SE-1_2022-09-12_N	RG_MIULE	SE	2022/09/12	15:41	G	2		1	1	1	1	1							
RG_MIULE_SE-2_2022-09-12_N	RG_MIULE	SE	2022/09/12	14:31	G	2		1	1	1	ĺ	1							
RG_MIULE_SE-3_2022-09-12_N	RG_MIULE	SE	2022/09/12	13:40	G	2		1	1	1	1	1							
RG_MIULE_SE-4_2022-09-12_N	RG_MIULE	SE	2022/09/12	16:25	G	2		1	1	1	1	1						-	
RG_MIULE_SE-5_2022-09-12_N	RG_MIULE	SE	2022/09/12	15:00	G	2	*	1	1	1 .	. 1	<u> </u>							
RG_MIDAG_SE-1_2022-09-13_N	RG_MIDAG	SE	2022/09/13	11:07	G	2	ia _{fae}	15	1	1	1	1							
RG_MIDAG_SE-2_2022-09-13_N	RG_MIDAG	SE	2022/09/13	10:17	G	2	11	1 1	1	1	11	1					1		L
ADDITIONAL COMMENTS/S	PECIAL INSTRUCTIONS	S ~ **:	RELINQUISHI Jennifer	Ings/Minnov				ATE/I	IME ######	ACC	EPAED //	BY/AFF	ILIATI	ON.	14	D/	TEATIN	1E	
. ,			- Vennier	Tugs/Minio	 		7777		***************************************	/	_/_	-			/		18		
•						-					\angle	<u> </u>		-		11		> (
CERVICE DECUERT (-wd.	(anhiget to availability)				* to = #*.	-38	<u> </u>				-	-	3	*		ev _a		 -	
SERVICE REQUEST (rush - subject to availability) Regular (default) Sampler's Name				rne	<u> </u>		Jenni	ifer ln	 gs		T	oile#	Γ			9-500-34	144		
Emergency	(2-3 business days) - 50% (1 Business Day) - 100%	6 surcharge	Sampler's Sign			- clon				_		/Time		<u> </u>		mber 14			
For Emergency <1 Day	y, ASAP or Weekend - Co	ontact ALS	1		<u> </u>					-							-	;	<u>′ </u>

Teck

IECK	COC ID: R	EP LAE	MP (CMm_2022-0	9_ALS	TURNA	ROUN	T di	IME:	Ī.		2-3 Busine	ss Davs				Priorty.			ng 2
	PROJECT/CLIENT IN								ABOR/	TORY				200			R INFO	4	1.00	- T
	Regional Effects Progran	1		<u> </u>		Lab Name									tributi <u>on</u>		Excel		EDD	
Project Manager	Cyhele Heddle				La	b Contact		•		Clabal com			ul 1:		ciLab@Teck		<u>X</u>	x , -	X	<u> </u>
	Cybele Heddle@teck.com					Address				Global.com			ail 2: ail 3;		@equisonlin			<u> </u>	<u>X</u>	
Address	421 Pine Avenue					Address	2539 25	9 30	eet IVE		<u> </u>		ail 4:		Results@te		X .	<u>x</u>	v	-
	Sparwood		Provinc	BC		City	Calgary	·		Province	AB		ail 5:		ehler@minn		X	<u>а</u> Х	X	
Postal Code				Canada	Po	ostal Code				Соцпту		Ema	ail 6:		Penner@Tec		X	X	X	
Phone Number	1-250-865-3048				Phon	e Number	403 40	7 179					umber		ı		816101			
1	SAMPLE D	ETAILS		å.					_	ANA	LYSIS RE	QUESTI	ED *			Filte	red - F: Field	, L. Lah, F	L: Field &	Lah, N: None
								Fift.	N	N	N	. N	N							
27.			(o)		-			PRESERV.	NONE	NONE	NONE	NONE	NONE		Calc	arv	nental			
			Material (Yes/No)					SIS		FULL-CL	%-TC	ETAIL-SK	A-MS-CL-		Ë	ĞĞ:	221 	27		,
Sample ID	Sample Location (sys_loc_code)	Field Matrix	Hazardous Ma	Date	Time (24hr)	G=Grab C=Com p	# Of Cont.	ANAEN	C-TOC-SK	MET-CCME+FULL-CI	MOISTURE-CL Moisture	PSA-PIPET-DETAIL-SK Particle Size	PAH-TMB-D/A-MS-CL-PAHs		Telepho		100.100			
RG_MI5_SE-1_2022-09-12_N	RG_MI5	SE		2022/09/12	9:30	G	2		1	1 ,	. 1	1	1		, elebito	ile: + i	403 407	1800		
RG_MI5_SE-2_2022-09-12_N	RG_MI5	SE	,	2022/09/12	10:00	G	2		l	1 _	1	1	1						There.	
RG_MI5_SE-3_2022-09-12_N	RG_MI5	SE		2022/09/12	10:30	G	2		1	1	1	1	ı					• ,	<u> </u>	
RG_MIULE_SE-1_2022-09-12_N	RG_MIULE	SE		2022/09/12	15:41	G	2		1	1	1	1	1							
RG_MIULE_SE-2_2022-09-12_N	RG_MIULE	SE.		2022/09/12	14:31	G	2		1	1	1	1	1				•			
RG_MIULE_SE-3_2022-09-12_N	RG_MIULE	SE		2022/09/12	13:40	G	2		1	1	1 .	1	1					_		
RG_MIULE_SE-4_2022-09-12_N	RG_MIULE	SE		2022/09/12	16:25	G	2		1	1	1	1	1							ļ.,
RG_MIULE_SE-5_2022-09-12_N	RG_MIULE	SE		2022/09/12	15:00	G	2		1	1	1	- 1	1 .					_	<u> </u>	
RG_MIDAG_SE-1_2022-09-13_N	RG_MIDAG	SE		2022/09/13	11:07	G	2	12.5	1 5.	1	1	1	1	į.						
RG_MIDAG_SE-2_2022-09-13_N	RG_MIDAG	SE		2022/09/13	10:17	G	2		i i	1	1	13	1					1	<u> </u>	
additional comments/spec	CIAL INSTRUCTIONS:	And a		RELINQUISHE	1		5		DATE/1		* ACC	EPTED:	BY/AFF	ILIATIC	ON -		*DA	TETH	<u> 4E</u>	
				Jenniter	Ings/Minno	w		##	**************************************	#######		1	-	30		-6		/-//	- 7	
		•	<u> </u>									/ \]_			>_	11		> (
SERVICE REQUEST (rush - sul	bject to availability)		<u> </u>		· · · · · · · · · · · · · · · · · · ·		lą.		eri	Trag		-st- ha	46	. 84		6	ow.	Э,		· 6.
	Regular of business days) - 50% si			Sampler's Na	me Jennifer Ings			755	Mobile# .			519	519-500-3444			R				
	Business Day) - 100% si	ırcharge		Sampler's Signa	iture		don	-h:	B.10			Date	/Time			Septer	mber 14	, 2022		*

REP_LAEMP_CMm_2022-09_ALS | TURNAROUND TIME: RUSH: Priorty COC ID: 2-3 Business Days LABORATORY OTHER INFO PROJECT/CLIENT INFO Lab Name ALS Calgary Excel PDF Facility Name / Joh# Regional Effects Program Report Format / Distribution EDD Lab Contact Lyudmyla Shyets Project Manager Cybele Heddle Email 1: AguaSciLab@Teck.com Email Lyudmyla.Shvets@ALSGlobal.com Email Cybele Heddle@teck.com Email 2: teckcoal@equisonline.com X Address 2559 29 Street NE Address 421 Pine Avenue Email 3: Teck.Lab.Results@teck.com Email 4: Lisa.Bowron@minnow.ca Provinc BC City Calgary Province AB City Sparwood Email 5: X Alex McClymont@minnow.ca Postal Code V0B 2G0 Country Canada Postal Code T1Y 7B5 Country Canada Email 6: Hannah.Penner@Teck.com Phone Number 403 407 1794 PO number VPO00816101 Phone Number 1-250-865-3048 ANALYSIS REQUESTED SAMPLE DETAILS Filtered - F: Field, L: Lah, FL: Field & Lab, N: None N N NONE NONE NONE NONE NONE (Yes/No) MET-CCME+FULL-CL PAH-TMB-D/A-MS-CL-PAHs PSA-PIPET-DETAIL-SK Particle Size Hazardous Material C-TOC-SK G=Grab Sample Location Field Time C=Com #Of Sample ID (sys loc code) Matrix Date (24hr) Cont р RG_MIDAG SE-3 2022-09-13 N RG MIDAG SE 2022/09/13 9:20 \mathbf{G} 2 1 1 1 1 RG MIDAG RG_MIDAG_SE-4 2022-09-13 N SE 2022/09/13 10:37 G 2 1 1 1 RG_MIDAG_SE-5 2022-09-13 N RG_MIDAG SE 2022/09/13 G 2 9:10 1 1 1 1 1 RG MIDCO SE 2022/09/13 RG MIDCO SE-1 2022-09-13 N 14:07 G 2 1 1 1 1 1 RG MIDCO SE-2 2022-09-13 N RG MIDCO SE 2022/09/13 15:23 G 2 1 RG_MIDCO RG MIDCO SE-3 2022-09-13 N SE2022/09/13 G 2 14:34 1 1 1 RG MIDCO SE 2022/09/13 RG_MIDCO_SE-4_2022-09-13_N 13:54 G 2 1 1 1 1 RG MIDCO SE-5 2022-09-13 N RG MIDCO SE 2022/09/13 13:13 G 2 1 1 ADDITIONAL COMMENTS/SPECIAL INSTRUCTIONS RELINQUISHED BY/AFFILIATION DATE/TIME ACCEPTED BY/AFFILIATION DATE/TIME Jennifer Ings/Minnow SERVICE REQUEST (rush - subject to availability) Regular (default) Sampler's Name Jennifer Ings Mobile # 519-500-3444 Priority (2-3 business days) - 50% surcharge X Jones Bro Emergency (1 Business Day) - 100% surcharge Sampler's Signature Date/Time **September 14, 2022** For Emergency <1 Day, ASAP or Weekend - Contact ALS

ALS Canada Ltd.

CERTIFICATE OF ANALYSIS

Work Order : CG2213078 Page : 1 of 19

: 1 Amendment

Client Laboratory : Teck Coal Limited : Calgary - Environmental Account Manager : Lyudmyla Shvets Contact : Cybele Heddle Address Address : 421 Pine Ave

Sparwood BC Canada

Telephone

Project : Regional Effects Program

PO : VPO00816101

C-O-C number : REP_LAEMP_CMm_2022-09_ALS

Sampler : JI Site ----

Quote number : Teck Coal Master Quote

No. of samples received : 23 No. of samples analysed : 20

: 2559 29th Street NE

Calgary AB Canada T1Y 7B5

Telephone : +1 403 407 1800 **Date Samples Received** : 17-Sep-2022 11:38

Date Analysis Commenced : 24-Sep-2022

Issue Date : 12-Jan-2023 11:40

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department	
Anthony Calero	Supervisor - Inorganic	Metals, Calgary, Alberta	
Colby Bingham	Quality Systems Coordinator	Inorganics, Saskatoon, Saskatchewan	
Colby Bingham	Quality Systems Coordinator	Metals, Saskatoon, Saskatchewan	
Hedy Lai	Team Leader - Inorganics	Inorganics, Saskatoon, Saskatchewan	
Hedy Lai	Team Leader - Inorganics	Sask Soils, Saskatoon, Saskatchewan	
Joshua Stessun	Laboratory Analyst	Organics, Calgary, Alberta	
Jwan Abdalla	Laboratory Analyst	Metals, Saskatoon, Saskatchewan	
Kimberly Hanson	Laboratory Analyst	Metals, Saskatoon, Saskatchewan	
Kuljeet Chawla		Inorganics, Calgary, Alberta	
Sorina Motea	Laboratory Analyst	Organics, Calgary, Alberta	

Page : 2 of 19

Work Order : CG2213078 Amendment 1

Client : Teck Coal Limited

Project : Regional Effects Program

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances

LOR: Limit of Reporting (detection limit).

Unit	Description
-	no units
%	percent
mg/kg	milligrams per kilogram
pH units	pH units

<: less than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Sample Comments

Sample	Client Id	Comment
CG2213078-005	RG_MIUCO_SE-5_2022-09-14	Sample(s) XXX: Limited sample was available for PSA (100g minimum is standard). Measurement Uncertainty for PSA results may be
	_N	higher than usual.
CG2213078-007	RG_RIVER_SE-4_2022-09-14	Sample(s) XXX: Limited sample was available for PSA (100g minimum is standard). Measurement Uncertainty for PSA results may be
	_N	higher than usual.
CG2213078-014	RG_MI25_SE-1_2022-09-14_	Sample(s) XXX: Limited sample was available for PSA (100g minimum is standard). Measurement Uncertainty for PSA results may be
	N	higher than usual.
CG2213078-017	RG_AGCK_SE-1_2022-09-14	Sample(s) XXX: Limited sample was available for PSA (100g minimum is standard). Measurement Uncertainty for PSA results may be
	_N	higher than usual.
CG2213078-022	RG_MI5_SE-5_2022-09-14_N	Sample(s) XXX: Limited sample was available for PSA (100g minimum is standard). Measurement Uncertainty for PSA results may be
		higher than usual.

Qualifiers

Qualifier	Description

>: greater than.

Page : 3 of 19

DLM

Work Order : CG2213078 Amendment 1

Client : Teck Coal Limited

Project : Regional Effects Program

ALS

Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity).

Page

Work Order

Client Project

Sub-Matrix: Soil (Matrix: Soil/Solid)	ient sample ID	RG_MIUCO_SE- 1_2022-09-14_ N	RG_MIUCO_SE- 3_2022-09-14_ N	RG_MIUCO_SE- 4_2022-09-14_ N	RG_MIUCO_SE- 5_2022-09-14_ N	RG_RIVER_SE-1 _2022-09-14_N			
			Client samp	ling date / time	14-Sep-2022 10:57	14-Sep-2022 09:44	14-Sep-2022 11:22	14-Sep-2022 09:22	14-Sep-2022 10:57
Analyte	CAS Number	Method	LOR	Unit	CG2213078-001	CG2213078-003	CG2213078-004	CG2213078-005	CG2213078-006
					Result	Result	Result	Result	Result
Physical Tests									
Moisture		E144	0.25	%				37.9	62.2
pH (1:2 soil:water)		E108	0.10	pH units	8.23	7.94	8.02	8.06	8.09
Particle Size									
grain size curve		E185A	-	-	See Attached	See Attached	See Attached	See Attached	See Attached
clay (<0.004mm)		EC184A	1.0	%	6.4	9.2	4.6	5.5	5.3
silt (0.063mm - 0.0312mm)		EC184A	1.0	%	25.5	17.2	17.7	16.3	16.1
silt (0.0312mm - 0.004mm)		EC184A	1.0	%	28.8	24.0	17.1	20.7	21.0
sand (0.125mm - 0.063mm)		EC184A	1.0	%	19.3	12.2	19.1	12.3	14.6
sand (0.25mm - 0.125mm)		EC184A	1.0	%	8.7	13.8	18.5	11.7	16.1
sand (0.5mm - 0.25mm)		EC184A	1.0	%	3.7	11.6	12.8	8.8	11.4
sand (1.0mm - 0.50mm)		EC184A	1.0	%	1.2	5.8	6.1	10.9	7.6
sand (2.0mm - 1.0mm)		EC184A	1.0	%	1.4	3.5	2.1	8.9	2.5
gravel (>2mm)		EC184A	1.0	%	5.0	2.7	2.0	4.9	5.4
Organic / Inorganic Carbon									
carbon, total [TC]		E351	0.050	%	3.49	7.12	2.00	3.37	13.7
carbon, inorganic [IC]		E354	0.050	%	0.770	0.367	0.360	0.578	6.70
carbon, inorganic [IC], (as CaCO3 equivalent)		E354	0.40	%	6.42	3.06	3.00	4.81	55.9
carbon, total organic [TOC]		EC356	0.050	%	2.72	6.75	1.64	2.79	7.00
Metals									
aluminum	7429-90-5	E440	50	mg/kg	9400	9830	10300	13200	2210
antimony	7440-36-0	E440	0.10	mg/kg	0.39	0.40	0.40	0.45	0.33
arsenic	7440-38-2	E440	0.10	mg/kg	7.23	5.93	7.72	9.45	3.06
barium	7440-39-3	E440	0.50	mg/kg	558	176	209	156	163
beryllium	7440-41-7	E440	0.10	mg/kg	0.66	0.77	0.75	0.86	0.40
bismuth	7440-69-9	E440	0.20	mg/kg	<0.20	0.21	0.22	0.25	<0.20
boron	7440-42-8	E440	5.0	mg/kg	8.3	6.7	6.1	8.1	6.6
cadmium	7440-43-9	E440	0.020	mg/kg	0.761	0.901	0.673	0.669	10.0

Page : 5 of 19

Work Order : CG2213078 Amendment 1

Client : Teck Coal Limited

Project : Regional Effects Program

Sub-Matrix: Soil (Matrix: Soil/Solid)			Cl	ient sample ID	RG_MIUCO_SE- 1_2022-09-14_ N	RG_MIUCO_SE- 3_2022-09-14_ N	RG_MIUCO_SE- 4_2022-09-14_ N	RG_MIUCO_SE- 5_2022-09-14_ N	RG_RIVER_SE-1 _2022-09-14_N
			Client samp	ling date / time	14-Sep-2022 10:57	14-Sep-2022 09:44	14-Sep-2022 11:22	14-Sep-2022 09:22	14-Sep-2022 10:57
Analyte	CAS Number	Method	LOR	Unit	CG2213078-001	CG2213078-003	CG2213078-004	CG2213078-005	CG2213078-006
					Result	Result	Result	Result	Result
Metals									
calcium	7440-70-2	E440	50	mg/kg	25300	14400	13200	17300	336000
chromium	7440-47-3	E440	0.50	mg/kg	12.8	14.4	14.1	16.8	3.55
cobalt	7440-48-4	E440	0.10	mg/kg	7.15	7.40	8.83	9.77	301
copper	7440-50-8	E440	0.50	mg/kg	17.9	18.8	18.3	20.4	8.00
iron	7439-89-6	E440	50	mg/kg	21000	18200	23200	31300	4780
lead	7439-92-1	E440	0.50	mg/kg	12.4	12.8	14.6	14.9	3.14
lithium	7439-93-2	E440	2.0	mg/kg	19.4	19.6	20.5	21.7	3.0
magnesium	7439-95-4	E440	20	mg/kg	6470	5350	6020	6390	7110
manganese	7439-96-5	E440	1.0	mg/kg	302	289	576	700	2250
mercury	7439-97-6	E510	0.0050	mg/kg	0.0284	0.0353	0.0223	0.0204	0.0261
molybdenum	7439-98-7	E440	0.10	mg/kg	2.07	1.61	2.32	1.89	0.71
nickel	7440-02-0	E440	0.50	mg/kg	21.3	22.5	24.3	26.9	277
phosphorus	7723-14-0	E440	50	mg/kg	1320	1310	1370	1400	313
potassium	7440-09-7	E440	100	mg/kg	1630	1790	1620	2170	660
selenium	7782-49-2	E440	0.20	mg/kg	0.72	1.00	0.57	0.39	2.90
silver	7440-22-4	E440	0.10	mg/kg	0.12	0.13	<0.10	<0.10	<0.10
sodium	7440-23-5	E440	50	mg/kg	244	97	81	73	379
strontium	7440-24-6	E440	0.50	mg/kg	98.5	55.8	39.8	55.5	406
sulfur	7704-34-9	E440	1000	mg/kg	1000	<1000	<1000	<1000	4900
thallium	7440-28-0	E440	0.050	mg/kg	0.301	0.326	0.322	0.304	0.316
tin	7440-31-5	E440	2.0	mg/kg	<2.0	<2.0	2.5	<2.0	<2.0
titanium	7440-32-6	E440	1.0	mg/kg	29.1	31.2	28.5	12.1	8.1
tungsten	7440-33-7	E440	0.50	mg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
uranium	7440-61-1	E440	0.050	mg/kg	0.628	0.924	0.604	0.550	2.34
vanadium	7440-62-2	E440	0.20	mg/kg	20.8	23.1	21.9	25.9	7.38
zinc	7440-66-6	E440	2.0	mg/kg	88.4	96.0	93.6	96.1	777
zirconium	7440-67-7	E440	1.0	mg/kg	1.7	1.8	1.3	<1.0	<1.0
Polycyclic Aromatic Hydrocarbons									
acenaphthene	83-32-9	E641A	0.050	mg/kg				<0.050	<0.050

Page : 6 of 19

Work Order : CG2213078 Amendment 1

Client : Teck Coal Limited

Project : Regional Effects Program

Sub-Matrix: Soil (Matrix: Soil/Solid)			Cl	ient sample ID	RG_MIUCO_SE- 1_2022-09-14_ N	RG_MIUCO_SE- 3_2022-09-14_ N	RG_MIUCO_SE- 4_2022-09-14_ N	RG_MIUCO_SE- 5_2022-09-14_ N	RG_RIVER_SE-1 _2022-09-14_N
			Client samp	ling date / time	14-Sep-2022 10:57	14-Sep-2022 09:44	14-Sep-2022 11:22	14-Sep-2022 09:22	14-Sep-2022 10:57
Analyte	CAS Number	Method	LOR	Unit	CG2213078-001	CG2213078-003	CG2213078-004	CG2213078-005	CG2213078-006
					Result	Result	Result	Result	Result
Polycyclic Aromatic Hydrocarbons									
acenaphthylene	208-96-8	E641A	0.050	mg/kg				<0.050	<0.050
acridine	260-94-6	E641A	0.050	mg/kg				<0.050	0.095
anthracene	120-12-7	E641A	0.050	mg/kg				<0.050	<0.050
benz(a)anthracene	56-55-3	E641A	0.050	mg/kg				<0.050	0.053
benzo(a)pyrene	50-32-8	E641A	0.050	mg/kg				<0.050	0.056
benzo(b+j)fluoranthene	n/a	E641A	0.050	mg/kg				<0.050	0.200
benzo(b+j+k)fluoranthene	n/a	E641A	0.075	mg/kg				<0.075	0.200
benzo(g,h,i)perylene	191-24-2	E641A	0.050	mg/kg				<0.050	0.110
benzo(k)fluoranthene	207-08-9	E641A	0.050	mg/kg				<0.050	<0.050
chrysene	218-01-9	E641A	0.050	mg/kg				<0.050	0.325
dibenz(a,h)anthracene	53-70-3	E641A	0.050	mg/kg				<0.050	<0.050
fluoranthene	206-44-0	E641A	0.050	mg/kg				<0.050	0.065
fluorene	86-73-7	E641A	0.050	mg/kg				<0.050	0.142
indeno(1,2,3-c,d)pyrene	193-39-5	E641A	0.050	mg/kg				<0.050	<0.050
methylnaphthalene, 1-	90-12-0	E641A	0.030	mg/kg				0.054	1.02
methylnaphthalene, 1+2-		E641A	0.050	mg/kg				0.125	2.67
methylnaphthalene, 2-	91-57-6	E641A	0.030	mg/kg				0.071	1.65
naphthalene	91-20-3	E641A	0.010	mg/kg				0.044	0.595
phenanthrene	85-01-8	E641A	0.050	mg/kg				0.092	0.886
pyrene	129-00-0	E641A	0.050	mg/kg				<0.050	0.100
quinoline	91-22-5	E641A	0.050	mg/kg				<0.050	<0.050
B(a)P total potency equivalents [B(a)P TPE]		E641A	0.065	mg/kg				<0.065	0.116
IACR (CCME)		E641A	0.60	-				<0.60	2.01
IACR AB (coarse)		E641A	0.10	-				<0.10	<0.10
IACR AB (fine)		E641A	0.10	-				<0.10	0.14
PAHs, total (BC Sched 3.4)	n/a	E641A	0.20	mg/kg				0.21	3.87
PAHs, total (EPA 16)	n/a	E641A	0.20	mg/kg				<0.20	2.53
Polycyclic Aromatic Hydrocarbons Surrogates									
acridine-d9	34749-75-2	E641A	0.1	%				107	108

Page : 7 of 19

Work Order : CG2213078 Amendment 1

Client : Teck Coal Limited

Project : Regional Effects Program

Analytical Results

Sub-Matrix: Soil			Cli	ient sample ID	RG_MIUCO_SE-	RG_MIUCO_SE-	RG_MIUCO_SE-	RG_MIUCO_SE-	RG_RIVER_SE-1
(Matrix: Soil/Solid)					1_2022-09-14_	3_2022-09-14_	4_2022-09-14_	5_2022-09-14_	_2022-09-14_N
<u></u>					N	N	N	N	
			Client samp	ling date / time	14-Sep-2022 10:57	14-Sep-2022 09:44	14-Sep-2022 11:22	14-Sep-2022 09:22	14-Sep-2022 10:57
Analyte	CAS Number	Method	LOR	Unit	CG2213078-001	CG2213078-003	CG2213078-004	CG2213078-005	CG2213078-006
					Result	Result	Result	Result	Result
Polycyclic Aromatic Hydrocarbons Surrogates									
chrysene-d12	1719-03-5	E641A	0.1	%				129	124
naphthalene-d8	1146-65-2	E641A	0.1	%				114	118
phenanthrene-d10	1517-22-2	E641A	0.1	%				117	117

Please refer to the General Comments section for an explanation of any qualifiers detected.

Page : 8 of 19

Work Order : CG2213078 Amendment 1

Client : Teck Coal Limited

Project : Regional Effects Program

Sub-Matrix: Soil (Matrix: Soil/Solid)			CI	ient sample ID	RG_RIVER_SE-4 _2022-09-14_N	RG_CORCK_SE- 1_2022-09-14_ N	RG_CORCK_SE- 2_2022-09-14_ N	RG_CORCK_SE- 3_2022-09-14_ N	RG_CORCK_SE- 4_2022-09-14_ N
			Client samp	ling date / time	14-Sep-2022 11:22	14-Sep-2022 14:24	14-Sep-2022 14:03	14-Sep-2022 13:13	14-Sep-2022 13:45
Analyte	CAS Number	Method	LOR	Unit	CG2213078-007	CG2213078-008	CG2213078-009	CG2213078-010	CG2213078-011
					Result	Result	Result	Result	Result
Physical Tests									
Moisture		E144	0.25	%	72.2	57.0		60.7	59.0
pH (1:2 soil:water)		E108	0.10	pH units	7.32	8.14	8.03	7.85	8.21
Particle Size									
grain size curve		E185A	-	-	See	See	See Attached	See	See Attached
		504044	4.0	٥,	Attached	Attached		Attached	
clay (<0.004mm)		EC184A	1.0	%	5.6	4.9	6.0	5.1	6.4
silt (0.063mm - 0.0312mm)		EC184A	1.0	%	19.3	18.3	18.9	15.9	17.8
silt (0.0312mm - 0.004mm)		EC184A	1.0	%	21.1	23.8	25.3	21.1	25.7
sand (0.125mm - 0.063mm)		EC184A	1.0	%	5.8	14.8	16.2	15.1	15.4
sand (0.25mm - 0.125mm)		EC184A	1.0	%	4.5	13.6	17.3	18.4	13.3
sand (0.5mm - 0.25mm)		EC184A	1.0	%	3.7	3.3	7.4	14.5	7.1
sand (1.0mm - 0.50mm)		EC184A	1.0	%	9.6	1.9	3.8	6.2	4.2
sand (2.0mm - 1.0mm)		EC184A	1.0	%	17.4	3.3	2.9	2.5	4.8
gravel (>2mm)		EC184A	1.0	%	13.0	16.1	2.2	1.2	5.3
Organic / Inorganic Carbon									
carbon, total [TC]		E351	0.050	%	8.47	13.0	13.4	13.7	13.2
carbon, inorganic [IC]		E354	0.050	%	1.81	7.39	6.88	7.01	6.71
carbon, inorganic [IC], (as CaCO3 equivalent)		E354	0.40	%	15.1	61.6	57.3	58.4	55.9
carbon, total organic [TOC]		EC356	0.050	%	6.66	5.61	6.52	6.69	6.49
Metals									
aluminum	7429-90-5	E440	50	mg/kg	5700	1950	1670	2180	2470
antimony	7440-36-0	E440	0.10	mg/kg	0.59	0.26	0.31	0.32	0.30
arsenic	7440-38-2	E440	0.10	mg/kg	6.15	2.69	2.01	2.64	3.36
barium	7440-39-3	E440	0.50	mg/kg	179	146	146	190	143
beryllium	7440-41-7	E440	0.10	mg/kg	0.38	0.33	0.30	0.42	0.36
bismuth	7440-69-9	E440	0.20	mg/kg	<0.20	<0.20	<0.48 DLM	<0.20	<0.20
boron	7440-42-8	E440	5.0	mg/kg	6.8	6.5	<12.0 DLM	7.9	5.6
cadmium	7440-43-9	E440	0.020	mg/kg	1.50	9.08	7.84	10.7	7.45
calcium	7440-70-2	E440	50	mg/kg	45200	340000	284000	357000	253000

Page : 9 of 19

Work Order : CG2213078 Amendment 1

Client : Teck Coal Limited

Project : Regional Effects Program

Sub-Matrix: Soil (Matrix: Soil/Solid)			CI	ient sample ID	RG_RIVER_SE-4 _2022-09-14_N	RG_CORCK_SE- 1_2022-09-14_ N	RG_CORCK_SE- 2_2022-09-14_ N	RG_CORCK_SE- 3_2022-09-14_ N	RG_CORCK_SE- 4_2022-09-14_ N
			Client sampling date / time		14-Sep-2022 11:22	14-Sep-2022 14:24	14-Sep-2022 14:03	14-Sep-2022 13:13	14-Sep-2022 13:45
Analyte	CAS Number	Method	LOR	Unit	CG2213078-007	CG2213078-008	CG2213078-009	CG2213078-010	CG2213078-011
					Result	Result	Result	Result	Result
Metals									
chromium	7440-47-3	E440	0.50	mg/kg	10.4	3.39	2.90	3.49	4.56
cobalt	7440-48-4	E440	0.10	mg/kg	6.01	230	193	279	188
copper	7440-50-8	E440	0.50	mg/kg	11.7	6.64	5.88	8.03	6.95
iron	7439-89-6	E440	50	mg/kg	11900	4980	3180	4160	5280
lead	7439-92-1	E440	0.50	mg/kg	6.71	3.28	2.52	3.00	3.80
lithium	7439-93-2	E440	2.0	mg/kg	7.8	3.0	<4.8 DLM	3.6	3.2
magnesium	7439-95-4	E440	20	mg/kg	3930	6420	5720	7170	6590
manganese	7439-96-5	E440	1.0	mg/kg	147	1950	1590	2200	1480
mercury	7439-97-6	E510	0.0050	mg/kg	0.0319	0.0300	0.0235	0.0285	0.0265
molybdenum	7439-98-7	E440	0.10	mg/kg	1.35	0.55	0.50	0.80	0.64
nickel	7440-02-0	E440	0.50	mg/kg	29.5	227	199	284	201
phosphorus	7723-14-0	E440	50	mg/kg	1050	266	172	343	440
potassium	7440-09-7	E440	100	mg/kg	1090	580	560	600	630
selenium	7782-49-2	E440	0.20	mg/kg	2.03	2.06	2.01	4.55	2.20
silver	7440-22-4	E440	0.10	mg/kg	0.14	<0.10	<0.24 DLM	<0.10	<0.10
sodium	7440-23-5	E440	50	mg/kg	127	348	365	409	263
strontium	7440-24-6	E440	0.50	mg/kg	74.9	403	365	426	300
sulfur	7704-34-9	E440	1000	mg/kg	<1000	4900	4200	5000	3400
thallium	7440-28-0	E440	0.050	mg/kg	0.195	0.171	0.193	0.297	0.242
tin	7440-31-5	E440	2.0	mg/kg	<2.0	<2.0	<4.8 DLM	<2.0	<2.0
titanium	7440-32-6	E440	1.0	mg/kg	18.3	7.2	25.9	7.2	7.7
tungsten	7440-33-7	E440	0.50	mg/kg	<0.50	<0.50	<1.20 DLM	<0.50	<0.50
uranium	7440-61-1	E440	0.050	mg/kg	0.862	2.23	2.02	2.98	1.88
vanadium	7440-62-2	E440	0.20	mg/kg	26.7	6.43	5.54	7.50	9.02
zinc	7440-66-6	E440	2.0	mg/kg	99.1	703	667	831	593
zirconium	7440-67-7	E440	1.0	mg/kg	<1.0	<1.0	<2.4 DLM	<1.0	<1.0
Polycyclic Aromatic Hydrocarbons									
acenaphthene	83-32-9	E641A	0.050	mg/kg	<0.050	<0.050		0.051	0.058
acenaphthylene	208-96-8	E641A	0.050	mg/kg	<0.050	<0.050		<0.050	<0.050

Page : 10 of 19

Work Order : CG2213078 Amendment 1

Client : Teck Coal Limited

Project : Regional Effects Program

Sub-Matrix: Soil (Matrix: Soil/Solid)			CI	ient sample ID	RG_RIVER_SE-4 _2022-09-14_N	RG_CORCK_SE- 1_2022-09-14_ N	RG_CORCK_SE- 2_2022-09-14_ N	RG_CORCK_SE- 3_2022-09-14_ N	RG_CORCK_SE- 4_2022-09-14_ N
			Client sampling date / time		14-Sep-2022 11:22	14-Sep-2022 14:24	14-Sep-2022 14:03	14-Sep-2022 13:13	14-Sep-2022 13:45
Analyte	CAS Number	Method	LOR	Unit	CG2213078-007	CG2213078-008	CG2213078-009	CG2213078-010	CG2213078-011
					Result	Result	Result	Result	Result
Polycyclic Aromatic Hydrocarbons									
acridine	260-94-6	E641A	0.050	mg/kg	<0.050	0.058		0.094	0.092
anthracene	120-12-7	E641A	0.050	mg/kg	<0.050	<0.050		<0.050	<0.050
benz(a)anthracene	56-55-3	E641A	0.050	mg/kg	<0.050	<0.050		0.052	0.076
benzo(a)pyrene	50-32-8	E641A	0.050	mg/kg	<0.050	<0.050		0.053	0.056
benzo(b+j)fluoranthene	n/a	E641A	0.050	mg/kg	<0.050	0.125		0.231	0.265
benzo(b+j+k)fluoranthene	n/a	E641A	0.075	mg/kg	<0.075	0.125		0.231	0.265
benzo(g,h,i)perylene	191-24-2	E641A	0.050	mg/kg	<0.050	0.066		0.102	0.141
benzo(k)fluoranthene	207-08-9	E641A	0.050	mg/kg	<0.050	<0.050		<0.050	<0.050
chrysene	218-01-9	E641A	0.050	mg/kg	0.054	0.189		0.314	0.421
dibenz(a,h)anthracene	53-70-3	E641A	0.050	mg/kg	<0.050	<0.050		<0.050	<0.050
fluoranthene	206-44-0	E641A	0.050	mg/kg	<0.050	<0.050		0.064	0.081
fluorene	86-73-7	E641A	0.050	mg/kg	<0.050	0.080		0.150	0.167
indeno(1,2,3-c,d)pyrene	193-39-5	E641A	0.050	mg/kg	<0.050	<0.050		<0.050	<0.050
methylnaphthalene, 1-	90-12-0	E641A	0.030	mg/kg	0.097	0.598		1.09	1.41
methylnaphthalene, 1+2-		E641A	0.050	mg/kg	0.229	1.56		2.89	3.78
methylnaphthalene, 2-	91-57-6	E641A	0.030	mg/kg	0.132	0.964		1.80	2.37
naphthalene	91-20-3	E641A	0.010	mg/kg	0.064	0.341		0.677	0.881
phenanthrene	85-01-8	E641A	0.050	mg/kg	0.115	0.541		1.13	1.06
pyrene	129-00-0	E641A	0.050	mg/kg	<0.050	0.056		0.098	0.134
quinoline	91-22-5	E641A	0.050	mg/kg	<0.050	<0.050		<0.050	<0.050
B(a)P total potency equivalents [B(a)P TPE]		E641A	0.065	mg/kg	<0.065	0.072		0.115	0.126
IACR (CCME)		E641A	0.60	-	0.60	1.30		2.18	2.53
IACR AB (coarse)		E641A	0.10	-	<0.10	<0.10		<0.10	<0.10
IACR AB (fine)		E641A	0.10	-	<0.10	<0.10		0.15	0.16
PAHs, total (BC Sched 3.4)	n/a	E641A	0.20	mg/kg	0.36	2.17		4.39	5.30
PAHs, total (EPA 16)	n/a	E641A	0.20	mg/kg	0.23	1.40		2.92	3.34
Polycyclic Aromatic Hydrocarbons Surrogates									
acridine-d9	34749-75-2	E641A	0.1	%	119	114		115	123
chrysene-d12	1719-03-5	E641A	0.1	%	122	126		126	112
1	<u>'</u>		1	'	ı	1	1	•	1

Page : 11 of 19

Work Order : CG2213078 Amendment 1

Client : Teck Coal Limited

Project : Regional Effects Program

Analytical Results

Sub-Matrix: Soil			Cli	ient sample ID	RG_RIVER_SE-4	RG_CORCK_SE-	RG_CORCK_SE-	RG_CORCK_SE-	RG_CORCK_SE-
(Matrix: Soil/Solid)					_2022-09-14_N	1_2022-09-14_	2_2022-09-14_	3_2022-09-14_	4_2022-09-14_
<u></u>						N	N	N	N
			Client samp	ling date / time	14-Sep-2022 11:22	14-Sep-2022 14:24	14-Sep-2022 14:03	14-Sep-2022 13:13	14-Sep-2022 13:45
Analyte	CAS Number	Method	LOR	Unit	CG2213078-007	CG2213078-008	CG2213078-009	CG2213078-010	CG2213078-011
					Result	Result	Result	Result	Result
Polycyclic Aromatic Hydrocarbons Surrogates									
naphthalene-d8	1146-65-2	E641A	0.1	%	128	122		125	122
phenanthrene-d10	1517-22-2	E641A	0.1	%	126	121		121	124

Please refer to the General Comments section for an explanation of any qualifiers detected.

Page : 12 of 19

Work Order : CG2213078 Amendment 1

Client : Teck Coal Limited

Project : Regional Effects Program

Sub-Matrix: Soil (Matrix: Soil/Solid)			CI	ient sample ID	RG_CORCK_SE- 5_2022-09-14_ N	RG_MI25_SE-1_ 2022-09-14_N	RG_MI25_SE-2_ 2022-09-14_N	RG_MI25_SE-3_ 2022-09-14_N	RG_AGCK_SE-1 _2022-09-14_N
			Client samp	ling date / time	14-Sep-2022 13:02	15-Sep-2022 11:25	15-Sep-2022 10:50	15-Sep-2022 09:50	15-Sep-2022 16:48
Analyte	CAS Number	Method	LOR	Unit	CG2213078-012	CG2213078-014	CG2213078-015	CG2213078-016	CG2213078-017
					Result	Result	Result	Result	Result
Physical Tests									
Moisture		E144	0.25	%	54.7	46.4	41.9	43.5	81.0
pH (1:2 soil:water)		E108	0.10	pH units	8.15	8.13	8.29	8.24	7.51
Particle Size									
grain size curve		E185A	-	-	See Attached	See Attached	See Attached		
clay (<0.004mm)		EC184A	1.0	%	6.0	5.4	4.4		
silt (0.063mm - 0.0312mm)		EC184A	1.0	%	16.4	9.2	10.1		
silt (0.0312mm - 0.004mm)		EC184A	1.0	%	22.8	12.9	12.9		
sand (0.125mm - 0.063mm)		EC184A	1.0	%	15.6	6.8	10.2		
sand (0.25mm - 0.125mm)		EC184A	1.0	%	15.0	8.6	15.5		
sand (0.5mm - 0.25mm)		EC184A	1.0	%	10.2	12.6	21.4		
sand (1.0mm - 0.50mm)		EC184A	1.0	%	6.2	8.7	12.7		
sand (2.0mm - 1.0mm)		EC184A	1.0	%	4.3	3.2	8.0		
gravel (>2mm)		EC184A	1.0	%	3.5	32.6	4.8		
Organic / Inorganic Carbon									
carbon, total [TC]		E351	0.050	%	13.4	3.11	2.34	2.46	13.6
carbon, inorganic [IC]		E354	0.050	%	7.92	0.478	0.543	0.508	3.83
carbon, inorganic [IC], (as CaCO3 equivalent)		E354	0.40	%	66.0	3.98	4.53	4.24	31.9
carbon, total organic [TOC]		EC356	0.050	%	5.48	2.63	1.80	1.95	9.77
Metals									
aluminum	7429-90-5	E440	50	mg/kg	2100	13200	12900	15200	2780
antimony	7440-36-0	E440	0.10	mg/kg	0.32	0.61	0.59	0.59	0.94
arsenic	7440-38-2	E440	0.10	mg/kg	3.31	12.1	11.1	11.7	6.97
barium	7440-39-3	E440	0.50	mg/kg	154	150	135	149	50.2
beryllium	7440-41-7	E440	0.10	mg/kg	0.38	0.82	0.76	0.85	0.41
bismuth	7440-69-9	E440	0.20	mg/kg	<0.20	0.25	0.22	0.24	<0.20
boron	7440-42-8	E440	5.0	mg/kg	6.8	6.5	9.0	9.6	<5.0
cadmium	7440-43-9	E440	0.020	mg/kg	9.16	1.46	1.26	1.45	1.26
calcium	7440-70-2	E440	50	mg/kg	309000	18300	31400	27600	137000

Page : 13 of 19

Work Order : CG2213078 Amendment 1

Client : Teck Coal Limited

Project : Regional Effects Program

Sub-Matrix: Soil (Matrix: Soil/Solid)			CI	ient sample ID	RG_CORCK_SE- 5_2022-09-14_ N	RG_MI25_SE-1_ 2022-09-14_N	RG_MI25_SE-2_ 2022-09-14_N	RG_MI25_SE-3_ 2022-09-14_N	RG_AGCK_SE-1 _2022-09-14_N
			Client samp	ling date / time	14-Sep-2022 13:02	15-Sep-2022 11:25	15-Sep-2022 10:50	15-Sep-2022 09:50	15-Sep-2022 16:48
Analyte	CAS Number	Method	LOR	Unit	CG2213078-012	CG2213078-014	CG2213078-015	CG2213078-016	CG2213078-017
					Result	Result	Result	Result	Result
Metals									
chromium	7440-47-3	E440	0.50	mg/kg	4.16	17.5	18.2	20.2	10.8
cobalt	7440-48-4	E440	0.10	mg/kg	283	10.1	8.40	9.47	2.75
copper	7440-50-8	E440	0.50	mg/kg	7.60	30.0	25.7	28.2	9.09
iron	7439-89-6	E440	50	mg/kg	4950	26600	22700	27400	7250
lead	7439-92-1	E440	0.50	mg/kg	3.01	16.4	15.2	19.2	4.62
lithium	7439-93-2	E440	2.0	mg/kg	2.8	21.0	18.7	21.9	4.0
magnesium	7439-95-4	E440	20	mg/kg	6510	6390	6290	6840	12900
manganese	7439-96-5	E440	1.0	mg/kg	2170	568	523	708	138
mercury	7439-97-6	E510	0.0050	mg/kg	0.0277	0.0316	0.0292	0.0267	0.0395
molybdenum	7439-98-7	E440	0.10	mg/kg	0.69	5.33	4.98	5.15	1.40
nickel	7440-02-0	E440	0.50	mg/kg	267	36.1	31.4	35.1	24.6
phosphorus	7723-14-0	E440	50	mg/kg	295	1390	1250	1320	1050
potassium	7440-09-7	E440	100	mg/kg	590	1970	2320	2720	880
selenium	7782-49-2	E440	0.20	mg/kg	2.88	0.92	0.68	1.00	2.14
silver	7440-22-4	E440	0.10	mg/kg	<0.10	0.14	0.13	0.29	0.33
sodium	7440-23-5	E440	50	mg/kg	326	72	79	80	109
strontium	7440-24-6	E440	0.50	mg/kg	372	49.7	60.4	76.9	140
sulfur	7704-34-9	E440	1000	mg/kg	4300	<1000	<1000	<1000	<1000
thallium	7440-28-0	E440	0.050	mg/kg	0.327	0.679	0.633	0.677	0.689
tin	7440-31-5	E440	2.0	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0
titanium	7440-32-6	E440	1.0	mg/kg	8.4	8.3	11.2	10.4	10.9
tungsten	7440-33-7	E440	0.50	mg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
uranium	7440-61-1	E440	0.050	mg/kg	2.21	0.816	0.806	0.758	0.969
vanadium	7440-62-2	E440	0.20	mg/kg	7.81	30.2	31.4	34.0	20.1
zinc	7440-66-6	E440	2.0	mg/kg	724	155	132	156	147
zirconium	7440-67-7	E440	1.0	mg/kg	<1.0	1.1	<1.0	<1.0	<1.0
Polycyclic Aromatic Hydrocarbons									
acenaphthene	83-32-9	E641A	0.050	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.068
acenaphthylene	208-96-8	E641A	0.050	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.068

Page : 14 of 19

Work Order : CG2213078 Amendment 1

Client : Teck Coal Limited

Project : Regional Effects Program

Sub-Matrix: Soil (Matrix: Soil/Solid)			Cl	ient sample ID	RG_CORCK_SE- 5_2022-09-14_ N	RG_MI25_SE-1_ 2022-09-14_N	RG_MI25_SE-2_ 2022-09-14_N	RG_MI25_SE-3_ 2022-09-14_N	RG_AGCK_SE-1 _2022-09-14_N
			Client samp	ling date / time	14-Sep-2022 13:02	15-Sep-2022 11:25	15-Sep-2022 10:50	15-Sep-2022 09:50	15-Sep-2022 16:48
Analyte	CAS Number	Method	LOR	Unit	CG2213078-012	CG2213078-014	CG2213078-015	CG2213078-016	CG2213078-017
				'	Result	Result	Result	Result	Result
Polycyclic Aromatic Hydrocarbons									
acridine	260-94-6	E641A	0.050	mg/kg	0.075	<0.050	<0.050	<0.050	<0.068
anthracene	120-12-7	E641A	0.050	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.068
benz(a)anthracene	56-55-3	E641A	0.050	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.068
benzo(a)pyrene	50-32-8	E641A	0.050	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.068
benzo(b+j)fluoranthene	n/a	E641A	0.050	mg/kg	0.191	<0.050	<0.050	<0.050	<0.068
benzo(b+j+k)fluoranthene	n/a	E641A	0.075	mg/kg	0.191	<0.075	<0.075	<0.075	<0.096
benzo(g,h,i)perylene	191-24-2	E641A	0.050	mg/kg	0.089	<0.050	<0.050	<0.050	<0.068
benzo(k)fluoranthene	207-08-9	E641A	0.050	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.068
chrysene	218-01-9	E641A	0.050	mg/kg	0.269	<0.050	<0.050	<0.050	<0.068
dibenz(a,h)anthracene	53-70-3	E641A	0.050	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.068
fluoranthene	206-44-0	E641A	0.050	mg/kg	0.052	<0.050	<0.050	<0.050	<0.068
fluorene	86-73-7	E641A	0.050	mg/kg	0.116	<0.050	<0.050	<0.050	<0.068
indeno(1,2,3-c,d)pyrene	193-39-5	E641A	0.050	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.068
methylnaphthalene, 1-	90-12-0	E641A	0.030	mg/kg	0.829	<0.030	<0.030	<0.030	0.069
methylnaphthalene, 1+2-		E641A	0.050	mg/kg	2.16	<0.050	<0.050	<0.050	0.155
methylnaphthalene, 2-	91-57-6	E641A	0.030	mg/kg	1.33	<0.030	<0.030	<0.030	0.086
naphthalene	91-20-3	E641A	0.010	mg/kg	0.479	0.010	<0.010	<0.010	0.040
phenanthrene	85-01-8	E641A	0.050	mg/kg	0.706	<0.050	<0.050	<0.050	0.099
pyrene	129-00-0	E641A	0.050	mg/kg	0.081	<0.050	<0.050	<0.050	<0.068
quinoline	91-22-5	E641A	0.050	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.068
B(a)P total potency equivalents [B(a)P TPE]		E641A	0.065	mg/kg	0.080	<0.065	<0.065	<0.065	0.082
IACR (CCME)		E641A	0.60	-	1.75	<0.60	<0.60	<0.60	0.80
IACR AB (coarse)		E641A	0.10	-	<0.10	<0.10	<0.10	<0.10	<0.10
IACR AB (fine)		E641A	0.10	-	0.12	<0.10	<0.10	<0.10	<0.10
PAHs, total (BC Sched 3.4)	n/a	E641A	0.20	mg/kg	3.03	<0.20	<0.20	<0.20	<0.23
PAHs, total (EPA 16)	n/a	E641A	0.20	mg/kg	1.98	<0.20	<0.20	<0.20	<0.26
Polycyclic Aromatic Hydrocarbons Surrogates									
acridine-d9	34749-75-2	E641A	0.1	%	110	112	105	119	122
chrysene-d12	1719-03-5	E641A	0.1	%	127	116	126	123	123

Page : 15 of 19

Work Order : CG2213078 Amendment 1

Client : Teck Coal Limited

Project : Regional Effects Program

Analytical Results

Sub-Matrix: Soil			CI	ient sample ID	RG_CORCK_SE-	RG_MI25_SE-1_	RG_MI25_SE-2_	RG_MI25_SE-3_	RG_AGCK_SE-1
(Matrix: Soil/Solid)					5_2022-09-14_	2022-09-14_N	2022-09-14_N	2022-09-14_N	_2022-09-14_N
<u></u>					N				
			Client samp	ling date / time	14-Sep-2022 13:02	15-Sep-2022 11:25	15-Sep-2022 10:50	15-Sep-2022 09:50	15-Sep-2022 16:48
Analyte	CAS Number	Method	LOR	Unit	CG2213078-012	CG2213078-014	CG2213078-015	CG2213078-016	CG2213078-017
					Result	Result	Result	Result	Result
Polycyclic Aromatic Hydrocarbons Surrogates									
naphthalene-d8	1146-65-2	E641A	0.1	%	118	121	113	120	125
phenanthrene-d10	1517-22-2	E641A	0.1	%	116	123	116	119	127

Please refer to the General Comments section for an explanation of any qualifiers detected.

Page 16 of 19

Work Order CG2213078 Amendment 1

Client Teck Coal Limited

Project Regional Effects Program

Sub-Matrix: Soil			CI	lient sample ID	RG_LE1_SE-1_	RG_LE1_SE-2_	RG_LE1_SE-3_	RG_MI5_SE-4_2	RG_MI5_SE-5_2
(Matrix: Soil/Solid)					2022-09-14_N	2022-09-14_N	2022-09-14_N	022-09-14_N	022-09-14_N
			Client samp	ling date / time	16-Sep-2022 10:48	16-Sep-2022 09:58	16-Sep-2022 09:12	16-Sep-2022 12:00	16-Sep-2022 12:15
Analyte	CAS Number	Method	LOR	Unit	CG2213078-018	CG2213078-019	CG2213078-020	CG2213078-021	CG2213078-022
					Result	Result	Result	Result	Result
Physical Tests									
Moisture		E144	0.25	%	44.5	46.9	33.9	72.4	81.2
pH (1:2 soil:water)		E108	0.10	pH units	8.06	8.03	8.04	7.55	7.61
Particle Size									
grain size curve		E185A	-	-	See Attached	See Attached	See Attached	See Attached	See Attached
clay (<0.004mm)		EC184A	1.0	%	3.1	2.6	3.2	5.0	7.5
silt (0.063mm - 0.0312mm)		EC184A	1.0	%	10.1	12.6	6.9	21.1	32.7
silt (0.0312mm - 0.004mm)		EC184A	1.0	%	10.3	10.9	8.3	23.3	35.2
sand (0.125mm - 0.063mm)		EC184A	1.0	%	13.6	21.2	10.0	4.7	9.1
sand (0.25mm - 0.125mm)		EC184A	1.0	%	16.1	24.6	21.3	3.1	4.3
sand (0.5mm - 0.25mm)		EC184A	1.0	%	18.9	14.5	29.6	3.5	1.8
sand (1.0mm - 0.50mm)		EC184A	1.0	%	9.5	5.8	14.9	9.6	1.1
sand (2.0mm - 1.0mm)		EC184A	1.0	%	7.1	2.5	2.9	16.6	1.9
gravel (>2mm)		EC184A	1.0	%	11.3	5.3	2.9	13.1	6.4
Organic / Inorganic Carbon									
carbon, total [TC]		E351	0.050	%	1.59	1.77	2.55	7.10	9.81
carbon, inorganic [IC]		E354	0.050	%	0.174	0.136	0.115	1.66	2.88
carbon, inorganic [IC], (as CaCO3 equivalent)		E354	0.40	%	1.45	1.13	0.96	13.8	24.0
carbon, total organic [TOC]		EC356	0.050	%	1.42	1.63	2.44	5.44	6.93
Metals									
aluminum	7429-90-5	E440	50	mg/kg	7700	7780	8320	6040	4520
antimony	7440-36-0	E440	0.10	mg/kg	1.33	1.30	1.67	0.70	0.52
arsenic	7440-38-2	E440	0.10	mg/kg	6.25	6.48	8.97	5.68	4.16
barium	7440-39-3	E440	0.50	mg/kg	248	267	267	182	238
beryllium	7440-41-7	E440	0.10	mg/kg	0.50	0.60	0.76	0.45	0.35
bismuth	7440-69-9	E440	0.20	mg/kg	<0.20	<0.20	<0.20	<0.20	<0.20
boron	7440-42-8	E440	5.0	mg/kg	<5.0	<5.0	<5.0	6.9	7.6
cadmium	7440-43-9	E440	0.020	mg/kg	1.65	1.64	2.07	2.38	1.61
calcium	7440-70-2	E440	50	mg/kg	7400	5960	5350	54300	92200
chromium	7440-47-3	E440	0.50	mg/kg	14.5	15.0	16.5	12.0	8.90
•			•			•	•	•	

Page : 17 of 19

Work Order : CG2213078 Amendment 1

Client : Teck Coal Limited
Project : Regional Effects Program

Sub-Matrix: Soil			C	lient sample ID	RG_LE1_SE-1_	RG_LE1_SE-2_	RG_LE1_SE-3_	RG_MI5_SE-4_2	RG_MI5_SE-5_2
(Matrix: Soil/Solid)					2022-09-14_N	2022-09-14_N	2022-09-14_N	022-09-14_N	022-09-14_N
			Client samp	oling date / time	16-Sep-2022 10:48	16-Sep-2022 09:58	16-Sep-2022 09:12	16-Sep-2022 12:00	16-Sep-2022 12:15
Analyte	CAS Number	Method	LOR	Unit	CG2213078-018	CG2213078-019	CG2213078-020	CG2213078-021	CG2213078-022
					Result	Result	Result	Result	Result
Metals									
cobalt	7440-48-4	E440	0.10	mg/kg	6.43	6.51	7.12	6.78	7.00
copper	7440-50-8	E440	0.50	mg/kg	17.2	15.4	17.6	12.7	9.99
iron	7439-89-6	E440	50	mg/kg	16400	15900	20000	13200	10100
lead	7439-92-1	E440	0.50	mg/kg	9.63	9.10	10.5	7.02	6.23
lithium	7439-93-2	E440	2.0	mg/kg	8.2	8.6	8.9	7.4	5.6
magnesium	7439-95-4	E440	20	mg/kg	3090	2450	2250	5490	5450
manganese	7439-96-5	E440	1.0	mg/kg	272	240	312	196	198
mercury	7439-97-6	E510	0.0050	mg/kg	0.0439	0.0459	0.0455	0.0416	0.0375
molybdenum	7439-98-7	E440	0.10	mg/kg	1.54	1.52	2.22	1.23	1.04
nickel	7440-02-0	E440	0.50	mg/kg	27.5	26.5	31.4	35.1	33.6
phosphorus	7723-14-0	E440	50	mg/kg	1230	1220	1320	1210	1140
potassium	7440-09-7	E440	100	mg/kg	1220	1160	1320	1140	950
selenium	7782-49-2	E440	0.20	mg/kg	0.70	0.66	0.71	2.56	2.59
silver	7440-22-4	E440	0.10	mg/kg	0.18	0.19	0.21	0.18	0.16
sodium	7440-23-5	E440	50	mg/kg	<50	<50	<50	132	140
strontium	7440-24-6	E440	0.50	mg/kg	36.5	36.6	41.5	92.2	125
sulfur	7704-34-9	E440	1000	mg/kg	<1000	<1000	<1000	<1000	1100
thallium	7440-28-0	E440	0.050	mg/kg	0.222	0.196	0.219	0.220	0.191
tin	7440-31-5	E440	2.0	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0
titanium	7440-32-6	E440	1.0	mg/kg	34.0	30.6	40.4	30.4	14.4
tungsten	7440-33-7	E440	0.50	mg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
uranium	7440-61-1	E440	0.050	mg/kg	1.27	1.23	1.34	0.991	0.827
vanadium	7440-62-2	E440	0.20	mg/kg	46.9	46.0	56.8	29.4	20.5
zinc	7440-66-6	E440	2.0	mg/kg	119	115	133	117	102
zirconium	7440-67-7	E440	1.0	mg/kg	<1.0	<1.0	<1.0	1.2	<1.0
Polycyclic Aromatic Hydrocarbons									
acenaphthene	83-32-9	E641A	0.050	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.068
acenaphthylene	208-96-8	E641A	0.050	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.068
acridine	260-94-6	E641A	0.050	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.068
anthracene	120-12-7	E641A	0.050	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.068
	120-12-7		1	9/1/9	2.000	1 3.000	0.000	1	0.000

Page : 18 of 19

Work Order : CG2213078 Amendment 1

Client : Teck Coal Limited

Project : Regional Effects Program

Sub-Matrix: Soil			CI	lient sample ID	RG_LE1_SE-1_	RG_LE1_SE-2_	RG_LE1_SE-3_	RG_MI5_SE-4_2	RG_MI5_SE-5_2
(Matrix: Soil/Solid)					2022-09-14_N	2022-09-14_N	2022-09-14_N	022-09-14_N	022-09-14_N
			Client samp	ling date / time	16-Sep-2022 10:48	16-Sep-2022 09:58	16-Sep-2022 09:12	16-Sep-2022 12:00	16-Sep-2022 12:15
Analyte	CAS Number	Method	LOR	Unit	CG2213078-018	CG2213078-019	CG2213078-020	CG2213078-021	CG2213078-022
					Result	Result	Result	Result	Result
Polycyclic Aromatic Hydrocarbons									
benz(a)anthracene	56-55-3	E641A	0.050	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.068
benzo(a)pyrene	50-32-8	E641A	0.050	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.068
benzo(b+j)fluoranthene	n/a	E641A	0.050	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.068
benzo(b+j+k)fluoranthene	n/a	E641A	0.075	mg/kg	< 0.075	<0.075	<0.075	<0.075	<0.096
benzo(g,h,i)perylene	191-24-2	E641A	0.050	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.068
benzo(k)fluoranthene	207-08-9	E641A	0.050	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.068
chrysene	218-01-9	E641A	0.050	mg/kg	0.082	0.060	0.062	0.053	0.084
dibenz(a,h)anthracene	53-70-3	E641A	0.050	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.068
fluoranthene	206-44-0	E641A	0.050	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.068
fluorene	86-73-7	E641A	0.050	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.068
indeno(1,2,3-c,d)pyrene	193-39-5	E641A	0.050	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.068
methylnaphthalene, 1-	90-12-0	E641A	0.030	mg/kg	0.140	0.068	0.079	0.084	0.130
methylnaphthalene, 1+2-		E641A	0.050	mg/kg	0.280	0.134	0.161	0.192	0.297
methylnaphthalene, 2-	91-57-6	E641A	0.030	mg/kg	0.140	0.066	0.082	0.108	0.167
naphthalene	91-20-3	E641A	0.010	mg/kg	0.068	0.033	0.038	0.057	0.084
phenanthrene	85-01-8	E641A	0.050	mg/kg	0.262	0.143	0.162	0.141	0.188
pyrene	129-00-0	E641A	0.050	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.068
quinoline	91-22-5	E641A	0.050	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.068
B(a)P total potency equivalents [B(a)P TPE]		E641A	0.065	mg/kg	< 0.065	<0.065	<0.065	<0.065	0.083
IACR (CCME)		E641A	0.60	-	0.62	0.61	0.61	0.60	0.82
IACR AB (coarse)		E641A	0.10	-	<0.10	<0.10	<0.10	<0.10	<0.10
IACR AB (fine)		E641A	0.10	-	<0.10	<0.10	<0.10	<0.10	<0.10
PAHs, total (BC Sched 3.4)	n/a	E641A	0.20	mg/kg	0.55	0.30	0.34	0.36	0.52
PAHs, total (EPA 16)	n/a	E641A	0.20	mg/kg	0.41	0.24	0.26	0.25	0.36
Polycyclic Aromatic Hydrocarbons Surrogates									
acridine-d9	34749-75-2	E641A	0.1	%	106	108	105	118	121
chrysene-d12	1719-03-5	E641A	0.1	%	129	116	127	112	117
naphthalene-d8	1146-65-2	E641A	0.1	%	119	120	119	126	122
phenanthrene-d10	1517-22-2	E641A	0.1	%	118	118	115	126	129
ı			•			1	ı	1	!

Page : 19 of 19

Work Order : CG2213078 Amendment 1

Client : Teck Coal Limited

Project : Regional Effects Program

Please refer to the General Comments section for an explanation of any qualifiers detected.

Calgary, Alberta Canada T1Y 7B5

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : **CG2213078** Page : 1 of 22

Amendment :1

Client : Teck Coal Limited : Calgary - Environmental Contact : Cybele Heddle : Cybele Heddle : Lyudmyla Shvets
Address : 421 Pine Ave : Address : 2559 29th Street NE

Sparwood BC Canada

Telephone :_--- Telephone :+1 403 407 1800

 Project
 : Regional Effects Program
 Date Samples Received
 : 17-Sep-2022 11:38

 PO
 : VPO00816101
 Issue Date
 : 12-Jan-2023 11:41

C-O-C number : REP LAEMP CMm 2022-09 ALS

Sampler : JI
Site :----

Quote number : Teck Coal Master Quote

No. of samples received :23 No. of samples analysed :20

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers Outliers : Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• No Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• Quality Control Sample Frequency Outliers occur - please see following pages for full details.

Page : 3 of 22

Work Order : CG2213078 Amendment 1

Client : Teck Coal Limited
Project : Regional Effects Program

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Soli/Solid						raiuation. * -	Holding time exce	euance, v	– vviuiiii	Holding Till
Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Metals : Mercury in Soil/Solid by CVAAS										
Glass soil jar/Teflon lined cap										
RG_LE1_SE-1_2022-09-14_N	E510	16-Sep-2022	27-Sep-2022				27-Sep-2022	28 days	11 days	✓
Metals : Mercury in Soil/Solid by CVAAS										
Glass soil jar/Teflon lined cap										
RG_LE1_SE-2_2022-09-14_N	E510	16-Sep-2022	27-Sep-2022				27-Sep-2022	28 days	11 days	✓
Metals : Mercury in Soil/Solid by CVAAS										
Glass soil jar/Teflon lined cap										
RG_LE1_SE-3_2022-09-14_N	E510	16-Sep-2022	27-Sep-2022				27-Sep-2022	28 days	11 days	✓
Metals : Mercury in Soil/Solid by CVAAS										
Glass soil jar/Teflon lined cap										,
RG_MI5_SE-4_2022-09-14_N	E510	16-Sep-2022	27-Sep-2022				27-Sep-2022	28 days	11 days	✓
Metals : Mercury in Soil/Solid by CVAAS										
Glass soil jar/Teflon lined cap	E510	16-Sep-2022	07.0 0000				07.0 0000	00 1	44 1	✓
RG_MI5_SE-5_2022-09-14_N	E510	16-Sep-2022	27-Sep-2022				27-Sep-2022	28 days	11 days	•
Metals : Mercury in Soil/Solid by CVAAS				T						
Glass soil jar/Teflon lined cap	E510	15-Sep-2022	27-Sep-2022				27-Sep-2022	20 days	12 days	✓
RG_AGCK_SE-1_2022-09-14_N	E310	15-Sep-2022	27-Sep-2022				27-Sep-2022	20 days	12 days	•
Metals : Mercury in Soil/Solid by CVAAS				1	I			<u> </u>		
Glass soil jar/Teflon lined cap RG MI25 SE-1 2022-09-14 N	E510	15-Sep-2022	27-Sep-2022				27-Sep-2022	28 days	12 days	✓
NG_IVIIZU_SE-1_ZUZZ-U9-14_IV	E010	10-3ep-2022	21-3 c p-2022				21-3ep-2022	20 uays	12 uays	▼

Page : 4 of 22

Work Order : CG2213078 Amendment 1

Client : Teck Coal Limited
Project : Regional Effects Program

Matrix: Soil/Solid					E۱	⁄aluation: ≭ =	Holding time excee	edance ; 🔻	= Within	Holding Time
Analyte Group	Method	Sampling Date	Ext	raction / Pi	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Metals : Mercury in Soil/Solid by CVAAS										
Glass soil jar/Teflon lined cap										
RG_MI25_SE-2_2022-09-14_N	E510	15-Sep-2022	27-Sep-2022				27-Sep-2022	28 days	12 days	\checkmark
Metals : Mercury in Soil/Solid by CVAAS										
Glass soil jar/Teflon lined cap										
RG_MI25_SE-3_2022-09-14_N	E510	15-Sep-2022	27-Sep-2022				27-Sep-2022	28 days	12 days	✓
Metals : Mercury in Soil/Solid by CVAAS				•						
Glass soil jar/Teflon lined cap										
RG_CORCK_SE-1_2022-09-14_N	E510	14-Sep-2022	27-Sep-2022				27-Sep-2022	28 days	13 days	✓
Metals : Mercury in Soil/Solid by CVAAS										
Glass soil jar/Teflon lined cap										
RG_CORCK_SE-3_2022-09-14_N	E510	14-Sep-2022	27-Sep-2022				27-Sep-2022	28 days	13 days	✓
Metals : Mercury in Soil/Solid by CVAAS										
Glass soil jar/Teflon lined cap										
RG_CORCK_SE-4_2022-09-14_N	E510	14-Sep-2022	27-Sep-2022				27-Sep-2022	28 days	13 days	✓
Metals : Mercury in Soil/Solid by CVAAS										
Glass soil jar/Teflon lined cap										
RG_CORCK_SE-5_2022-09-14_N	E510	14-Sep-2022	27-Sep-2022				27-Sep-2022	28 days	13 days	✓
Metals : Mercury in Soil/Solid by CVAAS										
Glass soil jar/Teflon lined cap										
RG_MIUCO_SE-5_2022-09-14_N	E510	14-Sep-2022	27-Sep-2022				27-Sep-2022	28 days	13 days	✓
Metals : Mercury in Soil/Solid by CVAAS										
Glass soil jar/Teflon lined cap										
RG_RIVER_SE-1_2022-09-14_N	E510	14-Sep-2022	27-Sep-2022				27-Sep-2022	28 days	13 days	✓
Metals : Mercury in Soil/Solid by CVAAS										
Glass soil jar/Teflon lined cap										
RG_RIVER_SE-4_2022-09-14_N	E510	14-Sep-2022	27-Sep-2022				27-Sep-2022	28 days	13 days	✓

Page : 5 of 22

Work Order : CG2213078 Amendment 1

Client : Teck Coal Limited
Project : Regional Effects Program

Matrix: Soil/Solid							on: × = Holding time exceedance; ✓ = Within Holding				
Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation		Analysis				
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval	
			Date	Rec	Actual			Rec	Actual		
Metals : Mercury in Soil/Solid by CVAAS											
LDPE bag											
RG_MIUCO_SE-1_2022-09-14_N	E510	14-Sep-2022	01-Oct-2022				01-Oct-2022	28 days	17 days	✓	
Metals : Mercury in Soil/Solid by CVAAS											
Glass soil jar/Teflon lined cap											
RG_MIUCO_SE-3_2022-09-14_N	E510	14-Sep-2022	01-Oct-2022				01-Oct-2022	28 days	17 days	✓	
Metals : Mercury in Soil/Solid by CVAAS											
Glass soil jar/Teflon lined cap											
RG_MIUCO_SE-4_2022-09-14_N	E510	14-Sep-2022	01-Oct-2022				01-Oct-2022	28 days	17 days	✓	
Metals : Mercury in Soil/Solid by CVAAS											
Glass soil jar/Teflon lined cap											
RG_CORCK_SE-2_2022-09-14_N	E510	14-Sep-2022	01-Oct-2022				03-Oct-2022	28 days	19 days	✓	
Metals : Metals in Soil/Solid by CRC ICPMS											
Glass soil jar/Teflon lined cap											
RG_LE1_SE-1_2022-09-14_N	E440	16-Sep-2022	27-Sep-2022				27-Sep-2022	180	11 days	✓	
								days			
Metals : Metals in Soil/Solid by CRC ICPMS											
Glass soil jar/Teflon lined cap											
RG_LE1_SE-2_2022-09-14_N	E440	16-Sep-2022	27-Sep-2022				27-Sep-2022	180	11 days	✓	
								days			
Metals : Metals in Soil/Solid by CRC ICPMS											
Glass soil jar/Teflon lined cap											
RG_LE1_SE-3_2022-09-14_N	E440	16-Sep-2022	27-Sep-2022				27-Sep-2022	180	11 days	✓	
								days			
Metals : Metals in Soil/Solid by CRC ICPMS				i l							
Glass soil jar/Teflon lined cap											
RG_MI5_SE-4_2022-09-14_N	E440	16-Sep-2022	27-Sep-2022				27-Sep-2022	180	11 days	✓	
								days			
Metals : Metals in Soil/Solid by CRC ICPMS											
Glass soil jar/Teflon lined cap											
RG_MI5_SE-5_2022-09-14_N	E440	16-Sep-2022	27-Sep-2022				27-Sep-2022	180	11 days	✓	
								days			

Page : 6 of 22

Work Order : CG2213078 Amendment 1

Client : Teck Coal Limited
Project : Regional Effects Program

Matrix: Soil/Solid						araaraara.	ion: × = Holding time exceedance ; ✓ = Within Holding				
Analyte Group	Method	Sampling Date	Ex	traction / Pi	reparation		Analysis				
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval	
			Date	Rec	Actual			Rec	Actual		
Metals : Metals in Soil/Solid by CRC ICPMS											
Glass soil jar/Teflon lined cap											
RG_AGCK_SE-1_2022-09-14_N	E440	15-Sep-2022	27-Sep-2022				27-Sep-2022	180	12 days	✓	
								days			
Metals : Metals in Soil/Solid by CRC ICPMS											
Glass soil jar/Teflon lined cap											
RG_MI25_SE-1_2022-09-14_N	E440	15-Sep-2022	27-Sep-2022				27-Sep-2022	180	12 days	✓	
								days			
Metals : Metals in Soil/Solid by CRC ICPMS											
Glass soil jar/Teflon lined cap											
RG_MI25_SE-2_2022-09-14_N	E440	15-Sep-2022	27-Sep-2022				27-Sep-2022	180	12 days	✓	
								days			
Metals : Metals in Soil/Solid by CRC ICPMS											
Glass soil jar/Teflon lined cap											
RG_MI25_SE-3_2022-09-14_N	E440	15-Sep-2022	27-Sep-2022				27-Sep-2022	180	12 days	✓	
								days			
Metals : Metals in Soil/Solid by CRC ICPMS											
Glass soil jar/Teflon lined cap											
RG_CORCK_SE-1_2022-09-14_N	E440	14-Sep-2022	27-Sep-2022				27-Sep-2022	180	13 days	✓	
								days			
Metals : Metals in Soil/Solid by CRC ICPMS											
Glass soil jar/Teflon lined cap											
RG_CORCK_SE-3_2022-09-14_N	E440	14-Sep-2022	27-Sep-2022				27-Sep-2022	180	13 days	✓	
								days			
Metals : Metals in Soil/Solid by CRC ICPMS											
Glass soil jar/Teflon lined cap											
RG_CORCK_SE-4_2022-09-14_N	E440	14-Sep-2022	27-Sep-2022				27-Sep-2022	180	13 days	✓	
								days			
Metals : Metals in Soil/Solid by CRC ICPMS											
Glass soil jar/Teflon lined cap											
RG_CORCK_SE-5_2022-09-14_N	E440	14-Sep-2022	27-Sep-2022				27-Sep-2022	180	13 days	✓	
								days			
Metals : Metals in Soil/Solid by CRC ICPMS											
Glass soil jar/Teflon lined cap											
RG_MIUCO_SE-5_2022-09-14_N	E440	14-Sep-2022	27-Sep-2022				27-Sep-2022	180	13 days	✓	
								days	1 1		

Page : 7 of 22

Work Order : CG2213078 Amendment 1

Client : Teck Coal Limited
Project : Regional Effects Program

Matrix: Soil/Solid						/aiuation. * =	on: × = Holding time exceedance; ✓ = Within Holding				
Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation			Analys	sis		
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval	
			Date	Rec	Actual			Rec	Actual		
Metals : Metals in Soil/Solid by CRC ICPMS											
Glass soil jar/Teflon lined cap											
RG_RIVER_SE-1_2022-09-14_N	E440	14-Sep-2022	27-Sep-2022				27-Sep-2022	180	13 days	✓	
								days			
Metals : Metals in Soil/Solid by CRC ICPMS											
Glass soil jar/Teflon lined cap											
RG RIVER SE-4 2022-09-14 N	E440	14-Sep-2022	27-Sep-2022				27-Sep-2022	180	13 days	✓	
								days			
Metals : Metals in Soil/Solid by CRC ICPMS											
LDPE bag											
RG_MIUCO_SE-1_2022-09-14_N	E440	14-Sep-2022	01-Oct-2022				01-Oct-2022	180	17 days	✓	
								days			
Metals : Metals in Soil/Solid by CRC ICPMS											
LDPE bag											
RG_MIUCO_SE-3_2022-09-14_N	E440	14-Sep-2022	01-Oct-2022				01-Oct-2022	180	17 days	✓	
								days			
Metals : Metals in Soil/Solid by CRC ICPMS											
LDPE bag											
RG_MIUCO_SE-4_2022-09-14_N	E440	14-Sep-2022	01-Oct-2022				01-Oct-2022	180	17 days	✓	
		· ·						days			
Metals : Metals in Soil/Solid by CRC ICPMS											
LDPE bag											
RG_CORCK_SE-2_2022-09-14_N	E440	14-Sep-2022	01-Oct-2022				03-Oct-2022	180	19 days	✓	
		,						days			
Organic / Inorganic Carbon : Total Carbon by Combustion								,-			
LDPE bag											
RG AGCK SE-1 2022-09-14 N	E351	15-Sep-2022	06-Oct-2022				06-Oct-2022	180	0 days	✓	
110_10011_02 1_2022 00 11_11		.0 00p 2022	00 001 2022				00 001 2022	days			
Omerica Università Contrara a Total Contrara les Constitues								dayo			
Organic / Inorganic Carbon : Total Carbon by Combustion LDPE bag				<u> </u>	<u> </u>		<u> </u>				
RG CORCK SE-1 2022-09-14 N	E351	14-Sep-2022	30-Sep-2022				30-Sep-2022	180	0 days	✓	
NO_00NON_0L-1_2022-03-14_N	2001	14-00p-2022	00-00p-2022				00-00p-2022	days	0 days	·	
								uays			
Organic / Inorganic Carbon : Total Carbon by Combustion											
LDPE bag	E351	14-Sep-2022	30-Sep-2022				30-Sep-2022	400	0 days	✓	
RG_CORCK_SE-2_2022-09-14_N	L331	14-06p-2022	50-36h-5055				50-3 c p-2022	180	0 days	•	
								days			

Page : 8 of 22

Work Order : CG2213078 Amendment 1

Client : Teck Coal Limited
Project : Regional Effects Program

Matrix: Soil/Solid					Ev	⁄aluation: ≭ =	Holding time excee	edance ;	✓ = Within	Holding Tim
Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation			Analy	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holdin	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Organic / Inorganic Carbon : Total Carbon by Combustion										
LDPE bag										
RG_CORCK_SE-3_2022-09-14_N	E351	14-Sep-2022	30-Sep-2022				30-Sep-2022	180	0 days	✓
								days		
Organic / Inorganic Carbon : Total Carbon by Combustion										
LDPE bag										
RG_CORCK_SE-4_2022-09-14_N	E351	14-Sep-2022	30-Sep-2022				30-Sep-2022	180	0 days	✓
								days		
Organic / Inorganic Carbon : Total Carbon by Combustion										
LDPE bag										
RG_CORCK_SE-5_2022-09-14_N	E351	14-Sep-2022	30-Sep-2022				30-Sep-2022	180	0 days	✓
								days		
Organic / Inorganic Carbon : Total Carbon by Combustion										
LDPE bag										
RG_LE1_SE-1_2022-09-14_N	E351	16-Sep-2022	30-Sep-2022				30-Sep-2022	180	0 days	✓
								days		
Organic / Inorganic Carbon : Total Carbon by Combustion										
LDPE bag										
RG_LE1_SE-2_2022-09-14_N	E351	16-Sep-2022	30-Sep-2022				30-Sep-2022	180	0 days	✓
								days		
Organic / Inorganic Carbon : Total Carbon by Combustion										
LDPE bag										
RG_LE1_SE-3_2022-09-14_N	E351	16-Sep-2022	29-Sep-2022				29-Sep-2022	180	0 days	✓
								days		
Organic / Inorganic Carbon : Total Carbon by Combustion										
LDPE bag										
RG_MI25_SE-1_2022-09-14_N	E351	15-Sep-2022	30-Sep-2022				30-Sep-2022	180	0 days	✓
								days		
Organic / Inorganic Carbon : Total Carbon by Combustion										
LDPE bag										
RG_MI25_SE-2_2022-09-14_N	E351	15-Sep-2022	30-Sep-2022				30-Sep-2022	180	0 days	✓
								days		
Organic / Inorganic Carbon : Total Carbon by Combustion										
LDPE bag	_									
RG_MI25_SE-3_2022-09-14_N	E351	15-Sep-2022	06-Oct-2022				06-Oct-2022	180	0 days	✓
								days		

Page : 9 of 22

Work Order : CG2213078 Amendment 1

Client : Teck Coal Limited
Project : Regional Effects Program

Matrix: Soil/Solid					L\	/aiuation. * =	Holding time excee	dance,	- vvicinii	Holding Time
Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Organic / Inorganic Carbon : Total Carbon by Combustion										
LDPE bag										
RG_MI5_SE-4_2022-09-14_N	E351	16-Sep-2022	29-Sep-2022				29-Sep-2022	180	0 days	✓
								days		
Organic / Inorganic Carbon : Total Carbon by Combustion									'	
LDPE bag										
RG_MI5_SE-5_2022-09-14_N	E351	16-Sep-2022	29-Sep-2022				29-Sep-2022	180	0 days	✓
								days		
Organic / Inorganic Carbon : Total Carbon by Combustion										
LDPE bag										
RG_MIUCO_SE-1_2022-09-14_N	E351	14-Sep-2022	30-Sep-2022				30-Sep-2022	180	0 days	✓
								days		
Organic / Inorganic Carbon : Total Carbon by Combustion										
LDPE bag										
RG_MIUCO_SE-3_2022-09-14_N	E351	14-Sep-2022	30-Sep-2022				30-Sep-2022	180	0 days	✓
								days		
Organic / Inorganic Carbon : Total Carbon by Combustion										
LDPE bag										
RG_MIUCO_SE-4_2022-09-14_N	E351	14-Sep-2022	30-Sep-2022				30-Sep-2022	180	0 days	✓
								days		
Organic / Inorganic Carbon : Total Carbon by Combustion										
LDPE bag										
RG_MIUCO_SE-5_2022-09-14_N	E351	14-Sep-2022	30-Sep-2022				30-Sep-2022	180	0 days	✓
								days		
Organic / Inorganic Carbon : Total Carbon by Combustion										
LDPE bag										
RG_RIVER_SE-1_2022-09-14_N	E351	14-Sep-2022	30-Sep-2022				30-Sep-2022	180	0 days	✓
								days		
Organic / Inorganic Carbon : Total Carbon by Combustion										
LDPE bag										
RG_RIVER_SE-4_2022-09-14_N	E351	14-Sep-2022	30-Sep-2022				30-Sep-2022	180	0 days	✓
								days		
Organic / Inorganic Carbon : Total Inorganic Carbon by Acetic Acid pH Standard	d Curve									
LDPE bag										
RG_AGCK_SE-1_2022-09-14_N	E354	15-Sep-2022					06-Oct-2022			
					1					

Page : 10 of 22

RG LE1 SE-2 2022-09-14 N

RG LE1 SE-3 2022-09-14 N

RG_MI25_SE-1_2022-09-14_N

LDPE bag

LDPE bag

Organic / Inorganic Carbon: Total Inorganic Carbon by Acetic Acid pH Standard Curve

Organic / Inorganic Carbon: Total Inorganic Carbon by Acetic Acid pH Standard Curve

Matrix: Soil/Solid

Work Order : CG2213078 Amendment 1

Client : Teck Coal Limited
Project : Regional Effects Program

Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time

30-Sep-2022

30-Sep-2022

30-Sep-2022

Extraction / Preparation Analyte Group Method Sampling Date Analysis Container / Client Sample ID(s) **Holding Times** Preparation **Holding Times** Eval Analysis Date Eval Rec Actual Rec Actual Date Organic / Inorganic Carbon: Total Inorganic Carbon by Acetic Acid pH Standard Curve LDPE bag E354 14-Sep-2022 RG CORCK SE-1 2022-09-14 N 30-Sep-2022 Organic / Inorganic Carbon: Total Inorganic Carbon by Acetic Acid pH Standard Curve LDPE bag RG CORCK SE-2 2022-09-14 N E354 14-Sep-2022 30-Sep-2022 ----Organic / Inorganic Carbon: Total Inorganic Carbon by Acetic Acid pH Standard Curve LDPE bag E354 14-Sep-2022 30-Sep-2022 RG CORCK SE-3 2022-09-14 N Organic / Inorganic Carbon: Total Inorganic Carbon by Acetic Acid pH Standard Curve LDPE bag E354 RG_CORCK_SE-4_2022-09-14_N 14-Sep-2022 30-Sep-2022 Organic / Inorganic Carbon: Total Inorganic Carbon by Acetic Acid pH Standard Curve LDPE bag E354 14-Sep-2022 30-Sep-2022 RG CORCK SE-5 2022-09-14 N Organic / Inorganic Carbon: Total Inorganic Carbon by Acetic Acid pH Standard Curve LDPE bag E354 16-Sep-2022 RG LE1 SE-1 2022-09-14 N 30-Sep-2022 ------------Organic / Inorganic Carbon: Total Inorganic Carbon by Acetic Acid pH Standard Curve LDPE bag

16-Sep-2022

16-Sep-2022

15-Sep-2022

E354

E354

E354

Page : 11 of 22

Work Order : CG2213078 Amendment 1

Client : Teck Coal Limited
Project : Regional Effects Program

Matrix: Soil/Solid					E	/aluation. * -	Holding time excee	euance,	– vviuiiii	Holding Time
Analyte Group	Method	Sampling Date	Ext	raction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Organic / Inorganic Carbon : Total Inorganic Carbon by Acetic Acid pH Standard C	Curve									
LDPE bag										
RG_MI25_SE-2_2022-09-14_N	E354	15-Sep-2022					30-Sep-2022			
							-			
Organic / Inorganic Carbon : Total Inorganic Carbon by Acetic Acid pH Standard C	Lum ro									
LDPE bag	Juive									
RG MI25 SE-3 2022-09-14 N	E354	15-Sep-2022					06-Oct-2022			
1/0_1/1/20_0L-0_2022-08-14_1/	2004	10-0ep-2022					00-001-2022			
Organic / Inorganic Carbon : Total Inorganic Carbon by Acetic Acid pH Standard C	urve			1						
LDPE bag										
RG_MI5_SE-4_2022-09-14_N	E354	16-Sep-2022					30-Sep-2022			
Organic / Inorganic Carbon : Total Inorganic Carbon by Acetic Acid pH Standard C	Curve									
LDPE bag										
RG_MI5_SE-5_2022-09-14_N	E354	16-Sep-2022					30-Sep-2022			
Organic / Inorganic Carbon : Total Inorganic Carbon by Acetic Acid pH Standard C	urve									
LDPE bag										
RG_MIUCO_SE-1_2022-09-14_N	E354	14-Sep-2022					30-Sep-2022			
		·					·			
Organic / Inorganic Carbon : Total Inorganic Carbon by Acetic Acid pH Standard C										
LDPE bag	urve						<u> </u>			
RG_MIUCO_SE-3_2022-09-14_N	E354	14-Sep-2022					30-Sep-2022			
1/0_1/11/000_0L-3_2022-09-14_14	2004	14-00p-2022					30-0ер-2022			
Organic / Inorganic Carbon : Total Inorganic Carbon by Acetic Acid pH Standard C	urve									
LDPE bag										
RG_MIUCO_SE-4_2022-09-14_N	E354	14-Sep-2022					30-Sep-2022			
Organic / Inorganic Carbon : Total Inorganic Carbon by Acetic Acid pH Standard C	Curve									
LDPE bag										
RG_MIUCO_SE-5_2022-09-14_N	E354	14-Sep-2022					30-Sep-2022			
Organic / Inorganic Carbon : Total Inorganic Carbon by Acetic Acid pH Standard C	Curve									
LDPE bag										
RG RIVER SE-1 2022-09-14 N	E354	14-Sep-2022					30-Sep-2022			

Page : 12 of 22

Work Order : CG2213078 Amendment 1

Client : Teck Coal Limited
Project : Regional Effects Program

Matrix: Soil/Solid						raidation. • =	Holding time excee	dance,	- *************************************	riolaling rilling
Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Organic / Inorganic Carbon : Total Inorganic Carbon by Acetic Acid pH Standard	Curve									
LDPE bag										
RG_RIVER_SE-4_2022-09-14_N	E354	14-Sep-2022					30-Sep-2022			
Particle Size : Grain Size Report (Attachment) Pipet/Sieve Method										
LDPE bag	T T									
RG_CORCK_SE-1_2022-09-14_N	E185A	14-Sep-2022					05-Oct-2022	365		
								days		
Particle Size : Grain Size Report (Attachment) Pipet/Sieve Method										
LDPE bag										
RG CORCK SE-2 2022-09-14 N	E185A	14-Sep-2022					05-Oct-2022	365		
		·						days		
Particle Size : Grain Size Report (Attachment) Pipet/Sieve Method								,		
LDPE bag										
RG CORCK SE-3 2022-09-14 N	E185A	14-Sep-2022					05-Oct-2022	365		
		' '						days		
Particle Size : Grain Size Report (Attachment) Pipet/Sieve Method								aayo		
LDPE bag										
RG_CORCK_SE-4_2022-09-14_N	E185A	14-Sep-2022					05-Oct-2022	365		
110_0011011_012 1_2022 00 11_11	2.00/1	33p 2022					00 001 2022	days		
Partials Circ - Coria Circ Borret (Attacherent) Biret (Circ Method								dayo		
Particle Size : Grain Size Report (Attachment) Pipet/Sieve Method LDPE bag				1	I					
RG_CORCK_SE-5_2022-09-14_N	E185A	14-Sep-2022					05-Oct-2022	365		
NO_00N0N_0E-0_2022-03-14_N	2100/1	11 GGP 2022					00-001-2022	days		
								days		
Particle Size : Grain Size Report (Attachment) Pipet/Sieve Method										
LDPE bag RG LE1 SE-1 2022-09-14 N	E185A	16-Sep-2022					05-Oct-2022	365		
RG_LE1_3E-1_2022-09-14_N	LIOSA	10-3ер-2022					03-001-2022			
								days		
Particle Size : Grain Size Report (Attachment) Pipet/Sieve Method								I		
LDPE bag	E185A	16 Con 2022					05-Oct-2022	005		
RG_LE1_SE-2_2022-09-14_N	FISSA	16-Sep-2022					U5-UCI-2U22	365		
								days		
Particle Size : Grain Size Report (Attachment) Pipet/Sieve Method										
LDPE bag	F4054	40.0					05.0 :			
RG_LE1_SE-3_2022-09-14_N	E185A	16-Sep-2022					05-Oct-2022	365		
								days		

Page : 13 of 22

Work Order : CG2213078 Amendment 1

Client : Teck Coal Limited
Project : Regional Effects Program

Matrix: Soil/Solid						raiuation. * =	Holding time excee	suarice , ·	- vvitilili	Holding Time
Analyte Group	Method	Sampling Date	Ext	raction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Particle Size : Grain Size Report (Attachment) Pipet/Sieve Method										
LDPE bag										
RG_MI25_SE-1_2022-09-14_N	E185A	15-Sep-2022					05-Oct-2022	365		
								days		
Particle Size : Grain Size Report (Attachment) Pipet/Sieve Method										
LDPE bag										
RG_MI25_SE-2_2022-09-14_N	E185A	15-Sep-2022					05-Oct-2022	365		
								days		
Particle Size : Grain Size Report (Attachment) Pipet/Sieve Method										
LDPE bag										
RG_MI5_SE-4_2022-09-14_N	E185A	16-Sep-2022					05-Oct-2022	365		
								days		
Particle Size : Grain Size Report (Attachment) Pipet/Sieve Method										
LDPE bag										
RG_MI5_SE-5_2022-09-14_N	E185A	16-Sep-2022					05-Oct-2022	365		
		·						days		
Particle Size : Grain Size Report (Attachment) Pipet/Sieve Method										
LDPE bag										
RG_MIUCO_SE-1_2022-09-14_N	E185A	14-Sep-2022					05-Oct-2022	365		
		,						days		
Particle Size : Grain Size Report (Attachment) Pipet/Sieve Method								,		
LDPE bag										
RG_MIUCO_SE-3_2022-09-14_N	E185A	14-Sep-2022					05-Oct-2022	365		
· · · · · · · · · · · · · · · · · · ·		,						days		
Particle Size : Grain Size Report (Attachment) Pipet/Sieve Method										
LDPE bag										
RG MIUCO SE-4 2022-09-14 N	E185A	14-Sep-2022					05-Oct-2022	365		
NG_MIGGG_GE 1_2022 00 11_N	2.00/1	35p 2022					00 001 2022	days		
Particle Circ - Cycin Circ Boyout (Attach word) Birot (Circ Mathad								dayo		
Particle Size : Grain Size Report (Attachment) Pipet/Sieve Method LDPE bag										
RG MIUCO SE-5 2022-09-14 N	E185A	14-Sep-2022					05-Oct-2022	365		
110_111000_01-0_2022-00-14_11	2100/1	11 00p-2022					00 001-2022	days		
B. (1.1.0) - 0.1.0) - B (40) - 10								uays		
Particle Size : Grain Size Report (Attachment) Pipet/Sieve Method							I			
LDPE bag RG RIVER SE-1 2022-09-14 N	E185A	14-Sep-2022					05-Oct-2022	205		
1/0_1/1VLN_0E-1_2022-03-14_IV	LIOJA	1 4 -06p-2022					03-001-2022	365		
								days		

Page : 14 of 22

Work Order : CG2213078 Amendment 1

Client : Teck Coal Limited
Project : Regional Effects Program

Particle Size : Grain Size Report (Attachment) Pipet/Sieve Method	imes Eval
Particle Size : Grain Size Report (Attachment) Pipet/Sieve Method LDPE bag RG_RIVER_SE-4_2022-09-14_N E185A 14-Sep-2022	
Particle Size : Grain Size Report (Attachment) Pipet/Sieve Method	
E185A 14-Sep-2022	
Case Core Core	
Physical Tests : Moisture Content by Gravimetry	
Physical Tests : Moisture Content by Gravimetry	
Physical Tests : Moisture Content by Gravimetry Glass soil jar/Teflon lined cap RG_AGCK_SE-1_2022-09-14_N E144 15-Sep-2022 24-Sep-2022 Physical Tests : Moisture Content by Gravimetry Glass soil jar/Teflon lined cap RG_CORCK_SE-1_2022-09-14_N E144 14-Sep-2022 24-Sep-2022 Physical Tests : Moisture Content by Gravimetry Glass soil jar/Teflon lined cap RG_CORCK_SE-3_2022-09-14_N E144 14-Sep-2022 24-Sep-2022 Physical Tests : Moisture Content by Gravimetry E144 14-Sep-2022 24-Sep-2022 Physical Tests : Moisture Content by Gravimetry Content by Gravimetr	
Class soil jar/Teflon lined cap RG_AGCK_SE-1_2022-09-14_N E144 15-Sep-2022 24-Sep-2022	
RG_AGCK_SE-1_2022-09-14_N	
Physical Tests: Moisture Content by Gravimetry Glass soil jar/Teflon lined cap RG_CORCK_SE-1_2022-09-14_N Physical Tests: Moisture Content by Gravimetry Glass soil jar/Teflon lined cap RG_CORCK_SE-3_2022-09-14_N E144 14-Sep-2022 Physical Tests: Moisture Content by Gravimetry E144 14-Sep-2022 Physical Tests: Moisture Content by Gravimetry	
Class soil jar/Teflon lined cap RG_CORCK_SE-1_2022-09-14_N E144 14-Sep-2022 24-Sep-2022 24-Sep-2022	
Class soil jar/Teflon lined cap RG_CORCK_SE-1_2022-09-14_N E144 14-Sep-2022 24-Sep-2022 24-Sep-2022	
RG_CORCK_SE-1_2022-09-14_N E144 14-Sep-2022 24-Sep-2022 Physical Tests: Moisture Content by Gravimetry Glass soil jar/Teflon lined cap E144 14-Sep-2022 24-Sep-2022 Physical Tests: Moisture Content by Gravimetry	
Physical Tests: Moisture Content by Gravimetry Glass soil jar/Teflon lined cap RG_CORCK_SE-3_2022-09-14_N E144 14-Sep-2022 Physical Tests: Moisture Content by Gravimetry	
Glass soil jar/Teflon lined cap RG_CORCK_SE-3_2022-09-14_N E144 14-Sep-2022 Physical Tests: Moisture Content by Gravimetry	
Glass soil jar/Teflon lined cap RG_CORCK_SE-3_2022-09-14_N E144 14-Sep-2022 Physical Tests: Moisture Content by Gravimetry	
Glass soil jar/Teflon lined cap RG_CORCK_SE-3_2022-09-14_N E144 14-Sep-2022 Physical Tests: Moisture Content by Gravimetry	
RG_CORCK_SE-3_2022-09-14_N E144 14-Sep-2022 24-Sep-2022 Physical Tests: Moisture Content by Gravimetry	
Physical Tests: Moisture Content by Gravimetry	
Giass soil jar/Tetion lined cap	
RG_CORCK_SE-4_2022-09-14_N E144 14-Sep-2022 24-Sep-2022	
Physical Tests : Moisture Content by Gravimetry	
Glass soil jar/Teflon lined cap	
RG_CORCK_SE-5_2022-09-14_N E144 14-Sep-2022 24-Sep-2022	
Physical Tests : Moisture Content by Gravimetry	
Glass soil jar/Teflon lined cap	
Physical Tests & Maieture Content by Crayimetry	
Physical Tests: Moisture Content by Gravimetry Class soil invTeflor lined con	
Glass soil jar/Teflon lined cap E144 16-Sep-2022 24-Sep-2022	
10-3ep-2022 24-3ep-2022	
Physical Tests : Moisture Content by Gravimetry	
Glass soil jar/Teflon lined cap	
RG_LE1_SE-3_2022-09-14_N E144 16-Sep-2022 24-Sep-2022	

Page : 15 of 22

Work Order : CG2213078 Amendment 1

Client : Teck Coal Limited
Project : Regional Effects Program

Analyte Group	Method	Sampling Date	Ext	raction / Pr	eparation			Analys	ic	
'								71170190	113	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap										
RG MI25 SE-1 2022-09-14 N	E144	15-Sep-2022					24-Sep-2022			
							·			
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap										
RG MI25 SE-2 2022-09-14 N	E144	15-Sep-2022					24-Sep-2022			
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap				<u> </u>						
RG_MI25_SE-3_2022-09-14_N	E144	15-Sep-2022					24-Sep-2022			
							' '			
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap										
RG MI5 SE-4 2022-09-14 N	E144	16-Sep-2022					24-Sep-2022			
							·			
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap										
RG_MI5_SE-5_2022-09-14_N	E144	16-Sep-2022					24-Sep-2022			
							•			
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap										
RG_MIUCO_SE-5_2022-09-14_N	E144	14-Sep-2022					24-Sep-2022			
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap										
RG_RIVER_SE-1_2022-09-14_N	E144	14-Sep-2022					24-Sep-2022			
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap										
RG_RIVER_SE-4_2022-09-14_N	E144	14-Sep-2022					24-Sep-2022			
		'								
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)										
Glass soil jar/Teflon lined cap										
RG LE1 SE-1 2022-09-14 N	E108	16-Sep-2022	27-Sep-2022				27-Sep-2022	30 days	11 days	✓
1.0								1		

Page : 16 of 22

Work Order : CG2213078 Amendment 1

Client : Teck Coal Limited
Project : Regional Effects Program

Matrix: Soil/Solid						diddion.	Holding time exce	oddiioo ,	- vvicinii	riolaling rilli
Analyte Group	Method	Sampling Date	Ext	raction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)										
Glass soil jar/Teflon lined cap										
RG_LE1_SE-2_2022-09-14_N	E108	16-Sep-2022	27-Sep-2022				27-Sep-2022	30 days	11 days	✓
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)										
Glass soil jar/Teflon lined cap										
RG_LE1_SE-3_2022-09-14_N	E108	16-Sep-2022	27-Sep-2022				27-Sep-2022	30 days	11 days	✓
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)										
Glass soil jar/Teflon lined cap										
RG_MI5_SE-4_2022-09-14_N	E108	16-Sep-2022	27-Sep-2022				27-Sep-2022	30 days	11 days	✓
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)										
Glass soil jar/Teflon lined cap										
RG_MI5_SE-5_2022-09-14_N	E108	16-Sep-2022	27-Sep-2022				27-Sep-2022	30 days	11 days	✓
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)										
Glass soil jar/Teflon lined cap										
RG_AGCK_SE-1_2022-09-14_N	E108	15-Sep-2022	27-Sep-2022				27-Sep-2022	30 days	12 days	✓
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)										
Glass soil jar/Teflon lined cap										
RG_MI25_SE-1_2022-09-14_N	E108	15-Sep-2022	27-Sep-2022				27-Sep-2022	30 days	12 days	✓
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)										
Glass soil jar/Teflon lined cap										
RG_MI25_SE-2_2022-09-14_N	E108	15-Sep-2022	27-Sep-2022				27-Sep-2022	30 days	12 days	✓
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)										
Glass soil jar/Teflon lined cap										
RG_MI25_SE-3_2022-09-14_N	E108	15-Sep-2022	27-Sep-2022				27-Sep-2022	30 days	12 days	✓
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)		1111111111111								
Glass soil jar/Teflon lined cap	1									
RG_CORCK_SE-1_2022-09-14_N	E108	14-Sep-2022	27-Sep-2022				27-Sep-2022	30 days	13 days	✓

Page : 17 of 22

Work Order : CG2213078 Amendment 1

Client : Teck Coal Limited
Project : Regional Effects Program

Matrix: Soil/Solid						raidation. • -	Holding time exce	cuarice, .	= \vitiiii	riolaling rilling
Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)										
Glass soil jar/Teflon lined cap										
RG_CORCK_SE-3_2022-09-14_N	E108	14-Sep-2022	27-Sep-2022				27-Sep-2022	30 days	13 days	✓
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)										
Glass soil jar/Teflon lined cap										
RG_CORCK_SE-4_2022-09-14_N	E108	14-Sep-2022	27-Sep-2022				27-Sep-2022	30 days	13 days	✓
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)										
Glass soil jar/Teflon lined cap										
RG CORCK SE-5 2022-09-14 N	E108	14-Sep-2022	27-Sep-2022				27-Sep-2022	30 days	13 days	✓
		·	·				·			
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)										
Glass soil jar/Teflon lined cap										
RG MIUCO SE-5 2022-09-14 N	E108	14-Sep-2022	27-Sep-2022				27-Sep-2022	30 days	13 days	✓
		' '					r			
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)										
Glass soil jar/Teflon lined cap										
RG_RIVER_SE-1_2022-09-14_N	E108	14-Sep-2022	27-Sep-2022				27-Sep-2022	30 davs	13 days	✓
110_1111211_01 1_2022 00 11_11	2.00	oop 2022	2. Gop 2022				2. 000 2022	oo aayo	.o dayo	
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)										
Glass soil jar/Teflon lined cap					T T			T T		
RG_RIVER_SE-4_2022-09-14_N	E108	14-Sep-2022	27-Sep-2022				27-Sep-2022	30 days	13 days	✓
NO_NVEN_0E+_2022-00-14_N	2.00	osp 2022	21 Oop 2022				27 GGP 2022	oo aayo	10 dayo	
District His Mar (400 TWA France)										
Physical Tests : pH by Meter (1:2 Soil:Water Extraction) LDPE bag										
RG CORCK SE-2 2022-09-14 N	E108	14-Sep-2022	29-Sep-2022				30-Sep-2022	30 days	16 days	✓
NG_CONON_GE-2_2022-09-14_N	L100	14-06p-2022	23-06p-2022				30-0ер-2022	Jo days	10 days	•
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)					T T			1		
LDPE bag	E108	14-Sep-2022	29-Sep-2022				30-Sep-2022	30 days	16 days	1
RG_MIUCO_SE-1_2022-09-14_N	E100	14-5ep-2022	29-3ep-2022				30-3ep-2022	ou days	ro uays	•
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)										
LDPE bag	F400	44.0 0000	00.00000				00.0 0000	00.1	40 1	,
RG_MIUCO_SE-3_2022-09-14_N	E108	14-Sep-2022	29-Sep-2022				30-Sep-2022	30 days	16 days	✓

Page : 18 of 22

Work Order : CG2213078 Amendment 1

Client : Teck Coal Limited
Project : Regional Effects Program

Matrix: Soil/Solid						araaraara.	Holding time exce	, ,	************	Trefaming Time
Analyte Group	Method	Sampling Date	Ext	traction / Pr	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)										
LDPE bag										
RG_MIUCO_SE-4_2022-09-14_N	E108	14-Sep-2022	29-Sep-2022				30-Sep-2022	30 days	16 days	✓
Polycyclic Aromatic Hydrocarbons : PAHs by Hex:Ace GC-MS										
Glass soil jar/Teflon lined cap										
RG_CORCK_SE-1_2022-09-14_N	E641A	14-Sep-2022	24-Sep-2022	14	10	✓	25-Sep-2022	40 days	1 days	✓
				days	days					
Polycyclic Aromatic Hydrocarbons : PAHs by Hex:Ace GC-MS										
Glass soil jar/Teflon lined cap										
RG_CORCK_SE-3_2022-09-14_N	E641A	14-Sep-2022	24-Sep-2022	14	10	✓	25-Sep-2022	40 days	1 days	✓
				days	days					
Polycyclic Aromatic Hydrocarbons : PAHs by Hex:Ace GC-MS										
Glass soil jar/Teflon lined cap										
RG_CORCK_SE-4_2022-09-14_N	E641A	14-Sep-2022	24-Sep-2022	14	10	✓	25-Sep-2022	40 days	1 days	✓
				days	days					
Polycyclic Aromatic Hydrocarbons : PAHs by Hex:Ace GC-MS									1	
Glass soil jar/Teflon lined cap										
RG_CORCK_SE-5_2022-09-14_N	E641A	14-Sep-2022	24-Sep-2022	14	10	✓	25-Sep-2022	40 days	1 days	✓
				days	days					
Polycyclic Aromatic Hydrocarbons : PAHs by Hex:Ace GC-MS										
Glass soil jar/Teflon lined cap										
RG_MIUCO_SE-5_2022-09-14_N	E641A	14-Sep-2022	24-Sep-2022	14	10	✓	25-Sep-2022	40 days	1 days	✓
				days	days					
Polycyclic Aromatic Hydrocarbons : PAHs by Hex:Ace GC-MS										
Glass soil jar/Teflon lined cap										
RG_RIVER_SE-1_2022-09-14_N	E641A	14-Sep-2022	24-Sep-2022	14	10	✓	25-Sep-2022	40 days	1 days	✓
				days	days					
Polycyclic Aromatic Hydrocarbons : PAHs by Hex:Ace GC-MS										
Glass soil jar/Teflon lined cap										
RG_RIVER_SE-4_2022-09-14_N	E641A	14-Sep-2022	24-Sep-2022	14	10	✓	25-Sep-2022	40 days	1 days	✓
				days	days					
Polycyclic Aromatic Hydrocarbons : PAHs by Hex:Ace GC-MS										
Glass soil jar/Teflon lined cap										
RG_LE1_SE-1_2022-09-14_N	E641A	16-Sep-2022	24-Sep-2022	14	8 days	✓	25-Sep-2022	40 days	1 days	✓
I and the second se				days			l			

Page : 19 of 22

Work Order : CG2213078 Amendment 1

Client : Teck Coal Limited
Project : Regional Effects Program

Matrix: Soil/Solid Evaluation: x = Holding time exceedance; √ = Within Holding Time

atrix: Soil/Soild						aluation. * =	Holding time exce	euance, •	- vviti iii i	Holding
Analyte Group	Method	Sampling Date	Ext	traction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
olycyclic Aromatic Hydrocarbons : PAHs by Hex:Ace GC-MS										
Glass soil jar/Teflon lined cap										
RG_LE1_SE-2_2022-09-14_N	E641A	16-Sep-2022	24-Sep-2022	14	8 days	✓	25-Sep-2022	40 days	1 days	✓
				days						
olycyclic Aromatic Hydrocarbons : PAHs by Hex:Ace GC-MS							•			
Glass soil jar/Teflon lined cap										
RG_LE1_SE-3_2022-09-14_N	E641A	16-Sep-2022	24-Sep-2022	14	8 days	✓	25-Sep-2022	40 days	1 days	✓
				days						
olycyclic Aromatic Hydrocarbons : PAHs by Hex:Ace GC-MS										
Glass soil jar/Teflon lined cap										
RG_MI5_SE-4_2022-09-14_N	E641A	16-Sep-2022	24-Sep-2022	14	8 days	✓	25-Sep-2022	40 days	1 days	✓
				days						
olycyclic Aromatic Hydrocarbons : PAHs by Hex:Ace GC-MS										
Glass soil jar/Teflon lined cap										
RG_MI5_SE-5_2022-09-14_N	E641A	16-Sep-2022	24-Sep-2022	14	8 days	✓	25-Sep-2022	40 days	1 days	✓
				days						
olycyclic Aromatic Hydrocarbons : PAHs by Hex:Ace GC-MS										
Glass soil jar/Teflon lined cap										
RG_AGCK_SE-1_2022-09-14_N	E641A	15-Sep-2022	24-Sep-2022	14	9 days	✓	25-Sep-2022	40 days	1 days	✓
				days						
olycyclic Aromatic Hydrocarbons : PAHs by Hex:Ace GC-MS										
Glass soil jar/Teflon lined cap										
RG_MI25_SE-1_2022-09-14_N	E641A	15-Sep-2022	24-Sep-2022	14	9 days	✓	25-Sep-2022	40 days	1 days	✓
				days						
olycyclic Aromatic Hydrocarbons : PAHs by Hex:Ace GC-MS										
Glass soil jar/Teflon lined cap										
RG_MI25_SE-2_2022-09-14_N	E641A	15-Sep-2022	24-Sep-2022	14	9 days	✓	25-Sep-2022	40 days	1 days	✓
				days						
olycyclic Aromatic Hydrocarbons : PAHs by Hex:Ace GC-MS										
Glass soil jar/Teflon lined cap										
RG_MI25_SE-3_2022-09-14_N	E641A	15-Sep-2022	24-Sep-2022	14	9 days	✓	25-Sep-2022	40 days	1 days	✓
				days						

Legend & Qualifier Definitions

Rec. HT: ALS recommended hold time (see units).

Page : 20 of 22

Work Order : CG2213078 Amendment 1

Client : Teck Coal Limited
Project : Regional Effects Program

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Soil/Solid		Evaluat	ion: × = QC freque	ency outside sp	ecification; ✓ = 0	QC frequency wit	hin specificatio
Quality Control Sample Type			Co	ount		Frequency (%)	
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Mercury in Soil/Solid by CVAAS	E510	667527	1	20	5.0	5.0	✓
Metals in Soil/Solid by CRC ICPMS	E440	667528	1	20	5.0	5.0	✓
Moisture Content by Gravimetry	E144	663864	1	16	6.2	5.0	✓
PAHs by Hex:Ace GC-MS	E641A	663863	1	16	6.2	5.0	✓
pH by Meter (1:2 Soil:Water Extraction)	E108	668546	2	34	5.8	5.0	✓
Total Carbon by Combustion	E351	671043	3	46	6.5	5.0	✓
Total Inorganic Carbon by Acetic Acid pH Standard Curve	E354	674355	3	43	6.9	5.0	✓
Laboratory Control Samples (LCS)							
Mercury in Soil/Solid by CVAAS	E510	667527	1	20	5.0	10.0	sc
Metals in Soil/Solid by CRC ICPMS	E440	667528	1	20	5.0	10.0	æ
Moisture Content by Gravimetry	E144	663864	1	16	6.2	5.0	✓
PAHs by Hex:Ace GC-MS	E641A	663863	1	16	6.2	5.0	✓
pH by Meter (1:2 Soil:Water Extraction)	E108	668546	4	34	11.7	10.0	✓
Total Carbon by Combustion	E351	671043	6	46	13.0	10.0	✓
Total Inorganic Carbon by Acetic Acid pH Standard Curve	E354	674355	6	43	13.9	10.0	✓
Method Blanks (MB)							
Mercury in Soil/Solid by CVAAS	E510	667527	1	20	5.0	5.0	✓
Metals in Soil/Solid by CRC ICPMS	E440	667528	1	20	5.0	5.0	✓
Moisture Content by Gravimetry	E144	663864	1	16	6.2	5.0	✓
PAHs by Hex:Ace GC-MS	E641A	663863	1	16	6.2	5.0	✓
Total Carbon by Combustion	E351	671043	3	46	6.5	5.0	✓
Total Inorganic Carbon by Acetic Acid pH Standard Curve	E354	674355	3	43	6.9	5.0	✓
Matrix Spikes (MS)							
PAHs by Hex:Ace GC-MS	E641A	663863	1	16	6.2	5.0	✓

Page : 21 of 22

Work Order : CG2213078 Amendment 1

Client : Teck Coal Limited
Project : Regional Effects Program

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

pH by Meter (1:2 Soil:Water Extraction) E108 Calgary - Environmer Moisture Content by Gravimetry E144	Soil/Solid	BC Lab Manual CCME PHC in Soil - Tier	pH is determined by potentiometric measurement with a pH electrode at ambient laboratory temperature (normally $20\pm5^{\circ}\text{C}$), and is carried out in accordance with procedures described in the BC Lab Manual (prescriptive method). The procedure involves mixing the dried (at <60 °C) and sieved (10mesh/2mm) sample with ultra pure water at a 1:2 ratio of sediment to water. The pH is then measured by a standard pH probe.
Moisture Content by Gravimetry E144		CCME PHC in Soil - Tier	involves mixing the dried (at <60 $^{\circ}$ C) and sieved (10mesh/2mm) sample with ultra pure water at a 1:2 ratio of sediment to water. The pH is then measured by a standard pH
	Soil/Solid	CCME PHC in Soil - Tier	water at a 1:2 ratio of sediment to water. The pH is then measured by a standard pH
	Soil/Solid	CCMF PHC in Soil - Tier	·
	Soil/Solid	CCMF PHC in Soil - Tier	probe.
	Soil/Solid	CCMF PHC in Soil - Tier	
			Moisture is measured gravimetrically by drying the sample at 105°C. Moisture content is
Calgary - Environmer	ntal	1	calculated as the weight loss (due to water) divided by the wet weight of the sample, expressed as a percentage.
Grain Size Report (Attachment) Pipet/Sieve E185A Method	Soil/Solid	SSIR-51 Method 3.2.1	A grain size curve is a graphical representation of the particle sizing of a sample representing the percent passing against the effective particle size.
Saskatoon -			representing the person passing against the enestre particle size.
Environmental			
Total Carbon by Combustion E351	Soil/Solid	CSSS (2008) 21.2	Total Carbon is determined by the high temperature combustion method with
		(mod)	measurement by an infrared detector.
Saskatoon -			
Environmental	0.31/0.43.4	0000 (0000) 00 0	
Total Inorganic Carbon by Acetic Acid pH E354	Soil/Solid	CSSS (2008) 20.2	Total Inorganic Carbon is determined by acetic acid pH standard curve, where a known
Standard Curve Saskatoon -			quantity of acetic acid is consumed by reaction with carbonates in the soil. The pH of the resulting solution is measured and compared against a standard curve relating pH to
Environmental			weight of carbonate.
Metals in Soil/Solid by CRC ICPMS E440	Soil/Solid	EPA 6020B (mod)	This method is intended to liberate metals that may be environmentally available.
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		,	Samples are dried, then sieved through a 2 mm sieve, and digested with HNO3 and HCI.
Calgary - Environmer	ntal		
			Dependent on sample matrix, some metals may be only partially recovered, including Al,
			Ba, Be, Cr, Sr, Ti, Tl, V, W, and Zr. Silicate minerals are not solubilized. Volatile forms
			of sulfur (including sulfide) may not be captured, as they may be lost during sampling,
			storage, or digestion. This method does not adequately recover elemental sulfur, and is
			unsuitable for assessment of elemental sulfur standards or guidelines.
			Analysis is by Collision/Reaction Cell ICPMS.
Mercury in Soil/Solid by CVAAS E510	Soil/Solid	EPA 200.2/1631	Samples are dried, then sieved through a 2 mm sieve, and digested with HNO3 and HCI,
		Appendix (mod)	followed by CVAAS analysis.
Calgary - Environmer			
PAHs by Hex:Ace GC-MS E641A	Soil/Solid	EPA 8270E (mod)	Polycyclic Aromatic Hydrocarbons (PAHs) are extracted with hexane/acetone and analyzed by GC-MS. If reported, IACR (index of additive cancer risk, unitless) and
Calgary - Environmer	ntal		B(a)P toxic potency equivalent (in soil concentration units) are calculated as per CCME
			PAH Soil Quality Guidelines fact sheet (2010) or ABT1.

Page : 22 of 22

Work Order : CG2213078 Amendment 1

Client : Teck Coal Limited
Project : Regional Effects Program

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Particle Size Analysis (Pipette) - Wentworth	EC184A	Soil/Solid	Modified Wentworth	The particle size determination is performed by various methods to generate a Grain
Classification				Size curve. The data from the curve is then used to produce particle size ranges based
	Saskatoon -			on the Modified Wentworth Classification system.
	Environmental			
Total Organic Carbon (Calculated) in soil	EC356	Soil/Solid	CSSS (2008) 21.2	Total Organic Carbon (TOC) is calculated by the difference between total carbon (TC) and total inorganic carbon (TIC).
	Saskatoon -			
	Environmental			
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Leach 1:2 Soil:Water for pH/EC	EP108	Soil/Solid	BC WLAP METHOD:	The procedure involves mixing the dried (at <60°C) and sieved (No. 10 / 2mm) sample
			PH, ELECTROMETRIC,	with deionized/distilled water at a 1:2 ratio of sediment to water.
	Calgary - Environmental		SOIL	
Digestion for Metals and Mercury	EP440	Soil/Solid	EPA 200.2 (mod)	Samples are dried, then sieved through a 2 mm sieve, and digested with HNO3 and HCl.
				This method is intended to liberate metals that may be environmentally available.
	Calgary - Environmental			
PHCs and PAHs Hexane-Acetone Tumbler	EP601	Soil/Solid	CCME PHC in Soil - Tier	Samples are subsampled and Petroleum Hydrocarbons (PHC) and PAHs are extracted
Extraction			1 (mod)	with 1:1 hexane:acetone using a rotary extractor.
	Calgary - Environmental			
Dry and Grind in Soil/Solid <60°C	EPP442	Soil/Solid	Soil Sampling and	After removal of any coarse fragments and reservation of wet subsamples a portion of
			Methods of Analysis,	homogenized sample is set in a tray and dried at less than 60°C until dry. The sample is
	Saskatoon -		Carter 2008	then particle size reduced with an automated crusher or mortar and pestle, typically to
	Environmental			<2 mm. Further size reduction may be needed for particular tests.

ALS Canada Ltd.

QUALITY CONTROL REPORT

Work Order : CG2213078

Amendment : 1

Client : Teck Coal Limited
Contact : Cybele Heddle
Address : 421 Pine Ave

Sparwood BC Canada

Telephone

Project : Regional Effects Program

PO : VPO00816101

C-O-C number : REP_LAEMP_CMm_2022-09_ALS

Sampler : JI

Site :---

Quote number : Teck Coal Master Quote

No. of samples received : 23 No. of samples analysed : 20 Page : 1 of 17

Laboratory : Calgary - Environmental

Account Manager : Lyudmyla Shvets

Address : 2559 29th Street NE

Calgary, Alberta Canada T1Y 7B5

Telephone :+1 403 407 1800

Date Samples Received :17-Sep-2022 11:38

Date Analysis Commenced : 24-Sep-2022

Issue Date : 12-Jan-2023 11:41

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives

- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Reference Material (RM) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department	
Anthony Calero	Supervisor - Inorganic	Calgary Metals, Calgary, Alberta	
Colby Bingham	Quality Systems Coordinator	Saskatoon Inorganics, Saskatoon, Saskatchewan	
Colby Bingham	Quality Systems Coordinator	Saskatoon Metals, Saskatoon, Saskatchewan	
Hedy Lai	Team Leader - Inorganics	Saskatoon Inorganics, Saskatoon, Saskatchewan	
Hedy Lai	Team Leader - Inorganics	Saskatoon Sask Soils, Saskatoon, Saskatchewan	
Joshua Stessun	Laboratory Analyst	Calgary Organics, Calgary, Alberta	
Jwan Abdalla	Laboratory Analyst	Saskatoon Metals, Saskatoon, Saskatchewan	
Kimberly Hanson	Laboratory Analyst	Saskatoon Metals, Saskatoon, Saskatchewan	
Kuljeet Chawla		Calgary Inorganics, Calgary, Alberta	
Sorina Motea	Laboratory Analyst	Calgary Organics, Calgary, Alberta	

Page : 2 of 17

Work Order: CG2213078 Amendment 1
Client: Teck Coal Limited

Project : Regional Effects Program

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Page : 3 of 17

Work Order: CG2213078 Amendment 1
Client: Teck Coal Limited
Project: Regional Effects Program

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Soil/Solid						Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier	
Physical Tests (QC												
CG2213078-005	RG_MIUCO_SE-5_2022-0 9-14_N	Moisture		E144	0.25	%	37.9	38.0	0.0866%	20%		
Physical Tests (QC	Lot: 668546)											
CG2213010-001	Anonymous	pH (1:2 soil:water)		E108	0.10	pH units	8.02	8.05	0.373%	5%		
Physical Tests (QC	Lot: 668547)											
CG2213078-007	RG_RIVER_SE-4_2022-09 -14_N	pH (1:2 soil:water)		E108	0.10	pH units	7.32	7.28	0.548%	5%		
Physical Tests (QC	Lot: 671116)											
CG2213078-001	RG_MIUCO_SE-1_2022-0 9-14_N	pH (1:2 soil:water)		E108	0.10	pH units	8.23	8.23	0.00%	10%		
Organic / Inorganic	Carbon (QC Lot: 671043											
CG2211503-023	Anonymous	carbon, total [TC]		E351	0.050	%	2.04	1.92	5.97%	20%		
Organic / Inorganic	Carbon (QC Lot: 672920)										
CG2213078-005	RG_MIUCO_SE-5_2022-0 9-14_N	carbon, total [TC]		E351	0.050	%	3.37	3.18	5.57%	20%		
Organic / Inorganic	Carbon (QC Lot: 674355											
CG2213078-001	RG_MIUCO_SE-1_2022-0 9-14_N	carbon, inorganic [IC]		E354	0.050	%	0.770	0.779	1.12%	20%		
Organic / Inorganic	Carbon (QC Lot: 674356)										
CG2213078-015	RG_MI25_SE-2_2022-09-1 4_N	carbon, inorganic [IC]		E354	0.050	%	0.543	0.530	2.42%	20%		
Organic / Inorganic	Carbon (QC Lot: 683757	7)										
CG2213078-016	RG_MI25_SE-3_2022-09-1 4_N	carbon, inorganic [IC]		E354	0.050	%	0.508	0.502	1.16%	20%		
Organic / Inorganic	Carbon (QC Lot: 683981)										
FC2202421-001	Anonymous	carbon, total [TC]		E351	0.050	%	1.27	1.22	3.86%	20%		
Metals (QC Lot: 667	7527)											
CG2213031-001	Anonymous	mercury	7439-97-6	E510	0.0050	mg/kg	0.0624	0.0507	20.6%	40%		
Metals (QC Lot: 667	7528)											
CG2213031-001	Anonymous	aluminum	7429-90-5	E440	50	mg/kg	14700	12800	13.5%	40%		
		antimony	7440-36-0	E440	0.10	mg/kg	0.75	0.60	22.6%	30%		
		arsenic	7440-38-2	E440	0.10	mg/kg	7.66	7.56	1.28%	30%		
		barium	7440-39-3	E440	0.50	mg/kg	314	282	10.5%	40%		
		beryllium	7440-41-7	E440	0.10	mg/kg	0.64	0.62	0.02	Diff <2x LOR		

Page : 4 of 17

Work Order : CG2213078 Amendment 1

Client : Teck Coal Limited

Project : Regional Effects Program

Sub-Matrix: Soil/Solid					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifie
Metals (QC Lot: 667	7528) - continued										
CG2213031-001	Anonymous	bismuth	7440-69-9	E440	0.20	mg/kg	<0.20	<0.20	0	Diff <2x LOR	
		boron	7440-42-8	E440	5.0	mg/kg	7.0	6.0	1.0	Diff <2x LOR	
		cadmium	7440-43-9	E440	0.020	mg/kg	0.412	0.371	10.6%	30%	
		calcium	7440-70-2	E440	50	mg/kg	42800	40200	6.28%	30%	
		chromium	7440-47-3	E440	0.50	mg/kg	21.3	20.9	1.67%	30%	
		cobalt	7440-48-4	E440	0.10	mg/kg	8.22	7.38	10.9%	30%	
		copper	7440-50-8	E440	0.50	mg/kg	19.0	18.0	5.29%	30%	
		iron	7439-89-6	E440	50	mg/kg	19400	18100	6.93%	30%	
		lead	7439-92-1	E440	0.50	mg/kg	14.1	13.4	5.42%	40%	
		lithium	7439-93-2	E440	2.0	mg/kg	12.0	11.9	0.04	Diff <2x LOR	
		magnesium	7439-95-4	E440	20	mg/kg	10600	9890	7.34%	30%	
		manganese	7439-96-5	E440	1.0	mg/kg	376	360	4.14%	30%	
		molybdenum	7439-98-7	E440	0.10	mg/kg	1.29	1.27	1.79%	40%	
		nickel	7440-02-0	E440	0.50	mg/kg	22.3	21.5	3.44%	30%	
		phosphorus	7723-14-0	E440	50	mg/kg	557	568	2.02%	30%	
		potassium	7440-09-7	E440	100	mg/kg	2100	1840	12.9%	40%	
		selenium	7782-49-2	E440	0.20	mg/kg	0.51	0.34	0.16	Diff <2x LOR	
		silver	7440-22-4	E440	0.10	mg/kg	0.13	0.11	0.02	Diff <2x LOR	
		sodium	7440-23-5	E440	50	mg/kg	300	272	9.53%	40%	
		strontium	7440-24-6	E440	0.50	mg/kg	82.1	75.8	8.02%	40%	
		sulfur	7704-34-9	E440	1000	mg/kg	<1000	<1000	0	Diff <2x LOR	
		thallium	7440-28-0	E440	0.050	mg/kg	0.203	0.179	0.024	Diff <2x LOR	
		tin	7440-31-5	E440	2.0	mg/kg	<2.0	<2.0	0	Diff <2x LOR	
		titanium	7440-32-6	E440	1.0	mg/kg	72.1	51.0	34.3%	40%	
		tungsten	7440-33-7	E440	0.50	mg/kg	<0.50	<0.50	0	Diff <2x LOR	
		uranium	7440-61-1	E440	0.050	mg/kg	0.992	0.908	8.92%	30%	
		vanadium	7440-62-2	E440	0.20	mg/kg	36.2	32.0	12.4%	30%	
		zinc	7440-66-6	E440	2.0	mg/kg	72.3	66.8	7.88%	30%	
		zirconium	7440-67-7	E440	1.0	mg/kg	3.3	3.0	0.2	Diff <2x LOR	
Notale (OC Lety CZ)	(426)					3. 3					
Metals (QC Lot: 674 CG2213078-001	RG_MIUCO_SE-1_2022-0	mercury	7439-97-6	E510	0.0050	mg/kg	0.0284	0.0293	3.03%	40%	
Motals (OC Lot: 674	9-14_N										
Metals (QC Lot: 674 CG2213078-001	RG_MIUCO_SE-1_2022-0 9-14 N	aluminum	7429-90-5	E440	50	mg/kg	9400	9540	1.47%	40%	

Page : 5 of 17

Work Order : CG2213078 Amendment 1

Client : Teck Coal Limited

Project : Regional Effects Program

Sub-Matrix: Soil/Solid					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Metals (QC Lot: 67	4127) - continued										
CG2213078-001	RG_MIUCO_SE-1_2022-0 9-14_N	antimony	7440-36-0	E440	0.10	mg/kg	0.39	0.38	0.02	Diff <2x LOR	
		arsenic	7440-38-2	E440	0.10	mg/kg	7.23	7.28	0.644%	30%	
		barium	7440-39-3	E440	0.50	mg/kg	558	528	5.53%	40%	
		beryllium	7440-41-7	E440	0.10	mg/kg	0.66	0.65	0.004	Diff <2x LOR	
		bismuth	7440-69-9	E440	0.20	mg/kg	<0.20	<0.20	0	Diff <2x LOR	
		boron	7440-42-8	E440	5.0	mg/kg	8.3	8.5	0.2	Diff <2x LOR	
		cadmium	7440-43-9	E440	0.020	mg/kg	0.761	0.762	0.0962%	30%	
		calcium	7440-70-2	E440	50	mg/kg	25300	24600	2.66%	30%	
		chromium	7440-47-3	E440	0.50	mg/kg	12.8	13.3	4.12%	30%	
		cobalt	7440-48-4	E440	0.10	mg/kg	7.15	7.38	3.08%	30%	
		copper	7440-50-8	E440	0.50	mg/kg	17.9	17.8	0.564%	30%	
		iron	7439-89-6	E440	50	mg/kg	21000	21200	0.738%	30%	
		lead	7439-92-1	E440	0.50	mg/kg	12.4	12.4	0.123%	40%	
		lithium	7439-93-2	E440	2.0	mg/kg	19.4	19.7	1.40%	30%	
		magnesium	7439-95-4	E440	20	mg/kg	6470	6440	0.347%	30%	
		manganese	7439-96-5	E440	1.0	mg/kg	302	282	6.92%	30%	
		molybdenum	7439-98-7	E440	0.10	mg/kg	2.07	2.05	1.30%	40%	
		nickel	7440-02-0	E440	0.50	mg/kg	21.3	22.2	3.88%	30%	
		phosphorus	7723-14-0	E440	50	mg/kg	1320	1340	1.90%	30%	
		potassium	7440-09-7	E440	100	mg/kg	1630	1570	3.59%	40%	
		selenium	7782-49-2	E440	0.20	mg/kg	0.72	0.70	0.02	Diff <2x LOR	
		silver	7440-22-4	E440	0.10	mg/kg	0.12	0.12	0.0004	Diff <2x LOR	
		sodium	7440-23-5	E440	50	mg/kg	244	247	3	Diff <2x LOR	
		strontium	7440-24-6	E440	0.50	mg/kg	98.5	93.1	5.66%	40%	
		sulfur	7704-34-9	E440	1000	mg/kg	1000	<1000	30	Diff <2x LOR	
		thallium	7440-28-0	E440	0.050	mg/kg	0.301	0.305	0.005	Diff <2x LOR	
		tin	7440-31-5	E440	2.0	mg/kg	<2.0	<2.0	0	Diff <2x LOR	
		titanium	7440-32-6	E440	1.0	mg/kg	29.1	34.2	16.3%	40%	
		tungsten	7440-33-7	E440	0.50	mg/kg	<0.50	<0.50	0	Diff <2x LOR	
		uranium	7440-61-1	E440	0.050	mg/kg	0.628	0.592	5.88%	30%	
		vanadium	7440-62-2	E440	0.20	mg/kg	20.8	21.0	1.02%	30%	
		zinc	7440-66-6	E440	2.0	mg/kg	88.4	92.6	4.64%	30%	
		zirconium	7440-67-7	E440	1.0	mg/kg	1.7	1.4	0.3	Diff <2x LOR	
olycyclic Aromatic	: Hydrocarbons (QC Lot	t: 663863)					I .	<u> </u>			

Page : 6 of 17

Work Order : CG2213078 Amendment 1

Client : Teck Coal Limited

Project : Regional Effects Program

Sub-Matrix: Soil/Solid					Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Polycyclic Aromatic	Hydrocarbons (QC Lot	: 663863) - continued									
CG2213078-005	RG_MIUCO_SE-5_2022-0 9-14_N	acenaphthene	83-32-9	E641A	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		acenaphthylene	208-96-8	E641A	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		acridine	260-94-6	E641A	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		anthracene	120-12-7	E641A	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		benz(a)anthracene	56-55-3	E641A	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		benzo(a)pyrene	50-32-8	E641A	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		benzo(b+j)fluoranthene	n/a	E641A	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		benzo(g,h,i)perylene	191-24-2	E641A	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		benzo(k)fluoranthene	207-08-9	E641A	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		chrysene	218-01-9	E641A	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		dibenz(a,h)anthracene	53-70-3	E641A	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		fluoranthene	206-44-0	E641A	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		fluorene	86-73-7	E641A	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		indeno(1,2,3-c,d)pyrene	193-39-5	E641A	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		methylnaphthalene, 1-	90-12-0	E641A	0.030	mg/kg	0.054	0.048	0.006	Diff <2x LOR	
		methylnaphthalene, 2-	91-57-6	E641A	0.030	mg/kg	0.071	0.063	0.008	Diff <2x LOR	
		naphthalene	91-20-3	E641A	0.010	mg/kg	0.044	0.038	14.7%	50%	
		phenanthrene	85-01-8	E641A	0.050	mg/kg	0.092	0.083	0.009	Diff <2x LOR	
		pyrene	129-00-0	E641A	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		quinoline	91-22-5	E641A	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	

Page : 7 of 17

Work Order: CG2213078 Amendment 1
Client: Teck Coal Limited
Project: Regional Effects Program

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Soil/Solid

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 66386						
Moisture		E144	0.25	%	<0.25	
Organic / Inorganic Carbon(C						
carbon, total [TC]		E351	0.05	%	<0.050	
Organic / Inorganic Carbon(C						
carbon, total [TC]		E351	0.05	%	<0.050	
Organic / Inorganic Carbon(C						
carbon, inorganic [IC]		E354	0.05	%	<0.050	
Organic / Inorganic Carbon(C						
carbon, inorganic [IC]		E354	0.05	%	<0.050	
Organic / Inorganic Carbon(C						
carbon, inorganic [IC]		E354	0.05	%	<0.050	
Organic / Inorganic Carbon(C						
carbon, total [TC]		E351	0.05	%	<0.050	
Metals (QCLot: 667527)						
mercury	7439-97-6	E510	0.005	mg/kg	<0.0050	
Metals (QCLot: 667528)						
aluminum	7429-90-5	E440	50	mg/kg	<50	
antimony	7440-36-0	E440	0.1	mg/kg	<0.10	
arsenic	7440-38-2	E440	0.1	mg/kg	<0.10	
barium	7440-39-3	E440	0.5	mg/kg	<0.50	
beryllium	7440-41-7	E440	0.1	mg/kg	<0.10	
bismuth	7440-69-9	E440	0.2	mg/kg	<0.20	
boron	7440-42-8	E440	5	mg/kg	<5.0	
cadmium	7440-43-9	E440	0.02	mg/kg	<0.020	
calcium	7440-70-2	E440	50	mg/kg	<50	
chromium	7440-47-3	E440	0.5	mg/kg	<0.50	
cobalt	7440-48-4	E440	0.1	mg/kg	<0.10	
copper	7440-50-8	E440	0.5	mg/kg	<0.50	
iron	7439-89-6	E440	50	mg/kg	<50	
lead	7439-92-1	E440	0.5	mg/kg	<0.50	
lithium	7439-93-2	E440	2	mg/kg	<2.0	
magnesium	7439-95-4	E440	20	mg/kg	<20	

Page : 8 of 17

Work Order: CG2213078 Amendment 1
Client: Teck Coal Limited
Project: Regional Effects Program

Sub-Matrix: Soil/Solid

Analyte	CAS Number	Method	LOF	R Unit	Result	Qualifier
Metals (QCLot: 667528) - conti	inued					
manganese	7439-96-5	E440	1	mg/kg	<1.0	
molybdenum	7439-98-7	E440	0.1	mg/kg	<0.10	
nickel	7440-02-0	E440	0.5	mg/kg	<0.50	
phosphorus	7723-14-0	E440	50	mg/kg	<50	
potassium	7440-09-7	E440	100) mg/kg	<100	
selenium	7782-49-2	E440	0.2	mg/kg	<0.20	
silver	7440-22-4	E440	0.1	mg/kg	<0.10	
sodium	7440-23-5	E440	50	mg/kg	<50	
strontium	7440-24-6	E440	0.5	mg/kg	<0.50	
sulfur	7704-34-9	E440	100	0 mg/kg	<1000	
thallium	7440-28-0	E440	0.08	5 mg/kg	<0.050	
tin	7440-31-5	E440	2	mg/kg	<2.0	
titanium	7440-32-6	E440	1	mg/kg	<1.0	
tungsten	7440-33-7	E440	0.5	mg/kg	<0.50	
uranium	7440-61-1	E440	0.08	5 mg/kg	<0.050	
vanadium	7440-62-2	E440	0.2	mg/kg	<0.20	
zinc	7440-66-6	E440	2	mg/kg	<2.0	
zirconium	7440-67-7	E440	1	mg/kg	<1.0	
Metals (QCLot: 674126)						
mercury	7439-97-6	E510	0.00	5 mg/kg	<0.0050	
Metals (QCLot: 674127)						
aluminum	7429-90-5	E440	50	mg/kg	<50	
antimony	7440-36-0	E440	0.1	mg/kg	<0.10	
arsenic	7440-38-2	E440	0.1	mg/kg	<0.10	
barium	7440-39-3	E440	0.5	mg/kg	<0.50	
beryllium	7440-41-7	E440	0.1	mg/kg	<0.10	
bismuth	7440-69-9	E440	0.2	mg/kg	<0.20	
boron	7440-42-8	E440	5	mg/kg	<5.0	
cadmium	7440-43-9	E440	0.02	2 mg/kg	<0.020	
calcium	7440-70-2	E440	50	mg/kg	<50	
chromium	7440-47-3	E440	0.5	mg/kg	<0.50	
cobalt	7440-48-4	E440	0.1	mg/kg	<0.10	
copper	7440-50-8	E440	0.5	mg/kg	<0.50	
iron	7439-89-6	E440	50	mg/kg	<50	
lead	7439-92-1	E440	0.5	mg/kg	<0.50	

Page : 9 of 17

Work Order: CG2213078 Amendment 1
Client: Teck Coal Limited
Project: Regional Effects Program

Sub-Matrix: Soil/Solid

nalyte	CAS Number	Method	LO	OR	Unit	Result	Qualifier
letals (QCLot: 674127) - continue	ed						
lithium	7439-93-2	E440	:	2	mg/kg	<2.0	
magnesium	7439-95-4	E440	2	20	mg/kg	<20	
manganese	7439-96-5	E440		1	mg/kg	<1.0	
molybdenum	7439-98-7	E440	0	.1	mg/kg	<0.10	
nickel	7440-02-0	E440	0	.5	mg/kg	<0.50	
phosphorus	7723-14-0	E440	5	50	mg/kg	<50	
potassium	7440-09-7	E440	10	00	mg/kg	<100	
selenium	7782-49-2	E440	0	.2	mg/kg	<0.20	
silver	7440-22-4	E440	0	.1	mg/kg	<0.10	
sodium	7440-23-5	E440	5	50	mg/kg	<50	
strontium	7440-24-6	E440	0	.5	mg/kg	<0.50	
sulfur	7704-34-9	E440	10	000	mg/kg	<1000	
thallium	7440-28-0	E440	0.	.05	mg/kg	<0.050	
tin	7440-31-5	E440	:	2	mg/kg	<2.0	
titanium	7440-32-6	E440		1	mg/kg	<1.0	
tungsten	7440-33-7	E440	0	.5	mg/kg	<0.50	
uranium	7440-61-1	E440	0.	.05	mg/kg	<0.050	
vanadium	7440-62-2	E440	0	.2	mg/kg	<0.20	
zinc	7440-66-6	E440	:	2	mg/kg	<2.0	
zirconium	7440-67-7	E440		1	mg/kg	<1.0	
olycyclic Aromatic Hydrocarbons	(QCLot: 663863)						
acenaphthene	83-32-9	E641A	0.	05	mg/kg	<0.050	
acenaphthylene	208-96-8	E641A	0.	05	mg/kg	<0.050	
acridine	260-94-6	E641A	0.	05	mg/kg	<0.050	
anthracene	120-12-7	E641A	0.	05	mg/kg	<0.050	
benz(a)anthracene	56-55-3	E641A	0.	05	mg/kg	<0.050	
benzo(a)pyrene	50-32-8	E641A	0.	05	mg/kg	<0.050	
benzo(b+j)fluoranthene	n/a	E641A	0.	.05	mg/kg	<0.050	
benzo(g,h,i)perylene	191-24-2	E641A	0.	.05	mg/kg	<0.050	
benzo(k)fluoranthene	207-08-9	E641A	0.	.05	mg/kg	<0.050	
chrysene	218-01-9	E641A	0.	.05	mg/kg	<0.050	
dibenz(a,h)anthracene	53-70-3	E641A	0.	.05	mg/kg	<0.050	
fluoranthene	206-44-0	E641A	0.	.05	mg/kg	<0.050	
fluorene	86-73-7	E641A	0.	.05	mg/kg	<0.050	
indeno(1,2,3-c,d)pyrene	193-39-5	E6/14	0	.05	mg/kg	<0.050	

Page : 10 of 17

Work Order: CG2213078 Amendment 1
Client: Teck Coal Limited

Project : Regional Effects Program

Sub-Matrix: Soil/Solid

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Polycyclic Aromatic Hydrocarbons	(QCLot: 663863) - contin	ued				
methylnaphthalene, 1-	90-12-0	E641A	0.03	mg/kg	<0.030	
methylnaphthalene, 2-	91-57-6	E641A	0.03	mg/kg	<0.030	
naphthalene	91-20-3	E641A	0.01	mg/kg	<0.010	
phenanthrene	85-01-8	E641A	0.05	mg/kg	<0.050	
pyrene	129-00-0	E641A	0.05	mg/kg	<0.050	
quinoline	91-22-5	E641A	0.05	mg/kg	<0.050	

Page : 11 of 17

Work Order: CG2213078 Amendment 1
Client: Teck Coal Limited
Project: Regional Effects Program

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Soil/Solid						Laboratory Co	ntrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number Metho	od	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Physical Tests (QCLot: 663864)									
Moisture	E144		0.25	%	50 %	97.6	90.0	110	
Physical Tests (QCLot: 668546)									
pH (1:2 soil:water)	E108			pH units	7 pH units	101	97.0	103	
Physical Tests (QCLot: 668547)									
pH (1:2 soil:water)	E108			pH units	7 pH units	100	97.0	103	
Physical Tests (QCLot: 671116)									
pH (1:2 soil:water)	E108			pH units	7 pH units	101	97.0	103	
Organic / Inorganic Carbon (QCLot: 671043)									
carbon, total [TC]	E351		0.05	%	48 %	101	90.0	110	
Organic / Inorganic Carbon (QCLot: 672920)									
carbon, total [TC]	E351		0.05	%	48 %	98.6	90.0	110	
Organic / Inorganic Carbon (QCLot: 674355)									
carbon, inorganic [IC]	E354		0.05	%	0.5 %	93.4	90.0	110	
Organic / Inorganic Carbon (QCLot: 674356)									
carbon, inorganic [IC]	E354		0.05	%	0.5 %	94.1	90.0	110	
Organic / Inorganic Carbon (QCLot: 683757)									
carbon, inorganic [IC]	E354		0.05	%	0.5 %	96.1	90.0	110	
Organic / Inorganic Carbon (QCLot: 683981)									
carbon, total [TC]	E351		0.05	%	48 %	100	90.0	110	
Metals (QCLot: 667527)									
mercury	7439-97-6 E510		0.005	mg/kg	0.1 mg/kg	108	80.0	120	
Metals (QCLot: 667528)									
aluminum	7429-90-5 E440		50	mg/kg	200 mg/kg	114	80.0	120	
antimony	7440-36-0 E440		0.1	mg/kg	100 mg/kg	104	80.0	120	
arsenic 	7440-38-2 E440		0.1	mg/kg	100 mg/kg	108	80.0	120	
barium 	7440-39-3 E440		0.5	mg/kg	25 mg/kg	112	80.0	120	
beryllium	7440-41-7 E440		0.1	mg/kg	10 mg/kg	105	80.0	120	
bismuth	7440-69-9 E440		0.2	mg/kg	100 mg/kg	107	80.0	120	
boron	7440-42-8 E440		5	mg/kg	100 mg/kg	104	80.0	120	
cadmium	7440-43-9 E440		0.02	mg/kg	10 mg/kg	108	80.0	120	

Page : 12 of 17

Work Order: CG2213078 Amendment 1
Client: Teck Coal Limited
Project: Regional Effects Program

Sub-Matrix: Soil/Solid						Laboratory Co	ntrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Metals (QCLot: 667528) - continued									
calcium	7440-70-2	E440	50	mg/kg	5000 mg/kg	112	80.0	120	
chromium	7440-47-3	E440	0.5	mg/kg	25 mg/kg	113	80.0	120	
cobalt	7440-48-4	E440	0.1	mg/kg	25 mg/kg	111	80.0	120	
copper	7440-50-8	E440	0.5	mg/kg	25 mg/kg	111	80.0	120	
iron	7439-89-6	E440	50	mg/kg	100 mg/kg	110	80.0	120	
lead	7439-92-1	E440	0.5	mg/kg	50 mg/kg	110	80.0	120	
lithium	7439-93-2	E440	2	mg/kg	25 mg/kg	100.0	80.0	120	
magnesium	7439-95-4	E440	20	mg/kg	5000 mg/kg	115	80.0	120	
manganese	7439-96-5	E440	1	mg/kg	25 mg/kg	118	80.0	120	
molybdenum	7439-98-7	E440	0.1	mg/kg	25 mg/kg	114	80.0	120	
nickel	7440-02-0	E440	0.5	mg/kg	50 mg/kg	110	80.0	120	
phosphorus	7723-14-0	E440	50	mg/kg	1000 mg/kg	119	80.0	120	
potassium	7440-09-7	E440	100	mg/kg	5000 mg/kg	109	80.0	120	
selenium	7782-49-2	E440	0.2	mg/kg	100 mg/kg	105	80.0	120	
silver	7440-22-4	E440	0.1	mg/kg	10 mg/kg	95.5	80.0	120	
sodium	7440-23-5	E440	50	mg/kg	5000 mg/kg	116	80.0	120	
strontium	7440-24-6	E440	0.5	mg/kg	25 mg/kg	111	80.0	120	
sulfur	7704-34-9	E440	1000	mg/kg	5000 mg/kg	104	80.0	120	
thallium	7440-28-0	E440	0.05	mg/kg	100 mg/kg	108	80.0	120	
tin	7440-31-5	E440	2	mg/kg	50 mg/kg	111	80.0	120	
titanium	7440-32-6	E440	1	mg/kg	25 mg/kg	112	80.0	120	
tungsten	7440-33-7	E440	0.5	mg/kg	10 mg/kg	109	80.0	120	
uranium	7440-61-1	E440	0.05	mg/kg	0.5 mg/kg	113	80.0	120	
vanadium	7440-62-2	E440	0.2	mg/kg	50 mg/kg	113	80.0	120	
zinc	7440-66-6	E440	2	mg/kg	50 mg/kg	110	80.0	120	
zirconium	7440-67-7	E440	1	mg/kg	10 mg/kg	107	80.0	120	
Metals (QCLot: 674126)									
mercury	7439-97-6	E510	0.005	mg/kg	0.1 mg/kg	96.8	80.0	120	
Metals (QCLot: 674127)									
aluminum	7429-90-5	E440	50	mg/kg	200 mg/kg	99.5	80.0	120	
antimony	7440-36-0		0.1	mg/kg	100 mg/kg	104	80.0	120	
arsenic	7440-38-2		0.1	mg/kg	100 mg/kg	101	80.0	120	
barium	7440-39-3		0.5	mg/kg	25 mg/kg	100	80.0	120	
beryllium	7440-41-7		0.1	mg/kg	10 mg/kg	102	80.0	120	
bismuth	7440-69-9		0.2	mg/kg	100 mg/kg	102	80.0	120	
boron	7440-42-8		5	mg/kg		118	80.0	120	
501011	1 11 0-42-0			ilig/kg	100 mg/kg	110	00.0	120	

Page : 13 of 17

Work Order: CG2213078 Amendment 1
Client: Teck Coal Limited
Project: Regional Effects Program

Sub-Matrix: Soil/Solid						Laboratory Co	ntrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Metals (QCLot: 674127) - continued									
cadmium	7440-43-9	E440	0.02	mg/kg	10 mg/kg	98.9	80.0	120	
calcium	7440-70-2	E440	50	mg/kg	5000 mg/kg	103	80.0	120	
chromium	7440-47-3	E440	0.5	mg/kg	25 mg/kg	99.3	80.0	120	
cobalt	7440-48-4	E440	0.1	mg/kg	25 mg/kg	101	80.0	120	
copper	7440-50-8	E440	0.5	mg/kg	25 mg/kg	99.2	80.0	120	
iron	7439-89-6	E440	50	mg/kg	100 mg/kg	102	80.0	120	
lead	7439-92-1	E440	0.5	mg/kg	50 mg/kg	100	80.0	120	
lithium	7439-93-2	E440	2	mg/kg	25 mg/kg	103	80.0	120	
magnesium	7439-95-4	E440	20	mg/kg	5000 mg/kg	102	80.0	120	
manganese	7439-96-5	E440	1	mg/kg	25 mg/kg	100	80.0	120	
molybdenum	7439-98-7	E440	0.1	mg/kg	25 mg/kg	102	80.0	120	
nickel	7440-02-0	E440	0.5	mg/kg	50 mg/kg	97.2	80.0	120	
phosphorus	7723-14-0	E440	50	mg/kg	1000 mg/kg	105	80.0	120	
potassium	7440-09-7	E440	100	mg/kg	5000 mg/kg	103	80.0	120	
selenium	7782-49-2	E440	0.2	mg/kg	100 mg/kg	104	80.0	120	
silver	7440-22-4	E440	0.1	mg/kg	10 mg/kg	94.9	80.0	120	
sodium	7440-23-5	E440	50	mg/kg	5000 mg/kg	98.4	80.0	120	
strontium	7440-24-6	E440	0.5	mg/kg	25 mg/kg	105	80.0	120	
sulfur	7704-34-9	E440	1000	mg/kg	5000 mg/kg	101	80.0	120	
thallium	7440-28-0	E440	0.05	mg/kg	100 mg/kg	97.9	80.0	120	
tin	7440-31-5	E440	2	mg/kg	50 mg/kg	100	80.0	120	
titanium	7440-32-6	E440	1	mg/kg	25 mg/kg	101	80.0	120	
tungsten	7440-33-7	E440	0.5	mg/kg	10 mg/kg	100.0	80.0	120	
uranium	7440-61-1	E440	0.05	mg/kg	0.5 mg/kg	98.3	80.0	120	
vanadium	7440-62-2	E440	0.2	mg/kg	50 mg/kg	101	80.0	120	
zinc	7440-66-6	E440	2	mg/kg	50 mg/kg	103	80.0	120	
zirconium	7440-67-7	E440	1	mg/kg	10 mg/kg	100	80.0	120	
Polycyclic Aromatic Hydrocarbons ((QCL of: 663863)								
acenaphthene	83-32-9	E641A	0.05	mg/kg	0.5 mg/kg	109	60.0	130	
acenaphthylene	208-96-8	E641A	0.05	mg/kg	0.5 mg/kg	101	60.0	130	
acridine	260-94-6	E641A	0.05	mg/kg	0.5 mg/kg	96.2	60.0	130	
anthracene	120-12-7	E641A	0.05	mg/kg	0.5 mg/kg	94.2	60.0	130	
benz(a)anthracene	56-55-3	E641A	0.05	mg/kg	0.5 mg/kg	102	60.0	130	
benzo(a)pyrene	50-32-8	E641A	0.05	mg/kg	0.5 mg/kg	93.5	60.0	130	
benzo(b+j)fluoranthene	n/a	E641A	0.05	mg/kg	0.5 mg/kg	103	60.0	130	
l		I	I	1	1	1		l	I

Page : 14 of 17

Work Order : CG2213078 Amendment 1

Client : Teck Coal Limited

Project : Regional Effects Program

Sub-Matrix: Soil/Solid						Laboratory Co	ntrol Sample (LCS)	Report	
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Polycyclic Aromatic Hydrocarbons (Q	CLot: 663863) - continue	d							
benzo(g,h,i)perylene	191-24-2	E641A	0.05	mg/kg	0.5 mg/kg	95.5	60.0	130	
benzo(k)fluoranthene	207-08-9	E641A	0.05	mg/kg	0.5 mg/kg	108	60.0	130	
chrysene	218-01-9	E641A	0.05	mg/kg	0.5 mg/kg	103	60.0	130	
dibenz(a,h)anthracene	53-70-3	E641A	0.05	mg/kg	0.5 mg/kg	92.5	60.0	130	
fluoranthene	206-44-0	E641A	0.05	mg/kg	0.5 mg/kg	104	60.0	130	
fluorene	86-73-7	E641A	0.05	mg/kg	0.5 mg/kg	98.9	60.0	130	
indeno(1,2,3-c,d)pyrene	193-39-5	E641A	0.05	mg/kg	0.5 mg/kg	97.5	60.0	130	
methylnaphthalene, 1-	90-12-0	E641A	0.03	mg/kg	0.5 mg/kg	108	60.0	130	
methylnaphthalene, 2-	91-57-6	E641A	0.03	mg/kg	0.5 mg/kg	106	60.0	130	
naphthalene	91-20-3	E641A	0.01	mg/kg	0.5 mg/kg	111	50.0	130	
phenanthrene	85-01-8	E641A	0.05	mg/kg	0.5 mg/kg	106	60.0	130	
pyrene	129-00-0	E641A	0.05	mg/kg	0.5 mg/kg	105	60.0	130	
quinoline	91-22-5	E641A	0.05	mg/kg	0.5 mg/kg	85.2	60.0	130	

Page : 15 of 17

Work Order: CG2213078 Amendment 1
Client: Teck Coal Limited
Project: Regional Effects Program

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Soil/So	lid						Matrix Spik	e (MS) Report		
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
_aboratory sample D	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
olycyclic Arom	atic Hydrocarbons (QCL	ot: 663863)								
CG2213078-005	RG_MIUCO_SE-5_2022-09-	acenaphthene	83-32-9	E641A	0.401 mg/kg	0.5 mg/kg	113	50.0	140	
	14_N	acenaphthylene	208-96-8	E641A	0.376 mg/kg	0.5 mg/kg	106	50.0	140	
		acridine	260-94-6	E641A	0.351 mg/kg	0.5 mg/kg	99.1	50.0	140	
		anthracene	120-12-7	E641A	0.355 mg/kg	0.5 mg/kg	100	50.0	140	
		benz(a)anthracene	56-55-3	E641A	0.377 mg/kg	0.5 mg/kg	106	50.0	140	
		benzo(a)pyrene	50-32-8	E641A	0.337 mg/kg	0.5 mg/kg	95.1	50.0	140	
		benzo(b+j)fluoranthene	n/a	E641A	0.372 mg/kg	0.5 mg/kg	105	50.0	140	
		benzo(g,h,i)perylene	191-24-2	E641A	0.325 mg/kg	0.5 mg/kg	91.6	50.0	140	
		benzo(k)fluoranthene	207-08-9	E641A	0.388 mg/kg	0.5 mg/kg	110	50.0	140	
		chrysene	218-01-9	E641A	0.364 mg/kg	0.5 mg/kg	103	50.0	140	
		dibenz(a,h)anthracene	53-70-3	E641A	0.324 mg/kg	0.5 mg/kg	91.5	50.0	140	
		fluoranthene	206-44-0	E641A	0.378 mg/kg	0.5 mg/kg	107	50.0	140	
		fluorene	86-73-7	E641A	0.365 mg/kg	0.5 mg/kg	103	50.0	140	
		indeno(1,2,3-c,d)pyrene	193-39-5	E641A	0.363 mg/kg	0.5 mg/kg	102	50.0	140	
		methylnaphthalene, 1-	90-12-0	E641A	0.403 mg/kg	0.5 mg/kg	114	50.0	140	
	fluorene 86-73-7 indeno(1,2,3-c,d)pyrene 193-39-5 methylnaphthalene, 1- 90-12-0 methylnaphthalene, 2- 91-57-6	E641A	0.400 mg/kg	0.5 mg/kg	113	50.0	140			
		naphthalene	91-20-3	E641A	0.421 mg/kg	0.5 mg/kg	119	50.0	140	
		phenanthrene	85-01-8	E641A	0.388 mg/kg	0.5 mg/kg	110	50.0	140	
		pyrene	129-00-0	E641A	0.390 mg/kg	0.5 mg/kg	110	50.0	140	
		quinoline	91-22-5	E641A	0.335 mg/kg	0.5 mg/kg	94.6	50.0	140	

Page : 16 of 17

Work Order: CG2213078 Amendment 1
Client: Teck Coal Limited
Project: Regional Effects Program

Reference Material (RM) Report

A Reference Material (RM) is a homogenous material with known and well-established analyte concentrations. RMs are processed in an identical manner to test samples, and are used to monitor and control the accuracy and precision of a test method for a typical sample matrix. RM results are expressed as percent recovery of the target analyte concentration. RM targets may be certified target concentrations provided by the RM supplier, or may be ALS long-term mean values (for empirical test methods).

Sub-Matrix:						Refere	nce Material (RM) Re	port	
		_			RM Target	Recovery (%)	Recovery I	Limits (%)	
Laboratory sample ID	Reference Material ID	Analyte	CAS Number	Method	Concentration	RM	Low	High	Qualifier
Physical Tests (0	QCLot: 668546)								
	RM	pH (1:2 soil:water)		E108	8.06 pH units	98.8	96.0	104	
Physical Tests (0	QCLot: 668547)								
	RM	pH (1:2 soil:water)		E108	8.06 pH units	99.5	96.0	104	
Physical Tests (0	QCLot: 671116)								
	RM	pH (1:2 soil:water)		E108	8.13 pH units	101	96.0	104	
Organic / Inorga	nic Carbon (QCLot: 671	043)							
	RM	carbon, total [TC]		E351	1.4 %	95.7	80.0	120	
Organic / Inorga	nic Carbon (QCLot: 672	920)							
	RM	carbon, total [TC]		E351	1.4 %	102	80.0	120	
Organic / Inorga	nic Carbon (QCLot: 674	355)							
	RM	carbon, inorganic [IC]		E354	0.383 %	110	80.0	120	
Organic / Inorga	nic Carbon (QCLot: 674	356)							
	RM	carbon, inorganic [IC]		E354	0.383 %	112	80.0	120	
Organic / Inorga	nic Carbon (QCLot: 683	757)							
	RM	carbon, inorganic [IC]		E354	0.383 %	106	80.0	120	
Organic / Inorga	nic Carbon (QCLot: 683	981)							
	RM	carbon, total [TC]		E351	1.4 %	104	80.0	120	
Metals (QCLot: 6	74126)								
	RM	mercury	7439-97-6	E510	0.059 mg/kg	95.1	70.0	130	
Metals (QCLot: 6	74127)								
	RM	aluminum	7429-90-5	E440	9817 mg/kg	93.4	70.0	130	
	RM	antimony	7440-36-0	E440	3.99 mg/kg	98.9	70.0	130	
	RM	arsenic	7440-38-2	E440	3.73 mg/kg	93.1	70.0	130	
	RM	barium	7440-39-3	E440	105 mg/kg	100	70.0	130	
	RM	beryllium	7440-41-7	E440	0.349 mg/kg	98.0	70.0	130	
	RM	boron	7440-42-8	E440	8.5 mg/kg	86.4	40.0	160	
	RM	cadmium	7440-43-9	E440	0.91 mg/kg	97.9	70.0	130	
	RM	calcium	7440-70-2	E440	31082 mg/kg	96.4	70.0	130	

Page : 17 of 17

Work Order : CG2213078 Amendment 1

Client : Teck Coal Limited

Project : Regional Effects Program

Sub-Matrix:						Refere	nce Material (RM) Re	port	
					RM Target	Recovery (%)	Recovery I	Limits (%)	
Laboratory sample ID	Reference Material ID	Analyte	CAS Number	Method	Concentration	RM	Low	High	Qualifier
Metals (QCLo	t: 674127) - continued								
	RM	chromium	7440-47-3	E440	101 mg/kg	92.0	70.0	130	
	RM	cobalt	7440-48-4	E440	6.9 mg/kg	98.3	70.0	130	
	RM	copper	7440-50-8	E440	123 mg/kg	95.2	70.0	130	
	RM	iron	7439-89-6	E440	23558 mg/kg	98.4	70.0	130	
	RM	lead	7439-92-1	E440	267 mg/kg	109	70.0	130	
	RM	lithium	7439-93-2	E440	9.5 mg/kg	104	70.0	130	
	RM	magnesium	7439-95-4	E440	5509 mg/kg	98.1	70.0	130	
	RM	manganese	7439-96-5	E440	269 mg/kg	93.9	70.0	130	
	RM	molybdenum	7439-98-7	E440	1.03 mg/kg	115	70.0	130	
	RM	nickel	7440-02-0	E440	26.7 mg/kg	99.9	70.0	130	
	RM	phosphorus	7723-14-0	E440	752 mg/kg	101	70.0	130	
	RM	potassium	7440-09-7	E440	1587 mg/kg	95.4	70.0	130	
	RM	silver	7440-22-4	E440	4.06 mg/kg	89.5	70.0	130	
	RM	sodium	7440-23-5	E440	797 mg/kg	106	70.0	130	
	RM	strontium	7440-24-6	E440	86.1 mg/kg	109	70.0	130	
	RM	thallium	7440-28-0	E440	0.0786 mg/kg	89.5	40.0	160	
	RM	tin	7440-31-5	E440	10.6 mg/kg	94.0	70.0	130	
	RM	titanium	7440-32-6	E440	839 mg/kg	87.2	70.0	130	
	RM	uranium	7440-61-1	E440	0.52 mg/kg	90.9	70.0	130	
	RM	vanadium	7440-62-2	E440	32.7 mg/kg	93.7	70.0	130	
	RM	zinc	7440-66-6	E440	297 mg/kg	101	70.0	130	
	RM	zirconium	7440-67-7	E440	5.73 mg/kg	103	70.0	130	

Teck

leck	·			CT 4 0000 0	·	TOTAL LINEAR A				Ţ					2 22101				
	COC ID: RE	P_LAI	SMLP_	CMm_2022-0	y_ALS	TURNA	KOUN					2-3 Busin	ess Days			1: Priorty			
S	PROJECT/CLIENT INFO		Ŋ					_		ATORY			Ι		у ОТН	ER INFO			
Facility Name / Job#	Regional Effects Program					Lab Name	ALS Ca	alga	ry					mat / Dis	stribution	Excel	PDF	EDD	
Project Manager	Cybele Heddle				L	ab Contact	Lyudmy	yla S	Shvets			Em	ail 1:	AquaS	cil.ab@Teck.com	X	X	X	
	Cybele.Heddle@teck.com					Email	Lyudmyla	Shv	ets@ALS	Global,com	1	Em	ail 2:	teckcoa	@equisonline.com			X	
	421 Pine Avenue					Address	2559 29	9 Str	reet NE			Em	ail 3:	Teck.Lat	Results@teck.com	n X	X	X	
	~											Em	ail 4:		wron@minnow.ca	X	X	X	1
City	Sparwood		Provinc	BC		City	Calgary	,		Province	AB	Em	ail 5;		lehler@minnow.ca	X	X	X	
Postal Code				Canada	p	ostal Code	TIY 7E	35		Country	Canada	Em	ail 6:		Penner@Teck.com	Y	X	×	
Postal Code	1-250-865-3048		100unu	***.		ne Number			94		·		umber	- Iumai		00816101	<u> </u>		
I'none Number	SAMPLE DE	TAILS	St. 494			76 ° 56	,	T		ANA	LYSIS RE					iltered - F: Fic	ld, L: Lab, I	IL: Field & L	ab, N: Not
	DAMI DE DE		1	\$ C. S.	Simerae Carrier			r.	<u> </u>			Ī	T.			T	T	12.00.00-00-0	-
				45.65				E	N	N	N	N	N					1	
•		1		- Energy	•								1						
				-				PRESERV	NONE	NONE	NONE	NONE	NONE						
	•							RES	NONE	NONE	NONE	NONE	NONE			1			
• • • • •			Ιž					L								 			ļ
•			cs/							;		SK	د ¦		ŀ				
		l .	2		•		1	5		3	%	≟	١٧]					
		1	ria!								1	₹	₹	-					
			atci					VSIS		E	CT	 	4			1			
16·			Σ̈́					(¥E	ایا			17.8	Ą			İ			
·	•		sne					₹	SK	C		Sign	€			!		1	
			Į į			G=Grab		:	ွှဲ	Ö	ST	[8	Ė,			ŀ		1	١
	Sample Location	Field	Hazardous Material (Yes/No)		Time	C=Com	# Of		C-TOC-SK	MET-CCME+FULL-CL	MOISTURE- Moisture	PSA-PIPET-DETAIL-SK Particle Size	PAH-TMB-D/A-MS-CI PAHs					Ni. dala.	_ `
Sample ID	(sys loc code)	Matrix	<u>=</u> _	Date	(24hr)	p	Cont.		Ċ	M	<u> </u>	<u>8</u> 2	4 4		_	ronme	ntai L	NARIO	n
RG_MIUCO_SE-1_2022-09-14_N	RG_MIUCO	SE		2022/09/14	10:57	G	2		1	1	1	1	1		Calc	jary ork Ordi	er Refe	rence	
RG_MIUCO_SE-2_2022-09-14_N	RG_MIUCO	SE		2022/09/14	10:09	G _	. 1	19	1	1	1	1	1			Ğ2			Ŕ
RG_MIUCO_SE-3_2022-09-14_N	RG_MIUCO	SE		2022/09/14	9:44	G	2		ı	1	1	1	1		· •	<i></i>		<i>50 1</i>	•
RG_MIUCO_SE-4_2022-09-14_N	RG_MIUCO	SE		2022/09/14	11:22	G	2		1	1	1	1	1		_			Mar III I	
RG_MIUCO_SE-5_2022-09-14_N	RG_MIUCO	SE		2022/09/14	9:22	G	2	14	1	1	1	1	1		_)		
RG_RIVER_SE-1_2022-09-14_N	RG_RIVER	SE		2022/09/14	10:57	G	2		1	1	. 1	1	1		· -			13	
RG_RIVER_SE-4_2022-09-14_N	RG_RIVER	SE		2022/09/14	11:22	G	2		1	1	1	1	1		_			ነገር	II l
RG_CORCK_SE-1_2022-09-14_N	RG_CORCK	SE		2022/09/14	14:24	G	2		1	1	1 .	1	1		Teleph	ome:+14	03 407 1	800	
RG_CORCK_SE-2_2022-09-14_N	RG_CORCK	SE		2022/09/14	14:03	G	2		1	1	1	1	1			·	1	+	
RG_CORCK_SE-3_2022-09-14_N	RG_CORCK	SE		2022/09/14	13:13	G	2		1	1	1 .	1	1					1	<u> </u>
ADDITIONAL COMMENTS/SPE		K .		RELINQUISHED			74.	-	DATE/I		ACC	EPTED	BY/AFF	ILIATIO	ON *	D.	ATE/TI	ME	
For samples with only a jar, please prioriti		metals,	ــــــــــــــــــــــــــــــــــــــ	Jennifer I	lngs/Minno	w		##	### <u>##</u> #	######		<u> </u>							
TOC/Part size, 1	PAHs										_	ŚlΩ	100	h ,		MY	-11		
								Г		-			-17- U					200	
								 									11	ゟ %ヿ	NV
SERVICE REQUEST (rush - su	hiect to availability)	*	-		ej jag s	i aj		Ц.		71	in in	10	11 .	¥. 3		- <u>-</u>	11:	<u> </u>	<u>U</u> "
	Regular (c			Sampler's Nam		T	1	len	nifer In	as .		Mol	bile#	<u> </u>		19-500-3	444		-
Priority (2-	3 business days) - 50% sur	rcharge X	L		n.	<u> </u>						1,4201	———	ļ <u>.</u>					
Emergency (1	Business Day) - 100% sur	rcharge		Sampler's Signat	TIPE		Jon	<i>A</i> :	0.0° -			Date	/Time		Sent	ember 1	5, 2022		
The state of the s	SAP or Weekend - Conta	ot ATC	1	Sumber a pignar			0	9						l	Seμ		.,		

, ž

						•	•							
	or ™ vi		-	1			أسيكني				·	·		
			-1 **K	'૧ વર્ધો		•		,		1	إنت عمر			
September 16, 2022	Septemb	Time	Date/Time	<u>.</u>		A DE	0	2	re	Sampler's Signature		urcharge act ALS	Emergency (1 Business Day) - 100% surcharge ncy <1 Day, ASAP or Weekend - Contact ALS	For Emergency <1 Day, AS
519-500-3444	519-5	ile#	Mobile#		ngs	onnifer Ings	Ji.			Sampler's Name	,	(default) archarge X	Regular (default) Priority (2-3 business days) - 50% surcharge	Priority (2-3
										***			subject to availability)	'SERVICE REQUEST (rush - subject to availability)
				. J									, PAHs	¿TOC/Part size, PAHs
DATE/TIME	ACCETTED DI/ACTILIATION	OT/APFI	VELED I	AUCI	######################################	######################################	#	W	gs/Minno	Jennifer Ings/Minnow		ler: metals,	ize in the following ord	samples with only a jar, please prioritize in the following ord
		1	1	_	-	-	2	G	9:12	2022/09/16		SE	RG_LE1	RG_LE1_SE-3_2022-09-14_N
:		-	1		-	1	2	ရ	9:58	2022/09/16		SE	RG_LE1	RG_LE1_SE-2_2022-09-14_N
		-	1	1	-	-	12	ဂ	10:48	2022/09/16		SE	RG_LE1	18 RG_LE1_SE-1_2022-09-14_N
		-	1	1	-	1	_	G	16:48	2022/09/15		SE	RG_AGCK	RG_AGCK_SE-1_2022-09-14_N
		-	_	_	_	_	1	ଦ	9:50	2022/09/15		SE	RG_MI25	RG_MI25_SE-3_2022-09-14_N
		-	1	1	-	**	12	୍ଦ 	10:50	2022/09/15		SE	RG_MI25	RG_MI25_SE-2_2022-09-14_N
		_	1	1	-	_	2	ရ	11:25	2022/09/15		SE	RG_MI25	RG_MI25_SE-1_2022-09-14_N
		_	-	1	-	_	2	ବ	13:02	2022/09/14		SE	RG_RIVER	RG_RIVER_SE-5_2022-09-14_N
		-	1	1	_	_	2	ရ	13:02	2022/09/14		SE	RG_CORCK	RG_CORCK_SE-5_2022-09-14_N
		_		1	-	_	22	G	13:45	2022/09/14		SE	RG_CORCK	RG_CORCK_SE-4_2022-09-14_N
		PAH-TMB-D/A-MS-CL- PAHs	PSA-PIPET-DETAIL- SK Particle Size	MOISTURE-CL - % Moisture	MET-CCME+FULL-CL	C-TOC-SK	C # O O ANALYSIS	G=Grab C=Com	Time (24hr)	Date	Hazardous Material (Yes/	Field Matrix	Sample Location (sys loc code)	Sample ID
		NONE	NONE	NONE	E NONE	PRESERV. NON E	PRESERV.*				No)			
		z	z	z	z	Filt.	For .							
Filtered - F: Field, L: Lab, FU: Field & Lab, N: None	Filtered	ם	UESTE	ANALYSIS REQUESTED	ANA			180 A	1	**		ETAILS	SAMPLE DETAILS	SA SA
×	Hannah.Pennen@Teck.com X	O number	PO number	Canada	Country Canada	794	03 407 1	Phone Number 403 407 1794	Phone	Country Canada	Country		250 865 2046 VOB 2G0	Postal Code VUB 2GU
X		Email 5:	Lima	AΒ	Provinc AB		algary	City Calgary		BC	Provinc BC		City Sparwood	
X		11.4:	Email 4:											
	Teck Lab Results@teck.com X	Email 3:	Ema	,		treet NE	559 29 8	Address 2559 29 Street NE					Address 421 Pine Avenue	Address 4
×	AgusSciLab@Teck.com X	Email 1:	Emg		A Shvets	1 Shvets	Lyudmyla Shvets	Lab Contact L	Lat				Cybele Heddle	Project Manager Cybele Heddle
PDF	Report Format / Distribution Ex	ort Forn	Reg			ary	LS Cale	Lab Name ALS Calgary	Ļ			ā	Facility Name / Job# Regional Effects Program	Facility Name / Job# R
INFO	OTHER INFO	1000		j	LABORATORY	LABOI		1		*		FO	PROJECT/CLIENT INFO	
riorty	RUSH, Priorty	ss Dave	-3 Busine	2		D TIME:		TURNAROUN		LAEMP CMm 2022-09 ALS	MP C		COC ID: REP)

• Teck

· leck	COC ID:	REP LAE	MP C	'Mm 2022-09	ALS	TURNA	AROU	ND T	IME:						RUSI	l: Priort	 V		
**	»PROJECT/CLIF	ENT INFO		CMm_2022-09						TORY	5-9- F	2-3 Busin	ess Days			ER INFO			
Facility Name / Job#	Regional Effects F	11111111111				Lab Name	ALSC	algary	SOUNA	TONI		D.				Excel	PDF	EDD	1
Project Manager		TOBIAM				b Contact							ail I:	mat / Distrib			V.	v	
	Cybele Heddle@teck.co			~	1					Global.com			ail 2:		b@Teck.com	X	 X	- 	+
	421 Pine Avenue	AU				Address				Sicbal CVII	-				uisonline.com		+	X	+-
Audiess	TEI FINE AVENUE						2339 2	Stre	et NE				nail 3:		ults@teck.com	n X	_X	<u> X</u>	+-
0.1	C1		Provinc	Jpc -	 	City	Cul						ail 4:		@minnow.ca	_X	X	X	
	Sparwood	<u></u> -		Canada	 		Calgar			Province			ail 5:		so.worn m@tro	X	X	X	—
Postal Code			Country	усалада		stal Code				Country	Canada	 -	ail 6:	Hannah Pen	ner@Teck.com	X	X	X	<u> </u>
Phone Number						e Number	403 40	7 1794					umber	<u> </u>		0816101			丄
100	SAM	PLE DETAILS		87 3				٠	7	1 ANA	LYSIS RE	QUEST	ED	٠ هـ. ٠	- Legar 18	iltered - F: Fi	eld, L. Lab,	FL: Field & I	Lab, N
								Ē	N	N	N	N	N						1
													_	-		+		-	1
. ,							ĺ	PRESERV	NONE	NONE	NONE	NONE	NONE						
			(Yes/No)					PRE											
			ĕ							Ç	-		占						
			ਫ਼ਿ					*			%	5	<u> 3</u>]]					
			Hazardous Material					se on		MET-CCME+FULL	۲.	PSA-PIPET-DETAIL.	<u>F</u>						1
			₹					LYSE		- ₹-	ည	S C	\(\frac{1}{4} \)						
			Sm					ANALYSIS	Ä	Ξ	RE	PSA-PIPET-DE SK Particle Size	<u> </u>						
			l op			G=Grab			\cdot \]	- 23	TU	章 曹	₹						
	Sample Local	tion Field	Zar		Time	C=Com	#Of		C-TOC-SK)IS ist	Pa Pa	H H		l	İ			
Sample ID	(sys loc cod		Ha	Date	(24hr)	р	Cont.		ડ	MF	MOISTURE-CL - Moisture	S. Z	PAH-TMB-D/A-MS-CL PAHs	<u> </u>					
RG_MI5_SE-4_2022-09-14_N	RG_MI5	SE		2022/09/16	12:00	G	2		1	1	1	1	1						
RG_MI5_SE-5_2022-09-14_N	RG_MI5	SE		2022/09/16	12:15	G	2		1	1	1	1	1						
G_RIVER_SE-4_2022-09-14_N	RG_RIVE	R SE		2022/09/16	12:00	G	2		1	1	1	1	1						
																 -			
us y								*											
·.							,	3											
								1											
	-															 	<u> </u>	-	
												-				 		 	-
ADDITIONAL COMMENTS/SP	ECIAL INSTRUC	TIONS	1	RELINQUISHED	BY/AFFL	LIATION		D,	ATE/T	IME	ACCI	EPTED I	BY/AFF	LIATION	1 2 22 2 2 2	D.	L ATE/TH	ИE	
or samples with only a jar, please priori				Jennifer In			<u> </u>	-	######			<u> </u>		2011			1117		
TOC/Part size		,						-											<u> </u>
															_				<u>. </u>
																			
SERVICE REQUEST (rush -	subject to availabil	lity)	,				# .	70,90	#.# F F	<u>۔</u>			 -	7	 				
A TOTAL MENTERS (1 main -		egular (default)				<u> </u>												<u></u>	
Priority (2-	business days) -	50% surcharge X	1	Sampler's Name					fer Ing	ţs.		Mob	ile#`		51	9-500-34	144		
Emergency (1	Business Day) - 1	00% surcharge		Sampler's Signatur			doni	1 A	- ON			D					2022	,	
For Emergency <1 Day, A			⊣ :	Nampiar's Vianatu.	**		_ Marin	mr.				Date/Time September 16		2077					

. #

ALS Canada Ltd.

CERTIFICATE OF ANALYSIS

Work Order : CG2214921 Page : 1 of 10

Client : Teck Coal Limited Laboratory : Calgary - Environmental **Account Manager** Contact : Cvbele Heddle : Lyudmyla Shvets Address : 421 Pine Ave

Sparwood BC Canada

Telephone

Project : Regional Effects Program

PO : VPO00816101

C-O-C number : REP_LAEMP_CMm_2022-09_ALS

Sampler : Emily Dutton

Site : ----

Quote number : Teck Coal Master Quote

No. of samples received : 6 No. of samples analysed : 6

Address : 2559 29th Street NE

Calgary AB Canada T1Y 7B5

Telephone : +1 403 407 1800 Date Samples Received : 26-Oct-2022 09:00

Date Analysis Commenced : 26-Oct-2022

Issue Date : 01-Nov-2022 12:02

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department	
Amber Sheikh	Laboratory Assistant	Organics, Calgary, Alberta	
Anthony Calero	Supervisor - Inorganic	Metals, Calgary, Alberta	
Hedy Lai	Team Leader - Inorganics	Inorganics, Saskatoon, Saskatchewan	
Hedy Lai	Team Leader - Inorganics	Sask Soils, Saskatoon, Saskatchewan	
Victoria Piguing	Laboratory Analyst	Organics, Calgary, Alberta	
Vishnu Patel		Inorganics, Calgary, Alberta	

Page 2 of 10 Work Order CG2214921

Client **Teck Coal Limited**

Project Regional Effects Program

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Please refer to Quality Control Interpretive report (QCI) for information regarding Holding Time compliance.

Key: CAS Number: Chemical Abstracts Services number is a unique identifier assigned to discrete substances LOR: Limit of Reporting (detection limit).

Unit	Description
-	No Unit
%	percent
mg/kg	milligrams per kilogram
pH units	pH units

<: less than.

>: greater than.

Surrogate: An analyte that is similar in behavior to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED on SRN or QCI Report, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Page : 3 of 10
Work Order : CG2214921
Client : Teck Coal Limited
Project : Regional Effects Program

Sub-Matrix: Sediment (Matrix: Soil/Solid)			Cl	ient sample ID	RG_MIUCO_SE- 1_2022-10-22_ N	RG_MIUCO_SE- 2_2022-10-22_ N	RG_MIUCO_SE- 3_2022-10-22_ N	RG_MIUCO_SE- 4_2022-10-22_ N	RG_RIVER_SE-1 _2022-10-22_N
			Client samp	ling date / time	22-Oct-2022 12:53	22-Oct-2022 12:59	22-Oct-2022 13:02	22-Oct-2022 13:13	22-Oct-2022 12:53
Analyte	CAS Number	Method	LOR	Unit	CG2214921-001	CG2214921-002	CG2214921-003	CG2214921-004	CG2214921-005
					Result	Result	Result	Result	Result
Physical Tests			0.05	0.4	20.0	44.0	45.0	07.0	00.4
moisture		E144	0.25	%	33.9	41.6	45.8	37.6	33.1
pH (1:2 soil:water)		E108	0.10	pH units	8.33	8.23	8.57	8.29	8.25
Particle Size									
grain size curve clay (<0.004mm)		E185A EC184A	- 1.0	- %	See Attached 5.9	See Attached 6.4	See Attached	See Attached 6.3	See Attached 5.6
silt (0.063mm - 0.0312mm)		EC184A	1.0	%	10.3	11.0	19.1	11.6	9.3
silt (0.0312mm - 0.004mm)		EC184A	1.0	%	11.2	14.6	22.1	12.3	10.4
sand (0.125mm - 0.063mm)		EC184A	1.0	%	16.2	10.6	20.5	20.0	15.8
sand (0.25mm - 0.125mm)		EC184A	1.0	%	20.7	14.8	13.6	24.6	22.3
sand (0.5mm - 0.25mm)		EC184A	1.0	%	14.1	15.6	6.6	14.9	15.0
sand (1.0mm - 0.50mm)		EC184A	1.0	%	10.9	16.4	3.3	6.8	11.7
sand (2.0mm - 1.0mm)		EC184A	1.0	%	7.7	8.4	3.2	2.8	7.6
gravel (>2mm)		EC184A	1.0	%	3.0	2.2	4.6	<1.0	2.3
Organic / Inorganic Carbon									
carbon, total [TC]		E351	0.050	%	2.65	6.74	3.40	2.35	2.47
carbon, inorganic [IC]		E354	0.050	%	0.405	0.357	0.904	0.334	0.416
carbon, inorganic [IC], (as CaCO3 equivalent)		E354	0.40	%	3.38	2.98	7.53	2.79	3.47
carbon, total organic [TOC]		EC356	0.050	%	2.24	6.38	2.50	2.02	2.05
Metals									
aluminum	7429-90-5	E440	50	mg/kg	12600	11700	9320	11800	12200
antimony	7440-36-0	E440	0.10	mg/kg	0.33	0.35	0.32	0.38	0.36
arsenic	7440-38-2	E440	0.10	mg/kg	8.01	6.41	6.51	8.04	7.73
barium	7440-39-3	E440	0.50	mg/kg	156	148	610	191	145
beryllium	7440-41-7	E440	0.10	mg/kg	0.87	0.84	0.66	0.81	0.84
bismuth	7440-69-9	E440	0.20	mg/kg	0.22	0.21	<0.20	<0.20	0.21
boron	7440-42-8	E440	5.0	mg/kg	10.1	8.7	9.2	9.0	9.4
cadmium	7440-43-9	E440	0.020	mg/kg	0.583	0.695	0.650	0.692	0.600

Page : 4 of 10
Work Order : CG2214921
Client : Teck Coal Limited
Project : Regional Effects Program

Analytical Nesults						•	•		
Sub-Matrix: Sediment			CI	lient sample ID	RG_MIUCO_SE-	RG_MIUCO_SE-	RG_MIUCO_SE-	RG_MIUCO_SE-	RG_RIVER_SE-1
(Matrix: Soil/Solid)					1_2022-10-22_	2_2022-10-22_	3_2022-10-22_	4_2022-10-22_	_2022-10-22_N
					N	N	N	N	
			Client same	oling date / time	22-Oct-2022	22-Oct-2022	22-Oct-2022	22-Oct-2022	22-Oct-2022
			onone oump	and a continue	12:53	12:59	13:02	13:13	12:53
Analyte	CAS Number	Method	LOR	Unit	CG2214921-001	CG2214921-002	CG2214921-003	CG2214921-004	CG2214921-005
					Result	Result	Result	Result	Result
Metals									
calcium	7440-70-2	E440	50	mg/kg	14800	13900	26500	13000	14200
chromium	7440-47-3	E440	0.50	mg/kg	14.7	14.1	11.7	14.7	14.7
cobalt	7440-48-4	E440	0.10	mg/kg	7.09	6.97	5.35	7.15	7.43
copper	7440-50-8	E440	0.50	mg/kg	16.8	18.0	14.4	17.4	17.5
iron	7439-89-6	E440	50	mg/kg	20200	17600	16900	19400	20600
lead	7439-92-1	E440	0.50	mg/kg	12.3	12.5	10.3	12.4	12.5
lithium	7439-93-2	E440	2.0	mg/kg	24.6	23.5	19.8	22.3	24.1
magnesium	7439-95-4	E440	20	mg/kg	6120	5490	6620	5580	6050
manganese	7439-96-5	E440	1.0	mg/kg	431	298	213	420	450
mercury	7439-97-6	E510	0.0050	mg/kg	0.0193	0.0275	0.0217	0.0215	0.0191
molybdenum	7439-98-7	E440	0.10	mg/kg	1.94	1.72	1.67	2.35	2.00
nickel	7440-02-0	E440	0.50	mg/kg	19.7	20.4	16.0	20.7	20.1
phosphorus	7723-14-0	E440	50	mg/kg	1260	1140	1080	1360	1260
potassium	7440-09-7	E440	100	mg/kg	2260	2030	1710	2130	2170
selenium	7782-49-2	E440	0.20	mg/kg	0.48	0.55	0.42	0.55	0.54
silver	7440-22-4	E440	0.10	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10
sodium	7440-23-5	E440	50	mg/kg	86	74	170	67	82
strontium	7440-24-6	E440	0.50	mg/kg	37.9	44.8	89.6	37.9	37.4
sulfur	7704-34-9	E440	1000	mg/kg	<1000	<1000	<1000	<1000	<1000
thallium	7440-28-0	E440	0.050	mg/kg	0.304	0.283	0.269	0.342	0.306
tin	7440-31-5	E440	2.0	mg/kg	<2.0	<2.0	<2.0	<2.0	<2.0
titanium	7440-32-6	E440	1.0	mg/kg	7.6	7.8	9.2	8.3	9.2
tungsten	7440-33-7	E440	0.50	mg/kg	<0.50	<0.50	<0.50	<0.50	<0.50
uranium	7440-61-1	E440	0.050	mg/kg	0.579	0.534	0.504	0.603	0.526
vanadium	7440-62-2	E440	0.20	mg/kg	24.7	22.4	19.8	24.4	23.6
zinc	7440-66-6	E440	2.0	mg/kg	88.4	92.3	77.9	91.9	89.4
zirconium	7440-67-7	E440	1.0	mg/kg	1.0	1.2	<1.0	1.2	<1.0
Polycyclic Aromatic Hydrocarbons									
acenaphthene	83-32-9	E641A	0.050	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.050
T. Control of the Con	1		•	•	ı	•	•	•	'

Page : 5 of 10
Work Order : CG2214921
Client : Teck Coal Limited
Project : Regional Effects Program

Sub-Matrix: Sediment			CI	ient sample ID	RG_MIUCO_SE-	RG_MIUCO_SE-	RG_MIUCO_SE-	RG_MIUCO_SE-	RG_RIVER_SE-1
(Matrix: Soil/Solid)				,	1_2022-10-22_	2_2022-10-22_	3 2022-10-22	4 2022-10-22	2022-10-22 N
(Wattist Compone)					_ N	_ N	_ N	_ N _	
			Oli sust a susua	University of the con-					
			Client samp	ling date / time	22-Oct-2022 12:53	22-Oct-2022 12:59	22-Oct-2022 13:02	22-Oct-2022 13:13	22-Oct-2022 12:53
Analyte	CAS Number	Method	LOR	Unit	CG2214921-001	CG2214921-002	CG2214921-003	CG2214921-004	CG2214921-005
Arranyte	CAS Number	Wichiod	LON	Onne	Result	Result	Result	Result	Result
Polycyclic Aromatic Hydrocarbons									
acenaphthylene	208-96-8	E641A	0.050	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.050
acridine	260-94-6	E641A	0.050	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.050
anthracene	120-12-7	E641A	0.050	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.050
benz(a)anthracene	56-55-3	E641A	0.050	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.050
benzo(a)pyrene	50-32-8	E641A	0.050	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.050
benzo(b+j)fluoranthene	n/a	E641A	0.050	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.050
benzo(b+j+k)fluoranthene	n/a	E641A	0.075	mg/kg	<0.075	<0.075	<0.075	<0.075	<0.075
benzo(g,h,i)perylene	191-24-2	E641A	0.050	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.050
benzo(k)fluoranthene	207-08-9	E641A	0.050	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.050
chrysene	218-01-9	E641A	0.050	mg/kg	<0.050	0.060	<0.050	<0.050	<0.050
dibenz(a,h)anthracene	53-70-3	E641A	0.050	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.050
fluoranthene	206-44-0	E641A	0.050	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.050
fluorene	86-73-7	E641A	0.050	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.050
indeno(1,2,3-c,d)pyrene	193-39-5	E641A	0.050	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.050
methylnaphthalene, 1-	90-12-0	E641A	0.030	mg/kg	<0.030	0.078	<0.030	<0.030	<0.030
methylnaphthalene, 1+2-		E641A	0.050	mg/kg	<0.050	0.181	<0.050	<0.050	<0.050
methylnaphthalene, 2-	91-57-6	E641A	0.030	mg/kg	< 0.030	0.103	<0.030	<0.030	<0.030
naphthalene	91-20-3	E641A	0.010	mg/kg	<0.010	0.029	<0.010	<0.010	<0.010
phenanthrene	85-01-8	E641A	0.050	mg/kg	<0.050	0.132	<0.050	<0.050	<0.050
pyrene	129-00-0	E641A	0.050	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.050
quinoline	91-22-5	E641A	0.050	mg/kg	<0.050	<0.050	<0.050	<0.050	<0.050
B(a)P total potency equivalents [B(a)P TPE]		E641A	0.065	mg/kg	<0.065	<0.065	<0.065	<0.065	<0.065
IACR (CCME)		E641A	0.60	-	<0.60	0.61	<0.60	<0.60	<0.60
IACR AB (coarse)		E641A	0.10	-	<0.10	<0.10	<0.10	<0.10	<0.10
IACR AB (fine)		E641A	0.10	-	<0.10	<0.10	<0.10	<0.10	<0.10
PAHs, total (BC Sched 3.4)	n/a	E641A	0.20	mg/kg	<0.20	0.32	<0.20	<0.20	<0.20
PAHs, total (EPA 16)	n/a	E641A	0.20	mg/kg	<0.20	0.22	<0.20	<0.20	<0.20
Polycyclic Aromatic Hydrocarbons Surrogates									
acridine-d9	34749-75-2	E641A	0.1	%	97.4	86.9	85.4	90.0	88.6

Page : 6 of 10
Work Order : CG2214921
Client : Teck Coal Limited
Project : Regional Effects Program

Analytical Results

Sub-Matrix: Sediment (Matrix: Soil/Solid)			Cli	ient sample ID	RG_MIUCO_SE- 1_2022-10-22_ N	RG_MIUCO_SE- 2_2022-10-22_ N	RG_MIUCO_SE- 3_2022-10-22_ N	RG_MIUCO_SE- 4_2022-10-22_ N	RG_RIVER_SE-1 _2022-10-22_N
			Client samp	ling date / time	22-Oct-2022 12:53	22-Oct-2022 12:59	22-Oct-2022 13:02	22-Oct-2022 13:13	22-Oct-2022 12:53
Analyte	CAS Number	Method	LOR	Unit	CG2214921-001	CG2214921-002	CG2214921-003	CG2214921-004	CG2214921-005
					Result	Result	Result	Result	Result
Polycyclic Aromatic Hydrocarbons Surrogates									
chrysene-d12	1719-03-5	E641A	0.1	%	99.4	90.4	92.7	93.3	95.2
naphthalene-d8	1146-65-2	E641A	0.1	%	102	94.3	95.1	96.5	99.4
phenanthrene-d10	1517-22-2	E641A	0.1	%	111	99.9	99.6	100	104

Please refer to the General Comments section for an explanation of any qualifiers detected.

Page : 7 of 10
Work Order : CG2214921
Client : Teck Coal Limited
Project : Regional Effects Program

Sub-Matrix: Sediment			C	lient sample ID	RG_RIVER_SE-2		 	
(Matrix: Soil/Solid)					_2022-10-22_N			
			Client samp	ling date / time	22-Oct-2022 12:59		 	
Analyte	CAS Number	Method	LOR	Unit	CG2214921-006		 	
					Result		 	
Physical Tests								
moisture		E144	0.25	%	42.1		 	
pH (1:2 soil:water)		E108	0.10	pH units	8.10		 	
Particle Size								
grain size curve		E185A	-	-	See Attached		 	
clay (<0.004mm)		EC184A	1.0	%	5.3		 	
silt (0.063mm - 0.0312mm)		EC184A	1.0	%	9.6		 	
silt (0.0312mm - 0.004mm)		EC184A	1.0	%	12.6		 	
sand (0.125mm - 0.063mm)		EC184A	1.0	%	10.0		 	
sand (0.25mm - 0.125mm)		EC184A	1.0	%	15.3		 	
sand (0.5mm - 0.25mm)		EC184A	1.0	%	17.4		 	
sand (1.0mm - 0.50mm)		EC184A	1.0	%	19.1		 	
sand (2.0mm - 1.0mm)		EC184A	1.0	%	8.9		 	
gravel (>2mm)		EC184A	1.0	%	1.8		 	
Organic / Inorganic Carbon								
carbon, total [TC]		E351	0.050	%	5.25		 	
carbon, inorganic [IC]		E354	0.050	%	0.385		 	
carbon, inorganic [IC], (as CaCO3 equivalent)		E354	0.40	%	3.21		 	
carbon, total organic [TOC]		EC356	0.050	%	4.86		 	
Metals								
aluminum	7429-90-5	E440	50	mg/kg	11400		 	
antimony	7440-36-0	E440	0.10	mg/kg	0.37		 	
arsenic	7440-38-2	E440	0.10	mg/kg	6.58		 	
barium	7440-39-3	E440	0.50	mg/kg	153		 	
beryllium	7440-41-7	E440	0.10	mg/kg	0.84		 	
bismuth	7440-69-9	E440	0.20	mg/kg	0.21		 	
boron	7440-42-8	E440	5.0	mg/kg	10.0		 	
cadmium	7440-43-9	E440	0.020	mg/kg	0.690		 	
calcium	7440-70-2	E440	50	mg/kg	12600		 	
chromium	7440-47-3	E440	0.50	mg/kg	13.9		 	
I control of the cont			I .	1	l	· · · · · · · · · · · · · · · · · · ·		Į.

Page : 8 of 10
Work Order : CG2214921
Client : Teck Coal Limited
Project : Regional Effects Program

Analytical Results						 		
Sub-Matrix: Sediment			CI	lient sample ID	RG_RIVER_SE-2	 		
(Matrix: Soil/Solid)					_2022-10-22_N			
				oling date / time	22-Oct-2022 12:59	 		
Analyte	CAS Number	Method	LOR	Unit	CG2214921-006	 		
					Result	 		
Metals								1
cobalt	7440-48-4	E440	0.10	mg/kg	7.19	 		
copper	7440-50-8	E440	0.50	mg/kg	17.0	 		
iron	7439-89-6	E440	50	mg/kg	17800	 		
lead	7439-92-1	E440	0.50	mg/kg	12.3	 		
lithium	7439-93-2	E440	2.0	mg/kg	22.2	 		
magnesium	7439-95-4	E440	20	mg/kg	5100	 		
manganese	7439-96-5	E440	1.0	mg/kg	298	 		
mercury	7439-97-6	E510	0.0050	mg/kg	0.0275	 		
molybdenum	7439-98-7	E440	0.10	mg/kg	1.51	 		
nickel	7440-02-0	E440	0.50	mg/kg	19.7	 		
phosphorus	7723-14-0	E440	50	mg/kg	1220	 		
potassium	7440-09-7	E440	100	mg/kg	2060	 		
selenium	7782-49-2	E440	0.20	mg/kg	0.63	 		
silver	7440-22-4	E440	0.10	mg/kg	<0.10	 		
sodium	7440-23-5	E440	50	mg/kg	74	 		
strontium	7440-24-6	E440	0.50	mg/kg	42.2	 		
sulfur	7704-34-9	E440	1000	mg/kg	<1000	 		
thallium	7440-28-0	E440	0.050	mg/kg	0.290	 		
tin	7440-31-5	E440	2.0	mg/kg	<2.0	 		
titanium	7440-32-6	E440	1.0	mg/kg	7.8	 		
tungsten	7440-33-7	E440	0.50	mg/kg	<0.50	 		
uranium	7440-61-1	E440	0.050	mg/kg	0.625	 		
vanadium	7440-62-2	E440	0.20	mg/kg	23.1	 		
zinc	7440-66-6	E440	2.0	mg/kg	88.8	 		
zirconium	7440-67-7	E440	1.0	mg/kg	1.3	 		
Polycyclic Aromatic Hydrocarbons								
acenaphthene	83-32-9	E641A	0.050	mg/kg	<0.050	 		
acenaphthylene	208-96-8	E641A	0.050	mg/kg	<0.050	 		
acridine	260-94-6	E641A	0.050	mg/kg	<0.050	 		
anthracene	120-12-7	E641A	0.050	mg/kg	<0.050	 		
	120-12-1		1	99			1 1	l l

Page : 9 of 10
Work Order : CG2214921
Client : Teck Coal Limited
Project : Regional Effects Program

Sub-Matrix: Sediment			CI	ient sample ID	RG_RIVER_SE-2	 		
(Matrix: Soil/Solid)					_2022-10-22_N			
			Client samp	ling date / time	22-Oct-2022 12:59	 		
Analyte	CAS Number	Method	LOR	Unit	CG2214921-006	 		
					Result	 		
Polycyclic Aromatic Hydrocarbons								
benz(a)anthracene	56-55-3	E641A	0.050	mg/kg	<0.050	 		
benzo(a)pyrene	50-32-8	E641A	0.050	mg/kg	<0.050	 		
benzo(b+j)fluoranthene	n/a	E641A	0.050	mg/kg	<0.050	 		
benzo(b+j+k)fluoranthene	n/a	E641A	0.075	mg/kg	<0.075	 		
benzo(g,h,i)perylene	191-24-2	E641A	0.050	mg/kg	<0.050	 		
benzo(k)fluoranthene	207-08-9	E641A	0.050	mg/kg	<0.050	 		
chrysene	218-01-9	E641A	0.050	mg/kg	<0.050	 		
dibenz(a,h)anthracene	53-70-3	E641A	0.050	mg/kg	<0.050	 		
fluoranthene	206-44-0	E641A	0.050	mg/kg	<0.050	 		
fluorene	86-73-7	E641A	0.050	mg/kg	<0.050	 		
indeno(1,2,3-c,d)pyrene	193-39-5	E641A	0.050	mg/kg	<0.050	 		
methylnaphthalene, 1-	90-12-0	E641A	0.030	mg/kg	0.070	 		
methylnaphthalene, 1+2-		E641A	0.050	mg/kg	0.163	 		
methylnaphthalene, 2-	91-57-6	E641A	0.030	mg/kg	0.093	 		
naphthalene	91-20-3	E641A	0.010	mg/kg	0.025	 		
phenanthrene	85-01-8	E641A	0.050	mg/kg	0.112	 		
pyrene	129-00-0	E641A	0.050	mg/kg	<0.050	 		
quinoline	91-22-5	E641A	0.050	mg/kg	<0.050	 		
B(a)P total potency equivalents [B(a)P TPE]		E641A	0.065	mg/kg	<0.065	 		
IACR (CCME)		E641A	0.60	-	<0.60	 		
IACR AB (coarse)		E641A	0.10	-	<0.10	 		
IACR AB (fine)		E641A	0.10	-	<0.10	 		
PAHs, total (BC Sched 3.4)	n/a	E641A	0.20	mg/kg	0.23	 		
PAHs, total (EPA 16)	n/a	E641A	0.20	mg/kg	<0.20	 		
Polycyclic Aromatic Hydrocarbons Surrogates								
acridine-d9	34749-75-2	E641A	0.1	%	80.9	 		
chrysene-d12	1719-03-5	E641A	0.1	%	89.0	 		
naphthalene-d8	1146-65-2	E641A	0.1	%	93.5	 		
phenanthrene-d10	1517-22-2	E641A	0.1	%	95.7	 		
I and the second	I .		1	1			I	I I

Page : 10 of 10 Work Order : CG2214921

Client : Teck Coal Limited

Project : Regional Effects Program

Please refer to the General Comments section for an explanation of any qualifiers detected.

QUALITY CONTROL INTERPRETIVE REPORT

Work Order : CG2214921 Page : 1 of 11

Client : Teck Coal Limited Laboratory : Calgary - Environmental
Contact : Cybele Heddle Account Manager : Lyudmyla Shyets

Contact : Cybele Heddle : Cybele Heddle : Lyudmyla Shvets
Address : 421 Pine Ave : Address : 2559 29th Street NE

Sparwood BC Canada Calgary, Alberta Canada T1Y 7B5

Telephone :+1 403 407 1800

 Project
 : Regional Effects Program
 Date Samples Received
 : 26-Oct-2022 09:00

 PO
 : VPO00816101
 Issue Date
 : 01-Noy-2022 12:02

C-O-C number :REP LAEMP CMm 2022-09 ALS

Sampler : Fmily Dutton

Sampler : Emily Dutton
Site : ----

Quote number : Teck Coal Master Quote

No. of samples received :6
No. of samples analysed :6

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers

Outliers : Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Matrix Spike outliers occur.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers: Analysis Holding Time Compliance (Breaches) ■ No Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples • No Quality Control Sample Frequency Outliers occur.

Page : 3 of 11 Work Order : CG2214921

Client : Teck Coal Limited
Project : Regional Effects Program

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and/or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Soil/Solid Evaluation: x = Holding time exceedance; √ = Within Holding Time

Matrix: Soli/Solid						diddion. • -	Holding time exce	cuarioc ,	- vvicinii	riolaling Till
Analyte Group	Method	Sampling Date	Ext	traction / Pr	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Metals : Mercury in Soil/Solid by CVAAS										
Glass soil jar/Teflon lined cap										
RG_MIUCO_SE-1_2022-10-22_N	E510	22-Oct-2022	27-Oct-2022				27-Oct-2022	28 days	5 days	✓
Metals : Mercury in Soil/Solid by CVAAS										
Glass soil jar/Teflon lined cap										
RG_MIUCO_SE-2_2022-10-22_N	E510	22-Oct-2022	27-Oct-2022				27-Oct-2022	28 days	5 days	✓
Metals : Mercury in Soil/Solid by CVAAS										
Glass soil jar/Teflon lined cap	5540	00.0.4.0000	07.0 1.0000				07.0 4.0000	00.1		,
RG_MIUCO_SE-3_2022-10-22_N	E510	22-Oct-2022	27-Oct-2022				27-Oct-2022	28 days	5 days	✓
Metals : Mercury in Soil/Solid by CVAAS				T	T			T		
Glass soil jar/Teflon lined cap RG MIUCO SE-4 2022-10-22 N	E510	22-Oct-2022	27-Oct-2022				27-Oct-2022	28 days	5 days	1
RG_WIOCO_3E-4_2022-10-22_N	L310	22-061-2022	21-001-2022				27-001-2022	20 days	Juays	•
Madala a Managara in Calif Califa has CMAAC										
Metals : Mercury in Soil/Solid by CVAAS Glass soil jar/Teflon lined cap										
RG RIVER SE-1 2022-10-22 N	E510	22-Oct-2022	27-Oct-2022				27-Oct-2022	28 days	5 davs	1
								,		
Metals : Mercury in Soil/Solid by CVAAS										
Glass soil jar/Teflon lined cap										
RG RIVER SE-2 2022-10-22 N	E510	22-Oct-2022	27-Oct-2022				27-Oct-2022	28 days	5 days	✓
									_	
Metals : Metals in Soil/Solid by CRC ICPMS								1		
Glass soil jar/Teflon lined cap										
RG_MIUCO_SE-1_2022-10-22_N	E440	22-Oct-2022	27-Oct-2022				27-Oct-2022	180	5 days	✓
								days		

 Page
 :
 4 of 11

 Work Order
 :
 CG2214921

 Client
 :
 Teck Coal Limited

Project : Regional Effects Program

Matrix: Soil/Solid Evaluation: **x** = Holding time exceedance; ✓ = Within Holding Time Extraction / Preparation Analyte Group Method Sampling Date Analysis Container / Client Sample ID(s) Preparation **Holding Times** Eval Analysis Date Holding Times Eval Rec Actual Rec Actual Date Metals: Metals in Soil/Solid by CRC ICPMS Glass soil jar/Teflon lined cap E440 22-Oct-2022 27-Oct-2022 27-Oct-2022 ✓ RG MIUCO SE-2 2022-10-22 N 5 days 180 days Metals: Metals in Soil/Solid by CRC ICPMS Glass soil jar/Teflon lined cap RG_MIUCO_SE-3_2022-10-22_N E440 22-Oct-2022 27-Oct-2022 27-Oct-2022 180 5 days ✓ days Metals : Metals in Soil/Solid by CRC ICPMS Glass soil jar/Teflon lined cap E440 22-Oct-2022 27-Oct-2022 27-Oct-2022 5 days ✓ RG MIUCO SE-4 2022-10-22 N 180 days Metals: Metals in Soil/Solid by CRC ICPMS Glass soil jar/Teflon lined cap E440 ✓ RG_RIVER_SE-1_2022-10-22_N 22-Oct-2022 27-Oct-2022 27-Oct-2022 180 5 days days Metals: Metals in Soil/Solid by CRC ICPMS Glass soil jar/Teflon lined cap E440 22-Oct-2022 27-Oct-2022 27-Oct-2022 ✓ RG_RIVER_SE-2_2022-10-22_N 5 days 180 days Organic / Inorganic Carbon: Total Carbon by Combustion LDPE bag 22-Oct-2022 ✓ RG MIUCO SE-1 2022-10-22 N E351 29-Oct-2022 29-Oct-2022 180 0 days ---days Organic / Inorganic Carbon: Total Carbon by Combustion LDPE bag RG MIUCO SE-2 2022-10-22 N E351 22-Oct-2022 29-Oct-2022 29-Oct-2022 ✓ 0 days 180 days Organic / Inorganic Carbon: Total Carbon by Combustion LDPE bag ✓ RG_MIUCO_SE-3_2022-10-22_N E351 22-Oct-2022 29-Oct-2022 29-Oct-2022 180 0 days days Organic / Inorganic Carbon: Total Carbon by Combustion LDPE bag E351 22-Oct-2022 29-Oct-2022 29-Oct-2022 ✓ RG_MIUCO_SE-4_2022-10-22_N 0 days 180 days

Page 5 of 11 Work Order: CG2214921 Client Teck Coal Limited Regional Effects Program

Project

Matrix: Soil/Solid Evaluation: x = Holding time exceedance · ✓ = Within Holding Time

Matrix: Soil/Solid					E۱	/aluation: ≭ =	Holding time excee	edance ; •	✓ = Within	Holding Tin
Analyte Group	Method	Sampling Date	Ext	raction / Pi	reparation			Analys	sis	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual		-	Rec	Actual	
Organic / Inorganic Carbon : Total Carbon by Combustion										
LDPE bag										
RG_RIVER_SE-1_2022-10-22_N	E351	22-Oct-2022	29-Oct-2022				29-Oct-2022	180	0 days	✓
								days		
Organic / Inorganic Carbon : Total Carbon by Combustion									· ·	
LDPE bag										
RG_RIVER_SE-2_2022-10-22_N	E351	22-Oct-2022	29-Oct-2022				29-Oct-2022	180	0 days	✓
								days		
Organic / Inorganic Carbon : Total Inorganic Carbon by Acetic Acid pH Standard	Curve									
LDPE bag										
RG_MIUCO_SE-1_2022-10-22_N	E354	22-Oct-2022					29-Oct-2022			
Organic / Inorganic Carbon : Total Inorganic Carbon by Acetic Acid pH Standard	Curve									
LDPE bag										
RG_MIUCO_SE-2_2022-10-22_N	E354	22-Oct-2022					29-Oct-2022			
Organic / Inorganic Carbon : Total Inorganic Carbon by Acetic Acid pH Standard	Curve			•					<u>'</u>	
LDPE bag										
RG_MIUCO_SE-3_2022-10-22_N	E354	22-Oct-2022					29-Oct-2022			
Organic / Inorganic Carbon : Total Inorganic Carbon by Acetic Acid pH Standard	Curve									
LDPE bag										
RG_MIUCO_SE-4_2022-10-22_N	E354	22-Oct-2022					29-Oct-2022			
Organic / Inorganic Carbon : Total Inorganic Carbon by Acetic Acid pH Standard	Curve									
LDPE bag										
RG_RIVER_SE-1_2022-10-22_N	E354	22-Oct-2022					29-Oct-2022			
Organic / Inorganic Carbon : Total Inorganic Carbon by Acetic Acid pH Standard	Curve									
LDPE bag	I	1								
RG_RIVER_SE-2_2022-10-22_N	E354	22-Oct-2022					29-Oct-2022			
Particle Size : Grain Size Report (Attachment) Pipet/Sieve Method										
LDPE bag	T									
RG_MIUCO_SE-1_2022-10-22_N	E185A	22-Oct-2022					01-Nov-2022	365		
								days		

 Page
 :
 6 of 11

 Work Order
 :
 CG2214921

 Client
 :
 Teck Coal Lin

Client : Teck Coal Limited
Project : Regional Effects Program

Matrix: Soil/Solid Evaluation: x = Holding time exceedance; ✓ = Within Holding Time Extraction / Preparation Analysis Analyte Group Method Sampling Date Container / Client Sample ID(s) Preparation **Holding Times** Eval Analysis Date Holding Times Eval Rec Actual Rec Actual Date Particle Size: Grain Size Report (Attachment) Pipet/Sieve Method LDPE bag E185A RG_MIUCO_SE-2_2022-10-22_N 22-Oct-2022 01-Nov-2022 365 days Particle Size: Grain Size Report (Attachment) Pipet/Sieve Method LDPE bag RG_MIUCO_SE-3_2022-10-22_N E185A 22-Oct-2022 01-Nov-2022 365 days Particle Size : Grain Size Report (Attachment) Pipet/Sieve Method LDPE bag E185A 22-Oct-2022 01-Nov-2022 RG MIUCO SE-4 2022-10-22 N 365 days Particle Size : Grain Size Report (Attachment) Pipet/Sieve Method LDPE bag E185A RG_RIVER_SE-1_2022-10-22_N 22-Oct-2022 01-Nov-2022 365 days Particle Size : Grain Size Report (Attachment) Pipet/Sieve Method LDPE bag E185A 22-Oct-2022 01-Nov-2022 RG_RIVER_SE-2_2022-10-22_N 365 days **Physical Tests: Moisture Content by Gravimetry** Glass soil jar/Teflon lined cap 22-Oct-2022 RG MIUCO SE-1 2022-10-22 N E144 26-Oct-2022 --------**Physical Tests: Moisture Content by Gravimetry** Glass soil jar/Teflon lined cap RG_MIUCO_SE-2_2022-10-22_N E144 22-Oct-2022 26-Oct-2022 **Physical Tests: Moisture Content by Gravimetry** Glass soil jar/Teflon lined cap RG_MIUCO_SE-3_2022-10-22_N E144 22-Oct-2022 26-Oct-2022 **Physical Tests: Moisture Content by Gravimetry** Glass soil jar/Teflon lined cap E144 22-Oct-2022 26-Oct-2022 RG_MIUCO_SE-4_2022-10-22_N

 Page
 :
 7 of 11

 Work Order
 :
 CG2214921

 Client
 :
 Teck Coal Li

Client : Teck Coal Limited
Project : Regional Effects Program

Matrix: Soil/Solid Evaluation: × = Holding time exceedance; ✓ = Within Holding Time

Matrix: Soil/Solid					E\	/aluation. ^ =	Holding time exce	edance, v	– vvitiiiii	Holding Till
Analyte Group	Method	Sampling Date	Ext	traction / Pr	eparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap										
RG_RIVER_SE-1_2022-10-22_N	E144	22-Oct-2022					26-Oct-2022			
Physical Tests : Moisture Content by Gravimetry										
Glass soil jar/Teflon lined cap										
RG RIVER SE-2 2022-10-22 N	E144	22-Oct-2022					26-Oct-2022			
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)										
Glass soil jar/Teflon lined cap										
RG_MIUCO_SE-1_2022-10-22_N	E108	22-Oct-2022	27-Oct-2022				27-Oct-2022	30 days	5 days	✓
									,	
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)										
Glass soil jar/Teflon lined cap										
RG MIUCO SE-2 2022-10-22 N	E108	22-Oct-2022	27-Oct-2022				27-Oct-2022	30 days	5 days	✓
110_III000_0L			2. 00. 2022				2. 03. 2022	oo aayo	o dayo	
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)										
Glass soil jar/Teflon lined cap							I			
RG_MIUCO_SE-3_2022-10-22_N	E108	22-Oct-2022	27-Oct-2022				27-Oct-2022	30 days	5 days	✓
110_IIII000_0L 0_2022 10 22_II	2.00		2. 00. 2022				2. 03. 2022	oo aayo	o dayo	
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)										
Glass soil jar/Teflon lined cap										
RG_MIUCO_SE-4_2022-10-22_N	E108	22-Oct-2022	27-Oct-2022				27-Oct-2022	30 days	5 days	✓
									,	
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)										
Glass soil jar/Teflon lined cap										
RG RIVER SE-1 2022-10-22 N	E108	22-Oct-2022	27-Oct-2022				27-Oct-2022	30 days	5 davs	1
									- ,	
Physical Tests : pH by Meter (1:2 Soil:Water Extraction)										
Glass soil jar/Teflon lined cap										
RG RIVER SE-2 2022-10-22 N	E108	22-Oct-2022	27-Oct-2022				27-Oct-2022	30 days	5 days	✓
	2.00						00. 2022		5 44,0	•
Polygyalia Aramatia Hydrocarbana i BAHa by Hayi Aga CC MS										
Polycyclic Aromatic Hydrocarbons : PAHs by Hex:Ace GC-MS Glass soil jar/Teflon lined cap										
RG MIUCO SE-1 2022-10-22 N	E641A	22-Oct-2022	26-Oct-2022	14	4 days	√	27-Oct-2022	40 days	1 days	1
1.0_INII.0.0.0_0L-1_2022-10-22_IV	2011/1		20-001-2022		raays	•	27-000-2022	.o days	, aays	•
				days						

Page : 8 of 11 Work Order : CG2214921

Client : Teck Coal Limited
Project : Regional Effects Program

Matrix: Soil/Solid Evaluation: × = Holding time exceedance; ✓ = Within Holding Time

									riolaling riii
Method	Sampling Date	Ext	traction / Pre	eparation		Analysis			
		Preparation	Holding Times Eval		Analysis Date	Holding Times		Eval	
		Date	Rec	Actual			Rec	Actual	
E641A	22-Oct-2022	26-Oct-2022	14	4 days	✓	27-Oct-2022	40 days	1 days	✓
			days						
E641A	22-Oct-2022	26-Oct-2022	14	4 days	✓	27-Oct-2022	40 days	1 days	✓
			days						
E641A	22-Oct-2022	26-Oct-2022	14	4 days	✓	27-Oct-2022	40 days	1 days	✓
			days						
E641A	22-Oct-2022	26-Oct-2022	14	4 days	✓	27-Oct-2022	40 days	1 days	✓
			days						
								1	
E641A	22-Oct-2022	26-Oct-2022	14	4 days	✓	27-Oct-2022	40 days	1 days	✓
			days	•				•	
	E641A E641A E641A	E641A 22-Oct-2022 E641A 22-Oct-2022 E641A 22-Oct-2022	E641A 22-Oct-2022 26-Oct-2022 E641A 22-Oct-2022 26-Oct-2022 E641A 22-Oct-2022 26-Oct-2022 E641A 22-Oct-2022 26-Oct-2022	Preparation Date Holding Rec	Method Sampling Date Extraction / Preparation Holding Times Preparation Date Rec Actual E641A 22-Oct-2022 26-Oct-2022 14 days days E641A 22-Oct-2022 26-Oct-2022 14 days days E641A 22-Oct-2022 26-Oct-2022 14 days days E641A 22-Oct-2022 26-Oct-2022 14 days days	Method Sampling Date Extraction / Preparation Holding Times Eval Rec Actual Eval E641A 22-Oct-2022 26-Oct-2022 14 days 4 days ✓ E641A 22-Oct-2022 26-Oct-2022 14 days 4 days ✓ E641A 22-Oct-2022 26-Oct-2022 14 days ✓ 4 days ✓ E641A 22-Oct-2022 26-Oct-2022 14 days ✓ ✓ E641A 22-Oct-2022 26-Oct-2022 14 days ✓ ✓	Method Sampling Date Extraction / Preparation Preparation Holding Times Rec Eval Analysis Date E641A 22-Oct-2022 26-Oct-2022 14 days 4 days ✓ 27-Oct-2022 E641A 22-Oct-2022 26-Oct-2022 14 days 4 days ✓ 27-Oct-2022 E641A 22-Oct-2022 26-Oct-2022 14 days 4 days ✓ 27-Oct-2022 E641A 22-Oct-2022 26-Oct-2022 14 days 4 days ✓ 27-Oct-2022 E641A 22-Oct-2022 26-Oct-2022 14 days 4 days ✓ 27-Oct-2022 E641A 22-Oct-2022 26-Oct-2022 14 days 4 days ✓ 27-Oct-2022	Method Sampling Date Extraction / Preparation Date Extraction / Preparation Rec Eval Analysis Date Analysis Date Holding Rec E641A 22-Oct-2022 26-Oct-2022 14 days 4 days ✓ 27-Oct-2022 40 days E641A 22-Oct-2022 26-Oct-2022 14 days ✓ 27-Oct-2022 40 days E641A 22-Oct-2022 26-Oct-2022 14 days ✓ 27-Oct-2022 40 days E641A 22-Oct-2022 26-Oct-2022 14 days ✓ 27-Oct-2022 40 days E641A 22-Oct-2022 26-Oct-2022 14 days ✓ 27-Oct-2022 40 days E641A 22-Oct-2022 26-Oct-2022 14 days ✓ 27-Oct-2022 40 days	Method Sampling Date Extraction / Preparation Preparation Eval Analysis Date Analysis Date Holding Times Rec Actual Eval Analysis Date Holding Times Rec Actual E641A 22-Oct-2022 26-Oct-2022 14 days 4 days ✓ 27-Oct-2022 40 days 1 days E641A 22-Oct-2022 26-Oct-2022 14 days 4 days ✓ 27-Oct-2022 40 days 1 days E641A 22-Oct-2022 26-Oct-2022 14 days 4 days ✓ 27-Oct-2022 40 days 1 days E641A 22-Oct-2022 26-Oct-2022 14 days 4 days ✓ 27-Oct-2022 40 days 1 days E641A 22-Oct-2022 26-Oct-2022 14 days ✓ 27-Oct-2022 40 days 1 days

Legend & Qualifier Definitions

Rec. HT: ALS recommended hold time (see units).

Page : 9 of 11 Work Order : CG2214921

Client : Teck Coal Limited
Project : Regional Effects Program

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Soil/Solid Evaluation: **x** = QC frequency outside specification; ✓ = QC frequency within specification. Quality Control Sample Type Count Frequency (%) Method QC Lot # QC Regular Expected Evaluation Analytical Methods Actual Laboratory Duplicates (DUP) Mercury in Soil/Solid by CVAAS 717131 5.8 5.0 E510 Metals in Soil/Solid by CRC ICPMS 717130 17 5.8 5.0 E440 Moisture Content by Gravimetry 715751 15 6.6 5.0 1 E144 ✓ PAHs by Hex:Ace GC-MS 715750 1 11 9.0 5.0 E641A pH by Meter (1:2 Soil:Water Extraction) 717915 7 14.2 5.0 E108 Total Carbon by Combustion 721442 2 30 6.6 5.0 1 E351 Total Inorganic Carbon by Acetic Acid pH Standard Curve 721422 1 19 5.2 5.0 E354 1 Laboratory Control Samples (LCS) Mercury in Soil/Solid by CVAAS 717131 E510 2 17 11.7 10.0 Metals in Soil/Solid by CRC ICPMS 17 11.7 10.0 717130 E440 Moisture Content by Gravimetry 715751 15 6.6 5.0 1 E144 1 PAHs by Hex:Ace GC-MS 715750 11 9.0 5.0 1 E641A pH by Meter (1:2 Soil:Water Extraction) 717915 2 28.5 10.0 E108 ✓ Total Carbon by Combustion 721442 4 30 13.3 10.0 E351 1 Total Inorganic Carbon by Acetic Acid pH Standard Curve 721422 2 19 10.5 10.0 E354 1 Method Blanks (MB) Mercury in Soil/Solid by CVAAS 717131 1 17 5.8 5.0 E510 Metals in Soil/Solid by CRC ICPMS 17 5.8 5.0 717130 E440 15 5.0 Moisture Content by Gravimetry 715751 1 1 E144 PAHs by Hex:Ace GC-MS 715750 1 11 9.0 5.0 E641A Total Carbon by Combustion 721442 2 30 6.6 5.0 E351 1 Total Inorganic Carbon by Acetic Acid pH Standard Curve 721422 19 5.2 5.0 E354 Matrix Spikes (MS) PAHs by Hex:Ace GC-MS 715750 E641A 1 11 9.0 5.0

 Page
 :
 10 of 11

 Work Order
 :
 CG2214921

 Client
 :
 Teck Coal Li

Client : Teck Coal Limited
Project : Regional Effects Program

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
pH by Meter (1:2 Soil:Water Extraction)	E108 Calgary - Environmental	Soil/Solid	BC Lab Manual	pH is determined by potentiometric measurement with a pH electrode at ambient laboratory temperature (normally $20\pm5^{\circ}\text{C}$), and is carried out in accordance with procedures described in the BC Lab Manual (prescriptive method). The procedure involves mixing the dried (at <60 °C) and sieved (10mesh/2mm) sample with ultra pure
				water at a 1:2 ratio of sediment to water. The pH is then measured by a standard pH probe.
Moisture Content by Gravimetry	E144	Soil/Solid	CCME PHC in Soil - Tier	Moisture is measured gravimetrically by drying the sample at 105°C. Moisture content is calculated as the weight loss (due to water) divided by the wet weight of the sample.
	Calgary - Environmental		I	expressed as a percentage.
Grain Size Report (Attachment) Pipet/Sieve Method	E185A	Soil/Solid	SSIR-51 Method 3.2.1	A grain size curve is a graphical representation of the particle sizing of a sample representing the percent passing against the effective particle size.
	Saskatoon -			
	Environmental			
Total Carbon by Combustion	E351	Soil/Solid	CSSS (2008) 21.2 (mod)	Total Carbon is determined by the high temperature combustion method with measurement by an infrared detector.
	Saskatoon -			
	Environmental			
Total Inorganic Carbon by Acetic Acid pH	E354	Soil/Solid	CSSS (2008) 20.2	Total Inorganic Carbon is determined by acetic acid pH standard curve, where a known
Standard Curve				quantity of acetic acid is consumed by reaction with carbonates in the soil. The pH of
	Saskatoon -			the resulting solution is measured and compared against a standard curve relating pH to
	Environmental			weight of carbonate.
Metals in Soil/Solid by CRC ICPMS	E440 Calgary - Environmental	Soil/Solid	EPA 6020B (mod)	This method is intended to liberate metals that may be environmentally available. Samples are dried, then sieved through a 2 mm sieve, and digested with HNO3 and HCl.
				Dependent on sample matrix, some metals may be only partially recovered, including Al,
				Ba, Be, Cr, Sr, Ti, Ti, V, W, and Zr. Silicate minerals are not solubilized. Volatile forms
				of sulfur (including sulfide) may not be captured, as they may be lost during sampling,
				storage, or digestion. This method does not adequately recover elemental sulfur, and is
				unsuitable for assessment of elemental sulfur standards or guidelines.
				Analysis is by Collision/Reaction Cell ICPMS.
Mercury in Soil/Solid by CVAAS	E510	Soil/Solid	EPA 200.2/1631	Samples are dried, then sieved through a 2 mm sieve, and digested with HNO3 and HCl,
	Calgary - Environmental		Appendix (mod)	followed by CVAAS analysis.
PAHs by Hex:Ace GC-MS	E641A	Soil/Solid	EPA 8270E (mod)	Polycyclic Aromatic Hydrocarbons (PAHs) are extracted with hexane/acetone and analyzed by GC-MS. If reported, IACR (index of additive cancer risk, unitless) and
	Calgary - Environmental			B(a)P toxic potency equivalent (in soil concentration units) are calculated as per CCME PAH Soil Quality Guidelines fact sheet (2010) or ABT1.

Page : 11 of 11 Work Order : CG2214921

Client : Teck Coal Limited

Project : Regional Effects Program

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Particle Size Analysis (Pipette) - Wentworth	EC184A	Soil/Solid	Modified Wentworth	The particle size determination is performed by various methods to generate a Grain
Classification				Size curve. The data from the curve is then used to produce particle size ranges based
	Saskatoon -			on the Modified Wentworth Classification system.
	Environmental			
Total Organic Carbon (Calculated) in soil	EC356	Soil/Solid	CSSS (2008) 21.2	Total Organic Carbon (TOC) is calculated by the difference between total carbon (TC) and total inorganic carbon (TIC).
	Saskatoon -			
	Environmental			
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Leach 1:2 Soil:Water for pH/EC	EP108	Soil/Solid	BC WLAP METHOD:	The procedure involves mixing the dried (at <60°C) and sieved (No. 10 / 2mm) sample
			PH, ELECTROMETRIC,	with deionized/distilled water at a 1:2 ratio of sediment to water.
	Calgary - Environmental		SOIL	
Digestion for Metals and Mercury	EP440	Soil/Solid	EPA 200.2 (mod)	Samples are dried, then sieved through a 2 mm sieve, and digested with HNO3 and HCl.
				This method is intended to liberate metals that may be environmentally available.
	Calgary - Environmental			· · ·
PHCs and PAHs Hexane-Acetone Tumbler	EP601	Soil/Solid	CCME PHC in Soil - Tier	Samples are subsampled and Petroleum Hydrocarbons (PHC) and PAHs are extracted
Extraction			1 (mod)	with 1:1 hexane:acetone using a rotary extractor.
	Calgary - Environmental		, ,	
Dry and Grind in Soil/Solid <60°C	EPP442	Soil/Solid	Soil Sampling and	After removal of any coarse fragments and reservation of wet subsamples a portion of
			Methods of Analysis,	homogenized sample is set in a tray and dried at less than 60°C until dry. The sample is
	Calgary - Environmental		Carter 2008	then particle size reduced with an automated crusher or mortar and pestle, typically to
				<2 mm. Further size reduction may be needed for particular tests.

ALS Canada Ltd.

QUALITY CONTROL REPORT

Work Order : CG2214921 Page : 1 of 14

 Client
 : Teck Coal Limited
 Laboratory
 : Calgary - Environmental

 Contact
 : Cybele Heddle
 Account Manager
 : Lyudmyla Shvets

:421 Pine Ave Address :2559 29th Street NE

Sparwood BC Canada Calgary, Alberta Canada T1Y 7B5
Telephone :+1 403 407 1800

 Telephone
 : +1 403 407 1800

 Project
 : Regional Effects Program
 Date Samples Received
 : 26-Oct-2022 09:00

PO : VPO00816101 Date Analysis Commenced : 26-Oct-2022

Sampler : Emily Dutton ____

Site :----

Quote number : Teck Coal Master Quote

No. of samples received : 6
No. of samples analysed : 6

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives

- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Reference Material (RM) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

Address

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department	
Amber Sheikh	Laboratory Assistant	Calgary Organics, Calgary, Alberta	
Anthony Calero	Supervisor - Inorganic	Calgary Metals, Calgary, Alberta	
Hedy Lai	Team Leader - Inorganics	Saskatoon Inorganics, Saskatoon, Saskatchewan	
Hedy Lai	Team Leader - Inorganics	Saskatoon Sask Soils, Saskatoon, Saskatchewan	
Victoria Piguing	Laboratory Analyst	Calgary Organics, Calgary, Alberta	
Vishnu Patel		Calgary Inorganics, Calgary, Alberta	

 Page
 2 of 14

 Work Order
 CG2214921

 Client
 Teck Coal Limited

 Project
 Regional Effects Program

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key:

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

 Page
 :
 3 of 14

 Work Order
 :
 CG2214921

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Soil/Solid				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Physical Tests (QC	Lot: 715751)										
CG2214912-001	Anonymous	moisture		E144	0.25	%	46.4	44.5	4.11%	20%	
Physical Tests (QC	Lot: 717915)										
CG2214915-005	Anonymous	pH (1:2 soil:water)		E108	0.10	pH units	8.26	8.30	0.483%	5%	
Organic / Inorganic	Carbon (QC Lot: 718009	9)									
CG2214906-003	Anonymous	carbon, total [TC]		E351	0.050	%	13.5	13.5	0.402%	20%	
Organic / Inorganic	Carbon (QC Lot: 72142	2)									
CG2214915-003	Anonymous	carbon, inorganic [IC]		E354	0.050	%	2.08	2.16	3.60%	20%	
Organic / Inorganic	Carbon (QC Lot: 721442	2)									
VA22C5796-001	Anonymous	carbon, total [TC]		E351	0.050	%	8.64	8.90	2.88%	20%	
Metals (QC Lot: 717	7130)										
CG2214325-006 Anonymous	Anonymous	aluminum	7429-90-5	E440	50	mg/kg	4250	4170	1.82%	40%	
		antimony	7440-36-0	E440	0.10	mg/kg	1.10	1.01	8.20%	30%	
	arsenic	7440-38-2	E440	0.10	mg/kg	4.28	3.88	9.93%	30%		
	barium	7440-39-3	E440	0.50	mg/kg	336	366	8.34%	40%		
	beryllium	7440-41-7	E440	0.10	mg/kg	0.66	0.66	0.006	Diff <2x LOR		
	bismuth	7440-69-9	E440	0.20	mg/kg	<0.20	<0.20	0	Diff <2x LOR		
		boron	7440-42-8	E440	5.0	mg/kg	6.4	5.8	0.6	Diff <2x LOR	
cadmium calcium chromium cobalt copper iron lead lithium magnesium manganese molybdenum nickel phosphorus	cadmium	7440-43-9	E440	0.020	mg/kg	1.27	1.36	6.72%	30%		
	calcium	7440-70-2	E440	50	mg/kg	38000	31400	19.2%	30%		
	chromium	7440-47-3	E440	0.50	mg/kg	11.8	10.8	9.19%	30%		
	cobalt	7440-48-4	E440	0.10	mg/kg	4.87	4.91	0.866%	30%		
	copper	7440-50-8	E440	0.50	mg/kg	25.8	25.0	3.11%	30%		
	iron	7439-89-6	E440	50	mg/kg	13700	10200	29.8%	30%		
	lead	7439-92-1	E440	0.50	mg/kg	9.52	9.86	3.51%	40%		
	lithium	7439-93-2	E440	2.0	mg/kg	7.1	6.2	0.9	Diff <2x LOR		
	magnesium	7439-95-4	E440	20	mg/kg	7530	7020	7.06%	30%		
	manganese	7439-96-5	E440	1.0	mg/kg	222	167	28.0%	30%		
	molybdenum	7439-98-7	E440	0.10	mg/kg	32.6	32.7	0.412%	40%		
		nickel	7440-02-0	E440	0.50	mg/kg	20.2	20.1	0.922%	30%	
		phosphorus	7723-14-0	E440	50	mg/kg	1110	1160	4.31%	30%	

 Page
 :
 4 of 14

 Work Order
 :
 CG2214921

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

Sub-Matrix: Soil/Solid	ub-Matrix: Soil/Solid				Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Metals (QC Lot: 717	7130) - continued										
CG2214325-006	Anonymous	potassium	7440-09-7	E440	100	mg/kg	1440	1390	3.02%	40%	
		selenium	7782-49-2	E440	0.20	mg/kg	1.90	1.82	4.35%	30%	
		silver	7440-22-4	E440	0.10	mg/kg	0.27	0.29	0.02	Diff <2x LOR	
		sodium	7440-23-5	E440	50	mg/kg	90	82	9	Diff <2x LOR	
		strontium	7440-24-6	E440	0.50	mg/kg	107	107	0.0326%	40%	
		sulfur	7704-34-9	E440	1000	mg/kg	1100	1000	60	Diff <2x LOR	
		thallium	7440-28-0	E440	0.050	mg/kg	0.126	0.120	0.006	Diff <2x LOR	
		tin	7440-31-5	E440	2.0	mg/kg	<2.0	<2.0	0	Diff <2x LOR	
		titanium	7440-32-6	E440	1.0	mg/kg	7.3	7.1	3.08%	40%	
		tungsten	7440-33-7	E440	0.50	mg/kg	<0.50	<0.50	0	Diff <2x LOR	
		uranium	7440-61-1	E440	0.050	mg/kg	1.23	1.26	2.37%	30%	
		vanadium	7440-62-2	E440	0.20	mg/kg	26.5	25.2	5.03%	30%	
		zinc	7440-66-6	E440	2.0	mg/kg	105	108	2.33%	30%	
		zirconium	7440-67-7	E440	1.0	mg/kg	2.3	2.4	0.1	Diff <2x LOR	
Metals (QC Lot: 717	7131)										
CG2214325-006	Anonymous	mercury	7439-97-6	E510	0.0050	mg/kg	0.0482	0.0425	12.7%	40%	
Polycyclic Aromatic	Hydrocarbons (QC Lot	715750)									
CG2214915-001	Anonymous	acenaphthene	83-32-9	E641A	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		acenaphthylene	208-96-8	E641A	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		acridine	260-94-6	E641A	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		anthracene	120-12-7	E641A	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		benz(a)anthracene	56-55-3	E641A	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		benzo(a)pyrene	50-32-8	E641A	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		benzo(b+j)fluoranthene	n/a	E641A	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		benzo(g,h,i)perylene	191-24-2	E641A	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		benzo(k)fluoranthene	207-08-9	E641A	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		chrysene	218-01-9	E641A	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		dibenz(a,h)anthracene	53-70-3	E641A	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		fluoranthene	206-44-0	E641A	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		fluorene	86-73-7	E641A	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		indeno(1,2,3-c,d)pyrene	193-39-5	E641A	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		methylnaphthalene, 1-	90-12-0	E641A	0.030	mg/kg	0.106	0.109	0.003	Diff <2x LOR	
		methylnaphthalene, 2-	91-57-6	E641A	0.030	mg/kg	0.158	0.162	2.63%	50%	
		naphthalene	91-20-3	E641A	0.030	mg/kg	0.051	0.054	5.29%	50%	
		парпинанене	31-20-0	LOTIA	0.010	mg/kg	0.001	0.004	5.2370	5070	

 Page
 :
 5 of 14

 Work Order
 :
 CG2214921

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

Sub-Matrix: Soil/Solid	ub-Matrix: Soil/Solid						Laboratory Duplicate (DUP) Report				
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Polycyclic Aromatic	Hydrocarbons (QC Lot:										
CG2214915-001	Anonymous	phenanthrene	85-01-8	E641A	0.050	mg/kg	0.124	0.120	0.004	Diff <2x LOR	
		pyrene	129-00-0	E641A	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	
		quinoline	91-22-5	E641A	0.050	mg/kg	<0.050	<0.050	0	Diff <2x LOR	

 Page
 :
 6 of 14

 Work Order
 :
 CG2214921

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Soil/Solid

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 715751)						
moisture		E144	0.25	%	<0.25	
rganic / Inorganic Carbon (QCI						
carbon, total [TC]		E351	0.05	%	<0.050	
rganic / Inorganic Carbon (QCI						
carbon, inorganic [IC]		E354	0.05	%	<0.050	
rganic / Inorganic Carbon (QCI						
carbon, total [TC]		E351	0.05	%	<0.050	
letals (QCLot: 717130)						
aluminum	7429-90-5	E440	50	mg/kg	<50	
antimony	7440-36-0	E440	0.1	mg/kg	<0.10	
arsenic	7440-38-2	E440	0.1	mg/kg	<0.10	
barium	7440-39-3	E440	0.5	mg/kg	<0.50	
beryllium	7440-41-7	E440	0.1	mg/kg	<0.10	
bismuth	7440-69-9	E440	0.2	mg/kg	<0.20	
boron	7440-42-8	E440	5	mg/kg	<5.0	
cadmium	7440-43-9	E440	0.02	mg/kg	<0.020	
calcium	7440-70-2	E440	50	mg/kg	<50	
chromium	7440-47-3	E440	0.5	mg/kg	<0.50	
cobalt	7440-48-4	E440	0.1	mg/kg	<0.10	
copper	7440-50-8	E440	0.5	mg/kg	<0.50	
iron	7439-89-6	E440	50	mg/kg	<50	
lead	7439-92-1	E440	0.5	mg/kg	<0.50	
lithium	7439-93-2	E440	2	mg/kg	<2.0	
magnesium	7439-95-4	E440	20	mg/kg	<20	
manganese	7439-96-5	E440	1	mg/kg	<1.0	
molybdenum	7439-98-7	E440	0.1	mg/kg	<0.10	
nickel	7440-02-0	E440	0.5	mg/kg	<0.50	
phosphorus	7723-14-0	E440	50	mg/kg	<50	
potassium	7440-09-7	E440	100	mg/kg	<100	
selenium	7782-49-2	E440	0.2	mg/kg	<0.20	
silver	7440-22-4	E440	0.1	mg/kg	<0.10	
sodium	7440-23-5	E440	50	mg/kg	<50	

 Page
 :
 7 of 14

 Work Order
 :
 CG2214921

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

Sub-Matrix: Soil/Solid

Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Metals (QCLot: 717130) - continue	ed					
strontium	7440-24-6	E440	0.5	mg/kg	<0.50	
sulfur	7704-34-9	E440	1000	mg/kg	<1000	
thallium	7440-28-0	E440	0.05	mg/kg	<0.050	
tin	7440-31-5	E440	2	mg/kg	<2.0	
titanium	7440-32-6	E440	1	mg/kg	<1.0	
tungsten	7440-33-7	E440	0.5	mg/kg	<0.50	
uranium	7440-61-1	E440	0.05	mg/kg	<0.050	
vanadium	7440-62-2	E440	0.2	mg/kg	<0.20	
zinc	7440-66-6	E440	2	mg/kg	<2.0	
zirconium	7440-67-7	E440	1	mg/kg	<1.0	
Metals (QCLot: 717131)						
mercury	7439-97-6	E510	0.005	mg/kg	<0.0050	
Polycyclic Aromatic Hydrocarbons	(QCLot: 715750)					
acenaphthene	83-32-9	E641A	0.05	mg/kg	<0.050	
acenaphthylene	208-96-8	E641A	0.05	mg/kg	<0.050	
acridine	260-94-6	E641A	0.05	mg/kg	<0.050	
anthracene	120-12-7	E641A	0.05	mg/kg	<0.050	
benz(a)anthracene	56-55-3	E641A	0.05	mg/kg	<0.050	
benzo(a)pyrene	50-32-8	E641A	0.05	mg/kg	<0.050	
benzo(b+j)fluoranthene	n/a	E641A	0.05	mg/kg	<0.050	
benzo(g,h,i)perylene	191-24-2	E641A	0.05	mg/kg	<0.050	
benzo(k)fluoranthene	207-08-9	E641A	0.05	mg/kg	<0.050	
chrysene	218-01-9	E641A	0.05	mg/kg	<0.050	
dibenz(a,h)anthracene	53-70-3	E641A	0.05	mg/kg	<0.050	
fluoranthene	206-44-0	E641A	0.05	mg/kg	<0.050	
fluorene	86-73-7	E641A	0.05	mg/kg	<0.050	
indeno(1,2,3-c,d)pyrene	193-39-5	E641A	0.05	mg/kg	<0.050	
methylnaphthalene, 1-	90-12-0		0.03	mg/kg	<0.030	
methylnaphthalene, 2-	91-57-6	E641A	0.03	mg/kg	<0.030	
naphthalene	91-20-3		0.01	mg/kg	<0.010	
phenanthrene	85-01-8		0.05	mg/kg	<0.050	
pyrene	129-00-0		0.05	mg/kg	<0.050	
quinoline	91-22-5		0.05	mg/kg	<0.050	

 Page
 :
 8 of 14

 Work Order
 :
 CG2214921

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

 Page
 :
 9 of 14

 Work Order
 :
 CG2214921

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Soil/Solid					Laboratory Control Sample (LCS) Report					
					Spike	Recovery (%)	Recovery	Limits (%)		
Analyte C	AS Number I	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier	
Physical Tests (QCLot: 715751)										
moisture	E	E144	0.25	%	50 %	101	90.0	110		
Physical Tests (QCLot: 717915)									•	
pH (1:2 soil:water)	E	E108		pH units	7 pH units	100	97.0	103		
Organic / Inorganic Carbon (QCLot: 718009)										
carbon, total [TC]	E	E351	0.05	%	48 %	101	90.0	110		
Organic / Inorganic Carbon (QCLot: 721422)										
carbon, inorganic [IC]	E	E354	0.05	%	0.5 %	94.3	90.0	110		
Organic / Inorganic Carbon (QCLot: 721442)										
carbon, total [TC]	E	E351	0.05	%	48 %	100.0	90.0	110		
Metals (QCLot: 717130)										
aluminum	7429-90-5 E		50	mg/kg	200 mg/kg	99.4	80.0	120		
antimony	7440-36-0 E		0.1	mg/kg	100 mg/kg	102	80.0	120		
arsenic	7440-38-2 E		0.1	mg/kg	100 mg/kg	99.6	80.0	120		
barium	7440-39-3 E	E440	0.5	mg/kg	25 mg/kg	102	80.0	120		
beryllium	7440-41-7 E		0.1	mg/kg	10 mg/kg	98.2	80.0	120		
bismuth	7440-69-9 E		0.2	mg/kg	100 mg/kg	97.6	80.0	120		
boron	7440-42-8 E	E440	5	mg/kg	100 mg/kg	101	80.0	120		
cadmium	7440-43-9 E		0.02	mg/kg	10 mg/kg	99.6	80.0	120		
calcium	7440-70-2 E		50	mg/kg	5000 mg/kg	98.3	80.0	120		
chromium	7440-47-3 E		0.5	mg/kg	25 mg/kg	94.8	80.0	120		
cobalt	7440-48-4 E		0.1	mg/kg	25 mg/kg	88.8	80.0	120		
copper	7440-50-8 E		0.5	mg/kg	25 mg/kg	95.8	80.0	120		
iron	7439-89-6 E		50	mg/kg	100 mg/kg	104	80.0	120		
lead	7439-92-1 E		0.5	mg/kg	50 mg/kg	99.3	80.0	120		
lithium	7439-93-2 E		2	mg/kg	25 mg/kg	106	80.0	120		
magnesium	7439-95-4 E		20	mg/kg	5000 mg/kg	100	80.0	120		
manganese	7439-96-5 E		1	mg/kg	25 mg/kg	95.4	80.0	120		
molybdenum	7439-98-7 E		0.1	mg/kg	25 mg/kg	98.2	80.0	120		
nickel	7440-02-0 E		0.5	mg/kg	50 mg/kg	85.4	80.0	120		
phosphorus	7723-14-0 E		50	mg/kg	1000 mg/kg	97.0	80.0	120		
potassium	7440-09-7 E	E440	100	mg/kg	5000 mg/kg	99.6	80.0	120		

 Page
 :
 10 of 14

 Work Order
 :
 CG2214921

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

Sub-Matrix: Soil/Solid		Laboratory Cor	ntrol Sample (LCS)	Report				
				Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number Meth	nod LOF	Unit	Concentration	LCS	Low	High	Qualifie
Metals (QCLot: 717130) - continue	d							
selenium	7782-49-2 E440	0.2	mg/kg	100 mg/kg	102	80.0	120	
silver	7440-22-4 E440	0.1	mg/kg	10 mg/kg	92.2	80.0	120	
sodium	7440-23-5 E440	50	mg/kg	5000 mg/kg	103	80.0	120	
strontium	7440-24-6 E440	0.5	mg/kg	25 mg/kg	97.6	80.0	120	
sulfur	7704-34-9 E440	1000	mg/kg	5000 mg/kg	92.0	80.0	120	
thallium	7440-28-0 E440	0.05	mg/kg	100 mg/kg	98.9	80.0	120	
tin	7440-31-5 E440	2	mg/kg	50 mg/kg	97.9	80.0	120	
titanium	7440-32-6 E440	1	mg/kg	25 mg/kg	82.6	80.0	120	
tungsten	7440-33-7 E440	0.5	mg/kg	10 mg/kg	96.6	80.0	120	
uranium	7440-61-1 E440	0.05	mg/kg	0.5 mg/kg	94.8	80.0	120	
vanadium	7440-62-2 E440	0.2	mg/kg	50 mg/kg	100	80.0	120	
zinc	7440-66-6 E440	2	mg/kg	50 mg/kg	95.4	80.0	120	
zirconium	7440-67-7 E440	1	mg/kg	10 mg/kg	100	80.0	120	
Metals (QCLot: 717131)								
mercury	7439-97-6 E510	0.00	mg/kg	0.1 mg/kg	108	80.0	120	
Polycyclic Aromatic Hydrocarbons	(QCLot: 715750)							
acenaphthene	83-32-9 E641	1A 0.05	mg/kg	0.5 mg/kg	94.6	60.0	130	
acenaphthylene	208-96-8 E641	1A 0.05	mg/kg	0.5 mg/kg	95.8	60.0	130	
acridine	260-94-6 E641	1A 0.05	mg/kg	0.5 mg/kg	91.3	60.0	130	
anthracene	120-12-7 E641	1A 0.05	mg/kg	0.5 mg/kg	104	60.0	130	
benz(a)anthracene	56-55-3 E641	1A 0.05	mg/kg	0.5 mg/kg	98.9	60.0	130	
benzo(a)pyrene	50-32-8 E641	1A 0.05	mg/kg	0.5 mg/kg	103	60.0	130	
benzo(b+j)fluoranthene	n/a E641	1A 0.05	mg/kg	0.5 mg/kg	112	60.0	130	
benzo(g,h,i)perylene	191-24-2 E641	1A 0.05	mg/kg	0.5 mg/kg	98.6	60.0	130	
benzo(k)fluoranthene	207-08-9 E641	1A 0.05	mg/kg	0.5 mg/kg	101	60.0	130	
chrysene	218-01-9 E641	1A 0.05	mg/kg	0.5 mg/kg	93.2	60.0	130	
dibenz(a,h)anthracene	53-70-3 E641	1A 0.05	mg/kg	0.5 mg/kg	90.4	60.0	130	
fluoranthene	206-44-0 E641	1A 0.05	mg/kg	0.5 mg/kg	96.3	60.0	130	
fluorene	86-73-7 E641	1A 0.05	mg/kg	0.5 mg/kg	98.2	60.0	130	
indeno(1,2,3-c,d)pyrene	193-39-5 E641	1A 0.05		0.5 mg/kg	104	60.0	130	
methylnaphthalene, 1-	90-12-0 E641	1A 0.03		0.5 mg/kg	93.2	60.0	130	
methylnaphthalene, 2-	91-57-6 E641	1A 0.03		0.5 mg/kg	99.3	60.0	130	
naphthalene	91-20-3 E641		mg/kg	0.5 mg/kg	99.8	50.0	130	
phenanthrene	85-01-8 E641			0.5 mg/kg	105	60.0	130	
	129-00-0 E641		1 3. 9	0.09,9				

 Page
 :
 11 of 14

 Work Order
 :
 CG2214921

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

Sub-Matrix: Soil/Solid	Laboratory Control Sample (LCS) Report								
					Spike	Recovery (%)	Recovery	Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Polycyclic Aromatic Hydrocarbons	Polycyclic Aromatic Hydrocarbons (QCLot: 715750) - continued								
quinoline	91-22-5	E641A	0.05	mg/kg	0.5 mg/kg	81.2	60.0	130	

 Page
 :
 12 of 14

 Work Order
 :
 CG2214921

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

Sub-Matrix: Soil/So	lid					Matrix Spike (MS) Report					
					Spi	ke	Recovery (%)	Recovery	Limits (%)		
Laboratory sample	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier	
olycyclic Arom	atic Hydrocarbons(QCLot: 715750)									
CG2214915-001	Anonymous	acenaphthene	83-32-9	E641A	0.386 mg/kg	0.5 mg/kg	102	50.0	140		
		acenaphthylene	208-96-8	E641A	0.391 mg/kg	0.5 mg/kg	103	50.0	140		
		acridine	260-94-6	E641A	0.336 mg/kg	0.5 mg/kg	88.8	50.0	140		
		anthracene	120-12-7	E641A	0.407 mg/kg	0.5 mg/kg	108	50.0	140		
		benz(a)anthracene	56-55-3	E641A	0.421 mg/kg	0.5 mg/kg	111	50.0	140		
		benzo(a)pyrene	50-32-8	E641A	0.417 mg/kg	0.5 mg/kg	110	50.0	140		
		benzo(b+j)fluoranthene	n/a	E641A	0.449 mg/kg	0.5 mg/kg	119	50.0	140		
		benzo(g,h,i)perylene	191-24-2	E641A	0.390 mg/kg	0.5 mg/kg	103	50.0	140		
		benzo(k)fluoranthene	207-08-9	E641A	0.409 mg/kg	0.5 mg/kg	108	50.0	140		
		chrysene	218-01-9	E641A	0.387 mg/kg	0.5 mg/kg	102	50.0	140		
		dibenz(a,h)anthracene	53-70-3	E641A	0.363 mg/kg	0.5 mg/kg	95.8	50.0	140		
		fluoranthene	206-44-0	E641A	0.394 mg/kg	0.5 mg/kg	104	50.0	140		
		fluorene	86-73-7	E641A	0.386 mg/kg	0.5 mg/kg	102	50.0	140		
		indeno(1,2,3-c,d)pyrene	193-39-5	E641A	0.425 mg/kg	0.5 mg/kg	112	50.0	140		
		methylnaphthalene, 1-	90-12-0	E641A	0.372 mg/kg	0.5 mg/kg	98.3	50.0	140		
		methylnaphthalene, 2-	91-57-6	E641A	0.396 mg/kg	0.5 mg/kg	105	50.0	140		
		naphthalene	91-20-3	E641A	0.411 mg/kg	0.5 mg/kg	108	50.0	140		
		phenanthrene	85-01-8	E641A	0.408 mg/kg	0.5 mg/kg	108	50.0	140		
		pyrene	129-00-0	E641A	0.408 mg/kg	0.5 mg/kg	108	50.0	140		
		quinoline	91-22-5	E641A	0.356 mg/kg	0.5 mg/kg	94.0	50.0	140		

 Page
 :
 13 of 14

 Work Order
 :
 CG2214921

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

Reference Material (RM) Report

A Reference Material (RM) is a homogenous material with known and well-established analyte concentrations. RMs are processed in an identical manner to test samples, and are used to monitor and control the accuracy and precision of a test method for a typical sample matrix. RM results are expressed as percent recovery of the target analyte concentration. RM targets may be certified target concentrations provided by the RM supplier, or may be ALS long-term mean values (for empirical test methods).

Sub-Matrix:			Reference Material (RM) Report						
					RM Target	Recovery (%)	Recovery L	imits (%)	
Laboratory sample ID	Reference Material ID	Analyte	CAS Number	Method	Concentration	RM	Low	High	Qualifier
Physical Tests (QCLot: 717915)								
	RM	pH (1:2 soil:water)		E108	8.06 pH units	99.1	96.0	104	
Organic / Inorga	nic Carbon (QCLot: 718	8009)							
	RM	carbon, total [TC]		E351	1.4 %	97.7	80.0	120	
Organic / Inorga	nic Carbon (QCLot: 721	422)							
	RM	carbon, inorganic [IC]		E354	0.383 %	106	80.0	120	
Organic / Inorga	nic Carbon (QCLot: 721	442)							
	RM	carbon, total [TC]		E351	1.4 %	98.3	80.0	120	
Metals (QCLot: 7	17130)								
	RM	aluminum	7429-90-5	E440	9817 mg/kg	96.2	70.0	130	
	RM	antimony	7440-36-0	E440	3.99 mg/kg	98.7	70.0	130	
	RM	arsenic	7440-38-2	E440	3.73 mg/kg	102	70.0	130	
	RM	barium	7440-39-3	E440	105 mg/kg	99.4	70.0	130	
	RM	beryllium	7440-41-7	E440	0.349 mg/kg	106	70.0	130	
	RM	boron	7440-42-8	E440	8.5 mg/kg	120	40.0	160	
	RM	cadmium	7440-43-9	E440	0.91 mg/kg	90.7	70.0	130	
	RM	calcium	7440-70-2	E440	31082 mg/kg	100	70.0	130	
	RM	chromium	7440-47-3	E440	101 mg/kg	91.8	70.0	130	
	RM	cobalt	7440-48-4	E440	6.9 mg/kg	88.6	70.0	130	
	RM	copper	7440-50-8	E440	123 mg/kg	94.9	70.0	130	
	RM	iron	7439-89-6	E440	23558 mg/kg	88.4	70.0	130	
	RM	lead	7439-92-1	E440	267 mg/kg	101	70.0	130	
	RM	lithium	7439-93-2	E440	9.5 mg/kg	118	70.0	130	
	RM	magnesium	7439-95-4	E440	5509 mg/kg	99.0	70.0	130	
	RM	manganese	7439-96-5	E440	269 mg/kg	91.8	70.0	130	
	RM	molybdenum	7439-98-7	E440	1.03 mg/kg	100	70.0	130	
	RM	nickel	7440-02-0	E440	26.7 mg/kg	88.3	70.0	130	
	RM	phosphorus	7723-14-0	E440	752 mg/kg	92.8	70.0	130	
	RM	potassium	7440-09-7	E440	1587 mg/kg	94.7	70.0	130	

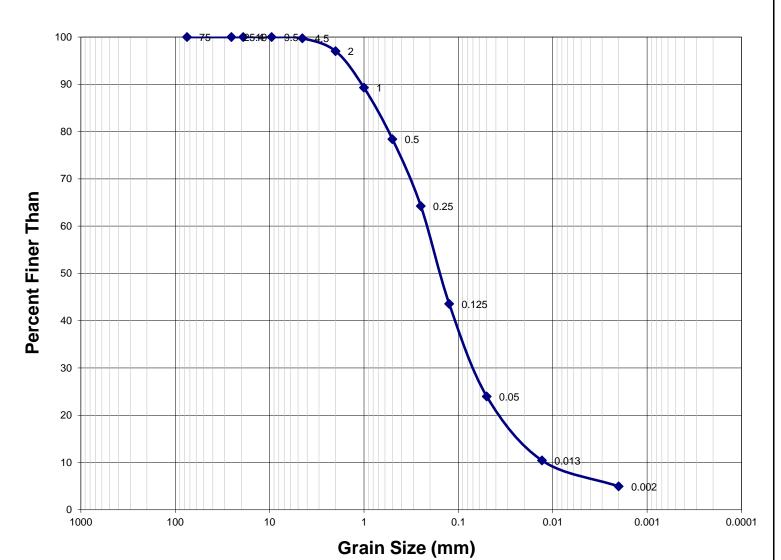
 Page
 :
 14 of 14

 Work Order
 :
 CG2214921

 Client
 :
 Teck Coal Limited

 Project
 :
 Regional Effects Program

ub-Matrix:					Reference Material (RM) Report				
					RM Target	Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Reference Material ID	Analyte	CAS Number	Method	Concentration	RM	Low	High	Qualifier
Metals (QCLot	: 717130) - continued								
	RM	silver	7440-22-4	E440	4.06 mg/kg	93.8	70.0	130	
	RM	sodium	7440-23-5	E440	797 mg/kg	98.4	70.0	130	
	RM	strontium	7440-24-6	E440	86.1 mg/kg	98.8	70.0	130	
	RM	thallium	7440-28-0	E440	0.0786 mg/kg	96.4	40.0	160	
	RM	tin	7440-31-5	E440	10.6 mg/kg	102	70.0	130	
	RM	titanium	7440-32-6	E440	839 mg/kg	76.8	70.0	130	
	RM	uranium	7440-61-1	E440	0.52 mg/kg	94.4	70.0	130	
	RM	vanadium	7440-62-2	E440	32.7 mg/kg	95.3	70.0	130	
	RM	zinc	7440-66-6	E440	297 mg/kg	95.7	70.0	130	
	RM	zirconium	7440-67-7	E440	5.73 mg/kg	94.4	70.0	130	
letals (QCLot	: 717131)						1		1
•	RM	mercury	7439-97-6	E510	0.062 mg/kg	104	70.0	130	


Client Name: TECK100

Project:

Sample ID: RG_MIUCO_SE-1_2022-10-22_N

Lab ID: CG2214921001

Particle Size Distribution Curve

Summary of Results

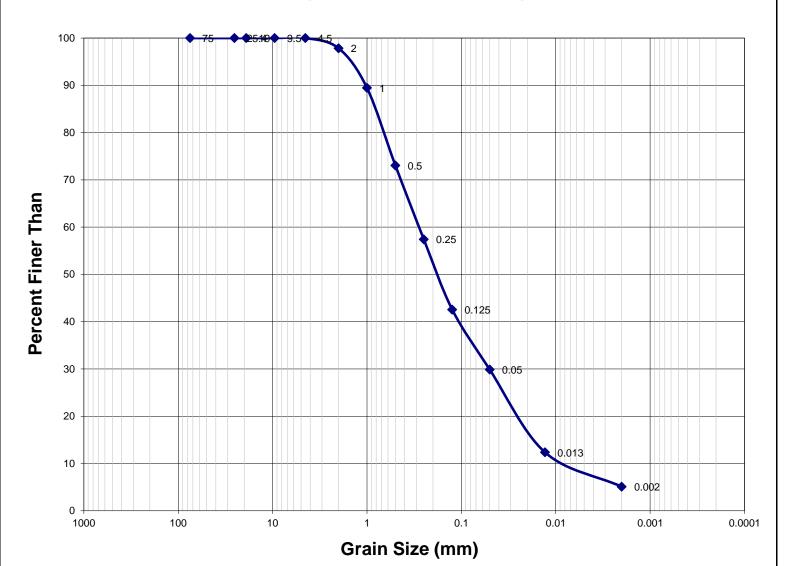
ι	Inified	Soil	Classi	fication	System	(USCS))

onnied don diassincation dystein (dddd)							
Size Class	Size Range	Wt. (%)					
Cobbles	> 3"	0					
Gravel	4.75mm - 3"	0					
Coarse Sand	2.0mm - 4.75mm	3					
Medium Sand	0.425mm - 2.0mm	19					
Fine Sand	0.075mm - 0.425mm	48					
Fines	< 0.075mm	31					

Canadian Soil Survey Committee (CSSC)

canadian con curvey committee (cocc)		
Size Class	Size Range	Wt. (%)
Cobbles	> 3"	0
Gravel	2mm - 3"	3
Sand	0.05mm - 2mm	73
Silt	0.002mm - 0.05mm	19
Clay	< 0.002mm	5

Texture Sample contains material greater than 4.75mm. T


Client Name: TECK100

Project:

Sample ID: RG_MIUCO_SE-2_2022-10-22_N

Lab ID: CG2214921002

Particle Size Distribution Curve

Summary of Results

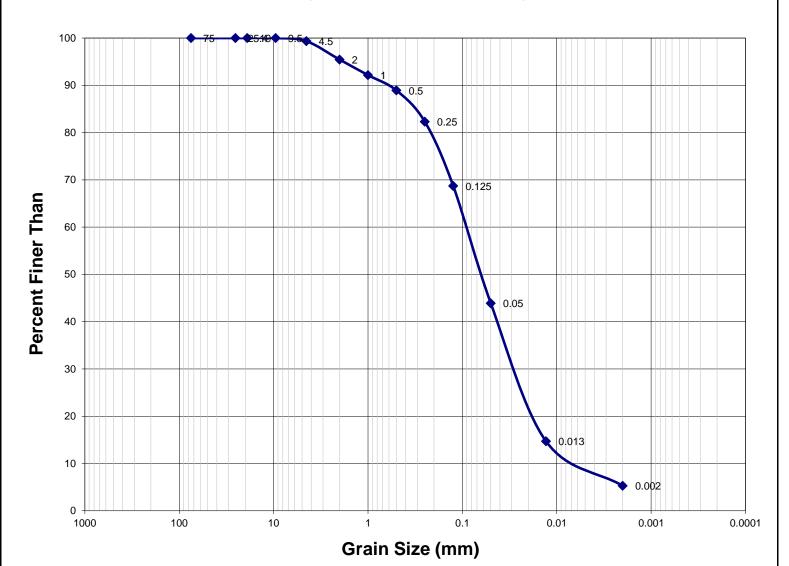
Unified Soil Classification System (USCS)

Size Class	Size Range	Wt. (%)
Cobbles	> 3"	0
Gravel	4.75mm - 3"	0
Coarse Sand	2.0mm - 4.75mm	2
Medium Sand	0 425mm - 2 0mm	25

Size Class	Size Range	Wt. (%)
Cobbles	> 3"	0
Gravel	4.75mm - 3"	0
Coarse Sand	2.0mm - 4.75mm	2
Medium Sand	0.425mm - 2.0mm	25
Fine Sand	0.075mm - 0.425mm	39
Fines	< 0.075mm	34

Canadian Soil Survey Committee (CSSC)		
Size Class	Size Range	Wt. (%)
Cobbles	> 3"	0
Gravel	2mm - 3"	2
Sand	0.05mm - 2mm	68
Silt	0.002mm - 0.05mm	25
Clay	< 0.002mm	5
Texture	Sandy loam	

Method Reference: Can. Soc. Soil Sci. (1993) Method 47.2


Client Name: TECK100

Project:

Sample ID: RG_MIUCO_SE-3_2022-10-22_N

Lab ID: CG2214921003

Particle Size Distribution Curve

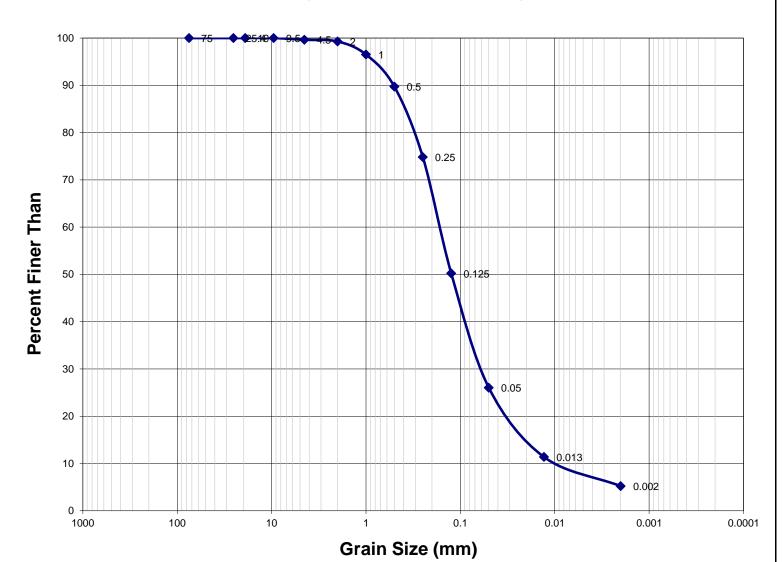
Summary of Results

onnied con olassinodion cystem (cocc)			
Size Class	Size Range	Wt. (%)	
Cobbles	> 3"	0	
Gravel	4.75mm - 3"	1	
Coarse Sand	2.0mm - 4.75mm	4	
Medium Sand	0.425mm - 2.0mm	7	
Fine Sand	0.075mm - 0.425mm	37	
Fines	< 0.075mm	52	

Canadian Soil Survey Committee (CSSC)

canadian con curvey committee (cocc)		
Size Class	Size Range	Wt. (%)
Cobbles	> 3"	0
Gravel	2mm - 3"	5
Sand	0.05mm - 2mm	52
Silt	0.002mm - 0.05mm	39
Clay	< 0.002mm	5

Texture Sample contains material greater than 4.75mm. T


Client Name: TECK100

Project:

Sample ID: RG_MIUCO_SE-4_2022-10-22_N

Lab ID: CG2214921004

Particle Size Distribution Curve

Summary of Results

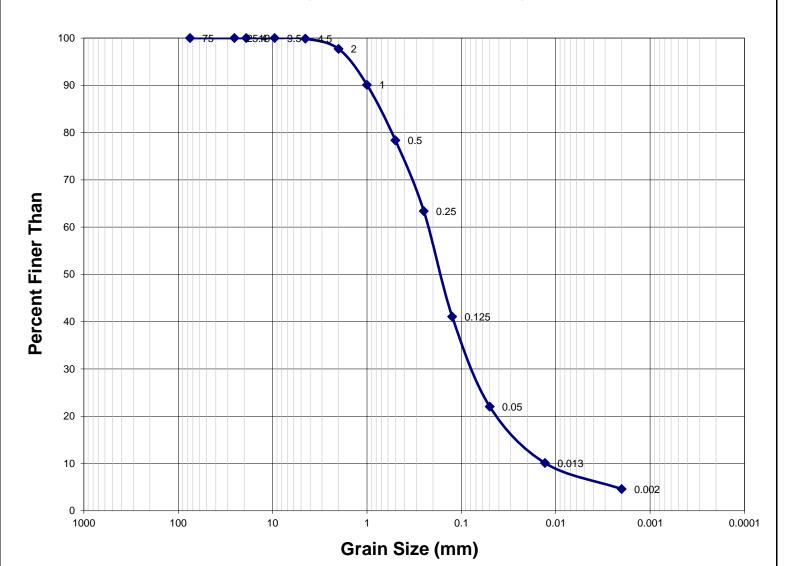
Unified Sail Classification System (USCS)

Unified Soil Classification System (USCS)			
Size Class	Size Range	Wt. (%)	
Cobbles	> 3"	0	
Gravel	4.75mm - 3"	0	
Coarse Sand	2.0mm - 4.75mm	0	
Medium Sand	0.425mm - 2.0mm	10	
Fine Sand	0.075mm - 0.425mm	56	
Fines	< 0.075mm	34	

Canadian Soil Survey Committee (CSSC)

Size Class	Size Range	Wt. (%)
Cobbles	> 3"	0
Gravel	2mm - 3"	1
Sand	0.05mm - 2mm	73
Silt	0.002mm - 0.05mm	21
Clay	< 0.002mm	5

Texture Sample contains material greater than 4.75mm. T


Client Name: TECK100

Project:

Sample ID: RG_RIVER_SE-1_2022-10-22_N

Lab ID: CG2214921005

Particle Size Distribution Curve

Summary of Results

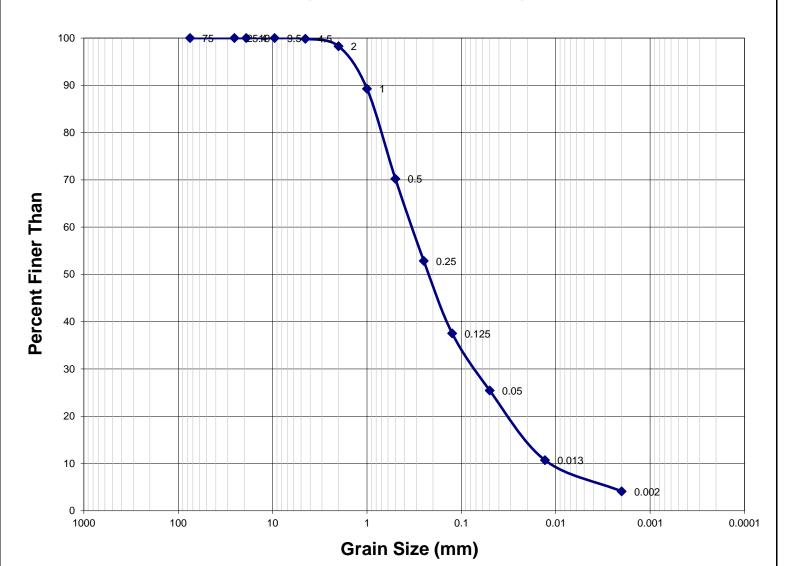
Unified Soil Classification System (USCS)				
Sizo Class	Size Pange	\A/+	10,	

onned don diassincation dystein (dddd)			
Size Class	Size Range	Wt. (%)	
Cobbles	> 3"	0	
Gravel	4.75mm - 3"	0	
Coarse Sand	2.0mm - 4.75mm	2	
Medium Sand	0.425mm - 2.0mm	19	
Fine Sand	0.075mm - 0.425mm	50	
Fines	< 0.075mm	28	

Canadian Soil Survey Committee (CSSC)

Size Class	Size Range	Wt. (%)
Cobbles	> 3"	0
Gravel	2mm - 3"	2
Sand	0.05mm - 2mm	76
Silt	0.002mm - 0.05mm	17
Clay	< 0.002mm	5

Texture Sample contains material greater than 4.75mm. T


Client Name: TECK100

Project:

Sample ID: RG_RIVER_SE-2_2022-10-22_N

Lab ID: CG2214921006

Particle Size Distribution Curve

Summary of Results

Unified Soil	Classification	System ((USCS)

onnied don diassincation dystem (dddd)										
Size Class	Size Range	Wt. (%)								
Cobbles	> 3"	0								
Gravel	4.75mm - 3"	0								
Coarse Sand	2.0mm - 4.75mm	2								
Medium Sand	0.425mm - 2.0mm	28								
Fine Sand	0.075mm - 0.425mm	41								
Fines	< 0.075mm	29								

Canadian Soil Survey Committee (CSSC)

Size Class	Size Range	Wt. (%)										
Cobbles	> 3"	0										
Gravel	2mm - 3"	2										
Sand	0.05mm - 2mm	73										
Silt	0.002mm - 0.05mm	21										
Clay	< 0.002mm	4										

Texture Sample contains material greater than 4.75mm. T

Teck REP LAEMP CMm 2022-09 ALS COC ID: TURNAROUND TIME: RUSH: Priorty PROJECT/CLIENT INFO LABORATORY OTHER INFO Lab Name ALS Calgary Facility Name / Job# Regional Effects Program Report Format / Distribution ---AguaSciLab@Teck.com Email Cybele Heddle@teck.com Email Lyudmyla.Shvets@ALSGlobal.com Email 2: teckcoaf@equisonline.com Address 421 Pine Avenue Address 2559 29 Street NF Email 3: eck.Lab.Results@teck.com Email 4 City Sparwood Provinc BC City Calgary Email 5: Province AB Tyler, Mehler@minnow, ca Postal Code V0B 2G0 Country Canada Postal Code T1Y 7B5 Country Canada Email 6: Hannah Penner@Teck.com Phone Number 1-250-865-3048 Phone Number 403 407 1794 PO number VPO00816101 SAMPLE DETAILS ANALYSIS REQUESTED Filtered - F: Field, L: Lab, FL: Field & Lab, N: None NONE NONE NONE NONE NONE Hazardous Material (Yes/No) PSA-PIPET-DETAIL-SK Particle Size MET-CCME+FULL-CL MOISTURE-CL -Moisture **Environmental Division** Calgary
Work Order Reference
CG2214921 C-TOC-SK G=Grab Field C=Com Sample Location Time # Of Sample ID (sys loc code) Matrix Date (24hr) Cont RG MIUCO SE-1 2022-10-22 N RG MIUCO 10/22/2022 SE no 12:53 1 1 1 RG_MIUCO_SE-2_2022-10-22_N RG MIUCO SE 10/22/2022 12:59 3 1 1 1 กก 34 SE 10/22/2022 RG_MIUCO_SE-3_2022-10-22_N RG_MIUCO nα 13:02 3 1 1 1 1 RG_MIUCO 10/22/2022 3 RG MIUCO_SE-4_2022-10-22_N SE 13:13 \mathbf{G} 1 1 1 no 1 10/22/2022 RG RIVER SE-1 2022-10-22 N RG_RIVER SE 12:53 \mathbf{G} 3 1 1 1 no 10/22/2022 RG RIVER SE-2 2022-10-22 N RG_RIVER SE G 12:59 3 1 1 1 ทก RELINQUISHED BY/AFFILIATION DATE/TIME ACCEPTED BY/AFFILIATION ADDITIONAL COMMENTS/SPECIAL INSTRUCTIONS DATE/TIME Alex McClymont October 25, 2022 SERVICE REQUEST (rush - subject to availability) Regular (default) Sampler's Name **Emily Dutton** Mobile # 647-704-3697 Priority (2-3 business days) - 50% surcharge X Emergency (1 Business Day) - 100% surcharge Sampler's Signature Date/Time October 22, 2022 For Emergency <1 Day, ASAP or Weekend - Contact ALS

(0)

Methods and QC Report 2023

Project ID: CMM LAEMP (22-11)

Client: Minnow Environmental

P: 250.494.7553

F: 250.494.7562

Prepared by:

Cordillera Consulting Inc. Summerland, BC © 2023

Table of Contents

Sample Reception	3
Sample Sorting	4
Sorting Quality Control - Sorting Efficiency	5
Sorting Quality Control - Sub-Sampling QC	6
Taxonomic Effort	9
Taxonomists	9
Taxonomic QC	10
Error Summary	11
Error Rationale	11
References	15
Taxonomic Kevs	15

Sample Reception

On September 30, 2022, Cordillera Consulting received 29 benthic samples from Minnow Environmental. When samples arrived to Cordillera Consulting, exterior packaging was initially inspected for damage or wet spots that would have indicated damage to the interior containers.

Samples were logged into a proprietary software database (INSTAR1) where the clients assigned sample name was recorded along with a Cordillera Consulting (CC) number for cross-reference. Each sample was checked to ensure that all sites and replicates recorded on field sheets or packing lists were delivered intact and with adequate preservative. Any missing, mislabelled or extra samples were reported to the client immediately to confirm the total numbers and correct names on the sample jars. The client representative was notified of the arrival of the shipment and provided a sample inventory once intake was completed.

See table below for sample inventory:

Table 1: Summary of sample information including Cordillera Consulting (CC) number

Sample	CC#	Date	Size	# of Jars
RG_AGCK_BIC-1_2022-09-15_N	CC230922	9/15/2022	400µM	1
RG_AGCK_BIC-2_2022-09-15_N	CC230923	9/15/2022	400µM	1
RG_AGCK_BIC-3_2022-09-15_N	CC230924	9/15/2022	400µM	1
RG_CORCK_BIC-1_2022-09-14_N	CC230925	9/14/2022	400µM	1
RG_CORCK_BIC-2_2022-09-14_N	CC230926	9/14/2022	400µM	2
RG_CORCK_BIC-2_2022-09-14_N	CC230927	9/14/2022	400µM	1
RG_MI25_BIC-1_2022-09-15_N	CC230928	9/15/2022	400µM	1
RG_MI25_BIC-2_2022-09-15_N	CC230929	9/15/2022	400µM	1
RG_MI25_BIC-3_2022-09-15_N	CC230930	9/15/2022	400µM	1
RG_MI5_BIC-1_2022-09-12_N	CC230931	9/12/2022	400µM	1
RG_MI5_BIC-2_2022-09-12_N	CC230932	9/12/2022	400µM	1
RG_MI5_BIC-3_2022-09-12_N	CC230933	9/12/2022	400µM	1
RG_MIDAG_BIC-1_2022-09-13_N	CC230934	9/13/2022	400µM	1
RG_MIDAG_BIC-2_2022-09-13_N	CC230935	9/13/2022	400µM	1
RG_MIDAG_BIC-3_2022-09-13_N	CC230936	9/13/2022	400µM	1
RG_MIDCO_BIC-1_2022-09-13_N	CC230937	9/13/2022	400µM	1
RG_MIDCO_BIC-2_2022-09-13_N	CC230938	9/13/2022	400µM	1
RG_MIDCO_BIC-3_2022-09-13_N	CC230939	9/13/2022	400µM	1
RG_MIDCO_BIC-4_2022-09-13_N	CC230940	9/13/2022	400µM	1
RG_MIDCO_BIC-5_2022-09-13_N	CC230941	9/13/2022	400µM	1
RG_MIUCO_BIC-1_2022-09-14_N	CC230942	9/14/2022	400µM	1
RG_MIUCO_BIC-2_2022-09-14_N	CC230943	9/14/2022	400µM	1
RG_MIUCO_BIC-3_2022-09-14_N	CC230944	9/14/2022	400µM	1
RG_MIULE_BIC-1_2022-09-12_N	CC230945	9/12/2022	400µM	1
RG_MIULE_BIC-2_2022-09-12_N	CC230946	9/12/2022	400µM	1
RG_MIULE_BIC-3_2022-09-12_N	CC230947	9/12/2022	400µM	1
RG_LE1_BIC-1_2022-09-16_N	CC230948	9/16/2022	400µM	1

RG_LE1_BIC-2_2022-09-16_N	CC230949	9/16/2022	400µM	1
RG_LE1_BIC-3_2022-09-16_N	CC230950	9/16/2022	400µM	1

Sample Sorting

- Using a gridded Petri dish, fine forceps and a low power stereo-microscope (Olympus, Nikon, Leica) the sorting technicians removed the invertebrates and sorted them into family/orders.
- The sorting technician kept a running tally of total numbers excluding organisms from Porifera, Nemata, Platyhelminthes, Ostracoda, Copepoda, Cladocera and terrestrial drop-ins such as aphids. These organisms were marked for their presence (given a value of 1) only and left in the sample. They were not included towards the 300-organism subsample count.
- Where specimens are broken or damaged, only heads were counted.
- Subsampling was conducted with the use of a Marchant Box.
- When using the Marchant box, cells were extracted at the same time in the order indicated by a random number table. If the 300th organism was found part way into sorting a cell then the balance of that cell was sorted. If the organism count had not reached 300 by the 50th cell then the entire sample was sorted.
- The total number of cells sorted and the number of organisms removed were recorded manually on a bench sheet and then recorded into INSTAR1
- Organisms were stored in vials containing 80% ethanol and an interior label indicating the site names, date of sampling, site code numbers and portion subsampled. This information was also recorded on the laboratory bench sheet and on INSTAR1.
- The sorted portion of the debris was preserved and labeled separately from the unsorted portion and was tested for sorting efficiency (Sorting Quality Control – Sorting Efficiency). The unsorted portion was also labeled and preserved in separate jars.

Percent sub-sampled and total countable invertebrates pulled from the samples were summarized in the table below.

Table 2: Percent sub-sample and invertebrate count for each sample

Sample	Date	CC#	400 micron fraction	
			% Sampled	# Invertebrates
RG_AGCK_BIC-1_2022-09-15_N	15-Sep-22	CC230922	5%	810
RG_AGCK_BIC-2_2022-09-15_N	15-Sep-22	CC230923	5%	802
RG_AGCK_BIC-3_2022-09-15_N	15-Sep-22	CC230924	5%	764
RG_CORCK_BIC-1_2022-09-14_N	14-Sep-22	CC230925	20%	361
RG_CORCK_BIC-2_2022-09-14_N	14-Sep-22	CC230926	6%	369
RG_CORCK_BIC-2_2022-09-14_N	14-Sep-22	CC230927	5%	359

RG_MI25_BIC-1_2022-09-15_N	15-Sep-22	CC230928	5%	363
RG_MI25_BIC-2_2022-09-15_N	15-Sep-22	CC230929	5%	335
RG_MI25_BIC-3_2022-09-15_N	15-Sep-22	CC230930	5%	628
RG_MI5_BIC-1_2022-09-12_N	12-Sep-22	CC230931	5%	359
RG_MI5_BIC-2_2022-09-12_N	12-Sep-22	CC230932	5%	331
RG_MI5_BIC-3_2022-09-12_N	12-Sep-22	CC230933	5%	327
RG_MIDAG_BIC-1_2022-09-13_N	13-Sep-22	CC230934	5%	491
RG_MIDAG_BIC-2_2022-09-13_N	13-Sep-22	CC230935	5%	410
RG_MIDAG_BIC-3_2022-09-13_N	13-Sep-22	CC230936	5%	489
RG_MIDCO_BIC-1_2022-09-13_N	13-Sep-22	CC230937	5%	498
RG_MIDCO_BIC-2_2022-09-13_N	13-Sep-22	CC230938	5%	409
RG_MIDCO_BIC-3_2022-09-13_N	13-Sep-22	CC230939	5%	576
RG_MIDCO_BIC-4_2022-09-13_N	13-Sep-22	CC230940	5%	381
RG_MIDCO_BIC-5_2022-09-13_N	13-Sep-22	CC230941	5%	450
RG_MIUCO_BIC-1_2022-09-14_N	14-Sep-22	CC230942	12%	368
RG_MIUCO_BIC-2_2022-09-14_N	14-Sep-22	CC230943	11%	356
RG_MIUCO_BIC-3_2022-09-14_N	14-Sep-22	CC230944	20%	501
RG_MIULE_BIC-1_2022-09-12_N	12-Sep-22	CC230945	5%	629
RG_MIULE_BIC-2_2022-09-12_N	12-Sep-22	CC230946	5%	636
RG_MIULE_BIC-3_2022-09-12_N	12-Sep-22	CC230947	5%	405
RG_LE1_BIC-1_2022-09-16_N	16-Sep-22	CC230948	5%	326
RG_LE1_BIC-2_2022-09-16_N	16-Sep-22	CC230949	5%	577
RG_LE1_BIC-3_2022-09-16_N	16-Sep-22	CC230950	9%	375

Sorting Quality Control - Sorting Efficiency

As a part of Cordillera's laboratory policy, all projects undergo sorting efficiency checks.

- As sorting progresses, 10% of samples were randomly chosen by senior members of the sorting team for resorting.
- All sorters working on a project had at least 1 sample resorted by another sorter.
- An efficiency of 90 % was expected (95% for CABIN samples).
- If 90/95% efficiency was not met, samples from that sorter were resorted.
- To calculated sorting efficiency the following formula was used:

$$\frac{\#OrganismsMissed}{TotalOrganismsFound}*100 = \%OM$$

Table 3 Summary of sorting efficiency

			Total from Sample	Percent Efficiency
Site - QC, Sample - QC 1, CC# - CC23093	0, Percent			
sampled = 5%, Sieve size = 400				
Heptageniidae		1		
Plecoptera		3		
Chironomidae		5		
	Total:	9	628	99%
Site - QC, Sample - QC 2, CC# - CC23093 sampled = 5%, Sieve size = 400	5, Percent			
Ephemerellidae		3		
Plecoptera		2		
	Total:	5	410	99%
Site - QC, Sample - QC 3, CC# - CC23093	9, Percent			
sampled = 5%, Sieve size = 400				
Trombidiformes		1		
Oligochaeta		1		
Ephemerellidae		2		
	Total:	4	576	99%

Sorting Quality Control - Sub-Sampling QC

Certain Provincial and Mining projects require additional sorting checks in the form of sub-sampling QC, (Environmental Effects Monitoring (EEM) protocol). This ensured that any fraction of the total sample that was examined was actually an accurate representation of the number of total organisms. Organisms from the additional subsamples were not identified; rather total organism count only was compared.

Sub-Sampling efficiency was measured on 10% of the number of sub-sampled samples in the project. Ex. In a project where 50 of 100 total samples were processed through subsampling using a Marchant box, then 10% of 50; or 5 samples were used for sub sampling efficiency.

Sub-Sampling efficiency was performed by fractioning the entire sample into subsample percentages. On each sub-sampled portion, a total organism count was recorded and compared to the rest of the sub-samples. In order to pass, all fractions were required to be within 20% of total organism count.

Example: If 300 organisms are found in 10% of the sample, the sorter will continue to sample in 10% fractions until the entire sample is separated. They will then count the total number of organisms in each of the 10 fractions of 10% and compare the organism count.

When divergence is >20% the sorting manager examines for the source of the problem and takes steps to correct it. With the Marchant box, the problem typically rested with how the box is flipped back to the upright position. For this reason, subsampling was performed by experienced employees only. Another common source of error would be the type of debris in the sample. Samples with algae or heavy with periphyton have a higher incident of failure due to clumping than clear samples.

Table 4 Summary of Sub Sample efficiency

9	Station ID		Organisms in Subsample										So	rter		Precision		Accı	uracy									
CC#	Sample Name		Organisms in subsample												Ву	Time	Actual Total	Porcor	it Range	Min	Max							
CC#	Sample Name	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	Бу	Time		reitei	it Kalige	IVIIII	IVIAX
230944	RG_MIUCO_BIC- 3_2022-09- 14_N	491	458	450	458	474																MP	210	2331	0.00	8.35	1.67	5.32
230929	RG_MI25_BIC- 2_2022-09-15_	333	298	302	312	309																СВ	160	1554	0.96	10.51	0.39	7.14
230948	RG_LE1_BIC- 1_2022-09- 16_N	325	307	349	313	319																TS	200	1613	1.85	12.03	0.74	8.18

Taxonomic Effort

The next procedure was the identification to genus-species level where possible of all the organisms in the sample.

- Identifications were made at the genus/species level for all insect organisms found including Chironomidae (Based on CABIN protocol).
- Non-insect organisms (except those not included in CABIN count) were identified to genus/species where possible and to a minimum of family level with intact and mature specimens.
- The Standard Taxonomic Effort lists compiled by the CABIN manual¹, SAFIT², and PNAMP³ were used as a guide line for what level of identification to achieve where the condition and maturity of the organism enabled.
- Organisms from the same families/order were kept in separate vials with 80% ethanol and an interior label of printed laser paper.
- Chironomidae was identified to genus/species level where possible and was aided by slide mounts. CMC-10 was used to clear and mount the slide.
- Oligochaetes was identified to family/genus level with the aid of slide mounts. CMC-10 was used to clear and mount the slide.
- Other Annelida (leeches, polychaetes) were identified to the family/genus/species level with undamaged, mature specimens.
- Mollusca was identified to family and genus/species where possible
- Decapoda, Amphipoda and Isopoda were identified at family/genus/species level where possible.
- Bryozoans and Nemata remained at the phylum level
- Hydrachnidae and Cnidaria were identified at the family/genus level where possible.
- When requested, reference collections were made containing at least one individual from each taxa listed. Organisms represented will have been identified to the lowest practical level.
- Reference collection specimens were stored in 55 mm glass vials with screw-cap lids with polyseal inserts (museum quality). They were labeled with taxa name, site code, date identified and taxonomist name. The same information was applied to labels on the slide mounts.

Taxonomists

The taxonomists for this project were certified by the Society of Freshwater Science (SFS) Taxonomic Certification Program at level 2 which is the required certification for CABIN projects:

Scott Finlayson: Group 1 General Arthropods (East/West); Group 2 EPT (East/West); Group 3 Chironomidae (East/West); Group 4 Oligochaeta

Adam Bliss: Group 1 General Arthropods (East/West); Group 2 EPT (East/West); Group 3 Chironomidae

Rita Avery: Group 1 General Arthropods (East/West); Group 2 EPT (East/West)

Taxonomic QC

Taxonomic QC was performed in house by someone other than the original taxonomist.

- Quality control protocol involved complete, blind re-identification and reenumeration of at least 10% of samples by a second SFS-certified taxonomist.
- Samples for taxonomic quality control were randomly selected and quality control procedures were conducted as the project progresses through the laboratories.
- The second (QC) taxonomist will calculate and record four types of errors:
 - 1. Misidentification error
 - 2. Enumeration error
 - 3. Questionable taxonomic resolution error
 - 4. Insufficient taxonomic resolution error

The QC coordinator then calculates the following estimates of taxonomic precision.

1. The percent total identification error rate is calculated as:

$$\frac{Sum\ of\ incorrect\ identifications}{total\ or\ ganisms\ counted\ in\ audit}*(100)$$

The average total identification error rate of audited samples did not exceed 5%. All samples that exceed a 5% error rate were re-evaluated to determine whether repeated errors or patterns in error contributed.

2. The percent difference in enumeration (PDE) to quantify the consistency of specimen counts.

$$PDE = \frac{|n_1 - n_2|}{n_1 + n_2} x 100$$

3. The percent taxonomic disagreement (PTD) to quantify the shared precision between two sets of identifications.

$$PTD = \left(1 - \left[\frac{a}{N}\right]\right) x100$$

4. Bray Curtis dissimilarity Index to quantify the differences in identifications.

$$BC_{ij} = 1 - \frac{2C_{ij}}{S_j + S_i}$$

Error Summary

All samples report errors within the acceptable limits for CABIN Laboratory methods (less than 5% error).

Table 5 Summary of taxonomic error following QC

Site	Taxa Identified	% Error	PDE	PTD	Bray - Curtis Dissimilarity index
Site - 2022, Sample - RG_AGCK_BIC-2_2022-09-					
15_N, CC# - CC230923, Percent sampled = 5%, Sieve size = 400	803	0.00	0.0623053	0.373599	0.00311526
Site - 2022, Sample - RG MIUCO BIC-2 2022-	803	0.00	0.0023033	0.373399	0.00311320
09-14 N, CC# - CC230943, Percent sampled =					
11%, Sieve size = 400	355	0.00	0.14064698	0.56179775	0.00421941
Site - 2022, Sample - RG_LE1_BIC-1_2022-09-					
16_N, CC# - CC230948, Percent sampled = 5%,					
Sieve size = 400	326	0.00	0	0.30674847	0.00306748

There will always be disagreements between taxonomists regarding the degree of taxonomic resolution in immature specimens and when laboratories make use of different keys for certain groups (Mollusks is an especially disputed group). It is always possible that some taxa found by the original taxonomist were overlooked in QC.

All of the Taxonomic QC samples that were observed passed testing according to the CABIN misidentification protocols. See the tables below for results from taxonomic QC audit.

Error Rationale

Site - 2022, Sample - RG_AGCK_BIC-2_2022-09- 15_N, CC# - CC230923, Percent sampled = 5%, Sieve size = 400	Laboratory Count	QC Audit Count	Agreement	Misidentification	Questionable Taxonomic Resolution	Enumeration	Insufficient Taxonomic Resolution	Comments
Ameletus	19	19						
Apatania	2	2						

Baetidae	2	1	No			Х		
Baetis rhodani group	2	3	No			Х		
Chironomidae	2	2						
Cinygmula	340	341	No			Х		
Diamesa	21	21						
Drunella doddsii	7	7						
Epeorus	10	10						
Ephemerellidae	154	155	No			Х		
Eukiefferiella	2	2						
Glossosoma	1	1						
Haploperla	1	1						
Heptageniidae	12	11	No			Х		
Hydrobaenus	1	1						
Hydropsychidae	8	8						
Mallochohelea	1	1						
Nemouridae	2	2						
Oligophlebodes	2	2						
Orthocladius complex	40	40						
Pagastia	3	3						
Parorthocladius	2	2						
Pericoma/Telmatoscopus	2	2						
Perlodidae	1	1						
Plecoptera	1	1						
Rheocricotopus	2	2						
Rhithrogena	12	12						
Rhyacophila	1	1						
Rhyacophila betteni group	1	1						
Simulium	8	8						
Sweltsa	6	6						
Taeniopterygidae	91	91						
Trichoptera	2	2						
Tvetenia	6	6						
Zapada	32	32						
Zapada cinctipes	1	1						
Zapada columbiana	2	2						
Total:	802	803						
					0	5	0	
% Total Misidentification Rate	misidentifications	x100	0.00	Pass				
=	total number	=						

Site - 2022, Sample -	y Count	t Count	nent	fication	Questionable Taxonomic Resolution	ration	Taxonomic ution	ents
RG_MIUCO_BIC-2_2022-09- 14_N, CC# - CC230943, Percent sampled = 11%,	Laboratory Count	QC Audit Count	Agreement	Misidentification	uestionable Taxo Resolution	Enumeration	Insufficient Taxonomic Resolution	Comments
Sieve size = 400					٥			
Baetidae	29	28	No			Χ		
Baetis	1	2	No			Χ		
Baetis rhodani group	14	14						
Bezzia/ Palpomyia	1	1						
Brachycentrus	1	1						
Cinygmula	27	27						
Constempellina sp. C	1	1						
Diphetor hageni	3	3						
Drunella doddsii	10	10						
Elmidae	1	1						
Elmidae	2	2						
Epeorus	3	3						
Ephemerellidae	29	29						
Glossosoma	2	2						
Heptageniidae	4	4						
Heterlimnius	22	22						
Hygrobates	1	1						
Kogotus	8	8						
Lebertia	1	1						
Leptophlebiidae	1	1						
Mallochohelea	1	1						
Megarcys	3	3						
Oligophlebodes	1	1						
Orthocladius complex	1	1						
Pagastia	2	2						
Parapsyche	2	2						
Parapsyche elsis	1	1						
Pericoma/Telmatoscopus	69	68	No			Χ		
Plecoptera	1	1						
Rhithrogena	13	13						
Rhyacophila	25	25						
Rhyacophila atrata complex	5	5						
Rhyacophila betteni group	3	3						
Rhyacophila vofixa group	1	1						
Sperchon	1	1						

4							
2	2						
356	355						
				0	3	0	
misidentifications	x100	0.00	Pass				
total number	=						
Laboratory Count	QC Audit Count	Agreement	Misidentification	Questionable Taxonomic Resolution	Enumeration	Insufficient Taxonomic Resolution	Comments
15	16	No			Χ		
2	2						
16	15	No			Χ		
2	2						
43	43						
1	1						
11	11						
3	3						
1	1						
60	60						
2	2						
1	1						
	2						
	1						
7	7						
2	2						
J +							
2	2						
	misidentifications total number 15 2 16 2 43 1 11 3 1 11 3 1 7 2 17 2	31 1 1 1 1 1 1 1 1 1	31 31 1 1 1 1 1 1 1	31 31 1	31 31 31 31 31 31 31 31	31 31 31 31 31 31 31 31	31 31 31 31 31 31 31 31

Rhyacophila	17	17						
Rhyacophila								
brunnea/vemna group	1	1						
Rhyacophila narvae	2	2						
Roederiodes	1	1						
Skwala	2	2						
Sweltsa	5	5						
Taeniopterygidae	55	55						
Thienemannimyia group	1	1						
Torrenticola	1	1						
Zapada	6	6						
Zapada cinctipes	10	10						
Total:	326	326						
					0	2	0	
% Total Misidentification Rate	misidentifications	x100	0.00	Pass				
=	total number	=						

References

Taxonomic Keys

Below is a reference list of taxonomic keys utilized by taxonomists at Cordillera Consulting. Cordillera taxonomists routinely seek out new literature to ensure the most accurate identification keys are being utilized. This is not reflective of the exhaustive list of resources that we use for identification. A more complete list of taxonomic resources can be found at Southwest Association of Freshwater Invertebrate Taxonomists. (2015).

http://www.safit.org/Docs/SAFIT_Taxonomic_Literature_Database_1_March_2011.enl

Brook, Arthur R. and Leonard A. Kelton. 1967. Aquatic and semiaquatic Heteroptera of Alberta, Saskatchewan and Manitoba (Hemiptera) Memoirs of the Entomological Society of Canada. No. 51.

Brown HP & White DS (1978) Notes on Seperation and Identification of North American Riffle Beetles (Coleoptera: Dryopidea: Elmidae). Entomological News 89 (1&2): 1-13

Clifford, Hugh F. 1991. Aquatic Invertebrates of Alberta. University of Alberta Press Edmonton, Alberta.

¹ McDermott, H., Paull, T., Strachan, S. (May 2014). Laboratory Methods: Processing, Taxonomy, and Quality Control of Benthic Macroinvertebrate Samples, Environment Canada. ISBN: 978-1-100-25417-3

² Southwest Association of Freshwater Invertebrate Taxonomists. (2015). www.safit.org

³ Pacific Northwest Aquatic Monitoring Partnership (Accessed 2015). www.pnamp.org

Epler, John. 2001 The Larval Chironomids of North and South Carolina. http://home.earthlink.net/~johnepler/

Epler, John. Identification Manual for the Water Beetles of Florida. http://home.earthlink.net/~johnepler/

Epler, John. Identification Manual for the Aquatic and Semi-aquatic Heteroptera of Florida. http://home.earthlink.net/~johnepler/

Trond Andersen, Peter S. Cranston & John H. Epler (Eds) (2013) Chironomidae of the Holarctic Region: Keys and Diagnoses. Part 1. Larvae. *Insect Systematics and Evolution Supplements* 66: 1-571.

Jacobus, Luke and Pat Randolph. 2005. Northwest Ephemeroptera Nymphs. Manual from Northwest Biological Assessment Working Group. Moscow Idaho 2005. Not Published.

Jacobus LM, McCafferty WP (2004) Revisionary Contributions to the Genus Drunella (Ephemeroptera: Ephemerellidae). Journal of the New York Entomological Society 112: 127-147

Jacobus LM, McCafferty WP (2003) Revisionary Contributions to North American Ephemerella and Serratella (Ephemeroptera: Ephemerellidae). Journal of the New York Entomological Society 111 (4): 174-193.

Kathman, R.D., R.O. Brinkhurst. 1999. Guide to the Freshwater Oligochaetes of North America. Aquatic Resources Center, College Grove, Tennessee.

Larson, D.J., Y. Alarie, R.E. Roughly. 2005. Predaceous Diving Beetles (Coleoptera: Dytiscidae) of the Neararctic Region. NRC-CNRC Research Press. Ottawa.

Merritt, R.W., K.W. Cummins, M. B. Berg. (eds.). 2007. An introduction to the aquatic insects of North America, 4th. Kendall/Hunt, Dubuque, IA

Morihara DK, McCafferty WP (1979) The Baetis Larvae of North American (Ephemeroptera: Baetidae). Transactions of the American Entomological Society 105: 139-221.

Needham, James, M. May, M. Westfall Jr. 2000. Dragonflies of North America. Scientific Publishers. Gainsville FL.

Prescott David, R.C.and Medea M. Curteanu.2004. Survey of Aquatic Gastropods of Alberta. Species at Risk Report No. 104. ISSN: 1496-7146 (Online Edition)

Needham, K. 1996. An Identification Guide to the Nymphal Mayflies of British Columbia. Publication #046 Resource Inventory Committee, Government of British Columbia.

Oliver, Donald R. and Mary E. Roussel. 1983. The Insects and Arachnids of Canada Part 11. The Genera of larval midges of Canada. Biosystematics Research Institute. Ottawa, Ontario. Research Branch, Agriculture Canada. Publication 1746.

Proctor, H. The 'Top 18' Water Mite Families in Alberta. Zoology 351. University of Alberta, Edmonton, Alberta.

Rogers, D.C. and M. Hill, 2008. Key to the Freshwater Malacostraca (Crustacea) of the mid-Atlantic Region. EPA-230-R-08-017. US Environmental Protection Agency, Office of Environmental Information, Washington, DC.

Stewart, Kenneth W. and Bill Stark. 2002. The Nymphs of North American Stonefly Genera (Plecoptera). The Caddis Press. Columbus Ohio.

Stewart, Kenneth W. and Mark W. Oswood. 2006 The Stoneflies (Plecoptera) of Alaska and Western Canada. The Caddis Press.

Stonedahl, Gary and John D. Lattin. 1986. The Corixidae of Oregon and Washington (Hemiptera: Heteroptera). Technical Bulletin 150. Oregon State University, Corvalis Oregon.

Thorpe, J. H. and A. P. Covich [Eds.] 1991. Ecology and classification of North American freshwater invertebrates. Academic Press, San Diego.

Tinerella, Paul P. and Ralph W. Gunderson. 2005. The Waterboatmen (Insecta: Heteroptera: Corixidae) of Minisota. Publication No. 23 Dept. Of Entomology, North Dakota State University, Fargo, North Dakota, USA.

Weiderholm, Torgny (Ed.) 1983. The larvae of Chironomidae (Diptera) of the Holartic region. Entomologica Scaninavica. Supplement No. 19.

Westfall, Minter J. Jr. and May, Michael L. 1996. Damselflies of North America. Scientific Publishers, Gainesville, FL.

Wiggins, Glenn B. 1998. Larvae of the North American Caddisfly Genera (Tricoptera) 2nd ed. University of Toronto Press. Toronto Ontario.

Trich Analytics Inc.

Tissue Microchemistry Analysis Report

Client: Cybele Heddle Date Received: 20 Sep 2022

Project Manager

Teck Coal Ltd

Date of Analysis: 06 Oct 2022

Final Report Date: 27 Oct 2022

Phone: (250) 865-3048 Project No.: 2022-399
Email: aquascilab@teck.com; teckcoal@equisonline.com; Method No.: MET-002.06

teck.lab.results@teck.com; lisa.bowron@minnow.ca; alex.mcclymont@minnow.ca;

hannah.penner@teck.com; cybele.heddle@teck.com

Client Project: REP_LAEMP_CMm_2022-09 Regional Effects Program (PO 818999)

Analytical Request: Composite Benthic Invertebrate Tissue Microchemistry (total metals & moisture) - 32 samples.

See chain of custody form provided for sample identification numbers.

Notes:

Analytical results are expressed in parts per million (ppm) dry weight (equivalent to mg/kg).

Samples quantified using DORM-4, NIST-1566b, and NIST-2976 certified reference standards.

Aluminum concentrations above 1,000 ppm are outside linear range of the calibration curve.

RPD values calculated according to the British Columbia Environmental Laboratory Manual (2020) criteria.

Client specific DQO for Selenium accuracy is 90-110% of the certified value; result achieved 98% (ranging from 92-103%).

The reported moisture contents for sample ID 497 and 498 are not accurate. During sample preparation, distilled water was added to the sample to remove it from the container as it was smeared/stuck on the container wall and could not be removed without this additional workup.

This report provides the analytical results only for tissue samples noted above as received from the Client.

Reviewed and Approved by Jennie Christensen, PhD, RPBio

27 Oct 2022

Date

[The analytical report shall not be reproduced except in full under the expressed written consent of TrichAnalytics Inc.]

TrichAnalytics Inc. 207-1753 Sean Heights Saanichton, BC V8M 0B3 www.trichanalytics.com

Project No: 2022-399

			RG_AGCK_COMP	RG_AGCK_COMP	RG_AGCK_COMP	RG_CORCK_INV-	RG_CORCK_INV-
		Client ID	NOLI-1_2022-09-	NOLI-2_2022-09-	NOLI-3_2022-09-	1_2022-09-14_N	2_2022-09-14_N
			15_N	15_N	15_N		
		Lab ID	467	468	469	470	471
	We	et Weight (g)	0.2239	0.1140	0.0736	0.1976	0.1658
	Dr	y Weight (g)	0.0391	0.0227	0.0180	0.0588	0.0408
		Moisture (%)	82.5	80.1	75.5	70.2	75.4
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.022	0.073	0.300	0.274	0.139	0.257	0.261
11B	0.071	0.237	0.645	0.469	0.313	0.997	1.0
23Na	4.3	14	3,534	5,278	3,121	2,649	4,101
24Mg	0.057	0.190	1,056	1,460	937	1,132	1,796
27Al	0.052	0.173	224	147	113	113	116
31P	65	217	13,320	14,049	9,099	8,222	12,064
39K	3.1	10	10,379	15,678	8,567	8,371	9,000
44Ca	3.4	11	1,833	2,007	2,425	2,541	4,134
49Ti	0.001	0.003	11	7.4	6.5	6.0	6.3
51V	0.025	0.083	0.566	0.455	0.432	0.224	0.291
52Cr	0.052	0.173	3.0	9.3	7.8	4.4	6.8
55Mn	0.009	0.030	12	12	7.0	68	51
57Fe	0.769	2.6	217	235	219	147	217
59Co	0.016	0.053	0.124	0.430	0.452	12	7.5
60Ni	0.019	0.063	5.2	13	11	14	13
63Cu	0.029	0.097	9.3	12	12	11	16
66Zn	0.281	0.937	135	217	179	119	167
75As	0.401	1.3	1.2	1.8	1.2	< 0.401	<0.401
77Se	0.329	1.1	4.4	7.4	7.0	4.6	5.2
88Sr	0.001	0.003	3.7	4.7	4.5	9.5	16
95Mo	0.001	0.003	0.199	0.284	0.370	0.142	0.171
107Ag	0.001	0.003	0.093	0.156	0.141	0.030	0.059
111Cd	0.051	0.170	0.334	1.3	1.2	0.301	0.451
118Sn	0.023	0.077	0.426	0.728	0.776	0.070	0.221
121Sb	0.003	0.010	0.024	0.026	0.022	0.033	0.021
137Ba	0.001	0.003	21	11	5.7	3.9	5.0
202Hg	0.022	0.073	0.050	0.071	0.042	0.024	0.030
205TI	0.001	0.003	0.226	0.224	0.128	0.021	0.027
208Pb	0.001	0.003	0.096	0.079	0.063	0.040	0.054
238U	0.001	0.003	0.031	0.031	0.026	0.029	0.031

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

			RG_CORCK_INV-	RG_LE1_INV-	RG_LE1_INV-	RG_LE1_INV-	RG_MI25_INV-
		Client ID	3_2022-09-14_N	1_2022-09-16_N	2_2022-09-16_N	3_2022-09-16_N	1_2022-09-15_N
		Lab ID	472	473	474	475	476
	We	et Weight (g)	0.1355	0.1286	0.1060	0.0864	0.3531
	Dı	y Weight (g)	0.0338	0.0251	0.0206	0.0165	0.0697
		Moisture (%)	75.1	80.5	80.6	80.9	80.3
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.022	0.073	0.261	0.165	0.252	0.692	0.661
11B	0.071	0.237	1.0	0.391	0.762	1.5	2.7
23Na	4.3	14	2,839	4,026	3,448	3,495	4,051
24Mg	0.057	0.190	1,571	1,292	1,043	1,531	1,246
27Al	0.052	0.173	131	164	392	1,374	1,241
31P	65	217	9,860	11,918	9,933	12,983	12,573
39K	3.1	10	9,403	10,484	8,942	13,443	14,139
44Ca	3.4	11	3,421	1,649	1,525	2,726	1,828
49Ti	0.001	0.003	7.2	7.9	9.0	80	81
51V	0.025	0.083	0.246	0.522	0.682	3.4	1.7
52Cr	0.052	0.173	3.5	9.0	7.7	19	6.8
55Mn	0.009	0.030	61	42	58	49	56
57Fe	0.769	2.6	155	329	553	1,075	590
59Co	0.016	0.053	7.5	0.777	0.388	1.9	1.2
60Ni	0.019	0.063	11	12	10	30	10
63Cu	0.029	0.097	12	17	19	20	18
66Zn	0.281	0.937	150	165	144	143	134
75As	0.401	1.3	< 0.401	0.791	0.465	1.9	1.3
77Se	0.329	1.1	4.5	6.7	7.2	8.9	4.2
88Sr	0.001	0.003	15	2.9	2.6	4.5	5.8
95Mo	0.001	0.003	0.199	0.512	0.398	0.569	0.597
107Ag	0.001	0.003	0.037	0.319	0.230	0.245	0.067
111Cd	0.051	0.170	0.768	6.0	3.9	13	3.5
118Sn	0.023	0.077	0.262	0.421	0.448	1.0	0.685
121Sb	0.003	0.010	0.027	0.026	0.044	0.113	0.038
137Ba	0.001	0.003	6.8	74	108	72	45
202Hg	0.022	0.073	0.042	0.119	0.125	0.125	0.068
205Tl	0.001	0.003	0.016	0.019	0.023	0.040	0.054
208Pb	0.001	0.003	0.042	0.144	0.162	0.359	0.477
238U	0.001	0.003	0.026	0.021	0.031	0.074	0.053

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

			RG_MI25_INV-	RG_MI25_INV-	RG_MI5_INV-	RG_MI5_INV-	RG_MI5_INV-
		Client ID	2_2022-09-15_N	3_2022-09-15_N	1_2022-09-12_N	2_2022-09-12_N	3_2022-09-12_N
		Lab ID	477	478	479	480	481
		et Weight (g)	0.2826	0.2282	0.2900	0.3396	0.2075
		y Weight (g)	0.0574	0.0592	0.0697	0.0579	0.0369
		Moisture (%)	79.7	74.1	76.0	83.0	82.2
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.022	0.073	1.0	0.244	0.183	0.270	0.252
11B	0.071	0.237	3.7	0.899	0.762	1.6	1.4
23Na	4.3	14	4,090	3,490	2,671	2,869	3,313
24Mg	0.057	0.190	1,396	1,494	1,131	1,112	1,105
27Al	0.052	0.173	1,499	316	176	364	317
31P	65	217	13,333	11,670	10,038	11,057	11,822
39K	3.1	10	13,868	10,835	10,757	11,288	12,532
44Ca	3.4	11	2,397	1,526	1,197	2,293	2,883
49Ti	0.001	0.003	83	16	9.3	22	18
51V	0.025	0.083	2.0	0.510	0.358	1.1	0.686
52Cr	0.052	0.173	14	5.2	3.5	13	4.8
55Mn	0.009	0.030	73	33	66	70	72
57Fe	0.769	2.6	880	217	162	444	338
59Co	0.016	0.053	2.0	0.634	1.9	2.4	3.2
60Ni	0.019	0.063	20	5.5	8.3	28	15
63Cu	0.029	0.097	19	20	11	13	13
66Zn	0.281	0.937	115	140	144	128	163
75As	0.401	1.3	1.7	0.667	0.620	0.620	0.775
77Se	0.329	1.1	4.8	3.6	6.3	7.2	9.3
88Sr	0.001	0.003	6.7	3.3	3.1	10	7.3
95Mo	0.001	0.003	0.640	0.284	0.171	0.284	0.341
107Ag	0.001	0.003	0.059	0.119	0.089	0.082	0.145
111Cd	0.051	0.170	3.7	1.4	1.1	1.5	2.9
118Sn	0.023	0.077	0.400	0.166	0.261	0.362	0.394
121Sb	0.003	0.010	0.048	0.017	0.020	0.036	0.040
137Ba	0.001	0.003	53	28	35	93	90
202Hg	0.022	0.073	0.065	0.059	0.083	0.089	0.071
205Tl	0.001	0.003	0.058	0.017	0.031	0.037	0.040
208Pb	0.001	0.003	0.467	0.146	0.138	0.200	0.206
238U	0.001	0.003	0.085	0.021	0.019	0.061	0.073

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

		Client ID	RG_MIDAG_INV- 1_2022-09-13_N	RG_MIDAG_INV- 2_2022-09-13_N	RG_MIDAG_INV- 3_2022-09-13_N	RG_MIDCO_INV- 1_2022-09-13_N	RG_MIDCO_INV- 2_2022-09-13_N
		Lab ID	482	483	484	485	486
	We	et Weight (g)	0.4586	0.2719	0.2313	0.2061	0.2981
	Dr	y Weight (g)	0.1027	0.0557	0.0426	0.0489	0.0741
		Moisture (%)	77.6	79.5	81.6	76.3	75.1
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.022	0.073	0.444	0.844	0.245	1.4	0.368
11B	0.071	0.237	1.2	2.5	0.795	4.9	1.4
23Na	4.3	14	3,437	4,027	5,445	5,070	3,745
24Mg	0.057	0.190	1,140	1,940	1,656	1,628	1,320
27Al	0.052	0.173	571	1,314	343	3,084	641
31P	65	217	10,500	13,247	15,453	12,290	11,070
39K	3.1	10	10,872	12,015	13,085	12,697	10,407
44Ca	3.4	11	1,571	3,651	2,012	3,845	2,703
49Ti	0.001	0.003	44	114	23	223	34
51V	0.025	0.083	1.2	2.3	0.615	4.0	0.826
52Cr	0.052	0.173	5.2	7.2	4.3	7.4	4.8
55Mn	0.009	0.030	105	69	57	115	84
57Fe	0.769	2.6	441	822	250	1,386	371
59Co	0.016	0.053	9.8	20	10	55	17
60Ni	0.019	0.063	16	25	12	37	17
63Cu	0.029	0.097	15	15	19	14	15
66Zn	0.281	0.937	160	189	244	139	152
75As	0.401	1.3	0.713	1.8	0.746	0.811	< 0.401
77Se	0.329	1.1	7.9	12	8.8	4.3	3.5
88Sr	0.001	0.003	4.7	9.1	7.0	12	9.0
95Mo	0.001	0.003	0.455	0.412	0.243	0.307	0.230
107Ag	0.001	0.003	0.104	0.096	0.131	0.048	0.069
111Cd	0.051	0.170	1.0	2.2	1.3	1.1	0.495
118Sn	0.023	0.077	0.187	0.703	0.848	0.582	0.617
121Sb	0.003	0.010	0.040	0.067	0.025	0.058	0.028
137Ba	0.001	0.003	28	32	21	36	17
202Hg	0.022	0.073	0.065	0.059	0.077	0.043	0.049
205Tl	0.001	0.003	0.054	0.092	0.085	0.147	0.045
208Pb	0.001	0.003	0.286	0.452	0.191	0.883	0.304
238U	0.001	0.003	0.059	0.083	0.039	0.111	0.041

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

		Client ID	RG_MIDCO_INV- 3_2022-09-13_N	RG_MIDCO_INV- 4_2022-09-13_N	RG_MIDCO_INV- 5_2022-09-13_N	RG_MIUCO_INV- 1_2022-09-14_N	RG_MIUCO_INV- 2_2022-09-14_N
		Client ID	5_2022-09-15_14	4_2022-09-15_11	5_2022-09-15_14	1_2022-09-14_11	2_2022-09-14_11
		Lab ID	487	488	489	490	491
	We	et Weight (g)	0.4211	0.2986	0.4723	0.4235	0.2736
		y Weight (g)	0.0886	0.0637	0.1028	0.0797	0.0523
		Moisture (%)	79.0	78.7	78.2	81.2	80.9
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.022	0.073	0.429	0.400	0.400	0.384	0.809
11B	0.071	0.237	1.5	1.6	1.5	0.874	2.9
23Na	4.3	14	3,151	4,013	3,089	6,004	5,079
24Mg	0.057	0.190	1,211	1,065	1,149	1,273	1,290
27Al	0.052	0.173	887	522	629	572	1,144
31P	65	217	8,882	11,360	9,377	13,014	12,860
39K	3.1	10	8,739	10,617	8,848	11,338	12,558
44Ca	3.4	11	1,824	2,075	1,710	647	1,649
49Ti	0.001	0.003	57	30	39	34	44
51V	0.025	0.083	1.1	0.756	0.822	0.787	1.2
52Cr	0.052	0.173	7.2	4.2	4.8	2.4	7.9
55Mn	0.009	0.030	74	108	80	66	146
57Fe	0.769	2.6	500	276	380	332	920
59Co	0.016	0.053	21	19	16	0.405	1.5
60Ni	0.019	0.063	21	25	18	4.1	13
63Cu	0.029	0.097	11	12	12	16	21
66Zn	0.281	0.937	122	142	149	128	171
75As	0.401	1.3	0.422	0.454	0.486	0.486	1.6
77Se	0.329	1.1	3.0	2.9	3.7	3.2	4.7
88Sr	0.001	0.003	6.9	7.2	6.4	1.9	5.1
95Mo	0.001	0.003	0.154	0.205	0.154	0.294	0.435
107Ag	0.001	0.003	0.041	0.048	0.041	0.038	0.089
111Cd	0.051	0.170	0.457	0.457	0.495	0.419	2.5
118Sn	0.023	0.077	0.283	0.531	0.234	0.134	0.756
121Sb	0.003	0.010	0.021	0.030	0.024	0.016	0.034
137Ba	0.001	0.003	20	17	16	36	61
202Hg	0.022	0.073	0.043	0.031	0.031	0.056	0.068
205TI	0.001	0.003	0.048	0.064	0.053	0.039	0.070
208Pb	0.001	0.003	0.314	0.247	0.258	0.184	0.680
238U	0.001	0.003	0.046	0.036	0.037	0.015	0.056

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

		Client ID	RG_MIUCO_INV- 3_2022-09-14_N	RG_MIULE_INV- 1_2022-09-12_N	RG_MIULE_INV- 2_2022-09-12_N	RG_MIULE_INV- 3_2022-09-12_N	RG_AGCK_INVOL I-1_2022-09-
			400	403	40.4	405	15_N
		Lab ID	492	493	494	495	496
		et Weight (g)	0.1910	0.3021	0.1565	0.1159	0.0078
		y Weight (g)	0.0442	0.0575	0.0313	0.0223	0.0037
		Moisture (%)	76.9	81.0	80.0	80.8	52.6
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
7Li	0.022	0.073	0.302	0.188	0.777	0.482	0.727
11B	0.071	0.237	1.3	0.755	2.7	1.9	1.7
23Na	4.3	14	3,045	3,494	3,530	2,620	2,226
24Mg	0.057	0.190	1,099	1,220	1,342	976	1,113
27Al	0.052	0.173	791	401	1,589	1,162	697
31P	65	217	9,944	10,553	10,740	8,111	12,315
39K	3.1	10	7,861	8,922	9,968	7,045	7,609
44Ca	3.4	11	1,356	1,881	4,785	2,537	5,320
49Ti	0.001	0.003	66	29	95	63	66
51V	0.025	0.083	0.989	0.631	2.9	1.7	2.7
52Cr	0.052	0.173	4.7	4.6	17	9.1	1.6
55Mn	0.009	0.030	63	39	65	54	16
57Fe	0.769	2.6	485	363	969	651	519
59Co	0.016	0.053	0.670	6.1	13	11	0.550
60Ni	0.019	0.063	7.4	13	34	20	6.0
63Cu	0.029	0.097	13	13	13	10	5.1
66Zn	0.281	0.937	92	196	164	147	571
75As	0.401	1.3	0.649	0.681	1.1	0.843	6.5
77Se	0.329	1.1	3.4	7.3	8.9	6.4	4.6
88Sr	0.001	0.003	2.6	6.6	14	7.6	38
95Mo	0.001	0.003	0.269	0.230	0.333	0.294	0.205
107Ag	0.001	0.003	0.048	0.140	0.082	0.069	0.045
111Cd	0.051	0.170	0.876	1.1	2.1	1.8	2.7
118Sn	0.023	0.077	0.315	0.459	0.676	0.774	0.296
121Sb	0.003	0.010	0.018	0.040	0.067	0.040	0.183
137Ba	0.001	0.003	17	22	55	35	466
202Hg	0.022	0.073	0.056	0.059	0.056	0.056	0.275
205TI	0.001	0.003	0.039	0.061	0.143	0.086	2.1
208Pb	0.001	0.003	0.212	0.245	0.546	0.393	0.424
238U	0.001	0.003	0.020	0.029	0.081	0.051	0.066

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

			RG_AGCK_INVOL	RG_AGCK_INVOL
		Client ID	I-2_2022-09-	I-3_2022-09-
			15_N	15_N
		Lab ID	497	498
	We	et Weight (g)	1.2831	1.0453
	Dı	y Weight (g)	0.0045	0.0053
	Moisture (%)		99.6	99.5
Parameter	DL (ppm)	LOQ (ppm)	(ppm)	(ppm)
7Li	0.022	0.073	0.548	1.5
11B	0.071	0.237	1.1	3.6
23Na	4.3	14	1,759	5,929
24Mg	0.057	0.190	406	1,212
27Al	0.052	0.173	560	1,720
31P	65	217	4,936	16,989
39K	3.1	10	4,256	22,575
44Ca	3.4	11	2,273	4,837
49Ti	0.001	0.003	44	85
51V	0.025	0.083	2.1	3.4
52Cr	0.052	0.173	1.8	2.1
55Mn	0.009	0.030	7.0	14
57Fe	0.769	2.6	380	869
59Co	0.016	0.053	0.231	0.709
60Ni	0.019	0.063	3.5	8.6
63Cu	0.029	0.097	2.7	8.2
66Zn	0.281	0.937	290	438
75As	0.401	1.3	2.1	7.0
77Se	0.329	1.1	1.6	4.6
88Sr	0.001	0.003	16	32
95Mo	0.001	0.003	0.128	0.320
107Ag	0.001	0.003	0.027	0.076
111Cd	0.051	0.170	1.2	2.4
118Sn	0.023	0.077	7.2	15
121Sb	0.003	0.010	0.097	0.412
137Ba	0.001	0.003	157	224
202Hg	0.022	0.073	0.136	0.222
205TI	0.001	0.003	0.876	3.0
208Pb	0.001	0.003	0.349	0.938
238U	0.001	0.003	0.046	0.118

Notes:

ppm = parts per million

DL = detection limit

LOQ = limit of quantitation

< = less than detection limit

g = grams

Teck Coal Limited Tissue QA/QC Relative Percent Difference Results

	Ī									
(Client ID	RG_CORC	K_INV-2_202	2-09-14_N	RG_MI25	_INV-1_2022	-09-15_N	RG MIDCO	D_INV-5_202	2-09-13 N
	Lab ID		471			476			489	
Parameter	DL (ppm)	Sample (ppm)	Sample Duplicate (ppm)	RPD (%)	Sample (ppm)	Sample Duplicate (ppm)	RPD (%)	Sample (ppm)	Sample Duplicate (ppm)	RPD (%)
7Li	0.022	0.261	0.313	18	0.661	0.940	35	0.400	0.286	33
11B	0.071	1.0	1.3	26	2.7	2.7	0.0	1.5	1.2	22
23Na	4.3	4,101	3,641	12	4,051	4,064	0.3	3,089	3,117	0.9
24Mg	0.057	1,796	1,614	11	1,246	1,346	7.7	1,149	1,067	7.4
27Al	0.052	116	166	36	1,241	1,390	11	629	429	38
31P	65	12,064	10,873	10	12,573	12,784	1.7	9,377	9,180	2.1
39K	3.1	9,000	9,610	6.6	14,139	13,898	1.7	8,848	9,393	6.0
44Ca	3.4	4,134	4,144	0.2	1,828	1,693	7.7	1,710	1,906	11
49Ti	0.001	6.3	8.0	24	81	95	16	39	28	33
51V	0.025	0.291	0.298	2.4	1.7	1.8	5.7	0.822	0.683	19
52Cr	0.052	6.8	4.6	39	6.8	5.4	23	4.8	4.2	13
55Mn	0.009	51	62	20	56	76	30	80	94	16
57Fe	0.769	217	184	17	590	769	26	380	302	23
59Co	0.016	7.5	8.4	11	1.2	1.2	0.0	16	19	17
60Ni	0.019	13	12	8.0	10	7.1	34	18	19	5.4
63Cu	0.029	16	14	13	18	20	11	12	12	0.0
66Zn	0.281	167	157	6.2	134	148	9.9	149	149	0.0
75As	0.401	< 0.401	< 0.401	-	1.3	1.1	-	0.486	< 0.401	-
77Se	0.329	5.2	5.0	3.9	4.2	4.7	11	3.7	3.5	5.6
88Sr	0.001	16	15	6.5	5.8	4.5	25	6.4	6.1	4.8
95Mo	0.001	0.171	0.142	19	0.597	0.540	10	0.154	0.154	0.0
107Ag	0.001	0.059	0.069	16	0.067	0.074	9.9	0.041	0.041	0.0
111Cd	0.051	0.451	0.401	-	3.5	4.5	25	0.495	0.609	-
118Sn	0.023	0.221	0.304	-	0.685	0.490	33	0.234	0.230	1.7
121Sb	0.003	0.021	0.030	-	0.038	0.036	5.4	0.024	0.023	-
137Ba	0.001	5.0	7.0	33	45	56	22	16	16	0.0
202Hg	0.022	0.030	0.030	-	0.068	0.083	-	0.031	0.043	-
205TI	0.001	0.027	0.028	3.6	0.054	0.052	3.8	0.053	0.044	19
208Pb	0.001	0.054	0.065	19	0.477	0.542	13	0.258	0.253	2.0
238U	0.001	0.031	0.035	12	0.053	0.059	11	0.037	0.039	5.3

Notes:

ppm = parts per million

RPD = relative percent difference

DL = detection limit

< = less than detection limit

% = percent

Data Quality Objectives:

Laboratory Duplicates - RPD \leq 40% for all elements, except Ca and Sr, which are \leq 60% Minimum DQOs apply to individual samples at concentrations above 10x DL

Project No: 2022-399

Teck Coal Limited Tissue QA/QC Relative Percent Difference Results

Client ID	RG_MIULE_INV-1_2022-09-12_N
Lab ID	493

	Lab ID			
Parameter	DL (ppm)	Sample (ppm)	Sample Duplicate (ppm)	RPD (%)
7Li	0.022	0.188	0.261	-
11B	0.071	0.755	0.934	21
23Na	4.3	3,494	3,634	3.9
24Mg	0.057	1,220	1,372	12
27Al	0.052	401	460	14
31P	65	10,553	11,210	6.0
39K	3.1	8,922	9,197	3.0
44Ca	3.4	1,881	2,249	18
49Ti	0.001	29	26	11
51V	0.025	0.631	0.713	12
52Cr	0.052	4.6	4.6	0.0
55Mn	0.009	39	51	27
57Fe	0.769	363	428	16
59Co	0.016	6.1	7.0	14
60Ni	0.019	13	14	7.4
63Cu	0.029	13	17	27
66Zn	0.281	196	219	11
75As	0.401	0.681	0.681	-
77Se	0.329	7.3	8.4	14
88Sr	0.001	6.6	7.0	5.9
95Mo	0.001	0.230	0.333	37
107Ag	0.001	0.140	0.158	12
111Cd	0.051	1.1	1.6	37
118Sn	0.023	0.459	0.594	26
121Sb	0.003	0.040	0.040	0.0
137Ba	0.001	22	24	8.7
202Hg	0.022	0.059	0.077	-
205TI	0.001	0.061	0.080	27
208Pb	0.001	0.245	0.309	23
238U	0.001	0.029	0.042	37

Notes:

ppm = parts per million

RPD = relative percent difference

DL = detection limit

< = less than detection limit

% = percent

Data Quality Objectives:

Laboratory Duplicates - RPD \leq 40% for all elements, except Ca and Sr, which are \leq 60% Minimum DQOs apply to individual samples at concentrations above 10x DL

Teck Coal Limited Tissue QA/QC Accuracy and Precision Results

	S	ample Group ID		01		02			
Parameter	DL (ppm)	Certified Conc. (ppm)	Mean Estimated Conc. (ppm)	Accuracy (%)	Precision RSD (%)	Mean Estimated Conc. (ppm)	Accuracy (%)	Precision RSD (%)	
7Li	0.022	1.21	1.2	99	8.3	1.1	94	4.8	
11B	0.071	4.5	4.9	108	4.9	4.6	102	2.4	
23Na	4.3	14,000	14,617	104	4.1	13,459	96	1.9	
24Mg	0.057	910	927	102	6.7	914	100	2.4	
27Al	0.052	197.2	212	108	7.2	219	111	6.3	
31P	65	8,000	8,047	101	3.9	7,634	95	1.1	
39K	3.1	15,500	15,759	102	7.5	14,696	95	2.1	
44Ca	3.4	2,360	2,357	100	8.0	2,340	99	1.6	
49Ti	0.001	12.24	14	114	10	12	101	4.4	
51V	0.025	1.57	1.6	103	12	1.7	106	9.1	
52Cr	0.052	1.87	1.9	100	12	1.7	92	2.6	
55Mn	0.009	3.17	3.2	100	10	3.2	100	5.6	
57Fe	0.769	343	352	102	7.4	342	100	1.5	
59Co	0.016	0.25	0.251	100	15	0.243	97	5.5	
60Ni	0.019	1.34	1.5	109	9.2	1.4	102	8.4	
63Cu	0.029	15.7	17	106	5.4	16	103	2.8	
66Zn	0.281	51.6	52	100	10	49	95	3.8	
75As	0.401	6.87	6.8	99	4.4	6.9	100	1.4	
77Se	0.329	3.45	3.5	103	9.1	3.2	92	5.7	
88Sr	0.001	10.1	11	106	10	9.8	97	3.1	
95Mo	0.001	0.29	0.296	102	8.6	0.261	90	4.3	
107Ag	0.001	0.0252	0.026	103	18	0.023	93	14	
111Cd	0.051	0.299	0.319	107	13	0.295	99	12	
118Sn	0.023	0.061	0.055	90	9.9	0.059	97	17	
121Sb	0.003	0.011	0.013	114	9.0	0.012	113	7.2	
137Ba	0.001	8.6	9.0	105	3.0	9.2	107	2.6	
202Hg	0.022	0.412	0.435	106	6.1	0.427	104	6.6	
205Tl	0.001	0.0013	-	-	-	-	-	-	
208Pb	0.001	0.404	0.445	110	15	0.384	95	8.0	
238U	0.001	0.05	0.051	103	9.1	0.050	99	7.6	

Notes:

ppm = parts per million; % = percent; DL = detection limit; RSD = relative standard deviation

Data Quality Objectives:

Accuracy: DQO of 60 - 140% of the certified values for B, Ti, Ag, Sn, Sb, and Ba.

Accuracy: DQO of 90 - 110% of the certified values for Se.

Accuracy: DQO of 70 - 130% of the certified values for all other elements provided.

Precision: DQO of ≤20% for all elements.

DORM-4 used for all parameters except B, Ti, Sb, Ba, and Al where NIST-1566b was used.

TI certified concentration from NIST-2976.

Accuracy and precision for TI are not reported as the certified concentration is too close to the reportable detection limit.

Teck Coal Limited Sample Group Information

Sample Group ID	Client ID	Lab ID	Date of Analysis
01	RG_AGCK_COMPNOLI-1_2022-09-15_N	467	06 Oct 2022
	RG_AGCK_COMPNOLI-2_2022-09-15_N	468	
	RG_AGCK_COMPNOLI-3_2022-09-15_N	469	
	RG_CORCK_INV-1_2022-09-14_N	470	
	RG_CORCK_INV-2_2022-09-14_N	471	
	RG_CORCK_INV-3_2022-09-14_N	472	
	RG_LE1_INV-1_2022-09-16_N	473	
	RG_LE1_INV-2_2022-09-16_N	474	
	RG_LE1_INV-3_2022-09-16_N	475	
	RG_MI25_INV-1_2022-09-15_N	476	
	RG_MI25_INV-2_2022-09-15_N	477	
	RG_MI25_INV-3_2022-09-15_N	478	
	RG_MI5_INV-1_2022-09-12_N	479	
	RG_MI5_INV-2_2022-09-12_N	480	
	RG_MI5_INV-3_2022-09-12_N	481	
	RG_MIDAG_INV-1_2022-09-13_N	482	
	RG_MIDAG_INV-2_2022-09-13_N	483	
02	RG_MIDAG_INV-3_2022-09-13_N	484	06 Oct 2022
	RG_MIDCO_INV-1_2022-09-13_N	485	
	RG_MIDCO_INV-2_2022-09-13_N	486	
	RG_MIDCO_INV-3_2022-09-13_N	487	
	RG_MIDCO_INV-4_2022-09-13_N	488	
	RG_MIDCO_INV-5_2022-09-13_N	489	
	RG_MIUCO_INV-1_2022-09-14_N	490	
	RG_MIUCO_INV-2_2022-09-14_N	491	
	RG_MIUCO_INV-3_2022-09-14_N	492	
	RG_MIULE_INV-1_2022-09-12_N	493	
	RG_MIULE_INV-2_2022-09-12_N	494	
	RG_MIULE_INV-3_2022-09-12_N	495	
	RG_AGCK_INVOLI-1_2022-09-15_N	496	
	RG_AGCK_INVOLI-2_2022-09-15_N	497	
	RG_AGCK_INVOLI-3_2022-09-15_N	498	

Teck

REP_LAEMP_CMm_202 COC ID: TURNAROUND TIME: RUSH: **2-09 TRICH** PROJECT/CLIENT INFO LABORATORY OTHER INFO Facility Name / Job# Regional Effects Program Lab Name TrichAnalytics Inc. Report Format / Distribution Excel PDF EDD Project Manager Cybele Heddle Lab Contact Jennie Christensen Email 1: AquaSciLab@Teck.com Email Cybele.Heddle@teck.com Email jennie.christensen@trichanalytics Email 2: teckcoal@equisonline.com Address 421 Pine Ave Address 207-1753 Sean Heights Email 3: Teck.Lab.Results@teck.com Email 4: City Sparwood Province BC City Saanichton Province BC Email 5: Postal Code V0B 2G0 Country Canada Postal Code Email 6: Hannah Penner@Teck.com Phone Number 1-250-865-3048 Phone Number PO number VPO00818999 SAMPLE DETAILS ANALYSIS REQUESTED Filtered - F: Field, L: Lab, FL: Field & Lab, N: None Material (Yes/No) Biota by CVAAS Metals in Biota by CRC CPMS (wet and dry) Moisture Content by Gravimetry mber of Contain Hazardous Mercury in F (wet, dry & r Sample Location Field Time Tissue Tissue Sample Sample ID (sys loc code) Matrix Date (24hr) Species Structure type RG_AGCK_COMPNOLI-1_2022-09-15_N RG_AGCK TA 15-Sep-22 9:00 INV COMPNOLI Composite X X X A68 RG AGCK COMPNOLI-2 2022-09-15 N RG_AGCK TA 15-Sep-22 10:00 COMPNOLI Composite 1 X X X NG_AGCK_COMPNOLI-3_2022-09-15 N COMPNOLI Composite RG_AGCK TA 15-Sep-22 11:00 INV 1 X X X 170 RG_CORCK_INV-1_2022-09-14_N RG_CORCK TA 14-Sep-22 9:00 INV Composite Composite 1 X X X 171 RG_CORCK_INV-2_2022-09-14 N RG_CORCK TA 14-Sep-22 10:00 INV Composite Composite 1 X X X 133 RG_CORCK_INV-3_2022-09-14_N V RG_CORCK TA 14-Sep-22 11:00 1 X INV Composite Composite X X 173 RG_LE1_INV-1_2022-09-16_N / RG_LE1 TA 16-Sep-22 9:00 INV Composite Composite 1 X X X 74 RG_LE1_INV-2_2022-09-16_N RG LE1 TA 16-Sep-22 10:00 INV Composite X X X 475 RG LE1 INV-3 2022-09-16 N RG_LE1 TA 16-Sep-22 11:00 INV Composite Composite 1 X X X ADDITIONAL COMMENTS/SPECIAL INSTRUCTIONS RELINQUISHED BY/AFFILIATION DATE/TIME ACCEPTED BY/AFFILIATION DATE/TIME PO 818999 Jennifer Ings Alex wade 21 Sep 2022 / 14:15 Provent #: 2022-399 SERVICE REQUEST (rush - subject to availability) Regular (default) Sampler's Name Jennifer Ings Mobile # 5195003444 Priority (2-3 business days) - 50% surcharge Emergency (1 Business Day) - 100% surcharge Sampler's Signature Date/Time September 19, 2022 For Emergency <1 Day, ASAP or Weekend

Page

1 of

Teck						Pres			ď												
IECK	COC ID: REP_LAEMP_CMm_202 2-09 TRICH					TURNAROUND TIME:							RUSH:								
P	ROJECT/CLIENT INFO		4-0	9 IRICH		LABORA				ATORY				OTHER INFO							
	Regional Effects Program	1				Lab Name				TrichAnalytics Inc.				Report Format /			t / Distribution		Excel	PDF	E
Project Manager Cybele Heddle										Jennie Christensen				Email 1:		AquaSoLati@Teck.com		X. X	X	X	
	Cybele Heddle@teck.com	n								jennie.christensen@trichanalytics			Email:		100000	(flequin	CONTRACTOR OF THE PARTY OF			IX.	
Addres	s 421 Pine Ave		_			Address				207-1753 Sean Heights			Email 3: Email 4:	Teck Lab Results@leck.com Lisa Bowon@minnow.ca		X	V.	1			
Cit	v Sparwood	ood Province BC			City Postal Code			Saanichton Province BC			Email 5:		100000000000000000000000000000000000000	PATRICIA NAMED	menow ca	v	v	1			
Postal Cod			Country Canada								Email 6: PO number		Hannah Penterdi Teck com		X	X	X				
	1-250-865-3048			12000			Phone Number						VPO00								
		E DETA	ILS				-	-			ANAI	YSIS R	EQUES	FED			Fits	red - F: Fiel	d, L. Lab. 3	E Field a	i Lai
	Sample Location	Field	Hazardous Material (Yes/No)	100 A	Time	Tissue	Tissue	Sample	ANALYSIS PRESERV. PL	Number of Containers	Metals in Biota by CRC ICPMS (wet and dry)	Mercury in Biota by CVAAS (wet, dry & routine)	Moisture Content by Gravimetry								
8G_MI25_INV-1_2022-09-15_N -	(sys loc code)	Matrix	E	Date 15-Sep-22	(24hr) 9:00	inv	Species	Structure		1	X	X	X								1
RG_MI25_INV-2_2022-49-15_N /	RG_MI25	TA	7	15-Sep-22	10:00	INV	Composite	Composite		1	X	X	X								I
RG_MI25_INV-3_2022-09-15_N /	RG_M125	TA		15-Sep-22	11:00	INV	Composite	Composite		1	X	X	X								
RG_MIS_INV-1_2022-09-12_N /-	RG_MIS	TA		12-Sep-22	9:00	INV	Composite	Composite		1	X	x	X								
RG_MI5_INV-2_2022-09-12_N	RG_MIS	TA		12-Sep-22	10:00	INV	Composite	Composite		1	X	X	X								
RG_MI5_INV-3_2022-09-12_N	RG_MI5	TA	40	12-Sep-22	11:00	INV	Composite	Composite		1	X	X	X								
RG_MIDAG_INV-1_2022-09-13_N /	RG_MIDAG	TA	13	13-Sep-22	9:00	INV	Composite	Composite		1	X	X	X								
3 RG_MIDAG_INV-1_2022-09-13_N_	RG_MIDAG	TA	13	13-Sep-22	10:00	INV	Composite	Composite		1	X	X	X								
RG_MIDAG_INV-3_2022-09-13_N /	RG_MIDAG	TA		13-Sep-22	11:00	INV	Composite	Composite		1	X	x	X								
ADDITIONAL COMMENTS/SPECIAL INSTRUCTIONS PO 818999			RELINQUISHED I			Special Control of the Control of th			DATE/TIME ACCEPTED												
					ifer Ings	r Ings ##			Manusansan Alex			wade			24 9	20 20	11/	14:	IS		
												4		0	_	_					
																	10.	eut#:	2022	-20	0
PERMIT RECUERT	andriged to assert a billion	0.1					-		O-Part I								(110)	CUT HIS	wil	-0	1
SERVICE REQUEST (rush - subject to availability) Regular (default)				Sampler's Name Jennifer I					nes	Mobile #				5195003444							
Priority (2-3 business days) - 50% surcharge Emergency (1 Business Day) - 100% surcharge, For Emergency <1 Day, ASAP or Weekend				Sampler's Signature												3)(2)					

Page 3 of 4 **Teck** REP_LAEMP CMm 202 COC ID: TURNAROUND TIME: RUSH: **2-09 TRICH** PROJECT/CLIENT INFO LABORATORY OTHER INFO Facility Name / Job# Regional Effects Program Lab Name TrichAnalytics Inc. Report Format / Distribution Excel PDF EDD Project Manager Cybele Heddle Lab Contact Jennie Christensen Email 1: AquaSciLab@Teck.com Email Cybele.Heddle@teck.com Email jennie.christensen@trichanalytics Email 2: Address 421 Pine Ave Address 207-1753 Sean Heights Email 3: Email 4: City Sparwood Province BC City Saanichton Province BC Email 5: Postal Code V0B 2G0 Country Canada Postal Code Email 6: Phone Number 1-250-865-3048 Phone Number PO number VPO00818999 SAMPLE DETAILS ANALYSIS REQUESTED Filtered - F: Field, L: Lab, FL: Field & Lab, N: None Hazardous Material (Yes/No) Metals in Biota by CRC CPMS (wet and dry) by umber of Contain Mercury in I Sample Location Field Time Tissue Tissue Sample Tro Sample ID (sys loc code) Matrix Date (24hr) Species type Structure 485 RG_MIDCO_INV-1_2022-09-13_N RG MIDCO TA 13-Sep-22 9:00 INV 1 X X X Composite Composite RG_MIDCO_INV-2_2022-09-13_N V RG_MIDCO TA 13-Sep-22 10:00 INV Composite 1 X Composite X X RG_MIDCO_INV-3_2022-09-13_N RG_MIDCO TA 13-Sep-22 11:00 Composite Composite 1 X X X 488 RG_MIDCO_INV-4_2022-09-13_N RG MIDCO TA 13-Sep-22 9:00 INV 1 X Composite X X Composite RG MIDCO INV-5 2022-09-13 N RG_MIDCO TA 13-Sep-22 10:00 INV Composite Composite 1 X X X 190 RG_MIUCO_INV-1_2022-09-14_N -RG_MIUCO TA 14-Sep-22 INV 1 X 11:00 Composite Composite X X RG_MIUCO_INV-2_2022-09-14_N RG MIUCO TA 14-Sep-22 12:00 INV 1 X X X Composite Composite RG_MIUCO_INV-3_2022-09-14_N RG_MIUCO TA 14-Sep-22 13:00 1 INV X X Composite Composite X 493 RG_MIULE_INV-1_2022-09-12_N RG_MIULE TA 12-Sep-22 9:00 INV Composite X X ADDITIONAL COMMENTS/SPECIAL INSTRUCTIONS RELINQUISHED BY/AFFILIATION DATE/TIME ACCEPTED BY/AFFILIATION DATE/TIME PO 818999 Jennifer Ings ******* Alex Wade 21 Sep 2022 / 14:15 (Provert #: 2022 - 399)

Jennifer Ings

Mobile #

Date/Time

5195003444

September 19, 2022

SERVICE REQUEST (rush - subject to availability)

Regular (default)

Priority (2-3 business days) - 50% surcharge Emergency (1 Business Day) - 100% surcharge

For Emergency <1 Day, ASAP or Weekend

Sampler's Name

Sampler's Signature

4 of **Teck** REP LAEMP CMm 202 TURNAROUND TIME: RUSH: COC ID: 2-09 TRICH OTHER INFO LABORATORY PROJECT/CLIENT INFO Lab Name TrichAnalytics Inc. Report Format / Distribution Excel PDF EDD Facility Name / Job# Regional Effects Program Lab Contact Jennie Christensen Email 1: AquaSciLab@Teck.com Project Manager Cybele Heddle Email jennie christensen@trichanalytics Email 2: Email Cybele Heddle@teck.com teckcoal@equisonine.com Address 207-1753 Sean Heights Email 3: Address 421 Pine Ave Email 4: City Saanichton BC Province BC Email 5: Province City Sparwood Postal Code Email 6: Canada V0B 2G0 Country Postal Code VPO00818999 Phone Number PO number Phone Number 1-250-865-3048 Filtered - F: Field, L: Lab, FL: Field & Lab, N. Non-ANALYSIS REQUESTED SAMPLE DETAILS Hazardous Material (Yes/No) Mercury in I Tissue Sample Field Time Tissue Sample Location (sys loc code) Matrix Date (24hr) type Species Structure Sample ID X X X RG_MIULE_INV-2_2022-09-12_N RG_MIULE TA 12-Sep-22 10:00 INV Composite Composite X 1 X X INV Composite 95 RG_MIULE_INV-3_2022-09-12_N RG_MIULE TA 12-Sep-22 11:00 Composite X PIG RG_AGCK_INVOLI-1_2022-09-15_N / TA 15-Sep-22 9:0 INV INVOLU Composite RG_AGCK X 10:00 RG_AGCK TA 15-Sep-22 INV INVOLU Composite RG_AGCK_INVOLI-2_2022-09-15_N -INVOLE 15-Sep-22 11:00 INV Composite * RG_AGCK_INVOLE-3_2022-49-15_N RG_AGCK TA TA TA TA TA ACCEPTED BY/AFFILIATION DATE/TIME DATE/TIME ADDITIONAL COMMENTS/SPECIAL INSTRUCTIONS RELINQUISHED BY/AFFILIATION ******** PO 818999 Jennifer Ings Alex unde 21 500 2012 / 14:15 Provent # 2022-399 SERVICE REQUEST (rush - subject to availability) Regular (default) Mobile # 5195003444 Sampler's Name Jennifer Ings Priority (2-3 business days) - 50% surcharge frut Bra Emergency (| Business Day) - 100% surcharge Date/Time September 19, 2022 Sampler's Signature For Emergency <1 Day, ASAP or Weekend

APPENDIX G

Supplemental Figures

Table of Contents

G1.0 WA	TER QUALITY	1
G1.1	Spatial Trends	1
G1.2	Temporal Trends	.20
G2.0 SED	IMENT QUALITY	.47
G3.0 BEN	ITHIC INVERTEBRATE COMMUNITY	.72
G3.1	Correlations of Benthic Invertebrate Community Endpoints with Water Quality	.85
G4.0 HAE	BITAT COMPARISON	.92
G5.0 REF	ERENCES	.94
FIGURES		
	.1-1: Spatial Variation in Aqueous Aluminum Concentrations in Samples Collected from the CMm	1
	.1-2: Spatial Variation in Aqueous Antimony Concentrations in Samples Collected from the CMm 012 to 2022	2
	.1-3: Spatial Variation in Aqueous Arsenic Concentrations in Samples Collected from the CMm 012 to 2022	2
	.1-4: Spatial Variation in Aqueous Barium Concentrations in Samples Collected from the CMm 012 to 2022	3
	.1-5: Spatial Variation in Aqueous Beryllium Concentrations in Samples Collected from the CMm 012 to 2022	3
	.1-6: Spatial Variation in Aqueous Bismuth Concentrations in Samples Collected from the CMm 012 to 2022	4
	.1-7: Spatial Variation in Aqueous Boron Concentrations in Samples Collected from the CMm 012 to 2022	4
•	.1-8: Spatial Variation in Aqueous Cadmium Concentrations in Samples Collected from the CMm 012 to 2022	5
	.1-9: Spatial Variation in Aqueous Dissolved Cadmium Concentrations in Samples Collected from LAEMP, 2012 to 2022	5
	.1-10: Spatial Variation in Aqueous Chromium Concentrations in Samples Collected from the MP, 2012 to 2022	6
	.1-11: Spatial Variation in Aqueous Cobalt Concentrations in Samples Collected from the CMm	6

June 2023

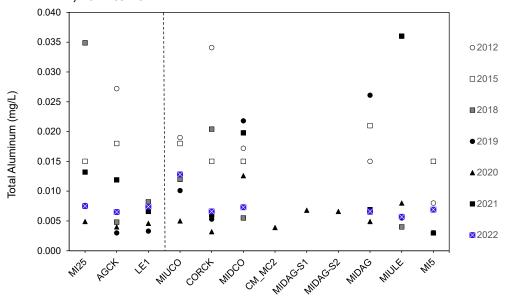
Figure G1.1-34: Spatial Variation in Nitrite in Samples Collected from the CMm LAEMP, 2012 to 2022	18
Figure G1.1-35: Spatial Variation in Total Dissolved Solids in Samples Collected from the CMm LAEMP, 2012 to 2022	19
Figure G1.2-1: Temporal Variation in Aqueous Aluminum Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022	20
Figure G1.2-2: Temporal Variation in Aqueous Antimony Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022	21
Figure G1.2-3: Temporal Variation in Aqueous Arsenic Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022	22
Figure G1.2-4: Temporal Variation in Aqueous Barium Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022	23
Figure G1.2-5: Temporal Variation in Aqueous Beryllium Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022	24
Figure G1.2-6: Temporal Variation in Aqueous Boron Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022	25
Figure G1.2-7: Temporal Variation in Aqueous Cadmium Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022	26
Figure G1.2-8: Temporal Variation in Aqueous Chromium Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022	27
Figure G1.2-9: Temporal Variation in Aqueous Cobalt Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022	28
Figure G1.2-10: Temporal Variation in Aqueous Copper Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022	29
Figure G1.2-11: Temporal Variation in Aqueous Iron Concentrations in Samples Collected from the CMm LAEMP, 2012 to2022	30
Figure G1.2-12: Temporal Variation in Aqueous Lead Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022	31
Figure G1.2-13: Temporal Variation in Aqueous Manganese Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022	32
Figure G1.2-14: Temporal Variation in Aqueous Mercury Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022	33
Figure G1.2-15: Temporal Variation in Aqueous Molybdenum Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022	34
Figure G1.2-16: Temporal Variation in Aqueous Phosphorus Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022	35
Figure G1.2-17: Temporal Variation in Aqueous Selenium Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022	36
Figure G1.2-18: Temporal Variation in Aqueous Silver Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022	37
Figure G1.2-19: Temporal Variation in Aqueous Uranium Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022	38

Figure G1.2-20: Temporal Variation in Aqueous Calcium Concentrations in Samples Collected from the CMm LAEMP, 2012 to 202239
Figure G1.2-21: Temporal Variation in Aqueous Potassium Concentrations in Samples Collected from the CMm LAEMP, 2012 to 202240
Figure G1.2-22: Temporal Variation in Aqueous Magnesium Concentrations in Samples Collected from the CMm LAEMP, 2012 to 202241
Figure G1.2-23: Temporal Variation in Hardness in Samples Collected from the CMm LAEMP, 2012 to 202242
Figure G1.2-24: Temporal Variation in Alkalinity in Samples Collected from the CMm LAEMP, 2012 to 202243
Figure G1.2-25: Temporal Variation in Sulphate in Samples Collected from the CMm LAEMP, 2012 to 202244
Figure G1.2-26: Temporal Variation in Nitrate in Samples Collected from the CMm LAEMP, 2012 to 202245
Figure G1.2-27: Temporal Variation in Nitrite in Samples Collected from the CMm LAEMP, 2012 to 202246
Figure G2.1-1: Spatial Variation in Sediment Aluminum Concentrations in Samples Collected from the CMm _AEMP, 2012 to 202247
Figure G2.1-2: Spatial Variation in Sediment Antimony Concentrations in Samples Collected from the CMm _AEMP, 2012 to 202247
Figure G2.1-3: Spatial Variation in Sediment Barium Concentrations in Samples Collected from the CMm _AEMP, 2012 to 202248
Figure G2.1-4: Spatial Variation in Sediment Beryllium Concentrations in Samples Collected from the CMm LAEMP, 2012 to 202248
Figure G2.1-5: Spatial Variation in Sediment Boron Concentrations in Samples Collected from the CMm _AEMP, 2012 to 202249
Figure G2.1-6: Spatial Variation in Sediment Calcium Concentrations in Samples Collected from the CMm _AEMP, 2012 to 202249
Figure G2.1-7: Spatial Variation in Sediment Cobalt Concentrations in Samples Collected from the CMm _AEMP, 2012 to 202250
Figure G2.1-8: Spatial Variation in Sediment Chromium Concentrations in Samples Collected from the CMm LAEMP, 2012 to 202250
Figure G2.1-9: Spatial Variation in Sediment Copper Concentrations in Samples Collected from the CMm _AEMP, 2012 to 202251
Figure G2.1-10: Spatial Variation in Sediment Lead Concentrations in Samples Collected from the CMm _AEMP, 2012 to 202251
Figure G2.1-11: Spatial Variation in Sediment Lithium Concentrations in Samples Collected from the CMm _AEMP, 2012 to 202252
Figure G2.1-12: Spatial Variation in Sediment Magnesium Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022
Figure G2.1-13: Spatial Variation in Sediment Molybdenum Concentrations in Samples Collected from the CMm LAEMP, 2012 to 202253
Figure G2.1-14: Spatial Variation in Sediment Phosphorus Concentrations in Samples Collected from the CMm LAEMP, 2012 to 202253

igure G2.1-15: Spatial Variation in Sediment Potassium Concentrations in Samples Collected from the Mm LAEMP, 2012 to 202254	4
igure G2.1-16: Spatial Variation in Sediment Silver Concentrations in Samples Collected from the CMm AEMP, 2012 to 202254	4
igure G2.1-17: Spatial Variation in Sediment Sodium Concentrations in Samples Collected from the CMm AEMP, 2012 to 202255	5
igure G2.1-18: Spatial Variation in Sediment Strontium Concentrations in Samples Collected from the Mm LAEMP, 2012 to 2022	5
igure G2.1-19: Spatial Variation in Sediment Sulfur Concentrations in Samples Collected from the CMm AEMP, 2012 to 2022	3
igure G2.1-20: Spatial Variation in Sediment Thallium Concentrations in Samples Collected from the CMm AEMP, 2012 to 2022	3
igure G2.1-21: Spatial Variation in Sediment Tin Concentrations in Samples Collected from the CMm AEMP, 2012 to 202257	7
igure G2.1-22: Spatial Variation in Sediment Titanium Concentrations in Samples Collected from the CMm AEMP, 2012 to 202257	7
igure G2.1-23: Spatial Variation in Sediment Tungsten Concentrations in Samples Collected from the :Mm LAEMP, 2012 to 2022	3
igure G2.1-24: Spatial Variation in Sediment Uranium Concentrations in Samples Collected from the CMm AEMP, 2012 to 2022	3
igure G2.1-25: Spatial Variation in Sediment Vanadium Concentrations in Samples Collected from the Mm LAEMP, 2012 to 2022	Э
igure G2.1-26: Spatial Variation in Sediment Zirconium Concentrations in Samples Collected from the Mm LAEMP, 2012 to 2022	9
igure G2.1-27: Spatial Variation in Sediment Acenaphthene Concentrations in Samples Collected from the Mm LAEMP, 2012 to 2022	S
igure G2.1-28: Spatial Variation in Sediment Acenaphthylene Concentrations in Samples Collected from ne CMm LAEMP, 2012 to 202260	c
igure G2.1-29: Spatial Variation in Sediment Acridine Concentrations in Samples Collected from the CMm AEMP, 2012 to 20226′	1
igure G2.1-30: Spatial Variation in Sediment Anthracene Concentrations in Samples Collected from the Mm LAEMP, 2012 to 20226	1
igure G2.1-31: Spatial Variation in Sediment Benzo(a)anthracene Concentrations in Samples Collected om the CMm LAEMP, 2012 to 2022	2
igure G2.1-32: Spatial Variation in Sediment Benzo(b,j)fluoranthene Concentrations in Samples Collected om the CMm LAEMP, 2012 to 202262	2
igure G2.1-33: Spatial Variation in Sediment Benzo(b,j,k)fluoranthene Concentrations in Samples collected from the CMm LAEMP, 2012 to 202263	3
igure G2.1-34: Spatial Variation in Sediment Benzo(e)pyrene Concentrations in Samples Collected from ne CMm LAEMP, 2012 to 202263	

Figure G2.1-35: Spatial Variation in Sediment Benzo(g,h,i)perylene Concentrations in Samples Collected from the CMm LAEMP, 2012 to 202264
Figure G2.1-36: Spatial Variation in Sediment Chrysene Concentrations in Samples Collected from the CMm LAEMP, 2012 to 202264
Figure G2.1-37: Spatial Variation in Sediment Dibenzo(a,h)anthracene Concentrations in Samples Collected from the CMm LAEMP, 2012 to 202265
Figure G2.1-38: Spatial Variation in Sediment Fluorene Concentrations in Samples Collected from the CMm LAEMP, 2012 to 202265
Figure G2.1-39: Spatial Variation in Sediment Fluoranthene Concentrations in Samples Collected from the CMm LAEMP, 2012 to 202266
Figure G2.1-40: Spatial Variation in Sediment Ideno(1,2,3-c,d)pyrene Concentrations in Samples Collected from the CMm LAEMP, 2012 to 202266
Figure G2.1-41: Spatial Variation in Sediment 1-Methtylnaphthalene Concentrations in Samples Collected from the CMm LAEMP, 2012 to 202267
Figure G2.1-42: Spatial Variation in Sediment 2-Methtylnaphthalene Concentrations in Samples Collected from the CMm LAEMP, 2012 to 202267
Figure G2.1-43: Spatial Variation in Sediment Naphthalene Concentrations in Samples Collected from the CMm LAEMP, 2012 to 202268
Figure G2.1-44: Spatial Variation in Sediment Phenanthrene Concentrations in Samples Collected from the CMm LAEMP, 2012 to 202268
Figure G2.1-45: Spatial Variation in Sediment Pyrene Concentrations in Samples Collected from the CMm LAEMP, 2012 to 202269
Figure G2.1-46: Spatial Variation in Sediment Quinoline Concentrations in Samples Collected from the CMm LAEMP, 2012 to 202269
Notes: Open symbols represent non-detects69
Figure G2.1-47: Spatial Variation in Sediment Quinoline Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022
Figure G2.1-48: Spatial Variation in Sediment Quinoline Concentrations in Samples Collected from the CMm LAEMP, 2012 to 202270
Figure G2.1-49: Spatial Variation in Sediment Quinoline Concentrations in Samples Collected from the CMm LAEMP, 2012 to 202271
Figure G3.1-1: Benthic Invertebrate Taxonomic Richness (Lowest Possible Level) in Samples Collected from the CMm LAEMP, 2012 to 202272
Figure G3.1-2: Benthic Invertebrate Abundance in Samples Collected from the CMm LAEMP, 2012 to 202273
Figure G3.1-3: Percent Ephemeroptera, Plecoptera, Trichoptera in Samples Collected from the CMm LAEMP, 2012 to 202274
Figure G3.1-4: Percent Ephemeroptera in Samples Collected from the CMm LAEMP, 2012 to 202275
Figure G3.1-5: Percent Plecoptera in Samples Collected from the CMm LAEMP, 2012 to 202276
Figure G3.1-6: Percent Trichoptera in Samples Collected from the CMm LAEMP, 2012 to 202277

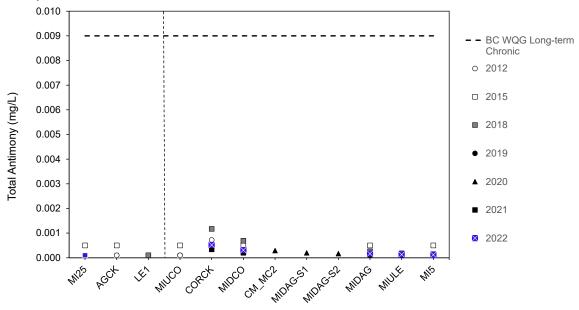
Figure G3.1-7: Ephemeroptera, Plecoptera, Trichoptera Abundance in Samples Collected from the CMm LAEMP, 2012 to 2022	.78
Figure G3.1-8: Ephemeroptera Abundance in Samples Collected from the CMm LAEMP, 2012 to 2022	.79
Figure G3.1-9: Plecoptera Abundance in Samples Collected from the CMm LAEMP, 2012 to 2022	.80
Figure G3.1-10: Trichoptera Abundance in Samples Collected from the CMm LAEMP, 2012 to 2022	.81
Figure G3.1-11: Baetidae Abundance in Samples Collected from the CMm LAEMP, 2012 to 2022	82
Figure G3.1-12: Ephemerellidae Abundance in Samples Collected from the CMm LAEMP, 2012 to 2022	.83
Figure G3.1-13: Heptageniidae Abundance in Samples Collected from the CMm LAEMP, 2012 to 2022	.84
Figure G3.2-1: Proportion of Ephemeroptera, Plecoptera, and Trichoptera versus Aqueous Cobalt (left panel) and Proportion of Ephemeroptera versus Aqueous Cobalt (right panel) Concentrations from the CMm LAEMP Study Area, 2012 to 2022	.85
Figure G3.2-2: Proportion of Ephemeroptera, Plecoptera, and Trichoptera versus Aqueous Sulphate (left panel) and Proportion of Ephemeroptera versus Aqueous Sulphate (right panel) Concentrations from the CMm LAEMP Study Area, 2012 to 2022	.86
Figure G3.2-3: Proportion of Ephemeroptera, Plecoptera, and Trichoptera versus Aqueous Nitrate (left panel) and Proportion of Ephemeroptera versus Aqueous Nitrate (right panel) Concentrations from the CMm LAEMP Study Area, 2012 to 2022	.87
Figure G3.2-4: Proportion of Ephemeroptera, Plecoptera, and Trichoptera versus Aqueous Nitrite (left panel) and Proportion of Ephemeroptera versus Aqueous Nitrite (right panel) Concentrations from the CMm LAEMP Study Area, 2012 to 2022	.88
Figure G3.2-5: Proportion of Ephemeroptera, Plecoptera, and Trichoptera versus Aqueous Calcium (left panel) and Proportion of Ephemeroptera versus Aqueous Calcium (right panel) Concentrations from the CMm LAEMP Study Area, 2012 to 2022	.89
Figure G3.2-6: Proportion of Ephemeroptera, Plecoptera, and Trichoptera versus Aqueous Total Manganese (left panel) and Proportion of Ephemeroptera versus Aqueous Total Manganese (right panel) Concentrations from the CMm LAEMP Study Area, 2012 to 2022	.90
Figure G3.2-7: Proportion of Ephemeroptera, Plecoptera, and Trichoptera versus Aqueous Total Molybdenum (left panel) and Proportion of Ephemeroptera versus Aqueous Total Molybdenum (right panel) Concentrations from the CMm LAEMP Study Area, 2012 to 2022	.91
Figure G4.1-1: Proportion of Ephemeroptera, Plecoptera, and Trichoptera Compared to Substrate Composition in the CMm LAEMP Study Area, 2018 and 2022	.92
Figure G4.1-2: Proportion of Ephemeroptera Compared to Substrate Composition in the CMm LAEMP Study Area, 2018 and 2022	.93



G SUPPLEMENTARY FIGURES

G1.0 WATER QUALITY

G1.1 Spatial Trends


Figure G1.1-1: Spatial Variation in Aqueous Aluminum Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

Note: Long-term BC WQG not shown (0.083 to 0.105 mg/L). mg/L = milligrams per litre; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.

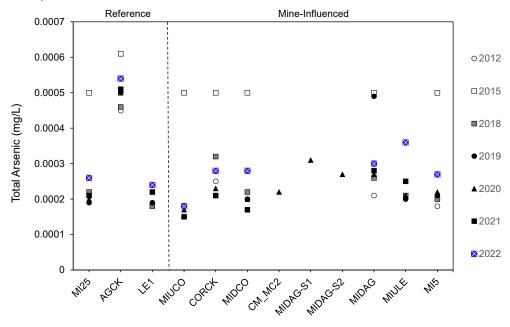
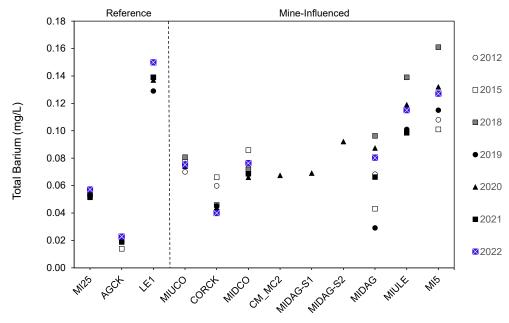


Figure G1.1-2: Spatial Variation in Aqueous Antimony Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

mg/L = milligrams per litre; BC WQG = British Columbia water quality guideline; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.


Figure G1.1-3: Spatial Variation in Aqueous Arsenic Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

Note: Short-term BC WQG not shown (0.005 mg/L). mg/L = milligrams per litre; BC WQG = British Columbia water quality guideline; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.

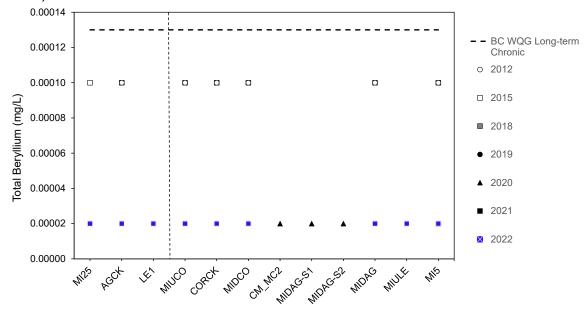
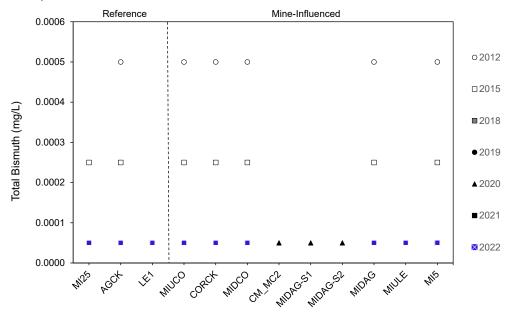


Figure G1.1-4: Spatial Variation in Aqueous Barium Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

Note: Long-term BC WQG (1.0 mg/L) not shown. mg/L = milligrams per litre; BC WQG = British Columbia water quality guideline; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.


Figure G1.1-5: Spatial Variation in Aqueous Beryllium Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

Note: mg/L = milligrams per litre; BC WQG = British Columbia water quality guideline; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.

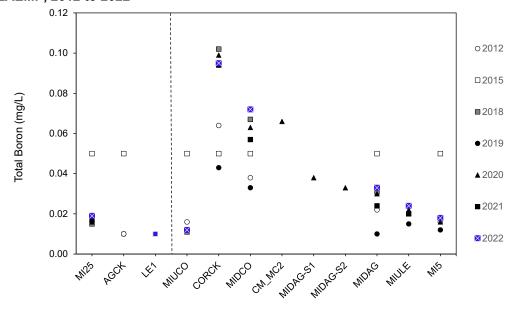
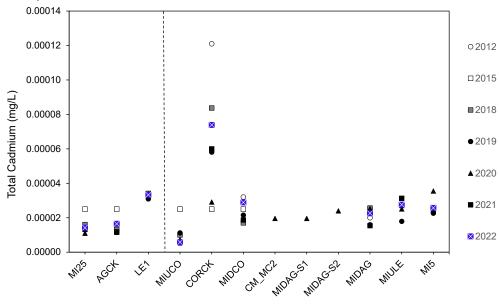


Figure G1.1-6: Spatial Variation in Aqueous Bismuth Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

Note: Environment and Climate Change Canada Federal Environmental Quality Guideline (0.0005 mg/L) not shown. mg/L = milligrams per litre; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.


Figure G1.1-7: Spatial Variation in Aqueous Boron Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

Note: Long-term BC WQG not shown (1.2 mg/L). mg/L = milligrams per litre; BC WQG = British Columbia water quality guideline; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.

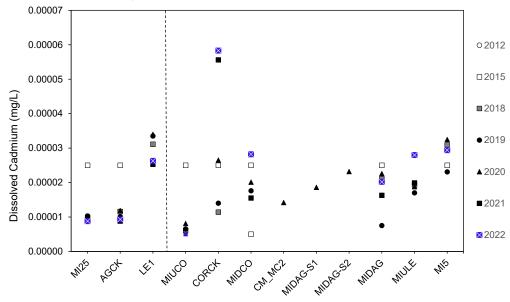
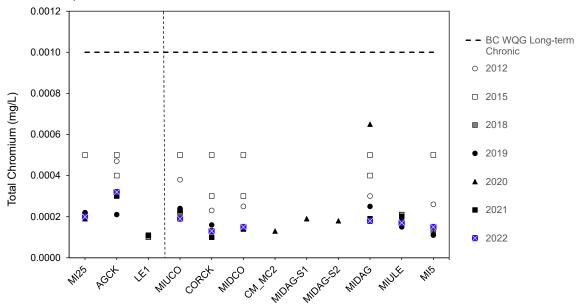


Figure G1.1-8: Spatial Variation in Aqueous Cadmium Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

mg/L = milligrams per litre; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.

Figure G1.1-9: Spatial Variation in Aqueous Dissolved Cadmium Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022



Note: Elk Valley Water Quality Plan benchmark for dissolved cadmium (i.e., invertebrate benchmark equal to 0.00015 to 0.00032 mg/L) not shown

mg/L = milligrams per litre; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.

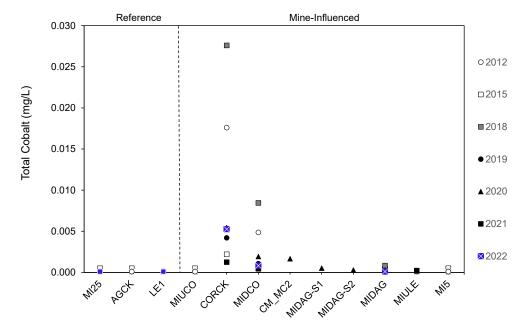
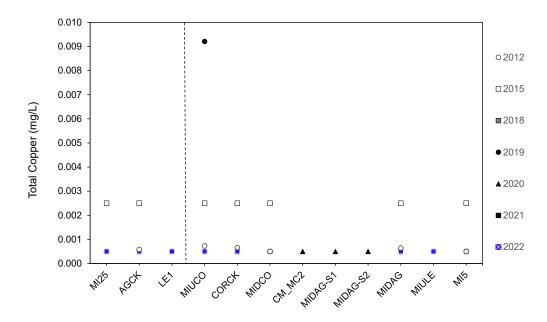


Figure G1.1-10: Spatial Variation in Aqueous Chromium Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

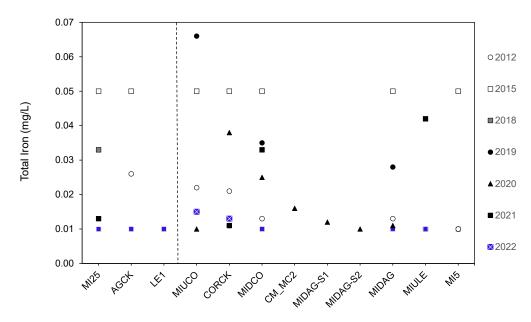
mg/L = milligrams per litre; BC WQG = British Columbia water quality guideline; EVWQP = Elk Valley Water Quality Plan; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.

Figure G1.1-11: Spatial Variation in Aqueous Cobalt Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2021



Notes: Short-term BC WQG not shown (0.11 mg/L).

mg/L = milligrams per litre; BC WQG = British Columbia water quality guideline; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.


Figure G1.1-12: Spatial Variation in Aqueous Copper Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

mg/L = milligrams per litre; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.

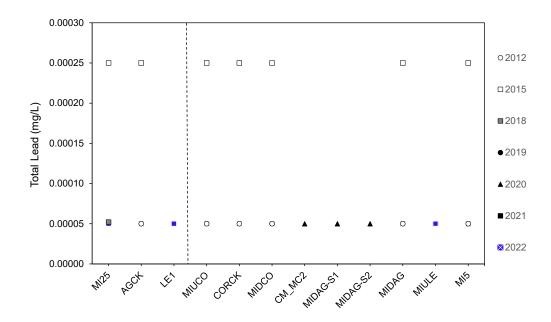
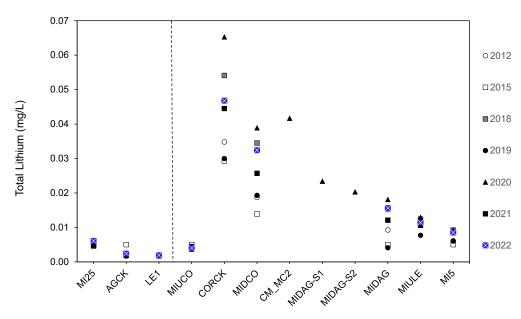


Figure G1.1-13: Spatial Variation in Aqueous Iron Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

Note: Short-term BC WQG not shown (1.0 mg/L). mg/L = milligrams per litre; BC WQG = British Columbia water quality guideline; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.


Figure G1.1-14: Spatial Variation in Aqueous Lead Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

Note: Long-term BC WQG (hardness dependent; 0.007 to 0.020 mg/L) and the short-term BC WQG (0.093 to 0.417 mg/L) not shown. mg/L = milligrams per litre; BC WQG = British Columbia water quality guideline; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.

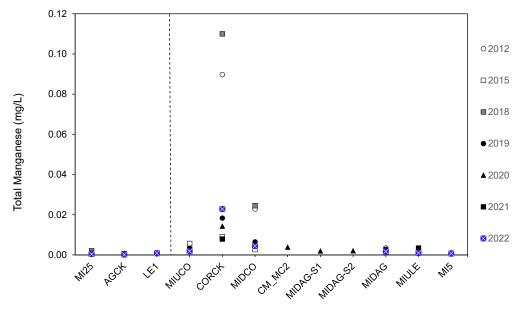
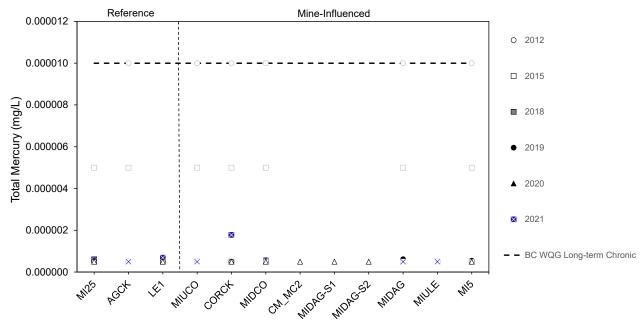


Figure G1.1-15: Spatial Variation in Aqueous Lithium Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

Note: Environment and Climate Change Canada predicted no effect concentration (0.12 mg/L) not shown. mg/L = milligrams per litre; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.


Figure G1.1-16: Spatial Variation in Aqueous Manganese Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

Note: Long-term BC WQG (hardness dependent; 1.1 to 2.6 mg/L) and short-term BC WQG (1.8 to 3.4 mg/L) not shown. mg/L = milligrams per litre; BC WQG = British Columbia water quality guideline; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.

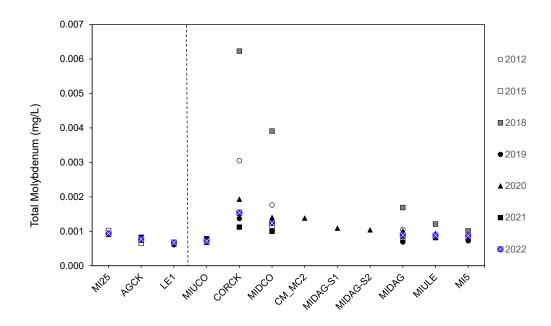
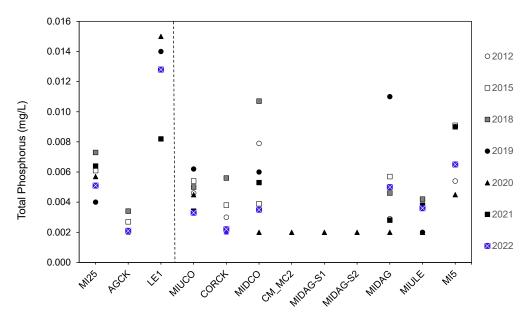


Figure G1.1-17: Spatial Variation in Aqueous Mercury Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

Note: Long-term BC WQG (0.00001 mg/L) not shown. mg/L = milligrams per litre; BC WQG = British Columbia water quality guideline; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.

Figure G1.1-18: Spatial Variation in Aqueous Molybdenum Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022


Notes: BC long-term WQG (7.6 mg/L) and BC short-term WQG (46 mg/L) not shown. mg/L = milligrams per litre; BC WQG = British Columbia water quality guideline; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.

June 2023

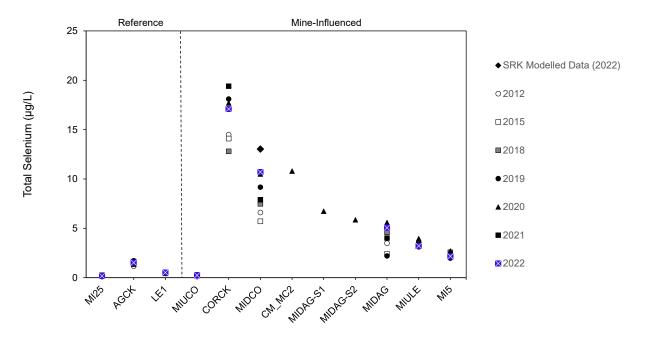
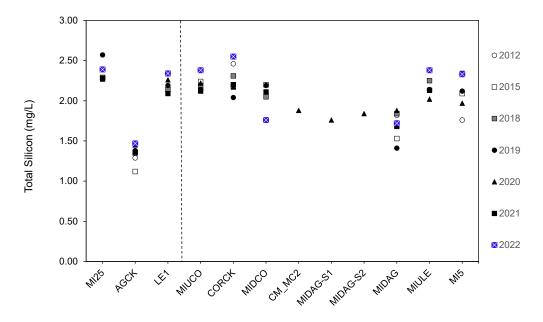

Supplementary Figures

Figure G1.1-19: Spatial Variation in Aqueous Phosphorus Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

mg/L = milligrams per litre; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.


Figure G1.1-20: Spatial Variation in Total Selenium Concentrations Collected from the CMm, 2012 to 2022

Notes: CMm = Coal Mountain Mine; μ g/L = micrograms per litre; BC WQG = British Columbia water quality guideline.

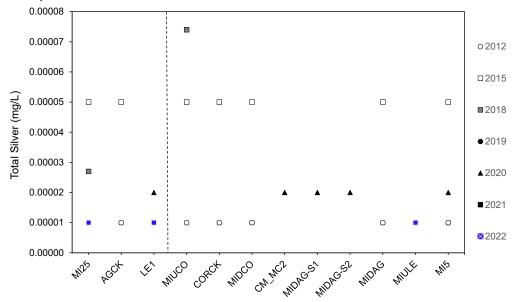
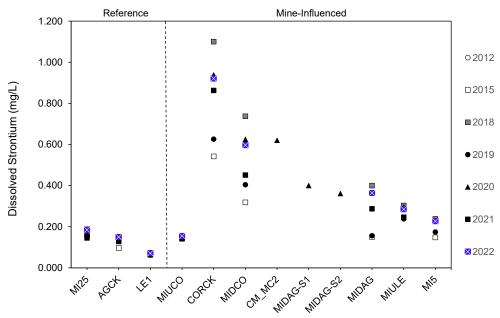


Figure G1.1-21: Spatial Variation in Aqueous Silicon Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

mg/L = milligrams per litre; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.


Figure G1.1-22: Spatial Variation in Aqueous Silver Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

Note: Long-term BC WQG (0.0015 mg/L) and short-term BC WQG (0.003 mg/L) not shown. mg/L = milligrams per litre; BC WQG = British Columbia water quality guideline; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.

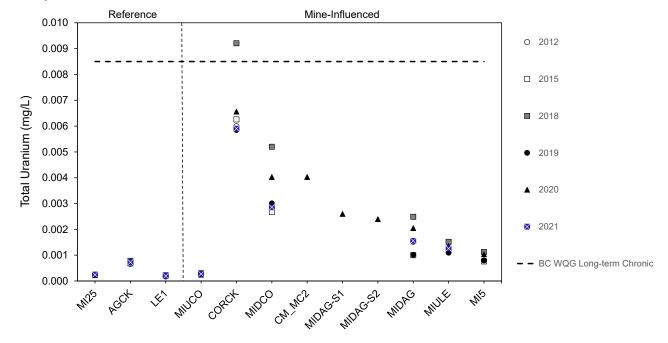
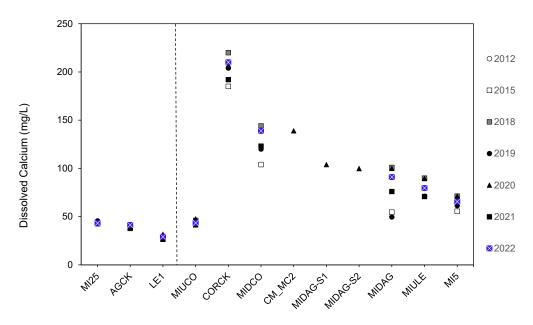


Figure G1.1-23: Spatial Variation in Aqueous Strontium Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

Note: Environment and Climate Change Canada predicted no effect concentration (2.5 mg/L) not shown. mg/L = milligrams per litre; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.


Figure G1.1-24: Spatial Variation in Aqueous Uranium Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2020

mg/L = milligrams per litre; BC WQG = British Columbia water quality guideline; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.

Figure G1.1-25: Spatial Variation in Aqueous Calcium Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

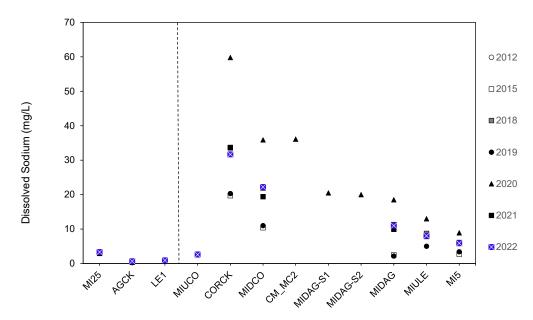

mg/L = milligrams per litre; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.

Figure G1.1-26: Spatial Variation in Aqueous Potassium Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

Figure G1.1-27: Spatial Variation in Aqueous Sodium Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

mg/L = milligrams per litre; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.

Figure G1.1-28: Spatial Variation in Aqueous Magnesium Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

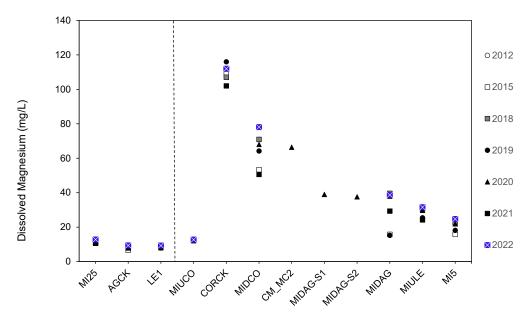
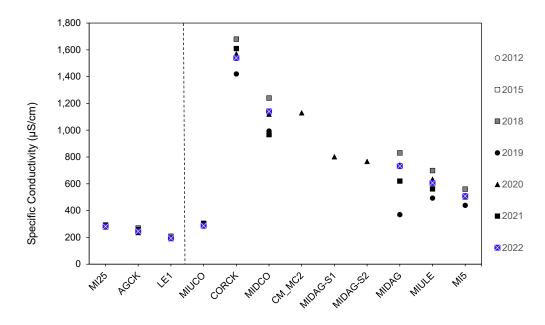



Figure G1.1-29: Spatial Variation in Specific Conductivity in Samples Collected from the CMm LAEMP, 2012 to 2022

µs/cm = microsiemens per centimeter; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.

Figure G1.1-30: Spatial Variation in Hardness in samples collected from the CMm LAEMP, 2012 to 2022

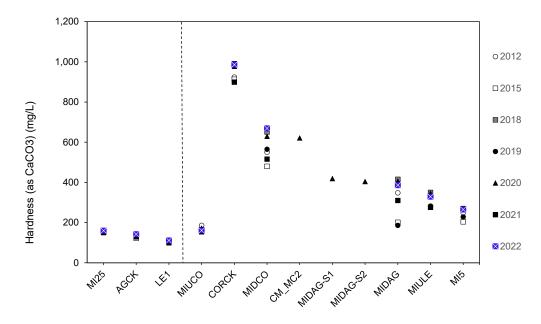
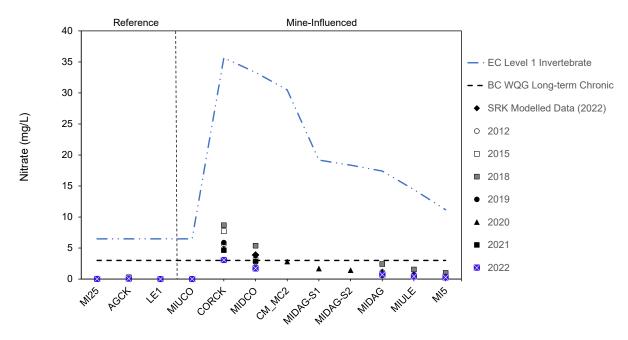





Figure G1.1-31: Spatial Variation in Alkalinity in Samples Collected from the CMm LAEMP, 2012 to 2022

mg/L = milligrams per litre; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.


Figure G1.1-32: Spatial Variation in Sulphate Concentrations Collected from the CMm LAEMP, 2012 to 2022

Notes: The sulphate WQG guideline is hardness-dependent and calculated based on hardness observed in 2022. CMm = Coal Mountain Mine; EC = effects concentration; mg/L = milligrams per litre; BC WQG = British Columbia water quality guideline.

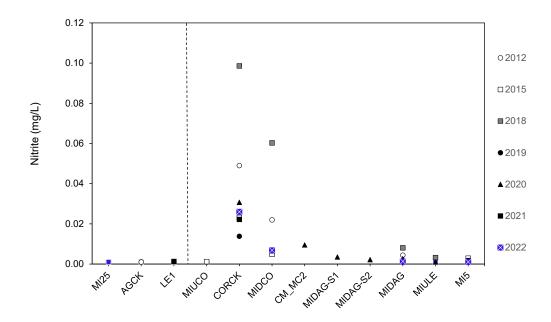
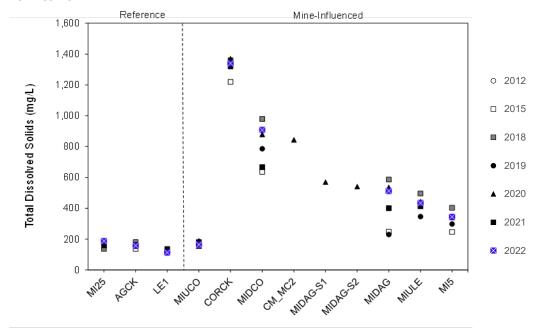


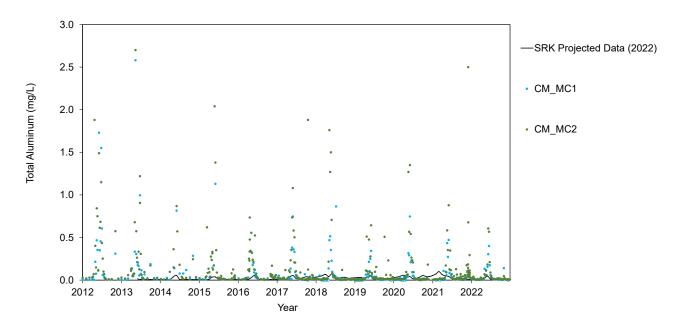
Figure G1.1-33: Spatial Variation in Nitrate Concentrations Collected from the CMm LAEMP, 2012 to 2022

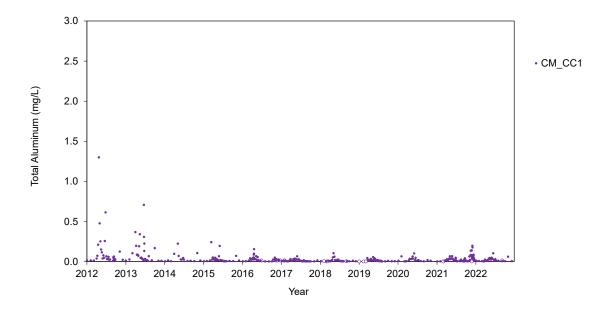
Notes: The nitrate effect concentrations are hardness-dependent and calculated based on hardness observed in 2022. CMm = Coal Mountain Mine; EC = effects concentrations; mg/L = milligrams per litre; WQG = water quality guideline.


Figure G1.1-34: Spatial Variation in Nitrite in Samples Collected from the CMm LAEMP, 2012 to 2022

Note: Long-term BC WQG (0.02 mg/L) and short-term BC WQG (0.06 mg/L) not shown. mg/L = milligrams per litre; BC WQG = British Columbia water quality guideline; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.

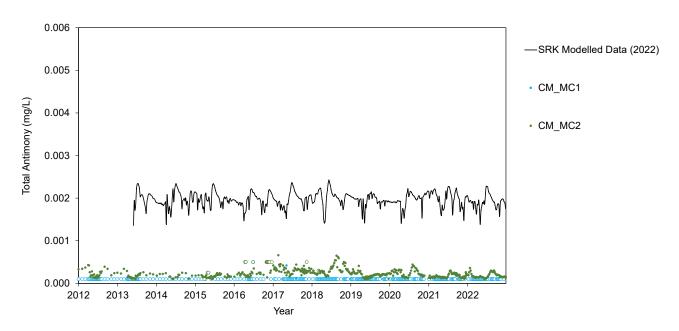
Figure G1.1-35: Spatial Variation in Total Dissolved Solids in Samples Collected from the CMm LAEMP, 2012 to 2022

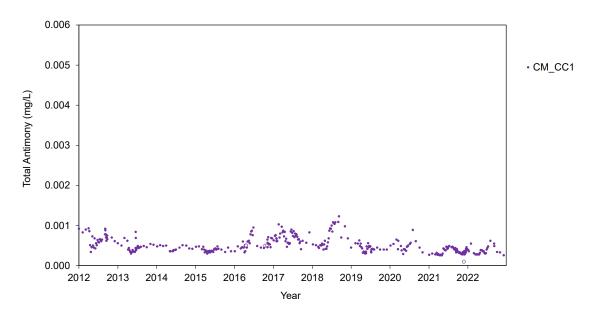



mg/L = milligrams per litre; BC WQG = British Columbia water quality guideline; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.

G1.2 Temporal Trends

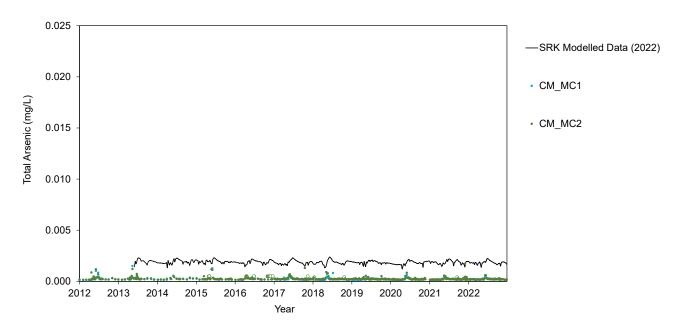
Figure G1.2-1: Temporal Variation in Aqueous Aluminum Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

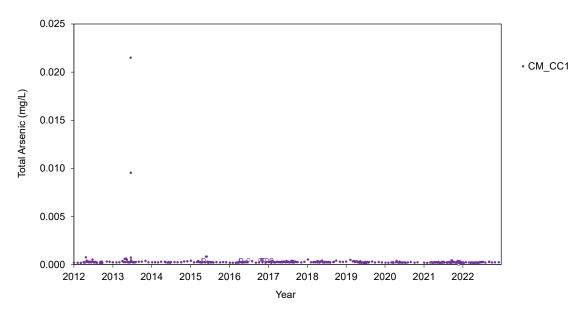




Note: Open symbols represent non-detects. SRK modelled projections for dissolved aluminum are included for comparison (SRK 2023). Two points not shown in the bottom panel (6.3 and 15.2 mg/L in June 2013). SRK modelled data are represented by the solid black line in the upper panel.

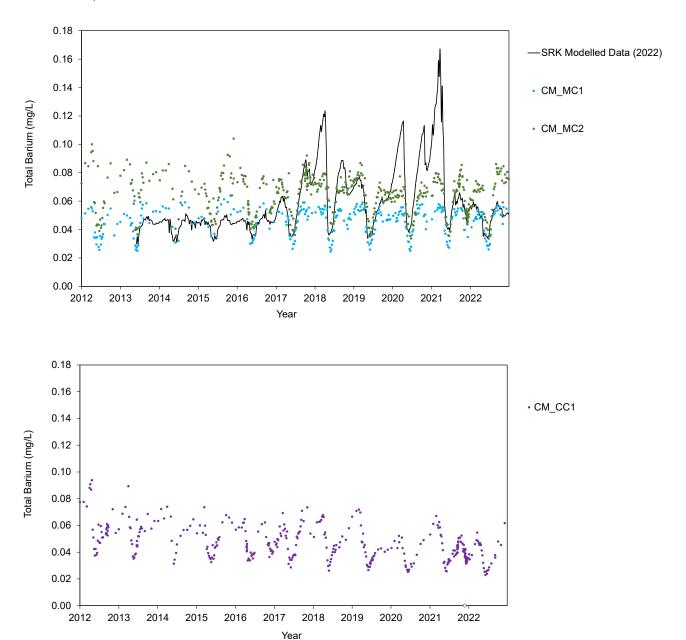
Figure G1.2-2: Temporal Variation in Aqueous Antimony Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022



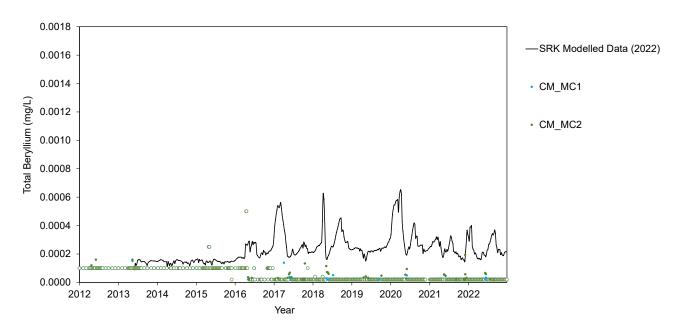

Notes: Open symbols represent non-detects. Long-term BC WQG not shown (0.009 mg/L). SRK modelled are included for comparison (SRK 2023).

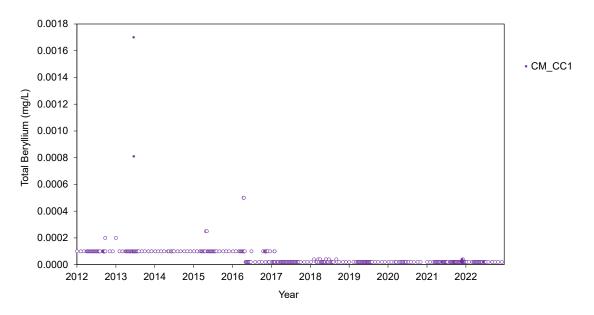
mg/L = milligrams per litre; BC WQG = British Columbia water quality guideline; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.

Figure G1.2-3: Temporal Variation in Aqueous Arsenic Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022



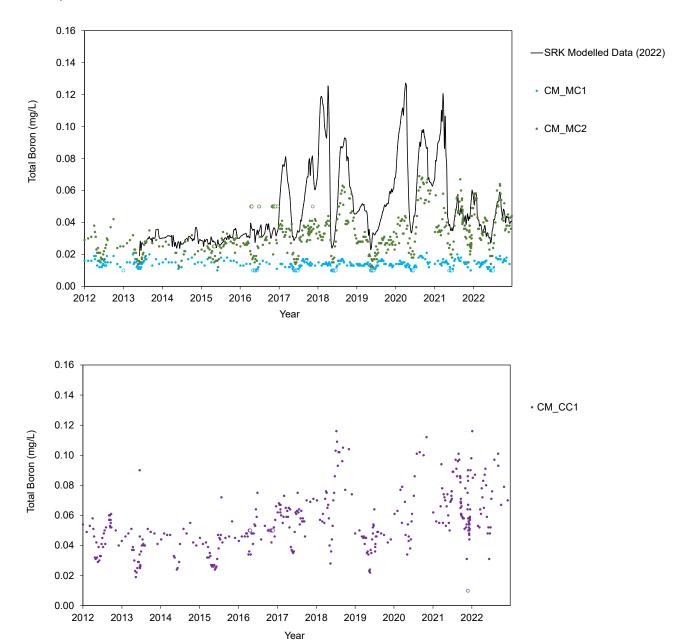
Note: Open symbols represent non-detects. SRK modelled projections for dissolved arsenic are included for comparison (SRK 2023). SRK modelled data are represented by the solid black line in the upper panel.


Figure G1.2-4: Temporal Variation in Aqueous Barium Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

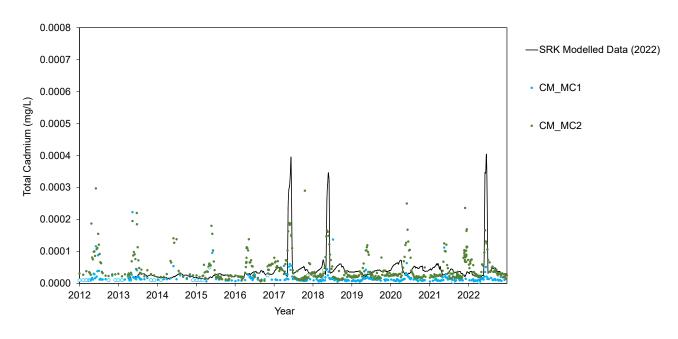


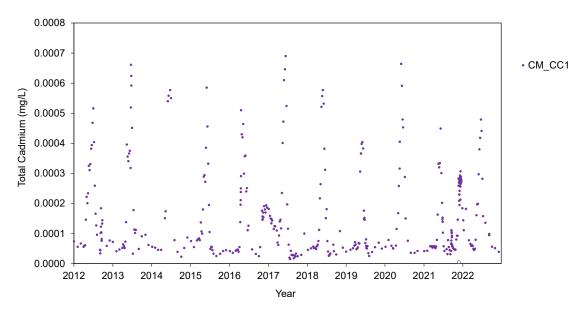
Note: Open symbols represent non-detects. SRK modelled projections for dissolved barium are included for comparison (SRK 2023). Two points not shown in the bottom panel (0.52 and 1.57 mg/L in June 2013). SRK modelled data are represented by the solid black line in the upper panel.

Figure G1.2-5: Temporal Variation in Aqueous Beryllium Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022



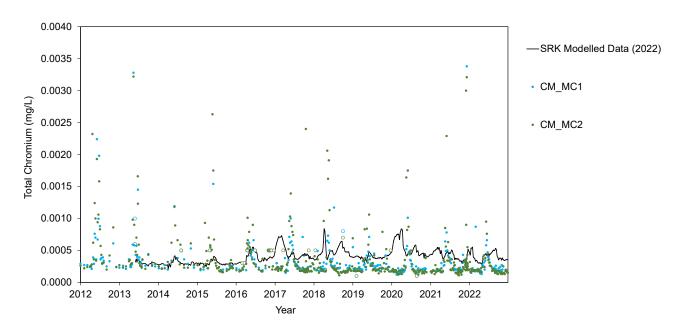
Note: Open symbols represent non-detects. SRK modelled projections for dissolved beryllium are included for comparison (SRK 2023). One point not shown in the bottom panel (0.0017 mg/L in June 2013). SRK modelled data are represented by the solid black line in the upper panel.

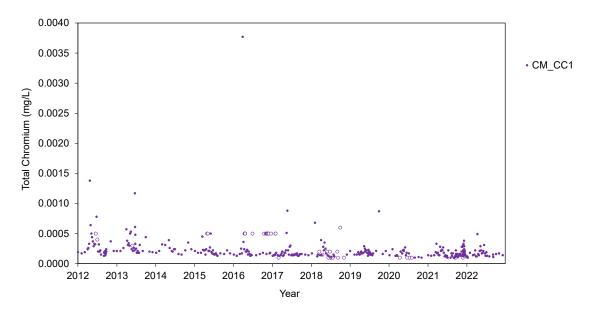

Figure G1.2-6: Temporal Variation in Aqueous Boron Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022



Note: Open symbols represent non-detects. SRK modelled projections for dissolved boron are included for comparison (SRK 2023). SRK modelled data are represented by the solid black line in the upper panel.

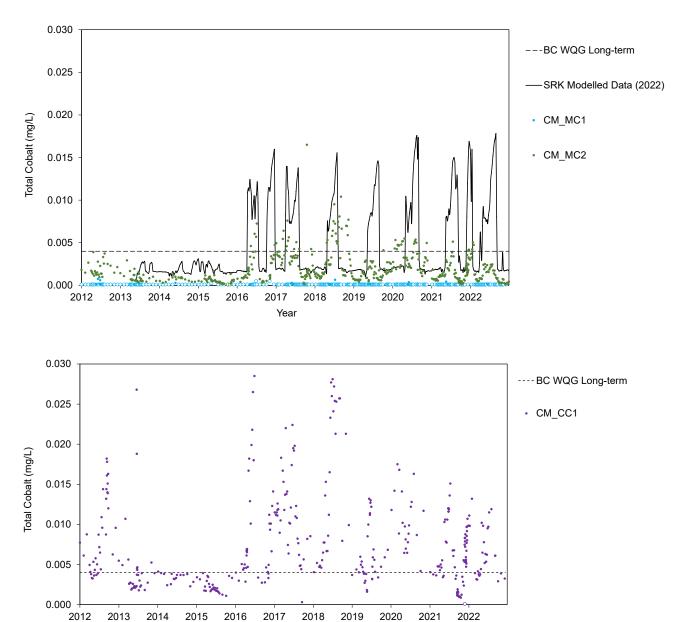
Figure G1.2-7: Temporal Variation in Aqueous Cadmium Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022





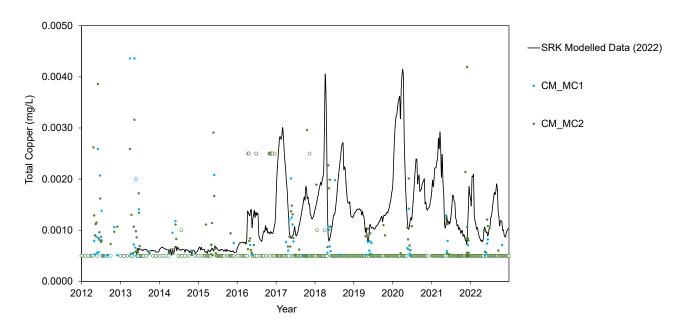
Note: Open symbols represent non-detects. SRK modelled projections for dissolved cadmium are included for comparison (SRK 2023). Two points not shown in the bottom panel (0.00169 and 0.00219 mg/L in June 2013). SRK modelled data are represented by the solid black line in the upper panel.

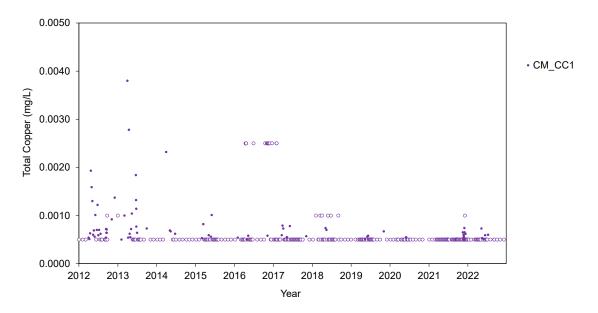
Figure G1.2-8: Temporal Variation in Aqueous Chromium Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022



Note: Open symbols represent non-detects. SRK modelled projections for dissolved chromium are included for comparison (SRK 2023). Two points not shown in the bottom panel (0.0108 and 0.0251 mg/L in June 2013). SRK modelled data are represented by the solid black line in the upper panel.

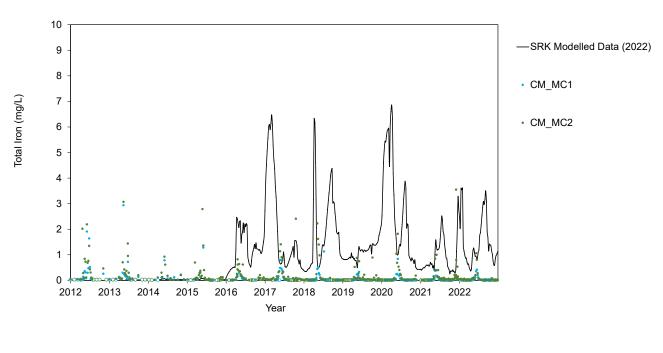
Figure G1.2-9: Temporal Variation in Aqueous Cobalt Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

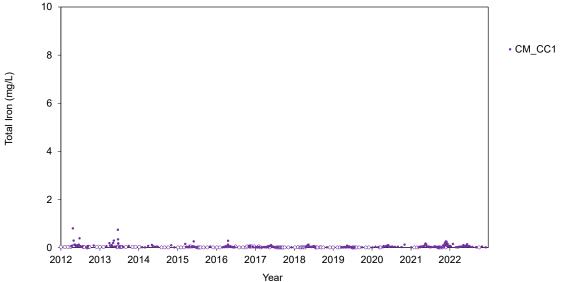

Notes: Open symbols indicate non-detects. SRK modelled projections for dissolved cobalt were included for comparisons to total cobalt (SRK 2023). SRK modelled data are represented by the solid black line in the upper panel.


BC WQG = British Columbia water quality guideline; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.

Year

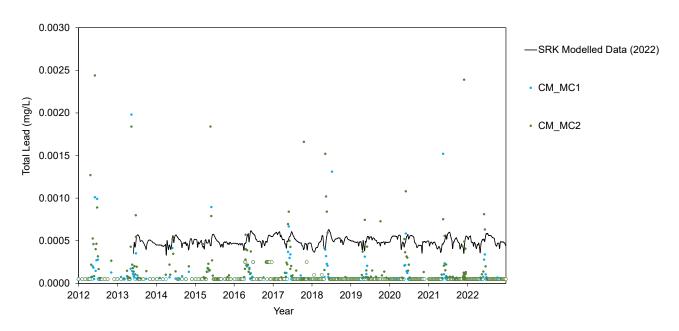
Figure G1.2-10: Temporal Variation in Aqueous Copper Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

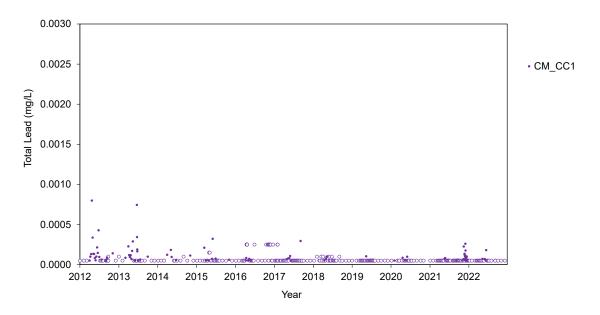




Note: Open symbols represent non-detects. SRK modelled projections for dissolved copper are included for comparison (SRK 2023). Two points not shown in the bottom panel (0.0255 and 0.0593 mg/L in June 2013). SRK modelled data are represented by the solid black line in the upper panel.

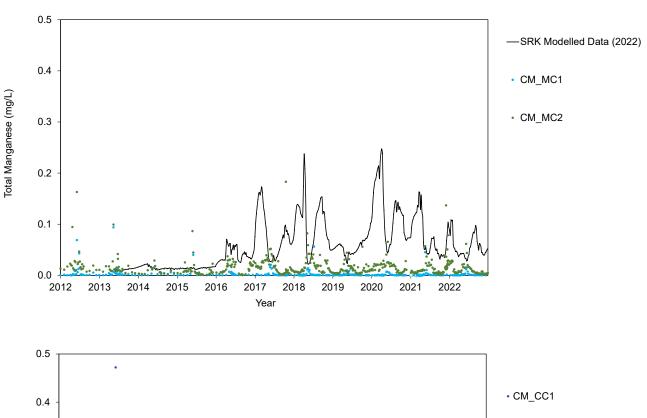
Figure G1.2-11: Temporal Variation in Aqueous Iron Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

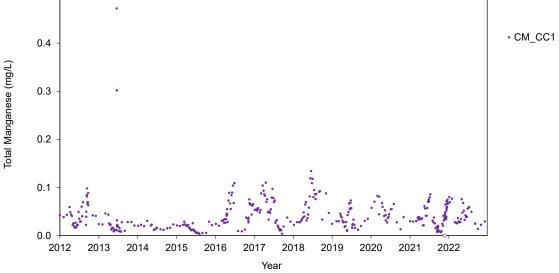




Note: Open symbols represent non-detects. SRK modelled projections for dissolved iron are included for comparison (SRK 2023). Two points not shown in the bottom panel (12.4 and 25 mg/L in June 2013). SRK modelled data are represented by the solid black line in the upper panel.

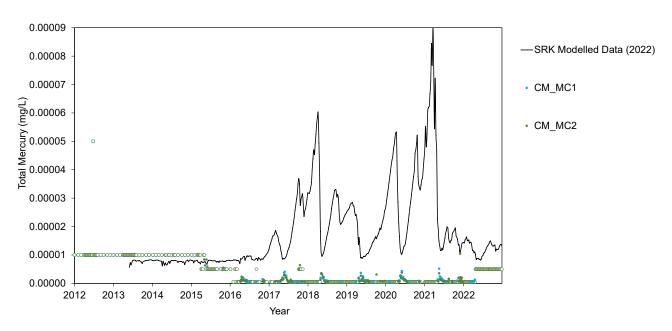
Figure G1.2-12: Temporal Variation in Aqueous Lead Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

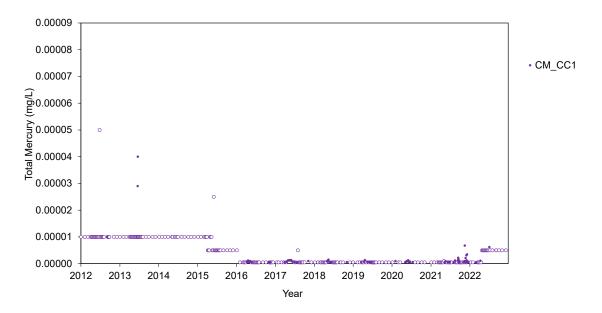




Note: Open symbols represent non-detects. SRK modelled projections for dissolved lead are included for comparison (SRK 2023). Two points not shown in the bottom panel (0.0132 and 0.0284 mg/L in June 2013). SRK modelled data are represented by the solid black line in the upper panel.

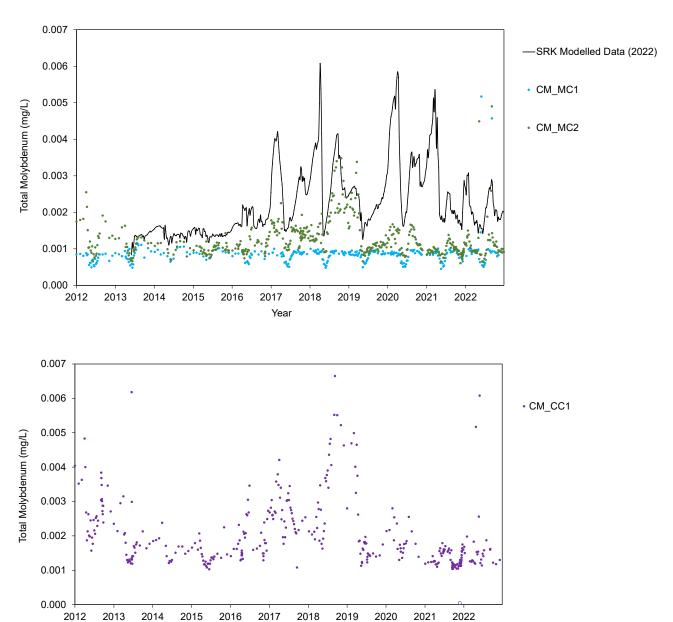
Figure G1.2-13: Temporal Variation in Aqueous Manganese Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022





Note: Open symbols represent non-detects. SRK modelled projections for dissolved manganese are included for comparison (SRK 2023). SRK modelled data are represented by the solid black line in the upper panel.

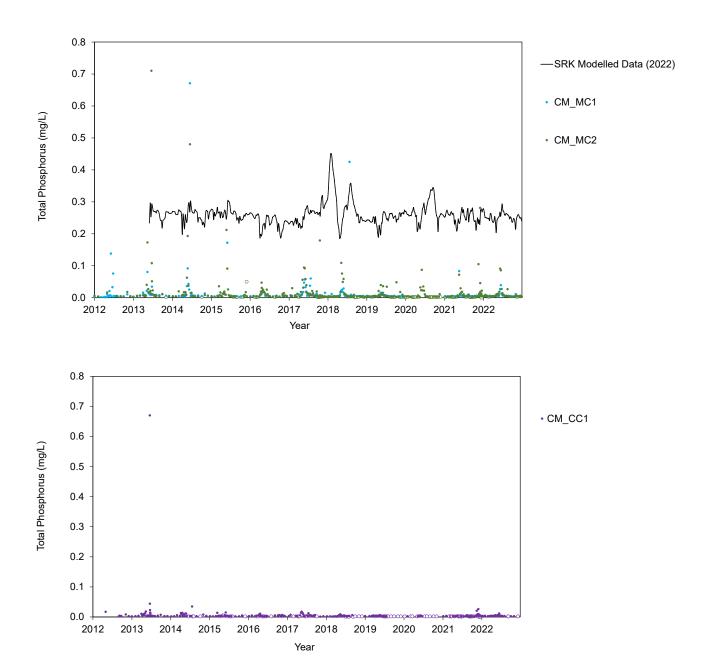
Figure G1.2-14: Temporal Variation in Aqueous Mercury Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022



Note: Open symbols represent non-detects. SRK modelled projections are included for comparison (SRK 2023). mg/L = milligrams per litre; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.

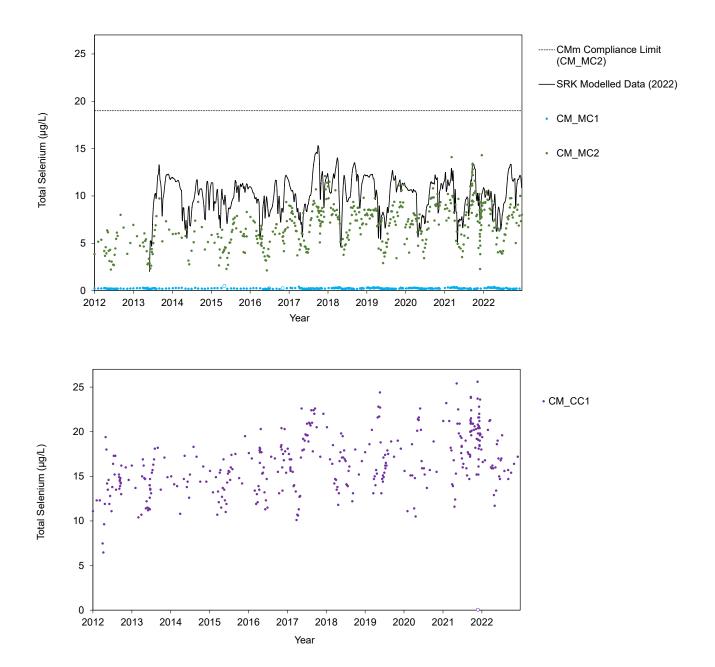
June 2023

Figure G1.2-15: Temporal Variation in Aqueous Molybdenum Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

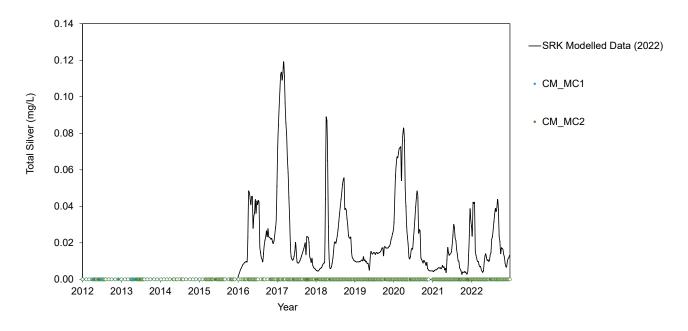

Note: Open symbols represent non-detects. SRK modelled projections for dissolved molybdenum are included for comparison (SRK 2023). SRK modelled data are represented by the solid black line in the upper panel.

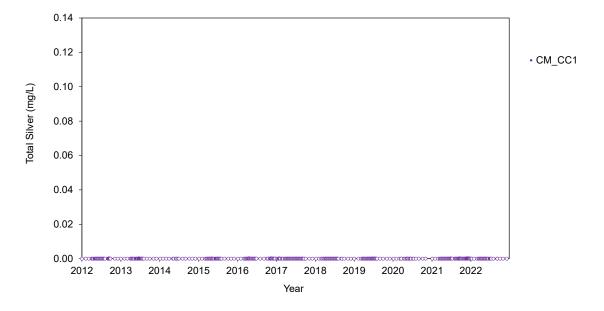
mg/L = milligrams per litre; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.

Year


Figure G1.2-16: Temporal Variation in Aqueous Phosphorus Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

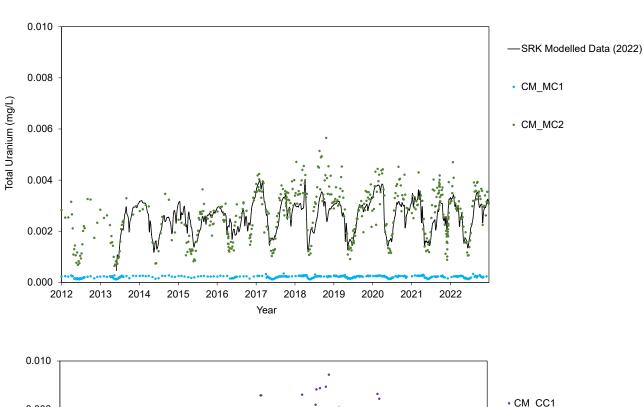
Note: Open symbols represent non-detects. One point not shown in the bottom panel (1.52 mg/L in June 2013). SRK modelled projections are included for comparison (SRK 2023).

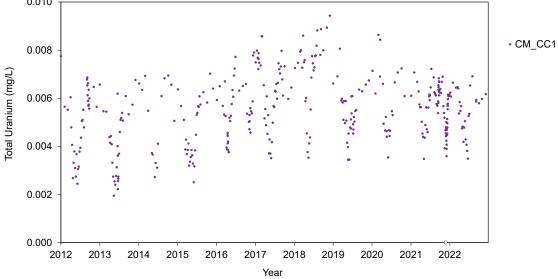

Figure G1.2-17: Temporal Variation in Aqueous Selenium Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022



Notes: SRK modelled projections for dissolved selenium (SRK 2023). These projections were included for comparisons to total selenium. Measured concentrations for CM_MC1, CM_MC2 and CM_CC1 are shown as blue, green, and purple circles and SRK modelled data are represented by the solid black line in the upper panel.

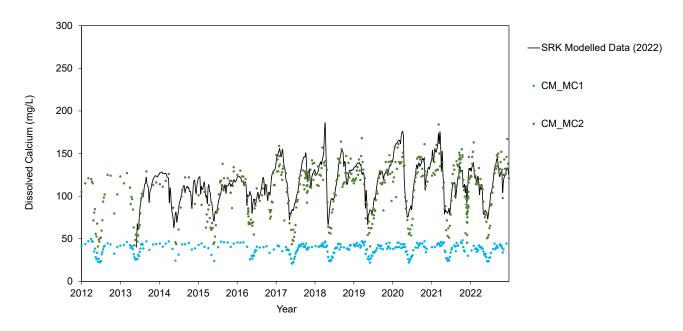
Figure G1.2-18: Temporal Variation in Aqueous Silver Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

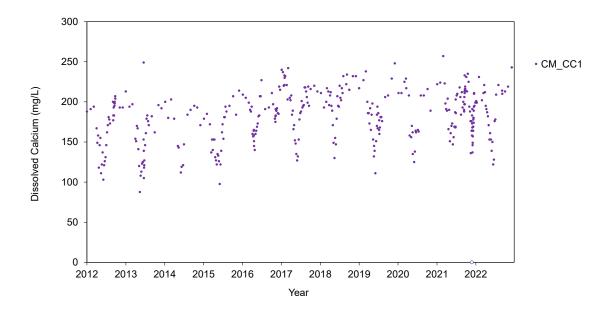




Note: Open symbols represent non-detects. SRK modelled projections for dissolved silver are included for comparison (SRK 2023). SRK modelled data are represented by the solid black line in the upper panel.

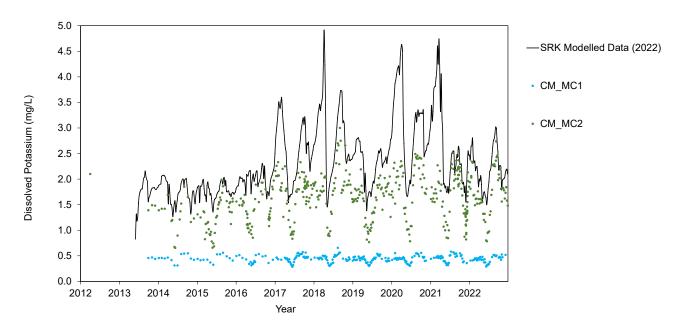
Figure G1.2-19: Temporal Variation in Aqueous Uranium Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

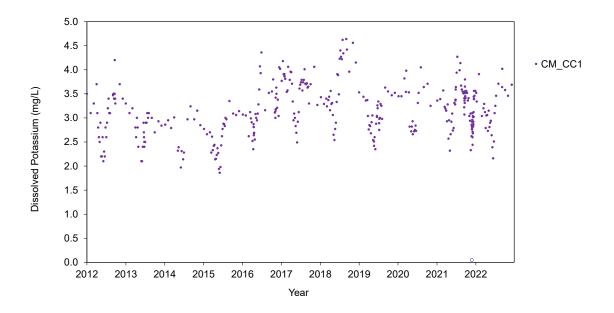




Note: Open symbols represent non-detects. SRK modelled projections for dissolved uranium are included for comparison (SRK 2023). SRK modelled data are represented by the solid black line in the upper panel.

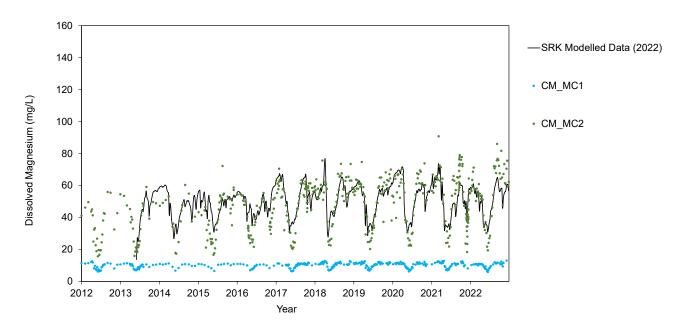
Figure G1.2-20: Temporal Variation in Aqueous Calcium Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

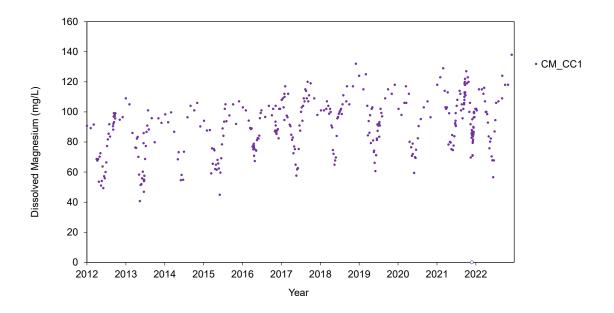




Note: Open symbols represent non-detects. SRK modelled projections for dissolved calcium are included for comparison (SRK 2023). SRK modelled data are represented by the solid black line in the upper panel.

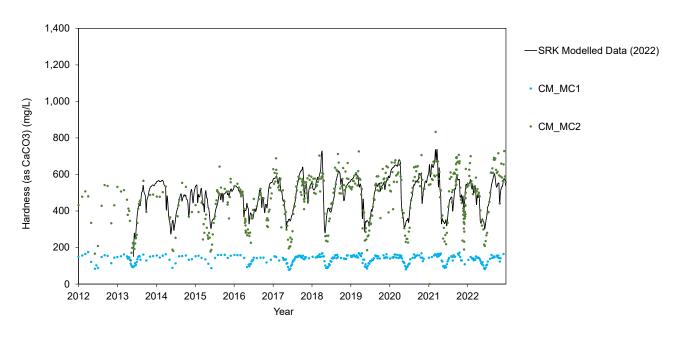
Figure G1.2-21: Temporal Variation in Aqueous Potassium Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

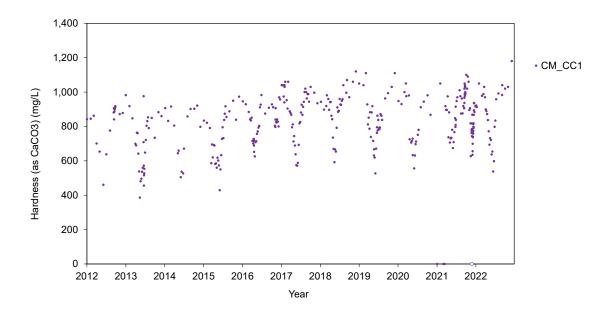




Note: Open symbols represent non-detects. SRK modelled projections for dissolved potassium are included for comparison (SRK 2023). Two points not shown in the bottom panel (5.7 and 8.1 mg/L in June 2013). SRK modelled data are represented by the solid black line in the upper panel.

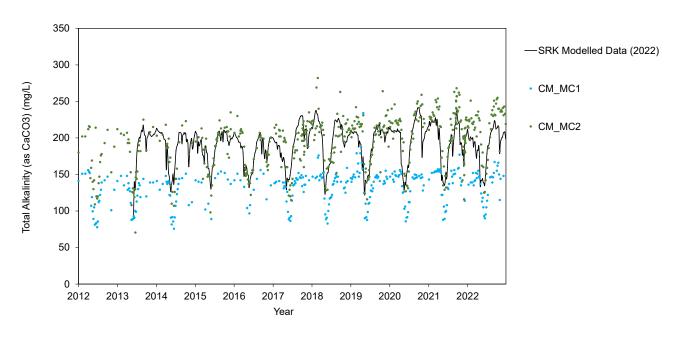
Figure G1.2-22: Temporal Variation in Aqueous Magnesium Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

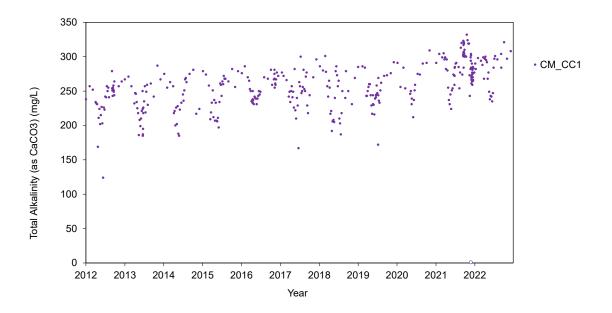




Note: Open symbols represent non-detects. SRK modelled projections for dissolved magnesium are included for comparison (SRK 2023). SRK modelled data are represented by the solid black line in the upper panel.

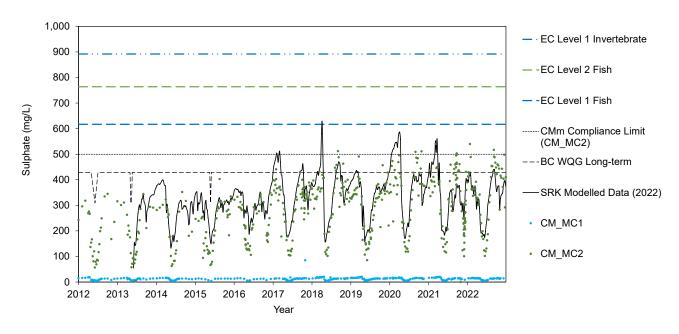
Figure G1.2-23: Temporal Variation in Hardness in Samples Collected from the CMm LAEMP, 2012 to 2022

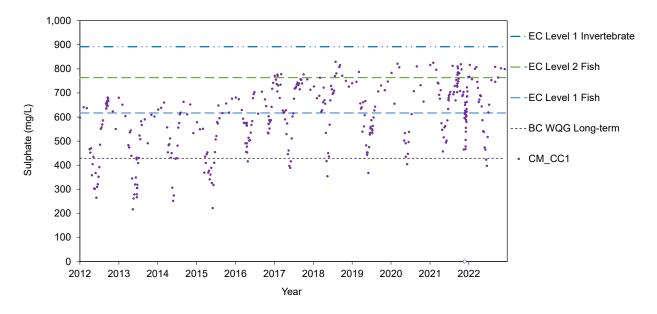




Note: Open symbols represent non-detects. SRK modelled projections for hardness are included for comparison (SRK 2023). SRK modelled data are represented by the solid black line in the upper panel.

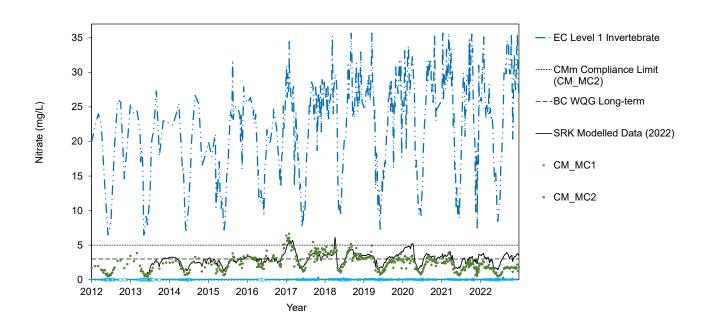
Figure G1.2-24: Temporal Variation in Alkalinity in Samples Collected from the CMm LAEMP, 2012 to 2022

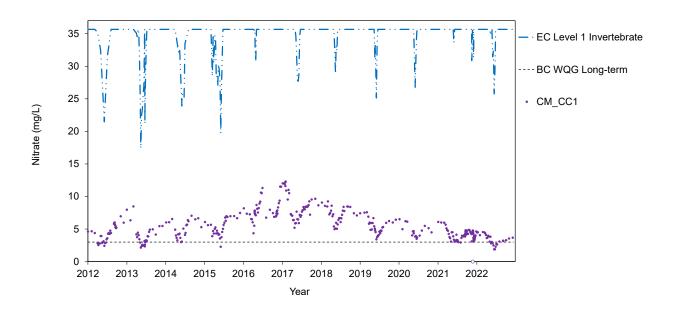




Note: Open symbols represent non-detects. SRK modelled projections for total alkalinity are included for comparison (SRK 2023). SRK modelled data are represented by the solid black line.

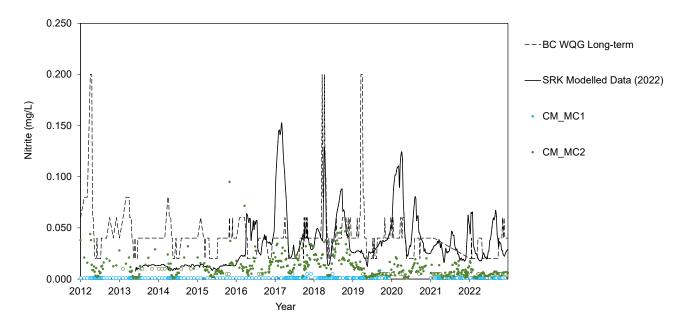
Figure G1.2-25: Temporal Variation in Sulphate in Samples Collected from the CMm LAEMP, 2012 to 2022

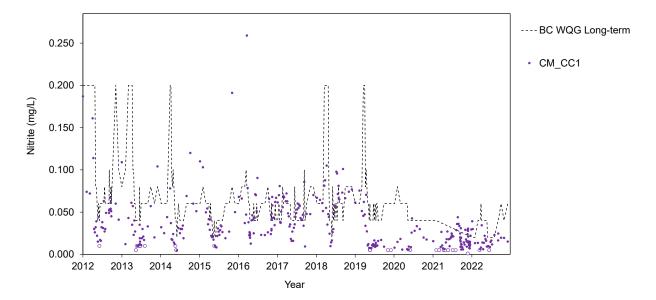




Notes: EVWQP effects concentrations; level 2 invertebrate (1,057 mg/L) and level 3 invertebrate (1,413 mg/L) not shown. Measured concentrations for CM_MC1, CM_MC2 and CM_CC1 are shown as blue, green, and purple circles and SRK modelled data are represented by the solid black line in the upper panel (SRK 2023).

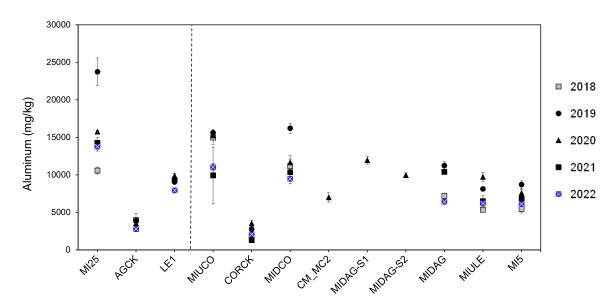
Figure G1.2-26: Temporal Variation in Nitrate in Samples Collected from the CMm LAEMP, 2012 to 2022





Notes: EVWQP effects concentrations; level 2 invertebrate (8.8 to 48 mg/L) and level 3 invertebrate (15 to 82 mg/L) not shown. Measured concentrations for CM_MC1, CM_MC2 and CM_CC1 are shown as blue, green, and purple circles and SRK modelled data are represented by the solid black line in the upper panel. Open symbols indicate non-detects.

Figure G1.2-27: Temporal Variation in Nitrite in Samples Collected from the CMm LAEMP, 2012 to 2022


Note: Open symbols represent non-detects. SRK modelled projections for nitrite are included for comparison (SRK 2023). SRK modelled data are represented by the solid black line in the upper panel.

mg/L = milligrams per litre; BC WQG = British Columbia water quality guideline; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.

G2.0 SEDIMENT QUALITY

Figure G2.1-1: Spatial Variation in Sediment Aluminum Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

mg/kg = milligrams per kilogram; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.

Figure G2.1-2: Spatial Variation in Sediment Antimony Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

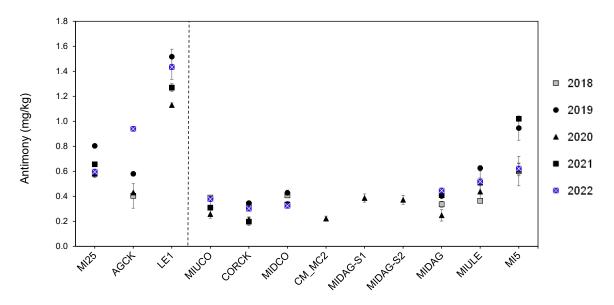
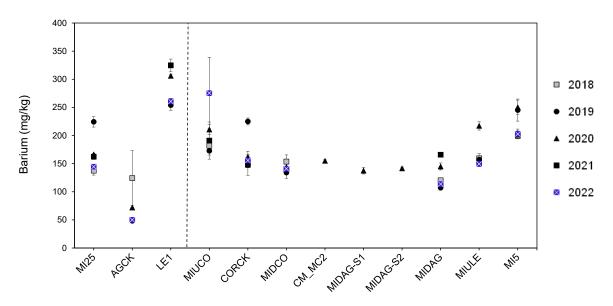



Figure G2.1-3: Spatial Variation in Sediment Barium Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

mg/kg = milligrams per kilogram; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.

Figure G2.1-4: Spatial Variation in Sediment Beryllium Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

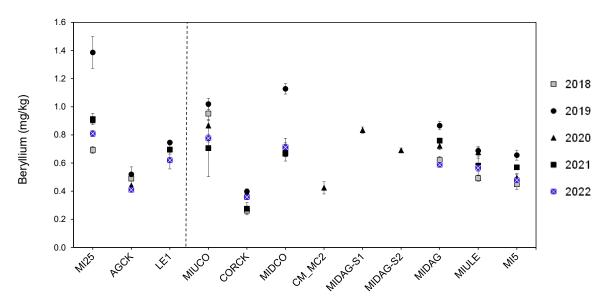
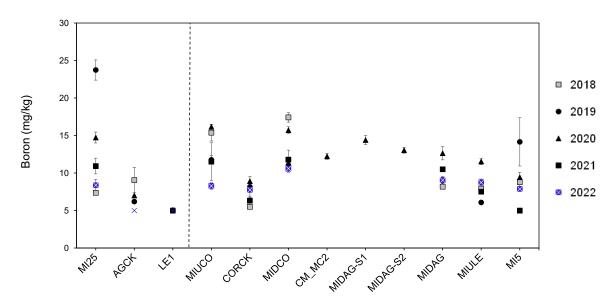
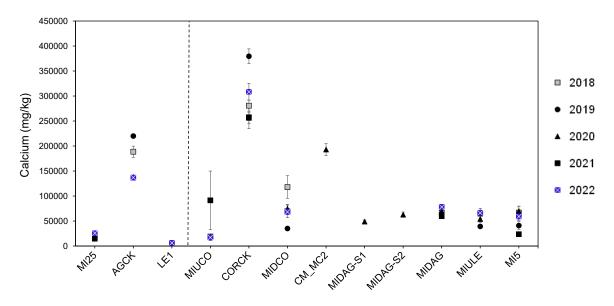
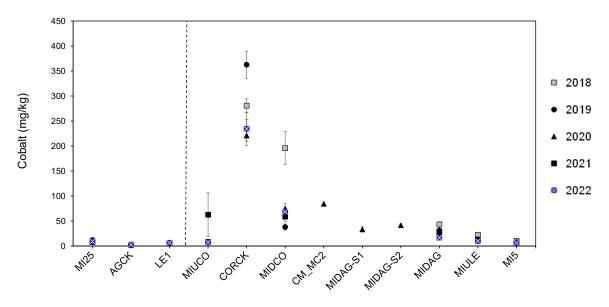



Figure G2.1-5: Spatial Variation in Sediment Boron Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

Note: Open symbols represent non-detects.
mg/kg = milligrams per kilogram; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.

Figure G2.1-6: Spatial Variation in Sediment Calcium Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

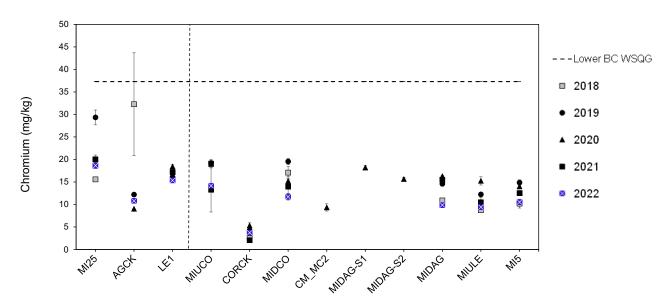
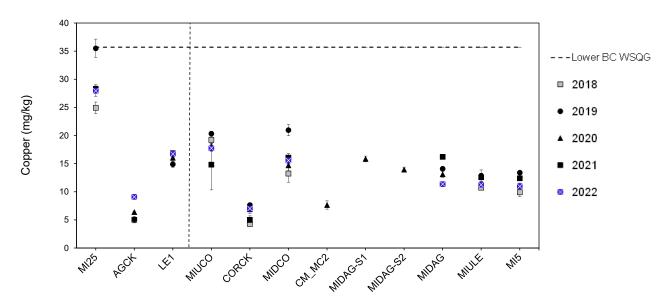


Figure G2.1-7: Spatial Variation in Sediment Cobalt Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

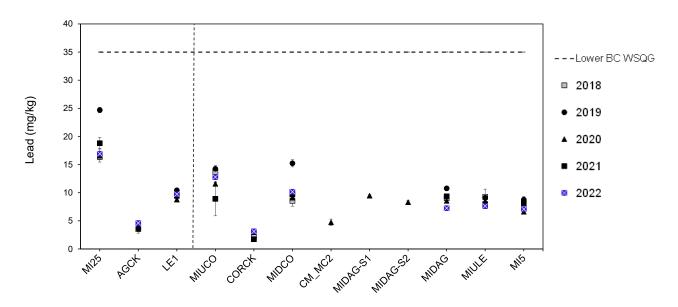
mg/kg = milligrams per kilogram; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.

Figure G2.1-8: Spatial Variation in Sediment Chromium Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022



Note: Upper BC WSQG (90 mg/kg) not shown.

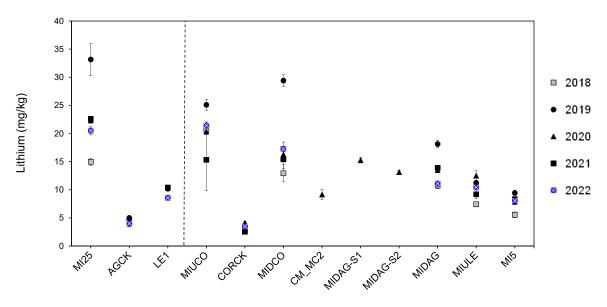
mg/kg = milligrams per kilogram; BC WSQG = British Columbia working sediment quality guideline; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.


Figure G2.1-9: Spatial Variation in Sediment Copper Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

Note: Upper BC WSQG (197 mg/kg) not shown.

mg/kg = milligrams per kilogram; BC WSQG = British Columbia working sediment quality guideline; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.

Figure G2.1-10: Spatial Variation in Sediment Lead Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022



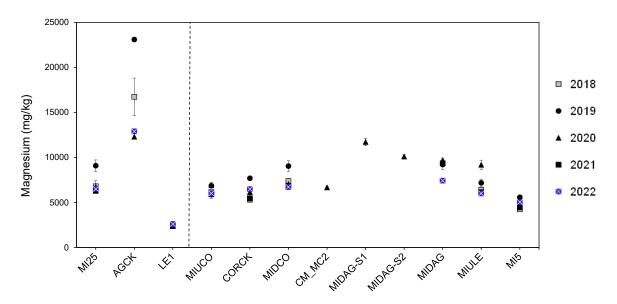
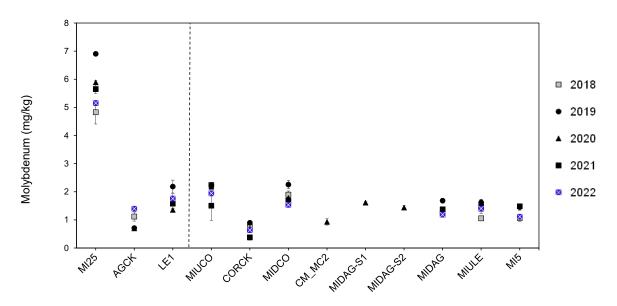
Note: Upper BC WSQG (91.3 mg/kg) not shown.

mg/kg = milligrams per kilogram; BC WSQG = British Columbia working sediment quality guideline; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.

Figure G2.1-11: Spatial Variation in Sediment Lithium Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

mg/kg = milligrams per kilogram; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.

Figure G2.1-12: Spatial Variation in Sediment Magnesium Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

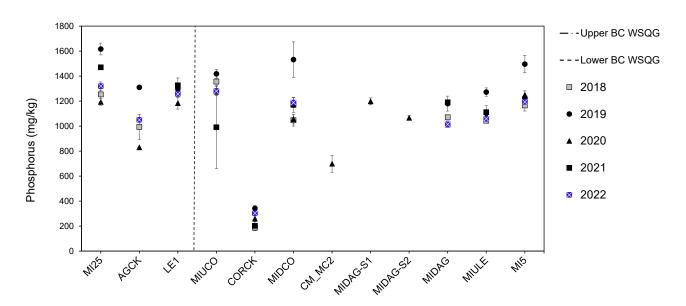
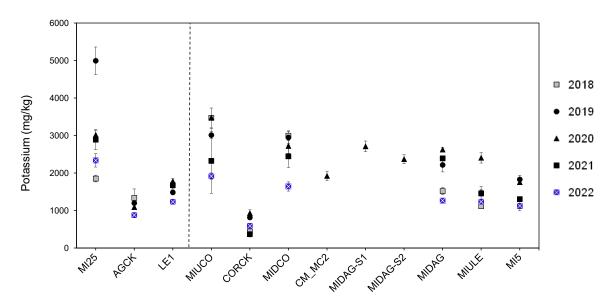


Figure G2.1-13: Spatial Variation in Sediment Molybdenum Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

mg/kg = milligrams per kilogram; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.


Figure G2.1-14: Spatial Variation in Sediment Phosphorus Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

mg/kg = milligrams per kilogram; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program; BC WSQG = British Columbia Working Sediment Quality Guidelines.

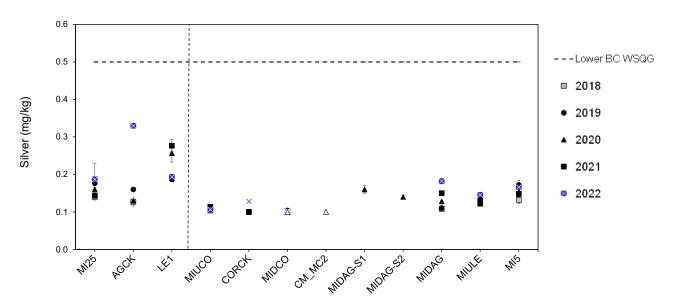
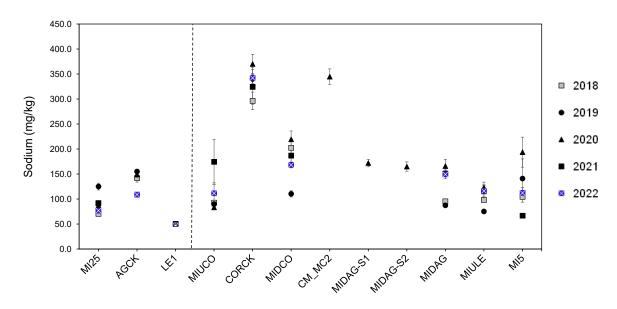


Figure G2.1-15: Spatial Variation in Sediment Potassium Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

mg/kg = milligrams per kilogram; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.


Figure G2.1-16: Spatial Variation in Sediment Silver Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

Note: Open symbols represent non-detects. No upper BC WSQG for freshwater aquatic life. mg/kg = milligrams per kilogram; BC WSQG = British Columbia working sediment quality guideline; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.

Figure G2.1-17: Spatial Variation in Sediment Sodium Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

Note: Open symbols represent non-detects.
mg/kg = milligrams per kilogram; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.

Figure G2.1-18: Spatial Variation in Sediment Strontium Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

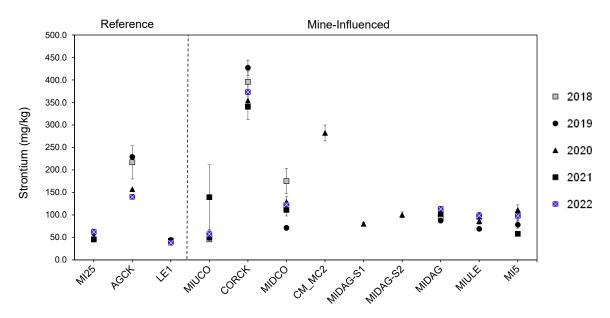
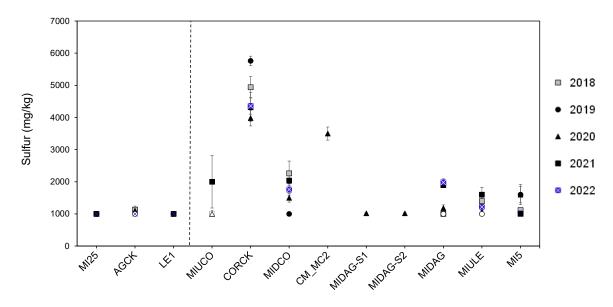



Figure G2.1-19: Spatial Variation in Sediment Sulfur Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

Note: Open symbols represent non-detects. mg/kg = milligrams per kilogram; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.

Figure G2.1-20: Spatial Variation in Sediment Thallium Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

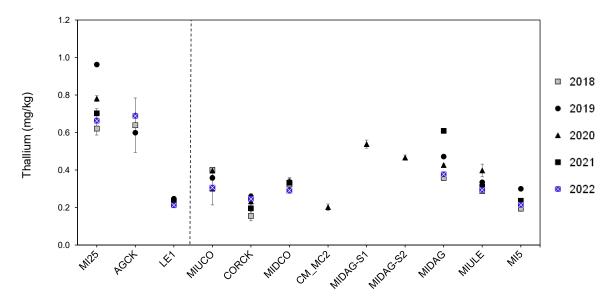
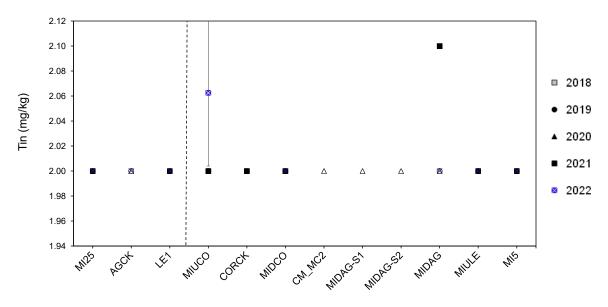



Figure G2.1-21: Spatial Variation in Sediment Tin Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

Note: Open symbols represent non-detects.
mg/kg = milligrams per kilogram; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.

Figure G2.1-22: Spatial Variation in Sediment Titanium Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

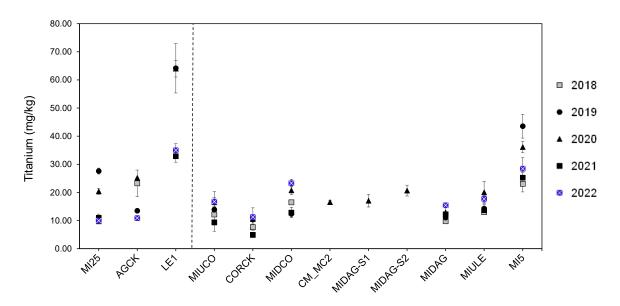
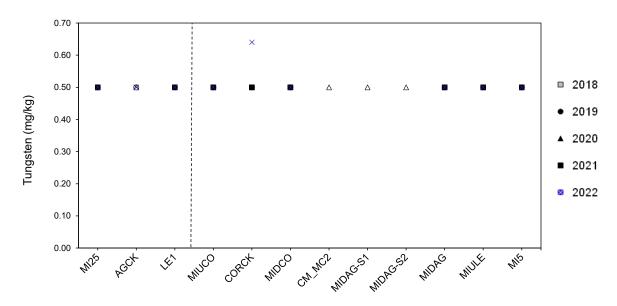
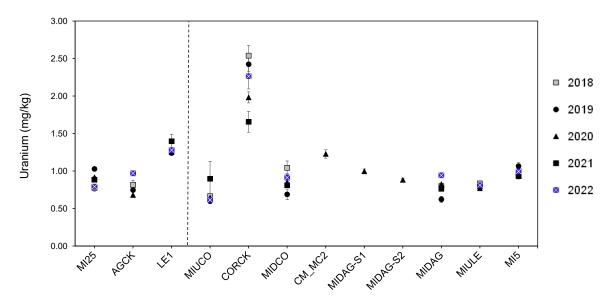
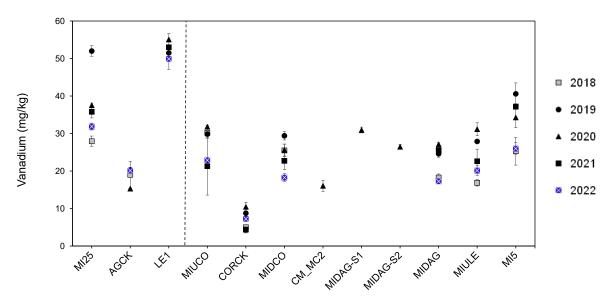



Figure G2.1-23: Spatial Variation in Sediment Tungsten Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

Note: Open symbols represent non-detects.
mg/kg = milligrams per kilogram; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.

Figure G2.1-24: Spatial Variation in Sediment Uranium Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

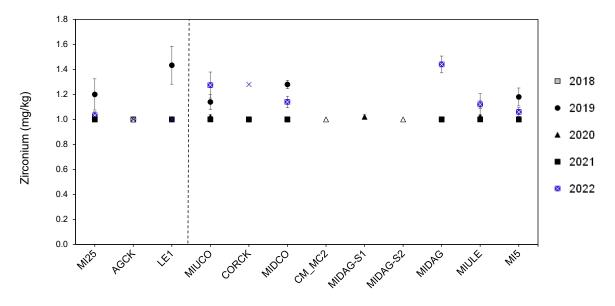
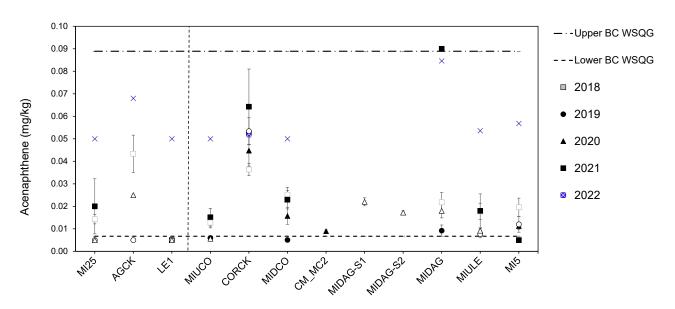
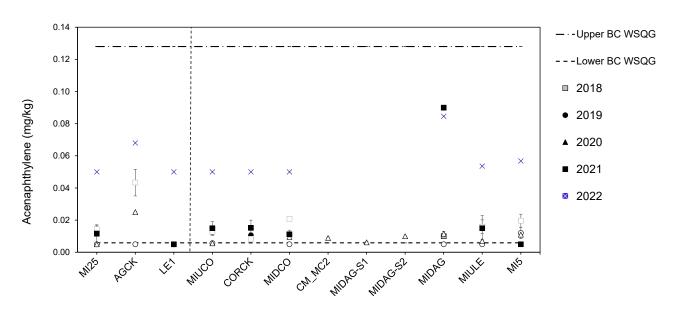


Figure G2.1-25: Spatial Variation in Sediment Vanadium Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

mg/kg = milligrams per kilogram; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.


Figure G2.1-26: Spatial Variation in Sediment Zirconium Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

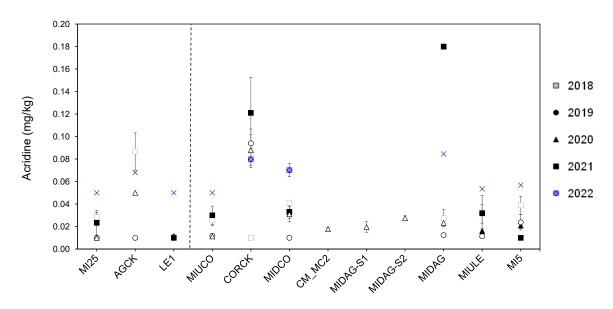
Note: Open symbols represent non-detects.


Figure G2.1-27: Spatial Variation in Sediment Acenaphthene Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

Note: Open symbols represent non-detects.

BC WSQG = British Columbia working sediment quality guideline; mg/kg = milligrams per kilogram dry weight; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.

Figure G2.1-28: Spatial Variation in Sediment Acenaphthylene Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022



Notes: Open symbols represent non-detects.

BC WSQG = British Columbia working sediment quality guideline; mg/kg = milligrams per kilogram dry weight; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.

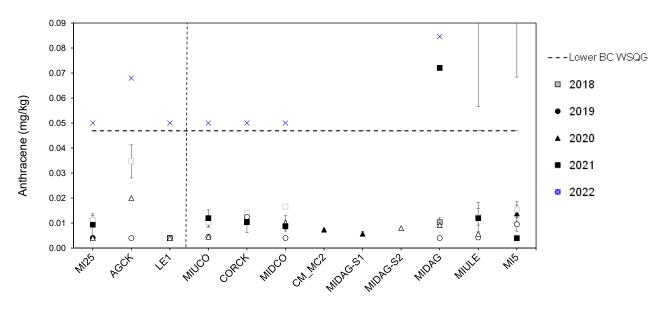
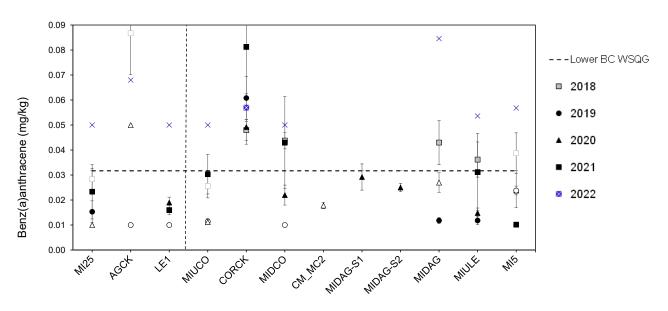


Figure G2.1-29: Spatial Variation in Sediment Acridine Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

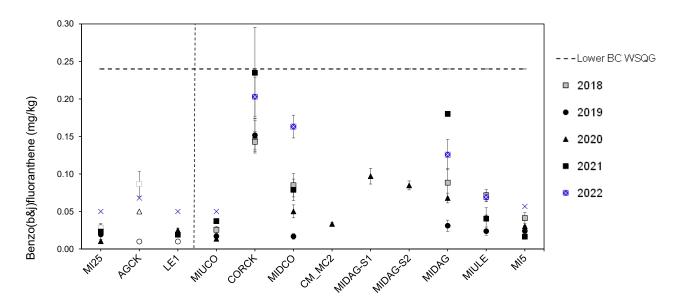
Note: Open symbols represent non-detects.
mg/kg = milligrams per kilogram; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.

Figure G2.1-30: Spatial Variation in Sediment Anthracene Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022



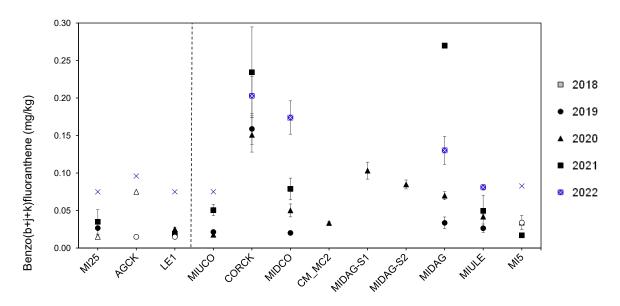
Note: Open symbols represent non-detects. Upper BC WSQG (0.245 mg/kg) not shown.

mg/kg = milligrams per kilogram; BC WSQG = British Columbia working sediment quality guideline; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.


Figure G2.1-31: Spatial Variation in Sediment Benzo(a)anthracene Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

Notes: Upper BC WSQG not shown for benz(a)anthracene (0.39 mg/kg) and benzo(a)pyrene (0.78 mg/kg).

BC WSQG = British Columbia working sediment quality guideline; mg/kg = milligrams per kilogram dry weight; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.


Figure G2.1-32: Spatial Variation in Sediment Benzo(b,j)fluoranthene Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

Note: Open symbols represent non-detects. Upper BC WSQG (13 mg/kg) not shown. mg/kg = milligrams per kilogram; BC WSQG = British Columbia working sediment quality guideline; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.

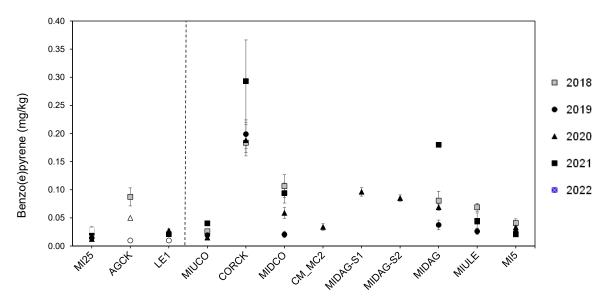
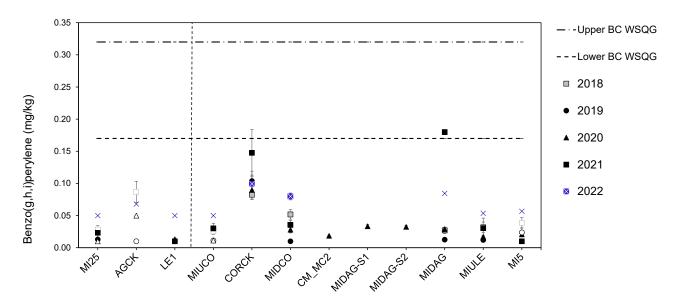
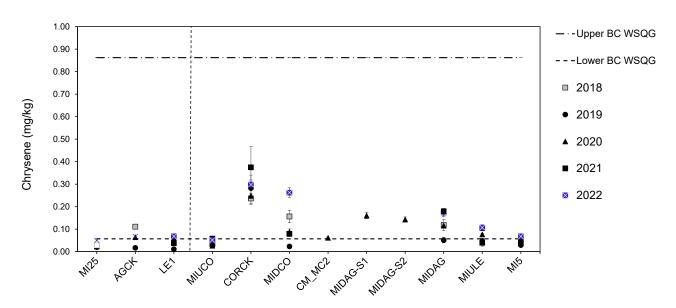


Figure G2.1-33: Spatial Variation in Sediment Benzo(b,j,k)fluoranthene Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

Note: Open symbols represent non-detects.
mg/kg = milligrams per kilogram; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.

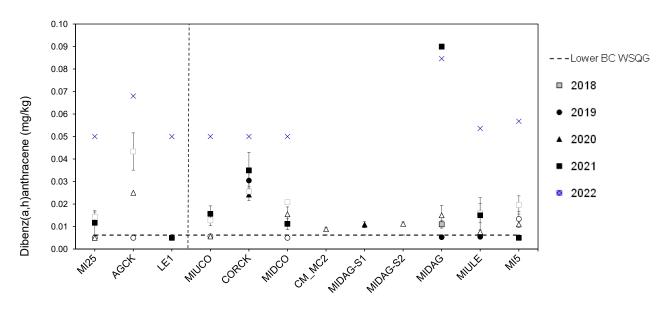

Figure G2.1-34: Spatial Variation in Sediment Benzo(e)pyrene Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

Note: Open symbols represent non-detects.
mg/kg = milligrams per kilogram; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.


Figure G2.1-35: Spatial Variation in Sediment Benzo(g,h,i)perylene Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

Note: Open symbols represent non-detects. Upper BC WSQG (0.32 mg/kg) not shown.

mg/kg = milligrams per kilogram; BC WSQG = British Columbia working sediment quality guideline; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.


Figure G2.1-36: Spatial Variation in Sediment Chrysene Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

BC WSQG = British Columbia working sediment quality guideline; mg/kg = milligrams per kilogram dry weight; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.

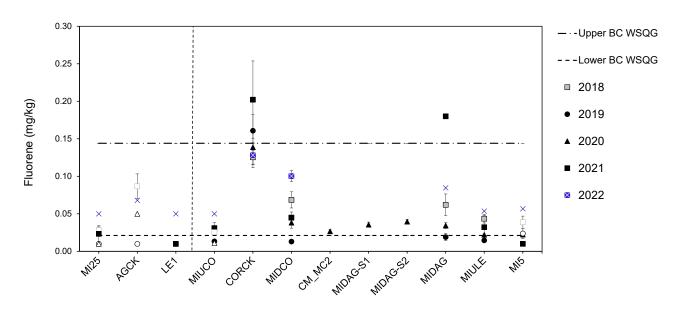
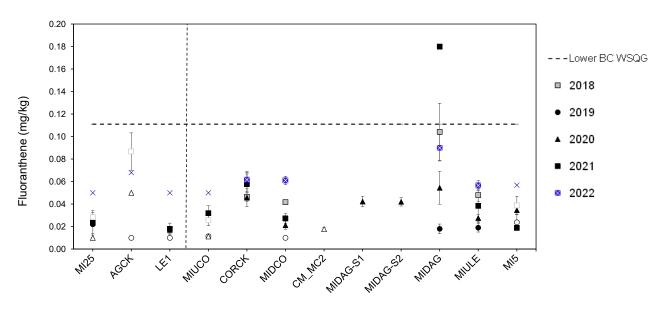


Figure G2.1-37: Spatial Variation in Sediment Dibenzo(a,h)anthracene Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

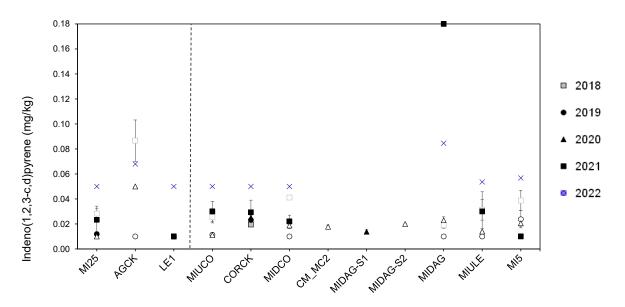
Note: Open symbols represent non-detects. Upper BC WSQG (0.135mg/kg) not shown.
mg/kg = milligrams per kilogram; BC WSQG = British Columbia working sediment quality guideline; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.

Figure G2.1-38: Spatial Variation in Sediment Fluorene Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022



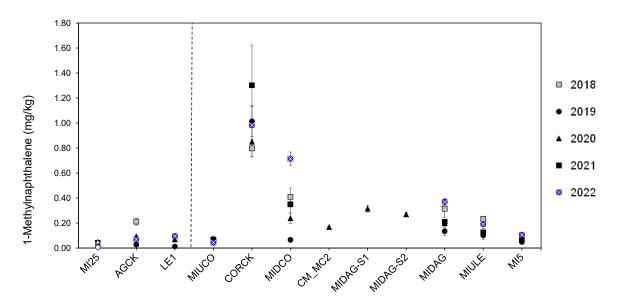
Note: Open symbols represent non-detects.

mg/kg = milligrams per kilogram; BC WSQG = British Columbia working sediment quality guideline; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.

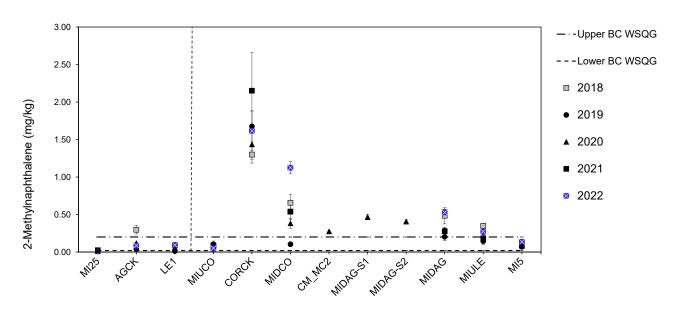

Figure G2.1-39: Spatial Variation in Sediment Fluoranthene Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

Note: Open symbols represent non-detects. Upper BC WSQG (2.355 mg/L) not shown.

mg/kg = milligrams per kilogram; BC WSQG = British Columbia working sediment quality guideline; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.


Figure G2.1-40: Spatial Variation in Sediment Ideno(1,2,3-c,d)pyrene Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

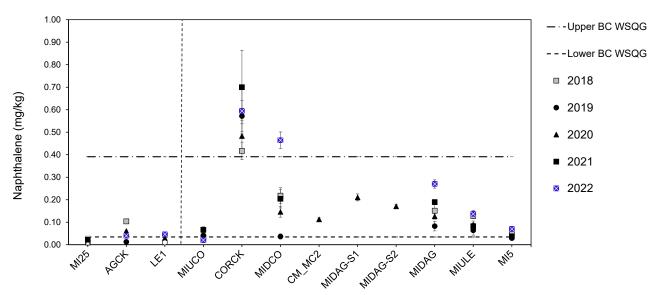
Note: Open symbols represent non-detects. Lower BC WSQG (0.2 mg/kg) and Upper BC WSQG (3.2 mg/kg) not shown. mg/kg = milligrams per kilogram; BC WSQG = British Columbia working sediment quality guideline; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.


Figure G2.1-41: Spatial Variation in Sediment 1-Methtylnaphthalene Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

Note: Open symbols represent non-detects.

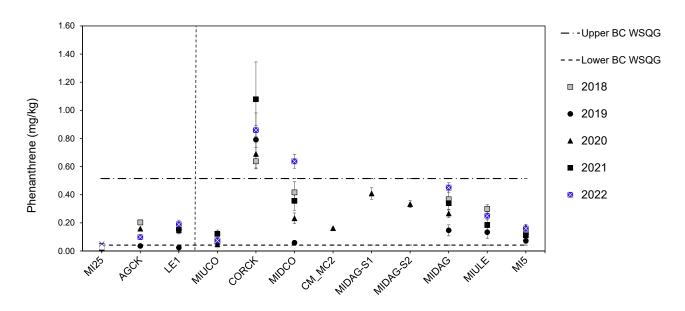
mg/kg = milligrams per kilogram; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.

Figure G2.1-42: Spatial Variation in Sediment 2-Methtylnaphthalene Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022



Notes: Open symbols represent non-detects.

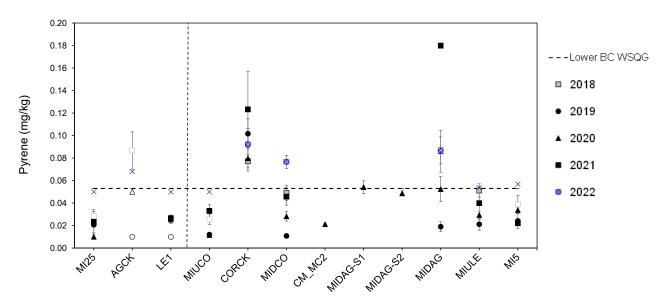
BC WSQG = British Columbia working sediment quality guideline; mg/kg = milligrams per kilogram dry weight; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.


Figure G2.1-43: Spatial Variation in Sediment Naphthalene Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

Notes: Open symbols represent non-detects.

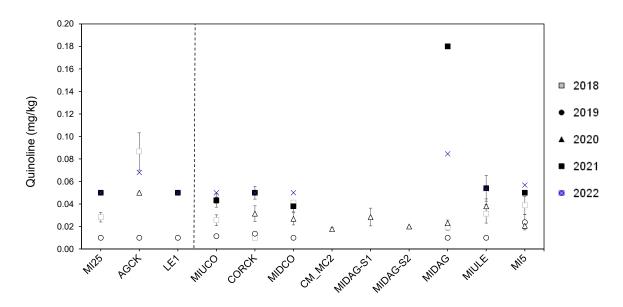
BC WSQG = British Columbia working sediment quality guideline; mg/kg = milligrams per kilogram dry weight; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.

Figure G2.1-44: Spatial Variation in Sediment Phenanthrene Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022



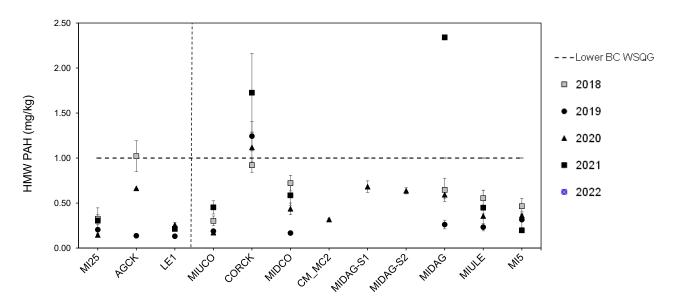
Notes: Open symbols represent non-detects.

BC WSQG = British Columbia working sediment quality guideline; mg/kg = milligrams per kilogram dry weight; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.

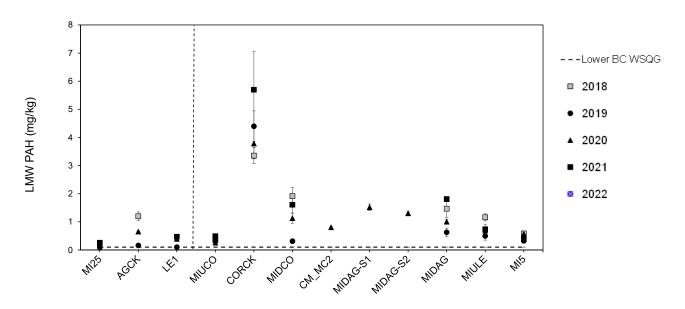

Figure G2.1-45: Spatial Variation in Sediment Pyrene Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

Notes: Open symbols represent non-detects. Upper BC WSQG not shown for pyrene (0.88 mg/kg).

BC WSQG = British Columbia working sediment quality guideline; mg/kg = milligrams per kilogram dry weight; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.


Figure G2.1-46: Spatial Variation in Sediment Quinoline Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

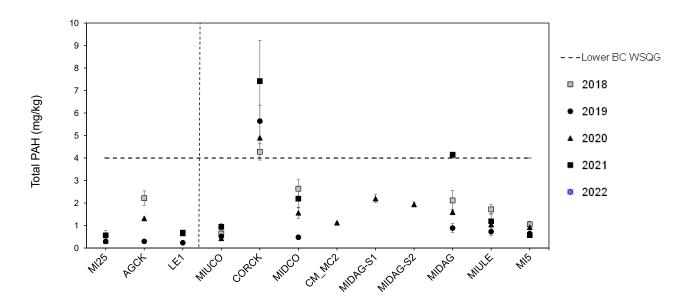
Notes: Open symbols represent non-detects.


Figure G2.1-47: Spatial Variation in Sediment Quinoline Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022

Notes: No upper BC WSQG for freshwater aquatic life.

PAH = polycyclic aromatic hydrocarbon; HMW = high molecular weight; BC WSQG = British Columbia working sediment quality guideline; mg/kg = milligrams per kilogram dry weight; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.

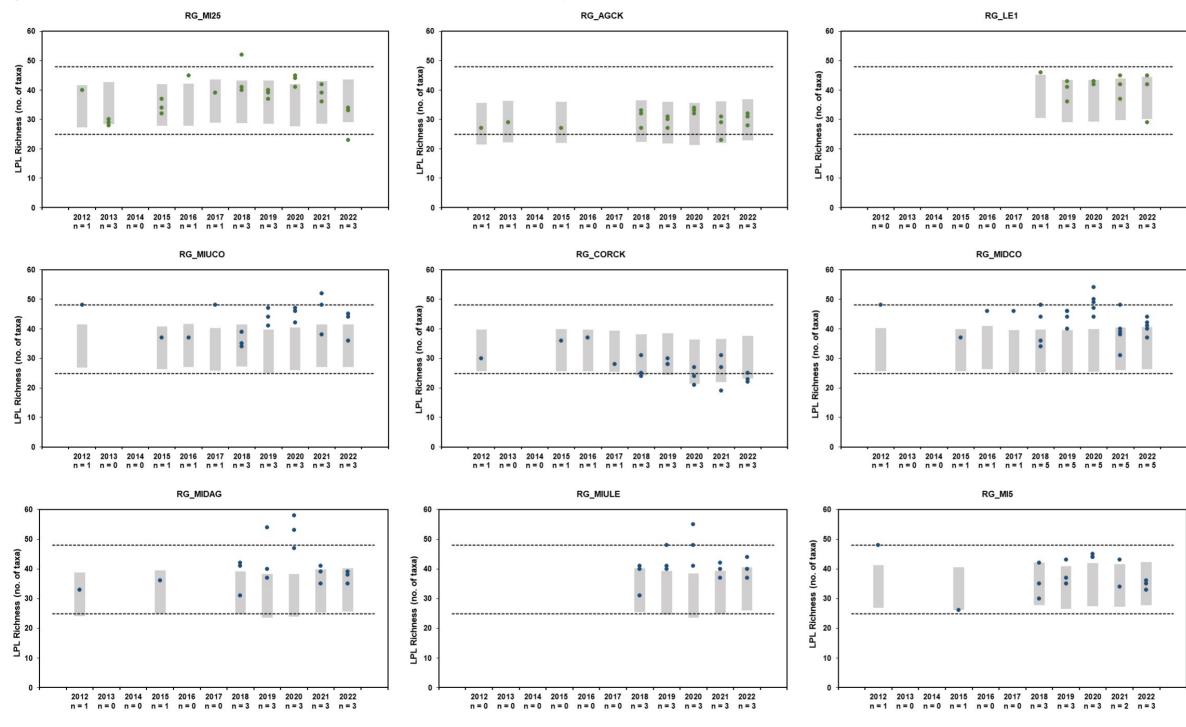
Figure G2.1-48: Spatial Variation in Sediment Quinoline Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022



Notes: No upper BC WSQG for freshwater aquatic life.

PAH = polycyclic aromatic hydrocarbon; LMW = low molecular weight; BC WSQG = British Columbia working sediment quality guideline; mg/kg = milligrams per kilogram dry weight; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.

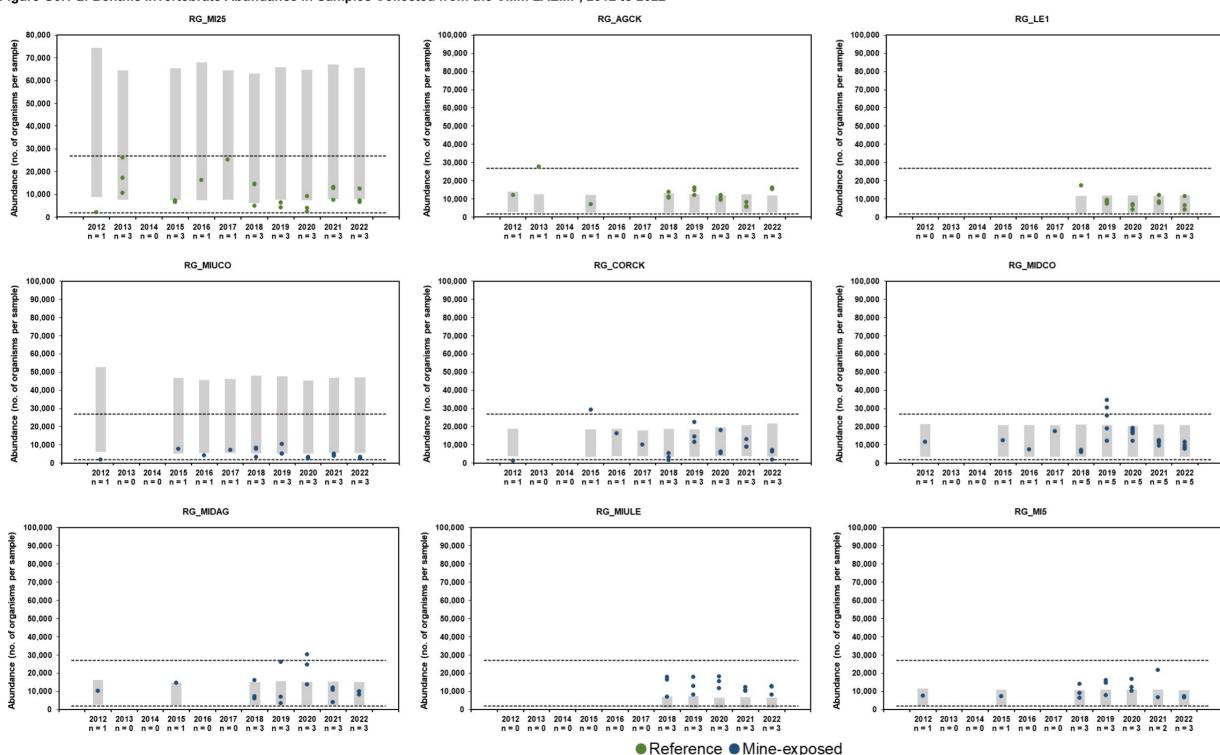
Figure G2.1-49: Spatial Variation in Sediment Quinoline Concentrations in Samples Collected from the CMm LAEMP, 2012 to 2022



Notes: Upper BC WSQG not shown for total PAH (35 mg/kg).
PAH = polycyclic aromatic hydrocarbon; BC WSQG = British Columbia working sediment quality guideline; mg/kg = milligrams per kilogram dry weight; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.

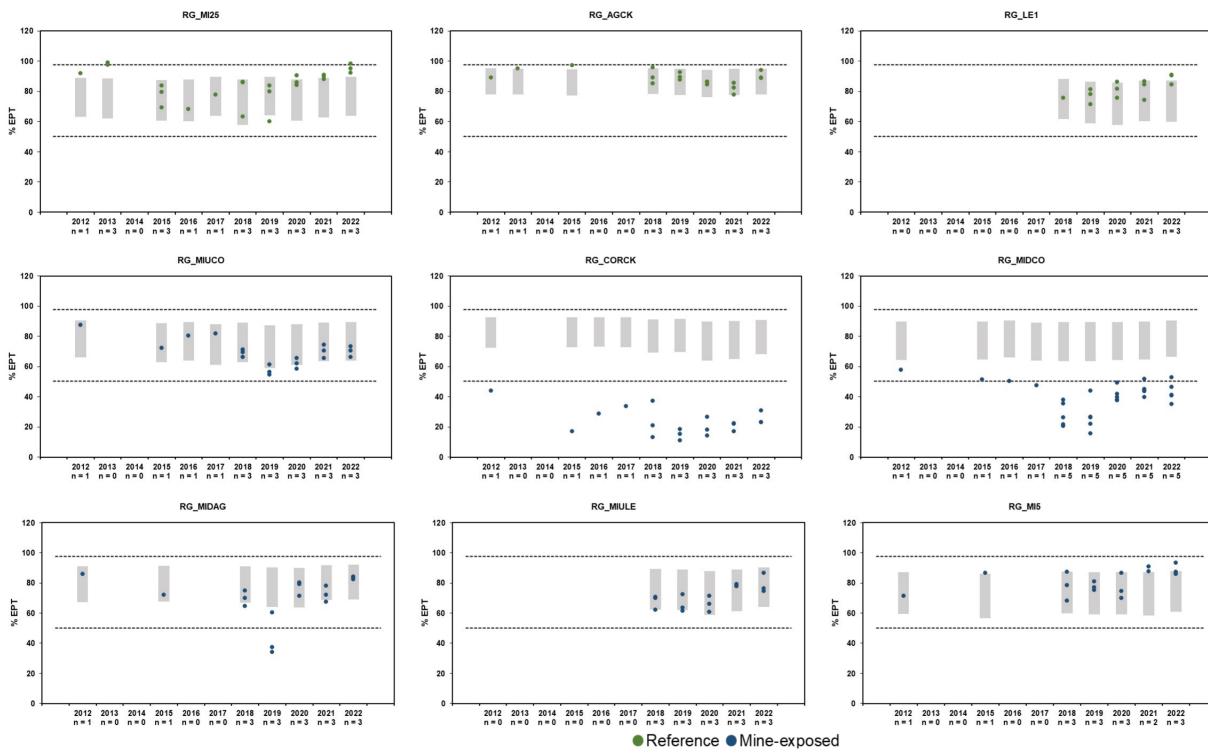
G3.0 BENTHIC INVERTEBRATE COMMUNITY

Figure G3.1-1: Benthic Invertebrate Taxonomic Richness (Lowest Possible Level) in Samples Collected from the CMm LAEMP, 2012 to 2022

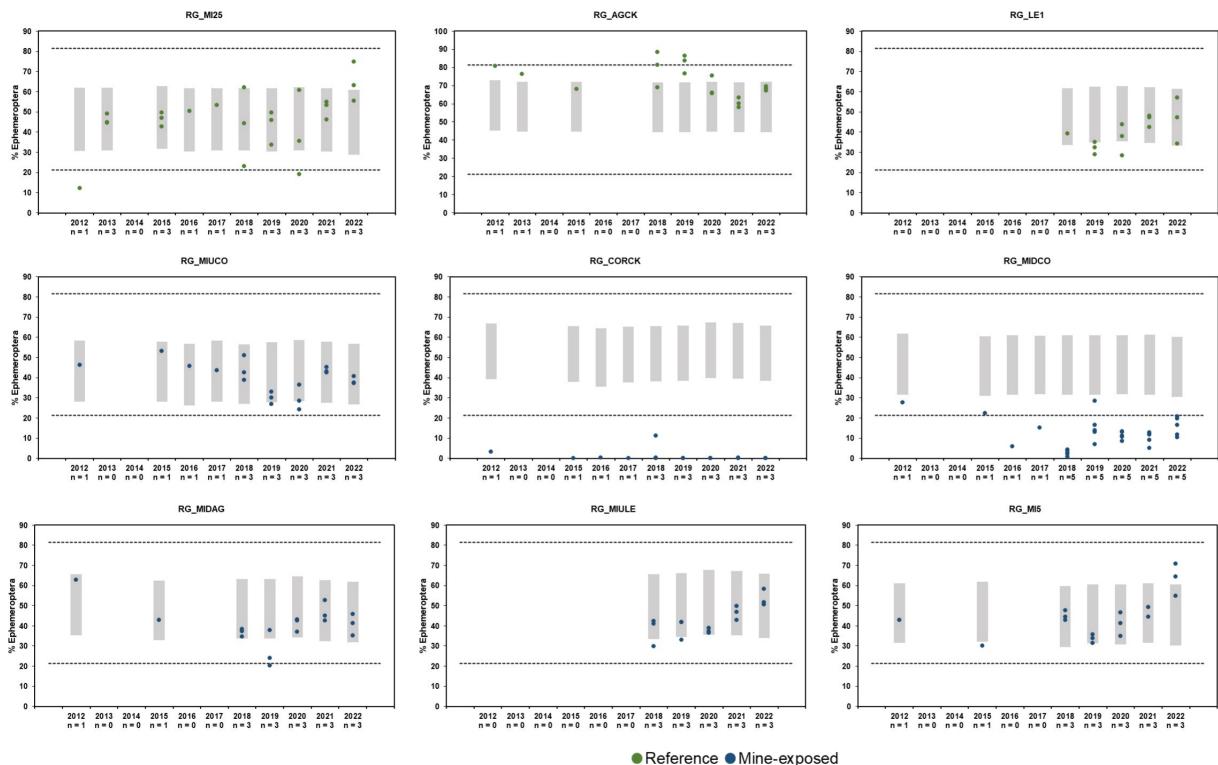


Reference Mine-exposed

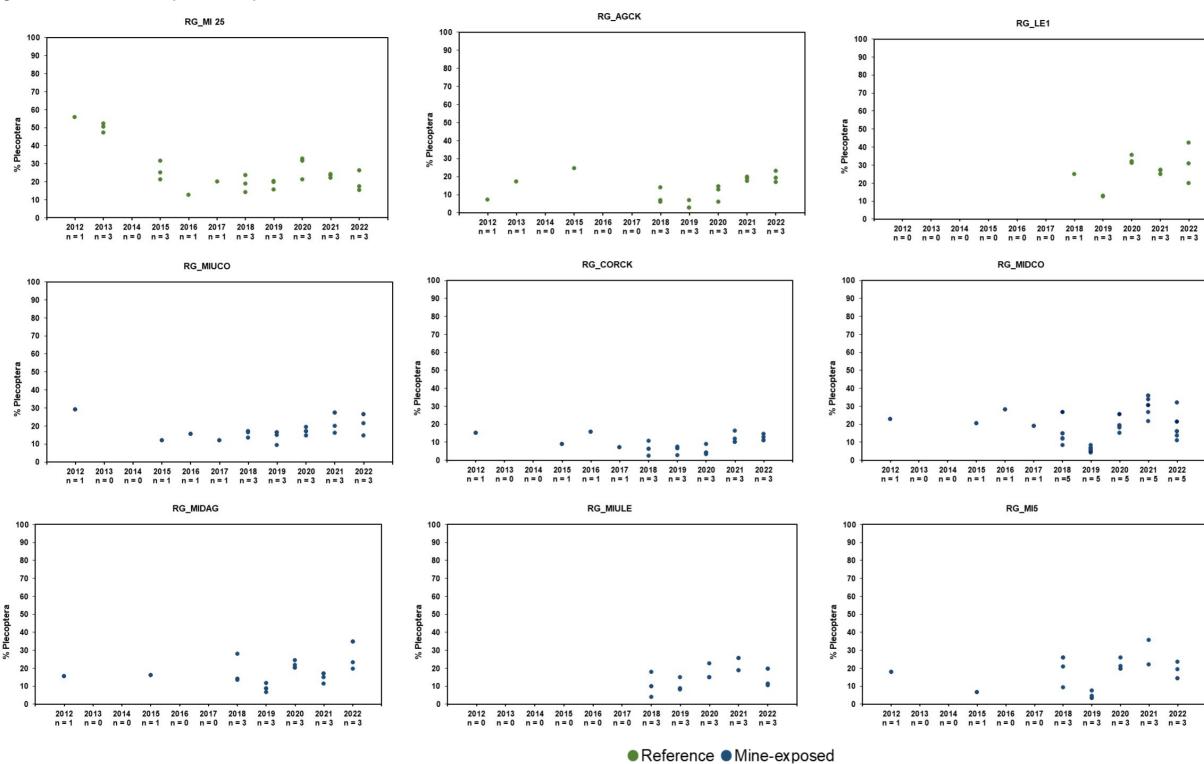
Note: Grey shading represents the site-specific normal ranges and the dotted line represents the regional normal range defined as the 2.5th and 97.5th percentiles of the 2012 to 2019 reference area data from the RAEMP (Minnow 2020). LPL = lowest possible level (i.e., species or genus); n = sample size; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.


Figure G3.1-2: Benthic Invertebrate Abundance in Samples Collected from the CMm LAEMP, 2012 to 2022

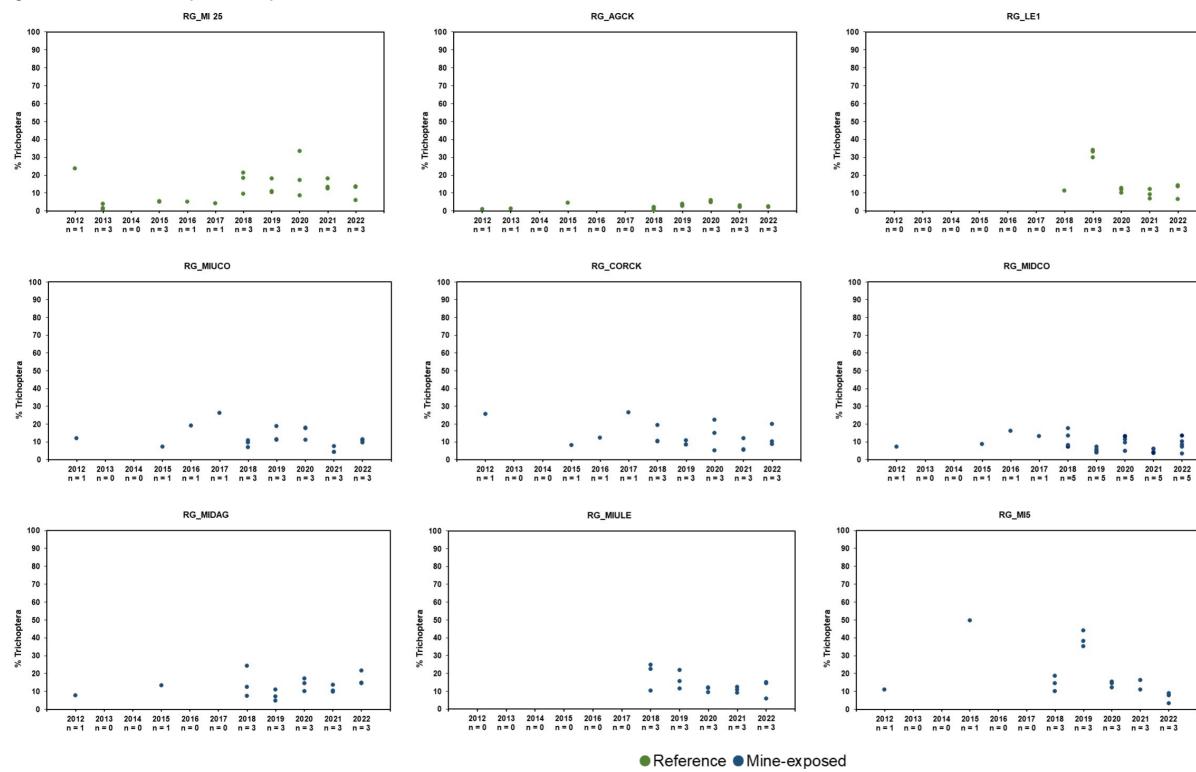
Note: Grey shading represents the site-specific normal ranges and the dotted line represents the regional normal range defined as the 2.5th and 97.5th percentiles of the 2012 to 2019 reference area data from the RAEMP (Minnow 2020). n = sample size; no. = number; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.


Figure G3.1-3: Percent Ephemeroptera, Plecoptera, Trichoptera in Samples Collected from the CMm LAEMP, 2012 to 2022

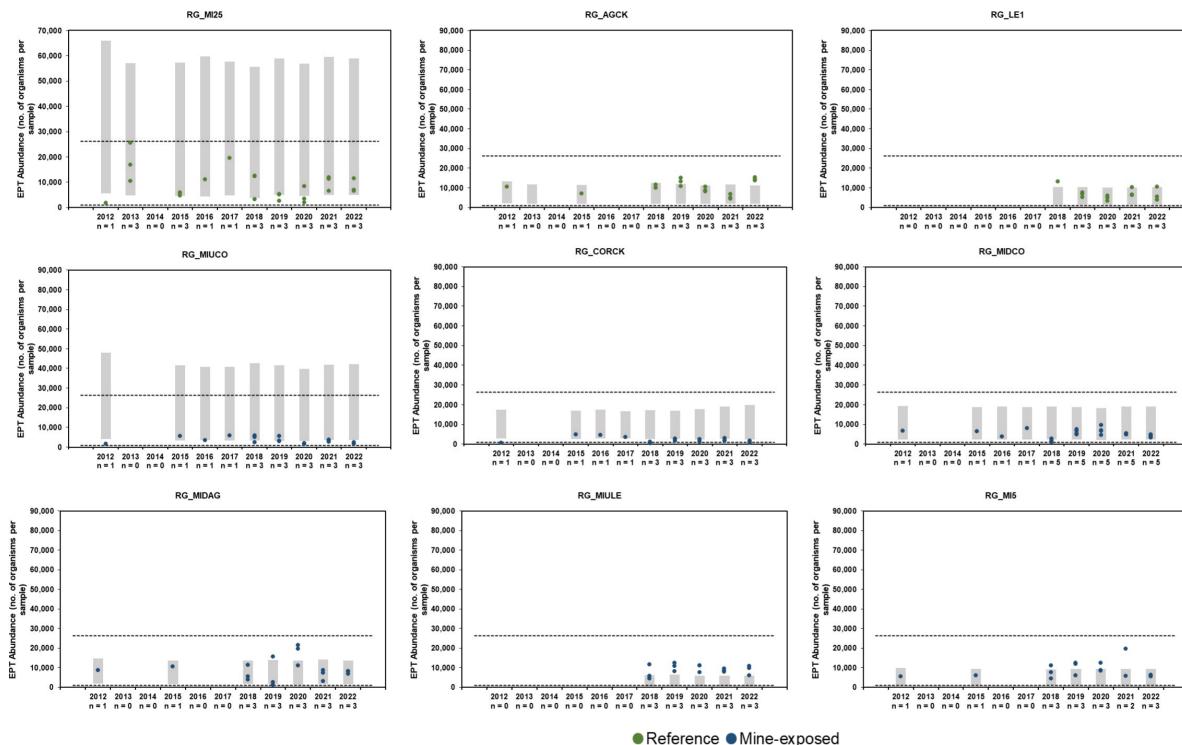
Note: Grey shading represents the site-specific normal ranges and the dotted line represents the regional normal range defined as the 2.5th and 97.5th percentiles of the 2012 to 2019 reference area data from the RAEMP (Minnow 2020). % = percent; EPT = Ephemeroptera, Plecoptera, Trichoptera; n = sample size; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.



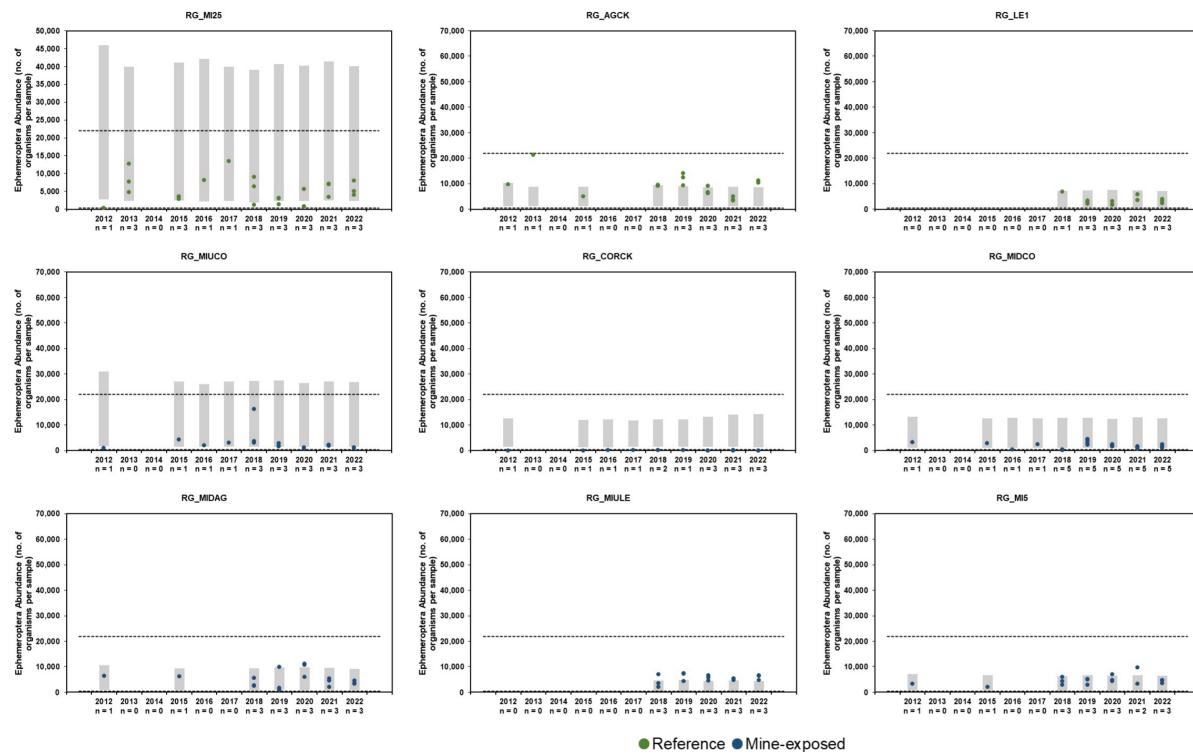
Note: Grey shading represents the site-specific normal ranges and the dotted line represents the regional normal range defined as the 2.5th and 97.5th percentiles of the 2012 to 2019 reference area data from the RAEMP (Minnow 2020). % = percent; n = sample size; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.


Figure G3.1-5: Percent Plecoptera in Samples Collected from the CMm LAEMP, 2012 to 2022

Supplementary Figures


Figure G3.1-6: Percent Trichoptera in Samples Collected from the CMm LAEMP, 2012 to 2022

Supplementary Figures



Note: Grey shading represents the site-specific normal ranges and the dotted line represents the regional normal range defined as the 2.5th and 97.5th percentiles of the 2012 to 2019 reference area data from the RAEMP (Minnow 2020). EPT = Ephemeroptera, Plecoptera, Trichoptera; no. = number; n = sample size; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.

Figure G3.1-8: Ephemeroptera Abundance in Samples Collected from the CMm LAEMP, 2012 to 2022

Note: Grey shading represents the site-specific normal ranges and the dotted line represents the regional normal range defined as the 2.5th and 97.5th percentiles of the 2012 to 2019 reference area data from the RAEMP (Minnow 2020). no. = number; n = sample size; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.

Figure G3.1-9: Plecoptera Abundance in Samples Collected from the CMm LAEMP, 2012 to 2022

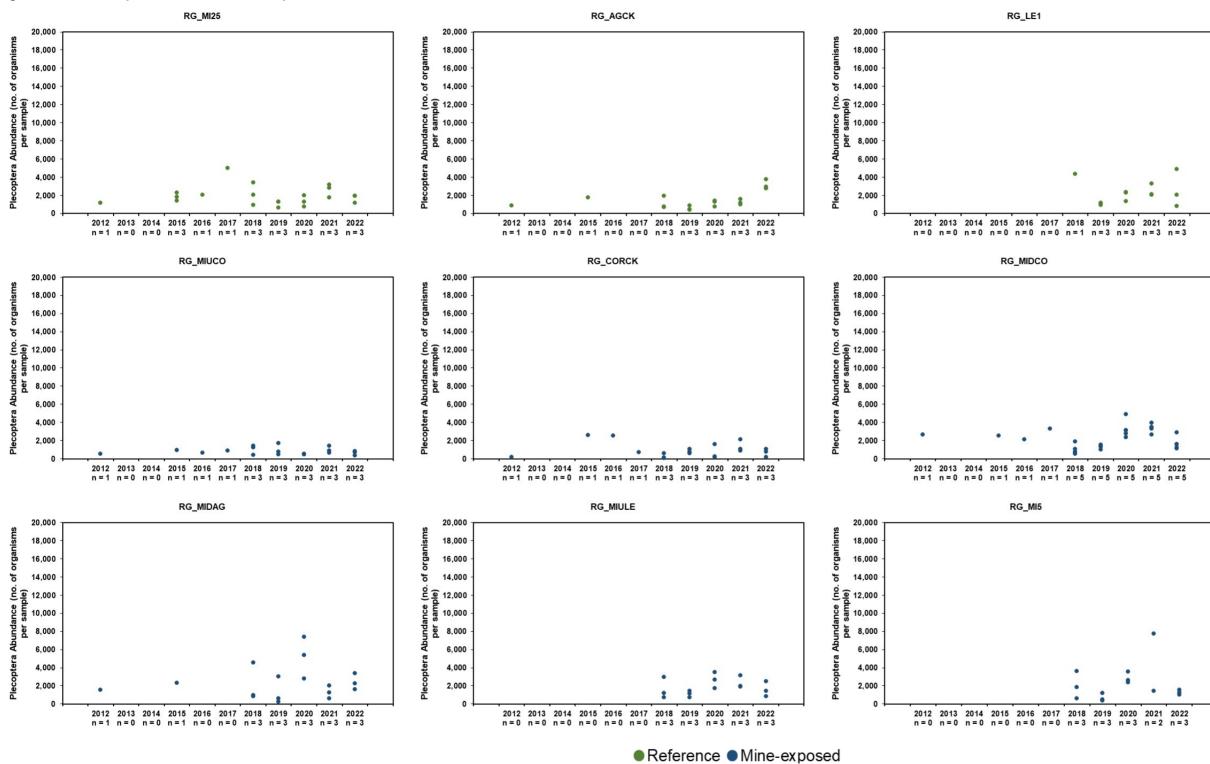
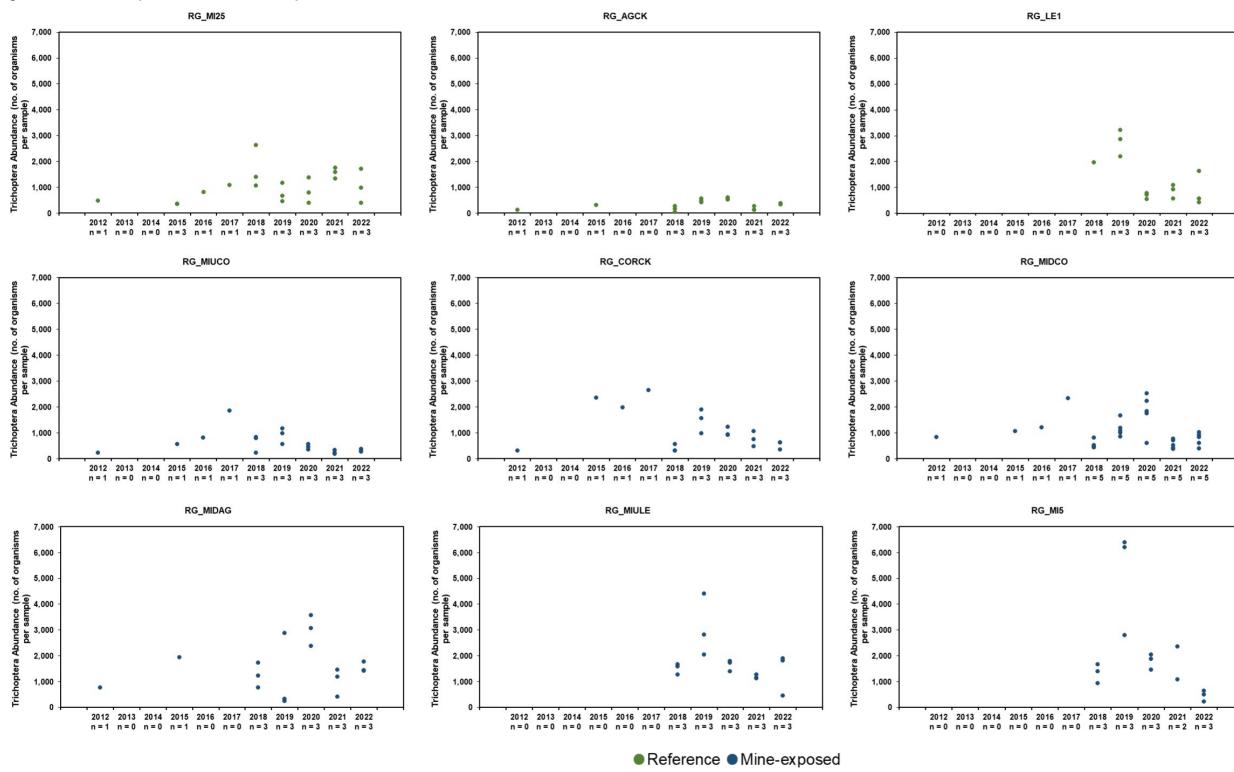
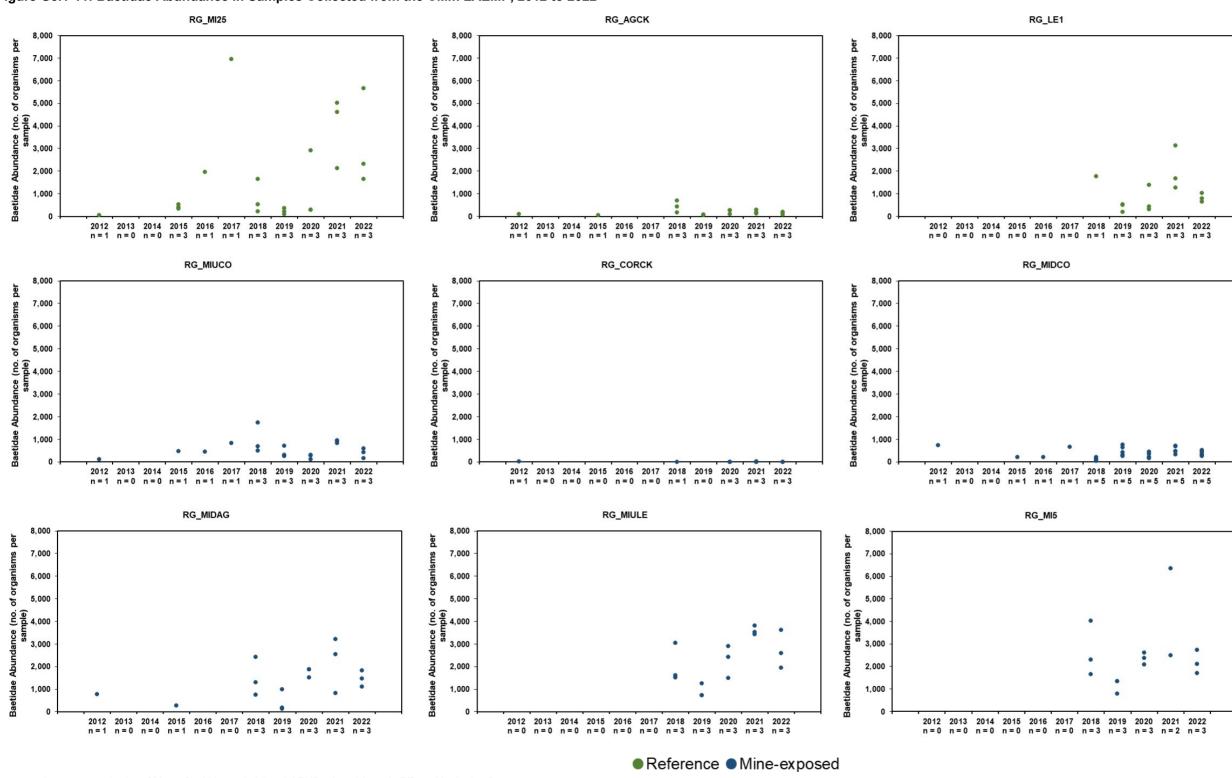
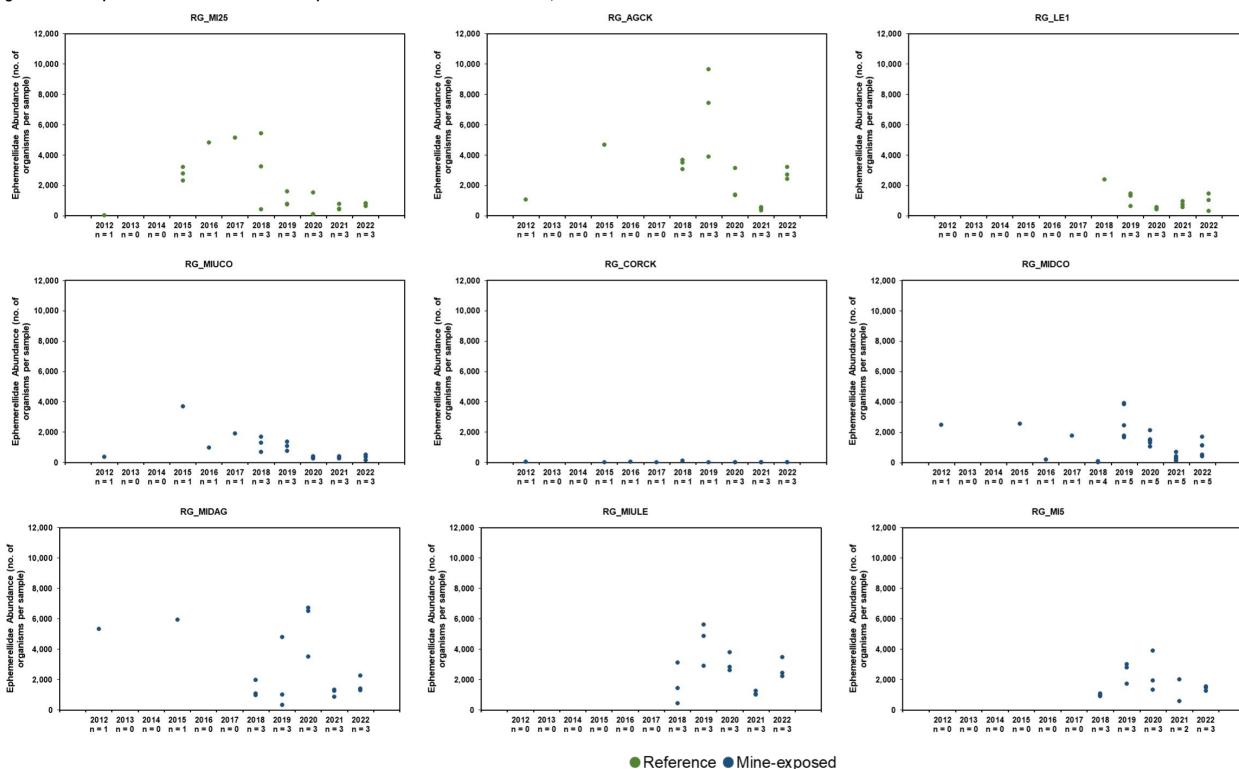
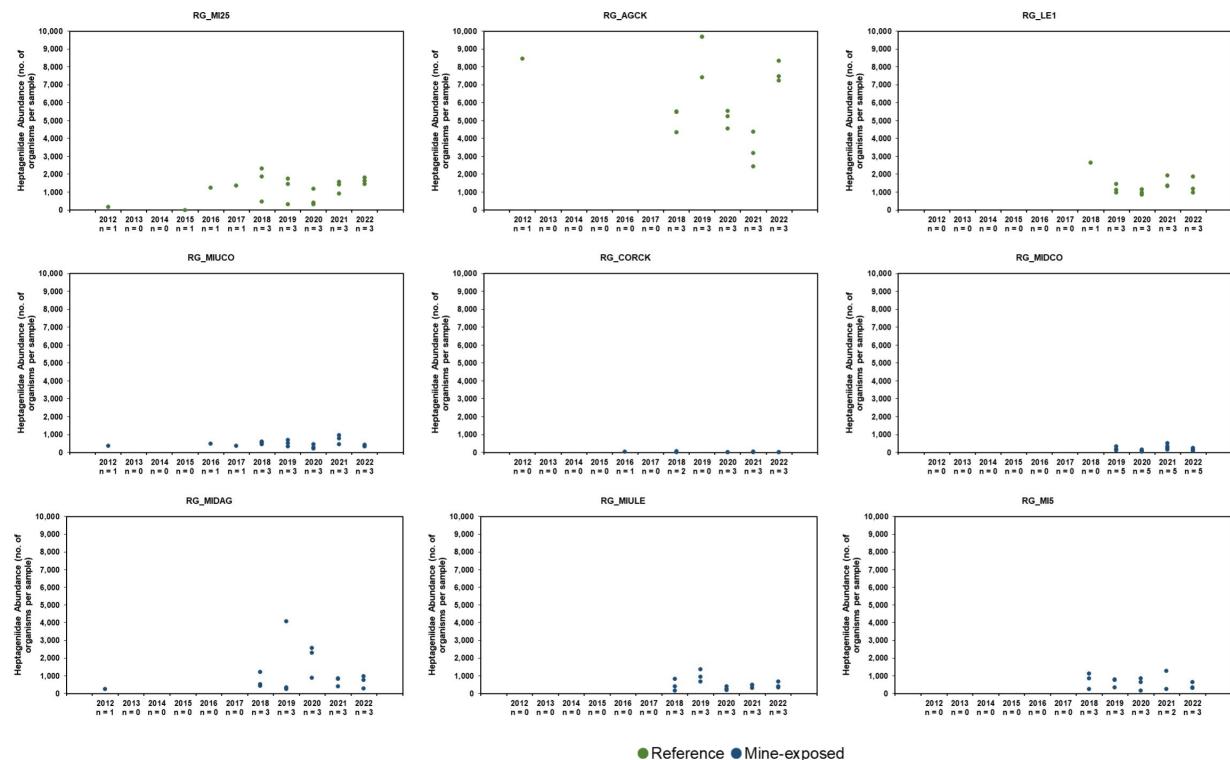


Figure G3.1-10: Trichoptera Abundance in Samples Collected from the CMm LAEMP, 2012 to 2022

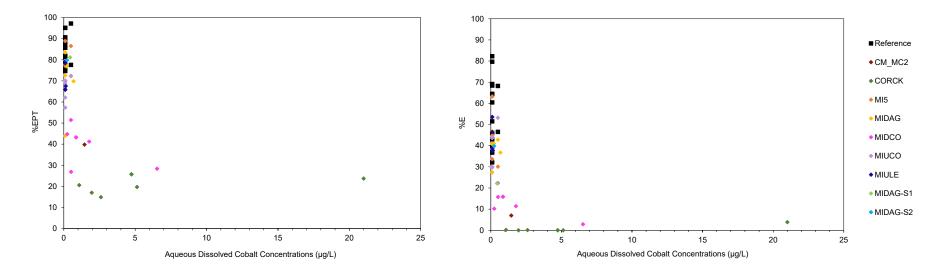




Figure G3.1-11: Baetidae Abundance in Samples Collected from the CMm LAEMP, 2012 to 2022

Supplementary Figures


Figure G3.1-12: Ephemerellidae Abundance in Samples Collected from the CMm LAEMP, 2012 to 2022

Supplementary Figures



G3.1 Correlations of Benthic Invertebrate Community Endpoints with Water Quality

Figure G3.2-1: Proportion of Ephemeroptera, Plecoptera, and Trichoptera versus Aqueous Cobalt (left panel) and Proportion of Ephemeroptera versus Aqueous Cobalt (right panel) Concentrations from the CMm LAEMP Study Area, 2012 to 2022

% = percent; μg/L= micrograms per litre; EPT = Ephemeroptera, Plecopteran, and Trichopteran; E = Ephemeroptera; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.

Figure G3.2-2: Proportion of Ephemeroptera, Plecoptera, and Trichoptera versus Aqueous Sulphate (left panel) and Proportion of Ephemeroptera versus Aqueous Sulphate (right panel) Concentrations from the CMm LAEMP Study Area, 2012 to 2022

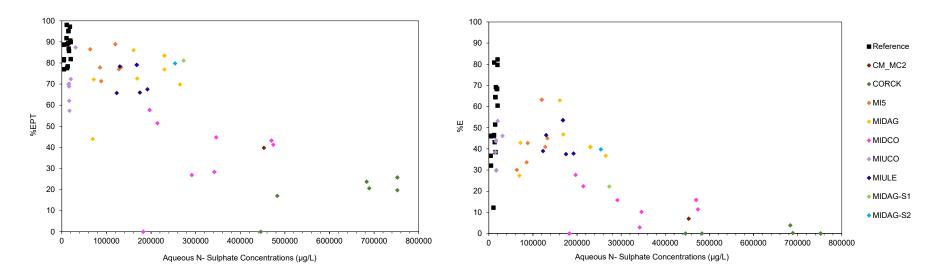


Figure G3.2-3: Proportion of Ephemeroptera, Plecoptera, and Trichoptera versus Aqueous Nitrate (left panel) and Proportion of Ephemeroptera versus Aqueous Nitrate (right panel) Concentrations from the CMm LAEMP Study Area, 2012 to 2022

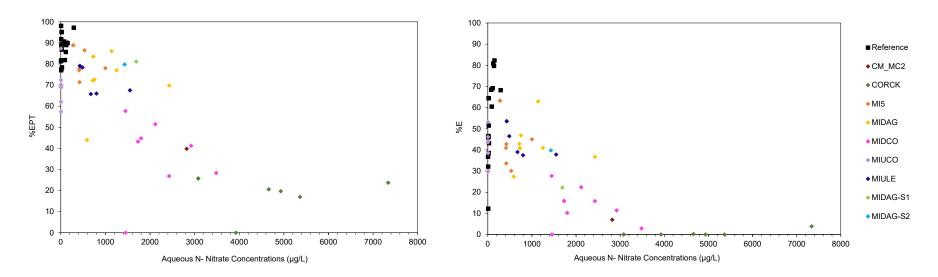


Figure G3.2-4: Proportion of Ephemeroptera, Plecoptera, and Trichoptera versus Aqueous Nitrite (left panel) and Proportion of Ephemeroptera versus Aqueous Nitrite (right panel) Concentrations from the CMm LAEMP Study Area, 2012 to 2022

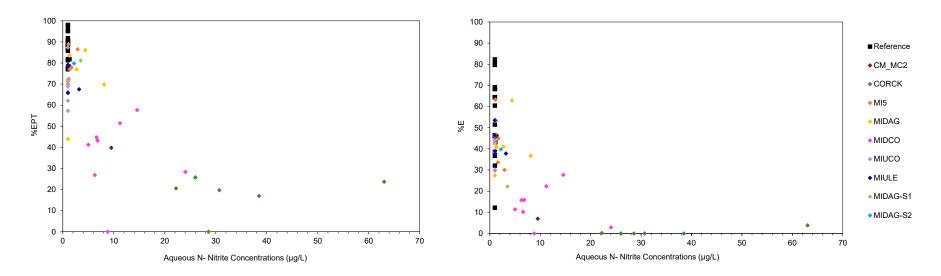


Figure G3.2-5: Proportion of Ephemeroptera, Plecoptera, and Trichoptera versus Aqueous Calcium (left panel) and Proportion of Ephemeroptera versus Aqueous Calcium (right panel) Concentrations from the CMm LAEMP Study Area, 2012 to 2022

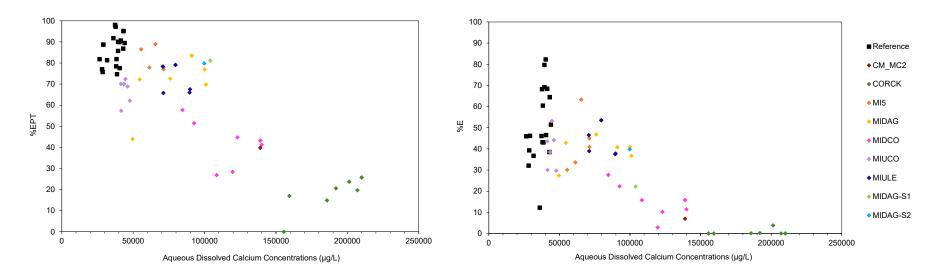


Figure G3.2-6: Proportion of Ephemeroptera, Plecoptera, and Trichoptera versus Aqueous Total Manganese (left panel) and Proportion of Ephemeroptera versus Aqueous Total Manganese (right panel) Concentrations from the CMm LAEMP Study Area, 2012 to 2022

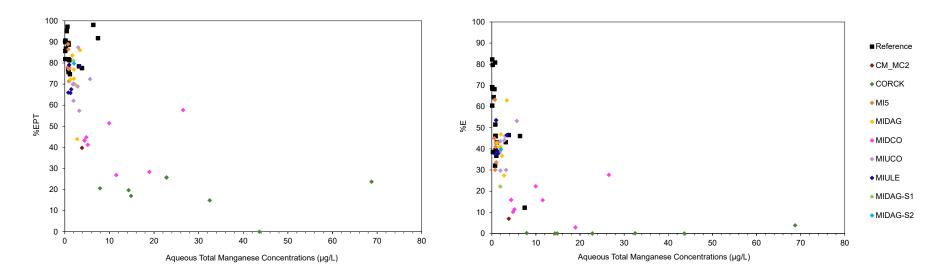
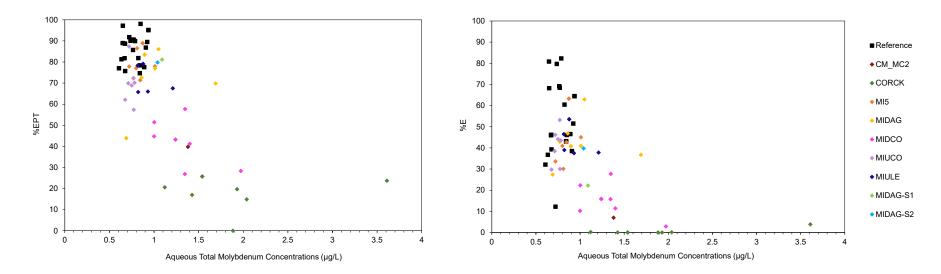
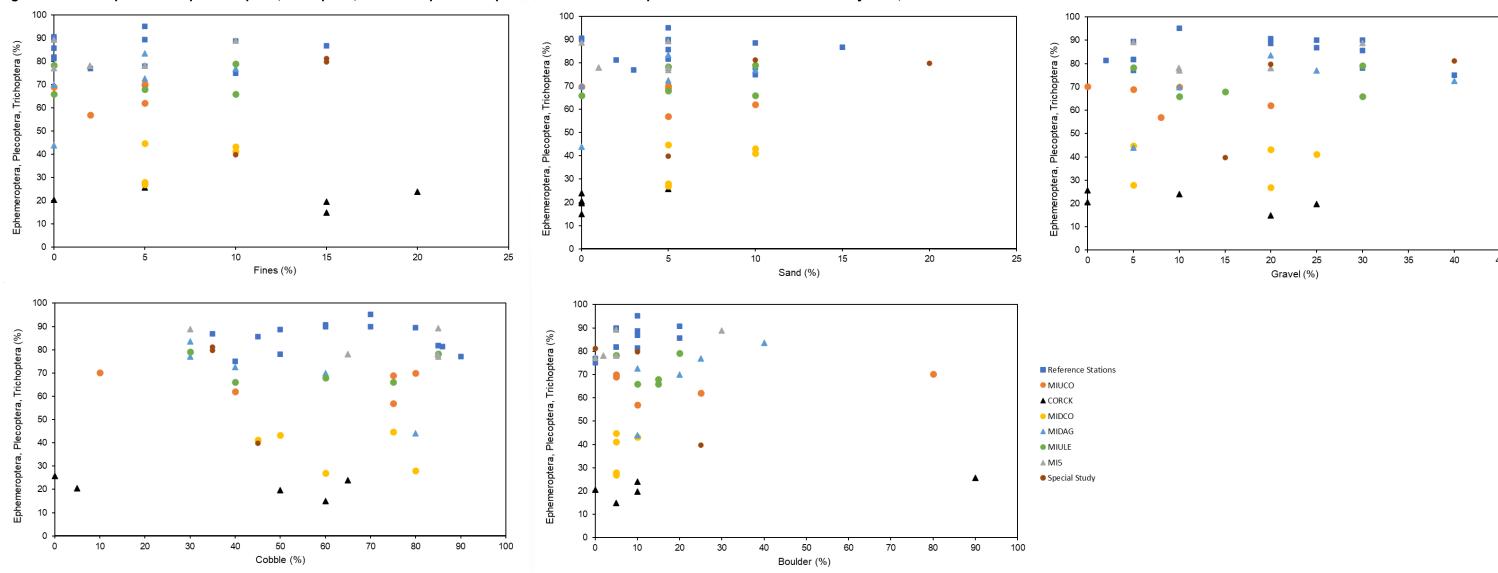



Figure G3.2-7: Proportion of Ephemeroptera, Plecoptera, and Trichoptera versus Aqueous Total Molybdenum (left panel) and Proportion of Ephemeroptera versus Aqueous Total Molybdenum (right panel) Concentrations from the CMm LAEMP Study Area, 2012 to 2022

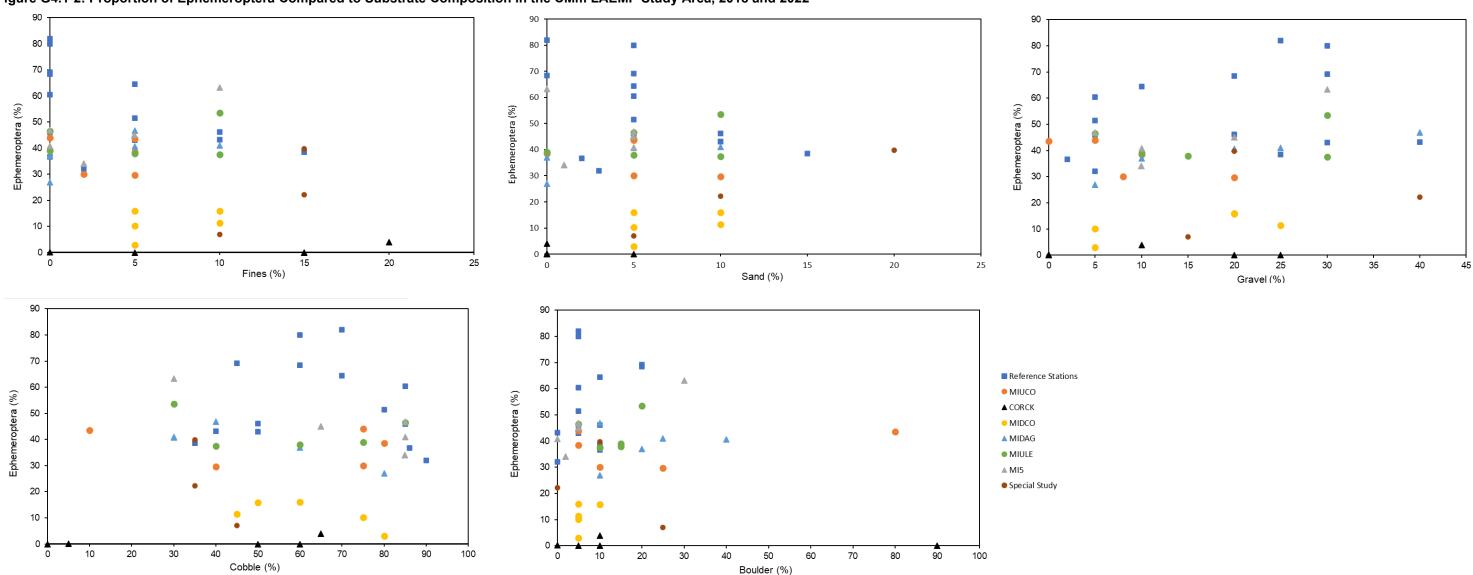

Appendix G

Supplementary Figures

June 2023

G4.0 HABITAT COMPARISON

Figure G4.1-1: Proportion of Ephemeroptera, Plecoptera, and Trichoptera Compared to Substrate Composition in the CMm LAEMP Study Area, 2018 and 2022


% = percent; CMm = Coal Mountain Mine; LAEMP = Local Aquatic Effects Monitoring Program.

Reference No. 22574542-001-R-Rev0-1000

Supplementary Figures

Figure G4.1-2: Proportion of Ephemeroptera Compared to Substrate Composition in the CMm LAEMP Study Area, 2018 and 2022

 $\% = \mathsf{percent}; \ \mathsf{CMm} = \mathsf{Coal} \ \mathsf{Mountain} \ \mathsf{Mine}; \ \mathsf{LAEMP} = \mathsf{Local} \ \mathsf{Aquatic} \ \mathsf{Effects} \ \mathsf{Monitoring} \ \mathsf{Program}.$

Supplementary Figures June 2023

G5.0 REFERENCES

SRK (SRK Consulting). 2023. Coal Mountain Mine water and load balance model 2022 comprehensive update. Report prepared by SRK Consulting for Teck Coal Limited – Coal Mountain Mine. March 2023.

APPENDIX H

Calcite Data

Table H-1: Calcite Data at CMm LAEMP Sampling Stations, 2015 to 2022

		Location	n (UTMs) ^(a)							Calcite Inc	lex		
	Station			Replicates		2010	20.15	22.12	2010		20:	21 ^(b)	2022
		Easting	Northing		2015	2016	2017	2018	2019	2020	Old Method	New Method	New Method
				1	0.360	0.000	0.580	0.350	0.000	0.020	0.000	0.000	0.046
	RG_MI25	668184	5482818	2	0.360	-	-	0.240	0.000	0.000	0.000	0.000	0.004
a)	_			3	0.360	-	-	0.020	0.000	0.020	0.000	0.000	0.011
2				1	0.000	-	-	0.310	0.000	0.000	0.070	0.022	0.009
ere	RG_AGCK	667557	5488648	2	ı	-	-	0.210	0.000	0.000	0.080	0.014	0.001
Reference				3	ı	-	-	0.220	0.000	0.000	0.120	0.035	0.000
ш.				1	-	-	-	0.000	0.000	0.000	0.000	0.000	0.000
	RG_LE1	659635	5494108	2	-	-	-	-	0.000	0.000	0.000	0.000	0.000
				3	-	-	-	-	0.000	0.000	0.000	0.000	0.000
				1	0.870	0.520	0.590	1.410	0.000	0.040	0.000	0.000	0.052
	RG_MIUCO	668135	5486767	2	-	-	-	0.720	0.000	0.100	0.000	0.000	0.000
				3	-	-	-	0.740	0.000	0.130	0.003	0.010	0.011
				1	1.360	1.000	2.190	2.740	2.300	2.770	1.920	2.023	2.794
	RG_CORCK	668539	5487366	2	-	-	-	1.980	2.300	2.700	2.660	2.444	2.778
				3	-	-	-	2.480	2.900	2.880	2.760	2.635	_(d)
				1	0.690	1.000	0.910	1.630	0.900	0.610	0.080	0.015	0.204
				2	-	-	-	1.780	0.990	0.550	0.100	0.015	0.165
	RG_MIDCO	667616	5487621	3	-	-	-	1.470	0.970	0.500	0.080	0.012	0.110
				4	-	-	-	1.530	0.980	0.620	0.000	0.000	0.182
				5	-	-	-	1.300	0.930	0.820	0.060	0.010	0.097
_	4.			1	ı	-	-	-	-	0.640	-	-	-
ĕ	RG_CM_MC2 ^(c)	667249	5488144	2	ı	-	-	-	-	0.700	•	•	-
ы				3	ı	-	-	-	-	0.800	•	•	-
Mine-influenced				1	-	-	-	-	-	0.190	-	-	-
<u>-</u>	SS_MIDAG-S1 ^(c)	666290	5488507	2	ı	-	-	-	-	0.040	-	•	-
≟				3	-	-	-	-	-	0.060	-	-	-
2				1	-	-	-	-	-	0.010	-	-	-
	SS_MIDAG-S2 ^(c)	665770	5488854	2	-	-	-	-	-	0.020	-	-	-
				3	•	-	-	-	-	0.070	-	•	-
				1	0.360	-	-	0.660	0.000	0.030	0.070	0.015	0.094
	RG_MIDAG	665220	5489324	2	ı	-	-	0.550	0.000	0.010	0.000	0.000	0.082
				3	ı	-	-	0.550	0.000	0.010	0.010	0.001	0.111
				1	ı	-	-	1.020	0.000	0.020	0.500	0.078	0.186
	RG_MIULE	660503	5493048	2	1	-	-	0.560	0.000	0.040	0.626	0.107	0.188
				3	-	-	-	0.600	0.000	0.070	0.586	0.111	0.243
				1	0.500	-	-	0.420	0.000	0.030	0.030	0.005	0.062
	RG MI5	659496	5496774	2	-	-	-	0.370	0.000	0.110	0.030	0.003	0.087
	- ·			3	-	_		0.800	0.000	0.090	0.000	0.000	0.009
ـــــــــــــــــــــــــــــــــــــــ		1		-	_				ı	ı	high word only complet		

a) UTM coordinates (NAD = 83, Zone = 11) provided are from the 2021 sampling program, except for the three stations CM-MC2, MIDAG-S1, and MIDAG-S2, which were only sampled in 2020 as part of the Nickel Benchmark Study.

b) The Calclite Index calculation method changed in 2021 to a proportional assessment of calcite presence. All previous years were calculated using a binary presence/absence methodology. The 2021 results are presented using both methods and 2022 results are presented using the new method.

c) Supplemental stations for the Nickel Benchmark Study in 2020.

d) Two out of three 100 pebble counts were performed at RG_CORCK in 2022.

^{- =} data not available or data not recorded; CMm = Coal Mountain Mine; LAEMP = local aquatic effects monitoring program.

Table H-2: Calcite Data and Pebble Counts at Reference Stations in CMm I AEMP 202

Table I	I-2: Calcite D	ata and Peb	ble Counts at F	Reference Stations	in CM	m LAEMP, 2		1125						
			VII25 1				RG_	MI25 2					MI25 3	
Rock	Concreted Status	Calcite Presence	Intermediate Axis (cm)	Embeddedness	Rock	Concreted Status	Calcite Presence	Intermediate Axis (cm)	Embeddedness	Rock	Concreted Status	Calcite Presence	Intermediate Axis (cm)	Embeddedness
1	0	0	11.0	-	1	0	0	7.5	-	1	0	0	3.5	-
2	0	0	15.0	-	2	0	0	5.0	-	2	0	0	4.0	-
3	0	0.1	10.5 9.0	-	3	0	0	8.0 8.0	-	3 4	0	0	3.5 5.5	-
5 6	0	0.1	18.0	-	5	0	0	6.5	-	5	0	0	1.5	-
7	0	0	7.0 11.5	-	6 7	0	0	5.0 3.5	-	6 7	0	0.1 0	6.0 9.0	-
8	0	0.2	10.5	-	8	0	0	5.5	-	8	0	0	3.5	-
9 10	0	0	4.5 5.0	0.25	9 10	0	0	2.5 9.0	0.50	9 10	0	0	10.0 6.0	0.00
11	0	0	3.5	-	11	0	0	11.0	-	11	0	0	7.0	-
12 13	0	0	7.5 2.5	-	12 13	0	0	4.0 6.0	-	12 13	0	0	5.0 4.0	-
14	0	0	8.0	-	14	0	0	9.5	-	14	0	0	6.0	-
15 16	0	0	8.5 9.0	-	15 16	0	0	8.5 12.5	<u>-</u> -	15 16	0	0	13.0 8.0	-
17	0	0	5.0	-	17	0	0	12.0	-	17	0	0	8.5	-
18 19	0	0	5.5 10.0	-	18 19	0	0	6.0 3.0	-	18 19	0	0 0.2	9.5 5.5	-
20	0	0	10.0	0.25	20	0	0	11.0	0.25	20	0	0	3.5	0.25
21 22	0	0.1	5.0 8.0	-	21 22	0	0	5.0 5.0	<u>-</u> -	21 22	0	0	3.0 4.5	-
23	0	0.1	6.5	-	23	0	0	12.0	-	23	0	0	10.0	-
24 25	0	0.1 0.3	10.0 9.5	-	24 25	0	0	9.5 3.5	-	24 25	0	0	2.0 4.5	-
26	0	0.3	12.5	-	26	0	0	4.0	-	26	0	0	3.0	-
27 28	0	0	6.0 7.5	-	27 28	0	0.2	16.0 6.5	-	27 28	0	0 0.1	2.5	-
29	0	0	3.5	-	28	0	0	3.0	-	29	0	0.1	5.5 5.0	-
30	0	0	9.0	0.25	30	0	0	10.0	0.25	30	0	0	1.0	0.00
31 32	0	0 0.1	6.5 17.0	-	31 32	0	0	9.0 4.0	- 	31 32	0	0	0.2 6.5	-
33	0	0.1	7.0	-	33	0	0	8.0	-	33	0	0.1	7.0	-
34 35	0	0.1	10.0	-	34 35	0	0	10.0	-	34 35	0	0	4.0 5.0	-
36	0	0	12.5	-	36	0	0	5.0	-	36	0	0	7.0	-
37 38	0	0.2	14.0 6.0	-	37 38	0	0	6.0 14.5	-	37 38	0	0	5.0 12.0	-
39	0	0	11.0	-	39	0	0	4.0	-	39	0	0	1.5	-
40 41	0	0.3 0.2	5.5 7.5	0.25	40 41	0	0 0.1	6.0 9.5	0.00	40 41	0	0 0.1	8.0 4.0	0.25
42	0	0	11.5	-	42	0	0	-	-	42	0	0	4.0	-
43	0	0	6.5 2.5	-	43 44	0	0	12.0	-	43 44	0	0	3.0 5.5	-
45	0	0.1	5.0	-	45	0	0	7.0	-	45	0	0	2.0	-
46 47	0	0	4.0 8.5	-	46 47	0	0	3.5 4.5	-	46 47	0	0	4.0 4.5	-
48	0	0	7.0	-	48	0	0	8.5	-	48	0	0	7.0	-
49	0	0.1	12.0	-	49	0	0	4.0	- 0.05	49	0	0	3.5	-
50 51	0	0.3	8.5 16.0	0.50	50 51	0	0	6.0	0.25	50 51	0	0	3.5 17.0	0.50
52	0	0	5.0	-	52	0	0	-	-	52	0	0	3.0	-
53 54	0	0.3	7.5 9.5	-	53 54	0	0	6.0 14.0	<u>-</u> -	53 54	0	0	11.0 6.0	-
55	0	0	5.0	-	55	0	0	5.0	-	55	0	0	3.5	-
56 57	0	0	3.0 9.0	-	56 57	0	0	5.0 -	-	56 57	0	0	7.0 3.5	-
58	0	0	8.0	-	58	0	0	4.5	-	58	0	0	5.0	-
59 60	0	0.3	11.0 10.5	- 0.25	59 60	0	0	11.0 10.5	0.50	59 60	0	0	6.0 7.0	0.25
61	0	0	5.0	-	61	0	0	6.0	-	61	0	0	12.0	-
62 63	0	0.1	8.0 5.5	-	62 63	0	0	4.5 2.5	-	62 63	0	0	6.0 3.5	-
64	0	0	4.0	-	64	0	0	4.0	-	64	0	0	5.0	-
65 66	0	0	7.5 3.5	-	65 66	0	0	- 6.0	-	65 66	0	0	4.5 3.0	-
67	0	0	ı	-	67	0	0	12.0	-	67	0	0	6.5	-
68	0	0	5.0	-	68	0	0	6.5	-	68 69	0	0	2.5	-
69 70	0	0	5.5 8.0	0.50	69 70	0	0	4.0 8.0	0.50	70	0	0	4.0 6.5	0.25
71 72	0	0.3	10.0	-	71	0	0	5.0	-	71	0	0.1	7.5	-
73	0	0.3	7.5 9.0	-	72 73	0	0	7.5 6.0	- 	72 73	0	0 0.1	4.0 10.0	-
74	0	0	2.0	-	74	0	0	4.5	-	74	0	0.1	11.0	-
75 76	0	0.1 0	16.0	-	75 76	0	0	3.5 1.5	-	75 76	0	0	2.5 10.0	-
77	0	0	ı	-	77	0	0.1	7.0	-	77	0	0	2.0	-
78 79	0	0.1	7.0	-	78 79	0	0	7.0 6.5	-	78 79	0	0.1	13.0 6.5	-
80	0	0	8.5	0.00	80	0	0	16.0	0.75	80	0	0	4.0	0.00
81 82	0	0.2 0.1	7.0 10.5	-	81 82	0	0	6.0 10.0	<u>-</u>	81 82	0	0 0.1	8.0 9.0	-
83	0	0	4.5	-	83	0	0	2.5	-	83	0	0	0.2	-
84 85	0	0.1	9.0 5.5	-	84 85	0	0	5.0 5.5	-	84 85	0	0	3.0 5.0	-
86	0	0	-	-	86	0	0	10.0	-	86	0	0	10.0	-
87	0	0	7.5	-	87	0	0	4.5	-	87	0	0	13.0	-
88 89	0	0.1	8.0 7.5	-	88 89	0	0	8.0 4.5	-	88 89	0	0	4.0 11.0	-
90	0	0	7.5	0.25	90	0	0	6.0	0.00	90	0	0	6.5	0.00
91 92	0	0	2.0	-	91 92	0	0	3.0 6.0	-	91 92	0	0	3.0 6.0	-
93	0	0	4.5	-	93	0	0	6.0	-	93	0	0	6.0	-
94 95	0	0	8.0 7.0	-	94 95	0	0	3.5 6.0	<u>-</u> -	94 95	0	0	4.0 2.5	-
96	0	0	7.0	-	96	0	0	4.0	-	96	0	0	3.0	-
97 98	0	0	6.5 4.0	-	97 98	0	0	4.5 6.0	<u>-</u>	97 98	0	0	4.5 5.0	-
99	0	0	10.0	-	99	0	0	11.0	-	99	0	0	5.5	-
100 cm = centi	0 metre	0	7.0	0.25	100	0	0	3.5	0.00	100	0	0	6.0	0.50
um – centii	neue.													

WSP Canada Inc. Page 2 of 11

Table H-2: Calcite Data and Pebble Counts at Reference Stations in CMm I AFMP 2023

Table	H-2: Calcite [Data and Pe	bble Counts at	Reference Station	s in CN	/Im LAEMP, 2		AGCK						
			AGCK 1				RG_	AGCK 2					AGCK 3	
Rock	Concreted Status	Calcite Presence	Intermediate Axis (cm)	Embeddedness	Rock	Concreted Status	Calcite Presence	Intermediate Axis (cm)	Embeddedness	Rock	Concreted Status	Calcite Presence	Intermediate Axis (cm)	Embeddedness
1	0	0	6.0	-	1	0	0	5.5	-	1	0	0	6.0	-
3	0	0	7.0	-	3	0	0	15.0 11.0	-	3	0	0	17.0 14.0	-
<u>4</u> 5	0	0	7.0 16.0	-	<u>4</u> 5	0	0	3.0 5.0	-	4 5	0	0	7.0 4.0	-
6	0	0	5.5	-	6	0	0	8.0	-	6	0	0	4.0	-
7 8	0	0	6.5 4.0	-	7 8	0	0	8.0 6.0	-	7 8	0	0	8.0 11.0	-
9	0	0	8.0	-	9	0	0	9.0	-	9	0	0	7.5	-
10 11	0	0	21.0 7.5	0.00	10 11	0	0	6.0 14.0	0.50	10 11	0	0	10.0 5.0	0.75
12	0	0	7.5	-	12	0	0	6.0	-	12	0	0	8.0	-
13 14	0	0	14.0 20.0	-	13 14	0	0	7.0 10.5	-	13 14	0	0	9.0 2.5	-
15	0	0	8.5	-	15	0	0	11.5	-	15	0	0	3.5	-
16	0	0	8.0	-	16	0	0	5.0	-	16	0	0	8.0	-
17 18	0	0	6.0 21.0	-	17 18	0	0	6.0 4.5	-	17 18	0	0	8.0 4.5	-
19	0	0	4.5	-	19	0	0	10.0	-	19	0	0	7.5	-
20 21	0	0	6.0 5.0	0.00	20 21	0	0	21.0 2.0	0.50	20 21	0	0	6.0 5.0	0.25
22	0	0	16.5	-	22	0	0	18.0	-	22	0	0	7.5	-
23 24	0	0	7.5 5.5	-	23 24	0	0	4.5 5.0	<u>-</u>	23 24	0	0	6.0 6.5	-
25	0	0	14.0	-	25	0	0	8.5	-	25	0	0	11.0	-
26 27	0	0	6.0 5.5	-	26 27	0	0	6.5 4.0	-	26 27	0	0	4.5 6.0	-
28	0	0	5.0	-	28	0	0	7.0	-	28	0	0	8.5	-
29 30	0	0	12.0 12.0	- 0.50	29 30	0	0	8.5 17.0	0.25	29 30	0	0	4.5 8.5	0.25
31	0	0	7.5	-	31	0	0	5.5	-	31	0	0	12.0	-
32 33	0	0	7.0 14.5	-	32 33	0	0	4.0 20.0	-	32 33	0	0	9.5 5.0	-
34	0	0	11.0	-	34	0	0	10.0	-	34	0	0	9.5	-
35 36	0	0	7.5 9.0	-	35 36	0	0	11.5 3.0	-	35 36	0	0	10.5 2.0	-
37	0	0	7.5	-	37	0	0	5.0	-	37	0	0	15.0	-
38 39	0	0	6.0 5.0	-	38 39	0	0	16.0 30.0	-	38 39	0	0	10.5 14.5	-
40	0	0	2.0	0.00	40	0	0	8.0	0.25	40	0	0	9.0	0.25
41 42	0	0	5.5	-	41 42	0	0	6.0 3.0	-	41 42	0	0	11.0	-
43	0	0	6.5	-	43	0	0	12.0	-	43	0	0	5.0 4.5	-
44	0	0	-	-	44	0	0	12.0	-	44	0	0	13.5	-
45 46	0	0	9.0 7.0	-	45 46	0	0.1 0	17.0 7.5	-	45 46	0	0	5.0 12.0	<u>-</u>
47	0	0	4.0	-	47	0	0	12.0	-	47	0	0	30.0	-
48 49	0	0	6.0 5.0	-	48 49	0	0	12.5 6.0	-	48 49	0	0	6.0 6.0	-
50	0	0	7.0	0.25	50	0	0	3.0	0.00	50	0	0	22.0	0.00
51 52	0	0	6.0 8.0	-	51 52	0	0	3.5 4.5	<u>-</u>	51 52	0	0	6.0 3.5	<u>-</u>
53	0	0	4.0	-	53	0	0	7.0	-	53	0	0	4.0	-
54 55	0	0 0.1	6.0 10.0	-	54 55	0	0	5.0 6.5	-	54 55	0	0	10.0 7.0	-
56	0	0	5.5	-	56	0	0	3.5	-	56	0	0	7.0	-
57 58	0	0	6.0 10.0	-	57 58	0	0	10.0 8.0	-	57 58	0	0	10.5 6.0	-
59	0	0	5.5	-	59	0	0	8.5	-	59	0	0	8.0	-
60 61	0	0 0.2	8.0 6.0	0.00	60 61	0	0	4.5 6.0	0.00	60 61	0	0	6.5 6.0	0.25
62	0	0.2	9.5	-	62	0	0	7.0	-	62	0	0	3.5	-
63	0	0	5.5	-	63	0	0	4.0 135.0	-	63	0	0	8.0	-
64 65	0	0	7.0 4.0	-	64 65	0	0	12.5	-	64 65	0	0	16.0 4.0	-
66	0	0	10.5	-	66	0	0	23.0	-	66	0	0	5.0	-
67 68	0	0	6.5 5.0	-	67 68	0	0	13.0 7.5	-	67 68	0	0	6.0 12.0	-
69	0	0.1	34.0	-	69	0	0	8.0	- 0.25	69	0	0	3.5	-
70 71	0	0	27.0 5.0	0.50	70 71	0	0	8.5 5.5	0.25	70 71	0	0	9.0 5.0	0.50
72	0	0	12.0	-	72	0	0	4.0	-	72	0	0	5.5	-
73 74	0	0	7.0 5.0	-	73 74	0	0	11.0 8.5	-	73 74	0	0	17.0 3.5	-
75	0	0	2.5	-	75	0	0	8.0	-	75	0	0	7.5	-
76 77	0	0	5.5 9.0	-	76 77	0	0	23.0 5.5	-	76 77	0	0	6.5 5.0	-
78	0	0	8.5	-	78	0	0	17.0	-	78	0	0	8.0	-
79 80	0	0	8.0 11.0	- 0.25	79 80	0	0	5.0 7.5	0.50	79 80	0	0	15.0 5.5	0.25
81	0	0	7.0	-	81	0	0	5.0	-	81	0	0	8.0	-
82 83	0	0	7.0 4.0	-	82 83	0	0	9.0 6.5	-	82 83	0	0	7.0 8.5	-
84	0	0	6.0	-	84	0	0	3.5	-	84	0	0	11.0	-
85 86	0	0 0.2	4.0 16.0	-	85 86	0	0	5.0 7.0	-	85 86	0	0	7.5 7.0	-
87	0	0	7.0	-	87	0	0	4.5	-	87	0	0	7.0	-
88 89	0	0	8.0 7.5	-	88 89	0	0	6.0 13.0	-	88 89	0	0	7.0 18.0	-
90	0	0	6.0	0.00	90	0	0	6.5	0.00	90	0	0	4.0	0.25
91 92	0	0	4.5 5.0	-	91 92	0	0	8.0 11.0	-	91 92	0	0	5.0 13.5	-
93	0	0	5.0	-	93	0	0	12.0	-	93	0	0	8.0	<u>-</u>
94	0	0.1	14.5	-	94	0	0	1.5	-	94	0	0	7.0	-
95 96	0	0	4.0 5.0	- -	95 96	0	0	4.0 11.5	-	95 96	0	0	6.0 8.5	<u>-</u>
97	0	0.2	11.0	-	97	0	0	5.0	-	97	0	0	10.5	-
98 99	0	0	11.5 3.0	-	98 99	0	0	0.4 8.0	-	98 99	0	0	17.0 6.0	-
100	0	0	4.5	0.00	100	0	0	7.0	0.25	100	0	0	7.5	0.00
cm = c	entimetre.													

WSP Canada Inc. Page 3 of 11

Table H-2: Calcite Data and Pebble Counts at Reference Stations in CMm LAEMP, 2022

		PC	LEI 1					.EI _LEI 2				PC	LEI 3	
Rock	Concreted	Calcite	Intermediate	Embeddedness	Rock	Concreted	Calcite	Intermediate	Embeddedness	Rock	Concreted	Calcite	Intermediate	Embeddedness
1	Status 0	Presence 0	Axis (cm) 8.5	-	1	Status 0	Presence 0	Axis (cm) 7.0	<u>-</u>	1	Status 0	Presence 0	Axis (cm) 20.0	-
2	0	0	8.0	-	2	0	0	9.0	-	2	0	0	6.0	-
<u>3</u> 4	0	0	3.0 5.0	-	3 4	0	0	8.0 4.5	-	3	0	0	11.0 10.0	-
5	0	0	3.5	-	5	0	0	6.0	-	5	0	0	18.0	-
<u>6</u> 7	0	0	9.0 3.5	-	6 7	0	0	4.5 5.5	<u>-</u> -	6 7	0	0	9.5 11.0	-
8	0	0	4.0	-	8	0	0	25.0	-	8	0	0	24.0	-
9 10	0	0	11.0 4.0	0.50	9	0	0	9.0 12.0	0.75	9	0	0	18.0 12.0	0.25
11	0	0	4.0	- 0.30	11	0	0	10.0	-	11	0	0	10.0	- 0.25
12 13	0	0	10.0 9.0	-	12 13	0	0	5.0 9.0	-	12 13	0	0	5.5 21.0	-
14	0	0	8.5	-	14	0	0	12.0	-	14	0	0	14.0	-
15	0	0	6.0	-	15	0	0	6.5	-	15	0	0	17.0	-
<u>16</u> 17	0	0	4.5 3.5	-	16 17	0	0	7.0 6.5	-	16 17	0	0	15.0 7.0	-
18	0	0	6.0	-	18	0	0	10.0	-	18	0	0	17.0	-
19 20	0	0	4.5 6.0	0.25	19 20	0	0	7.0 7.5	0.25	19 20	0	0	3.0 17.0	0.25
21	0	0	7.0	-	21	0	0	5.5	-	21	0	0	7.5	-
22	0	0	3.0 3.0	-	22	0	0	8.0 6.0	<u>-</u>	22 23	0	0	10.5 22.5	-
24	0	0	5.0	-	24	0	0	7.0	-	24	0	0	19.0	-
25	0	0	4.0	-	25	0	0	10.0	=	25 26	0	0	9.5	-
26 27	0	0	6.0 6.0	-	26 27	0	0	8.5 7.0	-	27	0	0	14.0 14.0	-
28	0	0	7.0	-	28	0	0	9.0	-	28	0	0	18.0	-
29 30	0	0	11.0 6.0	- 0.25	29 30	0	0	10.0 11.0	0.00	29 30	0	0	10.0 20.5	0.50
31	0	0	11.5	-	31	0	0	10.0	-	31	0	0	10.5	-
32 33	0	0	7.5 6.5	-	32 33	0	0	6.0 8.0	-	32 33	0	0	13.0 13.0	-
34	0	0	4.0	-	34	0	0	9.0	-	34	0	0	-	-
35 36	0	0	10.0 3.0	-	35 36	0	0	10.5 9.0	-	35 36	0	0	18.0 10.5	-
37	0	0	12.0	-	37	0	0	10.0	-	37	0	0	18.5	-
38	0	0	6.6	-	38	0	0	4.0	-	38	0	0	16.5	-
39 40	0	0	3.5 6.0	0.50	39 40	0	0	5.5 7.5	0.00	39 40	0	0	4.5 7.0	0.25
41	0	0	-	-	41	0	0	5.5	-	41	0	0	24.0	-
42	0	0	5.0 8.0	-	42 43	0	0	7.5 10.0	-	42 43	0	0	11.0 12.0	-
44	0	0	4.0	-	44	0	0	8.0	-	44	0	0	9.0	-
45 46	0	0	2.0 3.0	-	45 46	0	0	5.5 8.5	<u>-</u>	45 46	0	0	6.5 11.0	-
47	0	0	3.5	-	47	0	0	5.5	-	47	0	0	11.0	-
48	0	0	5.0	-	48	0	0	16.0	-	48	0	0	13.0	-
49 50	0	0	5.5 7.5	0.75	49 50	0	0	9.0 6.5	0.00	49 50	0	0	11.0 17.0	0.25
51	0	0	9.0	-	51	0	0	8.5	-	51	0	0	8.0	-
52 53	0	0	6.5 5.0	-	52 53	0	0	10.0 8.0	-	52 53	0	0	7.0 14.5	-
54	0	0	4.5	-	54	0	0	4.5	-	54	0	0	10.0	-
55 56	0	0	2.5 5.0	-	55 56	0	0	10.5 3.5	<u>-</u>	55 56	0	0	7.5 5.0	-
57	0	0	3.0	-	57	0	0	7.0	-	57	0	0	7.5	-
58	0	0	4.5	-	58	0	0	6.5	-	58	0	0	5.0	-
59 60	0	0	7.0 4.0	0.25	59 60	0	0	4.5 3.0	0.25	59 60	0	0	16.0 10.5	0.50
61	0	0	7.0	-	61	0	0	10.0	-	61	0	0	5.5	-
62 63	0	0	8.0 4.5	-	62 63	0	0	4.5 7.0	<u>-</u> -	62 63	0	0	8.0 9.0	-
64	0	0	5.0	-	64	0	0	4.0	-	64	0	0	11.0	-
65 66	0	0	6.5 7.0	-	65 66	0	0	7.0 4.5	-	65 66	0	0	7.5 5.5	-
67	0	0	9.0	-	67	0	0	5.0	-	67	0	0	32.0	-
68 69	0	0	5.5 3.5	-	68 69	0	0	5.0 8.0	-	68 69	0	0	8.5	-
70	0	0	14.0	0.50	70	0	0	12.0	0.25	70	0	0	7.5	0.25
71	0	0	4.0	-	71	0	0	7.0	-	71	0	0	7.0	-
72 73	0	0	10.0 4.0	-	72 73	0	0	4.0 4.0	-	72 73	0	0	8.0 7.5	-
74	0	0	9.0	-	74	0	0	10.5	-	74	0	0	3.5	-
75 76	0	0	7.0 3.0	-	75 76	0	0	5.0 13.0	-	75 76	0	0	3.0 17.0	-
77	0	0	11.0	-	77	0	0	9.5	1	77	0	0	16.5	-
78 79	0	0	9.0 7.0	-	78 79	0	0	- 12.0	-	78 79	0	0	22.0 11.0	-
80	0	0	5.5	0.25	80	0	0	2.5	0.00	80	0	0	20.0	0.25
81 82	0	0	6.5 11.5	-	81 82	0	0	8.0 15.5	-	81 82	0	0	13.0 13.5	-
83	0	0	8.0	-	82	0	0	13.0	-	82	0	0	6.0	-
84	0	0	5.0	-	84	0	0	7.0	-	84	0	0	6.5	-
85 86	0	0	15.0 3.5	-	85 86	0	0	9.0 9.0	-	85 86	0	0	7.0 14.5	-
87	0	0	8.0	-	87	0	0	8.0	=	87	0	0	12.0	-
88 89	0	0	13.0 10.0	-	88 89	0	0	9.0 8.5	-	88 89	0	0	7.5 -	-
90	0	0	15.0	0.50	90	0	0	3.0	0.00	90	0	0	17.0	0.50
91	0	0	8.0	-	91	0	0	5.5	-	91	0	0	14.0	-
92 93	0	0	5.5 6.0	-	92 93	0	0	7.5 8.0	-	92 93	0	0	15.0 5.0	-
94	0	0	13.5	-	94	0	0	11.0	-	94	0	0	7.0	-
95	0	0	9.0 6.5	-	95 96	0	0	13.0 9.0	-	95 96	0	0	14.0 9.0	-
		U				0	0	6.0	-	96	0	0		
96 97	0	0	5.5	-	97								20.0	-
96		0 0 0	5.5 5.0 9.5	-	98 99	0	0	11.0 8.5	-	98 99	0	0	4.0 6.5	-

WSP Canada Inc. Page 4 of 11

Table H-3: Calcite Data and Pebble Counts at Michel Creek Stations in CMm LAEMP, 2022

Table H	-3: Calcite Da	ata and Peb	ble Counts at Mi	ichel Creek Station	s in CM	m LAEMP, 20)22 MIUC	0						
			AIUCO 1				RG_M	IUCO 2					MIUCO 3	
Rock	Concreted Status	Calcite Presence	Intermediate Axis (cm)	Embeddedness	Rock	Concreted Status	Calcite Presence	Intermediate Axis (cm)	Embeddedness	Rock	Concreted Status	Calcite Presence	Intermediate Axis (cm)	Embeddedness
1	0	0	12.0	-	1	0	0	7.0	-	1	0	0	11.5	-
3	0	0	9.0 6.0	-	3	0	0	6.0 5.0	-	3	0	0	10.0 4.5	-
4 5	0	0	9.5 14.0	-	4 5	0	0	7.5 4.5	-	4 5	0	0.1	12.0 8.0	-
6	0	0	6.0	-	6	0	0	9.5	-	6	0	0	9.0	-
7 8	0	0	5.5 7.0	-	7	0	0	6.5 13.0	-	7 8	0	0.1	13.0 8.0	-
9	0	0	6.0	-	9	0	0	11.5	-	9	0	0	7.5	-
10 11	0	0	9.5 11.5	0.00	10 11	0	0	7.5 19.0	0.00	10 11	0	0.1 0.1	30.0 5.0	0.25
12	0	0	23.0	-	12	0	0	6.5	-	12	0	0	9.0	-
13 14	0	0	18.0 12.0	-	13 14	0	0	10.0 12.5	-	13 14	0	0.1	11.5 11.0	-
15	0	0	8.5	-	15	0	0	11.0	-	15	0	0.2	13.0	-
16 17	0	0	15.0 7.5	-	16 17	0	0	7.5 0.1	-	16 17	0	0.2	19.0 17.0	-
18 19	0	0.1 0.1	7.0 8.0	-	18 19	0	0	11.5 13.0	-	18 19	0	0.1	23.0 7.0	-
20	0	0.1	7.5	0.00	20	0	0	9.0	0.00	20	0	0	11.0	0.75
21 22	0	0.3	19.0 9.0	-	21 22	0	0	9.0 11.0	-	21 22	0	0	9.0 9.0	-
23	0	0.1	7.0	-	23	0	0	5.0	-	23	0	0	3.0	-
24 25	0	0 0.4	8.5 10.0	-	24 25	0	0	8.0 7.0	-	24 25	0	0	6.5 7.0	-
26	0	0.4	16.0	-	26	0	0	8.0	-	26	0	0	4.0	-
27 28	0	0	6.5 7.5	-	27 28	0	0	8.5 5.5	-	27 28	0	0	7.0 8.0	-
29	0	0.3	11.0	-	29	0	0	7.5	-	29	0	0	6.0	-
30 31	0	0.1 0.1	9.5 10.0	0.25	30 31	0	0	9.5 8.0	0.50	30 31	0	0	7.5 8.0	0.50
32	0	0	5.5	-	32	0	0	3.5	-	32	0	0	4.0	-
33 34	0	0	12.0 7.5	-	33 34	0	0	15.5 7.0	-	33 34	0	0	14.0 5.0	-
35	0	0	2.5	-	35	0	0	14.0	-	35	0	0	4.0	-
36 37	0	0	4.0 4.0	-	36 37	0	0	15.0 10.0	-	36 37	0	0	7.5 8.5	-
38	0	0	5.5	-	38	0	0	7.0	-	38	0	0	4.0	-
39 40	0	0.2	5.5 11.5	0.25	39 40	0	0	10.0 4.5	0.25	39 40	0	0.1	6.5 13.5	0.50
41	0	0	4.0	-	41	0	0	10.5	-	41	0	0	11.0	-
42 43	0	0.1 0.1	6.5 8.5	-	42 43	0	0	9.0 17.0	-	42 43	0	0	8.0 3.5	-
44	0	0.2	7.0	-	44	0	0	7.5	-	44	0	0	8.5	-
45 46	0	0	2.5 12.0	-	45 46	0	0	14.5 13.0	-	45 46	0	0	6.0 9.0	-
47	0	0	13.0	-	47	0	0	12.0	-	47	0	0	11.0	-
48 49	0	0	7.0 3.0	-	48 49	0	0	11.0 6.0	-	48 49	0	0	6.0 5.5	-
50	0	0	11.0	0.50	50	0	0	6.5	0.00	50	0	0	12.0	0.25
51 52	0	0	9.0 5.5	-	51 52	0	0	8.5 8.5	-	51 52	0	0	8.5 9.0	-
53	0	0	4.5	-	53	0	0	8.0	-	53	0	0	10.0	-
54 55	0	0.3	4.5 12.0	-	54 55	0	- 0	8.5	-	54 55	0	0	11.5 14.0	-
56 57	0	0	5.5	-	56 57	0	0	13.0	-	56 57	0	0	7.0	-
57 58	0	0.1 0.2	10.0 7.5	-	58	0	0	7.5 9.0	-	58	0	0	7.0 19.0	-
59 60	0	0.1 0.3	7.5 10.0	0.25	59 60	0	0	11.5 9.0	0.50	59 60	0	0	9.0 10.0	0.25
61	0	0	3.5	-	61	0	0	7.5	-	61	0	0	10.5	-
62 63	0	0.1	8.0 10.5	-	62 63	0	0	10.5 5.0	-	62 63	0	0	11.0 5.0	-
64	0	0	3.5	-	64	0	0	5.0	-	64	0	0	13.0	-
65 66	0	0	7.0 9.5	-	65 66	0	0	9.5 2.5	-	65 66	0	0	5.0 6.0	-
67	0	0	10.0	-	67	0	0	9.0	-	67	0	0	9.0	-
68 69	0	0.3 0.2	41.0 13.0	-	68 69	0	0	3.5 13.5	-	68 69	0	0	20.5 11.5	-
70	0	0	4.5	0.50	70	0	0	5.5	0.25	70	0	0	11.0	0.25
71 72	0	0	7.0 6.5	-	71 72	0	0	6.5 3.0	-	71 72	0	0	11.5 7.0	-
73	0	0	6.5	-	73	0	0	13.0	-	73	0	0	9.0	-
74 75	0	0.1	2.5 6.5	-	74 75	0	0	16.0 6.5	-	74 75	0	0	8.0 7.0	-
76	0	0.1	6.0	-	76	0	0	15.0	-	76	0	0	4.0	-
77 78	0	0	5.5 5.0	-	77 78	0	0	10.5 8.0	-	77 78	0	0	6.5 8.0	-
79	0	0	7.5	-	79	0	-	3.5	-	79	0	0	5.5	- 0.25
80 81	0	0	6.5 8.0	0.00	80 81	0	0	10.5 12.0	0.25	80 81	0	0	5.0 16.0	0.25
82	-		-	-	82	0	0	8.0	-	82	0	0	6.0	-
83 84	0	0	11.0 7.0	-	83 84	0	0	9.0 12.0	-	83 84	0	0	7.0 6.0	-
85	0	0	4.0 5.5	-	85 86	0	0	5.5	-	85	0	0	7.5	-
86 87	0	0	6.0	-	86 87	0	0	13.0 7.0	-	86 87	0	0	4.0 4.5	-
88	0	0.1	5.5	-	88	0	0	6.0 4.0	-	88	0	0	5.5	-
89 90	0	0	6.0 4.5	0.00	89 90	0	0	10.5	0.50	89 90	0	0	7.5 4.5	0.00
91	0	0.1 0	11.0	-	91 92	0	-	-	-	91	0	0	5.5 10.0	-
92 93	0	0	8.0 5.5	-	93	0	0	7.0 6.0	-	92 93	0	0	10.0 14.5	-
94	0	0	4.5 5.5	-	94	0	-	-	-	94	0	0	12.0	-
95 96	0	0	5.5	-	95 96	0	0	2.5 3.5	-	95 96	0	0	8.5 7.5	-
97 98	0	0.2	11.5 -	-	97 98	0	0	3.0 3.5	-	97 98	0	0	5.5 11.5	-
98	- 0	0.3	9.5	-	99	0	-	3.5	-	99	0	0	8.0	-
100	0	0	6.5	0.25	100	0	0	8.0	0.50	100	0	0	5.5	0.25

WSP Canada Inc. Page 5 of 11

Table H-3: Calcite Data and Pebble Counts at Michel Creek Stations in CMm LAEMP, 2022

Table	11-5. Calcite		MIDCO 1	t Michel Creek Sta	lions	II CWIIII EAEI	MI	DCO IIDCO 2				RG N	MIDCO 3	
Rock	Concreted Status	Calcite Presence	Intermediate	Embeddedness	Rock	Concreted Status	Calcite	Intermediate Axis (cm)	Embeddedness	Rock	Concreted	Calcite Presence	Intermediate	Embeddedness
1	0	0.1	Axis (cm) 5.5	-	1	O Status	Presence 0.1	5.0	-	1	Status 0	0	Axis (cm) 5.0	-
2	0	0.2 0.4	11.0 11.5	-	2	0	0 0.3	6.5 11.0	-	3	0	0.4 0.4	7.0 6.0	-
4	0	0.3	7.5	-	4	0	0.3	5.5	-	4	0	0	4.0	-
5 6	0	0.1	1.5 5.0	-	5 6	0	0.2	15.0 9.0	-	5 6	0	0 0.1	4.0 7.5	-
7	0	0.2	11.0	-	7	0	0.1	13.0	-	7	0	0	5.5	-
8	0	0.3 0.1	8.0 4.0	-	9	0	0.1 0.1	11.0 10.0	-	8 9	0	0.1	7.5 5.5	-
10	0	0	4.0	0.25	10	0	0.4	7.5	0.00	10	0	0	7.5	0.50
11 12	0	0.2 0.1	5.0 7.5	-	11 12	0	0.1	8.0 8.0	-	11 12	0	0.3	5.5 14.0	-
13	0	-	-	-	13	0	0.3	18.0	-	13	0	0.1	10.5	-
14 15	0	0.1 0.2	4.0 7.0	-	14 15	0	0.2 0.1	9.0 12.0	-	14 15	0	0.3	5.5 5.5	-
16	0	0.5	15.0	-	16	0	0.2	12.0	-	16	0	0.1	8.5	-
17 18	0	0.1 0.2	6.5 5.0	-	17 18	0	0.3 0.1	12.0 5.5	-	17 18	0	0	5.5 6.5	-
19	0	0.2	20.0	-	19	0	0	5.0	-	19	0	0	8.0	-
20 21	0	0.1 0.4	9.0 6.5	0.50	20	0	0	7.0 10.0	0.00	20	0	0	13.0 4.0	0.50
22	0	0.3	7.5	-	22	0	0	20.0	-	22	0	0	6.0	-
23 24	0	0.1 0.2	7.5 5.5	-	23 24	0	0.1	6.5 6.0	-	23 24	0	0.2	8.0 5.5	-
25	0	0.3	9.0	-	25	0	0	6.5	-	25	0	0.2	6.0	-
26 27	0	0.2 0.4	5.5 15.0	-	26 27	0	0.1 0.3	9.0 8.0	-	26 27	0	0.1 0.1	9.0 5.0	-
28	0	0.2	8.0	-	28	0	0	7.0	-	28	0	0.2	7.0	-
29 30	0	0.1 0.2	6.0 7.0	0.50	29 30	0	0 0.1	8.5 10.0	0.50	29 30	0	0.3 0.1	10.0 8.0	0.00
31	0	0.3	13.0	-	31	0	0.1	7.5	-	31	0	0	6.0	-
32 33	0	0.4	7.0	-	32 33	0	0.1	7.5 5.0	-	32 33	0	0.1	6.0 9.5	-
34	0	0.1	3.0	-	34	0	0.2	6.0	-	34	0	0.1	7.5	-
35 36	0	0.3	2.5	-	35 36	0	0.1	9.5 5.5	-	35 36	0	0.3 0.2	8.5 7.0	-
37	0	0.3	4.0	-	37	0	0.4	12.0	-	37	0	0.2	6.0	-
38 39	0	0.4 0.2	9.0 6.0	-	38 39	0	0.1 0.2	7.0 7.0	-	38 39	0	0	5.0 2.5	-
40 41	0	0.5 0.6	5.5 8.0	0.25	40 41	0	0	12.0 7.0	1.00	40 41	0	0	5.5 5.0	0.25
41	0	0.6	6.0	-	41	0	0	9.0	-	41	0	0.3	10.0	-
43 44	0	0.4 0.1	10.0 11.0	-	43 44	0	0.1 0.3	6.0 13.0	-	43 44	0	0 0.1	- 6.0	-
45	0	0.1	4.0		45	0	0.3	10.0	-	45	0	0.1	7.5	
46 47	0	0.5 0.1	24.5 7.0	-	46 47	0	0.2 0.3	11.0 14.0	-	46 47	0	0	3.5	-
48	0	0.1	13.0	-	48	0	0.5	5.5	-	48	0	0.1	3.0	-
49 50	0	0.3 0.5	21.0 7.5	0.50	49 50	0	0.5 0.5	13.0 11.0	0.25	49 50	0	0.1 0.3	7.0 10.0	0.25
51	0	0.5	6.0	-	51	0	0.5	26.0	0.25	51	0	0.3	3.0	0.25
52 53	0	0.1 0.1	4.5 4.5	-	52 53	0	0.5 0.5	15.0 20.0	-	52 53	0	0.2 0.1	8.0 10.0	-
54	0	0.1	3.0	-	54	0	0.5	21.0	-	54	0	0.1	12.0	-
55 56	0	0.2	4.5 5.0	-	55 56	0	0.5 0.4	18.0 12.0	-	55 56	0	0 0.3	10.0 12.0	-
57	0	0.4	18.0	-	57	0	0.1	12.0	-	57	0	0.3	7.0	-
58 59	0	0.5 0.4	8.0 7.0	-	58 59	0	0.1 0.5	10.0 6.0	-	58 59	0	0.1	3.0 8.5	-
60	0	0	9.0	0.00	60	0	0.3	4.5	0.50	60	0	0.1	9.0	0.25
61 62	0	0.2 0.1	7.5 6.5	-	61 62	0	0.1 0.1	13.0 9.5	-	61 62	0	0.1	4.5 6.5	-
63	0	0.2	25.0	-	63	0	0.2	7.5	-	63	0	0.2	5.5	-
64 65	0	0.4	10.0 10.5	-	64 65	0	0.1 0.1	12.0 7.5	-	64 65	0	0.1	6.0 5.0	-
66	0	0.3	5.0	-	66	0	0.3	6.0	-	66	0	0.1	5.5	-
67 68	0	0.2 0.2	3.5 8.5	-	67 68	0	0.1 0.3	6.5 9.5	-	67 68	0	0.2 0.2	9.0 14.0	-
69	0	0.4	9.5	-	69	0	0.1	5.0	-	69	0	0.3	13.0	-
70 71	0	0.1	2.5 11.5	0.25	70 71	0	0 0.1	13.0 6.5	0.00	70 71	0	0.1	6.5 10.5	0.00
72	0	0.1	5.5	-	72	0	0.1	5.5	-	72	0	0.1	10.5	-
73 74	0	0.3 0.1	27.0 6.5	-	73 74	0	0.1 0.1	7.0 3.5	-	73 74	0	0.1	6.0 6.5	-
75	0	0.2	4.5	-	75	0	0	4.0	-	75	0	0	7.0	-
76 77	0	0 0.1	6.5 3.5	-	76 77	0	0.3 0.4	7.5 7.0	-	76 77	0	0.1 0.1	3.0 7.0	-
78	0	0.1	4.0	-	78	0	0	8.5	-	78	0	0	4.5	-
79 80	0	0 0.1	10.0 5.0	0.00	79 80	0	0.2 0.1	12.0 7.5	0.00	79 80	0	0.2	8.0 13.0	0.00
81	0	0.1	5.5	-	81	0	0.1	4.5	-	81	0	0.2	5.5	-
82 83	0	0.1 0.2	6.0 9.5	-	82 83	0	0 0.1	6.0 6.0	-	82 83	0	0.2	3.5 5.5	-
84	0	0.1	7.5	-	84	0	0.1	23.0	-	84	0	0	5.0	-
85 86	0	0 0.1	5.5 4.5	-	85 86	0	0.2 0.1	8.5 7.5	-	85 86	0	0.4	4.5 3.5	-
87	0	0.1	9.0	-	87	0	0.1	5.5	-	87	0	0.1	6.5	-
88 89	0	0.1	4.0 3.0	-	88 89	0	0.1 0.1	5.0 9.0	-	88 89	0	0.1	2.5 7.5	-
90	0	0.1	5.5	0.25	90	0	0.1	3.5	0.25	90	0	0.1	6.5	0.00
91 92	0	0.2	3.5 4.5	-	91 92	0	0 0.1	4.5 7.5	-	91 92	0	0.1	12.0 8.0	-
93	0	0.4	7.0	-	93	0	0	4.0	-	93	0	0.2	5.0	-
94 95	0	0.1 0	2.5 4.5	-	94 95	0	0.4 0.1	4.0 10.0	-	94 95	0	0.1	5.0 4.5	-
96	0	0.3	7.0	-	96	0	0.3	12.0	-	96	0	0.2	9.5	-
	0	0.2	5.0 11.0	-	97 98	0	0.2 0.1	10.5 3.5	-	97 98	0	0.1 0.1	4.5 5.0	-
97 98	0	0.1	11.0								-			
	0 0	0.1	3.5 10.0	- 0.25	99 100	0	0.1 0.1	8.5 5.0	0.50	99 100	0	0 0.1	7.0 5.5	0.50

WSP Canada Inc. Page 6 of 11

Table H-3: Calcite Data and Pebble Counts at Michel Creek Stations in CMm LAEMP, 2022

Table	H-3: Calcite	Data and P	ebble Counts a	t Michel Creek Sta		n CMm LAEI	MP, 2022					M	IDAC	
		RG_I	MIDCO 4	MII	СО		RG_N	MIDCO 5					IDAG MIDAG 1	
Rock	Concreted	Calcite	Intermediate	Embeddedness	Rock	Concreted	Calcite	Intermediate	Embeddedness	Rock	Concreted	Calcite	Intermediate	Embeddedness
1	Status 0	Presence 0.1	Axis (cm) 8.0	-	1	Status 0	Presence 0	Axis (cm) 6.5	-	1	Status 0	Presence 0.1	Axis (cm) 6.0	
2	0	0.1	5.0	-	2	0	0	9.5	-	2	0	0.1	4.5	-
3	0	0	6.0	-	3	0	0	5.5	-	3	0	0.1	11.0	-
<u>4</u> 5	0	0.2	15.0 12.0	-	4 5	0	0 -	4.0	-	4 5	0	0.1 0.2	7.0 7.0	-
6	0	0.1	7.5	-	6	0	0.1	3.5	-	6	0	0.2	4.0	-
7	0	0.3	11.5	-	7	0	0	8.5	-	7	0	0	4.5	-
9	0	0.2	4.5 12.0	-	9	0	0	9.5 5.5	-	8 9	0	0 0.3	6.0 13.0	-
10	0	0.1	6.0	0.25	10	0	0	3.5	0.00	10	0	0.3	8.0	0.25
11	0	0.2	12.0	-	11	0	0	4.0	-	11	0	0.2	12.0	-
12 13	0	0.4 0.4	8.5 13.0	-	12 13	0	0.1	3.0 5.5	-	12 13	0	0.1	6.5 11.0	-
14	0	0.4	11.0	-	14	0	0.1	9.5	-	14	0	0	6.5	-
15	0	0.2	7.5	-	15	0	0.2	8.5	-	15	0	0.1	3.5	-
16 17	0	0.4 0.3	11.5 18.0	-	16 17	0	0	8.0 8.5	-	16 17	0	0.1	10.0 12.0	-
18	0	0.3	20.0	-	18	0	0	3.0	-	18	0	0.1	11.0	-
19	0	0	6.0	-	19	0	-	-	-	19	0	0	5.0	-
20	0	0.5	24.0	0.75	20	0	0	13.5	0.25	20	0	0.1	9.0	0.25
21 22	0	0.2	5.5	-	21	0	0.1	7.5 11.0	<u>-</u> -	21 22	0	0.1	4.0 3.5	-
23	0	0.5	24.0	-	23	0	0	25.5	-	23	0	0.1	8.0	-
24	0	0.2	75.0	=	24	0	0	10.0	-	24	0	0.1	10.5	-
25 26	0	0.3	6.5 23.0	-	25 26	0	0 0.2	9.5 9.5	-	25 26	0	0	4.0 6.5	-
27	0	0.3	10.0	-	27	0	-	-	-	27	0	0.1	5.0	-
28	0	0	3.5	-	28	0	0	4.5	-	28	0	0.1	7.5	-
29 30	0	0.1 0.1	12.0 5.0	0.25	29 30	0	0	7.0 5.5	0.50	29 30	0	0 0.2	14.0 9.0	0.75
31	0		6.5	- 0.25	31	0	0.1	7.5	- 0.50	31	0	0.2	30.0	- 0.75
32	0	0.3	16.0	-	32	0	0	7.0	-	32	0	0	7.0	-
33 34	0	0.2	2.5 15.0	-	33 34	0	0.1	5.5 17.0	-	33 34	0	0.1 0.1	5.0 12.0	-
35	0	0.1	15.0	-	35	0	0.1	5.5	-	35	0	0.1	6.0	-
36	0	0.2	8.0	-	36	0	0	3.0	-	36	0	0.1	8.0	-
37 38	0	0.1 0.1	20.5 20.0	-	37 38	0	0.2 0.1	11.5 7.5	-	37 38	0	0	4.0 7.0	-
39	0	- 0.1	20.0	-	39	0	0.1	6.0	-	39	0	0	2.5	-
40	0	0.2	17.0	0.50	40	0	0.2	18.0	0.50	40	0	0.1	8.0	0.00
41	0	-	-	-	41	0	0.2	9.5	-	41	0	0.2	7.5	-
42 43	0	0.3	20.0 9.5	-	42	0	0.1 0.1	8.0 3.5	-	42 43	0	0	10.0 5.0	-
44	0	0.2	15.0	=	44	0	0.2	7.5	-	44	0	0	5.5	-
45	0	0.1	5.5	-	45	0	0	9.0	-	45	0	0.2	13.0	-
46 47	0	0.2 0.1	5.5 15.0	-	46 47	0	0.2 0.1	6.0 7.0	<u>-</u> -	46 47	0	0.1	6.5 3.5	-
48	0	0.1	7.0	-	48	0	0.1	13.0	-	48	0	0.1	8.0	-
49	0	-	-	=	49	0	0.1	3.5	-	49	0	0	7.5	-
50 51	0	0.2 0.2	10.0 11.0	0.50	50 51	0	0.1	4.0 6.5	0.00	50 51	0	0.2 0.1	12.0 8.5	0.25
52	0	0.2	9.0	-	52	0	0	5.5	-	52	0	0.1	10.0	-
53	0	-	=	-	53	0	0	5.0	-	53	0	0	14.0	-
54	0	0.2	4.0	-	54	0	0	10.0	-	54	0	0.1	12.0	-
55 56	0	- 0	4.5	-	55 56	0	0.2 0.1	4.0 20.0	<u>-</u>	55 56	0	0.1 0.1	17.5 11.0	-
57	0	0	5.0	-	57	0	0	6.0	-	57	0	0.1	11.0	-
58	0	0.1	11.0	-	58	0	0.2	11.0	-	58	0	0.3	5.5	-
59 60	0	0.5	15.0	0.50	59 60	0	0.3 0.1	9.0 5.0	0.25	59 60	0	0.1	8.0 7.5	0.25
61	0	0.1	4.0	-	61	0	0.3	11.0	-	61	0	0	9.0	-
62	0	-	-	=	62	0	0	6.0	-	62	0	0	3.5	-
63 64	0	0.1	6.0	- -	63 64	0	0.3	6.0 7.5	-	63 64	0	0.1 0.1	9.5 6.5	-
65	0	0.2	12.0	-	65	0	0.3	9.0	-	65	0	0.1	6.0	-
66	0	0.2	12.5	-	66	0	0.4	11.0	-	66	0	0.2	6.5	-
67 68	0	0.1	8.0 5.0	- -	67 68	0	0	6.0	-	67 68	0	0	7.0 5.5	-
69	0	0.4	9.5	-	69	0	0.3	10.0	-	69	0	0.1	5.0	-
70	0	0.1	5.5	0.25	70	0	0	7.5	0.50	70 71	0	0.3	10.0	0.00
71 72	0	0.3 0.2	15.0 6.5	-	71 72	0	0.4	11.0 8.5	-	71 72	0	0.2 0.2	4.0 7.0	-
73	0	0.1	6.0	-	73	0	0.1	10.0	-	73	0	0	14.0	-
74	0	0.1	5.5	-	74	0	0	5.0	-	74	0	0	3.5	-
75 76	0	0.1	9.0 19.0	-	75 76	0	0 0.2	7.5 5.5	<u>-</u> -	75 76	0	0.1 0.1	7.5 3.5	-
77	0	0.3	9.5	-	77	0	0.2	5.0	-	77	0	0.1	9.5	-
78	0	0.1	3.5	-	78	0	0	10.0	-	78	0	0.3	7.0	-
79 80	0	0.4	7.0	0.50	79 80	0	0	3.0 6.0	0.50	79 80	0	0.1	5.5 9.5	0.00
81	0	0.4	5.0	- 0.50	81	0	0	3.5	- 0.50	81	0	0.1	20.5	- 0.00
82	0	-	-	-	82	0	0.3	15.0	-	82	0	0.2	4.0	-
83	0	0.4	6.0	-	83	0	0.2	9.5	-	83	0	0	2.5	-
84 85	0	0.1	4.0 7.5	- -	84 85	0	0.1	9.5	-	84 85	0	0.1 0.3	14.0 8.5	-
86	0	0.2	7.0	-	86	0	0	7.0	-	86	0	0	14.0	-
87	0	0.1	10.0	-	87	0	0.4	19.0	-	87	0	0	7.0	-
88 89	0	0.2	4.0 7.5	-	88 89	0	0.2	12.0 16.5	-	88 89	0	0.2 0.1	6.5 7.0	-
90	0	0.2	6.0	0.25	90	0	0.3	7.5	0.25	90	0	0.1	8.0	0.00
91	0	0.4	9.0	-	91	0	0.2	13.0	-	91	0	0	3.5	-
92	0	0.3	8.0	-	92	0	0.3	8.0	-	92	0	0.3	9.5	-
93 94	0	0.2 0.2	5.0 6.0	-	93 94	0	0.3 0.1	23.0 4.5	-	93 94	0	0.2	2.5 5.0	-
95	0	0.2	10.5	-	95	0	-	11.0	-	95	0	0.2	4.0	-
96	0	-	-	-	96	0	0	5.0	-	96	0	0	12.0	-
97 98	0	0.2	8.0 7.0	-	97 98	0	0.3	5.0 12.0	-	97 98	0	0.5	9.5 2.0	-
99	0	0.2	6.0	-	99	0	0.3	6.5	-	99	0	0.5	7.5	-
100	0	0.4	11.0	0.50	100	0	0	8.0	0.25	100	0	0.4	9.5	0.50
rm = cen														

WSP Canada Inc. Page 7 of 11

Table H-3: Calcite Data and Pebble Counts at Michel Creek Stations in CMm LAEMP, 2022

Table	H-3: Calcite	Data and P	ebble Counts a	t Michel Creek Sta		n CMm LAEI	MP, 2022							
		RG I	MIDAG 2	MII	DAG		RG I	MIDAG 3					IULE MIULE 1	
Rock	Concreted	Calcite	Intermediate	Embeddedness	Rock	Concreted	Calcite	Intermediate	Embeddedness	Rock	Concreted		Intermediate	Embeddedness
	Status	Presence				Status	Presence	Axis (cm)			Status	Presence	Axis (cm)	
2	0	0.3	16.0 3.0	-	2	0	0.1 0.2	5.0 8.5	-	2	0	0.3	3.0 5.0	-
3	0	0.1	9.0	-	3	0	0.2	10.0	-	3	0	0.3	2.0	-
4	0	0	2.5	-	4	0	0.2	6.0	-	4	0	0.4	6.0	-
5 6	0	0	9.0 5.5	-	5 6	0	0	9.0 5.0	-	5 6	0	0.1	7.0 10.0	-
7	0	0	2.0	-	7	0	0.1	5.5	-	7	0	0.2	6.5	-
8	0	0	4.0	-	8	0	0.3	9.0	-	8	0	0.3	19.0	-
9 10	0	0	7.0 6.0	0.00	9 10	0	0.1	6.5 6.5	0.00	9	0	0.2	15.0 11.0	0.25
11	0	0.1	9.5	-	11	0	0.2	5.0	-	11	0	0.3	6.5	-
12	0	0	6.5	-	12	0	0	4.5	-	12	0	0.1	3.0	-
13 14	0	0.1 0.1	7.0 5.0	-	13 14	0	0.3 0.1	8.5 11.5	-	13 14	0	0.2	15.0 1.0	-
15	0	0	4.5	-	15	0	0.2	5.5	-	15	0	0.2	7.5	-
16	0	0	4.0	-	16	0	0.3	15.5	-	16	0	0.1	8.5	-
17 18	0	0	8.5 11.0	-	17 18	0	0.1 0.1	11.5 9.0	-	17 18	0	0.1	4.5 6.0	-
19	0	0	4.5	-	19	0	0.1	10.0	-	19	0	0.1	7.5	-
20	0	0	4.5	0.00	20	0	0.1	7.0	0.25	20	0	0.3	5.5	0.25
21 22	0	0.2	8.0 7.0	-	21	0	0.1 0.2	4.5 19.0	-	21	0	0.4	5.5 7.0	-
23	0	0.1	5.5	-	23	0	0.2	7.0	-	23	0	0.1	5.5	-
24	0	0	3.0	-	24	0	0	7.5	-	24	0	0.4	8.0	-
25 26	0	0.1 0.1	10.0 9.5	-	25 26	0	0.1	4.5 5.5	-	25 26	0	0.1 0.4	8.0 9.5	-
27	0	0.1	8.0	-	27	0	0.1	6.5	-	27	0	0.4	7.5	-
28	0	0.1	13.0	-	28	0	0	11.0	-	28	0	0.3	4.5	-
29 30	0	0.1 0.2	8.0 9.0	0.00	29 30	0	0.1 0.2	10.0 6.0	0.50	29 30	0	0.1	3.5 9.0	0.00
31	0	0.2	4.0	- 0.00	31	0	0.2	3.5	- 0.50	31	0	0.1	5.0	- 0.00
32	0	0	4.5	-	32	0	0.1	9.0	-	32	0	0.4	6.0	-
33 34	0	0	8.5 9.5	-	33 34	0	0.1	5.5 4.5	-	33 34	0	0.1	7.0 17.0	-
35	0	0.2	7.0	-	35	0	0.1	4.5 5.5	-	35	0	0.3	5.5	-
36	0	0	4.0	-	36	0	0	9.0	-	36	0	0.1	7.5	-
37 38	0	0	6.5 10.0	-	37 38	0	0	2.5 3.0	-	37 38	0	0.2	5.5 6.0	-
39	0	0.1	8.0	-	39	0	0.4	21.0	-	39	0	0.4	10.0	-
40	0	0	9.5	0.25	40	0	0	4.5	0.00	40	0	0.3	9.0	0.25
41 42	0	0.1	9.0 9.5	-	41 42	0	0	3.5 2.0	-	41 42	0	0.3	21.0 5.0	-
43	0	0.1	5.0	-	43	0	0.2	8.0	-	43	0	0.3	8.0	-
44	0	0	11.5	-	44	0	0.1	6.0	-	44	0	0.1	10.0	-
45 46	0	0	6.5	-	45 46	0	0.1	4.0	-	45 46	0	0.1	3.0	-
46	0	0	4.5 6.0	-	46	0	0	6.5 8.0	-	46	0	0.2	8.0 7.0	-
48	0	0.1	13.0	-	48	0	0.1	7.0	-	48	0	0	12.0	-
49	0	0.1	4.5	-	49	0	0.1	5.5	-	49	0	0.1	1.0	-
50 51	0	0.1	6.0 9.0	0.00	50 51	0	0.1	5.5 8.0	0.25	50 51	0	0.3 0.2	5.0 7.5	0.25
52	0	0.3	9.0	-	52	0	0.4	10.5	-	52	0	0	6.0	-
53	0	0.1	3.5	-	53	0	0	8.0	-	53	0	0.4	9.0	-
54 55	0	0.1 0.1	8.0 4.0	-	54 55	0	0.2	6.0 9.5	-	54 55	0	0.3	9.0 5.5	-
56	0	0	5.5	-	56	0	0.3	11.5	-	56	0	0.1	12.0	-
57 58	0	0.1	7.0 13.0	-	57 58	0	0 0.2	3.0 10.5	-	57 58	0	0.4	12.5 6.5	-
59	0	0	5.5	-	59	0	0.2	9.0	-	59	0	0.1	8.0	-
60	0	0	7.5	0.25	60	0	0.1	5.0	0.00	60	0	0.5	6.5	0.50
61 62	0	0.2	7.5 7.0	-	61 62	0	0.3	9.0 3.5	-	61 62	0	0.4	5.5 9.0	-
63	0	0.1	19.5	-	63	0	0.3	4.5	-	63	0	0.1	4.5	-
64	0	0.1	8.5	-	64	0	0	2.5	-	64	0	0.4	6.0	-
65 66	0	0.1	13.0 10.0	-	65 66	0	0.1 0.3	10.5 8.0	-	65 66	0	0.1 0.1	5.0 7.0	-
67	0	0	15.0	-	67	0	0.3	9.0	-	67	0	0.1	6.0	-
68	0	0	3.0	-	68	0	0.1	6.5	-	68	0	0.1	8.0	-
69 70	0	0.3	4.0 7.5	0.50	69 70	0	0.2	4.0 3.0	0.00	69 70	0	0.1	20.0 7.0	0.00
71	0	0	11.5	-	71	0	0	10.0	-	71	0	0.1	9.0	-
72	0	0	6.0	-	72	0	0.2	6.5	-	72	0	0.1	13.0	-
73 74	0	0.1	9.5 5.0	-	73 74	0	0	4.0 1.5	-	73 74	0	0.1	12.5 8.5	-
75	0	0.1	9.0	-	75	0	0.1	7.5	-	75	0	0	8.0	-
76	0	0.2	7.5	-	76	0	0.1	6.5	-	76	0	0.1	7.5	-
77 78	0	0.1	17.0 2.0	-	77 78	0	0.1	6.5 5.5	-	77 78	0	0.1 0.1	8.5 5.0	-
79	0	0.1	6.0	-	79	0	0	7.0	-	79	0	0.3	6.5	-
80	0	0	6.0	0.50	80	0	0.4	6.0	0.25	80	0	0.1	9.0	0.25
81 82	0	0.3 0.5	8.0 5.0	-	81 82	0	0.2 0.1	5.5 8.5	-	81 82	0	0.2	4.0 8.5	-
83	0	0.2	8.0	-	83	0	0.2	9.5	-	83	0	0.3	5.5	-
84	0	0.4	2.5	-	84	0	0.1	4.0	-	84	0	0.2	4.0	-
85 86	0	0.3 0.3	9.5 7.5	-	85 86	0	0.1	6.0 7.5	-	85 86	0	0.2	6.5 30.0	-
87	0	0.2	9.0	-	87	0	0.1	8.5	-	87	0	0.2	6.0	-
88	0	0.3	2.5	-	88	0	0.1	16.0	-	88	0	0.2	6.5	-
89 90	0	0.2	9.0 7.0	0.25	89 90	0	0.2 0.1	9.0 8.5	0.25	89 90	0	0.1	6.0 5.0	0.00
91	0	0.3	10.0	-	91	0	0.1	10.0	-	91	0	0	7.5	- 0.00
92	0	0	5.0	-	92	0	0	4.5	-	92	0	0.1	3.5	-
93 94	0	0.1	8.5 6.0	-	93 94	0	0.1 0.1	6.0 11.0	-	93 94	0	0.1	7.5 7.0	-
95	0	0	7.0	-	95	0	0.1	8.5	-	95	0	0	4.0	-
96	0	0	3.5	-	96	0	0.1	7.0	-	96	0	0.1	5.0	-
97 98	0	0.1 0.1	11.5 7.5	-	97 98	0	0	7.0 7.0	-	97 98	0	0.1	6.5 5.0	-
98	0	0.1	10.0	-	98	0	0	5.5	-	98	0	0.3	7.0	-
100	0	0.1	9.0	0.50	100	0	0.4	3.5	0.00	100	0	0.4	9.0	0.50
cm = cen														

WSP Canada Inc. Page 8 of 11

Table H-3: Calcite Data and Pebble Counts at Michel Creek Stations in CMm LAEMP, 2022

Table	H-3: Calcite	Data and P	ebble Counts a	t Michel Creek Sta		n CMm LAEI	MP, 2022						MIE	
		RG I	MIULE 2	MII	ULE		RG I	MIULE 3				RG	MI5 _MI5 1	
Rock	Concreted	Calcite	Intermediate	Embeddedness	Rock	Concreted	Calcite	Intermediate	Embeddedness	Rock	Concreted		Intermediate	Embeddedness
	Status	Presence				Status	Presence	Axis (cm)			Status	Presence	Axis (cm)	
<u>1</u> 2	0	0.1 0.2	6.0 7.0	-	2	0	0.4 0.5	7.0 9.0	-	2	0	0	12.5 13.0	-
3	0	0.4	7.5	-	3	0	0.3	8.0	-	3	0	0	11.0	-
4	0	0.4	10.5	-	4	0	0.6	6.0	-	4	0	0	8.0	-
5 6	0	0.1	8.0 8.0	-	5 6	0	0.2 0.1	9.5 5.0	-	5 6	0	0	16.0 8.5	-
7	0	0.3	9.0	-	7	0	0.1	6.0	-	7	0	0	7.0	-
8	0	0.1	19.0	-	8	0	0.4	5.0	-	8	0	0	10.0	-
9	0	0	5.5	-	9	0	0.2	13.0	-	9	0	0	6.0	-
10 11	0	0.2	9.0 11.0	0.00	10 11	0	0.5 0.1	8.5 10.0	0.50	10 11	0	0	11.0 6.0	0.00
12	0	0.2	15.0	-	12	0	0	2.5	-	12	0	0	13.5	-
13	0	0.1	7.5	-	13	0	0.3	11.0	-	13	0	0	5.0	-
14 15	0	0.3 0.1	7.0 9.0	-	14 15	0	0.3	3.5 7.0	-	14 15	0	0	9.5 10.0	-
16	0	0.1	6.5	=	16	0	0.4	14.0	-	16	0	0	11.0	=
17	0	0.2	5.0	-	17	0	0.1	9.0	-	17	0	0	7.0	-
18 19	0	0.4 0.1	8.0 9.5	-	18 19	0	0.3	33.0 9.0	-	18 19	0	0	9.5 12.5	-
20	0	0.1	12.0	0.25	20	0	0.3	6.5	0.25	20	0	0	9.5	0.25
21	0	0.4	13.0	-	21	0	0.3	4.5	-	21	0	0	9.0	-
22	0	0.3	5.0	-	22	0	0	5.0	-	22	0	0.4	8.5	-
23 24	0	0.1 0.2	5.0 5.5	-	23 24	0	0.5 0.2	25.0 11.5	-	23 24	0	0.4	14.0 9.0	-
25	0	0.3	7.0	=	25	0	0.5	6.0	-	25	0	0	10.0	=
26	0	0.4	10.0	-	26	0	0.1	3.5	-	26	0	0.1	9.0	-
27 28	0	0.3	7.5 6.0	-	27 28	0	0.3 0.1	9.0 4.0	-	27 28	0	0.3 0.1	15.0 4.5	-
28	0	0.1	5.5	-	28	0	0.1	4.0	-	28	0	0.1	4.5 5.5	-
30	0	0.3	5.5	0.00	30	0	0.2	13.0	0.50	30	0	0.3	7.0	0.25
31	0	0.2	8.5	-	31	0	0.2	6.0	-	31	0	0	9.5	-
32 33	0	0.1 0.4	7.5 5.5	<u>-</u>	32	0	0.1 0.1	4.0 4.5	-	32 33	0	0	3.5 8.0	-
34	0	0	5.5	-	34	0	0.1	4.5	-	34	0	0.1	9.0	-
35	0	0.1	7.5	-	35	0	0.5	8.0	-	35	0	0.1	8.0	-
36 37	0	0.1 0.2	5.5 10.0	-	36 37	0	0.3 0.4	34.0 4.5	-	36 37	0	0	9.0 8.0	-
38	0	0.2	13.0	-	38	0	0.4	8.5	-	38	0	0	11.0	-
39	0	0.3	8.5	-	39	0	0.4	10.0	-	39	0	0	9.0	-
40	0	0.2	7.0	0.25	40	0	0.4	10.0	0.50	40	0	0	8.5	0.00
41 42	0	0.3	7.0 6.5	-	41 42	0	0.4 0.5	15.0 9.5	-	41 42	0	0	8.5 7.5	-
43	0	0.4	21.0	=	43	0	0.4	8.0	-	43	0	0.2	8.5	=
44	0	0.3	8.5	-	44	0	0.3	7.0	-	44	0	0	7.0	-
45 46	0	0.2	11.5	-	45	0	0.2	10.0	-	45 46	0	0.1	7.0 8.0	-
46	0	0.1 0.1	5.5 4.0	<u>-</u>	46 47	0	0.2	5.5 9.0	-	46	0	0.4	7.0	-
48	0	0.4	27.0	-	48	0	0.1	3.5	-	48	0	0	8.5	-
49	0	0	4.0	-	49	0	0.4	9.0	-	49	0	0.2	11.5	-
50 51	0	0.3 0.1	7.5 11.0	0.00	50 51	0	0.2	36.0 15.0	0.75	50 51	0	0	8.0 6.5	0.00
52	0	0	6.0	-	52	0	0.2	3.5	-	52	0	0	4.5	-
53	0	0.2	6.5	-	53	0	0.5	8.0	-	53	0	0	11.0	-
54 55	0	0.3 0.4	8.5 8.5	- -	54 55	0	0.4 0.2	6.5 6.0	-	54 55	0	0.1	10.0 3.5	-
56	0	0.4	15.0	-	56	0	0.2	5.0	-	56	0	0	5.5	-
57	0	0.3	11.0	-	57	0	0.1	11.0	-	57	0	0	8.5	=
58 59	0	0	12.5	-	58	0	0.1 0.4	2.5 8.5	-	58 59	0	0.1	7.5 3.5	-
60	0	0 0.1	2.0 7.5	0.00	59 60	0	0.4	23.0	0.75	60	0	0	5.5	0.00
61	0	0.1	7.0	-	61	0	0.2	6.5	-	61	0	0.1	6.0	-
62	0	0.2	12.5	-	62	0	0.3	5.5	-	62	0	0.3	2.5	-
63 64	0	0.2 0.1	8.0 10.5	- -	63 64	0	0.1 0.3	6.0 10.0	-	63 64	0	0	3.5 10.0	-
65	0	0.1	8.0	-	65	0	0.5	12.0	-	65	0	0	7.0	-
66	0	0.1	8.0	-	66	0	0.1	5.5	-	66	0	0	8.5	-
67 68	0	0.1 0.1	13.0 7.0	<u>-</u>	67 68	0	0.3 0.2	6.0 8.5	-	67 68	0	0 0.1	11.5 8.5	-
69	0	0.2	8.0	-	69	0	0.3	26.0	-	69	0	0	5.0	-
70	0	0.2	30.0	0.75	70	0	0.3	8.5	0.25	70	0	0	7.0	0.00
71 72	0	0.2	12.0 4.0	-	71 72	0	0.1	4.0 8.0	-	71 72	0	0.1	9.5 4.5	-
73	0	0.3	12.5	-	73	0	0.1	9.0	-	73	0	0.1	7.0	-
74	0	0.3	7.0	-	74	0	0.5	6.0	-	74	0	0.1	6.5	-
75 76	0	0.2 0.2	7.5	-	75 76	0	0.1	2.0 18.0	-	75 76	0	0.1	5.0 7.0	-
76	0	0.2	13.0 13.0	<u>-</u>	76	0	0.1	6.0	-	76	0	0.2	7.0	-
78	0	0.1	9.0	-	78	0	0.1	7.0	-	78	0	0	5.5	-
79	0	0.3	9.5	-	79	0	0.5	14.5	-	79	0	0.1	6.5	-
80 81	0	0.3 0.1	9.5 8.0	0.50	80 81	0	0.2	5.5 5.5	0.25	80 81	0	0 0.4	5.5 7.5	0.25
82	0	0.1	7.0	-	82	0	0.4	6.5	-	82	0	0.4	4.5	-
83	0	0.3	9.5	-	83	0	0.4	8.5	-	83	0	0	6.5	-
84 85	0	0.3 0.2	17.0 19.0	-	84 85	0	0.4	10.0 17.0	-	84 85	0	0	9.0 8.5	-
86	0	0.2	5.0	-	86	0	0.3	17.0	-	86	0	0	5.5	-
87	0	0	3.0	-	87	0	0.3	9.5	-	87	0	0	7.5	-
88	0	0.2	1.0	-	88	0	0.3	30.0	-	88	0	0	7.0	-
89 90	0	0.4	8.0 8.0	0.00	89 90	0	0.1	7.0 4.0	0.00	89 90	0	0.1	9.0 8.5	0.00
91	0	0.3	7.5	-	91	0	0.2	11.5	-	91	0	0.1	8.0	- 0.00
92	0	0.1	4.0	-	92	0	0.2	4.5	-	92	0	0.1	7.0	-
93	0	0.3	7.0	-	93	0	0.1	5.5	-	93	0	0.3	7.5	-
94 95	0	0.5 0.1	6.5 8.0	- -	94 95	0	0.1	7.5 7.0	-	94 95	0	0	10.0 7.5	-
96	0	0.1	3.5	-	96	0	0.3	3.0	-	96	0	0	5.5	-
97	0	0	6.0	-	97	0	0.1	13.0	-	97	0	0	7.5	-
98 99	0	0	6.0 4.0	-	98 99	0	0.3 0.2	5.5 8.0	-	98 99	0	0.2	7.5 7.0	-
100	0	0	7.0	0.25	100	0	0.2	5.5	0.50	100	0	0.1	8.0	0.00
rm = cen											·			

WSP Canada Inc. Page 9 of 11

Table H-3: Calcite Data and Pebble Counts at Michel Creek Stations in CMm LAEMP, 2022

Table	n-3. Calcile			t Michel Creek Sta N	ll5	n Civim LAEI	VIP, 2022		
	Concreted	RG_ Calcite	MI5 2 Intermediate			Concreted		MI5 3 Intermediate	
Rock	Concreted Status	Presence	Axis (cm)	Embeddedness	Rock	Concreted Status	Calcite Presence	Axis (cm)	Embeddedness
2	0	0.3	17.0 8.0	-	1 2	0	0	10.5 12.0	-
3	0	0.02	10.0	-	3	0	0	12.0	-
<u>4</u> 5	0	0.1 0.2	7.0 9.0	<u>-</u>	<u>4</u> 5	0	0	14.0 8.0	-
6	0	0	5.0	-	6	0	0	12.0	-
7 8	0	0.2	6.5 3.0	<u>-</u>	7 8	0	0	10.5 10.0	-
9	0	0.1	3.5	-	9	0	0	6.0	=
10	0	0.2 0.4	5.5 4.0	0.00	10 11	0	0	12.0 8.0	0.00
12	0	0.2	4.0	-	12 13	0	0	9.0	-
13 14	0	0.1 0.1	4.5 7.0	-	14	0	0	18.0 9.0	-
15 16	0	0.1	8.0 7.5	-	15 16	0	0	6.0 0.1	-
17	0	0	4.5	-	17	0	0	11.0	-
18 19	0	0.3 0.4	5.5 10.0	-	18 19	0	0	19.0 9.0	-
20	0	0	4.5	0.25	20	0	0	11.0	0.50
21	0	0.4 0.2	5.5 7.0	-	21 22	0	0	10.0 9.0	-
23	0	0.1	18.0	-	23	0	0	11.0	-
24 25	0	0.5 0.1	10.5 8.5	-	24 25	0	0	8.0 14.0	-
26	0	0.1	5.5	-	26	0	0	14.0	-
27 28	0	0.1	7.0 7.0	-	27 28	0	0	9.0 11.0	-
29 30	0	0 0.1	12.0 10.0	- 0.25	29 30	0	0 0.1	23.0 13.0	- 0.50
31	0	0.3	10.5	-	31	0	0	10.0	-
32	0	0.1 0.1	8.5 7.5	-	32 33	0	0	10.0 6.0	-
34	0	0.2	7.0	-	34	0	0	10.5	=
35 36	0	0.1	6.5 6.0	-	35 36	0	0	6.0 9.5	-
37	0	0.1	6.5	-	37	0	0	11.0	-
38 39	0	0.2	10.0 6.0	=	38 39	0	0	15.0 7.0	-
40 41	0	0 0.1	10.0 9.0	0.50	40 41	0	0	11.0 30.0	0.25
42	0	0.1	7.0	-	42	0	0	7.0	-
43	0	0	13.0 5.0	-	43 44	0	0	8.0 19.0	-
45	0	0	3.5	-	45	0	0	13.0	-
46 47	0	0	7.5 9.0	<u>-</u>	46 47	0	0	4.5 5.0	-
48	0	0.2	7.0	-	48	0	0.3	17.0	-
49 50	0	0	5.5 13.0	0.25	49 50	0	0.1	6.0 77.0	0.25
51	0	0	11.0	=	51	0	0	10.0	=
52 53	0	0	14.0 10.0	=	52 53	0	0	8.5 13.0	-
54 55	0	0	8.0 11.0	-	54 55	0	0.2 0	13.0 15.0	-
56	0	0.2	12.0	-	56	0	0	11.0	-
57 58	0	0.1	6.5 7.0	-	57 58	0	0	12.0 5.0	-
59	0	0	8.0	-	59	0	0	15.0	-
60	0	0	9.0 6.5	0.00	60 61	0	0	9.0 18.0	0.00
62	0	0.1	6.5	-	62	0	0	18.0	-
63 64	0	0.3	12.0 13.0	-	63 64	0	0	11.0 5.0	-
65	0	0	8.5	-	65	0	0	4.0	-
66 67	0	0	16.0 10.0	=	66 67	0	0	11.0 6.0	-
68 69	0	0.3 0.4	11.5 7.5	=	68	0	0	9.5 11.0	-
70	0	0.1	18.0	0.25	69 70	0	0	6.0	0.00
71 72	0	0	11.0 8.0	-	71 72	0	0	15.0 1.0	-
73	0	0.1	12.5	-	73	0	0	12.0	-
74 75	0	0.1 0.1	9.5 14.0	-	74 75	0	0	15.0 3.5	-
76	0	0	6.0	-	76	0	0	23.0	-
77 78	0	0	12.0 7.0	-	77 78	0	0	16.0 5.5	-
79	0	0	13.0	- 0.00	79	0	0	9.5	- 0.00
80 81	0	0	12.5 14.0	0.00	80 81	0	0	10.0 6.0	0.00
82 83	0	0.3	15.0 5.0	-	82 83	0	0	5.0 9.0	-
84	0	0.1	9.5	-	84	0	0	8.0	-
85 86	0	0.4	14.0 3.5	-	85 86	0	0	7.0 9.0	-
87	0	0.1	4.0	-	87	0	0	27.0	-
88 89	0	0 0.1	6.0 4.5	-	88 89	0	0	10.0 10.0	-
90	0	0.1	13.0	0.00	90	0	0	7.5	0.25
91 92	0	0	7.0 6.0	=	91 92	0	0	12.0 7.5	=
93	0	0.1	7.0	-	93	0	0	9.0	-
94 95	0	0	6.5 8.5	-	94 95	0	0	12.0 9.0	-
96 97	0	0	18.0	-	96 97	0	0	8.0 19.0	-
98	0	0	7.0 6.5	-	98	0	0	13.5	-
99	0	0	11.5 18.0	- 0.25	99 100	0	0 0.2	9.5 8.5	- 0.25
	timetre.	U	10.0	0.20	100	U	∪.∠	0.0	0.20

WSP Canada Inc. Page 10 of 11

Table H-4: Calcite Data and Pebble Counts in Corbin Creek at CORCK Collected during the CMm LAEMP, 2022

No. Process	Table F	I-4: Calcite Da	ata and Pebb	ole Counts in Co	orbin Creek at COR	CK Colle	ected during	the CMm LA							
								RG_CO	RCK 2						
1	Rock				Embeddedness	Rock				Embeddedness	Rock				Embeddedness
3		0	0.4	3.5			0	0.5	12.0			-	-	-	
1			•												
1				_(a)	+							1		1	
1														1	
1															
No.		2	1	_(a)	-			0.9	21.5	-		-	-	-	-
11												1		1	
The color of the	-											1		1	
Transfer Transfer					+									1	
19					-					-		-	-	-	-
19					+										
17															
18												1			
Section Sect					-					-		-	-	-	-
22															
St															
St 2	22	2	1		-	22	2	1	_(a)	-	22	-	-	-	-
Section Sect					-					-		-	-	-	-
39												+		1	
22														1	
18	27	2		_(a)			2		_(a)		27	1		1	
100 2														1	
131 2															
Section Sect												1		1	
34				_(a)					_(a)						
ST					+							1			-
1												+		1	
17															
190	37	0	0.1	3.5		37	2	1	_(a)		37			<u> </u>	
10					<u> </u>							+			
44												1			
42					1							+			
44					-				25.5	-		-	-	-	-
46												+		1	
46			•											1	
47														1	
40					-				_(a)	-		-	-	-	-
Section Sect					-					-		-	-	-	-
State															
SQ					<u> </u>									1	
SA 2					<u> </u>							1		1	
55															
56 2															
57															
Section Sect				4.0								+		1	
60					1					-		-	-	1	-
61														1	
62 2															
64												+		1	
BS 2					-					-		-	-	-	-
68 2 1														1	
67 2 1 1 1,90 - 67 2 1 1,00 - 67 -												_		<u> </u>	
68 2 1 L[0] - 68 2 1 L[0] - 68 -				_(a)					_(a)			+			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2										+		1	
71														1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$															
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	72			_(a)					_(a)					1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	73	2								-		-	-	-	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$															
Transfer Transfer												+		1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	77	2	1	_(a)		77	2	1	_(a)		77	+		1	
80 2 1 11.0 0.75 80 2 1 .(a) 0.75 80 -					1							_		<u> </u>	
81 1 0.9 2.0 - 81 2 1 .(a) - 81 - <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td></td<>														1	
82 2 1 14.0 - 82 2 1 -												+			
84 2 1 84 2 1	82	2		14.0		82	2	1	_(a)	-	82	1			
85 2 1 (a) - 85 2 1 (a) - 86 -					+							-			-
86 2 1 10.5 - 86 2 1	-													1	
87 0 0 6.5 - 87 2 1 -(a) - 87 -				_								1		1	
89 2 1	-	0	0	6.5		87	2		_(a)					1	
90 2 1 .(a) 1.00 90 2 1 .(a) 1.00 90 -	-			_						-		-	-	-	-
91 2 1 (a) - 91 2 1 (a) - 91 - <t< td=""><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td>1</td><td></td></t<>	-											_		1	
92 2 1 (a) - 92 2 1 (a) - 92 - <t< td=""><td>-</td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	-			_											
94 2 1				_(a)					_(a)						
95 2 1 16.0 - 95 2 1 (a) - 95 - <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>+</td><td></td><td>1</td><td></td></td<>												+		1	
96 2 1 _(a) - 96 2 1 _(a) - 96 -	<u> </u>		•		+				_						
97 2 1 _(a) - 97 2 1 _(a) - 97 -			•						_						
99 2 1 _(a) - 99 1 1 11.0 - 99 - - - - - 100 2 1 _(a) 1.00 100 2 1 1.00 100 - - - - - -				_(a)	+							1		1	
100 2 1 -(a) 1.00 100 2 1 -(a) 1.00 100												+	-	-	-
	-			_								1			
The state of the s			l e		1.00	100	2	1	_(a)	1.00	100				-

a) Intermediate axis not measured due to the presence of calcite.

Note: Two out of three 100-pebble counts were performed.

APPENDIX I

Sediment Quality Screening Data

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Typo	Station	Location	ı (UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
Туре	Station	Easting	Northing	i C ai	Replicate	Date	Tille	Allalyte	Result	Oill	Lab	Sample ID
SE	AGCK	667557	5488648	2018	1	2018-09-08	08:00	Moisture	92	%	ALS	RG_AGCK_SE-1_2018-09-08_0800
SE	AGCK	667557	5488648	2018	1	2018-09-08	08:00	Acenaphthene	<0.025	mg/kg	ALS	RG_AGCK_SE-1_2018-09-08_0800
SE	AGCK	667557	5488648	2018	1	2018-09-08	08:00	Acenaphthylene	<0.025	mg/kg	ALS	RG_AGCK_SE-1_2018-09-08_0800
SE	AGCK	667557	5488648	2018	1	2018-09-08	08:00	Acridine	<0.050	mg/kg	ALS	RG_AGCK_SE-1_2018-09-08_0800
SE	AGCK	667557	5488648	2018	1	2018-09-08	08:00	Anthracene	<0.020	mg/kg	ALS	RG_AGCK_SE-1_2018-09-08_0800
SE	AGCK	667557	5488648	2018	1	2018-09-08	08:00	Benz(a)anthracene	< 0.050	mg/kg	ALS	RG_AGCK_SE-1_2018-09-08_0800
SE	AGCK	667557	5488648	2018	1	2018-09-08	08:00	Benzo(a)pyrene	< 0.050	mg/kg	ALS	RG_AGCK_SE-1_2018-09-08_0800
SE	AGCK	667557	5488648	2018	1	2018-09-08	08:00	Benzo(b&j)fluoranthene	< 0.050	mg/kg	ALS	RG_AGCK_SE-1_2018-09-08_0800
SE	AGCK	667557	5488648	2018	1	2018-09-08	08:00	Benzo(g_h_i)perylene	<0.050	mg/kg	ALS	RG_AGCK_SE-1_2018-09-08_0800
SE	AGCK	667557	5488648	2018	1	2018-09-08	08:00	Benzo(k)fluoranthene	< 0.050	mg/kg	ALS	RG_AGCK_SE-1_2018-09-08_0800
SE	AGCK	667557	5488648	2018	1	2018-09-08	08:00	Benzo(e)pyrene	0.052	mg/kg	ALS	RG AGCK SE-1 2018-09-08 0800
SE	AGCK	667557	5488648	2018	1	2018-09-08	08:00	Chrysene	0.12	mg/kg	ALS	RG AGCK SE-1 2018-09-08 0800
SE	AGCK	667557	5488648	2018	1	2018-09-08	08:00	Dibenz(a h)anthracene	<0.025	mg/kg	ALS	RG AGCK SE-1 2018-09-08 0800
SE	AGCK	667557	5488648	2018	1	2018-09-08	08:00	Fluoranthene	< 0.050	mg/kg	ALS	RG AGCK SE-1 2018-09-08 0800
SE	AGCK	667557	5488648	2018	1	2018-09-08	08:00	Fluorene	<0.050	mg/kg	ALS	RG AGCK SE-1 2018-09-08 0800
SE	AGCK	667557	5488648	2018	1	2018-09-08	08:00	Indeno(1,2,3-c,d)pyrene	<0.050	mg/kg	ALS	RG AGCK SE-1 2018-09-08 0800
SE	AGCK	667557	5488648	2018	1	2018-09-08	08:00	1-Methylnaphthalene	0.18	mg/kg	ALS	RG AGCK SE-1 2018-09-08 0800
SE	AGCK	667557	5488648	2018	1	2018-09-08	08:00	2-Methylnaphthalene	0.24	mg/kg	ALS	RG AGCK SE-1 2018-09-08 0800
SE	AGCK	667557	5488648	2018	1	2018-09-08	08:00	Naphthalene	0.1	mg/kg	ALS	RG AGCK SE-1 2018-09-08 0800
SE	AGCK	667557	5488648	2018	1	2018-09-08	08:00	Perylene	<0.050	mg/kg	ALS	RG AGCK SE-1 2018-09-08 0800
SE	AGCK	667557	5488648	2018	1	2018-09-08	08:00	Phenanthrene	0.23	mg/kg	ALS	RG AGCK SE-1 2018-09-08 0800
SE	AGCK	667557	5488648	2018	1	2018-09-08	08:00	Pyrene	<0.050	mg/kg	ALS	RG AGCK SE-1 2018-09-08 0800
SE	AGCK	667557	5488648	2018	1	2018-09-08	08:00	Quinoline	<0.050	mg/kg	ALS	RG AGCK SE-1 2018-09-08 0800
SE	AGCK	667557	5488648	2018	1	2018-09-08	08:00	IACR (CCME)	0.58	mg/kg	ALS	RG AGCK SE-1 2018-09-08 0800
SE	AGCK	667557	5488648	2018	1	2018-09-08	08:00	B(a)P Total Potency Equivalent	0.049	mg/kg	ALS	RG AGCK SE-1 2018-09-08 0800
SE	AGCK	667557	5488648	2018	1	2018-09-08	08:00	d8-Naphthalene	81	%	ALS	RG AGCK SE-1 2018-09-08 0800
SE	AGCK	667557	5488648	2018	1	2018-09-08	08:00	d10-Acenaphthene	91	%	ALS	RG_AGCK_SE-1_2018-09-08_0800
SE	AGCK	667557	5488648	2018	1	2018-09-08	08:00	d10-Phenanthrene	94	%	ALS	RG AGCK SE-1 2018-09-08 0800
SE	AGCK	667557	5488648	2018	1	2018-09-08	08:00	d12-Chrysene	104	%	ALS	RG AGCK SE-1 2018-09-08 0800
SE	AGCK	667557	5488648	2018	1	2018-09-08	08:00	% Gravel (>2 mm)	2.3	%	ALS	RG AGCK SE-1 2018-09-08 0800
SE	AGCK	667557	5488648	2018	1	2018-09-08	08:00	% Sand (2.00 mm - 1.00 mm)	2.4	%		RG_AGCK_SE-1_2018-09-08_0800
SE	AGCK	667557	5488648	2018	1	2018-09-08	08:00	% Sand (1.00 mm - 0.50 mm)	7.0	%	ALS	RG AGCK SE-1 2018-09-08 0800
SE	AGCK	667557	5488648	2018	1	2018-09-08	08:00	% Sand (0.50 mm - 0.25 mm)	27	%	ALS	RG AGCK SE-1 2018-09-08 0800
SE	AGCK	667557	5488648	2018	1	2018-09-08	08:00	% Sand (0.25 mm - 0.125 mm)	27	%	ALS	RG AGCK SE-1 2018-09-08 0800
SE	AGCK	667557	5488648	2018	1	2018-09-08	08:00	% Sand (0.125 mm - 0.063 mm)	12	%	ALS	RG AGCK SE-1 2018-09-08 0800
SE	AGCK	667557	5488648	2018	1	2018-09-08	08:00	% Silt (0.063 mm - 0.0312 mm)	10	%	ALS	RG AGCK SE-1 2018-09-08 0800
SE	AGCK	667557	5488648	2018	1	2018-09-08	08:00	% Silt (0.031 mm - 0.004 mm)	10	%	ALS	RG AGCK SE-1 2018-09-08 0800
SE	AGCK	667557	5488648	2018	1	2018-09-08	08:00	% Clay (<4 μm)	2.6	%	ALS	RG AGCK SE-1 2018-09-08 0800
SE	AGCK	667557	5488648	2018	1	2018-09-08	08:00	Texture	Loamy sand	-	ALS	RG AGCK SE-1 2018-09-08 0800
SE	AGCK	667557	5488648	2018	1	2018-09-08	08:00	Mercury (Hg)	0.025	mg/kg	ALS	RG_AGCK_SE-1_2018-09-08_0800
SE	AGCK	667557	5488648	2018	1	2018-09-08	08:00	Aluminum (Al)	5,280	mg/kg	ALS	RG AGCK SE-1 2018-09-08 0800
SE	AGCK	667557	5488648	2018	1	2018-09-08	08:00	Antimony (Sb)	0.47	mg/kg	ALS	RG AGCK SE-1 2018-09-08 0800
SE	AGCK	667557	5488648	2018	1	2018-09-08	08:00	Arsenic (As)	7.1	mg/kg	ALS	RG AGCK SE-1 2018-09-08 0800
SE	AGCK	667557	5488648	2018	1	2018-09-08	08:00	Barium (Ba)	63	mg/kg	ALS	RG AGCK SE-1 2018-09-08 0800
SE	AGCK	667557	5488648	2018	1	2018-09-08	08:00	Beryllium (Be)	0.56	mg/kg	ALS	RG AGCK SE-1 2018-09-08 0800
JL		667557	5488648	2018	1 1	2018-09-08	08:00	Bismuth (Bi)	<0.20	mg/kg	ALS	RG AGCK SE-1 2018-09-08 0800
SE	AGCK											

WSP Canada Inc. Page 1 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	Ctation	Location	ı (UTMs) ^(a)	Vacu	Danlington	Dete	Time	-A a la -t a	-Danill	Herit		Laboratory Information
ype	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	AGCK	667557	5488648	2018	1	2018-09-08	08:00	Cadmium (Cd)	0.56	mg/kg	ALS	RG AGCK SE-1 2018-09-08 0800
Ε	AGCK	667557	5488648	2018	1	2018-09-08	08:00	Calcium (Ca)	191,000	mg/kg	ALS	RG AGCK SE-1 2018-09-08 0800
SE	AGCK	667557	5488648	2018	1	2018-09-08	08:00	Chromium (Cr)	23	mg/kg	ALS	RG AGCK SE-1 2018-09-08 0800
E E	AGCK	667557	5488648	2018	1	2018-09-08	08:00	Cobalt (Co)	2.6	mg/kg	ALS	RG AGCK SE-1 2018-09-08 0800
SE SE	AGCK	667557	5488648	2018	1	2018-09-08	08:00	Copper (Cu)	5.4	mg/kg	ALS	RG AGCK SE-1 2018-09-08 0800
E	AGCK	667557	5488648	2018	1	2018-09-08	08:00	Iron (Fe)	6,890	mg/kg	ALS	RG AGCK SE-1 2018-09-08 0800
E E	AGCK	667557	5488648	2018	1	2018-09-08	08:00	Lead (Pb)	4.4	mg/kg	ALS	RG AGCK SE-1 2018-09-08 0800
E	AGCK	667557	5488648	2018	1	2018-09-08	08:00	Lithium (Li)	5.8	mg/kg	ALS	RG AGCK SE-1 2018-09-08 0800
E	AGCK	667557	5488648	2018	1	2018-09-08	08:00	Magnesium (Mg)	21,700	mg/kg	ALS	RG_AGCK_SE-1_2018-09-08_0800
E	AGCK	667557	5488648	2018	1	2018-09-08	08:00	Manganese (Mn)	131	mg/kg	ALS	RG AGCK SE-1 2018-09-08 0800
E	AGCK	667557	5488648	2018	1 1	2018-09-08	08:00	Molybdenum (Mo)	0.98	mg/kg	ALS	RG AGCK SE-1 2018-09-08 0800
E	AGCK	667557	5488648	2018	1	2018-09-08	08:00	Nickel (Ni)	18	mg/kg	ALS	RG AGCK SE-1 2018-09-08 0800
E	AGCK	667557	5488648	2018	1	2018-09-08	08:00	Phosphorus (P)	963	mg/kg	ALS	RG AGCK SE-1 2018-09-08 0800
E	AGCK	667557	5488648	2018	1	2018-09-08	08:00	Potassium (K)	1,670	mg/kg	ALS	RG AGCK SE-1 2018-09-08 0800
E	AGCK	667557	5488648	2018	1	2018-09-08	08:00	Selenium (Se)	0.82		ALS	RG AGCK SE-1 2018-09-08 0800
E	AGCK	667557	5488648	2018	1	2018-09-08	08:00	Silver (Ag)	0.02	mg/kg	ALS	RG_AGCK_SE-1_2018-09-08_0800
	AGCK	667557	5488648		1 1	2018-09-08	08:00	Sodium (Na)	140	mg/kg	ALS	RG AGCK SE-1 2018-09-08 0800
			+	2018	1 1					mg/kg		
<u> </u>	AGCK	667557	5488648	2018	1 1	2018-09-08	08:00	Strontium (Sr)	180	mg/kg	ALS	RG_AGCK_SE-1_2018-09-08_0800
<u> </u>	AGCK	667557	5488648	2018	1 1	2018-09-08	08:00	Sulfur (S)	<1000	mg/kg	ALS	RG_AGCK_SE-1_2018-09-08_0800
	AGCK	667557	5488648	2018	1	2018-09-08	08:00	Thallium (TI)	0.75	mg/kg	ALS	RG_AGCK_SE-1_2018-09-08_0800
	AGCK	667557	5488648	2018	1 1	2018-09-08	08:00	Tin (Sn)	<2.0	mg/kg	ALS	RG_AGCK_SE-1_2018-09-08_0800
	AGCK	667557	5488648	2018	1	2018-09-08	08:00	Titanium (Ti)	24	mg/kg	ALS	RG_AGCK_SE-1_2018-09-08_0800
	AGCK	667557	5488648	2018	1 1	2018-09-08	08:00	Tungsten (W)	<0.50	mg/kg	ALS	RG_AGCK_SE-1_2018-09-08_0800
E	AGCK	667557	5488648	2018	1 1	2018-09-08	08:00	Uranium (U)	0.82	mg/kg	ALS	RG_AGCK_SE-1_2018-09-08_0800
E	AGCK	667557	5488648	2018	1 1	2018-09-08	08:00	Vanadium (V)	25	mg/kg	ALS	RG_AGCK_SE-1_2018-09-08_0800
E	AGCK	667557	5488648	2018	1	2018-09-08	08:00	Zinc (Zn)	86	mg/kg	ALS	RG_AGCK_SE-1_2018-09-08_0800
E	AGCK	667557	5488648	2018	1	2018-09-08	08:00	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_AGCK_SE-1_2018-09-08_0800
E	AGCK	667557	5488648	2018	1	2018-09-08	08:00	pH (1:2 soil:water)	7.3	pН	ALS	RG_AGCK_SE-1_2018-09-08_0800
E	AGCK	667557	5488648	2018	1	2018-09-08	08:00	Total Organic Carbon	4.0	%	ALS	RG_AGCK_SE-1_2018-09-08_0800
E	AGCK	667557	5488648	2018	2	2018-09-08	09:30	Moisture	96	%	ALS	RG_AGCK_SE-2_2018-09-08_0930
E	AGCK	667557	5488648	2018	2	2018-09-08	09:30	Acenaphthene	<0.060	mg/kg	ALS	RG_AGCK_SE-2_2018-09-08_0930
E	AGCK	667557	5488648	2018	2	2018-09-08	09:30	Acenaphthylene	<0.060	mg/kg	ALS	RG_AGCK_SE-2_2018-09-08_0930
E	AGCK	667557	5488648	2018	2	2018-09-08	09:30	Acridine	<0.12	mg/kg	ALS	RG_AGCK_SE-2_2018-09-08_0930
E	AGCK	667557	5488648	2018	2	2018-09-08	09:30	Anthracene	<0.048	mg/kg	ALS	RG_AGCK_SE-2_2018-09-08_0930
E	AGCK	667557	5488648	2018	2	2018-09-08	09:30	Benz(a)anthracene	<0.12	mg/kg	ALS	RG_AGCK_SE-2_2018-09-08_0930
Ε	AGCK	667557	5488648	2018	2	2018-09-08	09:30	Benzo(a)pyrene	<0.12	mg/kg	ALS	RG_AGCK_SE-2_2018-09-08_0930
E	AGCK	667557	5488648	2018	2	2018-09-08	09:30	Benzo(b&j)fluoranthene	<0.12	mg/kg	ALS	RG_AGCK_SE-2_2018-09-08_0930
E	AGCK	667557	5488648	2018	2	2018-09-08	09:30	Benzo(g_h_i)perylene	<0.12	mg/kg	ALS	RG_AGCK_SE-2_2018-09-08_0930
E	AGCK	667557	5488648	2018	2	2018-09-08	09:30	Benzo(k)fluoranthene	<0.12	mg/kg	ALS	RG_AGCK_SE-2_2018-09-08_0930
E	AGCK	667557	5488648	2018	2	2018-09-08	09:30	Benzo(e)pyrene	<0.12	mg/kg	ALS	RG AGCK SE-2 2018-09-08 0930
E	AGCK	667557	5488648	2018	2	2018-09-08	09:30	Chrysene	<0.12	mg/kg	ALS	RG_AGCK_SE-2_2018-09-08_0930
=	AGCK	667557	5488648	2018	2	2018-09-08	09:30	Dibenz(a h)anthracene	<0.060	mg/kg	ALS	RG AGCK SE-2 2018-09-08 0930
=	AGCK	667557	5488648	2018	2	2018-09-08	09:30	Fluoranthene	<0.12	mg/kg	ALS	RG AGCK SE-2 2018-09-08 0930
	AGCK	667557	5488648	2018	2	2018-09-08	09:30	Fluorene	<0.12	mg/kg	ALS	RG AGCK SE-2 2018-09-08 0930
	AGCK	667557	5488648	2018	2	2018-09-08	09:30	Indeno(1,2,3-c,d)pyrene	<0.12	mg/kg	ALS	RG AGCK SE-2 2018-09-08 0930
	AGCK	667557	5488648	2018	2	2018-09-08	09:30	1-Methylnaphthalene	0.28	mg/kg	ALS	RG AGCK SE-2 2018-09-08 0930
Ξ	AUJUN											

WSP Canada Inc. Page 2 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Type	Station	Location	ı (UTMs) ^(a)	Year	Poplicate	Data	Time	Analysta	Beault	Unit		Laboratory Information
ype	Station	Easting	Northing	rear	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
E	AGCK	667557	5488648	2018	2	2018-09-08	09:30	Naphthalene	<0.12	mg/kg	ALS	RG AGCK SE-2 2018-09-08 0930
E	AGCK	667557	5488648	2018	2	2018-09-08	09:30	Perylene	<0.12	mg/kg	ALS	RG_AGCK_SE-2_2018-09-08_0930
E	AGCK	667557	5488648	2018	2	2018-09-08	09:30	Phenanthrene	0.21	mg/kg	ALS	RG_AGCK_SE-2_2018-09-08_0930
E	AGCK	667557	5488648	2018	2	2018-09-08	09:30	Pyrene	<0.12	mg/kg	ALS	RG AGCK SE-2 2018-09-08 0930
E	AGCK	667557	5488648	2018	2	2018-09-08	09:30	Quinoline	<0.12	mg/kg	ALS	RG AGCK SE-2 2018-09-08 0930
SE	AGCK	667557	5488648	2018	2	2018-09-08	09:30	IACR (CCME)	<1.3	mg/kg	ALS	RG AGCK SE-2 2018-09-08 0930
SE.	AGCK	667557	5488648	2018	2	2018-09-08	09:30	B(a)P Total Potency Equivalent	<0.12	mg/kg	ALS	RG AGCK SE-2 2018-09-08 0930
SE.	AGCK	667557	5488648	2018	2	2018-09-08	09:30	d8-Naphthalene	70	%	ALS	RG AGCK SE-2 2018-09-08 0930
SE	AGCK	667557	5488648	2018	2	2018-09-08	09:30	d10-Acenaphthene	80	%	ALS	RG AGCK SE-2 2018-09-08 0930
SE	AGCK	667557	5488648	2018	2	2018-09-08	09:30	d10-Phenanthrene	82	%	ALS	RG AGCK SE-2 2018-09-08 0930
SE	AGCK	667557	5488648	2018	2	2018-09-08	09:30	d12-Chrysene	96	%	ALS	RG_AGCK_SE-2_2018-09-08_0930
SE	AGCK	667557	5488648	2018	2	2018-09-08	09:30	pH (1:9)	7.1	рН	ALS	RG AGCK SE-2 2018-09-08 0930
SE	AGCK	667557	5488648	2018	2	2018-09-08	09:30	Mercury (Hg)	0.0091	mg/kg	ALS	RG AGCK SE-2 2018-09-08 0930
SE	AGCK	667557	5488648	2018	2	2018-09-08	09:30	Aluminum (Al)	1,890	mg/kg	ALS	RG AGCK SE-2 2018-09-08 0930
SE	AGCK	667557	5488648	2018	2	2018-09-08	09:30	Antimony (Sb)	0.17	mg/kg	ALS	RG AGCK SE-2 2018-09-08 0930
SE	AGCK	667557	5488648	2018	2	2018-09-08	09:30	Arsenic (As)	3.7	mg/kg	ALS	RG_AGCK_SE-2_2018-09-08_0930
SE	AGCK	667557	5488648	2018	2	2018-09-08	09:30	Barium (Ba)	244	mg/kg	ALS	RG AGCK SE-2 2018-09-08 0930
SE	AGCK	667557	5488648	2018	2	2018-09-08	09:30	Beryllium (Be)	0.29	mg/kg	ALS	RG AGCK SE-2 2018-09-08 0930
SE	AGCK	667557	5488648	2018	2	2018-09-08	09:30	Bismuth (Bi)	<0.20	mg/kg	ALS	RG_AGCK_SE-2_2018-09-08_0930
SE	AGCK	667557	5488648	2018	2	2018-09-08	09:30	Boron (B)	<5.0	mg/kg	ALS	RG AGCK SE-2 2018-09-08 0930
SE	AGCK	667557	5488648	2018	2	2018-09-08	09:30	Cadmium (Cd)	0.4	mg/kg	ALS	RG AGCK SE-2 2018-09-08 0930
SE	AGCK	667557	5488648	2018	2	2018-09-08	09:30	Calcium (Ca)	211,000	mg/kg	ALS	RG_AGCK_SE-2_2018-09-08_0930
SE	AGCK	667557	5488648	2018	2	2018-09-08	09:30	Chromium (Cr)	60	mg/kg	ALS	RG AGCK SE-2 2018-09-08 0930
SE	AGCK	667557	5488648	2018	2	2018-09-08	09:30	Cobalt (Co)	2.3	mg/kg	ALS	RG AGCK SE-2 2018-09-08 0930
SE	AGCK	667557	5488648	2018	2	2018-09-08	09:30	Copper (Cu)	3.7	mg/kg	ALS	RG AGCK SE-2 2018-09-08 0930
SE	AGCK	667557	5488648	2018	2	2018-09-08	09:30	Iron (Fe)	3,740	mg/kg	ALS	RG AGCK SE-2 2018-09-08 0930
SE	AGCK	667557	5488648	2018	2	2018-09-08	09:30	Lead (Pb)	1.8	mg/kg	ALS	RG AGCK SE-2 2018-09-08 0930
SE	AGCK	667557	5488648	2018	2	2018-09-08	09:30	Lithium (Li)	<2.0	mg/kg	ALS	RG_AGCK_SE-2_2018-09-08_0930
SE	AGCK	667557	5488648	2018	2	2018-09-08	09:30	Magnesium (Mg)	13,200	mg/kg	ALS	RG AGCK SE-2 2018-09-08 0930
SE	AGCK	667557	5488648	2018	2	2018-09-08	09:30	Manganese (Mn)	400	mg/kg	ALS	RG AGCK SE-2 2018-09-08 0930
SE	AGCK	667557	5488648	2018	2	2018-09-08	09:30	Molybdenum (Mo)	1.5	mg/kg	ALS	RG AGCK SE-2 2018-09-08 0930
SE	AGCK	667557	5488648	2018	2	2018-09-08	09:30	Nickel (Ni)	28	mg/kg	ALS	RG AGCK SE-2 2018-09-08 0930
SE	AGCK	667557	5488648	2018	2	2018-09-08	09:30	Phosphorus (P)	796	mg/kg	ALS	RG_AGCK_SE-2_2018-09-08_0930
SE	AGCK	667557	5488648	2018	2	2018-09-08	09:30	Potassium (K)	750	mg/kg	ALS	RG_AGCK_SE-2_2018-09-08_0930
SE	AGCK	667557	5488648	2018	2	2018-09-08	09:30	Selenium (Se)	0.74	mg/kg	ALS	RG_AGCK_SE-2_2018-09-08_0930
SE	AGCK	667557	5488648	2018	2	2018-09-08	09:30	Silver (Ag)	<0.10	mg/kg	ALS	RG_AGCK_SE-2_2018-09-08_0930
SE	AGCK	667557	5488648	2018	2	2018-09-08	09:30	Sodium (Na)	126	mg/kg	ALS	RG_AGCK_SE-2_2018-09-08_0930
SE	AGCK	667557	5488648	2018	2	2018-09-08	09:30	Strontium (Sr)	307	mg/kg	ALS	RG_AGCK_SE-2_2018-09-08_0930
SE	AGCK	667557	5488648	2018	2	2018-09-08	09:30	Sulfur (S)	<1000	mg/kg	ALS	RG_AGCK_SE-2_2018-09-08_0930
SE	AGCK	667557	5488648	2018	2	2018-09-08	09:30	Thallium (TI)	0.29	mg/kg	ALS	RG_AGCK_SE-2_2018-09-08_0930
SE	AGCK	667557	5488648	2018	2	2018-09-08	09:30	Tin (Sn)	<2.0	mg/kg	ALS	RG_AGCK_SE-2_2018-09-08_0930
SE	AGCK	667557	5488648	2018	2	2018-09-08	09:30	Titanium (Ti)	13	mg/kg	ALS	RG AGCK SE-2 2018-09-08 0930
SE	AGCK	667557	5488648	2018	2	2018-09-08	09:30	Tungsten (W)	<0.50	mg/kg	ALS	RG AGCK SE-2 2018-09-08 0930
SE	AGCK	667557	5488648	2018		2018-09-08	09:30	Uranium (U)	0.68	mg/kg	ALS	RG AGCK SE-2 2018-09-08 0930
SE	AGCK	667557	5488648	2018	2	2018-09-08	09:30	Vanadium (V)	10	mg/kg	ALS	RG AGCK SE-2 2018-09-08 0930
			5488648	2018	2	2018-09-08	09:30	Zinc (Zn)	49	mg/kg	ALS	RG AGCK SE-2 2018-09-08 0930
SE	AGCK	667557	3400040	2010		2010-03-00	05.50		70	IIIu/Nu		ING AGGIN GE-2 2010-03-00 0330

WSP Canada Inc. Page 3 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Type -	Station	Location	(UTMs) ^(a)	Year	Poplicate	Data	Time	Apoluto	Popult	Unit		Laboratory Information
ype	Station	Easting	Northing	rear	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
Ē	AGCK	667557	5488648	2018	3	2018-09-08	11:00	Moisture	95	%	ALS	RG AGCK SE-3 2018-09-08 1100
E	AGCK	667557	5488648	2018	3	2018-09-08	11:00	Acenaphthene	<0.045	mg/kg	ALS	RG AGCK SE-3 2018-09-08 1100
Ε	AGCK	667557	5488648	2018	3	2018-09-08	11:00	Acenaphthylene	<0.045	mg/kg	ALS	RG_AGCK_SE-3_2018-09-08_1100
ŝΕ	AGCK	667557	5488648	2018	3	2018-09-08	11:00	Acridine	<0.090	mg/kg	ALS	RG AGCK SE-3 2018-09-08 1100
SE.	AGCK	667557	5488648	2018	3	2018-09-08	11:00	Anthracene	< 0.036	mg/kg	ALS	RG AGCK SE-3 2018-09-08 1100
SE.	AGCK	667557	5488648	2018	3	2018-09-08	11:00	Benz(a)anthracene	<0.090	mg/kg	ALS	RG AGCK SE-3 2018-09-08 1100
SE	AGCK	667557	5488648	2018	3	2018-09-08	11:00	Benzo(a)pyrene	<0.090	mg/kg	ALS	RG AGCK SE-3 2018-09-08 1100
SE	AGCK	667557	5488648	2018	3	2018-09-08	11:00	Benzo(b&j)fluoranthene	<0.090	mg/kg	ALS	RG AGCK SE-3 2018-09-08 1100
SE	AGCK	667557	5488648	2018	3	2018-09-08	11:00	Benzo(g_h_i)perylene	<0.090	mg/kg	ALS	RG AGCK SE-3 2018-09-08 1100
SE	AGCK	667557	5488648	2018	3	2018-09-08	11:00	Benzo(k)fluoranthene	<0.090	mg/kg	ALS	RG AGCK SE-3 2018-09-08 1100
SE	AGCK	667557	5488648	2018	3	2018-09-08	11:00	Benzo(e)pyrene	<0.090	mg/kg	ALS	RG_AGCK_SE-3_2018-09-08_1100
SE	AGCK	667557	5488648	2018	3	2018-09-08	11:00	Chrysene	0.091	mg/kg	ALS	RG AGCK SE-3 2018-09-08 1100
SE.	AGCK	667557	5488648	2018	3	2018-09-08	11:00	Dibenz(a_h)anthracene	<0.045	mg/kg	ALS	RG AGCK SE-3 2018-09-08 1100
SE.	AGCK	667557	5488648	2018	3	2018-09-08	11:00	Fluoranthene	<0.090	mg/kg	ALS	RG AGCK SE-3 2018-09-08 1100
SE	AGCK	667557	5488648	2018	3	2018-09-08	11:00	Fluorene	<0.090	mg/kg	ALS	RG AGCK SE-3 2018-09-08 1100
SE	AGCK	667557	5488648	2018	3	2018-09-08	11:00	Indeno(1,2,3-c,d)pyrene	<0.090	mg/kg	ALS	RG_AGCK_SE-3_2018-09-08_1100
SE	AGCK	667557	5488648	2018	3	2018-09-08	11:00	1-Methylnaphthalene	0.17	mg/kg	ALS	RG_AGCK_SE-3_2018-09-08_1100
SE	AGCK	667557	5488648	2018	3	2018-09-08	11:00	2-Methylnaphthalene	0.22	mg/kg	ALS	RG AGCK SE-3 2018-09-08 1100
SE	AGCK	667557	5488648	2018	3	2018-09-08	11:00	Naphthalene	<0.090	mg/kg	ALS	RG_AGCK_SE-3_2018-09-08_1100
SE.	AGCK	667557	5488648	2018	3	2018-09-08	11:00	Perylene	<0.090	mg/kg	ALS	RG AGCK SE-3 2018-09-08 1100
SE	AGCK	667557	5488648	2018	3	2018-09-08	11:00	Phenanthrene	0.17	mg/kg	ALS	RG AGCK SE-3 2018-09-08 1100
SE	AGCK	667557	5488648	2018	3	2018-09-08	11:00	Pyrene	<0.090	mg/kg	ALS	RG AGCK SE-3 2018-09-08 1100
SE	AGCK	667557	5488648	2018	3	2018-09-08	11:00	Quinoline	<0.090	mg/kg	ALS	RG AGCK SE-3 2018-09-08 1100
SE	AGCK	667557	5488648	2018	3	2018-09-08	11:00	IACR (CCME)	0.98	mg/kg	ALS	RG AGCK SE-3 2018-09-08 1100
SE	AGCK	667557	5488648	2018	3	2018-09-08	11:00	B(a)P Total Potency Equivalent	0.087	mg/kg	ALS	RG AGCK SE-3 2018-09-08 1100
SE	AGCK	667557	5488648	2018	3	2018-09-08	11:00	d8-Naphthalene	77	%	ALS	RG AGCK SE-3 2018-09-08 1100
SE	AGCK	667557	5488648	2018	3	2018-09-08	11:00	d10-Acenaphthene	85	%	ALS	RG_AGCK_SE-3_2018-09-08_1100
SE	AGCK	667557	5488648	2018	3	2018-09-08	11:00	d10-Phenanthrene	86	%	ALS	RG_AGCK_SE-3_2018-09-08_1100
SE	AGCK	667557	5488648	2018	3	2018-09-08	11:00	d12-Chrysene	100	%	ALS	RG AGCK SE-3 2018-09-08 1100
SE	AGCK	667557	5488648	2018	3	2018-09-08	11:00	% Gravel (>2 mm)	<1.0	%	ALS	RG AGCK SE-3 2018-09-08 1100
SE	AGCK	667557	5488648	2018	3	2018-09-08	11:00	% Sand (2.00 mm - 1.00 mm)	<1.0	%	ALS	RG AGCK SE-3 2018-09-08 1100
SE	AGCK	667557	5488648	2018	3	2018-09-08	11:00	% Sand (1.00 mm - 0.50 mm)	<1.0	%	ALS	RG AGCK SE-3 2018-09-08 1100
SE	AGCK	667557	5488648	2018	3	2018-09-08	11:00	% Sand (0.50 mm - 0.25 mm)	1.3	%	ALS	RG AGCK SE-3 2018-09-08 1100
SE	AGCK	667557	5488648	2018	3	2018-09-08	11:00	% Sand (0.25 mm - 0.125 mm)	2.1	%	ALS	RG AGCK SE-3 2018-09-08 1100
SE	AGCK	667557	5488648	2018	3	2018-09-08	11:00	% Sand (0.125 mm - 0.063 mm)	1.8	%	ALS	RG_AGCK_SE-3_2018-09-08_1100
SE	AGCK	667557	5488648	2018	3	2018-09-08	11:00	% Silt (0.063 mm - 0.0312 mm)	42	%	ALS	RG_AGCK_SE-3_2018-09-08_1100
SE	AGCK	667557	5488648	2018	3	2018-09-08	11:00	% Silt (0.031 mm - 0.004 mm)	45	%	ALS	RG AGCK SE-3 2018-09-08 1100
SE	AGCK	667557	5488648	2018	3	2018-09-08	11:00	% Clay (<4 μm)	7.7	%	ALS	RG AGCK SE-3 2018-09-08 1100
SE	AGCK	667557	5488648	2018	3	2018-09-08	11:00	Texture	Silt	-	ALS	RG AGCK SE-3 2018-09-08 1100
SE	AGCK	667557	5488648	2018	3	2018-09-08	11:00	pH (1:9)	7.0	рН	ALS	RG AGCK SE-3 2018-09-08 1100
SE	AGCK	667557	5488648	2018	3	2018-09-08	11:00	Mercury (Hg)	0.025	mg/kg	ALS	RG_AGCK_SE-3_2018-09-08_1100
SE	AGCK	667557	5488648	2018	3	2018-09-08	11:00	Aluminum (AI)	4,850	mg/kg	ALS	RG_AGCK_SE-3_2018-09-08_1100
SE	AGCK	667557	5488648	2018	3	2018-09-08	11:00	Antimony (Sb)	0.57	mg/kg	ALS	RG AGCK SE-3 2018-09-08 1100
SE	AGCK	667557	5488648	2018	3	2018-09-08	11:00	Arsenic (As)	6.7	mg/kg	ALS	RG AGCK SE-3 2018-09-08 1100
SE	AGCK	667557	5488648	2018	3	2018-09-08	11:00	Barium (Ba)	66	mg/kg	ALS	RG AGCK SE-3 2018-09-08 1100
SE	AGCK	667557	5488648	2018	3	2018-09-08	11:00	Beryllium (Be)	0.62	mg/kg	ALS	RG AGCK SE-3 2018-09-08 1100
SE	AGCK	667557	5488648	2018	3	2018-09-08	11:00	Bismuth (Bi)	<0.20	mg/kg	ALS	RG AGCK SE-3 2018-09-08 1100

WSP Canada Inc. Page 4 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

			ected from the	OWITH EALIWIN	Jumping Ot	1						
Туре	Station		(UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
		Easting	Northing					·			Lab	Sample ID
SE	AGCK	667557	5488648	2018	3	2018-09-08	11:00	Boron (B)	12	mg/kg	ALS	RG_AGCK_SE-3_2018-09-08_1100
SE	AGCK	667557	5488648	2018	3	2018-09-08	11:00	Cadmium (Cd)	0.77	mg/kg	ALS	RG_AGCK_SE-3_2018-09-08_1100
SE	AGCK	667557	5488648	2018	3	2018-09-08	11:00	Calcium (Ca)	164,000	mg/kg	ALS	RG_AGCK_SE-3_2018-09-08_1100
SE	AGCK	667557	5488648	2018	3	2018-09-08	11:00	Chromium (Cr)	14	mg/kg	ALS	RG_AGCK_SE-3_2018-09-08_1100
SE	AGCK	667557	5488648	2018	3	2018-09-08	11:00	Cobalt (Co)	2.3	mg/kg	ALS	RG_AGCK_SE-3_2018-09-08_1100
SE	AGCK	667557	5488648	2018	3	2018-09-08	11:00	Copper (Cu)	6.0	mg/kg	ALS	RG_AGCK_SE-3_2018-09-08_1100
SE	AGCK	667557	5488648	2018	3	2018-09-08	11:00	Iron (Fe)	6,310	mg/kg	ALS	RG_AGCK_SE-3_2018-09-08_1100
SE	AGCK	667557	5488648	2018	3	2018-09-08	11:00	Lead (Pb)	4.5	mg/kg	ALS	RG_AGCK_SE-3_2018-09-08_1100
SE	AGCK	667557	5488648	2018	3	2018-09-08	11:00	Lithium (Li)	5.4	mg/kg	ALS	RG_AGCK_SE-3_2018-09-08_1100
SE	AGCK	667557	5488648	2018	3	2018-09-08	11:00	Magnesium (Mg)	15,300	mg/kg	ALS	RG_AGCK_SE-3_2018-09-08_1100
SE	AGCK	667557	5488648	2018	3	2018-09-08	11:00	Manganese (Mn)	138	mg/kg	ALS	RG_AGCK_SE-3_2018-09-08_1100
SE	AGCK	667557	5488648	2018	3	2018-09-08	11:00	Molybdenum (Mo)	0.87	mg/kg	ALS	RG_AGCK_SE-3_2018-09-08_1100
SE	AGCK	667557	5488648	2018	3	2018-09-08	11:00	Nickel (Ni)	20	mg/kg	ALS	RG_AGCK_SE-3_2018-09-08_1100
SE	AGCK	667557	5488648	2018	3	2018-09-08	11:00	Phosphorus (P)	1,220	mg/kg	ALS	RG_AGCK_SE-3_2018-09-08_1100
SE	AGCK	667557	5488648	2018	3	2018-09-08	11:00	Potassium (K)	1,590	mg/kg	ALS	RG_AGCK_SE-3_2018-09-08_1100
SE	AGCK	667557	5488648	2018	3	2018-09-08	11:00	Selenium (Se)	2.2	mg/kg	ALS	RG_AGCK_SE-3_2018-09-08_1100
SE	AGCK	667557	5488648	2018	3	2018-09-08	11:00	Silver (Ag)	0.14	mg/kg	ALS	RG_AGCK_SE-3_2018-09-08_1100
SE	AGCK	667557	5488648	2018	3	2018-09-08	11:00	Sodium (Na)	160	mg/kg	ALS	RG_AGCK_SE-3_2018-09-08_1100
SE	AGCK	667557	5488648	2018	3	2018-09-08	11:00	Strontium (Sr)	164	mg/kg	ALS	RG_AGCK_SE-3_2018-09-08_1100
SE	AGCK	667557	5488648	2018	3	2018-09-08	11:00	Sulfur (S)	1,400	mg/kg	ALS	RG AGCK SE-3 2018-09-08 1100
SE	AGCK	667557	5488648	2018	3	2018-09-08	11:00	Thallium (TI)	0.88	mg/kg	ALS	RG AGCK SE-3 2018-09-08 1100
SE	AGCK	667557	5488648	2018	3	2018-09-08	11:00	Tin (Sn)	<2.0	mg/kg	ALS	RG AGCK SE-3 2018-09-08 1100
SE	AGCK	667557	5488648	2018	3	2018-09-08	11:00	Titanium (Ti)	33	mg/kg	ALS	RG_AGCK_SE-3_2018-09-08_1100
SE	AGCK	667557	5488648	2018	3	2018-09-08	11:00	Tungsten (W)	<0.50	mg/kg	ALS	RG_AGCK_SE-3_2018-09-08_1100
SE	AGCK	667557	5488648	2018	3	2018-09-08	11:00	Uranium (U)	0.94	mg/kg	ALS	RG AGCK SE-3 2018-09-08 1100
SE	AGCK	667557	5488648	2018	3	2018-09-08	11:00	Vanadium (V)	22	mg/kg	ALS	RG_AGCK_SE-3_2018-09-08_1100
SE	AGCK	667557	5488648	2018	3	2018-09-08	11:00	Zinc (Zn)	148	mg/kg	ALS	RG_AGCK_SE-3_2018-09-08_1100
SE	AGCK	667557	5488648	2018	3	2018-09-08	11:00	Zirconium (Zr)	1.0	mg/kg	ALS	RG_AGCK_SE-3_2018-09-08_1100
SE	AGCK	667557	5488648	2018	3	2018-09-08	11:00	Total Organic Carbon	10	%	ALS	RG AGCK SE-3 2018-09-08 1100
SE	MIDCO	667616	5487621	2018	1	2018-09-09	14:00	Moisture	87	%	ALS	RG MIDCO SE-1 2018-09-09 1400
SE	MIDCO	667616	5487621	2018	1	2018-09-09	14:00	Acenaphthene	<0.020	mg/kg	ALS	RG MIDCO SE-1 2018-09-09 1400
SE	MIDCO	667616	5487621	2018	1	2018-09-09	14:00	Acenaphthylene	<0.020	mg/kg	ALS	RG MIDCO SE-1 2018-09-09 1400
SE	MIDCO	667616	5487621	2018	1	2018-09-09	14:00	Acridine	<0.039	mg/kg	ALS	RG MIDCO SE-1 2018-09-09 1400
SE	MIDCO	667616	5487621	2018	1	2018-09-09	14:00	Anthracene	<0.016	mg/kg	ALS	RG MIDCO SE-1 2018-09-09 1400
SE	MIDCO	667616	5487621	2018	1	2018-09-09	14:00	Benz(a)anthracene	<0.039	mg/kg	ALS	RG MIDCO SE-1 2018-09-09 1400
SE	MIDCO	667616	5487621	2018	1	2018-09-09	14:00	Benzo(a)pyrene	<0.039	mg/kg		RG MIDCO SE-1 2018-09-09 1400
SE	MIDCO	667616	5487621	2018	1	2018-09-09	14:00	Benzo(b&j)fluoranthene	0.047	mg/kg	ALS	RG MIDCO SE-1 2018-09-09 1400
SE	MIDCO	667616	5487621	2018	1	2018-09-09	14:00	Benzo(g_h_i)perylene	<0.039	mg/kg	ALS	RG MIDCO SE-1 2018-09-09 1400
SE	MIDCO	667616	5487621	2018	1	2018-09-09	14:00	Benzo(k)fluoranthene	<0.039	mg/kg	ALS	RG MIDCO SE-1 2018-09-09 1400
SE	MIDCO	667616	5487621	2018	1	2018-09-09	14:00	Benzo(e)pyrene	0.057	mg/kg	ALS	RG MIDCO SE-1 2018-09-09 1400
SE	MIDCO	667616	5487621	2018	1	2018-09-09	14:00	Chrysene	0.086	mg/kg	ALS	RG MIDCO SE-1 2018-09-09 1400
SE	MIDCO	667616	5487621	2018	1	2018-09-09	14:00	Dibenz(a h)anthracene	<0.020	mg/kg	ALS	RG MIDCO SE-1 2018-09-09 1400
SE	MIDCO	667616	5487621	2018	1	2018-09-09	14:00	Fluoranthene	<0.020	mg/kg	ALS	RG MIDCO SE-1 2018-09-09 1400
SE	MIDCO	667616	5487621	2018	1	2018-09-09	14:00	Fluorene	0.039	mg/kg	ALS	RG_MIDCO_SE-1_2018-09-09_1400 RG_MIDCO_SE-1_2018-09-09_1400
SE	MIDCO	667616	5487621	2018	1	2018-09-09	14:00		<0.039		ALS	RG MIDCO SE-1 2018-09-09 1400
	MIDCO		5487621	2018	1 1	2018-09-09	14:00	Indeno(1,2,3-c,d)pyrene 1-Methylnaphthalene	0.039	mg/kg mg/kg	ALS	RG_MIDCO_SE-1_2018-09-09_1400 RG_MIDCO_SE-1_2018-09-09_1400
SE	MIDCO	667616	6/10/2014	7)(140					(1')			

WSP Canada Inc. Page 5 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	Station		(UTMs) ^(a)	Year	Replicate	Date	Time	Analyta	- Popult -	Unit		Laboratory Information
Type	Station	Easting	Northing	rear	Replicate	Date	ilme	Analyte	Result	Unit	Lab	Sample ID
SE	MIDCO	667616	5487621	2018	1	2018-09-09	14:00	Naphthalene	0.13	mg/kg	ALS	RG_MIDCO_SE-1_2018-09-09_1400
SE	MIDCO	667616	5487621	2018	1	2018-09-09	14:00	Perylene	< 0.039	mg/kg	ALS	RG_MIDCO_SE-1_2018-09-09_1400
SE	MIDCO	667616	5487621	2018	1	2018-09-09	14:00	Phenanthrene	0.23	mg/kg	ALS	RG_MIDCO_SE-1_2018-09-09_1400
SE	MIDCO	667616	5487621	2018	1	2018-09-09	14:00	Pyrene	< 0.039	mg/kg	ALS	RG_MIDCO_SE-1_2018-09-09_1400
SE	MIDCO	667616	5487621	2018	1	2018-09-09	14:00	Quinoline	< 0.039	mg/kg	ALS	RG_MIDCO_SE-1_2018-09-09_1400
SE	MIDCO	667616	5487621	2018	1	2018-09-09	14:00	IACR (CCME)	0.62	mg/kg	ALS	RG_MIDCO_SE-1_2018-09-09_1400
SE	MIDCO	667616	5487621	2018	1	2018-09-09	14:00	B(a)P Total Potency Equivalent	0.041	mg/kg	ALS	RG_MIDCO_SE-1_2018-09-09_1400
SE	MIDCO	667616	5487621	2018	1	2018-09-09	14:00	d8-Naphthalene	61	%	ALS	RG_MIDCO_SE-1_2018-09-09_1400
SE	MIDCO	667616	5487621	2018	1	2018-09-09	14:00	d10-Acenaphthene	67	%	ALS	RG_MIDCO_SE-1_2018-09-09_1400
SE	MIDCO	667616	5487621	2018	1	2018-09-09	14:00	d10-Phenanthrene	80	%	ALS	RG_MIDCO_SE-1_2018-09-09_1400
SE	MIDCO	667616	5487621	2018	1	2018-09-09	14:00	d12-Chrysene	80	%	ALS	RG_MIDCO_SE-1_2018-09-09_1400
SE	MIDCO	667616	5487621	2018	1	2018-09-09	14:00	% Gravel (>2 mm)	<1.0	%	ALS	RG_MIDCO_SE-1_2018-09-09_1400
SE	MIDCO	667616	5487621	2018	1	2018-09-09	14:00	% Sand (2.00 mm - 1.00 mm)	3.2	%	ALS	RG_MIDCO_SE-1_2018-09-09_1400
SE	MIDCO	667616	5487621	2018	1	2018-09-09	14:00	% Sand (1.00 mm - 0.50 mm)	1.7	%	ALS	RG_MIDCO_SE-1_2018-09-09_1400
SE	MIDCO	667616	5487621	2018	1	2018-09-09	14:00	% Sand (0.50 mm - 0.25 mm)	2.0	%	ALS	RG_MIDCO_SE-1_2018-09-09_1400
SE	MIDCO	667616	5487621	2018	1	2018-09-09	14:00	% Sand (0.25 mm - 0.125 mm)	2.8	%	ALS	RG_MIDCO_SE-1_2018-09-09_1400
SE	MIDCO	667616	5487621	2018	1	2018-09-09	14:00	% Sand (0.125 mm - 0.063 mm)	3.8	%	ALS	RG_MIDCO_SE-1_2018-09-09_1400
SE	MIDCO	667616	5487621	2018	1	2018-09-09	14:00	% Silt (0.063 mm - 0.0312 mm)	39	%	ALS	RG_MIDCO_SE-1_2018-09-09_1400
SE	MIDCO	667616	5487621	2018	1	2018-09-09	14:00	% Silt (0.031 mm - 0.004 mm)	43	%	ALS	RG_MIDCO_SE-1_2018-09-09_1400
SE	MIDCO	667616	5487621	2018	1	2018-09-09	14:00	% Clay (<4 μm)	4.2	%	ALS	RG_MIDCO_SE-1_2018-09-09_1400
SE	MIDCO	667616	5487621	2018	1	2018-09-09	14:00	Texture	Silt	-	ALS	RG_MIDCO_SE-1_2018-09-09_1400
SE	MIDCO	667616	5487621	2018	1	2018-09-09	14:00	Mercury (Hg)	0.023	mg/kg	ALS	RG_MIDCO_SE-1_2018-09-09_1400
SE	MIDCO	667616	5487621	2018	1	2018-09-09	14:00	Aluminum (Al)	12,900	mg/kg	ALS	RG_MIDCO_SE-1_2018-09-09_1400
SE	MIDCO	667616	5487621	2018	1	2018-09-09	14:00	Antimony (Sb)	0.4	mg/kg	ALS	RG_MIDCO_SE-1_2018-09-09_1400
SE	MIDCO	667616	5487621	2018	1	2018-09-09	14:00	Arsenic (As)	7.6	mg/kg	ALS	RG_MIDCO_SE-1_2018-09-09_1400
SE	MIDCO	667616	5487621	2018	1	2018-09-09	14:00	Barium (Ba)	128	mg/kg	ALS	RG_MIDCO_SE-1_2018-09-09_1400
SE	MIDCO	667616	5487621	2018	1	2018-09-09	14:00	Beryllium (Be)	0.84	mg/kg	ALS	RG_MIDCO_SE-1_2018-09-09_1400
SE	MIDCO	667616	5487621	2018	1	2018-09-09	14:00	Bismuth (Bi)	<0.20	mg/kg	ALS	RG_MIDCO_SE-1_2018-09-09_1400
SE	MIDCO	667616	5487621	2018	1	2018-09-09	14:00	Boron (B)	16	mg/kg	ALS	RG_MIDCO_SE-1_2018-09-09_1400
SE	MIDCO	667616	5487621	2018		2018-09-09	14:00	Cadmium (Cd)	1.2	mg/kg	ALS	RG_MIDCO_SE-1_2018-09-09_1400
SE	MIDCO	667616	5487621	2018	1	2018-09-09	14:00	Calcium (Ca)	91,900	mg/kg	ALS	RG_MIDCO_SE-1_2018-09-09_1400
SE	MIDCO	667616	5487621	2018	1	2018-09-09	14:00	Chromium (Cr)	21	mg/kg	ALS	RG_MIDCO_SE-1_2018-09-09_1400
SE	MIDCO	667616	5487621	2018	1	2018-09-09	14:00	Cobalt (Co)	131	mg/kg	ALS	RG_MIDCO_SE-1_2018-09-09_1400
SE	MIDCO	667616	5487621	2018	1	2018-09-09	14:00	Copper (Cu)	17	mg/kg	ALS	RG_MIDCO_SE-1_2018-09-09_1400
SE	MIDCO	667616	5487621	2018	1	2018-09-09	14:00	Iron (Fe)	22,400	mg/kg	ALS	RG_MIDCO_SE-1_2018-09-09_1400
SE	MIDCO	667616	5487621	2018	1	2018-09-09	14:00	Lead (Pb)	11	mg/kg	ALS	RG_MIDCO_SE-1_2018-09-09_1400
SE	MIDCO	667616	5487621	2018	-	2018-09-09	14:00	Lithium (Li)	18	mg/kg	ALS	RG_MIDCO_SE-1_2018-09-09_1400
SE	MIDCO	667616	5487621	2018	1	2018-09-09	14:00	Magnesium (Mg)	8,660	mg/kg	ALS	RG_MIDCO_SE-1_2018-09-09_1400
SE	MIDCO	667616	5487621	2018		2018-09-09	14:00	Manganese (Mn)	1,200	mg/kg	ALS	RG_MIDCO_SE-1_2018-09-09_1400
SE	MIDCO	667616	5487621	2018		2018-09-09	14:00	Molybdenum (Mo)	2.2	mg/kg	ALS	RG_MIDCO_SE-1_2018-09-09_1400
SE	MIDCO	667616	5487621	2018		2018-09-09	14:00	Nickel (Ni)	151	mg/kg	ALS	RG_MIDCO_SE-1_2018-09-09_1400
SE	MIDCO	667616	5487621	2018		2018-09-09	14:00	Phosphorus (P)	1,020	mg/kg	ALS	RG_MIDCO_SE-1_2018-09-09_1400
SE	MIDCO	667616	5487621	2018	1	2018-09-09	14:00	Potassium (K)	3,040	mg/kg	ALS	RG_MIDCO_SE-1_2018-09-09_1400
SE	MIDCO	667616	5487621	2018	1	2018-09-09	14:00	Selenium (Se)	1.8	mg/kg	ALS	RG_MIDCO_SE-1_2018-09-09_1400
SE	MIDCO	667616	5487621	2018	-	2018-09-09	14:00	Silver (Ag)	<0.10	mg/kg	ALS	RG_MIDCO_SE-1_2018-09-09_1400
SE	MIDCO	667616	5487621	2018	1	2018-09-09	14:00	Sodium (Na)	171	mg/kg	ALS	RG_MIDCO_SE-1_2018-09-09_1400
SE	MIDCO	667616	5487621	2018	1	2018-09-09	14:00	Strontium (Sr)	138	mg/kg	ALS	RG_MIDCO_SE-1_2018-09-09_1400

WSP Canada Inc. Page 6 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

			(UTMs) ^(a)					Availata	Dooul4	11:4		Laboratory Information
Type	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MIDCO	667616	5487621	2018	1	2018-09-09	14:00	Sulfur (S)	1,600	mg/kg	ALS	RG_MIDCO_SE-1_2018-09-09_1400
SE	MIDCO	667616	5487621	2018	1	2018-09-09	14:00	Thallium (TI)	0.34	mg/kg	ALS	RG_MIDCO_SE-1_2018-09-09_1400
SE	MIDCO	667616	5487621	2018	1	2018-09-09	14:00	Tin (Sn)	<2.0	mg/kg	ALS	RG_MIDCO_SE-1_2018-09-09_1400
SE	MIDCO	667616	5487621	2018	1	2018-09-09	14:00	Titanium (Ti)	16	mg/kg	ALS	RG_MIDCO_SE-1_2018-09-09_1400
SE	MIDCO	667616	5487621	2018	1	2018-09-09	14:00	Tungsten (W)	<0.50	mg/kg	ALS	RG_MIDCO_SE-1_2018-09-09_1400
SE	MIDCO	667616	5487621	2018	1	2018-09-09	14:00	Uranium (U)	0.86	mg/kg	ALS	RG_MIDCO_SE-1_2018-09-09_1400
SE	MIDCO	667616	5487621	2018	1	2018-09-09	14:00	Vanadium (V)	28	mg/kg	ALS	RG_MIDCO_SE-1_2018-09-09_1400
SE	MIDCO	667616	5487621	2018	1	2018-09-09	14:00	Zinc (Zn)	168	mg/kg	ALS	RG_MIDCO_SE-1_2018-09-09_1400
SE	MIDCO	667616	5487621	2018	1	2018-09-09	14:00	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_MIDCO_SE-1_2018-09-09_1400
SE	MIDCO	667616	5487621	2018	1	2018-09-09	14:00	pH (1:2 soil:water)	7.6	pН	ALS	RG_MIDCO_SE-1_2018-09-09_1400
SE	MIDCO	667616	5487621	2018	1	2018-09-09	14:00	Total Organic Carbon	5.4	%	ALS	RG_MIDCO_SE-1_2018-09-09_1400
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	Moisture	88	%	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	Acenaphthene	<0.024	mg/kg	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	Acenaphthylene	<0.019	mg/kg	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	Acridine	<0.038	mg/kg	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	Anthracene	<0.015	mg/kg	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	Benz(a)anthracene	<0.038	mg/kg	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	Benzo(a)pyrene	<0.038	mg/kg	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	Benzo(b&j)fluoranthene	0.081	mg/kg	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	Benzo(g_h_i)perylene	0.048	mg/kg	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	Benzo(k)fluoranthene	<0.038	mg/kg	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	Benzo(e)pyrene	0.1	mg/kg	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	Chrysene	0.15	mg/kg	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	Dibenz(a_h)anthracene	<0.019	mg/kg	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	Fluoranthene	<0.038	mg/kg	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	Fluorene	0.067	mg/kg	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	Indeno(1,2,3-c,d)pyrene	<0.038	mg/kg	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	1-Methylnaphthalene	0.44	mg/kg	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	2-Methylnaphthalene	0.7	mg/kg	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	Naphthalene	0.24	mg/kg	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	Perylene	<0.038	mg/kg	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	Phenanthrene	0.42	mg/kg	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	Pyrene	0.042	mg/kg	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	Quinoline	<0.038	mg/kg	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	IACR (CCME)	0.86	mg/kg	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	B(a)P Total Potency Equivalent	0.044	mg/kg	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	d8-Naphthalene	59	%	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	d10-Acenaphthene	65	%	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	d10-Phenanthrene	79	%	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	d12-Chrysene	79	%	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	% Gravel (>2 mm)	1.4	%	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	% Sand (2.00 mm - 1.00 mm)	2.7	%	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	% Sand (1.00 mm - 0.50 mm)	2.4	%	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	% Sand (0.50 mm - 0.25 mm)	4.1	%	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	% Sand (0.25 mm - 0.125 mm)	5.0	%	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	% Sand (0.125 mm - 0.063 mm)	5.7	%	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	% Silt (0.063 mm - 0.0312 mm)	35	%	ALS	RG_MIDCO_SE-2_2018-09-09_1240

WSP Canada Inc. Page 7 of 337

Sediment Screening

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Table I-1	: Sediment Chem	•			Sampling Sta	ations, 2012 to	2022					
Туре	Station	Location	ı (UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
Турс	Otation	Easting	Northing	i cai	replicate	Date	111110	Analyte	Result	Offic	Lab	Sample ID
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	% Silt (0.031 mm - 0.004 mm)	39	%	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	% Clay (<4 μm)	4.9	%	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	Texture	Silt loam	-	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	Mercury (Hg)	0.022	mg/kg	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	Aluminum (Al)	9,250	mg/kg	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	Antimony (Sb)	0.35	mg/kg	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	Arsenic (As)	4.9	mg/kg	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	Barium (Ba)	157	mg/kg	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	Beryllium (Be)	0.58	mg/kg	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	Bismuth (Bi)	<0.20	mg/kg	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	Boron (B)	17	mg/kg	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	Cadmium (Cd)	1.5	mg/kg	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	Calcium (Ca)	159,000	mg/kg	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	Chromium (Cr)	13	mg/kg	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	Cobalt (Co)	235	mg/kg	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	Copper (Cu)	9.6	mg/kg	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	Iron (Fe)	12,000	mg/kg	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	Lead (Pb)	6.7	mg/kg	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	Lithium (Li)	10	mg/kg	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	Magnesium (Mg)	6,670	mg/kg	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	Manganese (Mn)	1,510	mg/kg	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	Molybdenum (Mo)	1.6	mg/kg	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	Nickel (Ni)	194	mg/kg	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	Phosphorus (P)	962	mg/kg	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	Potassium (K)	2,720	mg/kg	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	Selenium (Se)	2.6	mg/kg	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	Silver (Ag)	<0.10	mg/kg	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	Sodium (Na)	233	mg/kg	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	Strontium (Sr)	231	mg/kg	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	Sulfur (S)	2,800	mg/kg	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	Thallium (TI)	0.28	mg/kg	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	Tin (Sn)	<2.0	mg/kg	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	Titanium (Ti)	18	mg/kg	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	Tungsten (W)	<0.50	mg/kg	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	Uranium (U)	1.1	mg/kg	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	Vanadium (V)	21	mg/kg	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	Zinc (Zn)	159	mg/kg	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	pH (1:2 soil:water)	7.7	рН	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	2	2018-09-09	12:40	Total Organic Carbon	5.5	%	ALS	RG_MIDCO_SE-2_2018-09-09_1240
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	Moisture	90	%	ALS	RG_MIDCO_SE-3_2018-09-09_1130
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	Acenaphthene	<0.039	mg/kg	ALS	RG_MIDCO_SE-3_2018-09-09_1130
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	Acenaphthylene	<0.022	mg/kg	ALS	RG_MIDCO_SE-3_2018-09-09_1130
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	Acridine	<0.044	mg/kg	ALS	RG_MIDCO_SE-3_2018-09-09_1130
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	Anthracene	<0.018	mg/kg	ALS	RG_MIDCO_SE-3_2018-09-09_1130
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	Benz(a)anthracene	0.057	mg/kg	ALS	RG_MIDCO_SE-3_2018-09-09_1130
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	Benzo(a)pyrene	<0.044	mg/kg	ALS	RG_MIDCO_SE-3_2018-09-09_1130

WSP Canada Inc. Page 8 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

able I-	i. Sealment Chen		ected from the	CIVIM LAEIVIP	Sampling St	ations, 2012 to	2022					
Туре	Station		(UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
		Easting	Northing		replicate		111110	Alayto	Result	Oilit	Lab	Sample ID
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	Benzo(b&j)fluoranthene	0.15	mg/kg	ALS	RG_MIDCO_SE-3_2018-09-09_1130
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	Benzo(g_h_i)perylene	0.084	mg/kg	ALS	RG_MIDCO_SE-3_2018-09-09_1130
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	Benzo(k)fluoranthene	<0.044	mg/kg	ALS	RG_MIDCO_SE-3_2018-09-09_1130
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	Benzo(e)pyrene	0.19	mg/kg	ALS	RG_MIDCO_SE-3_2018-09-09_1130
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	Chrysene	0.27	mg/kg	ALS	RG_MIDCO_SE-3_2018-09-09_1130
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	Dibenz(a_h)anthracene	<0.022	mg/kg	ALS	RG_MIDCO_SE-3_2018-09-09_1130
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	Fluoranthene	0.047	mg/kg	ALS	RG_MIDCO_SE-3_2018-09-09_1130
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	Fluorene	0.11	mg/kg	ALS	RG_MIDCO_SE-3_2018-09-09_1130
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	Indeno(1,2,3-c,d)pyrene	<0.044	mg/kg	ALS	RG_MIDCO_SE-3_2018-09-09_1130
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	1-Methylnaphthalene	0.69	mg/kg	ALS	RG_MIDCO_SE-3_2018-09-09_1130
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	2-Methylnaphthalene	1.1	mg/kg	ALS	RG_MIDCO_SE-3_2018-09-09_1130
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	Naphthalene	0.36	mg/kg	ALS	RG_MIDCO_SE-3_2018-09-09_1130
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	Perylene	0.054	mg/kg	ALS	RG_MIDCO_SE-3_2018-09-09_1130
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	Phenanthrene	0.73	mg/kg	ALS	RG_MIDCO_SE-3_2018-09-09_1130
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	Pyrene	0.079	mg/kg	ALS	RG MIDCO SE-3 2018-09-09 1130
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	Quinoline	<0.044	mg/kg	ALS	RG MIDCO SE-3_2018-09-09_1130
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	IACR (CCME)	1.5	mg/kg	ALS	RG MIDCO SE-3 2018-09-09 1130
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	B(a)P Total Potency Equivalent	0.062	mg/kg	ALS	RG MIDCO SE-3 2018-09-09 1130
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	d8-Naphthalene	55	%	ALS	RG_MIDCO_SE-3_2018-09-09_1130
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	d10-Acenaphthene	62	%	ALS	RG MIDCO SE-3 2018-09-09 1130
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	d10-Phenanthrene	75	%	ALS	RG MIDCO SE-3 2018-09-09 1130
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	d12-Chrysene	76	%	ALS	RG MIDCO SE-3 2018-09-09 1130
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	% Gravel (>2 mm)	1.3	%	ALS	RG MIDCO SE-3_2018-09-09_1130
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	% Sand (2.00 mm - 1.00 mm)	<1.0	%	ALS	RG MIDCO SE-3 2018-09-09 1130
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	% Sand (1.00 mm - 0.50 mm)	1.2	%	ALS	RG MIDCO SE-3 2018-09-09 1130
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	% Sand (0.50 mm - 0.25 mm)	3.4	%	ALS	RG MIDCO SE-3 2018-09-09 1130
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	% Sand (0.25 mm - 0.125 mm)	5.8	%	ALS	RG_MIDCO_SE-3_2018-09-09_1130
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	% Sand (0.125 mm - 0.063 mm)	7.9	%	ALS	RG MIDCO SE-3 2018-09-09 1130
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	% Silt (0.063 mm - 0.0312 mm)	27	%	ALS	RG MIDCO SE-3 2018-09-09 1130
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	% Silt (0.031 mm - 0.004 mm)	38	%	ALS	RG MIDCO SE-3 2018-09-09 1130
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	% Clay (<4 μm)	14	%	ALS	RG_MIDCO_SE-3_2018-09-09_1130
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	Texture	Silt loam	-	ALS	RG MIDCO SE-3 2018-09-09 1130
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	Mercury (Hg)	0.033	mg/kg	ALS	RG MIDCO SE-3 2018-09-09 1130
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	Aluminum (Al)	10,100	mg/kg	ALS	RG MIDCO SE-3 2018-09-09 1130
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	Antimony (Sb)	0.46	mg/kg	ALS	RG MIDCO SE-3 2018-09-09 1130
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	Arsenic (As)	6.7	mg/kg	ALS	RG MIDCO SE-3 2018-09-09 1130
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	Barium (Ba)	191	mg/kg	ALS	RG MIDCO SE-3 2018-09-09 1130
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	Beryllium (Be)	0.69	mg/kg	ALS	RG MIDCO SE-3 2018-09-09 1130
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	Bismuth (Bi)	<0.20	mg/kg	ALS	RG MIDCO SE-3 2018-09-09 1130
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	Boron (B)	19	mg/kg	ALS	RG MIDCO SE-3 2018-09-09 1130
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	Cadmium (Cd)	1.8	mg/kg	ALS	RG MIDCO SE-3 2018-09-09 1130
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	Calcium (Ca)	94,900	mg/kg	ALS	RG MIDCO SE-3 2018-09-09 1130
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	Chromium (Cr)	18	mg/kg	ALS	RG MIDCO SE-3 2018-09-09 1130
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	Cobalt (Co)	224	mg/kg	ALS	RG MIDCO SE-3 2018-09-09 1130
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	Copper (Cu)	13	mg/kg	ALS	RG MIDCO SE-3 2018-09-09 1130
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	Iron (Fe)	14,100	mg/kg	ALS	RG MIDCO SE-3 2018-09-09 1130
<u> </u>	WILDOO	007010	5487621	2018	3	2018-09-09	11:30	Lead (Pb)	8.6	mg/kg		RG MIDCO SE-3 2018-09-09 1130

WSP Canada Inc. Page 9 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

able I-	. Sediment Chen			CIVIMI LAEIVIP	Sampling St	ations, 2012 to	2022					
Туре	Station		(UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
		Easting	Northing		replicate		Time	Allalyto	rtesuit	Oilit	Lab	Sample ID
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	Lithium (Li)	11	mg/kg	ALS	RG_MIDCO_SE-3_2018-09-09_1130
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	Magnesium (Mg)	7,230	mg/kg	ALS	RG_MIDCO_SE-3_2018-09-09_1130
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	Manganese (Mn)	1,570	mg/kg	ALS	RG_MIDCO_SE-3_2018-09-09_1130
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	Molybdenum (Mo)	1.9	mg/kg	ALS	RG_MIDCO_SE-3_2018-09-09_1130
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	Nickel (Ni)	235	mg/kg	ALS	RG_MIDCO_SE-3_2018-09-09_1130
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	Phosphorus (P)	1,140	mg/kg	ALS	RG_MIDCO_SE-3_2018-09-09_1130
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	Potassium (K)	2,760	mg/kg	ALS	RG_MIDCO_SE-3_2018-09-09_1130
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	Selenium (Se)	4.7	mg/kg	ALS	RG_MIDCO_SE-3_2018-09-09_1130
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	Silver (Ag)	<0.10	mg/kg	ALS	RG_MIDCO_SE-3_2018-09-09_1130
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	Sodium (Na)	209	mg/kg	ALS	RG_MIDCO_SE-3_2018-09-09_1130
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	Strontium (Sr)	156	mg/kg	ALS	RG_MIDCO_SE-3_2018-09-09_1130
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	Sulfur (S)	2,500	mg/kg	ALS	RG_MIDCO_SE-3_2018-09-09_1130
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	Thallium (TI)	0.36	mg/kg	ALS	RG_MIDCO_SE-3_2018-09-09_1130
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	Tin (Sn)	<2.0	mg/kg	ALS	RG_MIDCO_SE-3_2018-09-09_1130
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	Titanium (Ti)	14	mg/kg	ALS	RG MIDCO SE-3 2018-09-09 1130
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	Tungsten (W)	<0.50	mg/kg	ALS	RG MIDCO SE-3 2018-09-09 1130
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	Uranium (U)	1.3	mg/kg	ALS	RG MIDCO SE-3 2018-09-09 1130
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	Vanadium (V)	25	mg/kg	ALS	RG MIDCO SE-3 2018-09-09 1130
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	Zinc (Zn)	176	mg/kg	ALS	RG_MIDCO_SE-3_2018-09-09_1130
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_MIDCO_SE-3_2018-09-09_1130
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	pH (1:2 soil:water)	7.6	pН	ALS	RG MIDCO SE-3 2018-09-09 1130
SE	MIDCO	667616	5487621	2018	3	2018-09-09	11:30	Total Organic Carbon	7.9	%	ALS	RG MIDCO SE-3 2018-09-09 1130
SE	MIDCO	667616	5487621	2018	4	2018-09-09	15:45	Moisture	90	%	ALS	RG MIDCO SE-4_2018-09-09_1545
SE	MIDCO	667616	5487621	2018	4	2018-09-09	15:45	Acenaphthene	<0.024	mg/kg	ALS	RG MIDCO SE-4 2018-09-09 1545
SE	MIDCO	667616	5487621	2018	4	2018-09-09	15:45	Acenaphthylene	<0.024	mg/kg	ALS	RG_MIDCO_SE-4_2018-09-09_1545
SE	MIDCO	667616	5487621	2018	4	2018-09-09	15:45	Acridine	<0.047	mg/kg	ALS	RG MIDCO SE-4 2018-09-09 1545
SE	MIDCO	667616	5487621	2018	4	2018-09-09	15:45	Anthracene	<0.019	mg/kg	ALS	RG_MIDCO_SE-4_2018-09-09_1545
SE	MIDCO	667616	5487621	2018	4	2018-09-09	15:45	Benz(a)anthracene	<0.047	mg/kg	ALS	RG_MIDCO_SE-4_2018-09-09_1545
SE	MIDCO	667616	5487621	2018	4	2018-09-09	15:45	Benzo(a)pyrene	<0.047	mg/kg	ALS	RG MIDCO SE-4 2018-09-09 1545
SE	MIDCO	667616	5487621	2018	4	2018-09-09	15:45	Benzo(b&j)fluoranthene	0.079	mg/kg	ALS	RG MIDCO SE-4 2018-09-09 1545
SE	MIDCO	667616	5487621	2018	4	2018-09-09	15:45	Benzo(g_h_i)perylene	<0.047	mg/kg	ALS	RG MIDCO SE-4 2018-09-09 1545
SE	MIDCO	667616	5487621	2018	4	2018-09-09	15:45	Benzo(k)fluoranthene	<0.047	mg/kg	ALS	RG MIDCO SE-4 2018-09-09 1545
SE	MIDCO	667616	5487621	2018	4	2018-09-09	15:45	Benzo(e)pyrene	0.097	mg/kg	ALS	RG MIDCO SE-4 2018-09-09 1545
SE	MIDCO	667616	5487621	2018	4	2018-09-09	15:45	Chrysene	0.14	mg/kg	ALS	RG MIDCO SE-4 2018-09-09 1545
SE	MIDCO	667616	5487621	2018	4	2018-09-09	15:45	Dibenz(a h)anthracene	<0.024	mg/kg	ALS	RG MIDCO SE-4 2018-09-09 1545
SE	MIDCO	667616	5487621	2018	4	2018-09-09	15:45	Fluoranthene	<0.047	mg/kg		RG MIDCO SE-4 2018-09-09 1545
SE	MIDCO	667616	5487621	2018	4	2018-09-09	15:45	Fluorene	0.066	mg/kg	ALS	RG MIDCO SE-4 2018-09-09 1545
SE	MIDCO	667616	5487621	2018	4	2018-09-09	15:45	Indeno(1,2,3-c,d)pyrene	<0.047	mg/kg	ALS	RG MIDCO SE-4 2018-09-09 1545
SE	MIDCO	667616	5487621	2018	4	2018-09-09	15:45	1-Methylnaphthalene	0.38	mg/kg	ALS	RG MIDCO SE-4 2018-09-09 1545
SE	MIDCO	667616	5487621	2018	4	2018-09-09	15:45	2-Methylnaphthalene	0.61	mg/kg	ALS	RG MIDCO SE-4 2018-09-09 1545
SE	MIDCO	667616	5487621	2018	4	2018-09-09	15:45	Naphthalene	0.19	mg/kg	ALS	RG MIDCO SE-4 2018-09-09 1545
SE	MIDCO	667616	5487621	2018	4	2018-09-09	15:45	Perylene	<0.047	mg/kg	ALS	RG MIDCO SE-4 2018-09-09 1545
SE	MIDCO	667616	5487621	2018	4	2018-09-09	15:45	Phenanthrene	0.39	mg/kg	ALS	RG MIDCO SE-4 2018-09-09 1545
SE	MIDCO	667616	5487621	2018	4	2018-09-09	15:45	Pyrene	<0.047	mg/kg	ALS	RG MIDCO SE-4 2018-09-09 1545
SE	MIDCO	667616	5487621	2018	4	2018-09-09	15:45	Quinoline	<0.047	mg/kg	ALS	RG MIDCO SE-4 2018-09-09 1545
SE	MIDCO	667616	5487621	2018	4	2018-09-09	15:45	IACR (CCME)	0.91	mg/kg	ALS	RG MIDCO SE-4 2018-09-09 1545
	WILDOO	00,010	0-07021	2010		2018-09-09	10.70	B(a)P Total Potency Equivalent	0.01	mg/ng		RG MIDCO SE-4 2018-09-09 1545

WSP Canada Inc. Page 10 of 337

Reference No. 22574542-001-R-Rev0-1000

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	Ctation	Location	ı (UTMs) ^(a)	Vacu	Doubleste	Doto	Time	Analysis	Docult	Ll _{io} ;4		Laboratory Information
ype	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE.	MIDCO	667616	5487621	2018	4	2018-09-09	15:45	d8-Naphthalene	51	%	ALS	RG MIDCO SE-4 2018-09-09 1545
E E	MIDCO	667616	5487621	2018	4	2018-09-09	15:45	d10-Acenaphthene	61	%	ALS	RG MIDCO SE-4 2018-09-09 1545
SE SE	MIDCO	667616	5487621	2018	4	2018-09-09	15:45	d10-Phenanthrene	74	%	ALS	RG MIDCO SE-4 2018-09-09 1545
SE SE	MIDCO	667616	5487621	2018	4	2018-09-09	15:45	d12-Chrysene	73	%	ALS	RG MIDCO SE-4 2018-09-09 1545
SE SE	MIDCO	667616	5487621	2018	4	2018-09-09	15:45	% Gravel (>2 mm)	<1.0	%	ALS	RG MIDCO SE-4 2018-09-09 1545
SE SE	MIDCO	667616	5487621	2018	4	2018-09-09	15:45	% Sand (2.00 mm - 1.00 mm)	<1.0	%	ALS	RG MIDCO SE-4 2018-09-09 1545
E E	MIDCO	667616	5487621	2018	4	2018-09-09	15:45	% Sand (1.00 mm - 0.50 mm)	<1.0	%	ALS	RG MIDCO SE-4 2018-09-09 1545
E	MIDCO	667616	5487621	2018	4	2018-09-09	15:45	% Sand (0.50 mm - 0.25 mm)	2.4	%	ALS	RG MIDCO SE-4 2018-09-09 1545
E E	MIDCO	667616	5487621	2018	4	2018-09-09	15:45	% Sand (0.25 mm - 0.125 mm)	3.6	%	ALS	RG_MIDCO_SE-4_2018-09-09_1545
E	MIDCO	667616	5487621	2018	4	2018-09-09	15:45	% Sand (0.125 mm - 0.063 mm)	5.0	%	ALS	RG MIDCO SE-4 2018-09-09 1545
E E	MIDCO	667616	5487621	2018	4	2018-09-09	15:45	% Silt (0.063 mm - 0.0312 mm)	35	%	ALS	RG MIDCO SE-4 2018-09-09 1545
E E	MIDCO	667616	5487621	2018	1	2018-09-09	15:45	% Silt (0.031 mm - 0.004 mm)	43	%	ALS	RG MIDCO SE-4 2018-09-09 1545
E E	MIDCO	667616	5487621	2018	4	2018-09-09	15:45	% Clay (<4 μm)	9.4	%	ALS	RG MIDCO SE-4 2018-09-09 1545
E	MIDCO	667616	5487621	2018	4	2018-09-09	15:45	Texture	Silt loam	70	ALS	RG MIDCO SE-4 2018-09-09 1545
E E	MIDCO	667616	5487621	2018	4	2018-09-09	15:45	Mercury (Hg)	0.016	mg/kg	ALS	RG MIDCO SE-4 2018-09-09 1545
E E	MIDCO	667616	5487621	2018	4	2018-09-09	15:45	Aluminum (AI)	9,200	mg/kg	ALS	RG MIDCO SE-4 2018-09-09 1545
E E	MIDCO	667616	5487621	2018	4	2018-09-09	15:45	Antimony (Sb)	0.39	mg/kg	ALS	RG MIDCO SE-4 2018-09-09 1545
E E	MIDCO	667616	5487621	2018	4	2018-09-09	15:45	Arsenic (As)	4.4		ALS	RG MIDCO SE-4 2018-09-09 1545
E	MIDCO	667616	5487621	2018	4	2018-09-09	15:45	Barium (Ba)	172	mg/kg	ALS	RG MIDCO SE-4 2018-09-09 1545
E	MIDCO	667616	5487621	2018	4	2018-09-09	15:45	Beryllium (Be)	0.53	mg/kg	ALS	RG MIDCO SE-4 2018-09-09 1545
E	MIDCO	667616	5487621		4		15:45		<0.20	mg/kg	ALS	RG MIDCO SE-4 2018-09-09 1545
E		667616	5487621	2018	4	2018-09-09 2018-09-09	15:45	Bismuth (Bi)		mg/kg	ALS	RG MIDCO SE-4 2018-09-09 1545
	MIDCO	+		2018	4			Boron (B)	19	mg/kg		
E	MIDCO	667616	5487621	2018	4	2018-09-09	15:45	Cadmium (Cd)	1.7	mg/kg	ALS	RG_MIDCO_SE-4_2018-09-09_1545
E	MIDCO	667616	5487621	2018	4	2018-09-09	15:45	Calcium (Ca)	193,000	mg/kg	ALS	RG_MIDCO_SE-4_2018-09-09_1545
E	MIDCO	667616	5487621	2018	4	2018-09-09	15:45	Chromium (Cr)	14	mg/kg	ALS	RG_MIDCO_SE-4_2018-09-09_1545
E	MIDCO	667616	5487621	2018	4	2018-09-09	15:45	Cobalt (Co)	297	mg/kg	ALS	RG_MIDCO_SE-4_2018-09-09_1545
E	MIDCO	667616	5487621	2018	4	2018-09-09	15:45	Copper (Cu)	9.0	mg/kg	ALS	RG_MIDCO_SE-4_2018-09-09_1545
E	MIDCO	667616	5487621	2018	4	2018-09-09	15:45	Iron (Fe)	10,700	mg/kg	ALS	RG_MIDCO_SE-4_2018-09-09_1545
E	MIDCO	667616	5487621	2018	4	2018-09-09	15:45	Lead (Pb)	5.7	mg/kg	ALS	RG_MIDCO_SE-4_2018-09-09_1545
E	MIDCO	667616	5487621	2018	4	2018-09-09	15:45	Lithium (Li)	9.2	mg/kg	ALS	RG_MIDCO_SE-4_2018-09-09_1545
E	MIDCO	667616	5487621	2018		2018-09-09	15:45	Magnesium (Mg)	7,070	mg/kg	ALS	RG_MIDCO_SE-4_2018-09-09_1545
E	MIDCO	667616	5487621	2018		2018-09-09	15:45	Manganese (Mn)	1,910	mg/kg	ALS	RG_MIDCO_SE-4_2018-09-09_1545
E	MIDCO	667616	5487621	2018	4	2018-09-09	15:45	Molybdenum (Mo)	1.6	mg/kg	ALS	RG_MIDCO_SE-4_2018-09-09_1545
E	MIDCO	667616	5487621	2018	4	2018-09-09	15:45	Nickel (Ni)	230	mg/kg	ALS	RG_MIDCO_SE-4_2018-09-09_1545
Е	MIDCO	667616	5487621	2018	_	2018-09-09	15:45	Phosphorus (P)	916	mg/kg	ALS	RG_MIDCO_SE-4_2018-09-09_1545
E	MIDCO	667616	5487621	2018		2018-09-09	15:45	Potassium (K)	2,930	mg/kg	ALS	RG_MIDCO_SE-4_2018-09-09_1545
E	MIDCO	667616	5487621	2018		2018-09-09	15:45	Selenium (Se)	2.7	mg/kg	ALS	RG_MIDCO_SE-4_2018-09-09_1545
E	MIDCO	667616	5487621	2018	4	2018-09-09	15:45	Silver (Ag)	<0.10	mg/kg	ALS	RG_MIDCO_SE-4_2018-09-09_1545
E	MIDCO	667616	5487621	2018		2018-09-09	15:45	Sodium (Na)	252	mg/kg	ALS	RG_MIDCO_SE-4_2018-09-09_1545
E	MIDCO	667616	5487621	2018	_	2018-09-09	15:45	Strontium (Sr)	260	mg/kg	ALS	RG_MIDCO_SE-4_2018-09-09_1545
E	MIDCO	667616	5487621	2018	4	2018-09-09	15:45	Sulfur (S)	3,400	mg/kg	ALS	RG_MIDCO_SE-4_2018-09-09_1545
E	MIDCO	667616	5487621	2018	4	2018-09-09	15:45	Thallium (TI)	0.29	mg/kg	ALS	RG_MIDCO_SE-4_2018-09-09_1545
Е	MIDCO	667616	5487621	2018	4	2018-09-09	15:45	Tin (Sn)	<2.0	mg/kg	ALS	RG_MIDCO_SE-4_2018-09-09_1545
Е	MIDCO	667616	5487621	2018	4	2018-09-09	15:45	Titanium (Ti)	18	mg/kg	ALS	RG_MIDCO_SE-4_2018-09-09_1545
E	MIDCO	667616	5487621	2018	4	2018-09-09	15:45	Tungsten (W)	<0.50	mg/kg	ALS	RG_MIDCO_SE-4_2018-09-09_1545
E	MIDCO	667616	5487621	2018	4	2018-09-09	15:45	Uranium (U)	1.2	mg/kg	ALS	RG_MIDCO_SE-4_2018-09-09_1545
E	MIDCO	667616	5487621	2018	4	2018-09-09	15:45	Vanadium (V)	22	mg/kg	ALS	RG MIDCO SE-4 2018-09-09 1545

WSP Canada Inc. Page 11 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

r	Ctation	Location	(UTMs) ^(a)	Vasi	Donlingto	Dete	Time	Amaluta	Dogult	Heit		Laboratory Information
Гуре	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MIDCO	667616	5487621	2018	4	2018-09-09	15:45	Zinc (Zn)	171	mg/kg	ALS	RG MIDCO SE-4 2018-09-09 1545
SE	MIDCO	667616	5487621	2018	4	2018-09-09	15:45	Zirconium (Zr)	<1.0	mg/kg	ALS	RG MIDCO SE-4 2018-09-09 1545
SE	MIDCO	667616	5487621	2018	4	2018-09-09	15:45	pH (1:2 soil:water)	7.4	pН	ALS	RG MIDCO SE-4 2018-09-09 1545
SE	MIDCO	667616	5487621	2018	4	2018-09-09	15:45	Total Organic Carbon	6.1	%	ALS	RG MIDCO SE-4 2018-09-09 1545
SE	MIDCO	667616	5487621	2018	5	2018-09-09	16:15	Moisture	88	%	ALS	RG_MIDCO_SE-5_2018-09-09_1615
SE	MIDCO	667616	5487621	2018	5	2018-09-09	16:15	Acenaphthene	<0.019	mg/kg	ALS	RG MIDCO SE-5 2018-09-09 1615
SE	MIDCO	667616	5487621	2018	5	2018-09-09	16:15	Acenaphthylene	<0.019	mg/kg	ALS	RG MIDCO SE-5 2018-09-09 1615
SE	MIDCO	667616	5487621	2018	5	2018-09-09	16:15	Acridine	<0.038	mg/kg	ALS	RG MIDCO SE-5 2018-09-09 1615
SE	MIDCO	667616	5487621	2018	5	2018-09-09	16:15	Anthracene	<0.015	mg/kg	ALS	RG MIDCO SE-5 2018-09-09 1615
SE	MIDCO	667616	5487621	2018	5	2018-09-09	16:15	Benz(a)anthracene	<0.038	mg/kg	ALS	RG MIDCO SE-5 2018-09-09 1615
SE	MIDCO	667616	5487621	2018	5	2018-09-09	16:15	Benzo(a)pyrene	<0.038	mg/kg	ALS	RG_MIDCO_SE-5_2018-09-09_1615
SE	MIDCO	667616	5487621	2018	5	2018-09-09	16:15	Benzo(b&j)fluoranthene	0.068	mg/kg	ALS	RG MIDCO SE-5 2018-09-09 1615
SE	MIDCO	667616	5487621	2018	5	2018-09-09	16:15	Benzo(g_h_i)perylene	0.041	mg/kg	ALS	RG MIDCO SE-5 2018-09-09 1615
SE	MIDCO	667616	5487621	2018	5	2018-09-09	16:15	Benzo(k)fluoranthene	<0.038	mg/kg	ALS	RG MIDCO SE-5 2018-09-09 1615
SE	MIDCO	667616	5487621	2018	5	2018-09-09	16:15	Benzo(e)pyrene	0.086	mg/kg	ALS	RG MIDCO SE-5 2018-09-09 1615
SE	MIDCO	667616	5487621	2018	5	2018-09-09	16:15	Chrysene	0.13	mg/kg	ALS	RG MIDCO SE-5 2018-09-09 1615
SE	MIDCO	667616	5487621	2018	5	2018-09-09	16:15	Dibenz(a_h)anthracene	<0.019	mg/kg	ALS	RG MIDCO SE-5 2018-09-09 1615
SE	MIDCO	667616	5487621	2018	5	2018-09-09	16:15	Fluoranthene	<0.038	mg/kg	ALS	RG MIDCO SE-5 2018-09-09 1615
SE	MIDCO	667616	5487621	2018	5	2018-09-09	16:15	Fluorene	0.051	mg/kg	ALS	RG_MIDCO_SE-5_2018-09-09_1615
SE.	MIDCO	667616	5487621	2018	5	2018-09-09	16:15	Indeno(1,2,3-c,d)pyrene	<0.038	mg/kg	ALS	RG MIDCO SE-5 2018-09-09 1615
SE.	MIDCO	667616	5487621	2018	5	2018-09-09	16:15	1-Methylnaphthalene	0.3	mg/kg	ALS	RG MIDCO SE-5 2018-09-09 1615
SE	MIDCO	667616	5487621	2018	5	2018-09-09	16:15	2-Methylnaphthalene	0.48	mg/kg	ALS	RG MIDCO SE-5 2018-09-09 1615
SE	MIDCO	667616	5487621	2018	5	2018-09-09	16:15	Naphthalene	0.17	mg/kg	ALS	RG MIDCO SE-5 2018-09-09 1615
SE	MIDCO	667616	5487621	2018	5	2018-09-09	16:15	Perylene	<0.038	mg/kg	ALS	RG MIDCO SE-5 2018-09-09 1615
SE	MIDCO	667616	5487621	2018	5	2018-09-09	16:15	Phenanthrene	0.32	mg/kg	ALS	RG MIDCO SE-5 2018-09-09 1615
SE	MIDCO	667616	5487621	2018	5	2018-09-09	16:15	Pyrene	<0.038	mg/kg	ALS	RG MIDCO SE-5 2018-09-09 1615
SE	MIDCO	667616	5487621	2018	5	2018-09-09	16:15	Quinoline	<0.038	mg/kg	ALS	RG MIDCO SE-5 2018-09-09 1615
SE	MIDCO	667616	5487621	2018	5	2018-09-09	16:15	IACR (CCME)	0.77	mg/kg	ALS	RG MIDCO SE-5 2018-09-09 1615
SE	MIDCO	667616	5487621	2018	5	2018-09-09	16:15	B(a)P Total Potency Equivalent	0.043	mg/kg	ALS	RG MIDCO SE-5 2018-09-09 1615
SE	MIDCO	667616	5487621	2018	5	2018-09-09	16:15	d8-Naphthalene	55	%		RG MIDCO SE-5 2018-09-09 1615
SE	MIDCO	667616	5487621	2018	5	2018-09-09	16:15	d10-Acenaphthene	61	%		RG MIDCO SE-5 2018-09-09 1615
SE	MIDCO	667616	5487621	2018	5	2018-09-09	16:15	d10-Phenanthrene	78	%		RG MIDCO SE-5 2018-09-09 1615
SE	MIDCO	667616	5487621	2018	5	2018-09-09	16:15	d12-Chrysene	80	%	ALS	RG MIDCO SE-5 2018-09-09 1615
SE	MIDCO	667616	5487621	2018	5	2018-09-09	16:15	% Gravel (>2 mm)	19	%	ALS	RG MIDCO SE-5 2018-09-09 1615
SE	MIDCO	667616	5487621	2018	5	2018-09-09	16:15	% Sand (2.00 mm - 1.00 mm)	2.8	%	ALS	RG MIDCO SE-5 2018-09-09 1615
SE	MIDCO	667616	5487621	2018	5	2018-09-09	16:15	% Sand (1.00 mm - 0.50 mm)	3.5	%	ALS	RG MIDCO SE-5 2018-09-09 1615
SE	MIDCO	667616	5487621	2018	5	2018-09-09	16:15	% Sand (0.50 mm - 0.25 mm)	4.9	%	ALS	RG MIDCO SE-5 2018-09-09 1615
SE	MIDCO	667616	5487621	2018	5	2018-09-09	16:15	% Sand (0.25 mm - 0.125 mm)	5.6	%	ALS	RG MIDCO SE-5 2018-09-09 1615
SE	MIDCO	667616	5487621	2018	5	2018-09-09	16:15	% Sand (0.125 mm - 0.063 mm)	7.1	%	ALS	RG MIDCO SE-5 2018-09-09 1615
SE	MIDCO	667616	5487621	2018	5	2018-09-09	16:15	% Silt (0.063 mm - 0.0312 mm)	23	%	ALS	RG MIDCO SE-5 2018-09-09 1615
SE	MIDCO	667616	5487621	2018	5	2018-09-09	16:15	% Silt (0.031 mm - 0.004 mm)	28	%		RG MIDCO SE-5 2018-09-09 1615
SE	MIDCO	667616	5487621	2018	5	2018-09-09	16:15	% Clay (<4 μm)	6.1	%	ALS	RG MIDCO SE-5 2018-09-09 1615
SE	MIDCO	667616	5487621	2018	5	2018-09-09	16:15	Texture	Silt loam	-	ALS	RG MIDCO SE-5 2018-09-09 1615
SE	MIDCO	667616	5487621	2018		2018-09-09	16:15	Mercury (Hg)	0.017	mg/kg	ALS	RG MIDCO SE-5 2018-09-09 1615
SE.	MIDCO	667616	5487621	2018	5	2018-09-09	16:15	Aluminum (Al)	14,400	mg/kg	ALS	RG MIDCO SE-5 2018-09-09 1615
,_ ,			-					, ,	,			
SE	MIDCO	667616	5487621	2018	5	2018-09-09	16:15	Antimony (Sb)	0.44	mg/kg	ALS	RG MIDCO SE-5 2018-09-09 1615

WSP Canada Inc. Page 12 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Table I-1	1: Sediment Chem			CMm LAEMP	Sampling St	tations, 2012 to	2022					
Туре	Station	Location	(UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
Type	Station	Easting	Northing	i cai	Replicate	Date	Tille	Analyte	Result	Offic	Lab	Sample ID
SE	MIDCO	667616	5487621	2018	5	2018-09-09	16:15	Barium (Ba)	121	mg/kg	ALS	RG_MIDCO_SE-5_2018-09-09_1615
SE	MIDCO	667616	5487621	2018	5	2018-09-09	16:15	Beryllium (Be)	0.91	mg/kg	ALS	RG_MIDCO_SE-5_2018-09-09_1615
SE	MIDCO	667616	5487621	2018	5	2018-09-09	16:15	Bismuth (Bi)	<0.20	mg/kg	ALS	RG_MIDCO_SE-5_2018-09-09_1615
SE	MIDCO	667616	5487621	2018	5	2018-09-09	16:15	Boron (B)	16	mg/kg	ALS	RG_MIDCO_SE-5_2018-09-09_1615
SE	MIDCO	667616	5487621	2018	5	2018-09-09	16:15	Cadmium (Cd)	1.3	mg/kg	ALS	RG_MIDCO_SE-5_2018-09-09_1615
SE	MIDCO	667616	5487621	2018	5	2018-09-09	16:15	Calcium (Ca)	51,500	mg/kg	ALS	RG_MIDCO_SE-5_2018-09-09_1615
SE	MIDCO	667616	5487621	2018	5	2018-09-09	16:15	Chromium (Cr)	20	mg/kg	ALS	RG_MIDCO_SE-5_2018-09-09_1615
SE	MIDCO	667616	5487621	2018	5	2018-09-09	16:15	Cobalt (Co)	92	mg/kg	ALS	RG_MIDCO_SE-5_2018-09-09_1615
SE	MIDCO	667616	5487621	2018	5	2018-09-09	16:15	Copper (Cu)	18	mg/kg	ALS	RG_MIDCO_SE-5_2018-09-09_1615
SE	MIDCO	667616	5487621	2018	5	2018-09-09	16:15	Iron (Fe)	23,100	mg/kg	ALS	RG_MIDCO_SE-5_2018-09-09_1615
SE	MIDCO	667616	5487621	2018	5	2018-09-09	16:15	Lead (Pb)	11	mg/kg	ALS	RG_MIDCO_SE-5_2018-09-09_1615
SE	MIDCO	667616	5487621	2018	5	2018-09-09	16:15	Lithium (Li)	17	mg/kg	ALS	RG_MIDCO_SE-5_2018-09-09_1615
SE	MIDCO	667616	5487621	2018	5	2018-09-09	16:15	Magnesium (Mg)	7,230	mg/kg	ALS	RG_MIDCO_SE-5_2018-09-09_1615
SE	MIDCO	667616	5487621	2018	5	2018-09-09	16:15	Manganese (Mn)	817	mg/kg	ALS	RG_MIDCO_SE-5_2018-09-09_1615
SE	MIDCO	667616	5487621	2018	5	2018-09-09	16:15	Molybdenum (Mo)	2.3	mg/kg	ALS	RG_MIDCO_SE-5_2018-09-09_1615
SE	MIDCO	667616	5487621	2018	5	2018-09-09	16:15	Nickel (Ni)	128	mg/kg	ALS	RG_MIDCO_SE-5_2018-09-09_1615
SE	MIDCO	667616	5487621	2018	5	2018-09-09	16:15	Phosphorus (P)	1,200	mg/kg	ALS	RG_MIDCO_SE-5_2018-09-09_1615
SE	MIDCO	667616	5487621	2018	5	2018-09-09	16:15	Potassium (K)	3,530	mg/kg	ALS	RG_MIDCO_SE-5_2018-09-09_1615
SE	MIDCO	667616	5487621	2018	5	2018-09-09	16:15	Selenium (Se)	1.4	mg/kg	ALS	RG_MIDCO_SE-5_2018-09-09_1615
SE	MIDCO	667616	5487621	2018	5	2018-09-09	16:15	Silver (Ag)	<0.10	mg/kg	ALS	RG_MIDCO_SE-5_2018-09-09_1615
SE	MIDCO	667616	5487621	2018	5	2018-09-09	16:15	Sodium (Na)	147	mg/kg	ALS	RG_MIDCO_SE-5_2018-09-09_1615
SE	MIDCO	667616	5487621	2018	5	2018-09-09	16:15	Strontium (Sr)	91	mg/kg	ALS	RG_MIDCO_SE-5_2018-09-09_1615
SE	MIDCO	667616	5487621	2018	5	2018-09-09	16:15	Sulfur (S)	1,000	mg/kg	ALS	RG_MIDCO_SE-5_2018-09-09_1615
SE	MIDCO	667616	5487621	2018	5	2018-09-09	16:15	Thallium (TI)	0.36	mg/kg	ALS	RG_MIDCO_SE-5_2018-09-09_1615
SE	MIDCO	667616	5487621	2018	5	2018-09-09	16:15	Tin (Sn)	<2.0	mg/kg	ALS	RG_MIDCO_SE-5_2018-09-09_1615
SE	MIDCO	667616	5487621	2018	5	2018-09-09	16:15	Titanium (Ti)	16	mg/kg	ALS	RG_MIDCO_SE-5_2018-09-09_1615
SE	MIDCO	667616	5487621	2018	5	2018-09-09	16:15	Tungsten (W)	<0.50	mg/kg	ALS	RG_MIDCO_SE-5_2018-09-09_1615
SE	MIDCO	667616	5487621	2018	5	2018-09-09	16:15	Uranium (U)	0.76	mg/kg	ALS	RG_MIDCO_SE-5_2018-09-09_1615
SE	MIDCO	667616	5487621	2018	5	2018-09-09	16:15	Vanadium (V)	31	mg/kg	ALS	RG_MIDCO_SE-5_2018-09-09_1615
SE	MIDCO	667616	5487621	2018	5	2018-09-09	16:15	Zinc (Zn)	152	mg/kg	ALS	RG_MIDCO_SE-5_2018-09-09_1615
SE	MIDCO	667616	5487621	2018	5	2018-09-09	16:15	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_MIDCO_SE-5_2018-09-09_1615
SE	MIDCO	667616	5487621	2018	5	2018-09-09	16:15	pH (1:2 soil:water)	7.7	рН	ALS	RG_MIDCO_SE-5_2018-09-09_1615
SE	MIDCO	667616	5487621	2018	5	2018-09-09	16:15	Total Organic Carbon	4.7	%	ALS	RG_MIDCO_SE-5_2018-09-09_1615
SE	MI25	668184	5482818	2018	1	2018-09-10	11:30	Moisture	83	%	ALS	RG_MI25_SE-1_2018-09-10_1130
SE	MI25	668184	5482818	2018	1	2018-09-10	11:30	Acenaphthene	<0.014	mg/kg	ALS	RG_MI25_SE-1_2018-09-10_1130
SE	MI25	668184	5482818	2018	1	2018-09-10	11:30	Acenaphthylene	<0.014	mg/kg	ALS	RG_MI25_SE-1_2018-09-10_1130
SE	MI25	668184	5482818	2018	1	2018-09-10	11:30	Acridine	<0.027	mg/kg	ALS	RG_MI25_SE-1_2018-09-10_1130
SE	MI25	668184	5482818	2018	1	2018-09-10	11:30	Anthracene	<0.011	mg/kg	ALS	RG_MI25_SE-1_2018-09-10_1130
SE	MI25	668184	5482818	2018	1	2018-09-10	11:30	Benz(a)anthracene	<0.027	mg/kg	ALS	RG_MI25_SE-1_2018-09-10_1130
SE	MI25	668184	5482818	2018	1	2018-09-10	11:30	Benzo(a)pyrene	<0.027	mg/kg	ALS	RG_MI25_SE-1_2018-09-10_1130
SE	MI25	668184	5482818	2018	1	2018-09-10	11:30	Benzo(b&j)fluoranthene	<0.027	mg/kg	ALS	RG_MI25_SE-1_2018-09-10_1130
SE	MI25	668184	5482818	2018	1	2018-09-10	11:30	Benzo(g_h_i)perylene	<0.027	mg/kg	ALS	RG_MI25_SE-1_2018-09-10_1130
SE	MI25	668184	5482818	2018	1	2018-09-10	11:30	Benzo(k)fluoranthene	<0.027	mg/kg	ALS	RG_MI25_SE-1_2018-09-10_1130
SE	MI25	668184	5482818	2018	1	2018-09-10	11:30	Benzo(e)pyrene	<0.027	mg/kg	ALS	RG_MI25_SE-1_2018-09-10_1130
SE	MI25	668184	5482818	2018	1	2018-09-10	11:30	Chrysene	<0.027	mg/kg	ALS	RG_MI25_SE-1_2018-09-10_1130
SE	MI25	668184	5482818	2018	1	2018-09-10	11:30	Dibenz(a_h)anthracene	<0.014	mg/kg	ALS	RG_MI25_SE-1_2018-09-10_1130
SE	MI25	668184	5482818	2018	1	2018-09-10	11:30	Fluoranthene	<0.027	mg/kg	ALS	RG_MI25_SE-1_2018-09-10_1130

WSP Canada Inc. Page 13 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Туре	Ctation	Location	າ (UTMs) ^(a)	V	Replicate	Date	Time	Analyte	Decult	Unit	Laboratory Information	
	Station	Easting	Northing	Year					Result		Lab	Sample ID
E	MI25	668184	5482818	2018	1	2018-09-10	11:30	Fluorene	<0.027	mg/kg	ALS	RG MI25 SE-1 2018-09-10 1130
E	MI25	668184	5482818	2018	1	2018-09-10	11:30	Indeno(1,2,3-c,d)pyrene	<0.027	mg/kg	ALS	RG MI25 SE-1 2018-09-10 1130
E	MI25	668184	5482818	2018	1	2018-09-10	11:30	1-Methylnaphthalene	<0.027	mg/kg	ALS	RG MI25 SE-1 2018-09-10 1130
E	MI25	668184	5482818	2018	1 1	2018-09-10	11:30	2-Methylnaphthalene	<0.027	mg/kg	ALS	RG MI25 SE-1 2018-09-10 1130
E E	MI25	668184	5482818	2018	1	2018-09-10	11:30	Naphthalene	<0.027	mg/kg	ALS	RG MI25_SE-1_2018-09-10_1130
E	MI25	668184	5482818	2018	1	2018-09-10	11:30	Perylene	<0.027	mg/kg	ALS	RG MI25 SE-1 2018-09-10 1130
E E	MI25	668184	5482818	2018	1	2018-09-10	11:30	Phenanthrene	<0.027	mg/kg	ALS	RG MI25 SE-1 2018-09-10 1130
E	MI25	668184	5482818	2018	1	2018-09-10	11:30	Pyrene	<0.027	mg/kg	ALS	RG MI25 SE-1 2018-09-10 1130
E	MI25	668184	5482818	2018	1	2018-09-10	11:30	Quinoline	<0.027	mg/kg	ALS	RG MI25 SE-1 2018-09-10 1130
E E	MI25	668184	5482818	2018	1	2018-09-10	11:30	IACR (CCME)	<0.29	mg/kg	ALS	RG MI25 SE-1 2018-09-10 1130
E E	MI25	668184	5482818	2018	1	2018-09-10	11:30	B(a)P Total Potency Equivalent	<0.026		ALS	RG MI25 SE-1 2018-09-10 1130
E	MI25	668184	5482818	2018	1 1	2018-09-10	11:30	d8-Naphthalene	72	mg/kg %	ALS	RG MI25 SE-1 2018-09-10 1130
E					1 1			·		% %	ALS	
	MI25	668184	5482818	2018	1 1	2018-09-10	11:30	d10-Acenaphthene	72			RG_MI25_SE-1_2018-09-10_1130
E	MI25	668184	5482818	2018	1 1	2018-09-10	11:30	d10-Phenanthrene	81	%	ALS	RG_MI25_SE-1_2018-09-10_1130
E	MI25	668184	5482818	2018	1 1	2018-09-10	11:30	d12-Chrysene	88	%	ALS	RG_MI25_SE-1_2018-09-10_1130
E	MI25	668184	5482818	2018	1 1	2018-09-10	11:30	% Gravel (>2 mm)	<1.0	%	ALS	RG_MI25_SE-1_2018-09-10_1130
E	MI25	668184	5482818	2018	1	2018-09-10	11:30	% Sand (2.00 mm - 1.00 mm)	3.5	%	ALS	RG_MI25_SE-1_2018-09-10_1130
E	MI25	668184	5482818	2018	1 1	2018-09-10	11:30	% Sand (1.00 mm - 0.50 mm)	6.8	%	ALS	RG_MI25_SE-1_2018-09-10_1130
E	MI25	668184	5482818	2018	1 1	2018-09-10	11:30	% Sand (0.50 mm - 0.25 mm)	15	%	ALS	RG_MI25_SE-1_2018-09-10_1130
E	MI25	668184	5482818	2018	1 1	2018-09-10	11:30	% Sand (0.25 mm - 0.125 mm)	15	%	ALS	RG_MI25_SE-1_2018-09-10_1130
E	MI25	668184	5482818	2018	1	2018-09-10	11:30	% Sand (0.125 mm - 0.063 mm)	6.1	%	ALS	RG_MI25_SE-1_2018-09-10_1130
Е	MI25	668184	5482818	2018	1 1	2018-09-10	11:30	% Silt (0.063 mm - 0.0312 mm)	19	%	ALS	RG_MI25_SE-1_2018-09-10_1130
E	MI25	668184	5482818	2018	1	2018-09-10	11:30	% Silt (0.031 mm - 0.004 mm)	26	%	ALS	RG_MI25_SE-1_2018-09-10_1130
E	MI25	668184	5482818	2018	1	2018-09-10	11:30	% Clay (<4 μm)	8.2	%	ALS	RG_MI25_SE-1_2018-09-10_1130
E	MI25	668184	5482818	2018	1	2018-09-10	11:30	Texture	Sandy loam	-	ALS	RG_MI25_SE-1_2018-09-10_1130
E	MI25	668184	5482818	2018	1	2018-09-10	11:30	Mercury (Hg)	0.039	mg/kg	ALS	RG_MI25_SE-1_2018-09-10_1130
Ε	MI25	668184	5482818	2018	1	2018-09-10	11:30	Aluminum (Al)	11,500	mg/kg	ALS	RG_MI25_SE-1_2018-09-10_1130
E	MI25	668184	5482818	2018	1	2018-09-10	11:30	Antimony (Sb)	0.61	mg/kg	ALS	RG_MI25_SE-1_2018-09-10_1130
E	MI25	668184	5482818	2018	1	2018-09-10	11:30	Arsenic (As)	11	mg/kg	ALS	RG_MI25_SE-1_2018-09-10_1130
E	MI25	668184	5482818	2018	1	2018-09-10	11:30	Barium (Ba)	142	mg/kg	ALS	RG_MI25_SE-1_2018-09-10_1130
E	MI25	668184	5482818	2018	1	2018-09-10	11:30	Beryllium (Be)	0.69	mg/kg	ALS	RG_MI25_SE-1_2018-09-10_1130
SE	MI25	668184	5482818	2018	1	2018-09-10	11:30	Bismuth (Bi)	<0.20	mg/kg	ALS	RG_MI25_SE-1_2018-09-10_1130
E	MI25	668184	5482818	2018	1	2018-09-10	11:30	Boron (B)	7.7	mg/kg	ALS	RG_MI25_SE-1_2018-09-10_1130
SE	MI25	668184	5482818	2018	1	2018-09-10	11:30	Cadmium (Cd)	1.3	mg/kg	ALS	RG_MI25_SE-1_2018-09-10_1130
E	MI25	668184	5482818	2018	1	2018-09-10	11:30	Calcium (Ca)	13,000	mg/kg	ALS	RG_MI25_SE-1_2018-09-10_1130
SE	MI25	668184	5482818	2018	1	2018-09-10	11:30	Chromium (Cr)	17	mg/kg	ALS	RG_MI25_SE-1_2018-09-10_1130
E	MI25	668184	5482818	2018	1	2018-09-10	11:30	Cobalt (Co)	8.0	mg/kg	ALS	RG_MI25_SE-1_2018-09-10_1130
SE .	MI25	668184	5482818	2018	1	2018-09-10	11:30	Copper (Cu)	25	mg/kg	ALS	RG MI25 SE-1 2018-09-10 1130
E	MI25	668184	5482818	2018	1	2018-09-10	11:30	Iron (Fe)	21,500	mg/kg	ALS	RG MI25 SE-1 2018-09-10 1130
E	MI25	668184	5482818	2018	1	2018-09-10	11:30	Lead (Pb)	17	mg/kg	ALS	RG MI25 SE-1 2018-09-10 1130
E	MI25	668184	5482818	2018	1	2018-09-10	11:30	Lithium (Li)	16	mg/kg	ALS	RG MI25 SE-1 2018-09-10 1130
E	MI25	668184	5482818	2018	1	2018-09-10	11:30	Magnesium (Mg)	6,010	mg/kg	ALS	RG MI25 SE-1 2018-09-10 1130
E	MI25	668184	5482818	2018	1	2018-09-10	11:30	Manganese (Mn)	501	mg/kg	ALS	RG MI25 SE-1 2018-09-10 1130
E	MI25	668184	5482818	2018	1 1	2018-09-10	11:30	Molybdenum (Mo)	5.1	mg/kg	ALS	RG MI25 SE-1 2018-09-10 1130
E E	MI25	668184	5482818	2018	1 1	2018-09-10	11:30	Nickel (Ni)	31	mg/kg	ALS	RG MI25 SE-1 2018-09-10 1130
E	MI25	668184	5482818	2018	1	2018-09-10	11:30	Phosphorus (P)	1,310	mg/kg	ALS	RG MI25 SE-1 2018-09-10 1130
Ε	MI25	668184	5482818	2018	1	2018-09-10	11:30	Potassium (K)	2,070		ALS	RG_MI25_SE-1_2018-09-10_1130
⊐ر ⊐ر	IVIIZƏ	000104	3402010	ZU 10	l l	ZU 10-U9-1U	11.30	rotassiutii (N)	2,070	mg/kg	ALO	NG_WIZS_SE-1_Z010-09-10_1130

WSP Canada Inc. Page 14 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	Ctation	Location	າ (UTMs) ^(a)	Vacan	Donlingt	Data	Time	Analyte	Dogg M	Ll o id		Laboratory Information
/pe	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
E	MI25	668184	5482818	2018	1	2018-09-10	11:30	Selenium (Se)	0.96	mg/kg	ALS	RG MI25 SE-1 2018-09-10 1130
E	MI25	668184	5482818	2018	1	2018-09-10	11:30	Silver (Ag)	0.13	mg/kg	ALS	RG MI25 SE-1 2018-09-10 1130
E	MI25	668184	5482818	2018	1 1	2018-09-10	11:30	Sodium (Na)	73	mg/kg	ALS	RG MI25 SE-1 2018-09-10 1130
E	MI25	668184	5482818	2018	1 1	2018-09-10	11:30	Strontium (Sr)	41	mg/kg	ALS	RG MI25 SE-1 2018-09-10 1130
E	MI25	668184	5482818	2018	1 1	2018-09-10	11:30	Sulfur (S)	<1000	mg/kg	ALS	RG MI25 SE-1 2018-09-10 1130
E	MI25	668184	5482818	2018	1 1	2018-09-10	11:30	Thallium (TI)	0.61	mg/kg	ALS	RG MI25 SE-1 2018-09-10 1130
E	MI25	668184	5482818	2018	1 1	2018-09-10	11:30	Tin (Sn)	<2.0	mg/kg	ALS	RG MI25 SE-1 2018-09-10 1130
E	MI25	668184	5482818	2018	1 1	2018-09-10	11:30	Titanium (Ti)	11	mg/kg	ALS	RG MI25 SE-1 2018-09-10 1130
E	MI25	668184	5482818	2018	1 1	2018-09-10	11:30	Tungsten (W)	<0.50	mg/kg	ALS	RG MI25 SE-1 2018-09-10 1130
E	MI25	668184	5482818	2018	1 1	2018-09-10	11:30	Uranium (U)	0.79	mg/kg	ALS	RG MI25 SE-1 2018-09-10 1130
E	MI25	668184	5482818	2018	1 1	2018-09-10	11:30	Vanadium (V)	30	mg/kg	ALS	RG MI25 SE-1 2018-09-10 1130
E	MI25	668184	5482818	2018	1 1	2018-09-10	11:30	Zinc (Zn)	135	mg/kg	ALS	RG MI25 SE-1 2018-09-10 1130
E	MI25	668184	5482818	2018	1 1	2018-09-10	11:30	Zirconium (Zr)	<1.0	mg/kg	ALS	RG MI25 SE-1 2018-09-10 1130
=	MI25	668184	5482818	2018	1 1	2018-09-10	11:30	pH (1:2 soil:water)	7.1	pH	ALS	RG MI25 SE-1 2018-09-10 1130
=	MI25	668184	5482818	2018	1 1	2018-09-10	11:30	Total Organic Carbon	4.4	%	ALS	RG MI25 SE-1 2018-09-10 1130
E	MI25	668184	5482818	2018	2	2018-09-10	10:30	Moisture	88	%	ALS	RG MI25 SE-2 2018-09-10 1030
E	MI25	668184	5482818	2018	2	2018-09-10	10:30	Acenaphthene	<0.019	mg/kg	ALS	RG MI25 SE-2 2018-09-10 1030
E	MI25	668184	5482818	2018	2	2018-09-10	10:30	Acenaphthylene	<0.019	mg/kg	ALS	RG MI25 SE-2 2018-09-10 1030
E	MI25	668184	5482818	2018	2	2018-09-10	10:30	Acridine	<0.038	mg/kg	ALS	RG MI25 SE-2 2018-09-10 1030
E	MI25	668184	5482818	2018	2	2018-09-10	10:30	Anthracene	<0.036	mg/kg	ALS	RG MI25 SE-2 2018-09-10 1030
=	MI25	668184	5482818	2018	2	2018-09-10	10:30	Benz(a)anthracene	<0.038	mg/kg	ALS	RG MI25 SE-2 2018-09-10 1030
E	MI25	668184	5482818	2018	2	2018-09-10	10:30	Benzo(a)pyrene	<0.038	mg/kg	ALS	RG MI25 SE-2 2018-09-10 1030
E	MI25	668184	5482818	2018	2	2018-09-10	10:30	Benzo(b&j)fluoranthene	<0.038	mg/kg	ALS	RG MI25 SE-2 2018-09-10 1030
E E	MI25	668184	5482818	2018	2	2018-09-10	10:30	Benzo(g_h_i)perylene	<0.038	mg/kg	ALS	RG MI25 SE-2 2018-09-10 1030
E E	MI25	668184	5482818	2018	2	2018-09-10	10:30	Benzo(k)fluoranthene	<0.038		ALS	RG MI25 SE-2 2018-09-10 1030
E E	MI25	668184	5482818	2018	2	2018-09-10	10:30	Benzo(e)pyrene	<0.038	mg/kg mg/kg	ALS	RG MI25 SE-2 2018-09-10 1030
E E	MI25	668184	5482818	2018	2	2018-09-10	10:30	Chrysene	<0.038	mg/kg	ALS	RG MI25 SE-2 2018-09-10 1030
E E	MI25	668184	5482818	2018	2	2018-09-10	10:30	Dibenz(a_h)anthracene	<0.038		ALS	RG MI25 SE-2 2018-09-10 1030
SE	MI25	668184	5482818	2018	2	2018-09-10	10:30	Fluoranthene	<0.019	mg/kg	ALS	RG MI25 SE-2 2018-09-10 1030
E	MI25	668184	5482818	2018	2	2018-09-10	10:30	Fluorene	<0.038	mg/kg	ALS	RG MI25 SE-2 2018-09-10 1030
			5482818				†			mg/kg		
SE SE	MI25 MI25	668184 668184	5482818	2018 2018	2	2018-09-10 2018-09-10	10:30 10:30	Indeno(1,2,3-c,d)pyrene	<0.038 <0.038	mg/kg	ALS ALS	RG_MI25_SE-2_2018-09-10_1030
SE SE	MI25	668184	5482818	2018	2	2018-09-10	10:30	1-Methylnaphthalene 2-Methylnaphthalene	<0.038	mg/kg	ALS	RG_MI25_SE-2_2018-09-10_1030 RG_MI25_SE-2_2018-09-10_1030
SE SE	MI25	668184	5482818	2018	2	2018-09-10	10:30	, ,	<0.038	mg/kg	ALS	RG MI25 SE-2 2018-09-10 1030
Ε	MI25	668184	5482818	2018	2	2018-09-10	10:30	Naphthalene	<0.038	mg/kg		RG MI25 SE-2 2018-09-10 1030
E	MI25	668184	5482818		2	2018-09-10	10:30	Perylene Phenanthrene	<0.038	mg/kg	ALS	
SE				2018	_					mg/kg	ALS	RG_MI25_SE-2_2018-09-10_1030
_	MI25	668184	5482818	2018	2	2018-09-10	10:30	Pyrene	<0.038	mg/kg	ALS	RG_MI25_SE-2_2018-09-10_1030
E E	MI25	668184	5482818	2018	2	2018-09-10	10:30	Quinoline	<0.038	mg/kg	ALS	RG_MI25_SE-2_2018-09-10_1030
	MI25	668184	5482818	2018	2	2018-09-10	10:30	IACR (CCME)	<0.41	mg/kg	ALS	RG_MI25_SE-2_2018-09-10_1030
E	MI25	668184	5482818	2018	2	2018-09-10	10:30	B(a)P Total Potency Equivalent	<0.036	mg/kg	ALS	RG_MI25_SE-2_2018-09-10_1030
E	MI25	668184	5482818	2018	2	2018-09-10	10:30	d8-Naphthalene	71	%	ALS	RG_MI25_SE-2_2018-09-10_1030
E	MI25	668184	5482818	2018	2	2018-09-10	10:30	d10-Acenaphthene	71	%	ALS	RG_MI25_SE-2_2018-09-10_1030
E	MI25	668184	5482818	2018	2	2018-09-10	10:30	d10-Phenanthrene	76	%	ALS	RG_MI25_SE-2_2018-09-10_1030
E	MI25	668184	5482818	2018	2	2018-09-10	10:30	d12-Chrysene	86	%	ALS	RG_MI25_SE-2_2018-09-10_1030
E	MI25	668184	5482818	2018	2	2018-09-10	10:30	% Gravel (>2 mm)	<1.0	%	ALS	RG_MI25_SE-2_2018-09-10_1030
E	MI25	668184	5482818	2018	2	2018-09-10	10:30	% Sand (2.00 mm - 1.00 mm)	5.7	%	ALS	RG_MI25_SE-2_2018-09-10_1030
SE	MI25	668184	5482818	2018	2	2018-09-10	10:30	% Sand (1.00 mm - 0.50 mm)	8.8	%	ALS	RG_MI25_SE-2_2018-09-10_1030

WSP Canada Inc. Page 15 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

June -	Station	Location	(UTMs) ^(a)	Vaar	Poplicate	Data	Time	Analyta	Popult	Unit		Laboratory Information
уре	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE.	MI25	668184	5482818	2018	2	2018-09-10	10:30	% Sand (0.50 mm - 0.25 mm)	12	%	ALS	RG_MI25_SE-2_2018-09-10_1030
E	MI25	668184	5482818	2018	2	2018-09-10	10:30	% Sand (0.25 mm - 0.125 mm)	5.2	%	ALS	RG_MI25_SE-2_2018-09-10_1030
E	MI25	668184	5482818	2018	2	2018-09-10	10:30	% Sand (0.125 mm - 0.063 mm)	2.0	%	ALS	RG_MI25_SE-2_2018-09-10_1030
SE.	MI25	668184	5482818	2018	2	2018-09-10	10:30	% Silt (0.063 mm - 0.0312 mm)	24	%	ALS	RG MI25 SE-2 2018-09-10 1030
SE	MI25	668184	5482818	2018	2	2018-09-10	10:30	% Silt (0.031 mm - 0.004 mm)	33	%	ALS	RG_MI25_SE-2_2018-09-10_1030
SE	MI25	668184	5482818	2018	2	2018-09-10	10:30	% Clay (<4 μm)	8.9	%	ALS	RG MI25 SE-2 2018-09-10 1030
ŝΕ	MI25	668184	5482818	2018	2	2018-09-10	10:30	Texture	Silt loam	-	ALS	RG MI25 SE-2 2018-09-10 1030
SE	MI25	668184	5482818	2018	2	2018-09-10	10:30	Mercury (Hg)	0.036	mg/kg	ALS	RG_MI25_SE-2_2018-09-10_1030
SE	MI25	668184	5482818	2018	2	2018-09-10	10:30	Aluminum (Al)	9,550	mg/kg	ALS	RG_MI25_SE-2_2018-09-10_1030
SE	MI25	668184	5482818	2018	2	2018-09-10	10:30	Antimony (Sb)	0.5	mg/kg	ALS	RG MI25 SE-2 2018-09-10 1030
SE	MI25	668184	5482818	2018	2	2018-09-10	10:30	Arsenic (As)	9.3	mg/kg	ALS	RG_MI25_SE-2_2018-09-10_1030
SE	MI25	668184	5482818	2018	2	2018-09-10	10:30	Barium (Ba)	119	mg/kg	ALS	RG MI25 SE-2 2018-09-10 1030
SE	MI25	668184	5482818	2018	2	2018-09-10	10:30	Beryllium (Be)	0.64	mg/kg	ALS	RG MI25 SE-2 2018-09-10 1030
SE	MI25	668184	5482818	2018	2	2018-09-10	10:30	Bismuth (Bi)	<0.20	mg/kg	ALS	RG_MI25_SE-2_2018-09-10_1030
SE	MI25	668184	5482818	2018	2	2018-09-10	10:30	Boron (B)	6.9	mg/kg	ALS	RG MI25 SE-2 2018-09-10 1030
SE.	MI25	668184	5482818	2018	2	2018-09-10	10:30	Cadmium (Cd)	1.2	mg/kg	ALS	RG_MI25_SE-2_2018-09-10_1030
SE	MI25	668184	5482818	2018	2	2018-09-10	10:30	Calcium (Ca)	28,800	mg/kg	ALS	RG_MI25_SE-2_2018-09-10_1030
SE	MI25	668184	5482818	2018	2	2018-09-10	10:30	Chromium (Cr)	14	mg/kg	ALS	RG MI25 SE-2 2018-09-10 1030
SE	MI25	668184	5482818	2018	2	2018-09-10	10:30	Cobalt (Co)	7.4	mg/kg	ALS	RG MI25 SE-2 2018-09-10 1030
SE	MI25	668184	5482818	2018	2	2018-09-10	10:30	Copper (Cu)	23	mg/kg	ALS	RG_MI25_SE-2_2018-09-10_1030
SE	MI25	668184	5482818	2018	2	2018-09-10	10:30	Iron (Fe)	19,500	mg/kg	ALS	RG MI25 SE-2 2018-09-10 1030
SE	MI25	668184	5482818	2018	2	2018-09-10	10:30	Lead (Pb)	14	mg/kg	ALS	RG_MI25_SE-2_2018-09-10_1030
SE	MI25	668184	5482818	2018	2	2018-09-10	10:30	Lithium (Li)	13	mg/kg	ALS	RG MI25 SE-2 2018-09-10 1030
SE	MI25	668184	5482818	2018	2	2018-09-10	10:30	Magnesium (Mg)	8,330	mg/kg	ALS	RG_MI25_SE-2_2018-09-10_1030
SE	MI25	668184	5482818	2018	2	2018-09-10	10:30	Manganese (Mn)	636	mg/kg	ALS	RG MI25 SE-2 2018-09-10 1030
SE	MI25	668184	5482818	2018	2	2018-09-10	10:30	Molybdenum (Mo)	3.8	mg/kg	ALS	RG MI25 SE-2 2018-09-10 1030
SE	MI25	668184	5482818	2018	2	2018-09-10	10:30	Nickel (Ni)	27	mg/kg	ALS	RG_MI25_SE-2_2018-09-10_1030
SE	MI25	668184	5482818	2018	2	2018-09-10	10:30	Phosphorus (P)	1,110	mg/kg	ALS	RG_MI25_SE-2_2018-09-10_1030
SE	MI25	668184	5482818	2018	2	2018-09-10	10:30	Potassium (K)	1,710	mg/kg	ALS	RG MI25 SE-2 2018-09-10 1030
SE	MI25	668184	5482818	2018	2	2018-09-10	10:30	Selenium (Se)	0.98	mg/kg	ALS	RG MI25 SE-2 2018-09-10 1030
SE	MI25	668184	5482818	2018	2	2018-09-10	10:30	Silver (Ag)	0.13	mg/kg	ALS	RG_MI25_SE-2_2018-09-10_1030
SE	MI25	668184	5482818	2018	2	2018-09-10	10:30	Sodium (Na)	71	mg/kg	ALS	RG MI25 SE-2 2018-09-10 1030
SE	MI25	668184	5482818	2018	2	2018-09-10	10:30	Strontium (Sr)	50	mg/kg	ALS	RG MI25 SE-2 2018-09-10 1030
SE	MI25	668184	5482818	2018	2	2018-09-10	10:30	Sulfur (S)	<1000	mg/kg	ALS	RG MI25 SE-2 2018-09-10 1030
SE	MI25	668184	5482818	2018	2	2018-09-10	10:30	Thallium (TI)	0.55	mg/kg	ALS	RG MI25 SE-2 2018-09-10 1030
SE	MI25	668184	5482818	2018	2	2018-09-10	10:30	Tin (Sn)	<2.0	mg/kg	ALS	RG MI25 SE-2 2018-09-10 1030
SE	MI25	668184	5482818	2018	2	2018-09-10	10:30	Titanium (Ti)	9.5	mg/kg	ALS	RG MI25 SE-2 2018-09-10 1030
SE	MI25	668184	5482818	2018	2	2018-09-10	10:30	Tungsten (W)	<0.50	mg/kg	ALS	RG MI25 SE-2 2018-09-10 1030
SE	MI25	668184	5482818	2018	2	2018-09-10	10:30	Uranium (U)	0.68	mg/kg	ALS	RG MI25 SE-2 2018-09-10 1030
SE	MI25	668184	5482818	2018	2	2018-09-10	10:30	Vanadium (V)	25	mg/kg	ALS	RG MI25 SE-2 2018-09-10 1030
SE	MI25	668184	5482818	2018	2	2018-09-10	10:30	Zinc (Zn)	113	mg/kg	ALS	RG_MI25_SE-2_2018-09-10_1030
SE	MI25	668184	5482818	2018	2	2018-09-10	10:30	Zirconium (Zr)	<1.0	mg/kg	ALS	RG MI25 SE-2 2018-09-10 1030
SE	MI25	668184	5482818	2018	2	2018-09-10	10:30	pH (1:2 soil:water)	7.4	pH	ALS	RG MI25 SE-2 2018-09-10 1030
SE	MI25	668184	5482818	2018		2018-09-10	10:30	Total Organic Carbon	6.3	%	ALS	RG MI25 SE-2 2018-09-10 1030
	MI25	668184	5482818	2018	3	2018-09-10	09:30	Moisture	77	%	ALS	RG MI25 SE-3 2018-09-10 0930
SE	IVIIZO			- · -				T .				
SE SE	MI25	668184	5482818	2018	3	2018-09-10	09:30	Acenaphthene	<0.010	mg/kg	ALS	RG MI25 SE-3 2018-09-10 0930

WSP Canada Inc. Page 16 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Table I-	1: Sediment Chem			CMm LAEMP	Sampling St	ations, 2012 to	2022					
Туре	Station		ı (UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
	Otation	Easting	Northing	i cai	Replicate	Date	Tillic	Analyte	Result	Oilit	Lab	Sample ID
SE	MI25	668184	5482818	2018	3	2018-09-10	09:30	Acridine	<0.020	mg/kg	ALS	RG_MI25_SE-3_2018-09-10_0930
SE	MI25	668184	5482818	2018	3	2018-09-10	09:30	Anthracene	<0.0080	mg/kg	ALS	RG_MI25_SE-3_2018-09-10_0930
SE	MI25	668184	5482818	2018	3	2018-09-10	09:30	Benz(a)anthracene	<0.020	mg/kg	ALS	RG_MI25_SE-3_2018-09-10_0930
SE	MI25	668184	5482818	2018	3	2018-09-10	09:30	Benzo(a)pyrene	<0.020	mg/kg	ALS	RG_MI25_SE-3_2018-09-10_0930
SE	MI25	668184	5482818	2018	3	2018-09-10	09:30	Benzo(b&j)fluoranthene	<0.020	mg/kg	ALS	RG_MI25_SE-3_2018-09-10_0930
SE	MI25	668184	5482818	2018	3	2018-09-10	09:30	Benzo(g_h_i)perylene	<0.020	mg/kg	ALS	RG_MI25_SE-3_2018-09-10_0930
SE	MI25	668184	5482818	2018	3	2018-09-10	09:30	Benzo(k)fluoranthene	<0.020	mg/kg	ALS	RG_MI25_SE-3_2018-09-10_0930
SE	MI25	668184	5482818	2018	3	2018-09-10	09:30	Benzo(e)pyrene	<0.020	mg/kg	ALS	RG_MI25_SE-3_2018-09-10_0930
SE	MI25	668184	5482818	2018	3	2018-09-10	09:30	Chrysene	<0.020	mg/kg	ALS	RG_MI25_SE-3_2018-09-10_0930
SE	MI25	668184	5482818	2018	3	2018-09-10	09:30	Dibenz(a_h)anthracene	<0.010	mg/kg	ALS	RG_MI25_SE-3_2018-09-10_0930
SE	MI25	668184	5482818	2018	3	2018-09-10	09:30	Fluoranthene	<0.020	mg/kg	ALS	RG_MI25_SE-3_2018-09-10_0930
SE	MI25	668184	5482818	2018	3	2018-09-10	09:30	Fluorene	<0.020	mg/kg	ALS	RG_MI25_SE-3_2018-09-10_0930
SE	MI25	668184	5482818	2018	3	2018-09-10	09:30	Indeno(1,2,3-c,d)pyrene	<0.020	mg/kg	ALS	RG_MI25_SE-3_2018-09-10_0930
SE	MI25	668184	5482818	2018	3	2018-09-10	09:30	1-Methylnaphthalene	<0.020	mg/kg	ALS	RG_MI25_SE-3_2018-09-10_0930
SE	MI25	668184	5482818	2018	3	2018-09-10	09:30	2-Methylnaphthalene	<0.020	mg/kg	ALS	RG_MI25_SE-3_2018-09-10_0930
SE	MI25	668184	5482818	2018	3	2018-09-10	09:30	Naphthalene	<0.020	mg/kg	ALS	RG_MI25_SE-3_2018-09-10_0930
SE	MI25	668184	5482818	2018	3	2018-09-10	09:30	Perylene	<0.020	mg/kg	ALS	RG_MI25_SE-3_2018-09-10_0930
SE	MI25	668184	5482818	2018	3	2018-09-10	09:30	Phenanthrene	<0.020	mg/kg	ALS	RG_MI25_SE-3_2018-09-10_0930
SE	MI25	668184	5482818	2018	3	2018-09-10	09:30	Pyrene	<0.020	mg/kg	ALS	RG_MI25_SE-3_2018-09-10_0930
SE	MI25	668184	5482818	2018	3	2018-09-10	09:30	Quinoline	<0.020	mg/kg	ALS	RG_MI25_SE-3_2018-09-10_0930
SE	MI25	668184	5482818	2018	3	2018-09-10	09:30	IACR (CCME)	<0.21	mg/kg	ALS	RG_MI25_SE-3_2018-09-10_0930
SE	MI25	668184	5482818	2018	3	2018-09-10	09:30	B(a)P Total Potency Equivalent	<0.020	mg/kg	ALS	RG_MI25_SE-3_2018-09-10_0930
SE	MI25	668184	5482818	2018	3	2018-09-10	09:30	d8-Naphthalene	67	%	ALS	RG_MI25_SE-3_2018-09-10_0930
SE	MI25	668184	5482818	2018	3	2018-09-10	09:30	d10-Acenaphthene	66	%	ALS	RG_MI25_SE-3_2018-09-10_0930
SE	MI25	668184	5482818	2018	3	2018-09-10	09:30	d10-Phenanthrene	76	%	ALS	RG MI25 SE-3 2018-09-10 0930
SE	MI25	668184	5482818	2018	3	2018-09-10	09:30	d12-Chrysene	87	%	ALS	RG_MI25_SE-3_2018-09-10_0930
SE	MI25	668184	5482818	2018	3	2018-09-10	09:30	% Gravel (>2 mm)	<1.0	%	ALS	RG_MI25_SE-3_2018-09-10_0930
SE	MI25	668184	5482818	2018	3	2018-09-10	09:30	% Sand (2.00 mm - 1.00 mm)	<1.0	%	ALS	RG MI25 SE-3 2018-09-10 0930
SE	MI25	668184	5482818	2018	3	2018-09-10	09:30	% Sand (1.00 mm - 0.50 mm)	<1.0	%	ALS	RG_MI25_SE-3_2018-09-10_0930
SE	MI25	668184	5482818	2018	3	2018-09-10	09:30	% Sand (0.50 mm - 0.25 mm)	7.3	%	ALS	RG_MI25_SE-3_2018-09-10_0930
SE	MI25	668184	5482818	2018	3	2018-09-10	09:30	% Sand (0.25 mm - 0.125 mm)	19	%	ALS	RG MI25 SE-3 2018-09-10 0930
SE	MI25	668184	5482818	2018	3	2018-09-10	09:30	% Sand (0.125 mm - 0.063 mm)	12	%	ALS	RG MI25 SE-3 2018-09-10 0930
SE	MI25	668184	5482818	2018	3	2018-09-10	09:30	% Silt (0.063 mm - 0.0312 mm)	27	%	ALS	RG MI25 SE-3 2018-09-10 0930
SE	MI25	668184	5482818	2018	3	2018-09-10	09:30	% Silt (0.031 mm - 0.004 mm)	29	%	ALS	RG_MI25_SE-3_2018-09-10_0930
SE	MI25	668184	5482818	2018	3	2018-09-10	09:30	% Clay (<4 μm)	5.4	%	ALS	RG_MI25_SE-3_2018-09-10_0930
SE	MI25	668184	5482818	2018	3	2018-09-10	09:30	Texture	Silt loam	-	ALS	RG_MI25_SE-3_2018-09-10_0930
SE	MI25	668184	5482818	2018	3	2018-09-10	09:30	Mercury (Hg)	0.043	mg/kg	ALS	RG MI25 SE-3 2018-09-10 0930
SE	MI25	668184	5482818	2018	3	2018-09-10	09:30	Aluminum (Al)	10,700	mg/kg	ALS	RG MI25 SE-3 2018-09-10 0930
SE	MI25	668184	5482818	2018	3	2018-09-10	09:30	Antimony (Sb)	0.64	mg/kg	ALS	RG_MI25_SE-3_2018-09-10_0930
SE	MI25	668184	5482818	2018	3	2018-09-10	09:30	Arsenic (As)	10	mg/kg	ALS	RG_MI25_SE-3_2018-09-10_0930
SE	MI25	668184	5482818	2018	3	2018-09-10	09:30	Barium (Ba)	152	mg/kg	ALS	RG_MI25_SE-3_2018-09-10_0930
SE	MI25	668184	5482818	2018	3	2018-09-10	09:30	Beryllium (Be)	0.75	mg/kg	ALS	RG_MI25_SE-3_2018-09-10_0930
SE	MI25	668184	5482818	2018	3	2018-09-10	09:30	Bismuth (Bi)	0.22	mg/kg	ALS	RG_MI25_SE-3_2018-09-10_0930
SE	MI25	668184	5482818	2018	3	2018-09-10	09:30	Boron (B)	7.5	mg/kg	ALS	RG_MI25_SE-3_2018-09-10_0930
SE	MI25	668184	5482818	2018	3	2018-09-10	09:30	Cadmium (Cd)	1.5	mg/kg	ALS	RG_MI25_SE-3_2018-09-10_0930
SE	MI25	668184	5482818	2018	3	2018-09-10	09:30	Calcium (Ca)	14,500	mg/kg	ALS	RG_MI25_SE-3_2018-09-10_0930
SE	MI25	668184	5482818	2018	3	2018-09-10	09:30	Chromium (Cr)	16	mg/kg		RG MI25 SE-3 2018-09-10 0930

WSP Canada Inc. Page 17 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Type	Station	Location	(UTMs) ^(a)	Year	Poplieste	Date	Time	Analyte	Popult	Unit		Laboratory Information
уре	Station	Easting	Northing	rear	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE.	MI25	668184	5482818	2018	3	2018-09-10	09:30	Cobalt (Co)	8.5	mg/kg	ALS	RG_MI25_SE-3_2018-09-10_0930
ŝΕ	MI25	668184	5482818	2018	3	2018-09-10	09:30	Copper (Cu)	27	mg/kg	ALS	RG MI25 SE-3 2018-09-10 0930
SE.	MI25	668184	5482818	2018	3	2018-09-10	09:30	Iron (Fe)	21,100	mg/kg	ALS	RG_MI25_SE-3_2018-09-10_0930
SE	MI25	668184	5482818	2018	3	2018-09-10	09:30	Lead (Pb)	18	mg/kg	ALS	RG MI25 SE-3 2018-09-10 0930
SE	MI25	668184	5482818	2018	3	2018-09-10	09:30	Lithium (Li)	16	mg/kg	ALS	RG MI25 SE-3 2018-09-10 0930
SE	MI25	668184	5482818	2018	3	2018-09-10	09:30	Magnesium (Mg)	6,050	mg/kg	ALS	RG MI25 SE-3 2018-09-10 0930
SE.	MI25	668184	5482818	2018	3	2018-09-10	09:30	Manganese (Mn)	554	mg/kg	ALS	RG MI25 SE-3 2018-09-10 0930
SE	MI25	668184	5482818	2018	3	2018-09-10	09:30	Molybdenum (Mo)	5.5	mg/kg	ALS	RG_MI25_SE-3_2018-09-10_0930
SE	MI25	668184	5482818	2018	3	2018-09-10	09:30	Nickel (Ni)	32	mg/kg	ALS	RG_MI25_SE-3_2018-09-10_0930
SE	MI25	668184	5482818	2018	3	2018-09-10	09:30	Phosphorus (P)	1,340	mg/kg	ALS	RG MI25 SE-3 2018-09-10 0930
SE	MI25	668184	5482818	2018	3	2018-09-10	09:30	Potassium (K)	1,780	mg/kg	ALS	RG_MI25_SE-3_2018-09-10_0930
SE	MI25	668184	5482818	2018	3	2018-09-10	09:30	Selenium (Se)	1.2	mg/kg	ALS	RG MI25 SE-3 2018-09-10 0930
SE	MI25	668184	5482818	2018	3	2018-09-10	09:30	Silver (Ag)	0.16	mg/kg	ALS	RG MI25 SE-3 2018-09-10 0930
SE	MI25	668184	5482818	2018	3	2018-09-10	09:30	Sodium (Na)	67	mg/kg	ALS	RG MI25 SE-3 2018-09-10 0930
SE	MI25	668184	5482818	2018	3	2018-09-10	09:30	Strontium (Sr)	46	mg/kg	ALS	RG MI25 SE-3 2018-09-10 0930
SE	MI25	668184	5482818	2018	3	2018-09-10	09:30	Sulfur (S)	<1000	mg/kg	ALS	RG_MI25_SE-3_2018-09-10_0930
SE	MI25	668184	5482818	2018	3	2018-09-10	09:30	Thallium (TI)	0.7	mg/kg	ALS	RG_MI25_SE-3_2018-09-10_0930
SE	MI25	668184	5482818	2018	3	2018-09-10	09:30	Tin (Sn)	<2.0	mg/kg	ALS	RG MI25 SE-3 2018-09-10 0930
SE	MI25	668184	5482818	2018	3	2018-09-10	09:30	Titanium (Ti)	9.1	mg/kg	ALS	RG MI25 SE-3 2018-09-10 0930
SE.	MI25	668184	5482818	2018	3	2018-09-10	09:30	Tungsten (W)	< 0.50	mg/kg	ALS	RG_MI25_SE-3_2018-09-10_0930
SE.	MI25	668184	5482818	2018	3	2018-09-10	09:30	Uranium (U)	0.87	mg/kg	ALS	RG MI25 SE-3 2018-09-10 0930
SE.	MI25	668184	5482818	2018	3	2018-09-10	09:30	Vanadium (V)	29	mg/kg	ALS	RG_MI25_SE-3_2018-09-10_0930
SE	MI25	668184	5482818	2018	3	2018-09-10	09:30	Zinc (Zn)	136	mg/kg	ALS	RG_MI25_SE-3_2018-09-10_0930
SE	MI25	668184	5482818	2018	3	2018-09-10	09:30	Zirconium (Zr)	1.0	mg/kg	ALS	RG_MI25_SE-3_2018-09-10_0930
SE	MI25	668184	5482818	2018	3	2018-09-10	09:30	pH (1:2 soil:water)	7.4	рН	ALS	RG MI25 SE-3 2018-09-10 0930
SE	MI25	668184	5482818	2018	3	2018-09-10	09:30	Total Organic Carbon	2.4	%	ALS	RG MI25 SE-3 2018-09-10 0930
SE	MI5	659496	5496774	2018	1	2018-10-10	12:45	Moisture	80	%	ALS	RG MI5 SE-1 2018-10-10 1245
SE	MI5	659496	5496774	2018	1	2018-10-10	12:45	Acenaphthene	< 0.013	mg/kg	ALS	RG_MI5_SE-1_2018-10-10_1245
SE	MI5	659496	5496774	2018	1	2018-10-10	12:45	Acenaphthylene	< 0.013	mg/kg	ALS	RG_MI5_SE-1_2018-10-10_1245
SE	MI5	659496	5496774	2018	1	2018-10-10	12:45	Acridine	<0.025	mg/kg	ALS	RG_MI5_SE-1_2018-10-10_1245
SE	MI5	659496	5496774	2018	1	2018-10-10	12:45	Anthracene	<0.010	mg/kg	ALS	RG MI5 SE-1 2018-10-10 1245
SE	MI5	659496	5496774	2018	1	2018-10-10	12:45	Benz(a)anthracene	<0.025	mg/kg	ALS	RG MI5 SE-1 2018-10-10 1245
SE	MI5	659496	5496774	2018	1	2018-10-10	12:45	Benzo(a)pyrene	<0.025	mg/kg	ALS	RG_MI5_SE-1_2018-10-10_1245
SE	MI5	659496	5496774	2018	1	2018-10-10	12:45	Benzo(b&j)fluoranthene	0.027	mg/kg	ALS	RG_MI5_SE-1_2018-10-10_1245
SE	MI5	659496	5496774	2018	1	2018-10-10	12:45	Benzo(g_h_i)perylene	< 0.025	mg/kg	ALS	RG_MI5_SE-1_2018-10-10_1245
SE	MI5	659496	5496774	2018	1	2018-10-10	12:45	Benzo(k)fluoranthene	< 0.025	mg/kg	ALS	RG_MI5_SE-1_2018-10-10_1245
SE	MI5	659496	5496774	2018	1	2018-10-10	12:45	Benzo(e)pyrene	0.028	mg/kg	ALS	RG_MI5_SE-1_2018-10-10_1245
SE	MI5	659496	5496774	2018	1	2018-10-10	12:45	Chrysene	0.052	mg/kg	ALS	RG_MI5_SE-1_2018-10-10_1245
SE	MI5	659496	5496774	2018	1	2018-10-10	12:45	Dibenz(a_h)anthracene	<0.013	mg/kg	ALS	RG_MI5_SE-1_2018-10-10_1245
SE	MI5	659496	5496774	2018	1	2018-10-10	12:45	Fluoranthene	<0.025	mg/kg	ALS	RG_MI5_SE-1_2018-10-10_1245
SE	MI5	659496	5496774	2018	1	2018-10-10	12:45	Fluorene	<0.025	mg/kg	ALS	RG_MI5_SE-1_2018-10-10_1245
SE	MI5	659496	5496774	2018	1	2018-10-10	12:45	Indeno(1,2,3-c,d)pyrene	<0.025	mg/kg	ALS	RG_MI5_SE-1_2018-10-10_1245
SE	MI5	659496	5496774	2018	1	2018-10-10	12:45	1-Methylnaphthalene	0.094	mg/kg	ALS	RG_MI5_SE-1_2018-10-10_1245
SE	MI5	659496	5496774	2018	1	2018-10-10	12:45	2-Methylnaphthalene	0.13	mg/kg	ALS	RG_MI5_SE-1_2018-10-10_1245
SE	MI5	659496	5496774	2018	1	2018-10-10	12:45	Naphthalene	0.048	mg/kg	ALS	RG_MI5_SE-1_2018-10-10_1245
SE	MI5	659496	5496774	2018	1	2018-10-10	12:45	Perylene	<0.025	mg/kg	ALS	RG_MI5_SE-1_2018-10-10_1245
SE	MI5	659496	5496774	2018	4	2018-10-10	12:45	Phenanthrene	0.13	mg/kg	ALS	RG MI5 SE-1 2018-10-10 1245

WSP Canada Inc. Page 18 of 337

 Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Table I-1	I: Sediment Chem	istry Data Coll	ected from the	CMm LAEMP	Sampling Stations, 2012 to	2022					
Typo	Station	Location	ı (UTMs) ^(a)	Year	Replicate Date	Time	Analyte	Result	Unit		Laboratory Information
Type	Station	Easting	Northing	rear	Replicate Date	rime	Analyte	Result	Unit	Lab	Sample ID
SE	MI5	659496	5496774	2018	1 2018-10-10	12:45	Pyrene	<0.025	mg/kg	ALS	RG_MI5_SE-1_2018-10-10_1245
SE	MI5	659496	5496774	2018	1 2018-10-10	12:45	Quinoline	<0.025	mg/kg	ALS	RG_MI5_SE-1_2018-10-10_1245
SE	MI5	659496	5496774	2018	1 2018-10-10	12:45	IACR (CCME)	0.38	mg/kg	ALS	RG_MI5_SE-1_2018-10-10_1245
SE	MI5	659496	5496774	2018	1 2018-10-10	12:45	B(a)P Total Potency Equivalent	0.026	mg/kg	ALS	RG_MI5_SE-1_2018-10-10_1245
SE	MI5	659496	5496774	2018	1 2018-10-10	12:45	d8-Naphthalene	65	%	ALS	RG_MI5_SE-1_2018-10-10_1245
SE	MI5	659496	5496774	2018	1 2018-10-10	12:45	d10-Acenaphthene	71	%	ALS	RG_MI5_SE-1_2018-10-10_1245
SE	MI5	659496	5496774	2018	1 2018-10-10	12:45	d10-Phenanthrene	89	%	ALS	RG_MI5_SE-1_2018-10-10_1245
SE	MI5	659496	5496774	2018	1 2018-10-10	12:45	d12-Chrysene	92	%	ALS	RG_MI5_SE-1_2018-10-10_1245
SE	MI5	659496	5496774	2018	1 2018-10-10	12:45	% Gravel (>2 mm)	8.5	%	ALS	RG_MI5_SE-1_2018-10-10_1245
SE	MI5	659496	5496774	2018	1 2018-10-10	12:45	% Sand (2.00 mm - 1.00 mm)	3.7	%	ALS	RG_MI5_SE-1_2018-10-10_1245
SE	MI5	659496	5496774	2018	1 2018-10-10	12:45	% Sand (1.00 mm - 0.50 mm)	9.5	%	ALS	RG_MI5_SE-1_2018-10-10_1245
SE	MI5	659496	5496774	2018	1 2018-10-10	12:45	% Sand (0.50 mm - 0.25 mm)	31	%	ALS	RG_MI5_SE-1_2018-10-10_1245
SE	MI5	659496	5496774	2018	1 2018-10-10	12:45	% Sand (0.25 mm - 0.125 mm)	22	%	ALS	RG_MI5_SE-1_2018-10-10_1245
SE	MI5	659496	5496774	2018	1 2018-10-10	12:45	% Sand (0.125 mm - 0.063 mm)	7.0	%	ALS	RG_MI5_SE-1_2018-10-10_1245
SE	MI5	659496	5496774	2018	1 2018-10-10	12:45	% Silt (0.063 mm - 0.0312 mm)	8.6	%	ALS	RG_MI5_SE-1_2018-10-10_1245
SE	MI5	659496	5496774	2018	1 2018-10-10	12:45	% Silt (0.031 mm - 0.004 mm)	8.4	%	ALS	RG_MI5_SE-1_2018-10-10_1245
SE	MI5	659496	5496774	2018	1 2018-10-10	12:45	% Clay (<4 μm)	1.6	%	ALS	RG_MI5_SE-1_2018-10-10_1245
SE	MI5	659496	5496774	2018	1 2018-10-10	12:45	Texture	Loamy sand	-	ALS	RG_MI5_SE-1_2018-10-10_1245
SE	MI5	659496	5496774	2018	1 2018-10-10	12:45	Mercury (Hg)	0.03	mg/kg	ALS	RG_MI5_SE-1_2018-10-10_1245
SE	MI5	659496	5496774	2018	1 2018-10-10	12:45	Aluminum (Al)	7,410	mg/kg	ALS	RG_MI5_SE-1_2018-10-10_1245
SE	MI5	659496	5496774	2018	1 2018-10-10	12:45	Antimony (Sb)	1.1	mg/kg	ALS	RG_MI5_SE-1_2018-10-10_1245
SE	MI5	659496	5496774	2018	1 2018-10-10	12:45	Arsenic (As)	7.3	mg/kg	ALS	RG_MI5_SE-1_2018-10-10_1245
SE	MI5	659496	5496774	2018	1 2018-10-10	12:45	Barium (Ba)	194	mg/kg	ALS	RG_MI5_SE-1_2018-10-10_1245
SE	MI5	659496	5496774	2018	1 2018-10-10	12:45	Beryllium (Be)	0.59	mg/kg	ALS	RG_MI5_SE-1_2018-10-10_1245
SE	MI5	659496	5496774	2018	1 2018-10-10	12:45	Bismuth (Bi)	<0.20	mg/kg	ALS	RG_MI5_SE-1_2018-10-10_1245
SE	MI5	659496	5496774	2018	1 2018-10-10	12:45	Boron (B)	7.9	mg/kg	ALS	RG_MI5_SE-1_2018-10-10_1245
SE	MI5	659496	5496774	2018	1 2018-10-10	12:45	Cadmium (Cd)	1.2	mg/kg	ALS	RG_MI5_SE-1_2018-10-10_1245
SE	MI5	659496	5496774	2018	1 2018-10-10	12:45	Calcium (Ca)	28,500	mg/kg	ALS	RG_MI5_SE-1_2018-10-10_1245
SE	MI5	659496	5496774	2018	1 2018-10-10	12:45	Chromium (Cr)	14	mg/kg	ALS	RG_MI5_SE-1_2018-10-10_1245
SE	MI5	659496	5496774	2018	1 2018-10-10	12:45	Cobalt (Co)	8.4	mg/kg	ALS	RG_MI5_SE-1_2018-10-10_1245
SE	MI5	659496	5496774	2018	1 2018-10-10	12:45	Copper (Cu)	12	mg/kg	ALS	RG_MI5_SE-1_2018-10-10_1245
SE	MI5	659496	5496774	2018	1 2018-10-10	12:45	Iron (Fe)	16,400	mg/kg	ALS	RG_MI5_SE-1_2018-10-10_1245
SE	MI5	659496	5496774	2018	1 2018-10-10	12:45	Lead (Pb)	9.1	mg/kg	ALS	RG_MI5_SE-1_2018-10-10_1245
SE	MI5	659496	5496774	2018	1 2018-10-10	12:45	Lithium (Li)	7.3	mg/kg	ALS	RG_MI5_SE-1_2018-10-10_1245
SE	MI5	659496	5496774	2018	1 2018-10-10	12:45	Magnesium (Mg)	4,340	mg/kg	ALS	RG_MI5_SE-1_2018-10-10_1245
SE	MI5	659496	5496774	2018	1 2018-10-10	12:45	Manganese (Mn)	236	mg/kg	ALS	RG_MI5_SE-1_2018-10-10_1245
SE	MI5	659496	5496774	2018	1 2018-10-10	12:45	Molybdenum (Mo)	1.6	mg/kg		RG_MI5_SE-1_2018-10-10_1245
SE	MI5	659496	5496774	2018	1 2018-10-10	12:45	Nickel (Ni)	31	mg/kg	ALS	RG_MI5_SE-1_2018-10-10_1245
SE	MI5	659496	5496774	2018	1 2018-10-10	12:45	Phosphorus (P)	1,260	mg/kg		RG_MI5_SE-1_2018-10-10_1245
SE	MI5	659496	5496774	2018	1 2018-10-10	12:45	Potassium (K)	1,630	mg/kg	ALS	RG_MI5_SE-1_2018-10-10_1245
SE	MI5	659496	5496774	2018	1 2018-10-10	12:45	Selenium (Se)	1.1	mg/kg	ALS	RG_MI5_SE-1_2018-10-10_1245
SE	MI5	659496	5496774	2018	1 2018-10-10	12:45	Silver (Ag)	0.14	mg/kg	ALS	RG_MI5_SE-1_2018-10-10_1245
SE	MI5	659496	5496774	2018	1 2018-10-10	12:45	Sodium (Na)	73	mg/kg	ALS	RG_MI5_SE-1_2018-10-10_1245
SE	MI5	659496	5496774	2018	1 2018-10-10	12:45	Strontium (Sr)	65	mg/kg	ALS	RG_MI5_SE-1_2018-10-10_1245
SE	MI5	659496	5496774	2018	1 2018-10-10	12:45	Sulfur (S)	<1000	mg/kg	ALS	RG_MI5_SE-1_2018-10-10_1245
SE	MI5	659496	5496774	2018	1 2018-10-10	12:45	Thallium (TI)	0.25	mg/kg	ALS	RG_MI5_SE-1_2018-10-10_1245
SE	MI5	659496	5496774	2018	1 2018-10-10	12:45	Tin (Sn)	<2.0	mg/kg	ALS	RG_MI5_SE-1_2018-10-10_1245

WSP Canada Inc. Page 19 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Table I-1	: Sediment Chem	istry Data Col	lected from the	CMm LAEMP S	Sampling Sta	ations, 2012 to	2022					
Туре	Station	Location	າ (UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
Type	Station	Easting	Northing	i cai	Replicate	Date	Tille	Analyte	Result	Offic	Lab	Sample ID
SE	MI5	659496	5496774	2018	1	2018-10-10	12:45	Titanium (Ti)	34	mg/kg	ALS	RG_MI5_SE-1_2018-10-10_1245
SE	MI5	659496	5496774	2018	1	2018-10-10	12:45	Tungsten (W)	<0.50	mg/kg	ALS	RG_MI5_SE-1_2018-10-10_1245
SE	MI5	659496	5496774	2018	1	2018-10-10	12:45	Uranium (U)	1.1	mg/kg	ALS	RG_MI5_SE-1_2018-10-10_1245
SE	MI5	659496	5496774	2018	1	2018-10-10	12:45	Vanadium (V)	41	mg/kg	ALS	RG_MI5_SE-1_2018-10-10_1245
SE	MI5	659496	5496774	2018	1	2018-10-10	12:45	Zinc (Zn)	98	mg/kg	ALS	RG_MI5_SE-1_2018-10-10_1245
SE	MI5	659496	5496774	2018	1	2018-10-10	12:45	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_MI5_SE-1_2018-10-10_1245
SE	MI5	659496	5496774	2018	1	2018-10-10	12:45	pH (1:2 soil:water)	8.0	рН	ALS	RG MI5 SE-1 2018-10-10 1245
SE	MI5	659496	5496774	2018	1	2018-10-10	12:45	Total Organic Carbon	2.4	%	ALS	RG MI5 SE-1 2018-10-10 1245
SE	MI5	659496	5496774	2018	2	2018-10-10	13:00	Moisture	93	%	ALS	RG MI5 SE-2 2018-10-10 1300
SE	MI5	659496	5496774	2018	2	2018-10-10	13:00	Acenaphthene	<0.033	mg/kg	ALS	RG_MI5_SE-2_2018-10-10_1300
SE	MI5	659496	5496774	2018	2	2018-10-10	13:00	Acenaphthylene	<0.033	mg/kg	ALS	RG_MI5_SE-2_2018-10-10_1300
SE	MI5	659496	5496774	2018		2018-10-10	13:00	Acridine	<0.066	mg/kg	ALS	RG MI5 SE-2 2018-10-10 1300
SE	MI5	659496	5496774	2018		2018-10-10	13:00	Anthracene	<0.026	mg/kg	ALS	RG MI5 SE-2 2018-10-10 1300
SE	MI5	659496	5496774	2018	2	2018-10-10	13:00	Benz(a)anthracene	<0.066	mg/kg	ALS	RG MI5 SE-2 2018-10-10 1300
SE	MI5	659496	5496774	2018		2018-10-10	13:00	Benzo(a)pyrene	<0.066	mg/kg	ALS	RG MI5 SE-2 2018-10-10 1300
SE	MI5	659496	5496774	2018	2	2018-10-10	13:00	Benzo(b&j)fluoranthene	<0.066	mg/kg	ALS	RG MI5 SE-2 2018-10-10 1300
SE	MI5	659496	5496774	2018		2018-10-10	13:00	Benzo(g_h_i)perylene	<0.066	mg/kg	ALS	RG MI5 SE-2 2018-10-10 1300
SE	MI5	659496	5496774	2018	2	2018-10-10	13:00	Benzo(k)fluoranthene	<0.066	mg/kg	ALS	RG MI5 SE-2 2018-10-10 1300
SE	MI5	659496	5496774	2018		2018-10-10	13:00	Benzo(e)pyrene	<0.066	mg/kg	ALS	RG MI5 SE-2 2018-10-10 1300
SE	MI5	659496	5496774	2018		2018-10-10	13:00	Chrysene	<0.066	mg/kg	ALS	RG MI5 SE-2 2018-10-10 1300
SE	MI5	659496	5496774	2018		2018-10-10	13:00	Dibenz(a_h)anthracene	<0.033	mg/kg	ALS	RG MI5 SE-2 2018-10-10 1300
SE	MI5	659496	5496774	2018		2018-10-10	13:00	Fluoranthene	<0.066	mg/kg	ALS	RG_MI5_SE-2_2018-10-10_1300
SE	MI5	659496	5496774	2018		2018-10-10	13:00	Fluorene	<0.066	mg/kg	ALS	RG_MI5_SE-2_2018-10-10_1300
SE	MI5	659496	5496774	2018		2018-10-10	13:00	Indeno(1,2,3-c,d)pyrene	<0.066	mg/kg	ALS	RG MI5 SE-2 2018-10-10 1300
SE	MI5	659496	5496774	2018	2	2018-10-10	13:00	1-Methylnaphthalene	0.1	mg/kg	ALS	RG MI5 SE-2 2018-10-10 1300
SE	MI5	659496	5496774	2018	2	2018-10-10	13:00	2-Methylnaphthalene	0.15		ALS	RG_MI5_SE-2_2018-10-10_1300
SE	MI5	659496	5496774	2018		2018-10-10	13:00	Naphthalene	<0.066	mg/kg mg/kg	ALS	RG_MI5_SE-2_2018-10-10_1300
SE	MI5	659496	5496774	2018		2018-10-10	13:00	Perylene	<0.066		ALS	RG MI5 SE-2 2018-10-10 1300
SE	MI5	659496	5496774	2018	2	2018-10-10	13:00	, and the second		mg/kg		
SE	MI5						13:00	Phenanthrene	0.15	mg/kg	ALS	RG_MI5_SE-2_2018-10-10_1300
		659496	5496774	2018		2018-10-10		Pyrene	<0.066	mg/kg		RG_MI5_SE-2_2018-10-10_1300
SE	MI5	659496	5496774	2018		2018-10-10	13:00	Quinoline	<0.066	mg/kg		RG_MI5_SE-2_2018-10-10_1300
SE	MI5	659496	5496774	2018		2018-10-10	13:00	IACR (CCME)	<0.71	mg/kg	ALS	RG_MI5_SE-2_2018-10-10_1300
SE	MI5	659496	5496774	2018		2018-10-10	13:00	B(a)P Total Potency Equivalent	<0.063	mg/kg	ALS	RG_MI5_SE-2_2018-10-10_1300
SE	MI5	659496	5496774	2018		2018-10-10	13:00	d8-Naphthalene	63	%	ALS	RG_MI5_SE-2_2018-10-10_1300
SE	MI5	659496	5496774	2018		2018-10-10	13:00	d10-Acenaphthene	67	%	ALS	RG_MI5_SE-2_2018-10-10_1300
SE	MI5	659496	5496774	2018		2018-10-10	13:00	d10-Phenanthrene	88	%	ALS	RG_MI5_SE-2_2018-10-10_1300
SE	MI5	659496	5496774	2018		2018-10-10	13:00	d12-Chrysene	93	%	ALS	RG_MI5_SE-2_2018-10-10_1300
SE	MI5	659496	5496774	2018		2018-10-10	13:00	% Gravel (>2 mm)	14	%	ALS	RG_MI5_SE-2_2018-10-10_1300
SE	MI5	659496	5496774	2018		2018-10-10	13:00	% Sand (2.00 mm - 1.00 mm)	14	%	ALS	RG_MI5_SE-2_2018-10-10_1300
SE	MI5	659496	5496774	2018		2018-10-10	13:00	% Sand (1.00 mm - 0.50 mm)	15	%		RG_MI5_SE-2_2018-10-10_1300
SE	MI5	659496	5496774	2018		2018-10-10	13:00	% Sand (0.50 mm - 0.25 mm)	16	%	ALS	RG_MI5_SE-2_2018-10-10_1300
SE	MI5	659496	5496774	2018		2018-10-10	13:00	% Sand (0.25 mm - 0.125 mm)	5.2	%	ALS	RG_MI5_SE-2_2018-10-10_1300
SE	MI5	659496	5496774	2018		2018-10-10	13:00	% Sand (0.125 mm - 0.063 mm)	2.6	%	ALS	RG_MI5_SE-2_2018-10-10_1300
SE	MI5	659496	5496774	2018	2	2018-10-10	13:00	% Silt (0.063 mm - 0.0312 mm)	15	%	ALS	RG_MI5_SE-2_2018-10-10_1300
SE	MI5	659496	5496774	2018		2018-10-10	13:00	% Silt (0.031 mm - 0.004 mm)	16	%	ALS	RG_MI5_SE-2_2018-10-10_1300
SE	MI5	659496	5496774	2018		2018-10-10	13:00	% Clay (<4 μm)	2.8	%	ALS	RG_MI5_SE-2_2018-10-10_1300
SE	MI5	659496	5496774	2018	2	2018-10-10	13:00	Texture	Sandy loam	-	ALS	RG_MI5_SE-2_2018-10-10_1300

WSP Canada Inc. Page 20 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

able I-	l: Sediment Chem			CMm LAEMP	Sampling St	ations, 2012 to	2022					
Туре	Station		(UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
		Easting	Northing		rtophodio			•			Lab	Sample ID
SE	MI5	659496	5496774	2018	2	2018-10-10	13:00	Mercury (Hg)	0.027	mg/kg	ALS	RG_MI5_SE-2_2018-10-10_1300
SE	MI5	659496	5496774	2018	2	2018-10-10	13:00	Aluminum (Al)	5,150	mg/kg	ALS	RG_MI5_SE-2_2018-10-10_1300
SE	MI5	659496	5496774	2018	2	2018-10-10	13:00	Antimony (Sb)	0.53	mg/kg	ALS	RG_MI5_SE-2_2018-10-10_1300
SE	MI5	659496	5496774	2018	2	2018-10-10	13:00	Arsenic (As)	4.8	mg/kg	ALS	RG_MI5_SE-2_2018-10-10_1300
SE	MI5	659496	5496774	2018	2	2018-10-10	13:00	Barium (Ba)	200	mg/kg	ALS	RG_MI5_SE-2_2018-10-10_1300
SE	MI5	659496	5496774	2018	2	2018-10-10	13:00	Beryllium (Be)	0.42	mg/kg	ALS	RG_MI5_SE-2_2018-10-10_1300
SE	MI5	659496	5496774	2018	2	2018-10-10	13:00	Bismuth (Bi)	<0.20	mg/kg	ALS	RG_MI5_SE-2_2018-10-10_1300
SE	MI5	659496	5496774	2018	2	2018-10-10	13:00	Boron (B)	9.2	mg/kg	ALS	RG_MI5_SE-2_2018-10-10_1300
SE	MI5	659496	5496774	2018	2	2018-10-10	13:00	Cadmium (Cd)	1.5	mg/kg	ALS	RG_MI5_SE-2_2018-10-10_1300
SE	MI5	659496	5496774	2018	2	2018-10-10	13:00	Calcium (Ca)	71,900	mg/kg	ALS	RG_MI5_SE-2_2018-10-10_1300
SE	MI5	659496	5496774	2018	2	2018-10-10	13:00	Chromium (Cr)	9.9	mg/kg	ALS	RG_MI5_SE-2_2018-10-10_1300
SE	MI5	659496	5496774	2018	2	2018-10-10	13:00	Cobalt (Co)	11	mg/kg	ALS	RG_MI5_SE-2_2018-10-10_1300
SE	MI5	659496	5496774	2018	2	2018-10-10	13:00	Copper (Cu)	9.9	mg/kg	ALS	RG_MI5_SE-2_2018-10-10_1300
SE	MI5	659496	5496774	2018	2	2018-10-10	13:00	Iron (Fe)	11,500	mg/kg	ALS	RG_MI5_SE-2_2018-10-10_1300
SE	MI5	659496	5496774	2018	2	2018-10-10	13:00	Lead (Pb)	6.8	mg/kg	ALS	RG_MI5_SE-2_2018-10-10_1300
SE	MI5	659496	5496774	2018	2	2018-10-10	13:00	Lithium (Li)	5.6	mg/kg	ALS	RG_MI5_SE-2_2018-10-10_1300
SE	MI5	659496	5496774	2018	2	2018-10-10	13:00	Magnesium (Mg)	4,130	mg/kg	ALS	RG_MI5_SE-2_2018-10-10_1300
SE	MI5	659496	5496774	2018	2	2018-10-10	13:00	Manganese (Mn)	248	mg/kg	ALS	RG_MI5_SE-2_2018-10-10_1300
SE	MI5	659496	5496774	2018	2	2018-10-10	13:00	Molybdenum (Mo)	1.1	mg/kg	ALS	RG_MI5_SE-2_2018-10-10_1300
SE	MI5	659496	5496774	2018	2	2018-10-10	13:00	Nickel (Ni)	36	mg/kg	ALS	RG_MI5_SE-2_2018-10-10_1300
SE	MI5	659496	5496774	2018	2	2018-10-10	13:00	Phosphorus (P)	1,170	mg/kg	ALS	RG_MI5_SE-2_2018-10-10_1300
SE	MI5	659496	5496774	2018	2	2018-10-10	13:00	Potassium (K)	1,020	mg/kg	ALS	RG_MI5_SE-2_2018-10-10_1300
SE	MI5	659496	5496774	2018	2	2018-10-10	13:00	Selenium (Se)	2.4	mg/kg	ALS	RG_MI5_SE-2_2018-10-10_1300
SE	MI5	659496	5496774	2018	2	2018-10-10	13:00	Silver (Ag)	0.12	mg/kg	ALS	RG_MI5_SE-2_2018-10-10_1300
SE	MI5	659496	5496774	2018	2	2018-10-10	13:00	Sodium (Na)	93	mg/kg	ALS	RG_MI5_SE-2_2018-10-10_1300
SE	MI5	659496	5496774	2018	2	2018-10-10	13:00	Strontium (Sr)	104	mg/kg	ALS	RG_MI5_SE-2_2018-10-10_1300
SE	MI5	659496	5496774	2018	2	2018-10-10	13:00	Sulfur (S)	<1000	mg/kg	ALS	RG_MI5_SE-2_2018-10-10_1300
SE	MI5	659496	5496774	2018	2	2018-10-10	13:00	Thallium (TI)	0.19	mg/kg	ALS	RG_MI5_SE-2_2018-10-10_1300
SE	MI5	659496	5496774	2018	2	2018-10-10	13:00	Tin (Sn)	<2.0	mg/kg	ALS	RG_MI5_SE-2_2018-10-10_1300
SE	MI5	659496	5496774	2018	2	2018-10-10	13:00	Titanium (Ti)	23	mg/kg	ALS	RG_MI5_SE-2_2018-10-10_1300
SE	MI5	659496	5496774	2018	2	2018-10-10	13:00	Tungsten (W)	<0.50	mg/kg	ALS	RG_MI5_SE-2_2018-10-10_1300
SE	MI5	659496	5496774	2018	2	2018-10-10	13:00	Uranium (U)	0.97	mg/kg	ALS	RG_MI5_SE-2_2018-10-10_1300
SE	MI5	659496	5496774	2018	2	2018-10-10	13:00	Vanadium (V)	24	mg/kg	ALS	RG_MI5_SE-2_2018-10-10_1300
SE	MI5	659496	5496774	2018	2	2018-10-10	13:00	Zinc (Zn)	90	mg/kg	ALS	RG_MI5_SE-2_2018-10-10_1300
SE	MI5	659496	5496774	2018	2	2018-10-10	13:00	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_MI5_SE-2_2018-10-10_1300
SE	MI5	659496	5496774	2018	2	2018-10-10	13:00	pH (1:2 soil:water)	7.8	рН	ALS	RG_MI5_SE-2_2018-10-10_1300
SE	MI5	659496	5496774	2018	2	2018-10-10	13:00	Total Organic Carbon	4.3	%	ALS	RG_MI5_SE-2_2018-10-10_1300
SE	MI5	659496	5496774	2018	3	2018-10-10	13:05	Moisture	80	%	ALS	RG MI5 SE-3 2018-10-10 1305
SE	MI5	659496	5496774	2018	3	2018-10-10	13:05	Acenaphthene	<0.012	mg/kg	ALS	RG_MI5_SE-3_2018-10-10_1305
SE	MI5	659496	5496774	2018	3	2018-10-10	13:05	Acenaphthylene	<0.012	mg/kg	ALS	RG_MI5_SE-3_2018-10-10_1305
SE	MI5	659496	5496774	2018	3	2018-10-10	13:05	Acridine	<0.024	mg/kg	ALS	RG_MI5_SE-3_2018-10-10_1305
SE	MI5	659496	5496774	2018	3	2018-10-10	13:05	Anthracene	<0.0096	mg/kg	ALS	RG_MI5_SE-3_2018-10-10_1305
SE	MI5	659496	5496774	2018	3	2018-10-10	13:05	Benz(a)anthracene	<0.024	mg/kg	ALS	RG_MI5_SE-3_2018-10-10_1305
SE	MI5	659496	5496774	2018	3	2018-10-10	13:05	Benzo(a)pyrene	<0.024	mg/kg	ALS	RG_MI5_SE-3_2018-10-10_1305
SE	MI5	659496	5496774	2018	3	2018-10-10	13:05	Benzo(b&j)fluoranthene	0.025	mg/kg	ALS	RG MI5 SE-3 2018-10-10 1305
SE	MI5	659496	5496774	2018	3	2018-10-10	13:05	Benzo(g_h_i)perylene	<0.024	mg/kg	ALS	RG MI5 SE-3 2018-10-10 1305
SE	MI5	659496	5496774	2018	3	2018-10-10	13:05	Benzo(k)fluoranthene	<0.024	mg/kg		RG MI5 SE-3 2018-10-10 1305

WSP Canada Inc. Page 21 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	Ctation	Location	ı (UTMs) ^(a)	Vacu	Danlingto	Dete	Times	Amaluka	Booult	Heit		Laboratory Information
ype	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
E	MI5	659496	5496774	2018	3	2018-10-10	13:05	Benzo(e)pyrene	<0.024	mg/kg	ALS	RG MI5 SE-3 2018-10-10 1305
E	MI5	659496	5496774	2018		2018-10-10	13:05	Chrysene	0.039	mg/kg	ALS	RG_MI5_SE-3_2018-10-10_1305
E E	MI5	659496	5496774	2018	3	2018-10-10	13:05	Dibenz(a h)anthracene	<0.012	mg/kg	ALS	RG MI5 SE-3 2018-10-10 1305
E E	MI5	659496	5496774	2018		2018-10-10	13:05	Fluoranthene	<0.024	mg/kg	ALS	RG MI5 SE-3 2018-10-10 1305
E E	MI5	659496	5496774	2018		2018-10-10	13:05	Fluorene	<0.024	mg/kg	ALS	RG MI5 SE-3 2018-10-10 1305
SE	MI5	659496	5496774	2018		2018-10-10	13:05	Indeno(1,2,3-c,d)pyrene	<0.024	mg/kg	ALS	RG MI5 SE-3 2018-10-10 1305
SE	MI5	659496	5496774	2018	3	2018-10-10	13:05	1-Methylnaphthalene	0.085	mg/kg	ALS	RG MI5 SE-3 2018-10-10 1305
SE	MI5	659496	5496774	2018	3	2018-10-10	13:05	2-Methylnaphthalene	0.12	mg/kg	ALS	RG MI5 SE-3 2018-10-10 1305
SE	MI5	659496	5496774	2018	3	2018-10-10	13:05	Naphthalene	0.041	mg/kg	ALS	RG MI5 SE-3 2018-10-10 1305
SE SE	MI5	659496	5496774	2018		2018-10-10	13:05	Perylene	<0.024	mg/kg	ALS	RG MI5 SE-3 2018-10-10 1305
SE	MI5	659496	5496774	2018	3	2018-10-10	13:05	Phenanthrene	0.11	mg/kg	ALS	RG MI5 SE-3 2018-10-10 1305
SE	MI5	659496	5496774	2018	, ,	2018-10-10	13:05	Pyrene	<0.024	mg/kg	ALS	RG MI5 SE-3 2018-10-10 1305
SE SE	MI5	659496	5496774	2018		2018-10-10	13:05	Quinoline	<0.024	mg/kg	ALS	RG MI5 SE-3 2018-10-10 1305
SE SE	MI5	659496	5496774	2018		2018-10-10	13:05	IACR (CCME)	0.35	mg/kg	ALS	RG MI5 SE-3 2018-10-10 1305
SE	MI5	659496	5496774	2018	3	2018-10-10	13:05	B(a)P Total Potency Equivalent	0.025	mg/kg	ALS	RG MI5 SE-3 2018-10-10 1305
SE	MI5	659496	5496774	2018		2018-10-10	13:05	d8-Naphthalene	66	%	ALS	RG MI5 SE-3 2018-10-10 1305
SE	MI5	659496	5496774	2018	3	2018-10-10	13:05	d10-Acenaphthene	70	%	ALS	RG MI5 SE-3 2018-10-10 1305
SE	MI5	659496	5496774	2018	3	2018-10-10	13:05	d10-Phenanthrene	93	%	ALS	RG_MI5_SE-3_2018-10-10_1305
SE	MI5	659496	5496774	2018	3	2018-10-10	13:05	d12-Chrysene	96	%	ALS	RG MI5 SE-3 2018-10-10 1305
SE	MI5	659496	5496774	2018		2018-10-10	13:05	% Gravel (>2 mm)	<1.0	%	ALS	RG MI5 SE-3 2018-10-10 1305
SE	MI5	659496	5496774	2018		2018-10-10	13:05	% Sand (2.00 mm - 1.00 mm)	1.4	%	ALS	RG MI5 SE-3 2018-10-10 1305
SE	MI5	659496	5496774	2018	-	2018-10-10	13:05	% Sand (2.00 mm - 1.00 mm)	1.6	%	ALS	RG MI5 SE-3 2018-10-10 1305
			+					,				
SE	MI5	659496	5496774	2018		2018-10-10	13:05	% Sand (0.50 mm - 0.25 mm)	5.9	%	ALS	RG_MI5_SE-3_2018-10-10_1305
SE SE	MI5	659496	5496774	2018		2018-10-10	13:05	% Sand (0.25 mm - 0.125 mm)	11	%	ALS	RG_MI5_SE-3_2018-10-10_1305
SE	MI5	659496	5496774	2018	3	2018-10-10	13:05	% Sand (0.125 mm - 0.063 mm)	5.4	%	ALS	RG_MI5_SE-3_2018-10-10_1305
SE	MI5	659496	5496774	2018	3	2018-10-10	13:05	% Silt (0.063 mm - 0.0312 mm)	33	%	ALS	RG_MI5_SE-3_2018-10-10_1305
SE SE	MI5	659496	5496774	2018	3	2018-10-10	13:05	% Silt (0.031 mm - 0.004 mm)	36	%	ALS	RG_MI5_SE-3_2018-10-10_1305
SE	MI5	659496	5496774	2018		2018-10-10	13:05	% Clay (<4 μm)	5.8	%	ALS	RG_MI5_SE-3_2018-10-10_1305
SE	MI5	659496	5496774	2018		2018-10-10	13:05	Texture	Silt loam	-	ALS	RG_MI5_SE-3_2018-10-10_1305
SE	MI5	659496	5496774	2018	+	2018-10-10	13:05	Mercury (Hg)	0.026	mg/kg	ALS	RG_MI5_SE-3_2018-10-10_1305
SE	MI5	659496	5496774	2018		2018-10-10	13:05	Aluminum (Al)	5,320	mg/kg	ALS	RG_MI5_SE-3_2018-10-10_1305
SE	MI5	659496	5496774	2018		2018-10-10	13:05	Antimony (Sb)	0.46	mg/kg	ALS	RG_MI5_SE-3_2018-10-10_1305
SE	MI5	659496	5496774	2018		2018-10-10	13:05	Arsenic (As)	4.8	mg/kg	ALS	RG_MI5_SE-3_2018-10-10_1305
SE	MI5	659496	5496774	2018		2018-10-10	13:05	Barium (Ba)	188	mg/kg	ALS	RG_MI5_SE-3_2018-10-10_1305
SE	MI5	659496	5496774	2018		2018-10-10	13:05	Beryllium (Be)	0.44	mg/kg	ALS	RG_MI5_SE-3_2018-10-10_1305
SE	MI5	659496	5496774	2018		2018-10-10	13:05	Bismuth (Bi)	<0.20	mg/kg	ALS	RG_MI5_SE-3_2018-10-10_1305
SE	MI5	659496	5496774	2018	3	2018-10-10	13:05	Boron (B)	6.5	mg/kg	ALS	RG_MI5_SE-3_2018-10-10_1305
SE	MI5	659496	5496774	2018	3	2018-10-10	13:05	Cadmium (Cd)	1.5	mg/kg	ALS	RG_MI5_SE-3_2018-10-10_1305
SE	MI5	659496	5496774	2018	3	2018-10-10	13:05	Calcium (Ca)	48,500	mg/kg	ALS	RG_MI5_SE-3_2018-10-10_1305
SE	MI5	659496	5496774	2018	3	2018-10-10	13:05	Chromium (Cr)	11	mg/kg	ALS	RG_MI5_SE-3_2018-10-10_1305
SE	MI5	659496	5496774	2018	3	2018-10-10	13:05	Cobalt (Co)	11	mg/kg	ALS	RG_MI5_SE-3_2018-10-10_1305
SE	MI5	659496	5496774	2018	3	2018-10-10	13:05	Copper (Cu)	11	mg/kg	ALS	RG_MI5_SE-3_2018-10-10_1305
SE	MI5	659496	5496774	2018	3	2018-10-10	13:05	Iron (Fe)	11,400	mg/kg	ALS	RG_MI5_SE-3_2018-10-10_1305
E	MI5	659496	5496774	2018	3	2018-10-10	13:05	Lead (Pb)	7.5	mg/kg	ALS	RG_MI5_SE-3_2018-10-10_1305
SE.	MI5	659496	5496774	2018	3	2018-10-10	13:05	Lithium (Li)	5.5	mg/kg	ALS	RG_MI5_SE-3_2018-10-10_1305
SE.	MI5	659496	5496774	2018		2018-10-10	13:05	Magnesium (Mg)	4,610	mg/kg	ALS	RG_MI5_SE-3_2018-10-10_1305
SE	MI5	659496	5496774	2018	3	2018-10-10	13:05	Manganese (Mn)	218	mg/kg	ALS	RG MI5 SE-3 2018-10-10 1305

WSP Canada Inc. Page 22 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

able I-	1: Sediment Chem			CMm LAEMP	Sampling St	ations, 2012 to	2022					
Туре	Station		(UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
		Easting	Northing								Lab	Sample ID
SE	MI5	659496	5496774	2018	3	2018-10-10	13:05	Molybdenum (Mo)	0.93	mg/kg	ALS	RG_MI5_SE-3_2018-10-10_1305
SE	MI5	659496	5496774	2018	3	2018-10-10	13:05	Nickel (Ni)	36	mg/kg	ALS	RG_MI5_SE-3_2018-10-10_1305
SE	MI5	659496	5496774	2018	3	2018-10-10	13:05	Phosphorus (P)	1,130	mg/kg	ALS	RG_MI5_SE-3_2018-10-10_1305
SE	MI5	659496	5496774	2018	3	2018-10-10	13:05	Potassium (K)	910	mg/kg	ALS	RG_MI5_SE-3_2018-10-10_1305
SE	MI5	659496	5496774	2018	3	2018-10-10	13:05	Selenium (Se)	2.5	mg/kg	ALS	RG_MI5_SE-3_2018-10-10_1305
SE	MI5	659496	5496774	2018	3	2018-10-10	13:05	Silver (Ag)	0.16	mg/kg	ALS	RG_MI5_SE-3_2018-10-10_1305
SE	MI5	659496	5496774	2018	3	2018-10-10	13:05	Sodium (Na)	103	mg/kg	ALS	RG_MI5_SE-3_2018-10-10_1305
SE	MI5	659496	5496774	2018	3	2018-10-10	13:05	Strontium (Sr)	80	mg/kg	ALS	RG_MI5_SE-3_2018-10-10_1305
SE	MI5	659496	5496774	2018	3	2018-10-10	13:05	Sulfur (S)	<1000	mg/kg	ALS	RG_MI5_SE-3_2018-10-10_1305
SE	MI5	659496	5496774	2018	3	2018-10-10	13:05	Thallium (TI)	0.19	mg/kg	ALS	RG_MI5_SE-3_2018-10-10_1305
SE	MI5	659496	5496774	2018	3	2018-10-10	13:05	Tin (Sn)	<2.0	mg/kg	ALS	RG_MI5_SE-3_2018-10-10_1305
SE	MI5	659496	5496774	2018	3	2018-10-10	13:05	Titanium (Ti)	15	mg/kg	ALS	RG_MI5_SE-3_2018-10-10_1305
SE	MI5	659496	5496774	2018	3	2018-10-10	13:05	Tungsten (W)	<0.50	mg/kg	ALS	RG_MI5_SE-3_2018-10-10_1305
SE	MI5	659496	5496774	2018	3	2018-10-10	13:05	Uranium (U)	0.91	mg/kg	ALS	RG_MI5_SE-3_2018-10-10_1305
SE	MI5	659496	5496774	2018	3	2018-10-10	13:05	Vanadium (V)	21	mg/kg	ALS	RG_MI5_SE-3_2018-10-10_1305
SE	MI5	659496	5496774	2018	3	2018-10-10	13:05	Zinc (Zn)	99	mg/kg	ALS	RG_MI5_SE-3_2018-10-10_1305
SE	MI5	659496	5496774	2018	3	2018-10-10	13:05	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_MI5_SE-3_2018-10-10_1305
SE	MI5	659496	5496774	2018	3	2018-10-10	13:05	pH (1:2 soil:water)	7.8	pН	ALS	RG MI5 SE-3 2018-10-10 1305
SE	MI5	659496	5496774	2018	3	2018-10-10	13:05	Total Organic Carbon	5.7	%	ALS	RG MI5 SE-3 2018-10-10 1305
SE	MI5	659496	5496774	2018	4	2018-10-10	13:15	Moisture	92	%	ALS	RG MI5 SE-4 2018-10-10 1315
SE	MI5	659496	5496774	2018	4	2018-10-10	13:15	Acenaphthene	<0.028	mg/kg	ALS	RG MI5 SE-4 2018-10-10 1315
SE	MI5	659496	5496774	2018	4	2018-10-10	13:15	Acenaphthylene	<0.028	mg/kg	ALS	RG MI5 SE-4 2018-10-10 1315
SE	MI5	659496	5496774	2018	4	2018-10-10	13:15	Acridine	<0.055	mg/kg	ALS	RG_MI5_SE-4_2018-10-10_1315
SE	MI5	659496	5496774	2018	4	2018-10-10	13:15	Anthracene	<0.022	mg/kg	ALS	RG MI5 SE-4 2018-10-10 1315
SE	MI5	659496	5496774	2018	4	2018-10-10	13:15	Benz(a)anthracene	<0.055	mg/kg	ALS	RG MI5 SE-4 2018-10-10 1315
SE	MI5	659496	5496774	2018	4	2018-10-10	13:15	Benzo(a)pyrene	<0.055	mg/kg	ALS	RG MI5 SE-4 2018-10-10 1315
SE	MI5	659496	5496774	2018	4	2018-10-10	13:15	Benzo(b&j)fluoranthene	<0.055	mg/kg	ALS	RG_MI5_SE-4_2018-10-10_1315
SE	MI5	659496	5496774	2018	4	2018-10-10	13:15	Benzo(g_h_i)perylene	<0.055	mg/kg	ALS	RG MI5 SE-4 2018-10-10 1315
SE	MI5	659496	5496774	2018	4	2018-10-10	13:15	Benzo(k)fluoranthene	<0.055	mg/kg	ALS	RG MI5 SE-4 2018-10-10 1315
SE	MI5	659496	5496774	2018	4	2018-10-10	13:15	Benzo(e)pyrene	<0.055	mg/kg	ALS	RG MI5 SE-4 2018-10-10 1315
SE	MI5	659496	5496774	2018	4	2018-10-10	13:15	Chrysene	0.056	mg/kg		RG MI5 SE-4 2018-10-10 1315
SE	MI5	659496	5496774	2018	4	2018-10-10	13:15	Dibenz(a h)anthracene	<0.028	mg/kg	ALS	RG MI5 SE-4 2018-10-10 1315
SE	MI5	659496	5496774	2018	4	2018-10-10	13:15	Fluoranthene	<0.055	mg/kg	ALS	RG MI5 SE-4 2018-10-10 1315
SE	MI5	659496	5496774	2018	4	2018-10-10	13:15	Fluorene	<0.055	mg/kg	ALS	RG MI5 SE-4 2018-10-10 1315
SE	MI5	659496	5496774	2018	4	2018-10-10	13:15	Indeno(1,2,3-c,d)pyrene	<0.055	mg/kg	ALS	RG MI5 SE-4 2018-10-10 1315
SE	MI5	659496	5496774	2018	4	2018-10-10	13:15	1-Methylnaphthalene	0.11	mg/kg		RG MI5 SE-4 2018-10-10 1315
SE	MI5	659496	5496774	2018	4	2018-10-10	13:15	2-Methylnaphthalene	0.16	mg/kg	ALS	RG MI5 SE-4 2018-10-10 1315
SE	MI5	659496	5496774	2018	- Δ	2018-10-10	13:15	Naphthalene	<0.055	mg/kg	ALS	RG MI5 SE-4 2018-10-10 1315
SE	MI5	659496	5496774	2018	4	2018-10-10	13:15	Perylene	<0.055	mg/kg	ALS	RG MI5 SE-4 2018-10-10 1315
SE	MI5	659496	5496774	2018	4	2018-10-10	13:15	Phenanthrene	0.055	mg/kg	ALS	RG MI5 SE-4 2018-10-10 1315
SE SE	MI5	659496	5496774	2018	1	2018-10-10	13:15	Pyrene	<0.055	mg/kg	ALS	RG MI5 SE-4 2018-10-10 1315
SE	MI5	659496	5496774	2018	4	2018-10-10	13:15	Quinoline	<0.055	mg/kg	ALS	RG_MI5_SE-4_2018-10-10_1315
SE SE	MI5	659496			4							
			5496774 5406774	2018	4	2018-10-10	13:15	IACR (CCME)	0.6	mg/kg	ALS	RG_MI5_SE-4_2018-10-10_1315
SE	MI5	659496	5496774	2018	4	2018-10-10	13:15	B(a)P Total Potency Equivalent	0.053	mg/kg	ALS	RG_MI5_SE-4_2018-10-10_1315
SE	MI5	659496	5496774	2018	4	2018-10-10	13:15	d8-Naphthalene	65	%	ALS	RG_MI5_SE-4_2018-10-10_1315
SE	MI5	659496	5496774	2018	4	2018-10-10	13:15	d10-Acenaphthene	67	%	ALS	RG_MI5_SE-4_2018-10-10_1315
SE	MI5	659496	5496774	2018	4	2018-10-10	13:15	d10-Phenanthrene	84	%	ALS	RG_MI5_SE-4_2018-10-10_1315

WSP Canada Inc. Page 23 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

			ected from the	OWNII EALWII	Jumping Ct	1						
Туре	Station		(UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
		Easting	Northing				12.1-		2-	24	Lab	Sample ID
SE	MI5	659496	5496774	2018	4	2018-10-10	13:15	d12-Chrysene	87	%	ALS	RG_MI5_SE-4_2018-10-10_1315
SE	MI5	659496	5496774	2018	4	2018-10-10	13:15	% Gravel (>2 mm)	29	%	ALS	RG_MI5_SE-4_2018-10-10_1315
SE	MI5	659496	5496774	2018	4	2018-10-10	13:15	% Sand (2.00 mm - 1.00 mm)	17	%	ALS	RG_MI5_SE-4_2018-10-10_1315
SE	MI5	659496	5496774	2018	4	2018-10-10	13:15	% Sand (1.00 mm - 0.50 mm)	19	%	ALS	RG_MI5_SE-4_2018-10-10_1315
SE	MI5	659496	5496774	2018	4	2018-10-10	13:15	% Sand (0.50 mm - 0.25 mm)	7.3	%	ALS	RG_MI5_SE-4_2018-10-10_1315
SE	MI5	659496	5496774	2018	4	2018-10-10	13:15	% Sand (0.25 mm - 0.125 mm)	2.8	%	ALS	RG_MI5_SE-4_2018-10-10_1315
SE	MI5	659496	5496774	2018	4	2018-10-10	13:15	% Sand (0.125 mm - 0.063 mm)	2.0	%	ALS	RG_MI5_SE-4_2018-10-10_1315
SE	MI5	659496	5496774	2018	4	2018-10-10	13:15	% Silt (0.063 mm - 0.0312 mm)	10	%	ALS	RG_MI5_SE-4_2018-10-10_1315
SE	MI5	659496	5496774	2018	4	2018-10-10	13:15	% Silt (0.031 mm - 0.004 mm)	11	%	ALS	RG_MI5_SE-4_2018-10-10_1315
SE	MI5	659496	5496774	2018	4	2018-10-10	13:15	% Clay (<4 μm)	1.7	%	ALS	RG_MI5_SE-4_2018-10-10_1315
SE	MI5	659496	5496774	2018	4	2018-10-10	13:15	Texture	Sandy loam	-	ALS	RG_MI5_SE-4_2018-10-10_1315
SE	MI5	659496	5496774	2018	4	2018-10-10	13:15	Mercury (Hg)	0.021	mg/kg	ALS	RG_MI5_SE-4_2018-10-10_1315
SE	MI5	659496	5496774	2018	4	2018-10-10	13:15	Aluminum (Al)	3,670	mg/kg	ALS	RG_MI5_SE-4_2018-10-10_1315
SE	MI5	659496	5496774	2018	4	2018-10-10	13:15	Antimony (Sb)	0.39	mg/kg	ALS	RG_MI5_SE-4_2018-10-10_1315
SE	MI5	659496	5496774	2018	4	2018-10-10	13:15	Arsenic (As)	3.3	mg/kg	ALS	RG_MI5_SE-4_2018-10-10_1315
SE	MI5	659496	5496774	2018	4	2018-10-10	13:15	Barium (Ba)	219	mg/kg	ALS	RG_MI5_SE-4_2018-10-10_1315
SE	MI5	659496	5496774	2018	4	2018-10-10	13:15	Beryllium (Be)	0.33	mg/kg	ALS	RG_MI5_SE-4_2018-10-10_1315
SE	MI5	659496	5496774	2018	4	2018-10-10	13:15	Bismuth (Bi)	<0.20	mg/kg	ALS	RG_MI5_SE-4_2018-10-10_1315
SE	MI5	659496	5496774	2018	4	2018-10-10	13:15	Boron (B)	11	mg/kg	ALS	RG_MI5_SE-4_2018-10-10_1315
SE	MI5	659496	5496774	2018	4	2018-10-10	13:15	Cadmium (Cd)	1.4	mg/kg	ALS	RG_MI5_SE-4_2018-10-10_1315
SE	MI5	659496	5496774	2018	4	2018-10-10	13:15	Calcium (Ca)	112,000	mg/kg	ALS	RG MI5 SE-4 2018-10-10 1315
SE	MI5	659496	5496774	2018	4	2018-10-10	13:15	Chromium (Cr)	6.6	mg/kg	ALS	RG MI5 SE-4 2018-10-10 1315
SE	MI5	659496	5496774	2018	4	2018-10-10	13:15	Cobalt (Co)	11	mg/kg	ALS	RG_MI5_SE-4_2018-10-10_1315
SE	MI5	659496	5496774	2018	4	2018-10-10	13:15	Copper (Cu)	6.9	mg/kg	ALS	RG MI5 SE-4 2018-10-10 1315
SE	MI5	659496	5496774	2018	4	2018-10-10	13:15	Iron (Fe)	7,600	mg/kg	ALS	RG MI5 SE-4 2018-10-10 1315
SE	MI5	659496	5496774	2018	4	2018-10-10	13:15	Lead (Pb)	5.0	mg/kg	ALS	RG_MI5_SE-4_2018-10-10_1315
SE	MI5	659496	5496774	2018	4	2018-10-10	13:15	Lithium (Li)	3.7	mg/kg	ALS	RG MI5 SE-4 2018-10-10 1315
SE	MI5	659496	5496774	2018	4	2018-10-10	13:15	Magnesium (Mg)	3,910	mg/kg	ALS	RG MI5 SE-4 2018-10-10 1315
SE	MI5	659496	5496774	2018	4	2018-10-10	13:15	Manganese (Mn)	258	mg/kg	ALS	RG MI5 SE-4 2018-10-10 1315
SE	MI5	659496	5496774	2018	4	2018-10-10	13:15	Molybdenum (Mo)	0.77	mg/kg	ALS	RG MI5 SE-4 2018-10-10 1315
SE	MI5	659496	5496774	2018	4	2018-10-10	13:15	Nickel (Ni)	32	mg/kg	ALS	RG MI5 SE-4 2018-10-10 1315
SE	MI5	659496	5496774	2018	4	2018-10-10	13:15	Phosphorus (P)	998	mg/kg	ALS	RG MI5 SE-4 2018-10-10 1315
SE	MI5	659496	5496774	2018	4	2018-10-10	13:15	Potassium (K)	830	mg/kg	ALS	RG MI5 SE-4 2018-10-10 1315
SE	MI5	659496	5496774	2018	4	2018-10-10	13:15	Selenium (Se)	2.8	mg/kg	ALS	RG MI5 SE-4 2018-10-10 1315
SE	MI5	659496	5496774	2018	4	2018-10-10	13:15	Silver (Ag)	<0.10	mg/kg	ALS	RG MI5 SE-4 2018-10-10 1315
SE	MI5	659496	5496774	2018	4	2018-10-10	13:15	Sodium (Na)	108	mg/kg	ALS	RG MI5 SE-4 2018-10-10 1315
SE	MI5	659496	5496774	2018	4	2018-10-10	13:15	Strontium (Sr)	143	mg/kg	ALS	RG MI5 SE-4 2018-10-10 1315
SE	MI5	659496	5496774	2018	4	2018-10-10	13:15	Sulfur (S)	1,400	mg/kg	ALS	RG MI5 SE-4 2018-10-10 1315
SE	MI5	659496	5496774	2018	4	2018-10-10	13:15	Thallium (TI)	0.15	mg/kg	ALS	RG MI5 SE-4 2018-10-10 1315
SE	MI5	659496	5496774	2018	4	2018-10-10	13:15	Tin (Sn)	<2.0	mg/kg	ALS	RG MI5 SE-4 2018-10-10 1315
SE	MI5	659496	5496774	2018	4	2018-10-10	13:15	Titanium (Ti)	19	mg/kg	ALS	RG MI5 SE-4 2018-10-10 1315
SE	MI5	659496	5496774	2018	4	2018-10-10	13:15	Tungsten (W)	<0.50	mg/kg	ALS	RG_MI5_SE-4_2018-10-10_1315
SE	MI5	659496	5496774	2018	4	2018-10-10	13:15	Uranium (U)	0.76		ALS	RG MI5 SE-4 2018-10-10 1315
SE		659496			4					mg/kg		
SE	MI5		5496774	2018	4	2018-10-10	13:15	Vanadium (V)	16	mg/kg	ALS	RG_MI5_SE-4_2018-10-10_1315
○ □	MI5	659496 659496	5496774 5496774	2018 2018	4	2018-10-10 2018-10-10	13:15 13:15	Zinc (Zn) Zirconium (Zr)	73 <1.0	mg/kg mg/kg	ALS ALS	RG_MI5_SE-4_2018-10-10_1315 RG_MI5_SE-4_2018-10-10_1315
SE	MI5						14.16	1711733111171 1771	· ~111	rna/ka		18: NUS SE / 7018 10 10 1315

WSP Canada Inc. Page 24 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	Ctation	Location	ı (UTMs) ^(a)	Veen	Danliante	Doto	Time	Analuta	Beaut	Hode		Laboratory Information
ype	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MI5	659496	5496774	2018	4	2018-10-10	13:15	Total Organic Carbon	3.4	%	ALS	RG MI5 SE-4 2018-10-10 1315
SE.	MI5	659496	5496774	2018		2018-10-10	14:00	Moisture	80	%	ALS	RG_MI5_SE-5_2018-10-10_1400
E SE	MI5	659496	5496774	2018	5	2018-10-10	14:00	Acenaphthene	<0.012	mg/kg	ALS	RG MI5 SE-5 2018-10-10 1400
SE.	MI5	659496	5496774	2018	5	2018-10-10	14:00	Acenaphthylene	<0.012	mg/kg	ALS	RG MI5 SE-5 2018-10-10 1400
SE	MI5	659496	5496774	2018	5	2018-10-10	14:00	Acridine	<0.024	mg/kg	ALS	RG MI5 SE-5 2018-10-10 1400
SE	MI5	659496	5496774	2018		2018-10-10	14:00	Anthracene	<0.0096	mg/kg	ALS	RG MI5 SE-5 2018-10-10 1400
SE	MI5	659496	5496774	2018	5	2018-10-10	14:00	Benz(a)anthracene	<0.024	mg/kg	ALS	RG MI5 SE-5 2018-10-10 1400
SE	MI5	659496	5496774	2018	5	2018-10-10	14:00	Benzo(a)pyrene	<0.024	mg/kg	ALS	RG MI5 SE-5 2018-10-10 1400
SE	MI5	659496	5496774	2018	5	2018-10-10	14:00	Benzo(b&j)fluoranthene	0.033	mg/kg	ALS	RG MI5 SE-5 2018-10-10 1400
SE	MI5	659496	5496774	2018		2018-10-10	14:00	Benzo(g_h_i)perylene	<0.024	mg/kg	ALS	RG MI5 SE-5 2018-10-10 1400
SE	MI5	659496	5496774	2018	5	2018-10-10	14:00	Benzo(k)fluoranthene	<0.024	mg/kg	ALS	RG MI5 SE-5 2018-10-10 1400
SE	MI5	659496	5496774	2018	<u> </u>	2018-10-10	14:00	Benzo(e)pyrene	0.032	mg/kg	ALS	RG MI5 SE-5 2018-10-10 1400
SE	MI5	659496	5496774	2018		2018-10-10	14:00	Chrysene	0.051	mg/kg	ALS	RG MI5 SE-5 2018-10-10 1400
SE	MI5	659496	5496774	2018		2018-10-10	14:00	Dibenz(a h)anthracene	<0.012	mg/kg	ALS	RG MI5 SE-5 2018-10-10 1400
SE	MI5	659496	5496774	2018	5	2018-10-10	14:00	Fluoranthene	<0.024	mg/kg	ALS	RG MI5 SE-5 2018-10-10 1400
SE	MI5	659496	5496774	2018		2018-10-10	14:00	Fluorene	<0.024	mg/kg	ALS	RG MI5 SE-5 2018-10-10 1400
SE	MI5	659496	5496774	2018	5	2018-10-10	14:00	Indeno(1,2,3-c,d)pyrene	<0.024	mg/kg	ALS	RG MI5 SE-5 2018-10-10_1400
SE	MI5	659496	5496774	2018	5	2018-10-10	14:00	1-Methylnaphthalene	0.09	mg/kg	ALS	RG MI5 SE-5 2018-10-10 1400
SE	MI5	659496	5496774	2018	5	2018-10-10	14:00	2-Methylnaphthalene	0.09	mg/kg	ALS	RG MI5 SE-5 2018-10-10 1400
SE	MI5	659496	5496774	2018		2018-10-10	14:00	Naphthalene	0.042	mg/kg	ALS	RG MI5 SE-5 2018-10-10 1400
SE	MI5	659496	5496774	2018	5	2018-10-10	14:00	Perylene	<0.024	mg/kg	ALS	RG MI5 SE-5 2018-10-10 1400
SE	MI5	659496	5496774	2018		2018-10-10	14:00	Phenanthrene	0.13		ALS	RG MI5 SE-5 2018-10-10 1400
SE SE	MI5	659496	5496774	2018	5	2018-10-10	14:00		<0.024	mg/kg	ALS	
SE	MI5		+				14:00	Pyrene Quinoline		mg/kg	ALS	RG_MI5_SE-5_2018-10-10_1400
		659496	5496774	2018		2018-10-10			<0.024	mg/kg		RG_MI5_SE-5_2018-10-10_1400
SE	MI5	659496	5496774	2018	5	2018-10-10	14:00	IACR (CCME)	0.41	mg/kg	ALS	RG_MI5_SE-5_2018-10-10_1400
SE	MI5	659496	5496774	2018	5	2018-10-10	14:00	B(a)P Total Potency Equivalent	0.026	mg/kg	ALS	RG_MI5_SE-5_2018-10-10_1400
SE	MI5	659496	5496774	2018	5	2018-10-10	14:00	d8-Naphthalene	65	%	ALS	RG_MI5_SE-5_2018-10-10_1400
SE	MI5	659496	5496774	2018		2018-10-10	14:00	d10-Acenaphthene	69	%	ALS	RG_MI5_SE-5_2018-10-10_1400
SE	MI5	659496	5496774	2018		2018-10-10	14:00	d10-Phenanthrene	92	%	ALS	RG_MI5_SE-5_2018-10-10_1400
SE	MI5	659496	5496774	2018	†	2018-10-10	14:00	d12-Chrysene	99	%	ALS	RG_MI5_SE-5_2018-10-10_1400
SE	MI5	659496	5496774	2018		2018-10-10	14:00	% Gravel (>2 mm)	3.7	%		RG_MI5_SE-5_2018-10-10_1400
SE	MI5	659496	5496774	2018		2018-10-10	14:00	% Sand (2.00 mm - 1.00 mm)	12	%	ALS	RG_MI5_SE-5_2018-10-10_1400
SE	MI5	659496	5496774	2018		2018-10-10	14:00	% Sand (1.00 mm - 0.50 mm)	13	%	ALS	RG_MI5_SE-5_2018-10-10_1400
SE	MI5	659496	5496774	2018		2018-10-10	14:00	% Sand (0.50 mm - 0.25 mm)	8.7	%	ALS	RG_MI5_SE-5_2018-10-10_1400
SE	MI5	659496	5496774	2018		2018-10-10	14:00	% Sand (0.25 mm - 0.125 mm)	4.4	%	ALS	RG_MI5_SE-5_2018-10-10_1400
SE	MI5	659496	5496774	2018		2018-10-10	14:00	% Sand (0.125 mm - 0.063 mm)	4.4	%	ALS	RG_MI5_SE-5_2018-10-10_1400
SE	MI5	659496	5496774	2018		2018-10-10	14:00	% Silt (0.063 mm - 0.0312 mm)	25	%	ALS	RG_MI5_SE-5_2018-10-10_1400
SE	MI5	659496	5496774	2018		2018-10-10	14:00	% Silt (0.031 mm - 0.004 mm)	25	%	ALS	RG_MI5_SE-5_2018-10-10_1400
SE	MI5	659496	5496774	2018		2018-10-10	14:00	% Clay (<4 μm)	3.9	%	ALS	RG_MI5_SE-5_2018-10-10_1400
SE	MI5	659496	5496774	2018		2018-10-10	14:00	Texture	Silt loam	-	ALS	RG_MI5_SE-5_2018-10-10_1400
SE	MI5	659496	5496774	2018		2018-10-10	14:00	Mercury (Hg)	0.029	mg/kg	ALS	RG_MI5_SE-5_2018-10-10_1400
SE	MI5	659496	5496774	2018	5	2018-10-10	14:00	Aluminum (Al)	5,730	mg/kg	ALS	RG_MI5_SE-5_2018-10-10_1400
SE	MI5	659496	5496774	2018	5	2018-10-10	14:00	Antimony (Sb)	0.51	mg/kg	ALS	RG_MI5_SE-5_2018-10-10_1400
SE	MI5	659496	5496774	2018	5	2018-10-10	14:00	Arsenic (As)	4.8	mg/kg	ALS	RG_MI5_SE-5_2018-10-10_1400
SE	MI5	659496	5496774	2018	5	2018-10-10	14:00	Barium (Ba)	195	mg/kg	ALS	RG_MI5_SE-5_2018-10-10_1400
SE	MI5	659496	5496774	2018	5	2018-10-10	14:00	Beryllium (Be)	0.47	mg/kg	ALS	RG_MI5_SE-5_2018-10-10_1400
SE	MI5	659496	5496774	2018	5	2018-10-10	14:00	Bismuth (Bi)	<0.20	mg/kg	ALS	RG MI5 SE-5 2018-10-10 1400

WSP Canada Inc. Page 25 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

'vno	Station	Location	(UTMs) ^(a)	Year	Poplieste	Date	Time	Apolyte	Popult	Unit		Laboratory Information
ype	Station	Easting	Northing	rear	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MI5	659496	5496774	2018	5	2018-10-10	14:00	Boron (B)	9.6	mg/kg	ALS	RG MI5 SE-5 2018-10-10 1400
SE	MI5	659496	5496774	2018	5	2018-10-10	14:00	Cadmium (Cd)	1.6	mg/kg	ALS	RG_MI5_SE-5_2018-10-10_1400
SE	MI5	659496	5496774	2018	5	2018-10-10	14:00	Calcium (Ca)	74,100	mg/kg	ALS	RG_MI5_SE-5_2018-10-10_1400
SE	MI5	659496	5496774	2018	5	2018-10-10	14:00	Chromium (Cr)	10	mg/kg	ALS	RG_MI5_SE-5_2018-10-10_1400
SE	MI5	659496	5496774	2018	5	2018-10-10	14:00	Cobalt (Co)	11	mg/kg	ALS	RG_MI5_SE-5_2018-10-10_1400
SE	MI5	659496	5496774	2018	5	2018-10-10	14:00	Copper (Cu)	9.9	mg/kg	ALS	RG MI5 SE-5 2018-10-10 1400
SE	MI5	659496	5496774	2018	5	2018-10-10	14:00	Iron (Fe)	11,900	mg/kg	ALS	RG MI5 SE-5 2018-10-10 1400
SE	MI5	659496	5496774	2018	5	2018-10-10	14:00	Lead (Pb)	7.9	mg/kg	ALS	RG_MI5_SE-5_2018-10-10_1400
SE	MI5	659496	5496774	2018	5	2018-10-10	14:00	Lithium (Li)	5.7	mg/kg	ALS	RG_MI5_SE-5_2018-10-10_1400
SE	MI5	659496	5496774	2018	5	2018-10-10	14:00	Magnesium (Mg)	4,260	mg/kg	ALS	RG MI5 SE-5 2018-10-10 1400
SE.	MI5	659496	5496774	2018	5	2018-10-10	14:00	Manganese (Mn)	227	mg/kg	ALS	RG_MI5_SE-5_2018-10-10_1400
SE.	MI5	659496	5496774	2018	5	2018-10-10	14:00	Molybdenum (Mo)	0.98	mg/kg	ALS	RG_MI5_SE-5_2018-10-10_1400
SE	MI5	659496	5496774	2018	5	2018-10-10	14:00	Nickel (Ni)	34	mg/kg	ALS	RG MI5 SE-5 2018-10-10 1400
SE	MI5	659496	5496774	2018	5	2018-10-10	14:00	Phosphorus (P)	1,270	mg/kg	ALS	RG_MI5_SE-5_2018-10-10_1400
SE	MI5	659496	5496774	2018	5	2018-10-10	14:00	Potassium (K)	1,220	mg/kg	ALS	RG MI5 SE-5 2018-10-10 1400
SE.	MI5	659496	5496774	2018	5	2018-10-10	14:00	Selenium (Se)	3.4	mg/kg	ALS	RG MI5 SE-5 2018-10-10 1400
SE	MI5	659496	5496774	2018	5	2018-10-10	14:00	Silver (Ag)	0.14	mg/kg	ALS	RG MI5 SE-5 2018-10-10 1400
SE	MI5	659496	5496774	2018	5	2018-10-10	14:00	Sodium (Na)	145	mg/kg	ALS	RG MI5 SE-5 2018-10-10 1400
SE	MI5	659496	5496774	2018	5	2018-10-10	14:00	Strontium (Sr)	105	mg/kg	ALS	RG_MI5_SE-5_2018-10-10_1400
E	MI5	659496	5496774	2018	5	2018-10-10	14:00	Sulfur (S)	1,200	mg/kg	ALS	RG MI5 SE-5 2018-10-10 1400
Ε	MI5	659496	5496774	2018	5	2018-10-10	14:00	Thallium (TI)	0.2	mg/kg	ALS	RG MI5 SE-5 2018-10-10 1400
SE.	MI5	659496	5496774	2018	5	2018-10-10	14:00	Tin (Sn)	<2.0	mg/kg	ALS	RG_MI5_SE-5_2018-10-10_1400
SE.	MI5	659496	5496774	2018	5	2018-10-10	14:00	Titanium (Ti)	25	mg/kg	ALS	RG MI5 SE-5 2018-10-10 1400
SE	MI5	659496	5496774	2018	5	2018-10-10	14:00	Tungsten (W)	<0.50	mg/kg	ALS	RG_MI5_SE-5_2018-10-10_1400
SE	MI5	659496	5496774	2018	5	2018-10-10	14:00	Uranium (U)	0.95	mg/kg	ALS	RG MI5 SE-5 2018-10-10 1400
SE	MI5	659496	5496774	2018	5	2018-10-10	14:00	Vanadium (V)	25	mg/kg	ALS	RG MI5 SE-5 2018-10-10 1400
SE	MI5	659496	5496774	2018	5	2018-10-10	14:00	Zinc (Zn)	101	mg/kg	ALS	RG_MI5_SE-5_2018-10-10_1400
SE	MI5	659496	5496774	2018	5	2018-10-10	14:00	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_MI5_SE-5_2018-10-10_1400
SE	MI5	659496	5496774	2018	5	2018-10-10	14:00	pH (1:2 soil:water)	8.1	pН	ALS	RG MI5 SE-5 2018-10-10 1400
SE	MI5	659496	5496774	2018	5	2018-10-10	14:00	Total Organic Carbon	4.5	%	ALS	RG MI5 SE-5 2018-10-10 1400
SE	MIUCO	668135	5486767	2018	1	2018-10-10	18:15	Moisture	89	%	ALS	RG_MIUCO_SE-1_2018-10-10_1815
SE	MIUCO	668135	5486767	2018	1	2018-10-10	18:15	Acenaphthene	<0.020	mg/kg	ALS	RG MIUCO SE-1 2018-10-10 1815
SE	MIUCO	668135	5486767	2018	1	2018-10-10	18:15	Acenaphthylene	<0.020	mg/kg	ALS	RG MIUCO SE-1 2018-10-10 1815
SE	MIUCO	668135	5486767	2018	1	2018-10-10	18:15	Acridine	<0.040	mg/kg	ALS	RG MIUCO SE-1 2018-10-10 1815
SE	MIUCO	668135	5486767	2018	1	2018-10-10	18:15	Anthracene	<0.016	mg/kg	ALS	RG MIUCO SE-1 2018-10-10 1815
SE	MIUCO	668135	5486767	2018	1	2018-10-10	18:15	Benz(a)anthracene	<0.040	mg/kg	ALS	RG MIUCO SE-1 2018-10-10 1815
SE	MIUCO	668135	5486767	2018	1	2018-10-10	18:15	Benzo(a)pyrene	<0.040	mg/kg	ALS	RG MIUCO SE-1 2018-10-10 1815
SE	MIUCO	668135	5486767	2018	1	2018-10-10	18:15	Benzo(b&j)fluoranthene	<0.040	mg/kg	ALS	RG MIUCO SE-1 2018-10-10 1815
SE	MIUCO	668135	5486767	2018	1	2018-10-10	18:15	Benzo(g_h_i)perylene	<0.040	mg/kg	ALS	RG MIUCO SE-1 2018-10-10 1815
SE.	MIUCO	668135	5486767	2018	1	2018-10-10	18:15	Benzo(k)fluoranthene	<0.040	mg/kg	ALS	RG MIUCO SE-1 2018-10-10 1815
SE	MIUCO	668135	5486767	2018	1	2018-10-10	18:15	Benzo(e)pyrene	<0.040	mg/kg	ALS	RG MIUCO SE-1 2018-10-10 1815
SE	MIUCO	668135	5486767	2018	1	2018-10-10	18:15	Chrysene	0.042	mg/kg	ALS	RG MIUCO SE-1 2018-10-10 1815
SE	MIUCO	668135	5486767	2018	1	2018-10-10	18:15	Dibenz(a h)anthracene	<0.020	mg/kg	ALS	RG MIUCO SE-1 2018-10-10 1815
SE	MIUCO	668135	5486767	2018	1	2018-10-10	18:15	Fluoranthene	<0.040	mg/kg	ALS	RG MIUCO SE-1 2018-10-10 1815
SE.	MIUCO	668135	5486767	2018	1	2018-10-10	18:15	Fluorene	<0.040	mg/kg	ALS	RG MIUCO SE-1 2018-10-10 1815
			5486767	2018	1	2018-10-10	18:15	Indeno(1,2,3-c,d)pyrene	<0.040	mg/kg	ALS	RG MIUCO SE-1 2018-10-10 1815
SE	MIUCO	668135	3400707	2010		2010-10-10	10.15	ue 0(,2,3-c.u bv e e	~U.U 4 U	IIIu/ku	I ALO	ING MICCO SET ZOTOTIO TOTO

WSP Canada Inc. Page 26 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Type	Station	Location	ı (UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
Type	Station	Easting	Northing	rear	Replicate	Date	rime	Analyte	Result	Unit	Lab	Sample ID
SE	MIUCO	668135	5486767	2018	1	2018-10-10	18:15	2-Methylnaphthalene	0.097	mg/kg	ALS	RG_MIUCO_SE-1_2018-10-10_1815
SE	MIUCO	668135	5486767	2018	1	2018-10-10	18:15	Naphthalene	0.041	mg/kg	ALS	RG_MIUCO_SE-1_2018-10-10_1815
SE	MIUCO	668135	5486767	2018	1	2018-10-10	18:15	Perylene	<0.040	mg/kg	ALS	RG_MIUCO_SE-1_2018-10-10_1815
SE	MIUCO	668135	5486767	2018	1	2018-10-10	18:15	Phenanthrene	0.076	mg/kg	ALS	RG_MIUCO_SE-1_2018-10-10_1815
SE	MIUCO	668135	5486767	2018	1	2018-10-10	18:15	Pyrene	<0.040	mg/kg	ALS	RG_MIUCO_SE-1_2018-10-10_1815
SE	MIUCO	668135	5486767	2018	1	2018-10-10	18:15	Quinoline	<0.040	mg/kg	ALS	RG MIUCO SE-1 2018-10-10 1815
SE	MIUCO	668135	5486767	2018	1	2018-10-10	18:15	IACR (CCME)	0.44	mg/kg	ALS	RG_MIUCO_SE-1_2018-10-10_1815
SE	MIUCO	668135	5486767	2018	1	2018-10-10	18:15	B(a)P Total Potency Equivalent	0.039	mg/kg	ALS	RG_MIUCO_SE-1_2018-10-10_1815
SE	MIUCO	668135	5486767	2018	1	2018-10-10	18:15	d8-Naphthalene	64	%	ALS	RG_MIUCO_SE-1_2018-10-10_1815
SE	MIUCO	668135	5486767	2018	1	2018-10-10	18:15	d10-Acenaphthene	66	%	ALS	RG_MIUCO_SE-1_2018-10-10_1815
SE	MIUCO	668135	5486767	2018	1	2018-10-10	18:15	d10-Phenanthrene	86	%	ALS	RG_MIUCO_SE-1_2018-10-10_1815
SE	MIUCO	668135	5486767	2018	1	2018-10-10	18:15	d12-Chrysene	97	%	ALS	RG MIUCO SE-1 2018-10-10 1815
SE	MIUCO	668135	5486767	2018	1	2018-10-10	18:15	% Gravel (>2 mm)	13	%	ALS	RG_MIUCO_SE-1_2018-10-10_1815
SE	MIUCO	668135	5486767	2018	1	2018-10-10	18:15	% Sand (2.00 mm - 1.00 mm)	23	%	ALS	RG_MIUCO_SE-1_2018-10-10_1815
SE	MIUCO	668135	5486767	2018	1	2018-10-10	18:15	% Sand (1.00 mm - 0.50 mm)	17	%	ALS	RG_MIUCO_SE-1_2018-10-10_1815
SE	MIUCO	668135	5486767	2018	1	2018-10-10	18:15	% Sand (0.50 mm - 0.25 mm)	12	%	ALS	RG_MIUCO_SE-1_2018-10-10_1815
SE	MIUCO	668135	5486767	2018	1	2018-10-10	18:15	% Sand (0.25 mm - 0.125 mm)	6.0	%	ALS	RG_MIUCO_SE-1_2018-10-10_1815
SE	MIUCO	668135	5486767	2018	1	2018-10-10	18:15	% Sand (0.125 mm - 0.063 mm)	3.7	%	ALS	RG MIUCO SE-1 2018-10-10 1815
SE	MIUCO	668135	5486767	2018	1	2018-10-10	18:15	% Silt (0.063 mm - 0.0312 mm)	11	%	ALS	RG_MIUCO_SE-1_2018-10-10_1815
SE	MIUCO	668135	5486767	2018	1	2018-10-10	18:15	% Silt (0.031 mm - 0.004 mm)	12	%	ALS	RG_MIUCO_SE-1_2018-10-10_1815
SE	MIUCO	668135	5486767	2018	1	2018-10-10	18:15	% Clay (<4 μm)	2.1	%	ALS	RG_MIUCO_SE-1_2018-10-10_1815
SE	MIUCO	668135	5486767	2018	1	2018-10-10	18:15	Texture	Sandy loam	-	ALS	RG MIUCO SE-1 2018-10-10 1815
SE	MIUCO	668135	5486767	2018	1	2018-10-10	18:15	Mercury (Hg)	0.024	mg/kg	ALS	RG_MIUCO_SE-1_2018-10-10_1815
SE	MIUCO	668135	5486767	2018	1	2018-10-10	18:15	Aluminum (AI)	14,400	mg/kg	ALS	RG MIUCO SE-1 2018-10-10 1815
SE	MIUCO	668135	5486767	2018	1	2018-10-10	18:15	Antimony (Sb)	0.38	mg/kg	ALS	RG MIUCO SE-1 2018-10-10 1815
SE	MIUCO	668135	5486767	2018	1	2018-10-10	18:15	Arsenic (As)	8.1	mg/kg	ALS	RG MIUCO SE-1 2018-10-10 1815
SE	MIUCO	668135	5486767	2018	1	2018-10-10	18:15	Barium (Ba)	178	mg/kg	ALS	RG MIUCO SE-1 2018-10-10 1815
SE	MIUCO	668135	5486767	2018	1	2018-10-10	18:15	Beryllium (Be)	0.9	mg/kg	ALS	RG_MIUCO_SE-1_2018-10-10_1815
SE	MIUCO	668135	5486767	2018	1	2018-10-10	18:15	Bismuth (Bi)	0.21	mg/kg	ALS	RG_MIUCO_SE-1_2018-10-10_1815
SE	MIUCO	668135	5486767	2018	1	2018-10-10	18:15	Boron (B)	16	mg/kg	ALS	RG_MIUCO_SE-1_2018-10-10_1815
SE	MIUCO	668135	5486767	2018	1	2018-10-10	18:15	Cadmium (Cd)	0.87	mg/kg	ALS	RG_MIUCO_SE-1_2018-10-10_1815
SE	MIUCO	668135	5486767	2018	1	2018-10-10	18:15	Calcium (Ca)	18,100	mg/kg	ALS	RG MIUCO SE-1 2018-10-10 1815
SE	MIUCO	668135	5486767	2018	1	2018-10-10	18:15	Chromium (Cr)	19	mg/kg	ALS	RG_MIUCO_SE-1_2018-10-10_1815
SE	MIUCO	668135	5486767	2018	1	2018-10-10	18:15	Cobalt (Co)	7.5	mg/kg	ALS	RG_MIUCO_SE-1_2018-10-10_1815
SE	MIUCO	668135	5486767	2018	1	2018-10-10	18:15	Copper (Cu)	18	mg/kg	ALS	RG_MIUCO_SE-1_2018-10-10_1815
SE	MIUCO	668135	5486767	2018	1	2018-10-10	18:15	Iron (Fe)	21,900	mg/kg	ALS	RG_MIUCO_SE-1_2018-10-10_1815
SE	MIUCO	668135	5486767	2018	1	2018-10-10	18:15	Lead (Pb)	13	mg/kg	ALS	RG_MIUCO_SE-1_2018-10-10_1815
SE	MIUCO	668135	5486767	2018	1	2018-10-10	18:15	Lithium (Li)	19	mg/kg	ALS	RG_MIUCO_SE-1_2018-10-10_1815
SE	MIUCO	668135	5486767	2018	1	2018-10-10	18:15	Magnesium (Mg)	5,800	mg/kg	ALS	RG_MIUCO_SE-1_2018-10-10_1815
SE	MIUCO	668135	5486767	2018	1	2018-10-10	18:15	Manganese (Mn)	624	mg/kg	ALS	RG_MIUCO_SE-1_2018-10-10_1815
SE	MIUCO	668135	5486767	2018	1	2018-10-10	18:15	Molybdenum (Mo)	2.5	mg/kg	ALS	RG_MIUCO_SE-1_2018-10-10_1815
SE	MIUCO	668135	5486767	2018	1	2018-10-10	18:15	Nickel (Ni)	24	mg/kg	ALS	RG_MIUCO_SE-1_2018-10-10_1815
SE	MIUCO	668135	5486767	2018	1	2018-10-10	18:15	Phosphorus (P)	1,350	mg/kg	ALS	RG_MIUCO_SE-1_2018-10-10_1815
SE	MIUCO	668135	5486767	2018	1	2018-10-10	18:15	Potassium (K)	3,440	mg/kg	ALS	RG_MIUCO_SE-1_2018-10-10_1815
SE	MIUCO	668135	5486767	2018	1	2018-10-10	18:15	Selenium (Se)	0.92	mg/kg	ALS	RG MIUCO SE-1 2018-10-10 1815
SE	MIUCO	668135	5486767	2018	1	2018-10-10	18:15	Silver (Ag)	0.12	mg/kg	ALS	RG MIUCO SE-1 2018-10-10 1815
SE	MIUCO	668135	5486767	2018	1	2018-10-10	18:15	Sodium (Na)	94	mg/kg	ALS	RG MIUCO SE-1 2018-10-10 1815

WSP Canada Inc. Page 27 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

T	Ctation	Location	ı (UTMs) ^(a)	Voca	Donlingto	Doto	Time	Analysis	Door!!	LL _e t.		Laboratory Information
Type	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MIUCO	668135	5486767	2018	1	2018-10-10	18:15	Strontium (Sr)	43	mg/kg	ALS	RG MIUCO SE-1 2018-10-10 1815
SE	MIUCO	668135	5486767	2018	1	2018-10-10	18:15	Sulfur (S)	<1000	mg/kg	ALS	RG_MIUCO_SE-1_2018-10-10_1815
SE	MIUCO	668135	5486767	2018	1	2018-10-10	18:15	Thallium (TI)	0.42	mg/kg	ALS	RG MIUCO SE-1 2018-10-10 1815
SE	MIUCO	668135	5486767	2018	1	2018-10-10	18:15	Tin (Sn)	<2.0	mg/kg	ALS	RG MIUCO SE-1 2018-10-10 1815
SE	MIUCO	668135	5486767	2018	1	2018-10-10	18:15	Titanium (Ti)	13	mg/kg	ALS	RG_MIUCO_SE-1_2018-10-10_1815
SE	MIUCO	668135	5486767	2018	1	2018-10-10	18:15	Tungsten (W)	<0.50	mg/kg	ALS	RG MIUCO SE-1 2018-10-10 1815
SE	MIUCO	668135	5486767	2018	1	2018-10-10	18:15	Uranium (U)	0.75	mg/kg	ALS	RG MIUCO SE-1 2018-10-10 1815
SE	MIUCO	668135	5486767	2018	1	2018-10-10	18:15	Vanadium (V)	31	mg/kg	ALS	RG MIUCO SE-1 2018-10-10 1815
SE	MIUCO	668135	5486767	2018	1	2018-10-10	18:15	Zinc (Zn)	91	mg/kg	ALS	RG MIUCO SE-1 2018-10-10 1815
SE	MIUCO	668135	5486767	2018	1	2018-10-10	18:15	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_MIUCO_SE-1_2018-10-10_1815
SE	MIUCO	668135	5486767	2018	1	2018-10-10	18:15	pH (1:2 soil:water)	8.1	pН	ALS	RG MIUCO SE-1 2018-10-10 1815
SE	MIUCO	668135	5486767	2018	1	2018-10-10	18:15	Total Organic Carbon	1.1	%	ALS	RG MIUCO SE-1 2018-10-10 1815
SE	MIUCO	668135	5486767	2018	2	2018-10-10	18:30	Moisture	81	%	ALS	RG MIUCO SE-2 2018-10-10 1830
SE	MIUCO	668135	5486767	2018	2	2018-10-10	18:30	Acenaphthene	<0.012	mg/kg	ALS	RG MIUCO SE-2 2018-10-10 1830
SE	MIUCO	668135	5486767	2018	2	2018-10-10	18:30	Acenaphthylene	<0.012	mg/kg	ALS	RG MIUCO SE-2 2018-10-10 1830
SE	MIUCO	668135	5486767	2018	2	2018-10-10	18:30	Acridine	<0.024	mg/kg	ALS	RG_MIUCO_SE-2_2018-10-10_1830
SE	MIUCO	668135	5486767	2018	2	2018-10-10	18:30	Anthracene	<0.0096	mg/kg	ALS	RG MIUCO SE-2 2018-10-10 1830
SE	MIUCO	668135	5486767	2018	2	2018-10-10	18:30	Benz(a)anthracene	<0.024	mg/kg	ALS	RG MIUCO SE-2 2018-10-10 1830
SE	MIUCO	668135	5486767	2018	2	2018-10-10	18:30	Benzo(a)pyrene	<0.024	mg/kg	ALS	RG MIUCO SE-2 2018-10-10 1830
SE	MIUCO	668135	5486767	2018	2	2018-10-10	18:30	Benzo(b&j)fluoranthene	<0.024	mg/kg	ALS	RG MIUCO SE-2 2018-10-10 1830
SE	MIUCO	668135	5486767	2018	2	2018-10-10	18:30	Benzo(g_h_i)perylene	<0.024	mg/kg	ALS	RG MIUCO SE-2 2018-10-10 1830
SE	MIUCO	668135	5486767	2018	2	2018-10-10	18:30	Benzo(k)fluoranthene	<0.024	mg/kg	ALS	RG MIUCO SE-2 2018-10-10 1830
SE	MIUCO	668135	5486767	2018	2	2018-10-10	18:30	Benzo(e)pyrene	<0.024	mg/kg	ALS	RG MIUCO SE-2 2018-10-10 1830
SE	MIUCO	668135	5486767	2018	2	2018-10-10	18:30	Chrysene	0.037	mg/kg	ALS	RG MIUCO SE-2 2018-10-10 1830
SE	MIUCO	668135	5486767	2018	2	2018-10-10	18:30	Dibenz(a h)anthracene	<0.012	mg/kg	ALS	RG MIUCO SE-2 2018-10-10 1830
SE	MIUCO	668135	5486767	2018	2	2018-10-10	18:30	Fluoranthene	<0.012	mg/kg	ALS	RG MIUCO SE-2 2018-10-10 1830
SE	MIUCO	668135	5486767	2018	2	2018-10-10	18:30	Fluorene	<0.024	mg/kg	ALS	RG MIUCO SE-2 2018-10-10 1830
SE	MIUCO	668135	5486767	2018	2	2018-10-10	18:30	Indeno(1,2,3-c,d)pyrene	<0.024	mg/kg	ALS	RG_MIUCO_SE-2_2018-10-10_1830
SE	MIUCO	668135	5486767	2018	2	2018-10-10	18:30	1-Methylnaphthalene	0.057	mg/kg	ALS	RG MIUCO SE-2 2018-10-10 1830
SE	MIUCO	668135	5486767	2018	2	2018-10-10	18:30	2-Methylnaphthalene	0.086	mg/kg	ALS	RG MIUCO SE-2 2018-10-10 1830
SE	MIUCO	668135	5486767	2018		2018-10-10	18:30	Naphthalene	0.033	mg/kg	ALS	RG_MIUCO_SE-2_2018-10-10_1830
SE	MIUCO	668135	5486767	2018	2	2018-10-10	18:30	Perylene	<0.024	mg/kg	ALS	RG MIUCO SE-2 2018-10-10 1830
SE	MIUCO	668135	5486767	2018	2	2018-10-10	18:30	Phenanthrene	0.07	mg/kg	ALS	RG MIUCO SE-2 2018-10-10 1830
SE	MIUCO	668135	5486767	2018	2	2018-10-10	18:30	Pyrene	<0.024	mg/kg	ALS	RG MIUCO SE-2 2018-10-10 1830
SE	MIUCO	668135	5486767	2018	2	2018-10-10	18:30	Quinoline	<0.024	mg/kg	ALS	RG MIUCO SE-2 2018-10-10 1830
SE	MIUCO	668135	5486767	2018	2	2018-10-10	18:30	IACR (CCME)	0.27	mg/kg	ALS	RG MIUCO SE-2 2018-10-10 1830
SE	MIUCO	668135	5486767	2018	2	2018-10-10	18:30	B(a)P Total Potency Equivalent	0.023	mg/kg	ALS	RG MIUCO SE-2 2018-10-10 1830
SE	MIUCO	668135	5486767	2018	2	2018-10-10	18:30	d8-Naphthalene	62	%	ALS	RG MIUCO SE-2 2018-10-10 1830
SE	MIUCO	668135	5486767	2018	2	2018-10-10	18:30	d10-Acenaphthene	62	%	ALS	RG MIUCO SE-2 2018-10-10 1830
SE	MIUCO	668135	5486767	2018	2	2018-10-10	18:30	d10-Acertaphilierie d10-Phenanthrene	80	%	ALS	RG MIUCO SE-2 2018-10-10 1830
SE	MIUCO	668135	5486767	2018	2	2018-10-10	18:30	d12-Chrysene	89	%	ALS	RG MIUCO SE-2 2018-10-10 1830
SE	MIUCO	668135	5486767	2018	2	2018-10-10	18:30	% Gravel (>2 mm)	21	%	ALS	RG MIUCO SE-2 2018-10-10 1830
SE	MIUCO	668135	5486767	2018	2			,	21	% %		RG MIUCO SE-2 2018-10-10 1830
SE	MIUCO	668135	5486767		2	2018-10-10 2018-10-10	18:30 18:30	% Sand (2.00 mm - 1.00 mm) % Sand (1.00 mm - 0.50 mm)	14	% %	ALS ALS	RG MIUCO SE-2 2018-10-10 1830
SE	MIUCO	668135	5486767	2018 2018	2	2018-10-10	18:30	% Sand (1.00 mm - 0.50 mm) % Sand (0.50 mm - 0.25 mm)	9.7	% %	ALS	RG MIUCO SE-2 2018-10-10 1830
SE					+							
SE	MIUCO	668135	5486767	2018	2	2018-10-10	18:30	% Sand (0.25 mm - 0.125 mm)	4.4	%	ALS	RG_MIUCO_SE-2_2018-10-10_1830
) =	MIUCO	668135	5486767	2018	2	2018-10-10	18:30	% Sand (0.125 mm - 0.063 mm)	3.2	%	ALS	RG MIUCO SE-2 2018-10-10 1830

WSP Canada Inc. Page 28 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

[\/B0	Station	Location	(UTMs) ^(a)	Veer	Donlingto	Doto	Time	Anglute	Docult	Unit		Laboratory Information
Гуре	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MIUCO	668135	5486767	2018	2	2018-10-10	18:30	% Silt (0.063 mm - 0.0312 mm)	12	%	ALS	RG MIUCO SE-2 2018-10-10 1830
SE	MIUCO	668135	5486767	2018		2018-10-10	18:30	% Silt (0.031 mm - 0.004 mm)	13	%	ALS	RG MIUCO SE-2 2018-10-10 1830
SE	MIUCO	668135	5486767	2018	2	2018-10-10	18:30	% Clay (<4 μm)	1.6	%	ALS	RG_MIUCO_SE-2_2018-10-10_1830
SE	MIUCO	668135	5486767	2018	2	2018-10-10	18:30	Texture	Sandy loam	-	ALS	RG_MIUCO_SE-2_2018-10-10_1830
SE	MIUCO	668135	5486767	2018	2	2018-10-10	18:30	Mercury (Hg)	0.021	mg/kg	ALS	RG_MIUCO_SE-2_2018-10-10_1830
SE	MIUCO	668135	5486767	2018	2	2018-10-10	18:30	Aluminum (Al)	16,300	mg/kg	ALS	RG MIUCO SE-2 2018-10-10 1830
SE	MIUCO	668135	5486767	2018	2	2018-10-10	18:30	Antimony (Sb)	0.37	mg/kg	ALS	RG MIUCO SE-2 2018-10-10 1830
SE	MIUCO	668135	5486767	2018	2	2018-10-10	18:30	Arsenic (As)	8.2	mg/kg	ALS	RG_MIUCO_SE-2_2018-10-10_1830
SE	MIUCO	668135	5486767	2018	2	2018-10-10	18:30	Barium (Ba)	204	mg/kg	ALS	RG_MIUCO_SE-2_2018-10-10_1830
SE	MIUCO	668135	5486767	2018	2	2018-10-10	18:30	Beryllium (Be)	0.96	mg/kg	ALS	RG MIUCO SE-2 2018-10-10 1830
SE	MIUCO	668135	5486767	2018	2	2018-10-10	18:30	Bismuth (Bi)	0.23	mg/kg	ALS	RG_MIUCO_SE-2_2018-10-10_1830
SE	MIUCO	668135	5486767	2018	2	2018-10-10	18:30	Boron (B)	16	mg/kg	ALS	RG MIUCO SE-2 2018-10-10 1830
SE	MIUCO	668135	5486767	2018	2	2018-10-10	18:30	Cadmium (Cd)	0.91	mg/kg	ALS	RG MIUCO SE-2 2018-10-10 1830
SE	MIUCO	668135	5486767	2018	2	2018-10-10	18:30	Calcium (Ca)	17,800	mg/kg	ALS	RG_MIUCO_SE-2_2018-10-10_1830
SE	MIUCO	668135	5486767	2018	2	2018-10-10	18:30	Chromium (Cr)	20	mg/kg	ALS	RG MIUCO SE-2 2018-10-10 1830
SE	MIUCO	668135	5486767	2018	2	2018-10-10	18:30	Cobalt (Co)	9.1	mg/kg	ALS	RG_MIUCO_SE-2_2018-10-10_1830
SE	MIUCO	668135	5486767	2018	2	2018-10-10	18:30	Copper (Cu)	19	mg/kg	ALS	RG_MIUCO_SE-2_2018-10-10_1830
SE	MIUCO	668135	5486767	2018	2	2018-10-10	18:30	Iron (Fe)	24,100	mg/kg	ALS	RG MIUCO SE-2 2018-10-10 1830
SE	MIUCO	668135	5486767	2018	2	2018-10-10	18:30	Lead (Pb)	14	mg/kg	ALS	RG_MIUCO_SE-2_2018-10-10_1830
SE	MIUCO	668135	5486767	2018	2	2018-10-10	18:30	Lithium (Li)	21	mg/kg	ALS	RG_MIUCO_SE-2_2018-10-10_1830
SE	MIUCO	668135	5486767	2018	2	2018-10-10	18:30	Magnesium (Mg)	6,520	mg/kg	ALS	RG MIUCO SE-2 2018-10-10 1830
SE.	MIUCO	668135	5486767	2018	2	2018-10-10	18:30	Manganese (Mn)	695	mg/kg	ALS	RG_MIUCO_SE-2_2018-10-10_1830
SE	MIUCO	668135	5486767	2018	2	2018-10-10	18:30	Molybdenum (Mo)	2.1	mg/kg	ALS	RG MIUCO SE-2 2018-10-10 1830
SE	MIUCO	668135	5486767	2018	2	2018-10-10	18:30	Nickel (Ni)	26	mg/kg	ALS	RG MIUCO SE-2 2018-10-10 1830
SE	MIUCO	668135	5486767	2018	2	2018-10-10	18:30	Phosphorus (P)	1,370	mg/kg	ALS	RG MIUCO SE-2 2018-10-10 1830
SE	MIUCO	668135	5486767	2018	2	2018-10-10	18:30	Potassium (K)	3,860	mg/kg	ALS	RG MIUCO SE-2 2018-10-10 1830
SE	MIUCO	668135	5486767	2018	2	2018-10-10	18:30	Selenium (Se)	0.7	mg/kg	ALS	RG_MIUCO_SE-2_2018-10-10_1830
SE	MIUCO	668135	5486767	2018	2	2018-10-10	18:30	Silver (Ag)	<0.10	mg/kg	ALS	RG_MIUCO_SE-2_2018-10-10_1830
SE	MIUCO	668135	5486767	2018	2	2018-10-10	18:30	Sodium (Na)	94	mg/kg	ALS	RG MIUCO SE-2 2018-10-10 1830
SE	MIUCO	668135	5486767	2018	2	2018-10-10	18:30	Strontium (Sr)	43	mg/kg	ALS	RG MIUCO SE-2 2018-10-10 1830
SE	MIUCO	668135	5486767	2018	2	2018-10-10	18:30	Sulfur (S)	<1000	mg/kg	ALS	RG_MIUCO_SE-2_2018-10-10_1830
SE	MIUCO	668135	5486767	2018	2	2018-10-10	18:30	Thallium (TI)	0.4	mg/kg	ALS	RG MIUCO SE-2 2018-10-10 1830
SE	MIUCO	668135	5486767	2018	2	2018-10-10	18:30	Tin (Sn)	<2.0	mg/kg	ALS	RG_MIUCO_SE-2_2018-10-10_1830
SE	MIUCO	668135	5486767	2018	2	2018-10-10	18:30	Titanium (Ti)	12	mg/kg	ALS	RG_MIUCO_SE-2_2018-10-10_1830
SE	MIUCO	668135	5486767	2018	2	2018-10-10	18:30	Tungsten (W)	<0.50	mg/kg	ALS	RG_MIUCO_SE-2_2018-10-10_1830
SE	MIUCO	668135	5486767	2018	2	2018-10-10	18:30	Uranium (U)	0.64	mg/kg	ALS	RG_MIUCO_SE-2_2018-10-10_1830
SE	MIUCO	668135	5486767	2018	2	2018-10-10	18:30	Vanadium (V)	32	mg/kg	ALS	RG_MIUCO_SE-2_2018-10-10_1830
SE	MIUCO	668135	5486767	2018	2	2018-10-10	18:30	Zinc (Zn)	99	mg/kg	ALS	RG_MIUCO_SE-2_2018-10-10_1830
SE	MIUCO	668135	5486767	2018	2	2018-10-10	18:30	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_MIUCO_SE-2_2018-10-10_1830
SE	MIUCO	668135	5486767	2018	2	2018-10-10	18:30	pH (1:2 soil:water)	8.0	pН	ALS	RG_MIUCO_SE-2_2018-10-10_1830
SE	MIUCO	668135	5486767	2018	2	2018-10-10	18:30	Total Organic Carbon	1.3	%	ALS	RG_MIUCO_SE-2_2018-10-10_1830
SE	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	Moisture	52	%	ALS	RG_MIUCO_SE-3_2018-10-10_1835
SE	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	Acenaphthene	<0.0050	mg/kg	ALS	RG_MIUCO_SE-3_2018-10-10_1835
SE	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	Acenaphthylene	<0.0050	mg/kg	ALS	RG_MIUCO_SE-3_2018-10-10_1835
SE	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	Acridine	<0.010	mg/kg	ALS	RG MIUCO SE-3 2018-10-10 1835
	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	Anthracene	<0.0040	mg/kg	ALS	RG MIUCO SE-3 2018-10-10 1835
SE	MIOCO	000100	0100101	2010	_	_0.0.0.0	10.00	7 (11(11) (100) (10	0.0010	1119/119	, ,	110_101000_02 0_2010 10 10 1000

WSP Canada Inc. Page 29 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Table I-1	l: Sediment Chem			CMm LAEMP	Sampling St	ations, 2012 to	2022					
Туре	Station		(UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
		Easting	Northing					·			Lab	Sample ID
SE	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	Benzo(a)pyrene	<0.010	mg/kg	ALS	RG_MIUCO_SE-3_2018-10-10_1835
SE	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	Benzo(b&j)fluoranthene	<0.010	mg/kg	ALS	RG_MIUCO_SE-3_2018-10-10_1835
SE	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	Benzo(g_h_i)perylene	<0.010	mg/kg	ALS	RG_MIUCO_SE-3_2018-10-10_1835
SE	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	Benzo(k)fluoranthene	<0.010	mg/kg	ALS	RG_MIUCO_SE-3_2018-10-10_1835
SE	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	Benzo(e)pyrene	<0.010	mg/kg	ALS	RG_MIUCO_SE-3_2018-10-10_1835
SE	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	Chrysene	0.01	mg/kg	ALS	RG_MIUCO_SE-3_2018-10-10_1835
SE	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	Dibenz(a_h)anthracene	<0.0050	mg/kg	ALS	RG_MIUCO_SE-3_2018-10-10_1835
SE	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	Fluoranthene	<0.010	mg/kg	ALS	RG_MIUCO_SE-3_2018-10-10_1835
SE	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	Fluorene	<0.010	mg/kg	ALS	RG_MIUCO_SE-3_2018-10-10_1835
SE	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	Indeno(1,2,3-c,d)pyrene	<0.010	mg/kg	ALS	RG_MIUCO_SE-3_2018-10-10_1835
SE	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	1-Methylnaphthalene	0.016	mg/kg	ALS	RG_MIUCO_SE-3_2018-10-10_1835
SE	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	2-Methylnaphthalene	0.024	mg/kg	ALS	RG_MIUCO_SE-3_2018-10-10_1835
SE	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	Naphthalene	<0.010	mg/kg	ALS	RG_MIUCO_SE-3_2018-10-10_1835
SE	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	Perylene	<0.010	mg/kg	ALS	RG_MIUCO_SE-3_2018-10-10_1835
SE	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	Phenanthrene	0.019	mg/kg	ALS	RG_MIUCO_SE-3_2018-10-10_1835
SE	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	Pyrene	<0.010	mg/kg	ALS	RG_MIUCO_SE-3_2018-10-10_1835
SE	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	Quinoline	<0.010	mg/kg	ALS	RG_MIUCO_SE-3_2018-10-10_1835
SE	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	IACR (CCME)	<0.15	mg/kg	ALS	RG_MIUCO_SE-3_2018-10-10_1835
SE	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	B(a)P Total Potency Equivalent	<0.020	mg/kg	ALS	RG_MIUCO_SE-3_2018-10-10_1835
SE	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	d8-Naphthalene	68	%	ALS	RG_MIUCO_SE-3_2018-10-10_1835
SE	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	d10-Acenaphthene	69	%	ALS	RG_MIUCO_SE-3_2018-10-10_1835
SE	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	d10-Phenanthrene	88	%	ALS	RG_MIUCO_SE-3_2018-10-10_1835
SE	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	d12-Chrysene	97	%	ALS	RG_MIUCO_SE-3_2018-10-10_1835
SE	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	% Gravel (>2 mm)	11	%	ALS	RG_MIUCO_SE-3_2018-10-10_1835
SE	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	% Sand (2.00 mm - 1.00 mm)	20	%	ALS	RG_MIUCO_SE-3_2018-10-10_1835
SE	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	% Sand (1.00 mm - 0.50 mm)	24	%	ALS	RG_MIUCO_SE-3_2018-10-10_1835
SE	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	% Sand (0.50 mm - 0.25 mm)	14	%	ALS	RG_MIUCO_SE-3_2018-10-10_1835
SE	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	% Sand (0.25 mm - 0.125 mm)	6.0	%	ALS	RG_MIUCO_SE-3_2018-10-10_1835
SE	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	% Sand (0.125 mm - 0.063 mm)	3.7	%	ALS	RG_MIUCO_SE-3_2018-10-10_1835
SE	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	% Silt (0.063 mm - 0.0312 mm)	8.9	%	ALS	RG_MIUCO_SE-3_2018-10-10_1835
SE	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	% Silt (0.031 mm - 0.004 mm)	10	%	ALS	RG_MIUCO_SE-3_2018-10-10_1835
SE	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	% Clay (<4 μm)	2.2	%	ALS	RG_MIUCO_SE-3_2018-10-10_1835
SE	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	Texture	Loamy sand	-	ALS	RG_MIUCO_SE-3_2018-10-10_1835
SE	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	Mercury (Hg)	0.053	mg/kg	ALS	RG_MIUCO_SE-3_2018-10-10_1835
SE	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	Aluminum (Al)	18,100	mg/kg	ALS	RG_MIUCO_SE-3_2018-10-10_1835
SE	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	Antimony (Sb)	0.41	mg/kg	ALS	RG_MIUCO_SE-3_2018-10-10_1835
SE	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	Arsenic (As)	8.8	mg/kg	ALS	RG_MIUCO_SE-3_2018-10-10_1835
SE	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	Barium (Ba)	199	mg/kg	ALS	RG_MIUCO_SE-3_2018-10-10_1835
SE	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	Beryllium (Be)	1.2	mg/kg	ALS	RG_MIUCO_SE-3_2018-10-10_1835
SE	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	Bismuth (Bi)	0.26	mg/kg	ALS	RG_MIUCO_SE-3_2018-10-10_1835
SE	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	Boron (B)	19	mg/kg	ALS	RG_MIUCO_SE-3_2018-10-10_1835
SE	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	Cadmium (Cd)	0.83	mg/kg	ALS	RG_MIUCO_SE-3_2018-10-10_1835
SE	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	Calcium (Ca)	20,700	mg/kg	ALS	RG_MIUCO_SE-3_2018-10-10_1835
SE	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	Chromium (Cr)	22	mg/kg	ALS	RG_MIUCO_SE-3_2018-10-10_1835
SE	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	Cobalt (Co)	9.2	mg/kg	ALS	RG_MIUCO_SE-3_2018-10-10_1835
SE	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	Copper (Cu)	21	mg/kg	ALS	RG_MIUCO_SE-3_2018-10-10_1835
SE	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	Iron (Fe)	26,800	mg/kg	ALS	RG MIUCO SE-3 2018-10-10 1835

WSP Canada Inc. Page 30 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

T. 112.0	Station	Location	(UTMs) ^(a)	Vaar	Donlingto	Dete	Tires	Analyta	Popult	Heit		Laboratory Information
Гуре	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	Lead (Pb)	16	mg/kg	ALS	RG MIUCO SE-3 2018-10-10 1835
SE	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	Lithium (Li)	24	mg/kg	ALS	RG MIUCO SE-3 2018-10-10 1835
SE	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	Magnesium (Mg)	7,060	mg/kg	ALS	RG_MIUCO_SE-3_2018-10-10_1835
SE	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	Manganese (Mn)	716	mg/kg	ALS	RG_MIUCO_SE-3_2018-10-10_1835
SE	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	Molybdenum (Mo)	2.4	mg/kg	ALS	RG_MIUCO_SE-3_2018-10-10_1835
SE	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	Nickel (Ni)	27	mg/kg	ALS	RG MIUCO SE-3 2018-10-10 1835
SE	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	Phosphorus (P)	1,610	mg/kg	ALS	RG MIUCO SE-3 2018-10-10 1835
SE	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	Potassium (K)	4,370	mg/kg	ALS	RG_MIUCO_SE-3_2018-10-10_1835
SE	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	Selenium (Se)	0.74	mg/kg	ALS	RG_MIUCO_SE-3_2018-10-10_1835
SE	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	Silver (Ag)	<0.10	mg/kg	ALS	RG MIUCO SE-3 2018-10-10 1835
SE	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	Sodium (Na)	109	mg/kg	ALS	RG_MIUCO_SE-3_2018-10-10_1835
SE	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	Strontium (Sr)	51	mg/kg	ALS	RG MIUCO SE-3 2018-10-10 1835
SE	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	Sulfur (S)	<1000	mg/kg	ALS	RG MIUCO SE-3 2018-10-10 1835
SE.	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	Thallium (TI)	0.43	mg/kg	ALS	RG MIUCO SE-3 2018-10-10 1835
SE	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	Tin (Sn)	<2.0	mg/kg	ALS	RG_MIUCO_SE-3_2018-10-10_1835
SE	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	Titanium (Ti)	12	mg/kg	ALS	RG MIUCO SE-3 2018-10-10 1835
SE	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	Tungsten (W)	<0.50	mg/kg	ALS	RG_MIUCO_SE-3_2018-10-10_1835
SE	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	Uranium (U)	0.73	mg/kg	ALS	RG_MIUCO_SE-3_2018-10-10_1835
SE	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	Vanadium (V)	35	mg/kg	ALS	RG_MIUCO_SE-3_2018-10-10_1835
SE	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	Zinc (Zn)	104	mg/kg	ALS	RG_MIUCO_SE-3_2018-10-10_1835
SE	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	Zirconium (Zr)	<1.0	mg/kg	ALS	RG MIUCO SE-3 2018-10-10 1835
SE	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	pH (1:2 soil:water)	7.9	pН	ALS	RG_MIUCO_SE-3_2018-10-10_1835
SE.	MIUCO	668135	5486767	2018	3	2018-10-10	18:35	Total Organic Carbon	1.0	%	ALS	RG_MIUCO_SE-3_2018-10-10_1835
SE	MIUCO	668135	5486767	2018	4	2018-10-10	18:45	Moisture	87	%	ALS	RG_MIUCO_SE-4_2018-10-10_1845
SE	MIUCO	668135	5486767	2018	4	2018-10-10	18:45	Acenaphthene	<0.017	mg/kg	ALS	RG MIUCO SE-4 2018-10-10 1845
SE	MIUCO	668135	5486767	2018	4	2018-10-10	18:45	Acenaphthylene	<0.017	mg/kg	ALS	RG_MIUCO_SE-4_2018-10-10_1845
SE	MIUCO	668135	5486767	2018	4	2018-10-10	18:45	Acridine	<0.034	mg/kg	ALS	RG_MIUCO_SE-4_2018-10-10_1845
SE	MIUCO	668135	5486767	2018	4	2018-10-10	18:45	Anthracene	<0.014	mg/kg	ALS	RG MIUCO SE-4 2018-10-10 1845
SE	MIUCO	668135	5486767	2018	4	2018-10-10	18:45	Benz(a)anthracene	<0.034	mg/kg	ALS	RG MIUCO SE-4 2018-10-10 1845
SE	MIUCO	668135	5486767	2018	4	2018-10-10	18:45	Benzo(a)pyrene	<0.034	mg/kg	ALS	RG_MIUCO_SE-4_2018-10-10_1845
SE	MIUCO	668135	5486767	2018	4	2018-10-10	18:45	Benzo(b&j)fluoranthene	<0.034	mg/kg	ALS	RG MIUCO SE-4_2018-10-10_1845
SE	MIUCO	668135	5486767	2018	4	2018-10-10	18:45	Benzo(g_h_i)perylene	<0.034	mg/kg	ALS	RG_MIUCO_SE-4_2018-10-10_1845
SE	MIUCO	668135	5486767	2018	4	2018-10-10	18:45	Benzo(k)fluoranthene	<0.034	mg/kg	ALS	RG MIUCO SE-4 2018-10-10 1845
SE	MIUCO	668135	5486767	2018	4	2018-10-10	18:45	Benzo(e)pyrene	<0.034	mg/kg	ALS	RG MIUCO SE-4 2018-10-10 1845
SE	MIUCO	668135	5486767	2018	4	2018-10-10	18:45	Chrysene	0.038	mg/kg	ALS	RG_MIUCO_SE-4_2018-10-10_1845
SE	MIUCO	668135	5486767	2018	4	2018-10-10	18:45	Dibenz(a_h)anthracene	<0.017	mg/kg	ALS	RG_MIUCO_SE-4_2018-10-10_1845
SE	MIUCO	668135	5486767	2018	4	2018-10-10	18:45	Fluoranthene	<0.034	mg/kg	ALS	RG MIUCO SE-4_2018-10-10_1845
SE	MIUCO	668135	5486767	2018	4	2018-10-10	18:45	Fluorene	<0.034	mg/kg	ALS	RG MIUCO SE-4 2018-10-10 1845
SE	MIUCO	668135	5486767	2018	4	2018-10-10	18:45	Indeno(1,2,3-c,d)pyrene	< 0.034	mg/kg	ALS	RG_MIUCO_SE-4_2018-10-10_1845
SE	MIUCO	668135	5486767	2018	4	2018-10-10	18:45	1-Methylnaphthalene	0.069	mg/kg	ALS	RG_MIUCO_SE-4_2018-10-10_1845
SE	MIUCO	668135	5486767	2018	4	2018-10-10	18:45	2-Methylnaphthalene	0.1	mg/kg	ALS	RG MIUCO SE-4_2018-10-10_1845
SE	MIUCO	668135	5486767	2018	4	2018-10-10	18:45	Naphthalene	0.038	mg/kg	ALS	RG MIUCO SE-4 2018-10-10 1845
SE	MIUCO	668135	5486767	2018	4	2018-10-10	18:45	Perylene	<0.034	mg/kg	ALS	RG MIUCO SE-4 2018-10-10 1845
SE	MIUCO	668135	5486767	2018	4	2018-10-10	18:45	Phenanthrene	0.086	mg/kg	ALS	RG MIUCO SE-4 2018-10-10 1845
		668135	5486767	2018	4	2018-10-10	18:45	Pyrene	<0.034	mg/kg	ALS	RG MIUCO SE-4 2018-10-10 1845
SE I	MIUCO											
SE SE	MIUCO	668135	5486767	2018	4	2018-10-10	18:45	Quinoline	<0.034	mg/kg	ALS	RG MIUCO SE-4 2018-10-10 1845

WSP Canada Inc. Page 31 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

TARIA TA	Station	Location	(UTMs) ^(a)	Veer	Donlinete	Doto	Time	Analyte	Docult	Unit		Laboratory Information
уре	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MIUCO	668135	5486767	2018	4	2018-10-10	18:45	B(a)P Total Potency Equivalent	< 0.033	mg/kg	ALS	RG MIUCO SE-4 2018-10-10 1845
SE	MIUCO	668135	5486767	2018	4	2018-10-10	18:45	d8-Naphthalene	63	%	ALS	RG MIUCO SE-4 2018-10-10 1845
SE	MIUCO	668135	5486767	2018	4	2018-10-10	18:45	d10-Acenaphthene	66	%	ALS	RG_MIUCO_SE-4_2018-10-10_1845
SE	MIUCO	668135	5486767	2018	4	2018-10-10	18:45	d10-Phenanthrene	89	%	ALS	RG MIUCO SE-4 2018-10-10 1845
SE	MIUCO	668135	5486767	2018	4	2018-10-10	18:45	d12-Chrysene	93	%	ALS	RG_MIUCO_SE-4_2018-10-10_1845
SE	MIUCO	668135	5486767	2018	4	2018-10-10	18:45	% Gravel (>2 mm)	12	%	ALS	RG MIUCO SE-4 2018-10-10 1845
SE	MIUCO	668135	5486767	2018	4	2018-10-10	18:45	% Sand (2.00 mm - 1.00 mm)	25	%	ALS	RG MIUCO SE-4 2018-10-10 1845
SE	MIUCO	668135	5486767	2018	4	2018-10-10	18:45	% Sand (1.00 mm - 0.50 mm)	19	%	ALS	RG_MIUCO_SE-4_2018-10-10_1845
SE	MIUCO	668135	5486767	2018	4	2018-10-10	18:45	% Sand (0.50 mm - 0.25 mm)	12	%	ALS	RG MIUCO SE-4 2018-10-10 1845
SE .	MIUCO	668135	5486767	2018	4	2018-10-10	18:45	% Sand (0.25 mm - 0.125 mm)	5.0	%	ALS	RG MIUCO SE-4 2018-10-10 1845
SE	MIUCO	668135	5486767	2018	4	2018-10-10	18:45	% Sand (0.125 mm - 0.063 mm)	3.3	%	ALS	RG_MIUCO_SE-4_2018-10-10_1845
SE .	MIUCO	668135	5486767	2018	4	2018-10-10	18:45	% Silt (0.063 mm - 0.0312 mm)	10	%	ALS	RG MIUCO SE-4 2018-10-10 1845
SE	MIUCO	668135	5486767	2018	4	2018-10-10	18:45	% Silt (0.031 mm - 0.004 mm)	11	%	ALS	RG MIUCO SE-4 2018-10-10 1845
SE	MIUCO	668135	5486767	2018	4	2018-10-10	18:45	% Clay (<4 μm)	1.9	%	ALS	RG MIUCO SE-4 2018-10-10 1845
SE	MIUCO	668135	5486767	2018	4	2018-10-10	18:45	Texture	Loamy sand	-	ALS	RG MIUCO SE-4 2018-10-10 1845
SE	MIUCO	668135	5486767	2018	4	2018-10-10	18:45	Mercury (Hg)	0.025	mg/kg	ALS	RG MIUCO SE-4_2018-10-10_1845
SE	MIUCO	668135	5486767	2018	4	2018-10-10	18:45	Aluminum (Al)	12,300	mg/kg	ALS	RG MIUCO SE-4_2018-10-10_1845
E	MIUCO	668135	5486767	2018	4	2018-10-10	18:45	Antimony (Sb)	0.41	mg/kg	ALS	RG MIUCO SE-4 2018-10-10 1845
Ε	MIUCO	668135	5486767	2018	4	2018-10-10	18:45	Arsenic (As)	7.6	mg/kg	ALS	RG_MIUCO_SE-4_2018-10-10_1845
E	MIUCO	668135	5486767	2018	4	2018-10-10	18:45	Barium (Ba)	172	mg/kg	ALS	RG_MIUCO_SE-4_2018-10-10_1845
E	MIUCO	668135	5486767	2018	4	2018-10-10	18:45	Beryllium (Be)	0.87	mg/kg	ALS	RG MIUCO SE-4 2018-10-10 1845
E	MIUCO	668135	5486767	2018	4	2018-10-10	18:45	Bismuth (Bi)	0.21	mg/kg	ALS	RG MIUCO SE-4 2018-10-10 1845
SE	MIUCO	668135	5486767	2018	4	2018-10-10	18:45	Boron (B)	13	mg/kg	ALS	RG MIUCO SE-4 2018-10-10 1845
E	MIUCO	668135	5486767	2018	4	2018-10-10	18:45	Cadmium (Cd)	0.83	mg/kg	ALS	RG MIUCO SE-4 2018-10-10 1845
SE	MIUCO	668135	5486767	2018	4	2018-10-10	18:45	Calcium (Ca)	21,800	mg/kg	ALS	RG MIUCO SE-4 2018-10-10 1845
SE	MIUCO	668135	5486767	2018	4	2018-10-10	18:45	Chromium (Cr)	17	mg/kg	ALS	RG MIUCO SE-4 2018-10-10 1845
SE	MIUCO	668135	5486767	2018	4	2018-10-10	18:45	Cobalt (Co)	7.9	mg/kg	ALS	RG MIUCO SE-4 2018-10-10 1845
SE	MIUCO	668135	5486767	2018	4	2018-10-10	18:45	Copper (Cu)	21	mg/kg	ALS	RG MIUCO SE-4 2018-10-10 1845
SE .	MIUCO	668135	5486767	2018	4	2018-10-10	18:45	Iron (Fe)	20,600	mg/kg	ALS	RG MIUCO SE-4 2018-10-10 1845
SE	MIUCO	668135	5486767	2018	4	2018-10-10	18:45	Lead (Pb)	13	mg/kg	ALS	RG MIUCO SE-4 2018-10-10 1845
SE	MIUCO	668135	5486767	2018	4	2018-10-10	18:45	Lithium (Li)	19	mg/kg	ALS	RG MIUCO SE-4 2018-10-10 1845
SE	MIUCO	668135	5486767	2018	4	2018-10-10	18:45	Magnesium (Mg)	5,550	mg/kg	ALS	RG MIUCO SE-4 2018-10-10 1845
SE.	MIUCO	668135	5486767	2018	4	2018-10-10	18:45	Manganese (Mn)	701	mg/kg	ALS	RG MIUCO SE-4 2018-10-10 1845
SE	MIUCO	668135	5486767	2018	4	2018-10-10	18:45	Molybdenum (Mo)	2.2	mg/kg	ALS	RG MIUCO SE-4 2018-10-10 1845
SE	MIUCO	668135	5486767	2018	4	2018-10-10	18:45	Nickel (Ni)	23	mg/kg	ALS	RG MIUCO SE-4 2018-10-10 1845
SE.	MIUCO	668135	5486767	2018	4	2018-10-10	18:45	Phosphorus (P)	1,250	mg/kg	ALS	RG MIUCO SE-4 2018-10-10 1845
SE.	MIUCO	668135	5486767	2018	4	2018-10-10	18:45	Potassium (K)	2,850	mg/kg	ALS	RG MIUCO SE-4 2018-10-10 1845
SE	MIUCO	668135	5486767	2018	4	2018-10-10	18:45	Selenium (Se)	0.85	mg/kg	ALS	RG MIUCO SE-4 2018-10-10 1845
SE	MIUCO	668135	5486767	2018	4	2018-10-10	18:45	Silver (Ag)	0.1	mg/kg	ALS	RG MIUCO SE-4_2018-10-10_1845
SE	MIUCO	668135	5486767	2018	4	2018-10-10	18:45	Sodium (Na)	81	mg/kg	ALS	RG MIUCO SE-4_2018-10-10_1845
	MIUCO	668135	5486767	2018	4	2018-10-10	18:45	Strontium (Sr)	50	mg/kg	ALS	RG MIUCO SE-4 2018-10-10 1845
		668135	5486767	2018	4	2018-10-10	18:45	Sulfur (S)	<1000	mg/kg	ALS	RG MIUCO SE-4_2018-10-10_1845
SE SE	MIUCO				1	2018-10-10	18:45	Thallium (TI)	0.41	mg/kg	ALS	RG MIUCO SE-4 2018-10-10 1845
SE	MIUCO	668135	5486767	2018	4	2010 10 10					/ \LC	110_111000_02 1 2010 10 10 10 10
SE SE			5486767 5486767	2018 2018	4		18:45	Tin (Sn)	<2.0		ALS	RG MIUCO SE-4 2018-10-10 1845
SE SE SE	MIUCO	668135			4 4	2018-10-10 2018-10-10			<2.0	mg/kg		
SE SE	MIUCO MIUCO	668135 668135	5486767	2018	4 4 4	2018-10-10	18:45	Tin (Sn)			ALS	RG_MIUCO_SE-4_2018-10-10_1845

WSP Canada Inc. Page 32 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Туре	Station		າ (UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
Type	Station	Easting	Northing	i cai	Replicate	Date	Tille	Allalyte	Nesuit	Oill	Lab	Sample ID
SE	MIUCO	668135	5486767	2018	4	2018-10-10	18:45	Vanadium (V)	27	mg/kg	ALS	RG_MIUCO_SE-4_2018-10-10_1845
SE	MIUCO	668135	5486767	2018	4	2018-10-10	18:45	Zinc (Zn)	92	mg/kg	ALS	RG_MIUCO_SE-4_2018-10-10_1845
SE	MIUCO	668135	5486767	2018	4	2018-10-10	18:45	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_MIUCO_SE-4_2018-10-10_1845
SE	MIUCO	668135	5486767	2018	4	2018-10-10	18:45	pH (1:2 soil:water)	7.9	рН	ALS	RG_MIUCO_SE-4_2018-10-10_1845
SE	MIUCO	668135	5486767	2018	4	2018-10-10	18:45	Total Organic Carbon	1.1	%	ALS	RG_MIUCO_SE-4_2018-10-10_1845
SE	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	Moisture	77	%	ALS	RG_MIUCO_SE-5_2018-10-10_1855
SE	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	Acenaphthene	<0.010	mg/kg	ALS	RG_MIUCO_SE-5_2018-10-10_1855
SE	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	Acenaphthylene	<0.010	mg/kg	ALS	RG_MIUCO_SE-5_2018-10-10_1855
SE	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	Acridine	<0.020	mg/kg	ALS	RG_MIUCO_SE-5_2018-10-10_1855
SE	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	Anthracene	<0.0080	mg/kg	ALS	RG_MIUCO_SE-5_2018-10-10_1855
SE	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	Benz(a)anthracene	<0.020	mg/kg	ALS	RG_MIUCO_SE-5_2018-10-10_1855
SE	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	Benzo(a)pyrene	<0.020	mg/kg	ALS	RG_MIUCO_SE-5_2018-10-10_1855
SE	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	Benzo(b&j)fluoranthene	0.02	mg/kg	ALS	RG_MIUCO_SE-5_2018-10-10_1855
SE	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	Benzo(g_h_i)perylene	<0.020	mg/kg	ALS	RG_MIUCO_SE-5_2018-10-10_1855
SE	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	Benzo(k)fluoranthene	<0.020	mg/kg	ALS	RG_MIUCO_SE-5_2018-10-10_1855
SE	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	Benzo(e)pyrene	0.023	mg/kg	ALS	RG_MIUCO_SE-5_2018-10-10_1855
SE	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	Chrysene	0.035	mg/kg	ALS	RG_MIUCO_SE-5_2018-10-10_1855
SE	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	Dibenz(a_h)anthracene	<0.010	mg/kg	ALS	RG_MIUCO_SE-5_2018-10-10_1855
SE	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	Fluoranthene	<0.020	mg/kg	ALS	RG_MIUCO_SE-5_2018-10-10_1855
SE	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	Fluorene	<0.020	mg/kg	ALS	RG_MIUCO_SE-5_2018-10-10_1855
SE	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	Indeno(1,2,3-c,d)pyrene	<0.020	mg/kg	ALS	RG_MIUCO_SE-5_2018-10-10_1855
SE	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	1-Methylnaphthalene	0.061	mg/kg	ALS	RG_MIUCO_SE-5_2018-10-10_1855
SE	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	2-Methylnaphthalene	0.089	mg/kg	ALS	RG_MIUCO_SE-5_2018-10-10_1855
SE	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	Naphthalene	0.036	mg/kg	ALS	RG_MIUCO_SE-5_2018-10-10_1855
SE	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	Perylene	0.022	mg/kg	ALS	RG_MIUCO_SE-5_2018-10-10_1855
SE	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	Phenanthrene	0.078	mg/kg	ALS	RG_MIUCO_SE-5_2018-10-10_1855
SE	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	Pyrene	<0.020	mg/kg	ALS	RG_MIUCO_SE-5_2018-10-10_1855
SE	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	Quinoline	<0.020	mg/kg	ALS	RG_MIUCO_SE-5_2018-10-10_1855
SE	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	IACR (CCME)	0.29	mg/kg	ALS	RG_MIUCO_SE-5_2018-10-10_1855
SE	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	B(a)P Total Potency Equivalent	0.02	mg/kg	ALS	RG_MIUCO_SE-5_2018-10-10_1855
SE	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	d8-Naphthalene	62	%	ALS	RG_MIUCO_SE-5_2018-10-10_1855
SE	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	d10-Acenaphthene	62	%	ALS	RG_MIUCO_SE-5_2018-10-10_1855
SE	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	d10-Phenanthrene	80	%	ALS	RG_MIUCO_SE-5_2018-10-10_1855
SE	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	d12-Chrysene	86	%	ALS	RG_MIUCO_SE-5_2018-10-10_1855
SE	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	% Gravel (>2 mm)	17	%	ALS	RG_MIUCO_SE-5_2018-10-10_1855
SE	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	% Sand (2.00 mm - 1.00 mm)	20	%	ALS	RG_MIUCO_SE-5_2018-10-10_1855
SE	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	% Sand (1.00 mm - 0.50 mm)	12	%	ALS	RG MIUCO SE-5 2018-10-10 1855
SE	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	% Sand (0.50 mm - 0.25 mm)	7.7	%	ALS	RG MIUCO SE-5 2018-10-10 1855
SE	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	% Sand (0.25 mm - 0.125 mm)	7.6	%	ALS	RG MIUCO SE-5 2018-10-10 1855
SE	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	% Sand (0.125 mm - 0.063 mm)	6.8	%	ALS	RG_MIUCO_SE-5_2018-10-10_1855
SE	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	% Silt (0.063 mm - 0.0312 mm)	13	%	ALS	RG_MIUCO_SE-5_2018-10-10_1855
SE	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	% Silt (0.031 mm - 0.004 mm)	14	%	ALS	RG_MIUCO_SE-5_2018-10-10_1855
SE	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	% Clay (<4 μm)	2.6	%	ALS	RG MIUCO SE-5 2018-10-10 1855
SE	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	Texture	Sandy loam	-	ALS	RG MIUCO SE-5 2018-10-10 1855
SE	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	Mercury (Hg)	0.015	mg/kg	ALS	RG MIUCO SE-5 2018-10-10 1855
SE	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	Aluminum (Al)	13,800	mg/kg	ALS	RG MIUCO SE-5 2018-10-10 1855
SE	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	Antimony (Sb)	0.38	mg/kg	ALS	RG MIUCO SE-5 2018-10-10 1855

WSP Canada Inc. Page 33 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	Ctation	Location	ı (UTMs) ^(a)	Voca	Donlingto	Doto	Time	Avaluta	Decult	Hall		Laboratory Information
ype	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
E	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	Arsenic (As)	8.1	mg/kg	ALS	RG MIUCO SE-5 2018-10-10 1855
E	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	Barium (Ba)	157	mg/kg	ALS	RG MIUCO SE-5 2018-10-10 1855
E	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	Beryllium (Be)	0.87	mg/kg	ALS	RG MIUCO SE-5 2018-10-10 1855
E E	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	Bismuth (Bi)	0.22	mg/kg	ALS	RG MIUCO SE-5 2018-10-10 1855
SE SE	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	Boron (B)	12	mg/kg	ALS	RG MIUCO SE-5 2018-10-10 1855
E	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	Cadmium (Cd)	0.62	mg/kg	ALS	RG MIUCO SE-5 2018-10-10 1855
E	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	Calcium (Ca)	17,200	mg/kg	ALS	RG MIUCO SE-5 2018-10-10 1855
E	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	Chromium (Cr)	17	mg/kg	ALS	RG MIUCO SE-5 2018-10-10 1855
E	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	Cobalt (Co)	8.2	mg/kg	ALS	RG MIUCO SE-5 2018-10-10 1855
E	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	Copper (Cu)	17	mg/kg	ALS	RG MIUCO SE-5 2018-10-10 1855
E	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	Iron (Fe)	22,900	mg/kg	ALS	RG MIUCO SE-5 2018-10-10 1855
E I	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	Lead (Pb)	13	mg/kg	ALS	RG MIUCO SE-5 2018-10-10 1855
E	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	Lithium (Li)	21	mg/kg	ALS	RG MIUCO SE-5 2018-10-10 1855
E	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	Magnesium (Mg)	5,850	mg/kg	ALS	RG_MIUCO_SE-5_2018-10-10_1855
E	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	Manganese (Mn)	527	mg/kg	ALS	RG MIUCO SE-5 2018-10-10 1855
E	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	Molybdenum (Mo)	2.1	mg/kg	ALS	RG MIUCO SE-5 2018-10-10 1855
E	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	Nickel (Ni)	23	mg/kg	ALS	RG MIUCO SE-5 2018-10-10 1855
E	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	Phosphorus (P)	1,200	mg/kg	ALS	RG MIUCO SE-5 2018-10-10 1855
E	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	Potassium (K)	2,830	mg/kg	ALS	RG MIUCO SE-5 2018-10-10 1855
= +	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	Selenium (Se)	0.52	mg/kg	ALS	RG MIUCO SE-5 2018-10-10 1855
=	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	Silver (Ag)	<0.10		ALS	RG MIUCO SE-5 2018-10-10 1855
=	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	Sodium (Na)	86	mg/kg	ALS	RG MIUCO SE-5 2018-10-10 1855
<u> </u>	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	, ,	42	mg/kg	ALS	
					ŭ .			Strontium (Sr)	<1000	mg/kg	ALS	RG_MIUCO_SE-5_2018-10-10_1855
	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	Sulfur (S)		mg/kg		RG_MIUCO_SE-5_2018-10-10_1855
E	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	Thallium (TI)	0.35	mg/kg	ALS	RG_MIUCO_SE-5_2018-10-10_1855
E	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	Tin (Sn)	<2.0	mg/kg	ALS	RG_MIUCO_SE-5_2018-10-10_1855
E	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	Titanium (Ti)	11	mg/kg	ALS	RG_MIUCO_SE-5_2018-10-10_1855
E	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	Tungsten (W)	<0.50	mg/kg	ALS	RG_MIUCO_SE-5_2018-10-10_1855
E	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	Uranium (U)	0.55	mg/kg	ALS	RG_MIUCO_SE-5_2018-10-10_1855
E	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	Vanadium (V)	26	mg/kg	ALS	RG_MIUCO_SE-5_2018-10-10_1855
E	MIUCO	668135	5486767	2018		2018-10-10	18:55	Zinc (Zn)	90	mg/kg	ALS	RG_MIUCO_SE-5_2018-10-10_1855
E	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_MIUCO_SE-5_2018-10-10_1855
E	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	pH (1:2 soil:water)	7.9	рН	ALS	RG_MIUCO_SE-5_2018-10-10_1855
E	MIUCO	668135	5486767	2018	5	2018-10-10	18:55	Total Organic Carbon	1.4	%	ALS	RG_MIUCO_SE-5_2018-10-10_1855
E	MIDAG	665220	5489324	2018	1	2018-10-10	16:35	Moisture	44	%	ALS	RG_MIDAG_SE-1_2018-10-10_1635
E	MIDAG	665220	5489324	2018	1	2018-10-10	16:35	Acenaphthene	<0.0060	mg/kg	ALS	RG_MIDAG_SE-1_2018-10-10_1635
E	MIDAG	665220	5489324	2018	1	2018-10-10	16:35	Acenaphthylene	<0.0050	mg/kg	ALS	RG_MIDAG_SE-1_2018-10-10_1635
E	MIDAG	665220	5489324	2018	1	2018-10-10	16:35	Acridine	<0.010	mg/kg	ALS	RG_MIDAG_SE-1_2018-10-10_1635
E	MIDAG	665220	5489324	2018	1	2018-10-10	16:35	Anthracene	<0.0040	mg/kg	ALS	RG_MIDAG_SE-1_2018-10-10_1635
E	MIDAG	665220	5489324	2018	1	2018-10-10	16:35	Benz(a)anthracene	0.012	mg/kg	ALS	RG_MIDAG_SE-1_2018-10-10_1635
E	MIDAG	665220	5489324	2018	1	2018-10-10	16:35	Benzo(a)pyrene	<0.010	mg/kg	ALS	RG_MIDAG_SE-1_2018-10-10_1635
E	MIDAG	665220	5489324	2018	1	2018-10-10	16:35	Benzo(b&j)fluoranthene	0.024	mg/kg	ALS	RG_MIDAG_SE-1_2018-10-10_1635
E	MIDAG	665220	5489324	2018	1	2018-10-10	16:35	Benzo(g_h_i)perylene	<0.010	mg/kg	ALS	RG_MIDAG_SE-1_2018-10-10_1635
E	MIDAG	665220	5489324	2018	1	2018-10-10	16:35	Benzo(k)fluoranthene	<0.010	mg/kg	ALS	RG_MIDAG_SE-1_2018-10-10_1635
Ξ	MIDAG	665220	5489324	2018	1	2018-10-10	16:35	Benzo(e)pyrene	0.023	mg/kg	ALS	RG_MIDAG_SE-1_2018-10-10_1635
Ε	MIDAG	665220	5489324	2018	1	2018-10-10	16:35	Chrysene	0.035	mg/kg	ALS	RG_MIDAG_SE-1_2018-10-10_1635
Е	MIDAG	665220	5489324	2018	1	2018-10-10	16:35	Dibenz(a h)anthracene	< 0.0050	mg/kg	ALS	RG MIDAG SE-1 2018-10-10 1635

WSP Canada Inc. Page 34 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

avie i-	: Sediment Chem			CIVILLI LACIVIP	Janiping Sta		ZUZZ					Laboratora lafe
Туре	Station		(UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
	AUDAO	Easting	Northing	0010		2242 42 42	40.05	· ·	0.000	//	Lab	Sample ID
SE	MIDAG	665220	5489324	2018	-	2018-10-10	16:35	Fluoranthene	0.028	mg/kg	ALS	RG_MIDAG_SE-1_2018-10-10_1635
SE	MIDAG	665220	5489324	2018		2018-10-10	16:35	Fluorene	0.014	mg/kg	ALS	RG_MIDAG_SE-1_2018-10-10_1635
SE	MIDAG	665220	5489324	2018		2018-10-10	16:35	Indeno(1,2,3-c,d)pyrene	<0.010	mg/kg	ALS	RG_MIDAG_SE-1_2018-10-10_1635
SE	MIDAG	665220	5489324	2018		2018-10-10	16:35	1-Methylnaphthalene	0.076	mg/kg	ALS	RG_MIDAG_SE-1_2018-10-10_1635
SE	MIDAG	665220	5489324	2018	_	2018-10-10	16:35	2-Methylnaphthalene	0.12	mg/kg	ALS	RG_MIDAG_SE-1_2018-10-10_1635
SE	MIDAG	665220	5489324	2018		2018-10-10	16:35	Naphthalene	0.039	mg/kg	ALS	RG_MIDAG_SE-1_2018-10-10_1635
SE	MIDAG	665220	5489324	2018		2018-10-10	16:35	Perylene	<0.010	mg/kg	ALS	RG_MIDAG_SE-1_2018-10-10_1635
SE	MIDAG	665220	5489324	2018		2018-10-10	16:35	Phenanthrene	0.096	mg/kg	ALS	RG_MIDAG_SE-1_2018-10-10_1635
SE	MIDAG	665220	5489324	2018		2018-10-10	16:35	Pyrene	0.025	mg/kg	ALS	RG_MIDAG_SE-1_2018-10-10_1635
SE	MIDAG	665220	5489324	2018		2018-10-10	16:35	Quinoline	<0.010	mg/kg	ALS	RG_MIDAG_SE-1_2018-10-10_1635
SE	MIDAG	665220	5489324	2018	_	2018-10-10	16:35	IACR (CCME)	0.26	mg/kg	ALS	RG_MIDAG_SE-1_2018-10-10_1635
SE	MIDAG	665220	5489324	2018		2018-10-10	16:35	B(a)P Total Potency Equivalent	<0.020	mg/kg	ALS	RG_MIDAG_SE-1_2018-10-10_1635
SE	MIDAG	665220	5489324	2018	-	2018-10-10	16:35	d8-Naphthalene	61	%	ALS	RG_MIDAG_SE-1_2018-10-10_1635
SE	MIDAG	665220	5489324	2018	-	2018-10-10	16:35	d10-Acenaphthene	64	%	ALS	RG_MIDAG_SE-1_2018-10-10_1635
SE	MIDAG	665220	5489324	2018		2018-10-10	16:35	d10-Phenanthrene	83	%	ALS	RG_MIDAG_SE-1_2018-10-10_1635
SE	MIDAG	665220	5489324	2018		2018-10-10	16:35	d12-Chrysene	88	%	ALS	RG_MIDAG_SE-1_2018-10-10_1635
SE	MIDAG	665220	5489324	2018		2018-10-10	16:35	% Gravel (>2 mm)	1.2	%	ALS	RG_MIDAG_SE-1_2018-10-10_1635
SE	MIDAG	665220	5489324	2018		2018-10-10	16:35	% Sand (2.00 mm - 1.00 mm)	3.6	%	ALS	RG_MIDAG_SE-1_2018-10-10_1635
SE	MIDAG	665220	5489324	2018		2018-10-10	16:35	% Sand (1.00 mm - 0.50 mm)	22	%	ALS	RG_MIDAG_SE-1_2018-10-10_1635
SE	MIDAG	665220	5489324	2018	1	2018-10-10	16:35	% Sand (0.50 mm - 0.25 mm)	26	%	ALS	RG_MIDAG_SE-1_2018-10-10_1635
SE	MIDAG	665220	5489324	2018	1	2018-10-10	16:35	% Sand (0.25 mm - 0.125 mm)	11	%	ALS	RG_MIDAG_SE-1_2018-10-10_1635
SE	MIDAG	665220	5489324	2018	1	2018-10-10	16:35	% Sand (0.125 mm - 0.063 mm)	6.5	%	ALS	RG_MIDAG_SE-1_2018-10-10_1635
SE	MIDAG	665220	5489324	2018	1	2018-10-10	16:35	% Silt (0.063 mm - 0.0312 mm)	13	%	ALS	RG_MIDAG_SE-1_2018-10-10_1635
SE	MIDAG	665220	5489324	2018	1	2018-10-10	16:35	% Silt (0.031 mm - 0.004 mm)	14	%	ALS	RG_MIDAG_SE-1_2018-10-10_1635
SE	MIDAG	665220	5489324	2018	1	2018-10-10	16:35	% Clay (<4 μm)	2.3	%	ALS	RG_MIDAG_SE-1_2018-10-10_1635
SE	MIDAG	665220	5489324	2018	1	2018-10-10	16:35	Texture	Sandy loam	-	ALS	RG_MIDAG_SE-1_2018-10-10_1635
SE	MIDAG	665220	5489324	2018	1	2018-10-10	16:35	Mercury (Hg)	0.016	mg/kg	ALS	RG_MIDAG_SE-1_2018-10-10_1635
SE	MIDAG	665220	5489324	2018	1	2018-10-10	16:35	Aluminum (Al)	8,850	mg/kg	ALS	RG_MIDAG_SE-1_2018-10-10_1635
SE	MIDAG	665220	5489324	2018	1	2018-10-10	16:35	Antimony (Sb)	0.39	mg/kg	ALS	RG_MIDAG_SE-1_2018-10-10_1635
SE	MIDAG	665220	5489324	2018	1	2018-10-10	16:35	Arsenic (As)	7.4	mg/kg	ALS	RG_MIDAG_SE-1_2018-10-10_1635
SE	MIDAG	665220	5489324	2018	1	2018-10-10	16:35	Barium (Ba)	110	mg/kg	ALS	RG_MIDAG_SE-1_2018-10-10_1635
SE	MIDAG	665220	5489324	2018	1	2018-10-10	16:35	Beryllium (Be)	0.72	mg/kg	ALS	RG_MIDAG_SE-1_2018-10-10_1635
SE	MIDAG	665220	5489324	2018	1	2018-10-10	16:35	Bismuth (Bi)	<0.20	mg/kg	ALS	RG_MIDAG_SE-1_2018-10-10_1635
SE	MIDAG	665220	5489324	2018	1	2018-10-10	16:35	Boron (B)	8.6	mg/kg	ALS	RG_MIDAG_SE-1_2018-10-10_1635
SE	MIDAG	665220	5489324	2018	1	2018-10-10	16:35	Cadmium (Cd)	0.79	mg/kg	ALS	RG_MIDAG_SE-1_2018-10-10_1635
SE	MIDAG	665220	5489324	2018	1	2018-10-10	16:35	Calcium (Ca)	56,800	mg/kg	ALS	RG_MIDAG_SE-1_2018-10-10_1635
SE	MIDAG	665220	5489324	2018	1	2018-10-10	16:35	Chromium (Cr)	13	mg/kg	ALS	RG_MIDAG_SE-1_2018-10-10_1635
SE	MIDAG	665220	5489324	2018	1	2018-10-10	16:35	Cobalt (Co)	24	mg/kg	ALS	RG_MIDAG_SE-1_2018-10-10_1635
SE	MIDAG	665220	5489324	2018	1	2018-10-10	16:35	Copper (Cu)	12	mg/kg	ALS	RG_MIDAG_SE-1_2018-10-10_1635
SE	MIDAG	665220	5489324	2018	1	2018-10-10	16:35	Iron (Fe)	16,500	mg/kg	ALS	RG_MIDAG_SE-1_2018-10-10_1635
SE	MIDAG	665220	5489324	2018	1	2018-10-10	16:35	Lead (Pb)	10	mg/kg	ALS	RG_MIDAG_SE-1_2018-10-10_1635
SE	MIDAG	665220	5489324	2018		2018-10-10	16:35	Lithium (Li)	13	mg/kg	ALS	RG_MIDAG_SE-1_2018-10-10_1635
SE	MIDAG	665220	5489324	2018		2018-10-10	16:35	Magnesium (Mg)	7,670	mg/kg	ALS	RG MIDAG SE-1 2018-10-10 1635
SE	MIDAG	665220	5489324	2018		2018-10-10	16:35	Manganese (Mn)	372	mg/kg	ALS	RG MIDAG SE-1 2018-10-10 1635
SE	MIDAG	665220	5489324	2018		2018-10-10	16:35	Molybdenum (Mo)	1.3	mg/kg	ALS	RG MIDAG SE-1 2018-10-10 1635
SE	MIDAG	665220	5489324	2018	-	2018-10-10	16:35	Nickel (Ni)	44	mg/kg	ALS	RG MIDAG SE-1 2018-10-10 1635
SE	MIDAG	665220	5489324	2018		2018-10-10	16:35	Phosphorus (P)	1,150	mg/kg		RG MIDAG SE-1 2018-10-10 1635

WSP Canada Inc. Page 35 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	Ctation	L ocation	ı (UTMs) ^(a)	Vaar	Donlington	Dete	Time a	Analysis	Beault	Herit		Laboratory Information
pe	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
E	MIDAG	665220	5489324	2018	1	2018-10-10	16:35	Potassium (K)	1,930	mg/kg	ALS	RG MIDAG SE-1 2018-10-10 1635
E	MIDAG	665220	5489324	2018	1	2018-10-10	16:35	Selenium (Se)	1.4	mg/kg	ALS	RG MIDAG SE-1 2018-10-10 1635
E	MIDAG	665220	5489324	2018	1	2018-10-10	16:35	Silver (Ag)	<0.10	mg/kg	ALS	RG MIDAG SE-1 2018-10-10 1635
E	MIDAG	665220	5489324	2018	1	2018-10-10	16:35	Sodium (Na)	85	mg/kg	ALS	RG MIDAG SE-1 2018-10-10 1635
E	MIDAG	665220	5489324	2018	1	2018-10-10	16:35	Strontium (Sr)	78	mg/kg	ALS	RG MIDAG SE-1 2018-10-10 1635
E	MIDAG	665220	5489324	2018	1	2018-10-10	16:35	Sulfur (S)	<1000	mg/kg	ALS	RG MIDAG SE-1 2018-10-10 1635
E	MIDAG	665220	5489324	2018	1	2018-10-10	16:35	Thallium (TI)	0.41	mg/kg	ALS	RG MIDAG SE-1 2018-10-10 1635
E	MIDAG	665220	5489324	2018	1	2018-10-10	16:35	Tin (Sn)	<2.0	mg/kg	ALS	RG MIDAG SE-1 2018-10-10 1635
E	MIDAG	665220	5489324	2018	1	2018-10-10	16:35	Titanium (Ti)	8.7	mg/kg	ALS	RG MIDAG SE-1 2018-10-10 1635
E	MIDAG	665220	5489324	2018	1	2018-10-10	16:35	Tungsten (W)	<0.50	mg/kg	ALS	RG MIDAG SE-1 2018-10-10 1635
E	MIDAG	665220	5489324	2018	1	2018-10-10	16:35	Uranium (U)	0.71	mg/kg	ALS	RG MIDAG SE-1 2018-10-10 1635
E E	MIDAG	665220	5489324	2018	1	2018-10-10	16:35	Vanadium (V)	22	mg/kg	ALS	RG MIDAG SE-1 2018-10-10 1635
E	MIDAG	665220	5489324	2018	1	2018-10-10	16:35	Zinc (Zn)	110	mg/kg	ALS	RG MIDAG SE-1 2018-10-10 1635
E E	MIDAG	665220	5489324	2018	1	2018-10-10	16:35	Zirconium (Zr)	<1.0	mg/kg	ALS	RG MIDAG SE-1 2018-10-10 1635
E E	MIDAG	665220	5489324	2018	1	2018-10-10	16:35	pH (1:2 soil:water)	8.1	pH	ALS	RG MIDAG SE-1 2018-10-10 1635
E	MIDAG	665220	5489324	2018	1	2018-10-10	16:35	Total Organic Carbon	2.5	%	ALS	RG MIDAG SE-1 2018-10-10 1635
E E	MIDAG	665220	5489324	2018	2	2018-10-10	17:00	Moisture	83	%	ALS	RG MIDAG SE-2 2018-10-10 1700
E	MIDAG	665220	5489324	2018	2	2018-10-10	17:00	Acenaphthene	<0.021	mg/kg	ALS	RG MIDAG SE-2 2018-10-10 1700
E E	MIDAG	665220	5489324	2018	2	2018-10-10	17:00	Acenaphthylene	<0.014	mg/kg	ALS	RG MIDAG SE-2 2018-10-10 1700
E	MIDAG	665220	5489324	2018		2018-10-10	17:00	Acridine	<0.027	mg/kg	ALS	RG MIDAG SE-2 2018-10-10 1700
	MIDAG	665220	5489324	2018	2	2018-10-10	17:00	Anthracene	<0.011	mg/kg	ALS	RG MIDAG SE-2 2018-10-10 1700
E	MIDAG	665220	5489324	2018		2018-10-10	17:00	Benz(a)anthracene	0.045	mg/kg	ALS	RG MIDAG SE-2 2018-10-10 1700
E	MIDAG	665220	5489324	2018	2	2018-10-10	17:00	Benzo(a)pyrene	<0.027	mg/kg	ALS	RG MIDAG SE-2 2018-10-10 1700
E	MIDAG	665220	5489324	2018	_	2018-10-10	17:00	Benzo(b&j)fluoranthene	0.084	mg/kg	ALS	RG MIDAG SE-2 2018-10-10 1700
E	MIDAG	665220	5489324	2018	2	2018-10-10	17:00	Benzo(g h i)perylene	<0.027	mg/kg	ALS	RG MIDAG SE-2 2018-10-10 1700
E	MIDAG	665220	5489324	2018	2	2018-10-10	17:00	Benzo(k)fluoranthene	<0.027	mg/kg	ALS	RG MIDAG SE-2 2018-10-10 1700
E	MIDAG	665220	5489324	2018	2	2018-10-10	17:00	Benzo(e)pyrene	0.08	mg/kg	ALS	RG_MIDAG_SE-2_2018-10-10_1700
E	MIDAG	665220	5489324	2018	2	2018-10-10	17:00	Chrysene	0.12	mg/kg	ALS	RG MIDAG SE-2 2018-10-10 1700
E	MIDAG	665220	5489324	2018		2018-10-10	17:00	Dibenz(a h)anthracene	<0.014	mg/kg	ALS	RG MIDAG SE-2 2018-10-10 1700
E	MIDAG	665220	5489324	2018	2	2018-10-10	17:00	Fluoranthene	0.086	mg/kg	ALS	RG MIDAG SE-2 2018-10-10 1700
E	MIDAG	665220	5489324	2018		2018-10-10	17:00	Fluorene	0.055	mg/kg	ALS	RG MIDAG SE-2 2018-10-10 1700
E	MIDAG	665220	5489324	2018		2018-10-10	17:00	Indeno(1,2,3-c,d)pyrene	<0.027	mg/kg	ALS	RG MIDAG SE-2 2018-10-10 1700
E	MIDAG	665220	5489324	2018		2018-10-10	17:00	1-Methylnaphthalene	0.31	mg/kg	ALS	RG MIDAG SE-2 2018-10-10 1700
E	MIDAG	665220	5489324	2018	2	2018-10-10	17:00	2-Methylnaphthalene	0.47	mg/kg	ALS	RG MIDAG SE-2 2018-10-10 1700
E	MIDAG	665220	5489324	2018	_	2018-10-10	17:00	Naphthalene	0.15	mg/kg	ALS	RG MIDAG SE-2 2018-10-10 1700
E	MIDAG	665220	5489324	2018		2018-10-10	17:00	Perylene	<0.027	mg/kg	ALS	RG MIDAG SE-2 2018-10-10 1700
E	MIDAG	665220	5489324	2018		2018-10-10	17:00	Phenanthrene	0.35	mg/kg	ALS	RG MIDAG SE-2 2018-10-10 1700
E	MIDAG	665220	5489324	2018		2018-10-10	17:00	Pyrene	0.075	mg/kg	ALS	RG MIDAG SE-2 2018-10-10 1700
E	MIDAG	665220	5489324	2018		2018-10-10	17:00	Quinoline	<0.027	mg/kg	ALS	RG MIDAG SE-2 2018-10-10 1700
E	MIDAG	665220	5489324	2018		2018-10-10	17:00	IACR (CCME)	0.88	mg/kg	ALS	RG MIDAG SE-2 2018-10-10 1700
E	MIDAG	665220	5489324	2018		2018-10-10	17:00	B(a)P Total Potency Equivalent	0.037	mg/kg	ALS	RG MIDAG SE-2 2018-10-10 1700
E	MIDAG	665220	5489324	2018	2	2018-10-10	17:00	d8-Naphthalene	67	%	ALS	RG MIDAG SE-2 2018-10-10 1700
E	MIDAG	665220	5489324	2018	_	2018-10-10	17:00	d10-Acenaphthene	69	%	ALS	RG MIDAG SE-2 2018-10-10 1700
E	MIDAG	665220	5489324	2018	2	2018-10-10	17:00	d10-Phenanthrene	93	%	ALS	RG MIDAG SE-2 2018-10-10 1700
E	MIDAG	665220	5489324	2018	_	2018-10-10	17:00	d12-Chrysene	97	%	ALS	RG MIDAG SE-2 2018-10-10 1700
E	MIDAG	665220	5489324	2018	2	2018-10-10	17:00	% Gravel (>2 mm)	11	%	ALS	RG MIDAG SE-2 2018-10-10 1700
E								` ′				
	MIDAG	665220	5489324	2018	2	2018-10-10	17:00	% Sand (2.00 mm - 1.00 mm)	16	%	ALS	RG_MIDAG_SE-2_2018-10-10_

WSP Canada Inc. Page 36 of 337

Sediment Screening

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Table I-1	: Sediment Chem	-		CMm LAEMP	Sampling Sta	ations, 2012 to	2022					
Туре	Station	Location	າ (UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
Type	Station	Easting	Northing	i cai	Replicate	Date	Tille	Allalyte	Result	Oill	Lab	Sample ID
SE	MIDAG	665220	5489324	2018	2	2018-10-10	17:00	% Sand (1.00 mm - 0.50 mm)	21	%	ALS	RG_MIDAG_SE-2_2018-10-10_1700
SE	MIDAG	665220	5489324	2018	2	2018-10-10	17:00	% Sand (0.50 mm - 0.25 mm)	8.9	%	ALS	RG_MIDAG_SE-2_2018-10-10_1700
SE	MIDAG	665220	5489324	2018	2	2018-10-10	17:00	% Sand (0.25 mm - 0.125 mm)	3.6	%	ALS	RG_MIDAG_SE-2_2018-10-10_1700
SE	MIDAG	665220	5489324	2018	2	2018-10-10	17:00	% Sand (0.125 mm - 0.063 mm)	4.1	%	ALS	RG_MIDAG_SE-2_2018-10-10_1700
SE	MIDAG	665220	5489324	2018	2	2018-10-10	17:00	% Silt (0.063 mm - 0.0312 mm)	16	%	ALS	RG_MIDAG_SE-2_2018-10-10_1700
SE	MIDAG	665220	5489324	2018	2	2018-10-10	17:00	% Silt (0.031 mm - 0.004 mm)	18	%	ALS	RG_MIDAG_SE-2_2018-10-10_1700
SE	MIDAG	665220	5489324	2018	2	2018-10-10	17:00	% Clay (<4 μm)	3.1	%	ALS	RG_MIDAG_SE-2_2018-10-10_1700
SE	MIDAG	665220	5489324	2018	2	2018-10-10	17:00	Texture	Sandy loam	-	ALS	RG_MIDAG_SE-2_2018-10-10_1700
SE	MIDAG	665220	5489324	2018	2	2018-10-10	17:00	Mercury (Hg)	0.021	mg/kg	ALS	RG_MIDAG_SE-2_2018-10-10_1700
SE	MIDAG	665220	5489324	2018	2	2018-10-10	17:00	Aluminum (AI)	6,770	mg/kg	ALS	RG_MIDAG_SE-2_2018-10-10_1700
SE	MIDAG	665220	5489324	2018	2	2018-10-10	17:00	Antimony (Sb)	0.3	mg/kg	ALS	RG_MIDAG_SE-2_2018-10-10_1700
SE	MIDAG	665220	5489324	2018	2	2018-10-10	17:00	Arsenic (As)	6.1	mg/kg	ALS	RG_MIDAG_SE-2_2018-10-10_1700
SE	MIDAG	665220	5489324	2018	2	2018-10-10	17:00	Barium (Ba)	122	mg/kg	ALS	RG_MIDAG_SE-2_2018-10-10_1700
SE	MIDAG	665220	5489324	2018	2	2018-10-10	17:00	Beryllium (Be)	0.57	mg/kg	ALS	RG_MIDAG_SE-2_2018-10-10_1700
SE	MIDAG	665220	5489324	2018	2	2018-10-10	17:00	Bismuth (Bi)	<0.20	mg/kg	ALS	RG_MIDAG_SE-2_2018-10-10_1700
SE	MIDAG	665220	5489324	2018	2	2018-10-10	17:00	Boron (B)	8.3	mg/kg	ALS	RG_MIDAG_SE-2_2018-10-10_1700
SE	MIDAG	665220	5489324	2018	2	2018-10-10	17:00	Cadmium (Cd)	0.98	mg/kg	ALS	RG_MIDAG_SE-2_2018-10-10_1700
SE	MIDAG	665220	5489324	2018	2	2018-10-10	17:00	Calcium (Ca)	80,400	mg/kg	ALS	RG_MIDAG_SE-2_2018-10-10_1700
SE	MIDAG	665220	5489324	2018	2	2018-10-10	17:00	Chromium (Cr)	10	mg/kg	ALS	RG_MIDAG_SE-2_2018-10-10_1700
SE	MIDAG	665220	5489324	2018	2	2018-10-10	17:00	Cobalt (Co)	55	mg/kg	ALS	RG_MIDAG_SE-2_2018-10-10_1700
SE	MIDAG	665220	5489324	2018	2	2018-10-10	17:00	Copper (Cu)	11	mg/kg	ALS	RG_MIDAG_SE-2_2018-10-10_1700
SE	MIDAG	665220	5489324	2018	2	2018-10-10	17:00	Iron (Fe)	13,300	mg/kg	ALS	RG_MIDAG_SE-2_2018-10-10_1700
SE	MIDAG	665220	5489324	2018	2	2018-10-10	17:00	Lead (Pb)	8.7	mg/kg	ALS	RG_MIDAG_SE-2_2018-10-10_1700
SE	MIDAG	665220	5489324	2018	2	2018-10-10	17:00	Lithium (Li)	10	mg/kg	ALS	RG_MIDAG_SE-2_2018-10-10_1700
SE	MIDAG	665220	5489324	2018	2	2018-10-10	17:00	Magnesium (Mg)	7,670	mg/kg	ALS	RG_MIDAG_SE-2_2018-10-10_1700
SE	MIDAG	665220	5489324	2018	2	2018-10-10	17:00	Manganese (Mn)	502	mg/kg	ALS	RG_MIDAG_SE-2_2018-10-10_1700
SE	MIDAG	665220	5489324	2018	2	2018-10-10	17:00	Molybdenum (Mo)	1.1	mg/kg	ALS	RG_MIDAG_SE-2_2018-10-10_1700
SE	MIDAG	665220	5489324	2018	2	2018-10-10	17:00	Nickel (Ni)	70	mg/kg	ALS	RG_MIDAG_SE-2_2018-10-10_1700
SE	MIDAG	665220	5489324	2018	2	2018-10-10	17:00	Phosphorus (P)	1,060	mg/kg	ALS	RG_MIDAG_SE-2_2018-10-10_1700
SE	MIDAG	665220	5489324	2018	2	2018-10-10	17:00	Potassium (K)	1,420	mg/kg	ALS	RG_MIDAG_SE-2_2018-10-10_1700
SE	MIDAG	665220	5489324	2018	2	2018-10-10	17:00	Selenium (Se)	2.1	mg/kg	ALS	RG_MIDAG_SE-2_2018-10-10_1700
SE	MIDAG	665220	5489324	2018	2	2018-10-10	17:00	Silver (Ag)	0.1	mg/kg	ALS	RG_MIDAG_SE-2_2018-10-10_1700
SE	MIDAG	665220	5489324	2018	2	2018-10-10	17:00	Sodium (Na)	108	mg/kg	ALS	RG_MIDAG_SE-2_2018-10-10_1700
SE	MIDAG	665220	5489324	2018	2	2018-10-10	17:00	Strontium (Sr)	111	mg/kg	ALS	RG_MIDAG_SE-2_2018-10-10_1700
SE	MIDAG	665220	5489324	2018	2	2018-10-10	17:00	Sulfur (S)	1,000	mg/kg	ALS	RG_MIDAG_SE-2_2018-10-10_1700
SE	MIDAG	665220	5489324	2018	2	2018-10-10	17:00	Thallium (TI)	0.34	mg/kg	ALS	RG_MIDAG_SE-2_2018-10-10_1700
SE	MIDAG	665220	5489324	2018	2	2018-10-10	17:00	Tin (Sn)	<2.0	mg/kg	ALS	RG_MIDAG_SE-2_2018-10-10_1700
SE	MIDAG	665220	5489324	2018	2	2018-10-10	17:00	Titanium (Ti)	11	mg/kg	ALS	RG_MIDAG_SE-2_2018-10-10_1700
SE	MIDAG	665220	5489324	2018	2	2018-10-10	17:00	Tungsten (W)	<0.50	mg/kg	ALS	RG_MIDAG_SE-2_2018-10-10_1700
SE	MIDAG	665220	5489324	2018	2	2018-10-10	17:00	Uranium (U)	0.88	mg/kg	ALS	RG_MIDAG_SE-2_2018-10-10_1700
SE	MIDAG	665220	5489324	2018	2	2018-10-10	17:00	Vanadium (V)	17	mg/kg	ALS	RG_MIDAG_SE-2_2018-10-10_1700
SE	MIDAG	665220	5489324	2018	2	2018-10-10	17:00	Zinc (Zn)	116	mg/kg	ALS	RG_MIDAG_SE-2_2018-10-10_1700
SE	MIDAG	665220	5489324	2018	2	2018-10-10	17:00	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_MIDAG_SE-2_2018-10-10_1700
SE	MIDAG	665220	5489324	2018	2	2018-10-10	17:00	pH (1:2 soil:water)	8.0	рН	ALS	RG_MIDAG_SE-2_2018-10-10_1700
SE	MIDAG	665220	5489324	2018	2	2018-10-10	17:00	Total Organic Carbon	3.9	%	ALS	RG_MIDAG_SE-2_2018-10-10_1700
SE	MIDAG	665220	5489324	2018	3	2018-10-10	17:05	Moisture	79	%	ALS	RG_MIDAG_SE-3_2018-10-10_1705
SE	MIDAG	665220	5489324	2018	3	2018-10-10	17:05	Acenaphthene	<0.022	mg/kg	ALS	RG_MIDAG_SE-3_2018-10-10_1705

WSP Canada Inc. Page 37 of 337

Reference No. 22574542-001-R-Rev0-1000

Sediment Screening

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	Ctation	Location	n (UTMs) ^(a)	Voor	Doublecton	Doto	Time	A so all sta	_ Dooult	Llusit		Laboratory Information
ype	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE.	MIDAG	665220	5489324	2018	3	2018-10-10	17:05	Acenaphthylene	<0.012	mg/kg	ALS	RG MIDAG SE-3 2018-10-10 1705
SE	MIDAG	665220	5489324	2018	3	2018-10-10	17:05	Acridine	<0.023	mg/kg	ALS	RG MIDAG SE-3 2018-10-10 1705
SE	MIDAG	665220	5489324	2018	3	2018-10-10	17:05	Anthracene	0.015	mg/kg	ALS	RG MIDAG SE-3 2018-10-10 1705
SE	MIDAG	665220	5489324	2018	3	2018-10-10	17:05	Benz(a)anthracene	0.043	mg/kg	ALS	RG MIDAG SE-3 2018-10-10 1705
SE	MIDAG	665220	5489324	2018	3	2018-10-10	17:05	Benzo(a)pyrene	0.031	mg/kg	ALS	RG MIDAG SE-3 2018-10-10 1705
SE .	MIDAG	665220	5489324	2018	3	2018-10-10	17:05	Benzo(b&j)fluoranthene	0.1	mg/kg	ALS	RG MIDAG SE-3 2018-10-10 1705
SE SE	MIDAG	665220	5489324	2018	3	2018-10-10	17:05	Benzo(g_h_i)perylene	0.03	mg/kg	ALS	RG MIDAG SE-3 2018-10-10 1705
E E	MIDAG	665220	5489324	2018	3	2018-10-10	17:05	Benzo(k)fluoranthene	<0.023	mg/kg	ALS	RG MIDAG SE-3 2018-10-10 1705
SE SE	MIDAG	665220	5489324	2018	3	2018-10-10	17:05	Benzo(e)pyrene	0.093	mg/kg	ALS	RG_MIDAG_SE-3_2018-10-10_1705
SE SE	MIDAG	665220	5489324	2018	3	2018-10-10	17:05	Chrysene	0.13	mg/kg	ALS	RG MIDAG SE-3 2018-10-10 1705
SE SE	MIDAG	665220	5489324	2018	3	2018-10-10	17:05	Dibenz(a h)anthracene	<0.012	mg/kg	ALS	RG MIDAG SE-3 2018-10-10 1705
E E	MIDAG	665220	5489324	2018		2018-10-10	17:05	Fluoranthene	0.11	mg/kg	ALS	RG MIDAG SE-3 2018-10-10 1705
SE SE	MIDAG	665220	5489324	2018	3	2018-10-10	17:05	Fluorene	0.066	mg/kg	ALS	RG MIDAG SE-3 2018-10-10 1705
SE	MIDAG	665220	5489324	2018	3	2018-10-10	17:05	Indeno(1,2,3-c,d)pyrene	<0.023	mg/kg	ALS	RG MIDAG SE-3 2018-10-10 1705
SE	MIDAG	665220	5489324	2018	3	2018-10-10	17:05	1-Methylnaphthalene	0.35	mg/kg	ALS	RG MIDAG SE-3 2018-10-10 1705
SE SE	MIDAG	665220	5489324	2018	3	2018-10-10	17:05	2-Methylnaphthalene	0.54	mg/kg	ALS	RG MIDAG SE-3 2018-10-10 1705
SE SE	MIDAG	665220	5489324	2018	3	2018-10-10	17:05	Naphthalene	0.17	mg/kg	ALS	RG MIDAG SE-3 2018-10-10 1705
E E	MIDAG	665220	5489324	2018	3	2018-10-10	17:05	Perylene	<0.023	mg/kg	ALS	RG MIDAG SE-3 2018-10-10 1705
E E	MIDAG	665220	5489324	2018	3	2018-10-10	17:05	Phenanthrene	0.41	mg/kg	ALS	RG MIDAG SE-3 2018-10-10 1705
E	MIDAG	665220	5489324	2018		2018-10-10	17:05	Pyrene	0.094	mg/kg	ALS	RG MIDAG SE-3 2018-10-10 1705
E	MIDAG	665220	5489324	2018	3	2018-10-10	17:05	Quinoline	<0.023		ALS	RG MIDAG SE-3 2018-10-10 1705
E	MIDAG	665220	5489324	2018		2018-10-10	17:05	IACR (CCME)	1.0	mg/kg	ALS	RG MIDAG SE-3 2018-10-10 1705
E	MIDAG	665220	5489324	2018	3	2018-10-10	17:05	,	0.055	mg/kg	ALS	RG_MIDAG_SE-3_2018-10-10_1705
E		665220	+				17:05	B(a)P Total Potency Equivalent		mg/kg	ALS	
	MIDAG		5489324	2018		2018-10-10		d8-Naphthalene	65	%		RG_MIDAG_SE-3_2018-10-10_1705
E	MIDAG	665220	5489324	2018	3	2018-10-10	17:05	d10-Acenaphthene	68	%	ALS	RG_MIDAG_SE-3_2018-10-10_1705
E	MIDAG	665220	5489324	2018	3	2018-10-10	17:05	d10-Phenanthrene	89	%	ALS	RG_MIDAG_SE-3_2018-10-10_1705
E	MIDAG	665220	5489324	2018	3	2018-10-10	17:05	d12-Chrysene	93	%	ALS	RG_MIDAG_SE-3_2018-10-10_1705
SE .	MIDAG	665220	5489324	2018	3	2018-10-10	17:05	% Gravel (>2 mm)	12	%	ALS	RG_MIDAG_SE-3_2018-10-10_1705
SE .	MIDAG	665220	5489324	2018		2018-10-10	17:05	% Sand (2.00 mm - 1.00 mm)	17	%	ALS	RG_MIDAG_SE-3_2018-10-10_1705
E	MIDAG	665220	5489324	2018		2018-10-10	17:05	% Sand (1.00 mm - 0.50 mm)	13	%	ALS	RG_MIDAG_SE-3_2018-10-10_1705
E	MIDAG	665220	5489324	2018		2018-10-10	17:05	% Sand (0.50 mm - 0.25 mm)	3.2	%	ALS	RG_MIDAG_SE-3_2018-10-10_1705
SE .	MIDAG	665220	5489324	2018		2018-10-10	17:05	% Sand (0.25 mm - 0.125 mm)	2.7	%	ALS	RG_MIDAG_SE-3_2018-10-10_1705
E	MIDAG	665220	5489324	2018		2018-10-10	17:05	% Sand (0.125 mm - 0.063 mm)	5.2	%	ALS	RG_MIDAG_SE-3_2018-10-10_1705
SE .	MIDAG	665220	5489324	2018		2018-10-10	17:05	% Silt (0.063 mm - 0.0312 mm)	20	%	ALS	RG_MIDAG_SE-3_2018-10-10_1705
SE .	MIDAG	665220	5489324	2018		2018-10-10	17:05	% Silt (0.031 mm - 0.004 mm)	23	%	ALS	RG_MIDAG_SE-3_2018-10-10_1705
SE .	MIDAG	665220	5489324	2018		2018-10-10	17:05	% Clay (<4 μm)	4.2	%	ALS	RG_MIDAG_SE-3_2018-10-10_1705
E	MIDAG	665220	5489324	2018		2018-10-10	17:05	Texture	Silt loam	-	ALS	RG_MIDAG_SE-3_2018-10-10_1705
SE .	MIDAG	665220	5489324	2018		2018-10-10	17:05	Mercury (Hg)	0.024	mg/kg	ALS	RG_MIDAG_SE-3_2018-10-10_1705
Ē	MIDAG	665220	5489324	2018		2018-10-10	17:05	Aluminum (Al)	6,810	mg/kg	ALS	RG_MIDAG_SE-3_2018-10-10_1705
E	MIDAG	665220	5489324	2018		2018-10-10	17:05	Antimony (Sb)	0.28	mg/kg	ALS	RG_MIDAG_SE-3_2018-10-10_1705
E	MIDAG	665220	5489324	2018		2018-10-10	17:05	Arsenic (As)	5.9	mg/kg	ALS	RG_MIDAG_SE-3_2018-10-10_1705
E	MIDAG	665220	5489324	2018	3	2018-10-10	17:05	Barium (Ba)	123	mg/kg	ALS	RG_MIDAG_SE-3_2018-10-10_1705
E	MIDAG	665220	5489324	2018		2018-10-10	17:05	Beryllium (Be)	0.61	mg/kg	ALS	RG_MIDAG_SE-3_2018-10-10_1705
ŝΕ	MIDAG	665220	5489324	2018		2018-10-10	17:05	Bismuth (Bi)	<0.20	mg/kg	ALS	RG_MIDAG_SE-3_2018-10-10_1705
E	MIDAG	665220	5489324	2018	3	2018-10-10	17:05	Boron (B)	8.6	mg/kg	ALS	RG_MIDAG_SE-3_2018-10-10_1705
E	MIDAG	665220	5489324	2018	3	2018-10-10	17:05	Cadmium (Cd)	1.1	mg/kg	ALS	RG_MIDAG_SE-3_2018-10-10_1705
SE	MIDAG	665220	5489324	2018	3	2018-10-10	17:05	Calcium (Ca)	75,800	mg/kg	ALS	RG_MIDAG_SE-3_2018-10-10_1705

WSP Canada Inc. Page 38 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

vne	Station	Location	(UTMs) ^(a)	Year	Poplicate	Data	Time	Analyta	Popult	Unit		Laboratory Information
уре	Station	Easting	Northing	rear	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MIDAG	665220	5489324	2018	3	2018-10-10	17:05	Chromium (Cr)	10	mg/kg	ALS	RG MIDAG SE-3 2018-10-10 1705
SE	MIDAG	665220	5489324	2018	3	2018-10-10	17:05	Cobalt (Co)	49	mg/kg	ALS	RG MIDAG SE-3 2018-10-10 1705
SE	MIDAG	665220	5489324	2018	3	2018-10-10	17:05	Copper (Cu)	11	mg/kg	ALS	RG MIDAG SE-3 2018-10-10 1705
SE	MIDAG	665220	5489324	2018	3	2018-10-10	17:05	Iron (Fe)	13,700	mg/kg	ALS	RG MIDAG SE-3 2018-10-10 1705
SE	MIDAG	665220	5489324	2018	3	2018-10-10	17:05	Lead (Pb)	8.9	mg/kg	ALS	RG_MIDAG_SE-3_2018-10-10_1705
SE	MIDAG	665220	5489324	2018	3	2018-10-10	17:05	Lithium (Li)	10	mg/kg	ALS	RG MIDAG SE-3 2018-10-10 1705
SE	MIDAG	665220	5489324	2018	3	2018-10-10	17:05	Magnesium (Mg)	7,460	mg/kg	ALS	RG MIDAG SE-3 2018-10-10 1705
SE	MIDAG	665220	5489324	2018	3	2018-10-10	17:05	Manganese (Mn)	448	mg/kg	ALS	RG MIDAG SE-3 2018-10-10 1705
SE.	MIDAG	665220	5489324	2018	3	2018-10-10	17:05	Molybdenum (Mo)	1.1	mg/kg	ALS	RG_MIDAG_SE-3_2018-10-10_1705
SE	MIDAG	665220	5489324	2018	3	2018-10-10	17:05	Nickel (Ni)	60	mg/kg	ALS	RG MIDAG SE-3 2018-10-10 1705
SE	MIDAG	665220	5489324	2018	3	2018-10-10	17:05	Phosphorus (P)	1,030	mg/kg	ALS	RG MIDAG SE-3 2018-10-10 1705
SE	MIDAG	665220	5489324	2018	3	2018-10-10	17:05	Potassium (K)	1,450	mg/kg	ALS	RG MIDAG SE-3 2018-10-10 1705
SE.	MIDAG	665220	5489324	2018	3	2018-10-10	17:05	Selenium (Se)	2.4	mg/kg	ALS	RG MIDAG SE-3 2018-10-10 1705
SE	MIDAG	665220	5489324	2018	3	2018-10-10	17:05	Silver (Ag)	0.11	mg/kg	ALS	RG_MIDAG_SE-3_2018-10-10_1705
SE	MIDAG	665220	5489324	2018	3	2018-10-10	17:05	Sodium (Na)	97	mg/kg	ALS	RG MIDAG SE-3 2018-10-10 1705
E	MIDAG	665220	5489324	2018	3	2018-10-10	17:05	Strontium (Sr)	105	mg/kg	ALS	RG_MIDAG_SE-3_2018-10-10_1705
E	MIDAG	665220	5489324	2018	3	2018-10-10	17:05	Sulfur (S)	1,000	mg/kg	ALS	RG MIDAG SE-3 2018-10-10 1705
E	MIDAG	665220	5489324	2018	3	2018-10-10	17:05	Thallium (TI)	0.33	mg/kg	ALS	RG_MIDAG_SE-3_2018-10-10_1705
Е	MIDAG	665220	5489324	2018	3	2018-10-10	17:05	Tin (Sn)	<2.0	mg/kg	ALS	RG_MIDAG_SE-3_2018-10-10_1705
E	MIDAG	665220	5489324	2018	3	2018-10-10	17:05	Titanium (Ti)	9.8	mg/kg	ALS	RG_MIDAG_SE-3_2018-10-10_1705
E	MIDAG	665220	5489324	2018	3	2018-10-10	17:05	Tungsten (W)	<0.50	mg/kg	ALS	RG_MIDAG_SE-3_2018-10-10_1705
E	MIDAG	665220	5489324	2018	3	2018-10-10	17:05	Uranium (U)	0.76	mg/kg	ALS	RG MIDAG SE-3 2018-10-10 1705
Е	MIDAG	665220	5489324	2018	3	2018-10-10	17:05	Vanadium (V)	17	mg/kg	ALS	RG_MIDAG_SE-3_2018-10-10_1705
E	MIDAG	665220	5489324	2018	3	2018-10-10	17:05	Zinc (Zn)	119	mg/kg	ALS	RG_MIDAG_SE-3_2018-10-10_1705
E	MIDAG	665220	5489324	2018	3	2018-10-10	17:05	Zirconium (Zr)	<1.0	mg/kg	ALS	RG MIDAG SE-3 2018-10-10 1705
E	MIDAG	665220	5489324	2018	3	2018-10-10	17:05	pH (1:2 soil:water)	7.9	pH	ALS	RG MIDAG SE-3 2018-10-10 1705
SE	MIDAG	665220	5489324	2018	3	2018-10-10	17:05	Total Organic Carbon	4.9	%	ALS	RG MIDAG SE-3 2018-10-10 1705
SE.	MIDAG	665220	5489324	2018	4	2018-10-10	17:10	Moisture	72	%	ALS	RG MIDAG SE-4 2018-10-10 1710
SE SE	MIDAG	665220	5489324	2018	4	2018-10-10	17:10	Acenaphthene	<0.024	mg/kg	ALS	RG MIDAG SE-4 2018-10-10 1710
SE	MIDAG	665220	5489324	2018	4	2018-10-10	17:10	Acenaphthylene	<0.0085	mg/kg	ALS	RG MIDAG SE-4 2018-10-10 1710
SE.	MIDAG	665220	5489324	2018	4	2018-10-10	17:10	Acridine	<0.017	mg/kg	ALS	RG MIDAG SE-4 2018-10-10 1710
SE	MIDAG	665220	5489324	2018	4	2018-10-10	17:10	Anthracene	0.0078	mg/kg	ALS	RG MIDAG SE-4 2018-10-10 1710
SE SE	MIDAG	665220	5489324	2018	4	2018-10-10	17:10	Benz(a)anthracene	0.041	mg/kg	ALS	RG MIDAG SE-4 2018-10-10 1710
SE.	MIDAG	665220	5489324	2018	4	2018-10-10	17:10	Benzo(a)pyrene	0.025	mg/kg	ALS	RG MIDAG SE-4 2018-10-10 1710
SE	MIDAG	665220	5489324	2018	4	2018-10-10	17:10	Benzo(b&j)fluoranthene	0.077	mg/kg	ALS	RG MIDAG SE-4 2018-10-10 1710
E E	MIDAG	665220	5489324	2018	4	2018-10-10	17:10	Benzo(g h i)perylene	0.023	mg/kg	ALS	RG MIDAG SE-4 2018-10-10 1710
E E	MIDAG	665220	5489324	2018	4	2018-10-10	17:10	Benzo(k)fluoranthene	<0.017	mg/kg	ALS	RG MIDAG SE-4 2018-10-10 1710
E	MIDAG	665220	5489324	2018	4	2018-10-10	17:10	Benzo(e)pyrene	0.072	mg/kg	ALS	RG MIDAG SE-4 2018-10-10 1710
E	MIDAG	665220	5489324	2018	4	2018-10-10	17:10	Chrysene	0.1	mg/kg	ALS	RG MIDAG SE-4 2018-10-10 1710
E	MIDAG	665220	5489324	2018	4	2018-10-10	17:10	Dibenz(a h)anthracene	<0.0085	mg/kg	ALS	RG MIDAG SE-4 2018-10-10 1710
E	MIDAG	665220	5489324	2018	4	2018-10-10	17:10	Fluoranthene	0.095	mg/kg	ALS	RG MIDAG SE-4 2018-10-10 1710
E	MIDAG	665220	5489324	2018	4	2018-10-10	17:10	Fluorene	0.059	mg/kg	ALS	RG MIDAG SE-4 2018-10-10 1710
E	MIDAG	665220	5489324	2018	4	2018-10-10	17:10	Indeno(1,2,3-c,d)pyrene	<0.017	mg/kg	ALS	RG MIDAG SE-4 2018-10-10 1710
E	MIDAG	665220	5489324	2018	4	2018-10-10	17:10	1-Methylnaphthalene	0.28	mg/kg	ALS	RG MIDAG SE-4 2018-10-10 1710
E	MIDAG	665220	5489324	2018	4	2018-10-10	17:10	2-Methylnaphthalene	0.43	mg/kg	ALS	RG MIDAG SE-4 2018-10-10 1710
	IVIIDAO				+ - 7		17:10	, ,	0.14		ALS	RG MIDAG SE-4 2018-10-10 1710
E	MIDAG	665220	5489324	2018	Δ	2018-10-10	77'10	Naphthalene	1114	mg/kg	A . >	IR(- MII)A(- SE-4 7018-10-10 1710

WSP Canada Inc. Page 39 of 337

Reference No. 22574542-001-R-Rev0-1000

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Vpo	Station	Location	(UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
уре	Station	Easting	Northing	rear	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MIDAG	665220	5489324	2018	4	2018-10-10	17:10	Phenanthrene	0.36	mg/kg	ALS	RG_MIDAG_SE-4_2018-10-10_1710
SE	MIDAG	665220	5489324	2018	4	2018-10-10	17:10	Pyrene	0.081	mg/kg	ALS	RG_MIDAG_SE-4_2018-10-10_1710
SE	MIDAG	665220	5489324	2018	4	2018-10-10	17:10	Quinoline	<0.017	mg/kg	ALS	RG_MIDAG_SE-4_2018-10-10_1710
SE	MIDAG	665220	5489324	2018	4	2018-10-10	17:10	IACR (CCME)	0.8	mg/kg	ALS	RG_MIDAG_SE-4_2018-10-10_1710
SE	MIDAG	665220	5489324	2018	4	2018-10-10	17:10	B(a)P Total Potency Equivalent	0.044	mg/kg	ALS	RG MIDAG SE-4 2018-10-10 1710
SE	MIDAG	665220	5489324	2018	4	2018-10-10	17:10	d8-Naphthalene	58	%	ALS	RG MIDAG SE-4 2018-10-10 1710
SE	MIDAG	665220	5489324	2018	4	2018-10-10	17:10	d10-Acenaphthene	63	%	ALS	RG MIDAG SE-4 2018-10-10 1710
SE	MIDAG	665220	5489324	2018	4	2018-10-10	17:10	d10-Phenanthrene	85	%	ALS	RG MIDAG SE-4 2018-10-10 1710
SE	MIDAG	665220	5489324	2018	4	2018-10-10	17:10	d12-Chrysene	89	%	ALS	RG MIDAG SE-4 2018-10-10 1710
SE	MIDAG	665220	5489324	2018	4	2018-10-10	17:10	% Gravel (>2 mm)	1.9	%	ALS	RG MIDAG SE-4 2018-10-10 1710
SE	MIDAG	665220	5489324	2018	4	2018-10-10	17:10	% Sand (2.00 mm - 1.00 mm)	4.4	%	ALS	RG_MIDAG_SE-4_2018-10-10_1710
SE	MIDAG	665220	5489324	2018	4	2018-10-10	17:10	% Sand (1.00 mm - 0.50 mm)	7.7	%	ALS	RG MIDAG SE-4 2018-10-10 1710
SE	MIDAG	665220	5489324	2018	4	2018-10-10	17:10	% Sand (0.50 mm - 0.25 mm)	4.5	%	ALS	RG MIDAG SE-4 2018-10-10 1710
SE	MIDAG	665220	5489324	2018	4	2018-10-10	17:10	% Sand (0.25 mm - 0.125 mm)	5.8	%	ALS	RG MIDAG SE-4 2018-10-10 1710
SE	MIDAG	665220	5489324	2018	4	2018-10-10	17:10	% Sand (0.125 mm - 0.063 mm)	10	%	ALS	RG MIDAG SE-4 2018-10-10 1710
SE	MIDAG	665220	5489324	2018	4	2018-10-10	17:10	% Silt (0.063 mm - 0.0312 mm)	28	%	ALS	RG MIDAG SE-4 2018-10-10 1710
SE	MIDAG	665220	5489324	2018	4	2018-10-10	17:10	% Silt (0.031 mm - 0.004 mm)	32	%	ALS	RG_MIDAG_SE-4_2018-10-10_1710
SE	MIDAG	665220	5489324	2018	4	2018-10-10	17:10	% Clay (<4 μm)	5.9	%	ALS	RG MIDAG SE-4 2018-10-10 1710
SE	MIDAG	665220	5489324	2018	4	2018-10-10	17:10	Texture	Silt loam	-	ALS	RG_MIDAG_SE-4_2018-10-10_1710
SE	MIDAG	665220	5489324	2018	4	2018-10-10	17:10	Mercury (Hg)	0.031	mg/kg	ALS	RG MIDAG SE-4 2018-10-10 1710
SE.	MIDAG	665220	5489324	2018	4	2018-10-10	17:10	Aluminum (AI)	6,560	mg/kg	ALS	RG MIDAG SE-4 2018-10-10 1710
SE	MIDAG	665220	5489324	2018	4	2018-10-10	17:10	Antimony (Sb)	0.3	mg/kg	ALS	RG_MIDAG_SE-4_2018-10-10_1710
SE	MIDAG	665220	5489324	2018	4	2018-10-10	17:10	Arsenic (As)	5.9	mg/kg	ALS	RG MIDAG SE-4_2018-10-10_1710
SE	MIDAG	665220	5489324	2018	4	2018-10-10	17:10	Barium (Ba)	124	mg/kg	ALS	RG MIDAG SE-4 2018-10-10 1710
SE	MIDAG	665220	5489324	2018	4	2018-10-10	17:10	Beryllium (Be)	0.57	mg/kg	ALS	RG MIDAG SE-4 2018-10-10 1710
SE	MIDAG	665220	5489324	2018	4	2018-10-10	17:10	Bismuth (Bi)	<0.20	mg/kg	ALS	RG MIDAG SE-4 2018-10-10 1710
SE	MIDAG	665220	5489324	2018	4	2018-10-10	17:10	Boron (B)	7.6	mg/kg	ALS	RG MIDAG SE-4 2018-10-10 1710
SE	MIDAG	665220	5489324	2018	4	2018-10-10	17:10	Cadmium (Cd)	1.0	mg/kg	ALS	RG MIDAG SE-4 2018-10-10 1710
SE	MIDAG	665220	5489324	2018	4	2018-10-10	17:10	Calcium (Ca)	66,300	mg/kg	ALS	RG MIDAG SE-4 2018-10-10 1710
SE	MIDAG	665220	5489324	2018	4	2018-10-10	17:10	Chromium (Cr)	10.0	mg/kg	ALS	RG MIDAG SE-4 2018-10-10 1710
SE	MIDAG	665220	5489324	2018	4	2018-10-10	17:10	Cobalt (Co)	54	mg/kg	ALS	RG MIDAG SE-4 2018-10-10 1710
SE	MIDAG	665220	5489324	2018	4	2018-10-10	17:10	Copper (Cu)	11	mg/kg	ALS	RG MIDAG SE-4 2018-10-10 1710
SE	MIDAG	665220	5489324	2018	4	2018-10-10	17:10	Iron (Fe)	12,600	mg/kg	ALS	RG MIDAG SE-4 2018-10-10 1710
SE	MIDAG	665220	5489324	2018	4	2018-10-10	17:10	Lead (Pb)	8.3	mg/kg	ALS	RG MIDAG SE-4 2018-10-10 1710
SE	MIDAG	665220	5489324	2018	4	2018-10-10	17:10	Lithium (Li)	9.5	mg/kg	ALS	RG MIDAG SE-4 2018-10-10 1710
SE	MIDAG	665220	5489324	2018	4	2018-10-10	17:10	Magnesium (Mg)	7,280	mg/kg	ALS	RG MIDAG SE-4 2018-10-10 1710
SE	MIDAG	665220	5489324	2018	4	2018-10-10	17:10	Manganese (Mn)	498	mg/kg	ALS	RG MIDAG SE-4 2018-10-10 1710
SE	MIDAG	665220	5489324	2018	4	2018-10-10	17:10	Molybdenum (Mo)	1.1	mg/kg	ALS	RG MIDAG SE-4 2018-10-10 1710
SE	MIDAG	665220	5489324	2018	4	2018-10-10	17:10	Nickel (Ni)	67	mg/kg	ALS	RG MIDAG SE-4 2018-10-10 1710
SE	MIDAG	665220	5489324	2018	4	2018-10-10	17:10	Phosphorus (P)	1,020	mg/kg	ALS	RG MIDAG SE-4 2018-10-10 1710
SE SE	MIDAG	665220	5489324	2018	4	2018-10-10	17:10	Potassium (K)	1,340	mg/kg	ALS	RG MIDAG SE-4 2018-10-10 1710
SE SE	MIDAG	665220	5489324	2018	4	2018-10-10	17:10	Selenium (Se)	2.4	mg/kg	ALS	RG MIDAG SE-4 2018-10-10 1710
	MIDAG	665220	5489324	2018	4	2018-10-10	17:10	Silver (Ag)	0.11	mg/kg	ALS	RG MIDAG SE-4 2018-10-10 1710
	11112/10		5489324	2018	1	2018-10-10	17:10	Sodium (Na)	98	mg/kg	ALS	RG MIDAG SE-4 2018-10-10 1710
SE	MIDAG	665220	()409.774									
SE SE	MIDAG MIDAG	665220 665220			4			, ,		1 - 1 - 1 - 1		
	MIDAG MIDAG MIDAG	665220 665220 665220	5489324 5489324 5489324	2018 2018	4	2018-10-10	17:10 17:10	Strontium (Sr) Sulfur (S)	94 <1000	mg/kg mg/kg	ALS ALS	RG_MIDAG_SE-4_2018-10-10_1710 RG_MIDAG_SE-4_2018-10-10_1710

WSP Canada Inc. Page 40 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

T	Ctation	Location	ı (UTMs) ^(a)	Voc	Donlington	Doto	Time	Analyte	Docult	Ll _{io} it		Laboratory Information
Type	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MIDAG	665220	5489324	2018	4	2018-10-10	17:10	Tin (Sn)	<2.0	mg/kg	ALS	RG MIDAG SE-4 2018-10-10 1710
SE	MIDAG	665220	5489324	2018	4	2018-10-10	17:10	Titanium (Ti)	9.2	mg/kg	ALS	RG MIDAG SE-4 2018-10-10 1710
SE	MIDAG	665220	5489324	2018	4	2018-10-10	17:10	Tungsten (W)	<0.50	mg/kg	ALS	RG MIDAG SE-4 2018-10-10 1710
SE	MIDAG	665220	5489324	2018	4	2018-10-10	17:10	Uranium (U)	0.79	mg/kg	ALS	RG MIDAG SE-4 2018-10-10 1710
SE	MIDAG	665220	5489324	2018	4	2018-10-10	17:10	Vanadium (V)	17	mg/kg	ALS	RG MIDAG SE-4 2018-10-10 1710
SE	MIDAG	665220	5489324	2018	4	2018-10-10	17:10	Zinc (Zn)	120	mg/kg	ALS	RG_MIDAG_SE-4_2018-10-10_1710
SE	MIDAG	665220	5489324	2018	4	2018-10-10	17:10	Zirconium (Zr)	<1.0	mg/kg	ALS	RG MIDAG SE-4 2018-10-10 1710
SE	MIDAG	665220	5489324	2018	4	2018-10-10	17:10	pH (1:2 soil:water)	7.9	pH	ALS	RG MIDAG SE-4 2018-10-10 1710
SE	MIDAG	665220	5489324	2018	4	2018-10-10	17:10	Total Organic Carbon	6.1	%	ALS	RG_MIDAG_SE-4_2018-10-10_1710
SE	MIDAG	665220	5489324	2018	5	2018-10-10	17:16	Moisture	77	%	ALS	RG_MIDAG_SE-5_2018-10-10_1725
SE	MIDAG	665220	5489324	2018	5	2018-10-10	17:25	Acenaphthene	<0.036	mg/kg	ALS	RG MIDAG SE-5 2018-10-10 1725
SE	MIDAG	665220	5489324	2018	5	2018-10-10	17:25	Acenaphthylene	0.011	mg/kg	ALS	RG MIDAG SE-5 2018-10-10 1725
SE	MIDAG	665220	5489324	2018	5	2018-10-10	17:25	Acridine	<0.060	mg/kg	ALS	RG MIDAG SE-5 2018-10-10 1725
SE	MIDAG	665220	5489324	2018	5	2018-10-10	17:25	Anthracene	0.014	mg/kg	ALS	RG MIDAG SE-5 2018-10-10 1725
SE	MIDAG	665220	5489324	2018	5	2018-10-10	17:25	Benz(a)anthracene	0.074	mg/kg	ALS	RG MIDAG SE-5 2018-10-10 1725
SE	MIDAG	665220	5489324	2018	5	2018-10-10	17:25	Benzo(a)pyrene	0.053	mg/kg	ALS	RG MIDAG SE-5 2018-10-10 1725
SE	MIDAG	665220	5489324	2018	5	2018-10-10	17:25	Benzo(b&j)fluoranthene	0.033	mg/kg	ALS	RG MIDAG SE-5 2018-10-10 1725
SE	MIDAG	665220	5489324	2018	5	2018-10-10	17:25		0.045		ALS	RG MIDAG SE-5 2018-10-10 1725
SE					5			Benzo(g_h_i)perylene		mg/kg		RG MIDAG SE-5_2016-10-10_1725
	MIDAG	665220	5489324	2018		2018-10-10	17:25	Benzo(k)fluoranthene	0.021	mg/kg	ALS	
SE	MIDAG	665220	5489324	2018	5	2018-10-10	17:25	Benzo(e)pyrene	0.14	mg/kg	ALS	RG_MIDAG_SE-5_2018-10-10_1725
SE	MIDAG	665220	5489324	2018	5	2018-10-10	17:25	Chrysene	0.21	mg/kg	ALS	RG_MIDAG_SE-5_2018-10-10_1725
SE	MIDAG	665220	5489324	2018	5	2018-10-10	17:25	Dibenz(a_h)anthracene	0.016	mg/kg	ALS	RG_MIDAG_SE-5_2018-10-10_1725
SE	MIDAG	665220	5489324	2018	5	2018-10-10	17:25	Fluoranthene	0.2	mg/kg	ALS	RG_MIDAG_SE-5_2018-10-10_1725
SE	MIDAG	665220	5489324	2018	5	2018-10-10	17:25	Fluorene	0.12	mg/kg	ALS	RG_MIDAG_SE-5_2018-10-10_1725
SE	MIDAG	665220	5489324	2018	5	2018-10-10	17:25	Indeno(1,2,3-c,d)pyrene	<0.019	mg/kg	ALS	RG_MIDAG_SE-5_2018-10-10_1725
SE	MIDAG	665220	5489324	2018	5	2018-10-10	17:25	1-Methylnaphthalene	0.56	mg/kg	ALS	RG_MIDAG_SE-5_2018-10-10_1725
SE	MIDAG	665220	5489324	2018	5	2018-10-10	17:25	2-Methylnaphthalene	0.87	mg/kg	ALS	RG_MIDAG_SE-5_2018-10-10_1725
SE	MIDAG	665220	5489324	2018	5	2018-10-10	17:25	Naphthalene	0.26	mg/kg	ALS	RG_MIDAG_SE-5_2018-10-10_1725
SE	MIDAG	665220	5489324	2018	5	2018-10-10	17:25	Perylene	<0.019	mg/kg	ALS	RG_MIDAG_SE-5_2018-10-10_1725
SE	MIDAG	665220	5489324	2018	5	2018-10-10	17:25	Phenanthrene	0.63	mg/kg	ALS	RG_MIDAG_SE-5_2018-10-10_1725
SE	MIDAG	665220	5489324	2018	5	2018-10-10	17:25		0.16	mg/kg	ALS	RG_MIDAG_SE-5_2018-10-10_1725
SE	MIDAG	665220	5489324	2018	5	2018-10-10	17:25	Quinoline	<0.019	mg/kg	ALS	RG_MIDAG_SE-5_2018-10-10_1725
SE	MIDAG	665220	5489324	2018	5	2018-10-10	17:25	IACR (CCME)	1.7	mg/kg	ALS	RG_MIDAG_SE-5_2018-10-10_1725
SE	MIDAG	665220	5489324	2018	5	2018-10-10	17:25	B(a)P Total Potency Equivalent	0.098	mg/kg	ALS	RG_MIDAG_SE-5_2018-10-10_1725
SE	MIDAG	665220	5489324	2018	5	2018-10-10	17:25	d8-Naphthalene	55	%	ALS	RG_MIDAG_SE-5_2018-10-10_1725
SE	MIDAG	665220	5489324	2018	5	2018-10-10	17:25	d10-Acenaphthene	62	%	ALS	RG_MIDAG_SE-5_2018-10-10_1725
SE	MIDAG	665220	5489324	2018	5	2018-10-10	17:25	d10-Phenanthrene	85	%	ALS	RG_MIDAG_SE-5_2018-10-10_1725
SE	MIDAG	665220	5489324	2018	5	2018-10-10	17:25	d12-Chrysene	90	%	ALS	RG_MIDAG_SE-5_2018-10-10_1725
SE	MIDAG	665220	5489324	2018	5	2018-10-10	17:25	% Gravel (>2 mm)	3.0	%	ALS	RG_MIDAG_SE-5_2018-10-10_1725
SE	MIDAG	665220	5489324	2018	5	2018-10-10	17:25	% Sand (2.00 mm - 1.00 mm)	10	%	ALS	RG_MIDAG_SE-5_2018-10-10_1725
SE	MIDAG	665220	5489324	2018	5	2018-10-10	17:25	% Sand (1.00 mm - 0.50 mm)	19	%	ALS	RG_MIDAG_SE-5_2018-10-10_1725
SE	MIDAG	665220	5489324	2018	5	2018-10-10	17:25	% Sand (0.50 mm - 0.25 mm)	11	%	ALS	RG_MIDAG_SE-5_2018-10-10_1725
SE	MIDAG	665220	5489324	2018	5	2018-10-10	17:25	% Sand (0.25 mm - 0.125 mm)	6.3	%	ALS	RG_MIDAG_SE-5_2018-10-10_1725
SE	MIDAG	665220	5489324	2018	5	2018-10-10	17:25	% Sand (0.125 mm - 0.063 mm)	7.3	%	ALS	RG MIDAG SE-5 2018-10-10 1725
SE	MIDAG	665220	5489324	2018	5	2018-10-10	17:25	% Silt (0.063 mm - 0.0312 mm)	18	%	ALS	RG MIDAG SE-5 2018-10-10 1725
SE	MIDAG	665220	5489324	2018	5	2018-10-10	17:25	% Silt (0.031 mm - 0.004 mm)	20	%	ALS	RG MIDAG SE-5 2018-10-10 1725
SE	MIDAG	665220	5489324	2018	5	2018-10-10	17:25	% Clay (<4 μm)	4.2	%	ALS	RG MIDAG SE-5 2018-10-10 1725

WSP Canada Inc. Page 41 of 337

Sediment Screening

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	Ctotion	Location	ı (UTMs) ^(a)	Veer	Donlingto	Dete	Time	Analysis	- Popult	Heit		Laboratory Information
ype	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MIDAG	665220	5489324	2018	5	2018-10-10	17:25	Texture	Sandy loam	-	ALS	RG MIDAG SE-5 2018-10-10 1725
Ε	MIDAG	665220	5489324	2018	5	2018-10-10	17:25	Mercury (Hg)	0.031	mg/kg	ALS	RG MIDAG SE-5 2018-10-10 1725
E	MIDAG	665220	5489324	2018	5	2018-10-10	17:25	Aluminum (AI)	7,020	mg/kg	ALS	RG MIDAG SE-5 2018-10-10 1725
SE SE	MIDAG	665220	5489324	2018	5	2018-10-10	17:25	Antimony (Sb)	0.41	mg/kg	ALS	RG MIDAG SE-5 2018-10-10 1725
SE SE	MIDAG	665220	5489324	2018	5	2018-10-10	17:25	Arsenic (As)	6.7	mg/kg	ALS	RG MIDAG SE-5 2018-10-10 1725
SE SE	MIDAG	665220	5489324	2018	5	2018-10-10	17:25	Barium (Ba)	123	mg/kg	ALS	RG MIDAG SE-5 2018-10-10 1725
E E	MIDAG	665220	5489324	2018	5	2018-10-10	17:25	Beryllium (Be)	0.64	mg/kg	ALS	RG MIDAG SE-5 2018-10-10 1725
E	MIDAG	665220	5489324	2018	5	2018-10-10	17:25	Bismuth (Bi)	<0.20	mg/kg	ALS	RG MIDAG SE-5 2018-10-10 1725
E	MIDAG	665220	5489324	2018	5	2018-10-10	17:25	Boron (B)	7.8	mg/kg	ALS	RG_MIDAG_SE-5_2018-10-10_1725
E	MIDAG	665220	5489324	2018	5	2018-10-10	17:25	Cadmium (Cd)	1.0	mg/kg	ALS	RG MIDAG SE-5 2018-10-10 1725
E	MIDAG	665220	5489324	2018	5	2018-10-10	17:25	Calcium (Ca)	53,100	mg/kg	ALS	RG MIDAG SE-5 2018-10-10 1725
E	MIDAG	665220	5489324	2018	5	2018-10-10	17:25	Chromium (Cr)	11	mg/kg	ALS	RG MIDAG SE-5 2018-10-10 1725
E	MIDAG	665220	5489324	2018	5	2018-10-10	17:25	Cobalt (Co)	35	mg/kg	ALS	RG MIDAG SE-5 2018-10-10 1725
E	MIDAG	665220	5489324	2018	5	2018-10-10	17:25	Copper (Cu)	12	mg/kg	ALS	RG_MIDAG_SE-5_2018-10-10_1725
E	MIDAG	665220	5489324	2018	5	2018-10-10	17:25	Iron (Fe)	12,900		ALS	RG MIDAG SE-5 2018-10-10 1725
E	MIDAG	665220	5489324	2018	5	2018-10-10	17:25	Lead (Pb)	9.1	mg/kg	ALS	RG MIDAG SE-5 2018-10-10 1725
E	MIDAG	665220	5489324		5		17:25	,	11	mg/kg	ALS	RG MIDAG SE-5 2018-10-10 1725
			-	2018		2018-10-10		Lithium (Li)		mg/kg		
E E	MIDAG	665220	5489324	2018	5	2018-10-10	17:25	Magnesium (Mg)	7,020	mg/kg	ALS	RG_MIDAG_SE-5_2018-10-10_1725
	MIDAG	665220	5489324	2018	5	2018-10-10	17:25	Manganese (Mn)	353	mg/kg	ALS	RG_MIDAG_SE-5_2018-10-10_1725
	MIDAG	665220	5489324	2018	5	2018-10-10	17:25	Molybdenum (Mo)	1.5	mg/kg	ALS	RG_MIDAG_SE-5_2018-10-10_1725
	MIDAG	665220	5489324	2018	5	2018-10-10	17:25	Nickel (Ni)	47	mg/kg	ALS	RG_MIDAG_SE-5_2018-10-10_1725
E	MIDAG	665220	5489324	2018	5	2018-10-10	17:25	Phosphorus (P)	1,090	mg/kg	ALS	RG_MIDAG_SE-5_2018-10-10_1725
E	MIDAG	665220	5489324	2018	5	2018-10-10	17:25	Potassium (K)	1,450	mg/kg	ALS	RG_MIDAG_SE-5_2018-10-10_1725
E	MIDAG	665220	5489324	2018	5	2018-10-10	17:25	Selenium (Se)	2.2	mg/kg	ALS	RG_MIDAG_SE-5_2018-10-10_1725
E	MIDAG	665220	5489324	2018	5	2018-10-10	17:25	Silver (Ag)	0.12	mg/kg	ALS	RG_MIDAG_SE-5_2018-10-10_1725
E	MIDAG	665220	5489324	2018	5	2018-10-10	17:25	Sodium (Na)	89	mg/kg	ALS	RG_MIDAG_SE-5_2018-10-10_1725
E	MIDAG	665220	5489324	2018	5	2018-10-10	17:25	Strontium (Sr)	78	mg/kg	ALS	RG_MIDAG_SE-5_2018-10-10_1725
E	MIDAG	665220	5489324	2018	5	2018-10-10	17:25	Sulfur (S)	<1000	mg/kg	ALS	RG_MIDAG_SE-5_2018-10-10_1725
E	MIDAG	665220	5489324	2018	5	2018-10-10	17:25	Thallium (TI)	0.38	mg/kg	ALS	RG_MIDAG_SE-5_2018-10-10_1725
E	MIDAG	665220	5489324	2018	5	2018-10-10	17:25	Tin (Sn)	<2.0	mg/kg	ALS	RG_MIDAG_SE-5_2018-10-10_1725
E	MIDAG	665220	5489324	2018	5	2018-10-10	17:25	Titanium (Ti)	10	mg/kg	ALS	RG_MIDAG_SE-5_2018-10-10_1725
E	MIDAG	665220	5489324	2018	5	2018-10-10	17:25	Tungsten (W)	<0.50	mg/kg	ALS	RG_MIDAG_SE-5_2018-10-10_1725
E	MIDAG	665220	5489324	2018	5	2018-10-10	17:25	Uranium (U)	0.85	mg/kg	ALS	RG_MIDAG_SE-5_2018-10-10_1725
E	MIDAG	665220	5489324	2018	5	2018-10-10	17:25	Vanadium (V)	19	mg/kg	ALS	RG_MIDAG_SE-5_2018-10-10_1725
E	MIDAG	665220	5489324	2018	5	2018-10-10	17:25	Zinc (Zn)	108	mg/kg	ALS	RG_MIDAG_SE-5_2018-10-10_1725
E	MIDAG	665220	5489324	2018	5	2018-10-10	17:25	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_MIDAG_SE-5_2018-10-10_1725
E	MIDAG	665220	5489324	2018	5	2018-10-10	17:25	pH (1:2 soil:water)	7.9	рН	ALS	RG_MIDAG_SE-5_2018-10-10_1725
E	MIDAG	665220	5489324	2018	5	2018-10-10	17:25	Total Organic Carbon	6.0	%	ALS	RG_MIDAG_SE-5_2018-10-10_1725
E	MIULE	660503	5493048	2018	1	2018-10-10	14:45	Moisture	87	%	ALS	RG_MIULE_SE-1_2018-10-10_1445
E	MIULE	660503	5493048	2018	1	2018-10-10	14:45	Acenaphthene	<0.018	mg/kg	ALS	RG_MIULE_SE-1_2018-10-10_1445
E	MIULE	660503	5493048	2018	1	2018-10-10	14:45	Acenaphthylene	<0.018	mg/kg	ALS	RG_MIULE_SE-1_2018-10-10_1445
E	MIULE	660503	5493048	2018	1	2018-10-10	14:45	Acridine	<0.036	mg/kg	ALS	RG MIULE SE-1 2018-10-10 1445
E	MIULE	660503	5493048	2018	1	2018-10-10	14:45	Anthracene	<0.014	mg/kg	ALS	RG MIULE SE-1 2018-10-10 1445
E	MIULE	660503	5493048	2018	1	2018-10-10	14:45	Benz(a)anthracene	0.036	mg/kg	ALS	RG MIULE SE-1 2018-10-10 1445
E	MIULE	660503	5493048	2018	1	2018-10-10	14:45	Benzo(a)pyrene	<0.036	mg/kg	ALS	RG MIULE SE-1 2018-10-10 1445
	MIULE	660503	5493048	2018	1	2018-10-10	14:45	Benzo(b&j)fluoranthene	0.081	mg/kg	ALS	RG MIULE SE-1 2018-10-10 1445
E									. 0.00:	1119/119		

WSP Canada Inc. Page 42 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Type	Station	Location	ı (UTMs) ^(a)	Veer	Poplieste	Data	Time	Analyta	Pagult	Unit		Laboratory Information
Гуре	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MIULE	660503	5493048	2018	1	2018-10-10	14:45	Benzo(k)fluoranthene	<0.036	mg/kg	ALS	RG MIULE SE-1 2018-10-10 1445
SE	MIULE	660503	5493048	2018	1	2018-10-10	14:45	Benzo(e)pyrene	0.078	mg/kg	ALS	RG MIULE SE-1 2018-10-10 1445
SE	MIULE	660503	5493048	2018		2018-10-10	14:45	Chrysene	0.13	mg/kg	ALS	RG_MIULE_SE-1_2018-10-10_1445
SE	MIULE	660503	5493048	2018		2018-10-10	14:45	Dibenz(a h)anthracene	<0.018	mg/kg	ALS	RG MIULE SE-1 2018-10-10 1445
SE	MIULE	660503	5493048	2018	1	2018-10-10	14:45	Fluoranthene	0.053	mg/kg	ALS	RG_MIULE_SE-1_2018-10-10_1445
SE	MIULE	660503	5493048	2018	1	2018-10-10	14:45	Fluorene	0.046	mg/kg	ALS	RG MIULE SE-1 2018-10-10 1445
SE	MIULE	660503	5493048	2018	-	2018-10-10	14:45	Indeno(1,2,3-c,d)pyrene	<0.036	mg/kg	ALS	RG MIULE SE-1 2018-10-10 1445
SE	MIULE	660503	5493048	2018		2018-10-10	14:45	1-Methylnaphthalene	0.25	mg/kg	ALS	RG_MIULE_SE-1_2018-10-10_1445
SE	MIULE	660503	5493048	2018	-	2018-10-10	14:45	2-Methylnaphthalene	0.37	mg/kg	ALS	RG MIULE SE-1 2018-10-10 1445
SE	MIULE	660503	5493048	2018		2018-10-10	14:45	Naphthalene	0.14	mg/kg	ALS	RG_MIULE_SE-1_2018-10-10_1445
SE	MIULE	660503	5493048	2018		2018-10-10	14:45	Perylene	<0.036	mg/kg	ALS	RG_MIULE_SE-1_2018-10-10_1445
SE	MIULE	660503	5493048	2018	_	2018-10-10	14:45	Phenanthrene	0.34	mg/kg	ALS	RG_MIULE_SE-1_2018-10-10_1445
SE	MIULE	660503	5493048	2018		2018-10-10	14:45	Pyrene	0.059	mg/kg	ALS	RG MIULE SE-1 2018-10-10 1445
SE	MIULE	660503	5493048	2018		2018-10-10	14:45	Quinoline	<0.036	mg/kg	ALS	RG MIULE SE-1 2018-10-10 1445
SE	MIULE	660503	5493048	2018	-	2018-10-10	14:45	IACR (CCME)	0.89	mg/kg	ALS	RG MIULE SE-1 2018-10-10 1445
SE	MIULE	660503	5493048	2018		2018-10-10	14:45	B(a)P Total Potency Equivalent	0.044	mg/kg	ALS	RG MIULE SE-1 2018-10-10 1445
SE	MIULE	660503	5493048	2018		2018-10-10	14:45	d8-Naphthalene	58	%	ALS	RG MIULE SE-1 2018-10-10 1445
SE	MIULE	660503	5493048	2018	-	2018-10-10	14:45	d10-Acenaphthene	62	%	ALS	RG MIULE SE-1 2018-10-10 1445
SE	MIULE	660503	5493048	2018	1	2018-10-10	14:45	d10-Phenanthrene	87	%	ALS	RG_MIULE_SE-1_2018-10-10_1445
SE	MIULE	660503	5493048	2018	1	2018-10-10	14:45	d12-Chrysene	93	%	ALS	RG MIULE SE-1 2018-10-10 1445
SE	MIULE	660503	5493048	2018		2018-10-10	14:45	% Gravel (>2 mm)	21	%	ALS	RG MIULE SE-1 2018-10-10 1445
SE	MIULE	660503	5493048	2018		2018-10-10	14:45	% Sand (2.00 mm - 1.00 mm)	11	%	ALS	RG MIULE SE-1 2018-10-10 1445
SE	MIULE	660503	5493048	2018		2018-10-10	14:45	% Sand (1.00 mm - 0.50 mm)	7.9	%	ALS	RG MIULE SE-1 2018-10-10 1445
SE	MIULE	660503	5493048	2018	_	2018-10-10	14:45	% Sand (0.50 mm - 0.25 mm)	5.4	%	ALS	RG MIULE SE-1 2018-10-10 1445
SE	MIULE	660503	5493048	2018		2018-10-10	14:45	% Sand (0.25 mm - 0.125 mm)	3.8	%	ALS	RG MIULE SE-1 2018-10-10 1445
SE	MIULE	660503	5493048	2018		2018-10-10	14:45	% Sand (0.125 mm - 0.063 mm)	5.0	%	ALS	RG_MIULE_SE-1_2018-10-10_1445
SE	MIULE	660503	5493048	2018		2018-10-10	14:45	% Silt (0.063 mm - 0.0312 mm)	20	%	ALS	RG MIULE SE-1 2018-10-10 1445
SE	MIULE	660503	5493048	2018	-	2018-10-10	14:45	% Silt (0.031 mm - 0.004 mm)	22	%	ALS	RG_MIULE_SE-1_2018-10-10_1445
SE	MIULE	660503	5493048	2018		2018-10-10	14:45	% Clay (<4 μm)	4.1	%	ALS	RG MIULE SE-1 2018-10-10 1445
SE	MIULE	660503	5493048	2018		2018-10-10	14:45	Texture	Silt loam	-	ALS	RG MIULE SE-1 2018-10-10 1445
SE	MIULE	660503	5493048	2018	+	2018-10-10	14:45	Mercury (Hg)	0.036	mg/kg	ALS	RG MIULE SE-1 2018-10-10 1445
SE	MIULE	660503	5493048	2018	-	2018-10-10	14:45	Aluminum (Al)	5,220	mg/kg	ALS	RG MIULE SE-1 2018-10-10 1445
SE	MIULE	660503	5493048	2018		2018-10-10	14:45	Antimony (Sb)	0.36	mg/kg	ALS	RG MIULE SE-1 2018-10-10 1445
SE	MIULE	660503	5493048	2018		2018-10-10	14:45	Arsenic (As)	5.0	mg/kg	ALS	RG MIULE SE-1 2018-10-10 1445
SE	MIULE	660503	5493048	2018	_	2018-10-10	14:45	Barium (Ba)	164	mg/kg	ALS	RG MIULE SE-1 2018-10-10 1445
SE	MIULE	660503	5493048	2018		2018-10-10	14:45	Beryllium (Be)	0.49	mg/kg	ALS	RG MIULE SE-1 2018-10-10 1445
SE	MIULE	660503	5493048	2018		2018-10-10	14:45	Bismuth (Bi)	<0.20	mg/kg	ALS	RG MIULE SE-1 2018-10-10 1445
SE	MIULE	660503	5493048	2018		2018-10-10	14:45	Boron (B)	7.4	mg/kg	ALS	RG MIULE SE-1 2018-10-10 1445
SE	MIULE	660503	5493048	2018		2018-10-10	14:45	Cadmium (Cd)	1.5	mg/kg	ALS	RG MIULE SE-1 2018-10-10 1445
SE	MIULE	660503	5493048	2018	_	2018-10-10	14:45	Calcium (Ca)	64,200	mg/kg	ALS	RG MIULE SE-1 2018-10-10 1445
SE	MIULE	660503	5493048	2018		2018-10-10	14:45	Chromium (Cr)	8.5	mg/kg	ALS	RG MIULE SE-1 2018-10-10 1445
SE	MIULE	660503	5493048	2018		2018-10-10	14:45	Cobalt (Co)	24	mg/kg	ALS	RG MIULE SE-1 2018-10-10 1445
SE	MIULE	660503	5493048	2018	_	2018-10-10	14:45	Copper (Cu)	12	mg/kg	ALS	RG MIULE SE-1 2018-10-10 1445
SE	MIULE	660503	5493048	2018		2018-10-10	14:45	Iron (Fe)	11,300	mg/kg	ALS	RG MIULE SE-1 2018-10-10 1445
SE	MIULE	660503	5493048	2018		2018-10-10	14:45	Lead (Pb)	15	mg/kg	ALS	RG MIULE SE-1 2018-10-10 1445
SE	MIULE	660503	5493048	2018	-	2018-10-10	14:45	Lithium (Li)	7.2	mg/kg	ALS	RG MIULE SE-1 2018-10-10 1445
SE SE	MIULE	660503	5493048	2018		2018-10-10	14:45	, ,	6,880		ALS	RG MIULE SE-1 2018-10-10 1445
ŗ	IVIIOLE	000503	5495040	ZU 10	I	ZU 10-1U-1U	14.45	Magnesium (Mg)	0,000	mg/kg	ALO	\G_ V ULE_SE-1_ZU10-1U-1U_1445

WSP Canada Inc. Page 43 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Type	Station	Location	ı (UTMs) ^(a)	Veer	Poplieste	Data	Time	Analyta	Popult	Unit		Laboratory Information
Гуре	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MIULE	660503	5493048	2018	1	2018-10-10	14:45	Manganese (Mn)	356	mg/kg	ALS	RG MIULE SE-1 2018-10-10 1445
SE	MIULE	660503	5493048	2018		2018-10-10	14:45	Molybdenum (Mo)	1.1	mg/kg	ALS	RG MIULE SE-1 2018-10-10 1445
SE	MIULE	660503	5493048	2018	1	2018-10-10	14:45	Nickel (Ni)	50	mg/kg	ALS	RG_MIULE_SE-1_2018-10-10_1445
SE	MIULE	660503	5493048	2018	1	2018-10-10	14:45	Phosphorus (P)	1,030	mg/kg	ALS	RG_MIULE_SE-1_2018-10-10_1445
SE	MIULE	660503	5493048	2018	1	2018-10-10	14:45	Potassium (K)	1,110	mg/kg	ALS	RG_MIULE_SE-1_2018-10-10_1445
SE	MIULE	660503	5493048	2018	1	2018-10-10	14:45	Selenium (Se)	3.3	mg/kg	ALS	RG MIULE SE-1 2018-10-10 1445
SE	MIULE	660503	5493048	2018	1	2018-10-10	14:45	Silver (Ag)	0.14	mg/kg	ALS	RG MIULE SE-1 2018-10-10 1445
SE	MIULE	660503	5493048	2018	1	2018-10-10	14:45	Sodium (Na)	101	mg/kg	ALS	RG MIULE SE-1 2018-10-10 1445
SE	MIULE	660503	5493048	2018	1	2018-10-10	14:45	Strontium (Sr)	94	mg/kg	ALS	RG MIULE SE-1 2018-10-10 1445
SE	MIULE	660503	5493048	2018	1	2018-10-10	14:45	Sulfur (S)	1,500	mg/kg	ALS	RG MIULE SE-1 2018-10-10 1445
SE	MIULE	660503	5493048	2018	1	2018-10-10	14:45	Thallium (TI)	0.32	mg/kg	ALS	RG_MIULE_SE-1_2018-10-10_1445
SE	MIULE	660503	5493048	2018	1	2018-10-10	14:45	Tin (Sn)	<2.0	mg/kg	ALS	RG MIULE SE-1 2018-10-10 1445
SE	MIULE	660503	5493048	2018	1	2018-10-10	14:45	Titanium (Ti)	11	mg/kg	ALS	RG MIULE SE-1 2018-10-10 1445
SE	MIULE	660503	5493048	2018	1	2018-10-10	14:45	Tungsten (W)	<0.50	mg/kg	ALS	RG_MIULE_SE-1_2018-10-10_1445
SE	MIULE	660503	5493048	2018	1	2018-10-10	14:45	Uranium (U)	0.85	mg/kg	ALS	RG_MIULE_SE-1_2018-10-10_1445
SE	MIULE	660503	5493048	2018	1	2018-10-10	14:45	Vanadium (V)	17	mg/kg	ALS	RG_MIULE_SE-1_2018-10-10_1445
SE	MIULE	660503	5493048	2018	1	2018-10-10	14:45	Zinc (Zn)	120	mg/kg	ALS	RG_MIULE_SE-1_2018-10-10_1445
SE	MIULE	660503	5493048	2018	1	2018-10-10	14:45	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_MIULE_SE-1_2018-10-10_1445
SE	MIULE	660503	5493048	2018	1	2018-10-10	14:45	pH (1:2 soil:water)	7.8	pН	ALS	RG_MIULE_SE-1_2018-10-10_1445
SE.	MIULE	660503	5493048	2018	1	2018-10-10	14:45	Total Organic Carbon	5.7	%	ALS	RG_MIULE_SE-1_2018-10-10_1445
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	Moisture	93	%	ALS	RG MIULE SE-2 2018-10-10 1500
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	Acenaphthene	< 0.033	mg/kg	ALS	RG_MIULE_SE-2_2018-10-10_1500
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	Acenaphthylene	< 0.033	mg/kg	ALS	RG_MIULE_SE-2_2018-10-10_1500
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	Acridine	<0.065	mg/kg	ALS	RG_MIULE_SE-2_2018-10-10_1500
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	Anthracene	<0.026	mg/kg	ALS	RG_MIULE_SE-2_2018-10-10_1500
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	Benz(a)anthracene	< 0.065	mg/kg	ALS	RG_MIULE_SE-2_2018-10-10_1500
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	Benzo(a)pyrene	< 0.065	mg/kg	ALS	RG_MIULE_SE-2_2018-10-10_1500
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	Benzo(b&j)fluoranthene	0.094	mg/kg	ALS	RG_MIULE_SE-2_2018-10-10_1500
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	Benzo(g_h_i)perylene	<0.065	mg/kg	ALS	RG_MIULE_SE-2_2018-10-10_1500
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	Benzo(k)fluoranthene	<0.065	mg/kg	ALS	RG_MIULE_SE-2_2018-10-10_1500
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	Benzo(e)pyrene	0.09	mg/kg	ALS	RG_MIULE_SE-2_2018-10-10_1500
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	Chrysene	0.13	mg/kg	ALS	RG_MIULE_SE-2_2018-10-10_1500
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	Dibenz(a_h)anthracene	<0.033	mg/kg	ALS	RG_MIULE_SE-2_2018-10-10_1500
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	Fluoranthene	<0.065	mg/kg	ALS	RG_MIULE_SE-2_2018-10-10_1500
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	Fluorene	<0.065	mg/kg	ALS	RG_MIULE_SE-2_2018-10-10_1500
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	Indeno(1,2,3-c,d)pyrene	<0.065	mg/kg	ALS	RG_MIULE_SE-2_2018-10-10_1500
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	1-Methylnaphthalene	0.3	mg/kg	ALS	RG_MIULE_SE-2_2018-10-10_1500
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	2-Methylnaphthalene	0.44	mg/kg	ALS	RG_MIULE_SE-2_2018-10-10_1500
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	Naphthalene	0.17	mg/kg	ALS	RG_MIULE_SE-2_2018-10-10_1500
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	Perylene	<0.065	mg/kg	ALS	RG_MIULE_SE-2_2018-10-10_1500
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	Phenanthrene	0.38	mg/kg	ALS	RG_MIULE_SE-2_2018-10-10_1500
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	Pyrene	<0.065	mg/kg	ALS	RG_MIULE_SE-2_2018-10-10_1500
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	Quinoline	<0.065	mg/kg	ALS	RG_MIULE_SE-2_2018-10-10_1500
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	IACR (CCME)	1.1	mg/kg	ALS	RG_MIULE_SE-2_2018-10-10_1500
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	B(a)P Total Potency Equivalent	0.07	mg/kg	ALS	RG_MIULE_SE-2_2018-10-10_1500
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	d8-Naphthalene	62	%	ALS	RG_MIULE_SE-2_2018-10-10_1500
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	d10-Acenaphthene	65	%	ALS	RG_MIULE_SE-2_2018-10-10_1500
											_	

WSP Canada Inc. Page 44 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

			ı (UTMs) ^(a)		T i	Dota		Amalista	Danulé	11:4		Laboratory Information
Type	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	d10-Phenanthrene	87	%	ALS	RG_MIULE_SE-2_2018-10-10_1500
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	d12-Chrysene	94	%	ALS	RG_MIULE_SE-2_2018-10-10_1500
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	% Gravel (>2 mm)	<1.0	%	ALS	RG_MIULE_SE-2_2018-10-10_1500
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	% Sand (2.00 mm - 1.00 mm)	<1.0	%	ALS	RG_MIULE_SE-2_2018-10-10_1500
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	% Sand (1.00 mm - 0.50 mm)	<1.0	%	ALS	RG_MIULE_SE-2_2018-10-10_1500
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	% Sand (0.50 mm - 0.25 mm)	<1.0	%	ALS	RG_MIULE_SE-2_2018-10-10_1500
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	% Sand (0.25 mm - 0.125 mm)	4.5	%	ALS	RG_MIULE_SE-2_2018-10-10_1500
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	% Sand (0.125 mm - 0.063 mm)	7.7	%	ALS	RG_MIULE_SE-2_2018-10-10_1500
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	% Silt (0.063 mm - 0.0312 mm)	39	%	ALS	RG_MIULE_SE-2_2018-10-10_1500
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	% Silt (0.031 mm - 0.004 mm)	41	%	ALS	RG_MIULE_SE-2_2018-10-10_1500
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	% Clay (<4 μm)	6.6	%	ALS	RG_MIULE_SE-2_2018-10-10_1500
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	Texture	Silt loam	-	ALS	RG_MIULE_SE-2_2018-10-10_1500
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	Mercury (Hg)	0.035	mg/kg	ALS	RG_MIULE_SE-2_2018-10-10_1500
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	Aluminum (Al)	4,540	mg/kg	ALS	RG_MIULE_SE-2_2018-10-10_1500
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	Antimony (Sb)	0.32	mg/kg	ALS	RG_MIULE_SE-2_2018-10-10_1500
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	Arsenic (As)	3.8	mg/kg	ALS	RG_MIULE_SE-2_2018-10-10_1500
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	Barium (Ba)	159	mg/kg	ALS	RG_MIULE_SE-2_2018-10-10_1500
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	Beryllium (Be)	0.43	mg/kg	ALS	RG_MIULE_SE-2_2018-10-10_1500
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	Bismuth (Bi)	<0.20	mg/kg	ALS	RG_MIULE_SE-2_2018-10-10_1500
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	Boron (B)	9.2	mg/kg	ALS	RG_MIULE_SE-2_2018-10-10_1500
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	Cadmium (Cd)	1.3	mg/kg	ALS	RG_MIULE_SE-2_2018-10-10_1500
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	Calcium (Ca)	77,300	mg/kg	ALS	RG_MIULE_SE-2_2018-10-10_1500
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	Chromium (Cr)	7.7	mg/kg	ALS	RG_MIULE_SE-2_2018-10-10_1500
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	Cobalt (Co)	20	mg/kg	ALS	RG_MIULE_SE-2_2018-10-10_1500
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	Copper (Cu)	9.4	mg/kg	ALS	RG_MIULE_SE-2_2018-10-10_1500
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	Iron (Fe)	8,960	mg/kg	ALS	RG_MIULE_SE-2_2018-10-10_1500
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	Lead (Pb)	6.6	mg/kg	ALS	RG_MIULE_SE-2_2018-10-10_1500
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	Lithium (Li)	6.3	mg/kg	ALS	RG_MIULE_SE-2_2018-10-10_1500
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	Magnesium (Mg)	5,720	mg/kg	ALS	RG_MIULE_SE-2_2018-10-10_1500
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	Manganese (Mn)	256	mg/kg	ALS	RG_MIULE_SE-2_2018-10-10_1500
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	Molybdenum (Mo)	0.93	mg/kg	ALS	RG_MIULE_SE-2_2018-10-10_1500
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	Nickel (Ni)	49	mg/kg	ALS	RG_MIULE_SE-2_2018-10-10_1500
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	Phosphorus (P)	1,010	mg/kg	ALS	RG_MIULE_SE-2_2018-10-10_1500
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	Potassium (K)	1,120	mg/kg	ALS	RG_MIULE_SE-2_2018-10-10_1500
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	Selenium (Se)	3.3	mg/kg	ALS	RG_MIULE_SE-2_2018-10-10_1500
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	Silver (Ag)	0.12	mg/kg	ALS	RG_MIULE_SE-2_2018-10-10_1500
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	Sodium (Na)	106	mg/kg	ALS	RG_MIULE_SE-2_2018-10-10_1500
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	Strontium (Sr)	114	mg/kg	ALS	RG_MIULE_SE-2_2018-10-10_1500
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	Sulfur (S)	2,100	mg/kg	ALS	RG_MIULE_SE-2_2018-10-10_1500
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	Thallium (TI)	0.26	mg/kg	ALS	RG_MIULE_SE-2_2018-10-10_1500
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	Tin (Sn)	<2.0	mg/kg	ALS	RG_MIULE_SE-2_2018-10-10_1500
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	Titanium (Ti)	12	mg/kg	ALS	RG_MIULE_SE-2_2018-10-10_1500
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	Tungsten (W)	<0.50	mg/kg	ALS	RG_MIULE_SE-2_2018-10-10_1500
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	Uranium (U)	0.84	mg/kg	ALS	RG_MIULE_SE-2_2018-10-10_1500
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	Vanadium (V)	15	mg/kg	ALS	RG_MIULE_SE-2_2018-10-10_1500
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	Zinc (Zn)	92	mg/kg	ALS	RG_MIULE_SE-2_2018-10-10_1500
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_MIULE_SE-2_2018-10-10_1500

WSP Canada Inc. Page 45 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Type	Station	Location	ı (UTMs) ^(a)	Vaar	Poplicate	Dete	Time	Analuta	Popult	Unit		Laboratory Information
Гуре	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MIULE	660503	5493048	2018	2	2018-10-10	15:00	pH (1:2 soil:water)	7.9	рН	ALS	RG MIULE SE-2 2018-10-10 1500
SE	MIULE	660503	5493048	2018		2018-10-10	15:00	Total Organic Carbon	9.4	%	ALS	RG MIULE SE-2 2018-10-10 1500
SE	MIULE	660503	5493048	2018	3	2018-10-10	15:05	Moisture	69	%	ALS	RG MIULE SE-3 2018-10-10 1505
SE	MIULE	660503	5493048	2018	3	2018-10-10	15:05	Acenaphthene	<0.012	mg/kg	ALS	RG_MIULE_SE-3_2018-10-10_1505
SE	MIULE	660503	5493048	2018	3	2018-10-10	15:05	Acenaphthylene	<0.0075	mg/kg	ALS	RG MIULE SE-3 2018-10-10 1505
SE	MIULE	660503	5493048	2018	3	2018-10-10	15:05	Acridine	<0.015	mg/kg	ALS	RG MIULE SE-3 2018-10-10 1505
SE	MIULE	660503	5493048	2018	3	2018-10-10	15:05	Anthracene	<0.0060	mg/kg	ALS	RG MIULE SE-3 2018-10-10 1505
SE	MIULE	660503	5493048	2018	3	2018-10-10	15:05	Benz(a)anthracene	0.023	mg/kg	ALS	RG_MIULE_SE-3_2018-10-10_1505
SE	MIULE	660503	5493048	2018	3	2018-10-10	15:05	Benzo(a)pyrene	<0.015	mg/kg	ALS	RG MIULE SE-3 2018-10-10 1505
SE	MIULE	660503	5493048	2018	3	2018-10-10	15:05	Benzo(b&j)fluoranthene	0.055	mg/kg	ALS	RG MIULE SE-3 2018-10-10 1505
SE	MIULE	660503	5493048	2018	3	2018-10-10	15:05	Benzo(g_h_i)perylene	0.016	mg/kg	ALS	RG MIULE SE-3 2018-10-10 1505
SE	MIULE	660503	5493048	2018	3	2018-10-10	15:05	Benzo(k)fluoranthene	<0.015	mg/kg	ALS	RG_MIULE_SE-3_2018-10-10_1505
SE	MIULE	660503	5493048	2018	3	2018-10-10	15:05	Benzo(e)pyrene	0.053	mg/kg	ALS	RG MIULE SE-3 2018-10-10 1505
SE	MIULE	660503	5493048	2018	3	2018-10-10	15:05	Chrysene	0.079	mg/kg	ALS	RG MIULE SE-3 2018-10-10 1505
SE	MIULE	660503	5493048	2018	3	2018-10-10	15:05	Dibenz(a_h)anthracene	<0.0075	mg/kg	ALS	RG MIULE SE-3 2018-10-10 1505
SE	MIULE	660503	5493048	2018	3	2018-10-10	15:05	Fluoranthene	0.039	mg/kg	ALS	RG MIULE SE-3 2018-10-10 1505
SE	MIULE	660503	5493048	2018	_	2018-10-10	15:05	Fluorene	0.034	mg/kg	ALS	RG MIULE SE-3 2018-10-10 1505
SE	MIULE	660503	5493048	2018	3	2018-10-10	15:05	Indeno(1,2,3-c,d)pyrene	<0.015	mg/kg	ALS	RG MIULE SE-3 2018-10-10 1505
SE	MIULE	660503	5493048	2018	3	2018-10-10	15:05	1-Methylnaphthalene	0.2	mg/kg	ALS	RG MIULE SE-3 2018-10-10 1505
SE	MIULE	660503	5493048	2018	3	2018-10-10	15:05	2-Methylnaphthalene	0.31	mg/kg	ALS	RG MIULE SE-3 2018-10-10 1505
E SE	MIULE	660503	5493048	2018	3	2018-10-10	15:05	Naphthalene	0.11	mg/kg	ALS	RG MIULE SE-3 2018-10-10 1505
SE	MIULE	660503	5493048	2018	3	2018-10-10	15:05	Perylene	0.017	mg/kg	ALS	RG MIULE SE-3 2018-10-10 1505
SE	MIULE	660503	5493048	2018	3	2018-10-10	15:05	Phenanthrene	0.24	mg/kg	ALS	RG MIULE SE-3 2018-10-10 1505
SE	MIULE	660503	5493048	2018	3	2018-10-10	15:05	Pyrene	0.039	mg/kg	ALS	RG_MIULE_SE-3_2018-10-10_1505
SE	MIULE	660503	5493048	2018	_	2018-10-10	15:05	Quinoline	<0.015	mg/kg	ALS	RG MIULE SE-3 2018-10-10 1505
SE	MIULE	660503	5493048	2018	3	2018-10-10	15:05	IACR (CCME)	0.54	mg/kg	ALS	RG_MIULE_SE-3_2018-10-10_1505
SE	MIULE	660503	5493048	2018	3	2018-10-10	15:05	B(a)P Total Potency Equivalent	0.021	mg/kg	ALS	RG MIULE SE-3 2018-10-10 1505
SE	MIULE	660503	5493048	2018	3	2018-10-10	15:05	d8-Naphthalene	64	%	ALS	RG MIULE SE-3 2018-10-10 1505
SE	MIULE	660503	5493048	2018	3	2018-10-10	15:05	d10-Acenaphthene	67	%	ALS	RG MIULE SE-3 2018-10-10 1505
SE	MIULE	660503	5493048	2018	3	2018-10-10	15:05	d10-Phenanthrene	90	%	ALS	RG MIULE SE-3 2018-10-10 1505
SE	MIULE	660503	5493048	2018	3	2018-10-10	15:05	d12-Chrysene	97	%	ALS	RG MIULE SE-3 2018-10-10 1505
SE	MIULE	660503	5493048	2018	3	2018-10-10	15:05	% Gravel (>2 mm)	<1.0	%	ALS	RG MIULE SE-3 2018-10-10 1505
SE	MIULE	660503	5493048	2018		2018-10-10	15:05	% Sand (2.00 mm - 1.00 mm)	<1.0	%	ALS	RG MIULE SE-3 2018-10-10 1505
SE	MIULE	660503	5493048	2018	3	2018-10-10	15:05	% Sand (1.00 mm - 0.50 mm)	<1.0	%	ALS	RG MIULE SE-3 2018-10-10 1505
SE	MIULE	660503	5493048	2018		2018-10-10	15:05	% Sand (0.50 mm - 0.25 mm)	2.8	%	ALS	RG MIULE SE-3 2018-10-10 1505
SE	MIULE	660503	5493048	2018	3	2018-10-10	15:05	% Sand (0.25 mm - 0.125 mm)	12	%	ALS	RG MIULE SE-3 2018-10-10 1505
SE	MIULE	660503	5493048	2018	3	2018-10-10	15:05	% Sand (0.125 mm - 0.063 mm)	14	%	ALS	RG MIULE SE-3 2018-10-10 1505
SE	MIULE	660503	5493048	2018	3	2018-10-10	15:05	% Silt (0.063 mm - 0.0312 mm)	30	%	ALS	RG MIULE SE-3 2018-10-10 1505
SE	MIULE	660503	5493048	2018	3	2018-10-10	15:05	% Silt (0.031 mm - 0.004 mm)	34	%	ALS	RG MIULE SE-3 2018-10-10 1505
SE	MIULE	660503	5493048	2018	3	2018-10-10	15:05	% Clay (<4 μm)	6.4	%	ALS	RG MIULE SE-3 2018-10-10 1505
SE	MIULE	660503	5493048	2018	3	2018-10-10	15:05	Texture	Silt loam	-	ALS	RG MIULE SE-3 2018-10-10 1505
SE	MIULE	660503	5493048	2018	3	2018-10-10	15:05	Mercury (Hg)	0.033	mg/kg	ALS	RG MIULE SE-3 2018-10-10 1505
SE	MIULE	660503	5493048	2018	3	2018-10-10	15:05	Aluminum (Al)	5,960	mg/kg	ALS	RG MIULE SE-3 2018-10-10 1505
SE	MIULE	660503	5493048	2018	_	2018-10-10	15:05	Antimony (Sb)	0.37	mg/kg	ALS	RG MIULE SE-3 2018-10-10 1505
SE	MIULE	660503	5493048	2018	3	2018-10-10	15:05	Arsenic (As)	5.4	mg/kg	ALS	RG MIULE SE-3 2018-10-10 1505
SE	MIULE	660503	5493048	2018	3	2018-10-10	15:05	Barium (Ba)	159	mg/kg	ALS	RG MIULE SE-3 2018-10-10 1505
SE SE	MIULE	660503	5493048	2018	3	2018-10-10	15:05	X /	0.52		ALS	RG MIULE SE-3 2018-10-10 1505
p⊏	MIULE	000003	5495048	∠∪ I Ծ	<u>ي</u>	∠U 10-1U-1U	15.05	Beryllium (Be)	0.52	mg/kg	ALO	NG_WIIOLE_SE-3_ZU16-10-10_1505

WSP Canada Inc. Page 46 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	Station		(UTMs) ^(a)			Date	Time	Analyta	Booult	Unit		Laboratory Information
Type	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MIULE	660503	5493048	2018	3	2018-10-10	15:05	Bismuth (Bi)	<0.20	mg/kg	ALS	RG_MIULE_SE-3_2018-10-10_1505
SE	MIULE	660503	5493048	2018	3	2018-10-10	15:05	Boron (B)	7.2	mg/kg	ALS	RG_MIULE_SE-3_2018-10-10_1505
SE	MIULE	660503	5493048	2018	3	2018-10-10	15:05	Cadmium (Cd)	1.2	mg/kg	ALS	RG_MIULE_SE-3_2018-10-10_1505
SE	MIULE	660503	5493048	2018	3	2018-10-10	15:05	Calcium (Ca)	59,300	mg/kg	ALS	RG_MIULE_SE-3_2018-10-10_1505
SE	MIULE	660503	5493048	2018	3	2018-10-10	15:05	Chromium (Cr)	9.6	mg/kg	ALS	RG_MIULE_SE-3_2018-10-10_1505
SE	MIULE	660503	5493048	2018	3	2018-10-10	15:05	Cobalt (Co)	23	mg/kg	ALS	RG_MIULE_SE-3_2018-10-10_1505
SE	MIULE	660503	5493048	2018	3	2018-10-10	15:05	Copper (Cu)	11	mg/kg	ALS	RG_MIULE_SE-3_2018-10-10_1505
SE	MIULE	660503	5493048	2018	3	2018-10-10	15:05	Iron (Fe)	12,500	mg/kg	ALS	RG_MIULE_SE-3_2018-10-10_1505
SE	MIULE	660503	5493048	2018	3	2018-10-10	15:05	Lead (Pb)	8.5	mg/kg	ALS	RG_MIULE_SE-3_2018-10-10_1505
SE	MIULE	660503	5493048	2018	3	2018-10-10	15:05	Lithium (Li)	8.3	mg/kg	ALS	RG_MIULE_SE-3_2018-10-10_1505
SE	MIULE	660503	5493048	2018	3	2018-10-10	15:05	Magnesium (Mg)	6,630	mg/kg	ALS	RG_MIULE_SE-3_2018-10-10_1505
SE	MIULE	660503	5493048	2018	3	2018-10-10	15:05	Manganese (Mn)	273	mg/kg	ALS	RG_MIULE_SE-3_2018-10-10_1505
SE	MIULE	660503	5493048	2018	3	2018-10-10	15:05	Molybdenum (Mo)	1.1	mg/kg	ALS	RG_MIULE_SE-3_2018-10-10_1505
SE	MIULE	660503	5493048	2018	3	2018-10-10	15:05	Nickel (Ni)	48	mg/kg	ALS	RG_MIULE_SE-3_2018-10-10_1505
SE	MIULE	660503	5493048	2018	3	2018-10-10	15:05	Phosphorus (P)	1,100	mg/kg	ALS	RG_MIULE_SE-3_2018-10-10_1505
SE	MIULE	660503	5493048	2018	3	2018-10-10	15:05	Potassium (K)	1,120	mg/kg	ALS	RG_MIULE_SE-3_2018-10-10_1505
SE	MIULE	660503	5493048	2018	3	2018-10-10	15:05	Selenium (Se)	2.4	mg/kg	ALS	RG_MIULE_SE-3_2018-10-10_1505
SE	MIULE	660503	5493048	2018	3	2018-10-10	15:05	Silver (Ag)	0.13	mg/kg	ALS	RG_MIULE_SE-3_2018-10-10_1505
SE	MIULE	660503	5493048	2018	3	2018-10-10	15:05	Sodium (Na)	86	mg/kg	ALS	RG_MIULE_SE-3_2018-10-10_1505
SE	MIULE	660503	5493048	2018	3	2018-10-10	15:05	Strontium (Sr)	86	mg/kg	ALS	RG_MIULE_SE-3_2018-10-10_1505
SE	MIULE	660503	5493048	2018	3	2018-10-10	15:05	Sulfur (S)	1,100	mg/kg	ALS	RG_MIULE_SE-3_2018-10-10_1505
SE	MIULE	660503	5493048	2018	3	2018-10-10	15:05	Thallium (TI)	0.29	mg/kg	ALS	RG_MIULE_SE-3_2018-10-10_1505
SE	MIULE	660503	5493048	2018	3	2018-10-10	15:05	Tin (Sn)	<2.0	mg/kg	ALS	RG_MIULE_SE-3_2018-10-10_1505
SE	MIULE	660503	5493048	2018	3	2018-10-10	15:05	Titanium (Ti)	16	mg/kg	ALS	RG_MIULE_SE-3_2018-10-10_1505
SE	MIULE	660503	5493048	2018	3	2018-10-10	15:05	Tungsten (W)	<0.50	mg/kg	ALS	RG_MIULE_SE-3_2018-10-10_1505
SE	MIULE	660503	5493048	2018	3	2018-10-10	15:05	Uranium (U)	0.83	mg/kg	ALS	RG_MIULE_SE-3_2018-10-10_1505
SE	MIULE	660503	5493048	2018	3	2018-10-10	15:05	Vanadium (V)	18	mg/kg	ALS	RG_MIULE_SE-3_2018-10-10_1505
SE	MIULE	660503	5493048	2018	3	2018-10-10	15:05	Zinc (Zn)	113	mg/kg	ALS	RG_MIULE_SE-3_2018-10-10_1505
SE	MIULE	660503	5493048	2018	3	2018-10-10	15:05	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_MIULE_SE-3_2018-10-10_1505
SE	MIULE	660503	5493048	2018	3	2018-10-10	15:05	pH (1:2 soil:water)	7.8	pН	ALS	RG_MIULE_SE-3_2018-10-10_1505
SE	MIULE	660503	5493048	2018	3	2018-10-10	15:05	Total Organic Carbon	5.9	%		RG_MIULE_SE-3_2018-10-10_1505
SE SE	MIULE	660503	5493048	2018	4	2018-10-10	15:10	Moisture	68	%	ALS	RG_MIULE_SE-4_2018-10-10_1510
SE	MIULE MIULE	660503 660503	5493048 5493048	2018 2018	4	2018-10-10	15:10	Acenaphthene Acenaphthylene	<0.011 <0.0070	mg/kg	ALS ALS	RG_MIULE_SE-4_2018-10-10_1510
SE	MIULE	660503	5493048	2018	4	2018-10-10 2018-10-10	15:10 15:10	Acridine	<0.0070	mg/kg	ALS	RG_MIULE_SE-4_2018-10-10_1510 RG_MIULE_SE-4_2018-10-10_1510
SE	MIULE	660503	5493048	2018	4	2018-10-10	15:10	Anthracene	<0.0056	mg/kg mg/kg	ALS	RG MIULE SE-4 2018-10-10 1510
SE	MIULE	660503	5493048	2018	4	2018-10-10	15:10	Benz(a)anthracene	0.0030	mg/kg	ALS	RG MIULE SE-4 2018-10-10 1510
SE	MIULE	660503	5493048	2018	4	2018-10-10	15:10	Benzo(a)pyrene	<0.014	mg/kg	ALS	RG MIULE SE-4 2018-10-10 1510
SE	MIULE	660503	5493048	2018	4	2018-10-10	15:10	Benzo(b&j)fluoranthene	0.048	mg/kg	ALS	RG MIULE SE-4 2018-10-10 1510
SE	MIULE	660503	5493048	2018	4	2018-10-10	15:10	Benzo(g h i)perylene	0.046	mg/kg	ALS	RG MIULE SE-4 2018-10-10 1510
SE	MIULE	660503	5493048	2018	1	2018-10-10	15:10	Benzo(k)fluoranthene	<0.014	mg/kg	ALS	RG_MIULE_SE-4_2018-10-10_1510
SE	MIULE	660503	5493048	2018	4	2018-10-10	15:10	Benzo(e)pyrene	0.047	mg/kg		RG MIULE SE-4 2018-10-10 1510
SE	MIULE	660503	5493048	2018	4	2018-10-10	15:10	Chrysene	0.07	mg/kg	ALS	RG MIULE SE-4 2018-10-10 1510
SE	MIULE	660503	5493048	2018	4	2018-10-10	15:10	Dibenz(a h)anthracene	<0.0070	mg/kg	ALS	RG MIULE SE-4 2018-10-10 1510
SE	MIULE	660503	5493048	2018	4	2018-10-10	15:10	Fluoranthene	0.03	mg/kg	ALS	RG MIULE SE-4 2018-10-10 1510
SE	MIULE	660503	5493048	2018	4	2018-10-10	15:10	Fluorene	0.027	mg/kg	ALS	RG MIULE SE-4 2018-10-10 1510
SE	MIULE	660503	5493048	2018	1	2018-10-10	15:10	Indeno(1,2,3-c,d)pyrene	<0.014	mg/kg	ALS	RG MIULE SE-4 2018-10-10 1510

WSP Canada Inc. Page 47 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Table I-1	: Sediment Chem			CMm LAEMP S	Sampling Sta	ations, 2012 to	2022					
Туре	Station	Location	ı (UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
Type	Station	Easting	Northing	i cai	Replicate	Date	Tille	Allalyte	Nesuit	Onit	Lab	Sample ID
SE	MIULE	660503	5493048	2018	4	2018-10-10	15:10	1-Methylnaphthalene	0.16	mg/kg	ALS	RG_MIULE_SE-4_2018-10-10_1510
SE	MIULE	660503	5493048	2018	4	2018-10-10	15:10	2-Methylnaphthalene	0.24	mg/kg	ALS	RG_MIULE_SE-4_2018-10-10_1510
SE	MIULE	660503	5493048	2018	4	2018-10-10	15:10	Naphthalene	0.088	mg/kg	ALS	RG_MIULE_SE-4_2018-10-10_1510
SE	MIULE	660503	5493048	2018	4	2018-10-10	15:10	Perylene	<0.014	mg/kg	ALS	RG_MIULE_SE-4_2018-10-10_1510
SE	MIULE	660503	5493048	2018	4	2018-10-10	15:10	Phenanthrene	0.2	mg/kg	ALS	RG_MIULE_SE-4_2018-10-10_1510
SE	MIULE	660503	5493048	2018	4	2018-10-10	15:10	Pyrene	0.032	mg/kg	ALS	RG_MIULE_SE-4_2018-10-10_1510
SE	MIULE	660503	5493048	2018	4	2018-10-10	15:10	Quinoline	<0.014	mg/kg	ALS	RG_MIULE_SE-4_2018-10-10_1510
SE	MIULE	660503	5493048	2018	4	2018-10-10	15:10	IACR (CCME)	0.48	mg/kg	ALS	RG_MIULE_SE-4_2018-10-10_1510
SE	MIULE	660503	5493048	2018	4	2018-10-10	15:10	B(a)P Total Potency Equivalent	<0.020	mg/kg	ALS	RG_MIULE_SE-4_2018-10-10_1510
SE	MIULE	660503	5493048	2018	4	2018-10-10	15:10	d8-Naphthalene	61	%	ALS	RG_MIULE_SE-4_2018-10-10_1510
SE	MIULE	660503	5493048	2018	4	2018-10-10	15:10	d10-Acenaphthene	64	%	ALS	RG_MIULE_SE-4_2018-10-10_1510
SE	MIULE	660503	5493048	2018	4	2018-10-10	15:10	d10-Phenanthrene	88	%	ALS	RG_MIULE_SE-4_2018-10-10_1510
SE	MIULE	660503	5493048	2018	4	2018-10-10	15:10	d12-Chrysene	96	%	ALS	RG_MIULE_SE-4_2018-10-10_1510
SE	MIULE	660503	5493048	2018	4	2018-10-10	15:10	% Gravel (>2 mm)	10	%	ALS	RG_MIULE_SE-4_2018-10-10_1510
SE	MIULE	660503	5493048	2018	4	2018-10-10	15:10	% Sand (2.00 mm - 1.00 mm)	3.5	%	ALS	RG_MIULE_SE-4_2018-10-10_1510
SE	MIULE	660503	5493048	2018	4	2018-10-10	15:10	% Sand (1.00 mm - 0.50 mm)	3.4	%	ALS	RG_MIULE_SE-4_2018-10-10_1510
SE	MIULE	660503	5493048	2018	4	2018-10-10	15:10	% Sand (0.50 mm - 0.25 mm)	6.4	%	ALS	RG_MIULE_SE-4_2018-10-10_1510
SE	MIULE	660503	5493048	2018	4	2018-10-10	15:10	% Sand (0.25 mm - 0.125 mm)	11	%	ALS	RG_MIULE_SE-4_2018-10-10_1510
SE	MIULE	660503	5493048	2018	4	2018-10-10	15:10	% Sand (0.125 mm - 0.063 mm)	11	%	ALS	RG_MIULE_SE-4_2018-10-10_1510
SE	MIULE	660503	5493048	2018	4	2018-10-10	15:10	% Silt (0.063 mm - 0.0312 mm)	24	%	ALS	RG_MIULE_SE-4_2018-10-10_1510
SE	MIULE	660503	5493048	2018	4	2018-10-10	15:10	% Silt (0.031 mm - 0.004 mm)	26	%	ALS	RG_MIULE_SE-4_2018-10-10_1510
SE	MIULE	660503	5493048	2018	4	2018-10-10	15:10	% Clay (<4 μm)	4.5	%	ALS	RG_MIULE_SE-4_2018-10-10_1510
SE	MIULE	660503	5493048	2018	4	2018-10-10	15:10	Texture	Silt loam	-	ALS	RG_MIULE_SE-4_2018-10-10_1510
SE	MIULE	660503	5493048	2018	4	2018-10-10	15:10	Mercury (Hg)	0.034	mg/kg	ALS	RG_MIULE_SE-4_2018-10-10_1510
SE	MIULE	660503	5493048	2018	4	2018-10-10	15:10	Aluminum (AI)	6,230	mg/kg	ALS	RG_MIULE_SE-4_2018-10-10_1510
SE	MIULE	660503	5493048	2018	4	2018-10-10	15:10	Antimony (Sb)	0.43	mg/kg	ALS	RG_MIULE_SE-4_2018-10-10_1510
SE	MIULE	660503	5493048	2018	4	2018-10-10	15:10	Arsenic (As)	5.6	mg/kg	ALS	RG_MIULE_SE-4_2018-10-10_1510
SE	MIULE	660503	5493048	2018	4	2018-10-10	15:10	Barium (Ba)	160	mg/kg	ALS	RG_MIULE_SE-4_2018-10-10_1510
SE	MIULE	660503	5493048	2018	4	2018-10-10	15:10	Beryllium (Be)	0.57	mg/kg	ALS	RG_MIULE_SE-4_2018-10-10_1510
SE	MIULE	660503	5493048	2018	4	2018-10-10	15:10	Bismuth (Bi)	<0.20	mg/kg	ALS	RG_MIULE_SE-4_2018-10-10_1510
SE	MIULE	660503	5493048	2018	4	2018-10-10	15:10	Boron (B)	8.1	mg/kg	ALS	RG_MIULE_SE-4_2018-10-10_1510
SE	MIULE	660503	5493048	2018	4	2018-10-10	15:10	Cadmium (Cd)	1.1	mg/kg	ALS	RG_MIULE_SE-4_2018-10-10_1510
SE	MIULE	660503	5493048	2018	4	2018-10-10	15:10	Calcium (Ca)	57,100	mg/kg	ALS	RG_MIULE_SE-4_2018-10-10_1510
SE	MIULE	660503	5493048	2018	4	2018-10-10	15:10	Chromium (Cr)	10.0	mg/kg	ALS	RG_MIULE_SE-4_2018-10-10_1510
SE	MIULE	660503	5493048	2018	4	2018-10-10	15:10	Cobalt (Co)	23	mg/kg	ALS	RG_MIULE_SE-4_2018-10-10_1510
SE	MIULE	660503	5493048	2018	4	2018-10-10	15:10	Copper (Cu)	11	mg/kg	ALS	RG_MIULE_SE-4_2018-10-10_1510
SE	MIULE	660503	5493048	2018	4	2018-10-10	15:10	Iron (Fe)	12,800	mg/kg	ALS	RG_MIULE_SE-4_2018-10-10_1510
SE	MIULE	660503	5493048	2018	4	2018-10-10	15:10	Lead (Pb)	8.4	mg/kg	ALS	RG_MIULE_SE-4_2018-10-10_1510
SE	MIULE	660503	5493048	2018	4	2018-10-10	15:10	Lithium (Li)	8.8	mg/kg	ALS	RG_MIULE_SE-4_2018-10-10_1510
SE	MIULE	660503	5493048	2018	4	2018-10-10	15:10	Magnesium (Mg)	6,350	mg/kg	ALS	RG_MIULE_SE-4_2018-10-10_1510
SE	MIULE	660503	5493048	2018	4	2018-10-10	15:10	Manganese (Mn)	314	mg/kg	ALS	RG_MIULE_SE-4_2018-10-10_1510
SE	MIULE	660503	5493048	2018	4	2018-10-10	15:10	Molybdenum (Mo)	1.2	mg/kg	ALS	RG_MIULE_SE-4_2018-10-10_1510
SE	MIULE	660503	5493048	2018	4	2018-10-10	15:10	Nickel (Ni)	48	mg/kg	ALS	RG_MIULE_SE-4_2018-10-10_1510
SE	MIULE	660503	5493048	2018	4	2018-10-10	15:10	Phosphorus (P)	1,080	mg/kg	ALS	RG_MIULE_SE-4_2018-10-10_1510
SE	MIULE	660503	5493048	2018	4	2018-10-10	15:10	Potassium (K)	1,280	mg/kg	ALS	RG_MIULE_SE-4_2018-10-10_1510
SE	MIULE	660503	5493048	2018	4	2018-10-10	15:10	Selenium (Se)	2.0	mg/kg	ALS	RG_MIULE_SE-4_2018-10-10_1510
SE	MIULE	660503	5493048	2018	4	2018-10-10	15:10	Silver (Ag)	0.12	mg/kg	ALS	RG_MIULE_SE-4_2018-10-10_1510

WSP Canada Inc. Page 48 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

ре	Station	Location	ı (UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
he	Station	Easting	Northing	i eai	Replicate	Date	Tille	Analyte	Result	Ullit	Lab	Sample ID
Е	MIULE	660503	5493048	2018	4	2018-10-10	15:10	Sodium (Na)	91	mg/kg	ALS	RG_MIULE_SE-4_2018-10-10_1510
Е	MIULE	660503	5493048	2018	4	2018-10-10	15:10	Strontium (Sr)	88	mg/kg	ALS	RG_MIULE_SE-4_2018-10-10_1510
E	MIULE	660503	5493048	2018	4	2018-10-10	15:10	Sulfur (S)	<1000	mg/kg	ALS	RG_MIULE_SE-4_2018-10-10_1510
E	MIULE	660503	5493048	2018	4	2018-10-10	15:10	Thallium (TI)	0.31	mg/kg	ALS	RG_MIULE_SE-4_2018-10-10_1510
Е	MIULE	660503	5493048	2018	4	2018-10-10	15:10	Tin (Sn)	<2.0	mg/kg	ALS	RG_MIULE_SE-4_2018-10-10_1510
Е	MIULE	660503	5493048	2018	4	2018-10-10	15:10	Titanium (Ti)	14	mg/kg	ALS	RG_MIULE_SE-4_2018-10-10_1510
Е	MIULE	660503	5493048	2018	4	2018-10-10	15:10	Tungsten (W)	<0.50	mg/kg	ALS	RG_MIULE_SE-4_2018-10-10_1510
Е	MIULE	660503	5493048	2018	4	2018-10-10	15:10	Uranium (U)	0.85	mg/kg	ALS	RG_MIULE_SE-4_2018-10-10_1510
Е	MIULE	660503	5493048	2018	4	2018-10-10	15:10	Vanadium (V)	20	mg/kg	ALS	RG_MIULE_SE-4_2018-10-10_1510
Е	MIULE	660503	5493048	2018	4	2018-10-10	15:10	Zinc (Zn)	109	mg/kg	ALS	RG_MIULE_SE-4_2018-10-10_1510
Е	MIULE	660503	5493048	2018	4	2018-10-10	15:10	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_MIULE_SE-4_2018-10-10_1510
Е	MIULE	660503	5493048	2018	4	2018-10-10	15:10	pH (1:2 soil:water)	7.9	pН	ALS	RG MIULE SE-4 2018-10-10 1510
Е	MIULE	660503	5493048	2018	4	2018-10-10	15:10	Total Organic Carbon	4.7	%	ALS	RG MIULE SE-4 2018-10-10 1510
Е	MIULE	660503	5493048	2018	5	2018-10-10	15:40	Moisture	84	%	ALS	RG MIULE SE-5 2018-10-10 1540
Е	MIULE	660503	5493048	2018	5	2018-10-10	15:40	Acenaphthene	<0.015	mg/kg	ALS	RG_MIULE_SE-5_2018-10-10_1540
Е	MIULE	660503	5493048	2018	5	2018-10-10	15:40	Acenaphthylene	<0.014	mg/kg	ALS	RG MIULE SE-5 2018-10-10 1540
Е	MIULE	660503	5493048	2018	5	2018-10-10	15:40	Acridine	<0.027	mg/kg	ALS	RG MIULE SE-5 2018-10-10 1540
Е	MIULE	660503	5493048	2018	5	2018-10-10	15:40	Anthracene	<0.011	mg/kg	ALS	RG MIULE SE-5 2018-10-10 1540
Е	MIULE	660503	5493048	2018	5	2018-10-10	15:40	Benz(a)anthracene	0.036	mg/kg	ALS	RG MIULE SE-5 2018-10-10 1540
E	MIULE	660503	5493048	2018	5	2018-10-10	15:40	Benzo(a)pyrene	<0.027	mg/kg	ALS	RG MIULE SE-5 2018-10-10 1540
E	MIULE	660503	5493048	2018	5	2018-10-10	15:40	Benzo(b&j)fluoranthene	0.08	mg/kg	ALS	RG MIULE SE-5 2018-10-10 1540
E	MIULE	660503	5493048	2018	5	2018-10-10	15:40	Benzo(g_h_i)perylene	<0.027	mg/kg	ALS	RG MIULE SE-5 2018-10-10 1540
E	MIULE	660503	5493048	2018	5	2018-10-10	15:40	Benzo(k)fluoranthene	<0.027	mg/kg	ALS	RG MIULE SE-5 2018-10-10 1540
E	MIULE	660503	5493048	2018	5	2018-10-10	15:40	Benzo(e)pyrene	0.076	mg/kg	ALS	RG MIULE SE-5 2018-10-10 1540
E	MIULE	660503	5493048	2018	5	2018-10-10	15:40	Chrysene	0.12	mg/kg	ALS	RG_MIULE_SE-5_2018-10-10_1540
E	MIULE	660503	5493048	2018	5	2018-10-10	15:40	Dibenz(a_h)anthracene	<0.014	mg/kg	ALS	RG MIULE SE-5 2018-10-10 1540
E	MIULE	660503	5493048	2018	5	2018-10-10	15:40	Fluoranthene	0.053	mg/kg	ALS	RG MIULE SE-5 2018-10-10 1540
E	MIULE	660503	5493048	2018	5	2018-10-10	15:40	Fluorene	0.046	mg/kg	ALS	RG MIULE SE-5 2018-10-10 1540
E	MIULE	660503	5493048	2018	5	2018-10-10	15:40	Indeno(1,2,3-c,d)pyrene	<0.027	mg/kg	ALS	RG MIULE SE-5 2018-10-10 1540
E	MIULE	660503	5493048	2018	5	2018-10-10	15:40	1-Methylnaphthalene	0.25	mg/kg		RG MIULE SE-5 2018-10-10 1540
E	MIULE	660503	5493048	2018		2018-10-10	15:40	2-Methylnaphthalene	0.38	mg/kg		RG_MIULE_SE-5_2018-10-10_1540
E	MIULE	660503	5493048	2018	5	2018-10-10	15:40	Naphthalene	0.14	mg/kg	ALS	RG MIULE SE-5 2018-10-10 1540
E	MIULE	660503	5493048	2018	5	2018-10-10	15:40	Perylene	0.03	mg/kg	ALS	RG MIULE SE-5 2018-10-10 1540
E	MIULE	660503	5493048	2018	5	2018-10-10	15:40	Phenanthrene	0.33	mg/kg	ALS	RG MIULE SE-5 2018-10-10 1540
E	MIULE	660503	5493048	2018	5	2018-10-10	15:40	Pyrene	0.061	mg/kg	ALS	RG MIULE SE-5 2018-10-10 1540
E	MIULE	660503	5493048	2018	5	2018-10-10	15:40	Quinoline	<0.027	mg/kg	ALS	RG MIULE SE-5 2018-10-10 1540
E	MIULE	660503	5493048	2018	5	2018-10-10	15:40	IACR (CCME)	0.82	mg/kg	ALS	RG MIULE SE-5 2018-10-10 1540
E	MIULE	660503	5493048	2018	5	2018-10-10	15:40	B(a)P Total Potency Equivalent	0.036	mg/kg	ALS	RG MIULE SE-5 2018-10-10 1540
E	MIULE	660503	5493048	2018	5	2018-10-10	15:40	d8-Naphthalene	58	%	ALS	RG MIULE SE-5 2018-10-10 1540
E	MIULE	660503	5493048		5	2018-10-10				%		RG MIULE SE-5 2018-10-10 1540
E	MIULE	660503	5493048	2018 2018	5	2018-10-10	15:40 15:40	d10-Acenaphthene d10-Phenanthrene	62 84	%	ALS ALS	RG MIULE SE-5 2018-10-10 1540
E	MIULE	660503	5493048	2018	5	2018-10-10	15:40	d12-Chrysene	92	%	ALS	RG MIULE SE-5 2018-10-10 1540
E	MIULE	660503	5493048	2018	5	2018-10-10	15:40	% Gravel (>2 mm)	<1.0	%	ALS	RG_MIULE_SE-5_2018-10-10_1540
E	MIULE	660503	5493048	2018	5	2018-10-10	15:40	% Sand (2.00 mm - 1.00 mm)	<1.0	%	ALS	RG_MIULE_SE-5_2018-10-10_1540
E	MIULE	660503	5493048	2018	5	2018-10-10	15:40	% Sand (1.00 mm - 0.50 mm)	1.7	%	ALS	RG_MIULE_SE-5_2018-10-10_1540
E	MIULE	660503	5493048	2018	5	2018-10-10	15:40	% Sand (0.50 mm - 0.25 mm)	<1.0	%	ALS	RG_MIULE_SE-5_2018-10-10_1540
E	MIULE	660503	5493048	2018	5	2018-10-10	15:40	% Sand (0.25 mm - 0.125 mm)	1.8	%		RG_MIULE_SE-5_2018

WSP Canada Inc. Page 49 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Tvpo	Station	Location	(UTMs) ^(a)	Year	Poplieste	Date	Time	Analyte	Popult -	Unit		Laboratory Information
уре	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MIULE	660503	5493048	2018	5	2018-10-10	15:40	% Sand (0.125 mm - 0.063 mm)	8.3	%	ALS	RG_MIULE_SE-5_2018-10-10_1540
SE	MIULE	660503	5493048	2018	5	2018-10-10	15:40	% Silt (0.063 mm - 0.0312 mm)	39	%	ALS	RG MIULE SE-5 2018-10-10 1540
SE	MIULE	660503	5493048	2018	5	2018-10-10	15:40	% Silt (0.031 mm - 0.004 mm)	42	%	ALS	RG_MIULE_SE-5_2018-10-10_1540
SE	MIULE	660503	5493048	2018	5	2018-10-10	15:40	% Clay (<4 μm)	6.5	%	ALS	RG_MIULE_SE-5_2018-10-10_1540
SE	MIULE	660503	5493048	2018	5	2018-10-10	15:40	Texture	Silt	-	ALS	RG_MIULE_SE-5_2018-10-10_1540
SE	MIULE	660503	5493048	2018	5	2018-10-10	15:40	Mercury (Hg)	0.039	mg/kg	ALS	RG MIULE SE-5 2018-10-10 1540
SE	MIULE	660503	5493048	2018	5	2018-10-10	15:40	Aluminum (AI)	4,750	mg/kg	ALS	RG MIULE SE-5 2018-10-10 1540
SE	MIULE	660503	5493048	2018	5	2018-10-10	15:40	Antimony (Sb)	0.34	mg/kg	ALS	RG_MIULE_SE-5_2018-10-10_1540
SE	MIULE	660503	5493048	2018	5	2018-10-10	15:40	Arsenic (As)	4.4	mg/kg	ALS	RG_MIULE_SE-5_2018-10-10_1540
SE	MIULE	660503	5493048	2018	5	2018-10-10	15:40	Barium (Ba)	155	mg/kg	ALS	RG MIULE SE-5 2018-10-10 1540
SE	MIULE	660503	5493048	2018	5	2018-10-10	15:40	Beryllium (Be)	0.45	mg/kg	ALS	RG_MIULE_SE-5_2018-10-10_1540
SE	MIULE	660503	5493048	2018	5	2018-10-10	15:40	Bismuth (Bi)	<0.20	mg/kg	ALS	RG_MIULE_SE-5_2018-10-10_1540
SE	MIULE	660503	5493048	2018	5	2018-10-10	15:40	Boron (B)	7.7	mg/kg	ALS	RG MIULE SE-5 2018-10-10 1540
SE	MIULE	660503	5493048	2018	5	2018-10-10	15:40	Cadmium (Cd)	1.3	mg/kg	ALS	RG MIULE SE-5 2018-10-10 1540
SE	MIULE	660503	5493048	2018	5	2018-10-10	15:40	Calcium (Ca)	67,000	mg/kg	ALS	RG MIULE SE-5 2018-10-10 1540
SE	MIULE	660503	5493048	2018	5	2018-10-10	15:40	Chromium (Cr)	7.9	mg/kg	ALS	RG_MIULE_SE-5_2018-10-10_1540
SE	MIULE	660503	5493048	2018	5	2018-10-10	15:40	Cobalt (Co)	24	mg/kg	ALS	RG_MIULE_SE-5_2018-10-10_1540
SE	MIULE	660503	5493048	2018	5	2018-10-10	15:40	Copper (Cu)	10	mg/kg	ALS	RG_MIULE_SE-5_2018-10-10_1540
SE	MIULE	660503	5493048	2018	5	2018-10-10	15:40	Iron (Fe)	10,300	mg/kg	ALS	RG_MIULE_SE-5_2018-10-10_1540
SE	MIULE	660503	5493048	2018	5	2018-10-10	15:40	Lead (Pb)	7.4	mg/kg	ALS	RG_MIULE_SE-5_2018-10-10_1540
SE	MIULE	660503	5493048	2018	5	2018-10-10	15:40	Lithium (Li)	6.5	mg/kg	ALS	RG MIULE SE-5 2018-10-10 1540
SE	MIULE	660503	5493048	2018	5	2018-10-10	15:40	Magnesium (Mg)	6,360	mg/kg	ALS	RG MIULE SE-5 2018-10-10 1540
SE	MIULE	660503	5493048	2018	5	2018-10-10	15:40	Manganese (Mn)	326	mg/kg	ALS	RG MIULE SE-5 2018-10-10 1540
SE	MIULE	660503	5493048	2018	5	2018-10-10	15:40	Molybdenum (Mo)	0.98	mg/kg	ALS	RG_MIULE_SE-5_2018-10-10_1540
SE	MIULE	660503	5493048	2018	5	2018-10-10	15:40	Nickel (Ni)	49	mg/kg	ALS	RG MIULE SE-5 2018-10-10 1540
SE	MIULE	660503	5493048	2018	5	2018-10-10	15:40	Phosphorus (P)	1,000	mg/kg	ALS	RG_MIULE_SE-5_2018-10-10_1540
SE	MIULE	660503	5493048	2018	5	2018-10-10	15:40	Potassium (K)	950	mg/kg	ALS	RG MIULE SE-5 2018-10-10 1540
SE	MIULE	660503	5493048	2018	5	2018-10-10	15:40	Selenium (Se)	2.8	mg/kg	ALS	RG_MIULE_SE-5_2018-10-10_1540
SE	MIULE	660503	5493048	2018	5	2018-10-10	15:40	Silver (Ag)	0.13	mg/kg	ALS	RG MIULE SE-5 2018-10-10 1540
SE	MIULE	660503	5493048	2018	5	2018-10-10	15:40	Sodium (Na)	107	mg/kg	ALS	RG_MIULE_SE-5_2018-10-10_1540
SE	MIULE	660503	5493048	2018	5	2018-10-10	15:40	Strontium (Sr)	98	mg/kg	ALS	RG_MIULE_SE-5_2018-10-10_1540
SE	MIULE	660503	5493048	2018	5	2018-10-10	15:40	Sulfur (S)	1,300	mg/kg	ALS	RG MIULE SE-5 2018-10-10 1540
SE	MIULE	660503	5493048	2018	5	2018-10-10	15:40	Thallium (TI)	0.27	mg/kg	ALS	RG MIULE SE-5 2018-10-10 1540
SE	MIULE	660503	5493048	2018	5	2018-10-10	15:40	Tin (Sn)	<2.0	mg/kg	ALS	RG MIULE SE-5 2018-10-10 1540
SE	MIULE	660503	5493048	2018	5	2018-10-10	15:40	Titanium (Ti)	12	mg/kg	ALS	RG MIULE SE-5 2018-10-10 1540
SE	MIULE	660503	5493048	2018	5	2018-10-10	15:40	Tungsten (W)	<0.50	mg/kg	ALS	RG MIULE SE-5 2018-10-10 1540
SE	MIULE	660503	5493048	2018	5	2018-10-10	15:40	Uranium (U)	0.81	mg/kg	ALS	RG_MIULE_SE-5_2018-10-10_1540
SE	MIULE	660503	5493048	2018	5	2018-10-10	15:40	Vanadium (V)	15	mg/kg	ALS	RG MIULE SE-5 2018-10-10 1540
SE	MIULE	660503	5493048	2018	5	2018-10-10	15:40	Zinc (Zn)	98	mg/kg	ALS	RG MIULE SE-5 2018-10-10 1540
SE	MIULE	660503	5493048	2018	5	2018-10-10	15:40	Zirconium (Zr)	<1.0	mg/kg	ALS	RG MIULE SE-5 2018-10-10 1540
SE	MIULE	660503	5493048	2018	5	2018-10-10	15:40	pH (1:2 soil:water)	7.9	рН	ALS	RG MIULE SE-5 2018-10-10 1540
SE	MIULE	660503	5493048	2018	5	2018-10-10	15:40	Total Organic Carbon	8.4	%	ALS	RG MIULE SE-5 2018-10-10 1540
SE	CORCK	668539	5487366	2018	1	2018-10-12	08:10	Moisture	58	%	ALS	RG CORCK SE-1 2018-10-12 0810
SE	CORCK	668539	5487366	2018	1	2018-10-12	08:10	Acenaphthene	<0.032	mg/kg	ALS	RG CORCK SE-1 2018-10-12 0810
SE	CORCK	668539	5487366	2018	1	2018-10-12	08:10	Acenaphthylene	<0.0070	mg/kg	ALS	RG CORCK SE-1 2018-10-12 0810
			t		1	2018-10-12	08:10	Acridine	<0.010	mg/kg	ALS	RG CORCK SE-1 2018-10-12 0810
SE	CORCK	668539	5487366	2018	l I	2010-10-12	00.10	Activitie	\0.010	IIIu/Ku	I ALO	ING CONCR SE-1 2010-10-12 0010

WSP Canada Inc. Page 50 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

vno.	Station	Location	(UTMs) ^(a)	Veer	Donlinete	Doto	Time	Analyse	Dooult	Lluit		Laboratory Information
ype	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	CORCK	668539	5487366	2018	1	2018-10-12	08:10	Benz(a)anthracene	0.038	mg/kg	ALS	RG CORCK SE-1 2018-10-12 0810
SE	CORCK	668539	5487366	2018	1	2018-10-12	08:10	Benzo(a)pyrene	0.029	mg/kg	ALS	RG_CORCK_SE-1_2018-10-12_0810
SE	CORCK	668539	5487366	2018	1	2018-10-12	08:10	Benzo(b&j)fluoranthene	0.11	mg/kg	ALS	RG CORCK SE-1 2018-10-12 0810
SE	CORCK	668539	5487366	2018	1	2018-10-12	08:10	Benzo(g h i)perylene	0.067	mg/kg	ALS	RG CORCK SE-1 2018-10-12 0810
SE	CORCK	668539	5487366	2018	1	2018-10-12	08:10	Benzo(k)fluoranthene	0.01	mg/kg	ALS	RG CORCK SE-1 2018-10-12 0810
SE	CORCK	668539	5487366	2018	1	2018-10-12	08:10	Benzo(e)pyrene	0.14	mg/kg	ALS	RG CORCK SE-1 2018-10-12 0810
SE	CORCK	668539	5487366	2018	1	2018-10-12	08:10	Chrysene	0.2	mg/kg	ALS	RG CORCK SE-1 2018-10-12 0810
SE	CORCK	668539	5487366	2018	1	2018-10-12	08:10	Dibenz(a h)anthracene	<0.022	mg/kg	ALS	RG CORCK SE-1 2018-10-12 0810
SE	CORCK	668539	5487366	2018	1	2018-10-12	08:10	Fluoranthene	0.036	mg/kg	ALS	RG CORCK SE-1 2018-10-12 0810
SE	CORCK	668539	5487366	2018	1	2018-10-12	08:10	Fluorene	0.11	mg/kg	ALS	RG CORCK SE-1 2018-10-12 0810
SE	CORCK	668539	5487366	2018	1	2018-10-12	08:10	Indeno(1,2,3-c,d)pyrene	0.018	mg/kg	ALS	RG CORCK SE-1 2018-10-12 0810
SE	CORCK	668539	5487366	2018	1	2018-10-12	08:10	1-Methylnaphthalene	0.66	mg/kg	ALS	RG CORCK SE-1 2018-10-12 0810
SE	CORCK	668539	5487366	2018	1	2018-10-12	08:10	2-Methylnaphthalene	1.1	mg/kg	ALS	RG CORCK SE-1 2018-10-12 0810
SE	CORCK	668539	5487366	2018	1	2018-10-12	08:10	Naphthalene	0.35	mg/kg	ALS	RG CORCK SE-1 2018-10-12 0810
SE	CORCK	668539	5487366	2018	1	2018-10-12	08:10	Perylene	<0.010	mg/kg	ALS	RG CORCK SE-1 2018-10-12 0810
SE	CORCK	668539	5487366	2018	1	2018-10-12	08:10	Phenanthrene	0.53	mg/kg	ALS	RG CORCK SE-1 2018-10-12 0810
SE	CORCK	668539	5487366	2018	1	2018-10-12	08:10	Pyrene	0.066	mg/kg	ALS	RG CORCK SE-1 2018-10-12 0810
SE	CORCK	668539	5487366	2018	1	2018-10-12	08:10	Quinoline	<0.010	mg/kg	ALS	RG CORCK SE-1 2018-10-12 0810
E E	CORCK	668539	5487366	2018	1	2018-10-12	08:10	IACR (CCME)	1.1	mg/kg	ALS	RG CORCK SE-1 2018-10-12 0810
E	CORCK	668539	5487366	2018	1	2018-10-12	08:10	B(a)P Total Potency Equivalent	0.061	mg/kg	ALS	RG CORCK SE-1 2018-10-12 0810
E	CORCK	668539	5487366	2018	1	2018-10-12	08:10	d8-Naphthalene	77	%	ALS	RG CORCK SE-1 2018-10-12 0810
E	CORCK	668539	5487366	2018	1	2018-10-12	08:10	d10-Acenaphthene	84	%	ALS	RG CORCK SE-1 2018-10-12 0810
E	CORCK	668539	5487366	2018	1	2018-10-12	08:10	d10-Phenanthrene	95	%	ALS	RG CORCK SE-1 2018-10-12 0810
E	CORCK	668539	5487366	2018	1	2018-10-12	08:10	d12-Chrysene	100	%	ALS	RG CORCK SE-1 2018-10-12 0810
E	CORCK	668539	5487366	2018	1	2018-10-12	08:10	% Gravel (>2 mm)	<1.0	%	ALS	RG CORCK SE-1 2018-10-12 0810
E	CORCK	668539	5487366	2018	1	2018-10-12	08:10	% Sand (2.00 mm - 1.00 mm)	<1.0	%	ALS	RG CORCK SE-1 2018-10-12 0810
E E	CORCK	668539	5487366	2018	1	2018-10-12	08:10	% Sand (1.00 mm - 0.50 mm)	<1.0	%	ALS	RG CORCK SE-1 2018-10-12 0810
SE	CORCK	668539	5487366	2018	1	2018-10-12	08:10	% Sand (0.50 mm - 0.25 mm)	2.0	%	ALS	RG CORCK SE-1 2018-10-12 0810
E E	CORCK	668539	5487366	2018	1	2018-10-12	08:10	% Sand (0.25 mm - 0.125 mm)	7.9	%	ALS	RG CORCK SE-1 2018-10-12 0810
SE	CORCK	668539	5487366	2018	1	2018-10-12	08:10	% Sand (0.125 mm - 0.063 mm)	14	%	ALS	RG CORCK SE-1 2018-10-12 0810
E E	CORCK	668539	5487366	2018	1	2018-10-12	08:10	% Silt (0.063 mm - 0.0312 mm)	31	%	ALS	RG CORCK SE-1 2018-10-12 0810
SE	CORCK	668539	5487366	2018	1	2018-10-12	08:10	% Silt (0.031 mm - 0.004 mm)	39	%	ALS	RG CORCK SE-1 2018-10-12 0810
SE	CORCK	668539	5487366	2018	1	2018-10-12	08:10	% Clay (<4 µm)	4.8	%	ALS	RG CORCK SE-1 2018-10-12 0810
SE	CORCK	668539	5487366	2018	1	2018-10-12	08:10	Texture	Silt loam	-	ALS	RG CORCK SE-1 2018-10-12 0810
E E	CORCK	668539	5487366	2018	1	2018-10-12	08:10	Mercury (Hg)	0.0063	mg/kg	ALS	RG CORCK SE-1 2018-10-12 0810
E	CORCK	668539	5487366	2018	1	2018-10-12	08:10	Aluminum (Al)	1,040	mg/kg	ALS	RG CORCK SE-1 2018-10-12 0810
E E	CORCK	668539	5487366	2018	1	2018-10-12	08:10	Antimony (Sb)	0.35	mg/kg	ALS	RG CORCK SE-1 2018-10-12 0810
E	CORCK	668539	5487366	2018	1	2018-10-12	08:10	Arsenic (As)	1.2	mg/kg	ALS	RG CORCK SE-1 2018-10-12 0810
E E	CORCK	668539	5487366	2018	1	2018-10-12	08:10	Barium (Ba)	154	mg/kg	ALS	RG CORCK SE-1 2018-10-12 0810
E	CORCK	668539	5487366	2018	1	2018-10-12	08:10	Beryllium (Be)	0.22	mg/kg	ALS	RG CORCK SE-1 2018-10-12 0810
E	CORCK	668539	5487366	2018	1	2018-10-12	08:10	Bismuth (Bi)	<0.20	mg/kg	ALS	RG CORCK SE-1 2018-10-12 0810
E	CORCK	668539	5487366	2018	1	2018-10-12	08:10	Boron (B)	<5.0	mg/kg	ALS	RG CORCK SE-1 2018-10-12 0810
E	CORCK	668539	5487366	2018	1	2018-10-12	08:10	Cadmium (Cd)	5.4	mg/kg	ALS	RG CORCK SE-1 2018-10-12 0810
E E	CORCK	668539	5487366	2018	1	2018-10-12	08:10	Calcium (Ca)	311,000	mg/kg	ALS	RG CORCK SE-1 2018-10-12 0810
E	CORCK	668539	5487366	2018	1	2018-10-12	08:10	Chromium (Cr)	1.6	mg/kg	ALS	RG CORCK SE-1 2018-10-12 0810
	JUINUIN	000000			 			,			i	
E E	CORCK	668539	5487366	2018	1 1	2018-10-12	08:10	Cobalt (Co)	306	mg/kg	ALS	RG CORCK SE-1 2018-10-12 0810

WSP Canada Inc. Page 51 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Type	Station	Location	(UTMs) ^(a)	Year	Poplicate	Date	Time	Apolyto	Popult	Unit		Laboratory Information
уре	Station	Easting	Northing	rear	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	CORCK	668539	5487366	2018	1	2018-10-12	08:10	Iron (Fe)	1,600	mg/kg	ALS	RG_CORCK_SE-1_2018-10-12_0810
SE	CORCK	668539	5487366	2018	1	2018-10-12	08:10	Lead (Pb)	1.4	mg/kg	ALS	RG_CORCK_SE-1_2018-10-12_0810
SE	CORCK	668539	5487366	2018	1	2018-10-12	08:10	Lithium (Li)	<2.0	mg/kg	ALS	RG_CORCK_SE-1_2018-10-12_0810
SE	CORCK	668539	5487366	2018	1	2018-10-12	08:10	Magnesium (Mg)	5,120	mg/kg	ALS	RG_CORCK_SE-1_2018-10-12_0810
SE	CORCK	668539	5487366	2018	1	2018-10-12	08:10	Manganese (Mn)	2,400	mg/kg	ALS	RG_CORCK_SE-1_2018-10-12_0810
SE	CORCK	668539	5487366	2018	1	2018-10-12	08:10	Molybdenum (Mo)	0.69	mg/kg	ALS	RG CORCK SE-1 2018-10-12 0810
SE	CORCK	668539	5487366	2018	1	2018-10-12	08:10	Nickel (Ni)	259	mg/kg	ALS	RG CORCK SE-1 2018-10-12 0810
SE	CORCK	668539	5487366	2018	1	2018-10-12	08:10	Phosphorus (P)	131	mg/kg	ALS	RG CORCK SE-1 2018-10-12 0810
SE	CORCK	668539	5487366	2018	1	2018-10-12	08:10	Potassium (K)	350	mg/kg	ALS	RG CORCK SE-1 2018-10-12 0810
SE	CORCK	668539	5487366	2018	1	2018-10-12	08:10	Selenium (Se)	1.7	mg/kg	ALS	RG CORCK SE-1 2018-10-12 0810
SE	CORCK	668539	5487366	2018		2018-10-12	08:10	Silver (Ag)	<0.10	mg/kg	ALS	RG CORCK SE-1 2018-10-12 0810
SE	CORCK	668539	5487366	2018	1	2018-10-12	08:10	Sodium (Na)	337	mg/kg	ALS	RG CORCK SE-1 2018-10-12 0810
SE	CORCK	668539	5487366	2018	1	2018-10-12	08:10	Strontium (Sr)	461	mg/kg	ALS	RG CORCK SE-1 2018-10-12 0810
SE	CORCK	668539	5487366	2018	1	2018-10-12	08:10	Sulfur (S)	5,800	mg/kg	ALS	RG CORCK SE-1 2018-10-12 0810
SE	CORCK	668539	5487366	2018	-	2018-10-12	08:10	Thallium (TI)	0.11	mg/kg	ALS	RG CORCK SE-1 2018-10-12 0810
SE	CORCK	668539	5487366	2018		2018-10-12	08:10	Tin (Sn)	<2.0	mg/kg	ALS	RG_CORCK_SE-1_2018-10-12_0810
SE	CORCK	668539	5487366	2018		2018-10-12	08:10	Titanium (Ti)	5.3	mg/kg	ALS	RG_CORCK_SE-1_2018-10-12_0810
SE	CORCK	668539	5487366	2018		2018-10-12	08:10	Tungsten (W)	<0.50	mg/kg	ALS	RG CORCK SE-1 2018-10-12 0810
SE	CORCK	668539	5487366	2018	1	2018-10-12	08:10	Uranium (U)	2.9	mg/kg	ALS	RG_CORCK_SE-1_2018-10-12_0810
SE	CORCK	668539	5487366	2018	1	2018-10-12	08:10	Vanadium (V)	3.5	mg/kg	ALS	RG CORCK SE-1 2018-10-12 0810
SE	CORCK	668539	5487366	2018		2018-10-12	08:10	Zinc (Zn)	717	mg/kg	ALS	RG CORCK SE-1 2018-10-12 0810
SE	CORCK	668539	5487366	2018		2018-10-12	08:10	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_CORCK_SE-1_2018-10-12_0810
SE	CORCK	668539	5487366	2018		2018-10-12	08:10	pH (1:2 soil:water)	8.5	pН	ALS	RG CORCK SE-1 2018-10-12 0810
SE	CORCK	668539	5487366	2018		2018-10-12	08:10	Total Organic Carbon	6.0	%	ALS	RG CORCK SE-1 2018-10-12 0810
SE	CORCK	668539	5487366	2018		2018-10-12	08:30	Moisture	59	%	ALS	RG CORCK SE-2 2018-10-12 0830
SE	CORCK	668539	5487366	2018	-	2018-10-12	08:30	Acenaphthene	<0.041	mg/kg	ALS	RG CORCK SE-2 2018-10-12 0830
SE	CORCK	668539	5487366	2018		2018-10-12	08:30	Acenaphthylene	<0.011	mg/kg	ALS	RG_CORCK_SE-2_2018-10-12_0830
SE	CORCK	668539	5487366	2018	-	2018-10-12	08:30	Acridine	<0.010	mg/kg	ALS	RG CORCK SE-2 2018-10-12 0830
SE	CORCK	668539	5487366	2018		2018-10-12	08:30	Anthracene	<0.015	mg/kg	ALS	RG CORCK SE-2 2018-10-12 0830
SE	CORCK	668539	5487366	2018		2018-10-12	08:30	Benz(a)anthracene	0.055	mg/kg	ALS	RG CORCK SE-2 2018-10-12 0830
SE	CORCK	668539	5487366	2018		2018-10-12	08:30	Benzo(a)pyrene	0.045	mg/kg	ALS	RG CORCK SE-2 2018-10-12 0830
SE	CORCK	668539	5487366	2018	-	2018-10-12	08:30	Benzo(b&j)fluoranthene	0.17	mg/kg	ALS	RG CORCK SE-2 2018-10-12 0830
SE	CORCK	668539	5487366	2018		2018-10-12	08:30	Benzo(g_h_i)perylene	0.097	mg/kg	ALS	RG CORCK SE-2 2018-10-12 0830
SE	CORCK	668539	5487366	2018		2018-10-12	08:30	Benzo(k)fluoranthene	0.012	mg/kg	ALS	RG CORCK SE-2 2018-10-12 0830
SE	CORCK	668539	5487366	2018		2018-10-12	08:30	Benzo(e)pyrene	0.22	mg/kg	ALS	RG CORCK SE-2 2018-10-12 0830
SE	CORCK	668539	5487366	2018		2018-10-12	08:30	Chrysene	0.28	mg/kg	ALS	RG CORCK SE-2 2018-10-12 0830
SE	CORCK	668539	5487366	2018		2018-10-12	08:30	Dibenz(a h)anthracene	<0.030	mg/kg	ALS	RG CORCK SE-2 2018-10-12 0830
SE	CORCK	668539	5487366	2018		2018-10-12	08:30	Fluoranthene	0.054	mg/kg	ALS	RG CORCK SE-2 2018-10-12 0830
SE	CORCK	668539	5487366	2018		2018-10-12	08:30	Fluorene	0.15	mg/kg	ALS	RG CORCK SE-2 2018-10-12 0830
SE	CORCK	668539	5487366	2018		2018-10-12	08:30	Indeno(1,2,3-c,d)pyrene	0.022	mg/kg	ALS	RG CORCK SE-2 2018-10-12 0830
SE	CORCK	668539	5487366	2018		2018-10-12	08:30	1-Methylnaphthalene	0.95	mg/kg	ALS	RG CORCK SE-2 2018-10-12 0830
SE	CORCK	668539	5487366	2018		2018-10-12	08:30	2-Methylnaphthalene	1.6	mg/kg	ALS	RG CORCK SE-2 2018-10-12 0830
SE	CORCK	668539	5487366	2018		2018-10-12	08:30	Naphthalene	0.51	mg/kg	ALS	RG CORCK SE-2 2018-10-12 0830
SE	CORCK	668539	5487366	2018		2018-10-12	08:30	Perylene	<0.010	mg/kg	ALS	RG CORCK SE-2 2018-10-12 0830
		668539	5487366	2018	-	2018-10-12	08:30	Phenanthrene	0.73	mg/kg	ALS	RG CORCK SE-2 2018-10-12 0830
SF	(,URUN			2010		1-0101012	00.00	p. nonananono	0.70	9/1/9	, .LO	1.15_551.5151 2_2010-10-12_0000
SE SE	CORCK CORCK	668539	5487366	2018		2018-10-12	08:30	Pyrene	0.088	mg/kg	ALS	RG CORCK SE-2 2018-10-12 0830

WSP Canada Inc. Page 52 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Vno	Station	Location	(UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
уре	Station	Easting	Northing	rear	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	CORCK	668539	5487366	2018	2	2018-10-12	08:30	IACR (CCME)	1.6	mg/kg	ALS	RG_CORCK_SE-2_2018-10-12_0830
SE.	CORCK	668539	5487366	2018	2	2018-10-12	08:30	B(a)P Total Potency Equivalent	0.089	mg/kg	ALS	RG_CORCK_SE-2_2018-10-12_0830
SE.	CORCK	668539	5487366	2018	2	2018-10-12	08:30	d8-Naphthalene	80	%	ALS	RG CORCK SE-2 2018-10-12 0830
SE	CORCK	668539	5487366	2018	2	2018-10-12	08:30	d10-Acenaphthene	90	%	ALS	RG_CORCK_SE-2_2018-10-12_0830
SE	CORCK	668539	5487366	2018	2	2018-10-12	08:30	d10-Phenanthrene	97	%	ALS	RG CORCK SE-2 2018-10-12 0830
SE	CORCK	668539	5487366	2018	2	2018-10-12	08:30	d12-Chrysene	104	%	ALS	RG CORCK SE-2 2018-10-12 0830
SE.	CORCK	668539	5487366	2018	2	2018-10-12	08:30	% Gravel (>2 mm)	12	%	ALS	RG CORCK SE-2 2018-10-12 0830
SE	CORCK	668539	5487366	2018	2	2018-10-12	08:30	% Sand (2.00 mm - 1.00 mm)	9.0	%	ALS	RG_CORCK_SE-2_2018-10-12_0830
SE	CORCK	668539	5487366	2018	2	2018-10-12	08:30	% Sand (1.00 mm - 0.50 mm)	13	%	ALS	RG CORCK SE-2 2018-10-12 0830
SE	CORCK	668539	5487366	2018	2	2018-10-12	08:30	% Sand (0.50 mm - 0.25 mm)	13	%	ALS	RG CORCK SE-2 2018-10-12 0830
SE	CORCK	668539	5487366	2018	2	2018-10-12	08:30	% Sand (0.25 mm - 0.125 mm)	9.7	%	ALS	RG_CORCK_SE-2_2018-10-12_0830
SE	CORCK	668539	5487366	2018	2	2018-10-12	08:30	% Sand (0.125 mm - 0.063 mm)	9.2	%	ALS	RG CORCK SE-2 2018-10-12 0830
SE	CORCK	668539	5487366	2018	2	2018-10-12	08:30	% Silt (0.063 mm - 0.0312 mm)	14	%	ALS	RG CORCK SE-2 2018-10-12 0830
SE	CORCK	668539	5487366	2018	2	2018-10-12	08:30	% Silt (0.031 mm - 0.004 mm)	18	%	ALS	RG CORCK SE-2 2018-10-12 0830
SE	CORCK	668539	5487366	2018	2	2018-10-12	08:30	% Clay (<4 μm)	3.2	%	ALS	RG CORCK SE-2 2018-10-12 0830
SE	CORCK	668539	5487366	2018	2	2018-10-12	08:30	Texture	Sandy loam	-	ALS	RG CORCK SE-2 2018-10-12 0830
SE	CORCK	668539	5487366	2018	2	2018-10-12	08:30	Mercury (Hg)	0.016	mg/kg	ALS	RG_CORCK_SE-2_2018-10-12_0830
SE	CORCK	668539	5487366	2018	2	2018-10-12	08:30	Aluminum (Al)	2,300	mg/kg	ALS	RG CORCK SE-2 2018-10-12 0830
SE	CORCK	668539	5487366	2018	2	2018-10-12	08:30	Antimony (Sb)	0.36	mg/kg	ALS	RG_CORCK_SE-2_2018-10-12_0830
SE	CORCK	668539	5487366	2018	2	2018-10-12	08:30	Arsenic (As)	2.7	mg/kg	ALS	RG CORCK SE-2 2018-10-12 0830
SE	CORCK	668539	5487366	2018	2	2018-10-12	08:30	Barium (Ba)	170	mg/kg	ALS	RG CORCK SE-2 2018-10-12 0830
SE	CORCK	668539	5487366	2018	2	2018-10-12	08:30	Beryllium (Be)	0.37	mg/kg	ALS	RG_CORCK_SE-2_2018-10-12_0830
SE	CORCK	668539	5487366	2018	2	2018-10-12	08:30	Bismuth (Bi)	<0.20	mg/kg	ALS	RG CORCK SE-2 2018-10-12 0830
SE	CORCK	668539	5487366	2018	2	2018-10-12	08:30	Boron (B)	5.2	mg/kg	ALS	RG CORCK SE-2 2018-10-12 0830
SE	CORCK	668539	5487366	2018		2018-10-12	08:30	Cadmium (Cd)	7.9	mg/kg	ALS	RG CORCK SE-2 2018-10-12 0830
SE	CORCK	668539	5487366	2018	2	2018-10-12	08:30	Calcium (Ca)	257,000	mg/kg	ALS	RG CORCK SE-2 2018-10-12 0830
SE	CORCK	668539	5487366	2018	2	2018-10-12	08:30	Chromium (Cr)	3.6	mg/kg	ALS	RG_CORCK_SE-2_2018-10-12_0830
SE	CORCK	668539	5487366	2018	2	2018-10-12	08:30	Cobalt (Co)	252	mg/kg	ALS	RG CORCK SE-2 2018-10-12 0830
SE	CORCK	668539	5487366	2018	2	2018-10-12	08:30	Copper (Cu)	5.7	mg/kg	ALS	RG CORCK SE-2 2018-10-12 0830
SE	CORCK	668539	5487366	2018	2	2018-10-12	08:30	Iron (Fe)	3,790	mg/kg	ALS	RG CORCK SE-2 2018-10-12 0830
SE	CORCK	668539	5487366	2018	2	2018-10-12	08:30	Lead (Pb)	3.6	mg/kg	ALS	RG_CORCK_SE-2_2018-10-12_0830
SE	CORCK	668539	5487366	2018	2	2018-10-12	08:30	Lithium (Li)	3.4	mg/kg	ALS	RG CORCK SE-2 2018-10-12 0830
SE	CORCK	668539	5487366	2018	2	2018-10-12	08:30	Magnesium (Mg)	6,010	mg/kg	ALS	RG CORCK SE-2 2018-10-12 0830
SE	CORCK	668539	5487366	2018	2	2018-10-12	08:30	Manganese (Mn)	1,770	mg/kg	ALS	RG CORCK SE-2 2018-10-12 0830
SE	CORCK	668539	5487366	2018	2	2018-10-12	08:30	Molybdenum (Mo)	0.95	mg/kg	ALS	RG CORCK SE-2 2018-10-12 0830
SE	CORCK	668539	5487366	2018	2	2018-10-12	08:30	Nickel (Ni)	207	mg/kg	ALS	RG CORCK SE-2 2018-10-12 0830
SE	CORCK	668539	5487366	2018	2	2018-10-12	08:30	Phosphorus (P)	265	mg/kg	ALS	RG CORCK SE-2 2018-10-12 0830
SE	CORCK	668539	5487366	2018	2	2018-10-12	08:30	Potassium (K)	520	mg/kg	ALS	RG CORCK SE-2 2018-10-12 0830
SE	CORCK	668539	5487366	2018	2	2018-10-12	08:30	Selenium (Se)	1.6	mg/kg	ALS	RG CORCK SE-2 2018-10-12 0830
SE	CORCK	668539	5487366	2018	2	2018-10-12	08:30	Silver (Ag)	<0.10	mg/kg	ALS	RG CORCK SE-2 2018-10-12 0830
SE	CORCK	668539	5487366	2018	2	2018-10-12	08:30	Sodium (Na)	234	mg/kg	ALS	RG CORCK SE-2 2018-10-12 0830
SE	CORCK	668539	5487366	2018	2	2018-10-12	08:30	Strontium (Sr)	309	mg/kg	ALS	RG CORCK SE-2 2018-10-12 0830
SE	CORCK	668539	5487366	2018	2	2018-10-12	08:30	Sulfur (S)	3,800	mg/kg	ALS	RG CORCK SE-2 2018-10-12 0830
SE	CORCK	668539	5487366	2018		2018-10-12	08:30	Thallium (TI)	0.25	mg/kg	ALS	RG CORCK SE-2 2018-10-12 0830
SE	CORCK	668539	5487366	2018	2	2018-10-12	08:30	Tin (Sn)	<2.0	mg/kg	ALS	RG CORCK SE-2 2018-10-12 0830
			t									
SE	CORCK	668539	5487366	2018	2	2018-10-12	08:30	Titanium (Ti)	9.3	mg/kg	ALS	RG CORCK SE-2 2018-10-12 0830

WSP Canada Inc. Page 53 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Typo	Station	Location	(UTMs) ^(a)	Year	Poplicate	Date	Time	Analyta	Popult	Unit		Laboratory Information
уре	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	CORCK	668539	5487366	2018	2	2018-10-12	08:30	Uranium (U)	2.1	mg/kg	ALS	RG CORCK SE-2 2018-10-12 0830
SE	CORCK	668539	5487366	2018		2018-10-12	08:30	Vanadium (V)	7.0	mg/kg	ALS	RG CORCK SE-2 2018-10-12 0830
SE	CORCK	668539	5487366	2018	2	2018-10-12	08:30	Zinc (Zn)	760	mg/kg	ALS	RG CORCK SE-2 2018-10-12 0830
SE	CORCK	668539	5487366	2018	2	2018-10-12	08:30	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_CORCK_SE-2_2018-10-12_0830
SE	CORCK	668539	5487366	2018	2	2018-10-12	08:30	pH (1:2 soil:water)	8.3	pН	ALS	RG_CORCK_SE-2_2018-10-12_0830
SE	CORCK	668539	5487366	2018	2	2018-10-12	08:30	Total Organic Carbon	6.5	%	ALS	RG CORCK SE-2 2018-10-12 0830
SE	CORCK	668539	5487366	2018	3	2018-10-12	08:35	Moisture	61	%	ALS	RG CORCK SE-3 2018-10-12 0835
SE	CORCK	668539	5487366	2018	3	2018-10-12	08:35	Acenaphthene	<0.032	mg/kg	ALS	RG CORCK SE-3 2018-10-12 0835
SE	CORCK	668539	5487366	2018	3	2018-10-12	08:35	Acenaphthylene	<0.0070	mg/kg	ALS	RG CORCK SE-3 2018-10-12 0835
SE	CORCK	668539	5487366	2018	3	2018-10-12	08:35	Acridine	<0.010	mg/kg	ALS	RG CORCK SE-3 2018-10-12 0835
SE	CORCK	668539	5487366	2018	3	2018-10-12	08:35	Anthracene	<0.013	mg/kg	ALS	RG_CORCK_SE-3_2018-10-12_0835
SE	CORCK	668539	5487366	2018	3	2018-10-12	08:35	Benz(a)anthracene	0.043	mg/kg	ALS	RG CORCK SE-3 2018-10-12 0835
SE	CORCK	668539	5487366	2018	3	2018-10-12	08:35	Benzo(a)pyrene	0.033	mg/kg	ALS	RG CORCK SE-3 2018-10-12 0835
SE .	CORCK	668539	5487366	2018	3	2018-10-12	08:35	Benzo(b&j)fluoranthene	0.12	mg/kg	ALS	RG CORCK SE-3 2018-10-12 0835
SE	CORCK	668539	5487366	2018	3	2018-10-12	08:35	Benzo(g_h_i)perylene	0.071	mg/kg	ALS	RG CORCK SE-3 2018-10-12 0835
SE	CORCK	668539	5487366	2018	3	2018-10-12	08:35	Benzo(k)fluoranthene	<0.010	mg/kg	ALS	RG CORCK SE-3 2018-10-12 0835
SE	CORCK	668539	5487366	2018	_	2018-10-12	08:35	Benzo(e)pyrene	0.16	mg/kg	ALS	RG CORCK SE-3 2018-10-12 0835
SE	CORCK	668539	5487366	2018	3	2018-10-12	08:35	Chrysene	0.2	mg/kg	ALS	RG CORCK SE-3 2018-10-12 0835
SE	CORCK	668539	5487366	2018	3	2018-10-12	08:35	Dibenz(a h)anthracene	<0.021	mg/kg	ALS	RG CORCK SE-3 2018-10-12 0835
SE .	CORCK	668539	5487366	2018	3	2018-10-12	08:35	Fluoranthene	0.041	mg/kg	ALS	RG CORCK SE-3 2018-10-12 0835
SE .	CORCK	668539	5487366	2018	3	2018-10-12	08:35	Fluorene	0.11	mg/kg	ALS	RG CORCK SE-3 2018-10-12 0835
SE .	CORCK	668539	5487366	2018	3	2018-10-12	08:35	Indeno(1,2,3-c,d)pyrene	0.017	mg/kg	ALS	RG CORCK SE-3 2018-10-12 0835
SE	CORCK	668539	5487366	2018	3	2018-10-12	08:35	1-Methylnaphthalene	0.71	mg/kg	ALS	RG CORCK SE-3 2018-10-12 0835
SE	CORCK	668539	5487366	2018	3	2018-10-12	08:35	2-Methylnaphthalene	1.2	mg/kg	ALS	RG CORCK SE-3 2018-10-12 0835
SE	CORCK	668539	5487366	2018		2018-10-12	08:35	Naphthalene	0.37	mg/kg	ALS	RG CORCK SE-3 2018-10-12 0835
SE	CORCK	668539	5487366	2018	3	2018-10-12	08:35	Perylene	<0.010	mg/kg	ALS	RG CORCK SE-3 2018-10-12 0835
SE	CORCK	668539	5487366	2018	3	2018-10-12	08:35	Phenanthrene	0.55	mg/kg	ALS	RG_CORCK_SE-3_2018-10-12_0835
SE	CORCK	668539	5487366	2018	3	2018-10-12	08:35	Pyrene	0.064	mg/kg	ALS	RG CORCK SE-3 2018-10-12 0835
SE	CORCK	668539	5487366	2018	3	2018-10-12	08:35	Quinoline	<0.010	mg/kg	ALS	RG CORCK SE-3 2018-10-12 0835
SE	CORCK	668539	5487366	2018	3	2018-10-12	08:35	IACR (CCME)	1.2	mg/kg	ALS	RG CORCK SE-3 2018-10-12 0835
SE	CORCK	668539	5487366	2018	3	2018-10-12	08:35	B(a)P Total Potency Equivalent	0.065	mg/kg	ALS	RG CORCK SE-3 2018-10-12 0835
SE	CORCK	668539	5487366	2018	3	2018-10-12	08:35	d8-Naphthalene	71	%	ALS	RG CORCK SE-3 2018-10-12 0835
SE	CORCK	668539	5487366	2018	3	2018-10-12	08:35	d10-Acenaphthene	79	%	ALS	RG CORCK SE-3 2018-10-12 0835
SE	CORCK	668539	5487366	2018	3	2018-10-12	08:35	d10-Phenanthrene	87	%	ALS	RG CORCK SE-3 2018-10-12 0835
SE	CORCK	668539	5487366	2018	3	2018-10-12	08:35	d12-Chrysene	93	%	ALS	RG CORCK SE-3 2018-10-12 0835
SE	CORCK	668539	5487366	2018	3	2018-10-12	08:35	% Gravel (>2 mm)	1.1	%	ALS	RG CORCK SE-3 2018-10-12 0835
SE	CORCK	668539	5487366	2018	3	2018-10-12	08:35	% Sand (2.00 mm - 1.00 mm)	1.6	%	ALS	RG CORCK SE-3 2018-10-12 0835
SE	CORCK	668539	5487366	2018	3	2018-10-12	08:35	% Sand (1.00 mm - 0.50 mm)	2.1	%	ALS	RG CORCK SE-3 2018-10-12 0835
SE	CORCK	668539	5487366	2018	3	2018-10-12	08:35	% Sand (0.50 mm - 0.25 mm)	1.7	%	ALS	RG CORCK SE-3 2018-10-12 0835
SE	CORCK	668539	5487366	2018	3	2018-10-12	08:35	% Sand (0.25 mm - 0.125 mm)	4.9	%	ALS	RG CORCK SE-3 2018-10-12 0835
SE .	CORCK	668539	5487366	2018	3	2018-10-12	08:35	% Sand (0.125 mm - 0.063 mm)	11	%	ALS	RG CORCK SE-3 2018-10-12 0835
SE SE	CORCK	668539	5487366	2018	3	2018-10-12	08:35	% Silt (0.063 mm - 0.0312 mm)	34	%	ALS	RG CORCK SE-3 2018-10-12 0835
SE	CORCK	668539	5487366	2018	3	2018-10-12	08:35	% Silt (0.031 mm - 0.004 mm)	40	%	ALS	RG CORCK SE-3 2018-10-12 0835
SE SE	CORCK	668539	5487366	2018	_	2018-10-12	08:35	% Clay (<4 μm)	4.1	%	ALS	RG CORCK SE-3 2018-10-12 0835
~	CORCK	668539	5487366	2018	3	2018-10-12	08:35	Texture	Silt loam	-	ALS	RG CORCK SE-3 2018-10-12 0835
SE T	しいけいい					1-0.0 10 12			Ont louin	1	, ,	1.15_55.15.1_52 5_2515 15 12_0000
SE SE	CORCK	668539	5487366	2018	3	2018-10-12	08:35	Mercury (Hg)	0.013	mg/kg	ALS	RG CORCK SE-3 2018-10-12 0835

WSP Canada Inc. Page 54 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Table I-1	: Sediment Chem			CMm LAEMP	Sampling St	ations, 2012 to	2022					
Туре	Station		(UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
		Easting	Northing		rtophodio			· ·		O.I.I.	Lab	Sample ID
SE	CORCK	668539	5487366	2018	3	2018-10-12	08:35	Antimony (Sb)	0.36	mg/kg	ALS	RG_CORCK_SE-3_2018-10-12_0835
SE	CORCK	668539	5487366	2018	3	2018-10-12	08:35	Arsenic (As)	1.8	mg/kg	ALS	RG_CORCK_SE-3_2018-10-12_0835
SE	CORCK	668539	5487366	2018	3	2018-10-12	08:35	Barium (Ba)	160	mg/kg	ALS	RG_CORCK_SE-3_2018-10-12_0835
SE	CORCK	668539	5487366	2018	3	2018-10-12	08:35	Beryllium (Be)	0.27	mg/kg	ALS	RG_CORCK_SE-3_2018-10-12_0835
SE	CORCK	668539	5487366	2018	3	2018-10-12	08:35	Bismuth (Bi)	<0.20	mg/kg	ALS	RG_CORCK_SE-3_2018-10-12_0835
SE	CORCK	668539	5487366	2018	3	2018-10-12	08:35	Boron (B)	6.2	mg/kg	ALS	RG_CORCK_SE-3_2018-10-12_0835
SE	CORCK	668539	5487366	2018	3	2018-10-12	08:35	Cadmium (Cd)	5.5	mg/kg	ALS	RG_CORCK_SE-3_2018-10-12_0835
SE	CORCK	668539	5487366	2018	3	2018-10-12	08:35	Calcium (Ca)	310,000	mg/kg	ALS	RG_CORCK_SE-3_2018-10-12_0835
SE	CORCK	668539	5487366	2018	3	2018-10-12	08:35	Chromium (Cr)	2.7	mg/kg	ALS	RG_CORCK_SE-3_2018-10-12_0835
SE	CORCK	668539	5487366	2018	3	2018-10-12	08:35	Cobalt (Co)	318	mg/kg	ALS	RG_CORCK_SE-3_2018-10-12_0835
SE	CORCK	668539	5487366	2018	3	2018-10-12	08:35	Copper (Cu)	4.3	mg/kg	ALS	RG_CORCK_SE-3_2018-10-12_0835
SE	CORCK	668539	5487366	2018	3	2018-10-12	08:35	Iron (Fe)	2,180	mg/kg	ALS	RG_CORCK_SE-3_2018-10-12_0835
SE	CORCK	668539	5487366	2018	3	2018-10-12	08:35	Lead (Pb)	1.9	mg/kg	ALS	RG_CORCK_SE-3_2018-10-12_0835
SE	CORCK	668539	5487366	2018	3	2018-10-12	08:35	Lithium (Li)	3.1	mg/kg	ALS	RG_CORCK_SE-3_2018-10-12_0835
SE	CORCK	668539	5487366	2018	3	2018-10-12	08:35	Magnesium (Mg)	5,710	mg/kg	ALS	RG_CORCK_SE-3_2018-10-12_0835
SE	CORCK	668539	5487366	2018	3	2018-10-12	08:35	Manganese (Mn)	2,440	mg/kg	ALS	RG_CORCK_SE-3_2018-10-12_0835
SE	CORCK	668539	5487366	2018	3	2018-10-12	08:35	Molybdenum (Mo)	0.8	mg/kg	ALS	RG_CORCK_SE-3_2018-10-12_0835
SE	CORCK	668539	5487366	2018	3	2018-10-12	08:35	Nickel (Ni)	272	mg/kg	ALS	RG_CORCK_SE-3_2018-10-12_0835
SE	CORCK	668539	5487366	2018	3	2018-10-12	08:35	Phosphorus (P)	209	mg/kg	ALS	RG_CORCK_SE-3_2018-10-12_0835
SE	CORCK	668539	5487366	2018	3	2018-10-12	08:35	Potassium (K)	500	mg/kg	ALS	RG_CORCK_SE-3_2018-10-12_0835
SE	CORCK	668539	5487366	2018	3	2018-10-12	08:35	Selenium (Se)	1.6	mg/kg	ALS	RG_CORCK_SE-3_2018-10-12_0835
SE	CORCK	668539	5487366	2018	3	2018-10-12	08:35	Silver (Ag)	<0.10	mg/kg	ALS	RG_CORCK_SE-3_2018-10-12_0835
SE	CORCK	668539	5487366	2018	3	2018-10-12	08:35	Sodium (Na)	340	mg/kg	ALS	RG_CORCK_SE-3_2018-10-12_0835
SE	CORCK	668539	5487366	2018	3	2018-10-12	08:35	Strontium (Sr)	444	mg/kg	ALS	RG_CORCK_SE-3_2018-10-12_0835
SE	CORCK	668539	5487366	2018	3	2018-10-12	08:35	Sulfur (S)	5,700	mg/kg	ALS	RG_CORCK_SE-3_2018-10-12_0835
SE	CORCK	668539	5487366	2018	3	2018-10-12	08:35	Thallium (TI)	0.16	mg/kg	ALS	RG_CORCK_SE-3_2018-10-12_0835
SE	CORCK	668539	5487366	2018	3	2018-10-12	08:35	Tin (Sn)	<2.0	mg/kg	ALS	RG_CORCK_SE-3_2018-10-12_0835
SE	CORCK	668539	5487366	2018	3	2018-10-12	08:35	Titanium (Ti)	7.6	mg/kg	ALS	RG_CORCK_SE-3_2018-10-12_0835
SE	CORCK	668539	5487366	2018	3	2018-10-12	08:35	Tungsten (W)	<0.50	mg/kg	ALS	RG_CORCK_SE-3_2018-10-12_0835
SE	CORCK	668539	5487366	2018	3	2018-10-12	08:35	Uranium (U)	2.9	mg/kg	ALS	RG_CORCK_SE-3_2018-10-12_0835
SE	CORCK	668539	5487366	2018	3	2018-10-12	08:35	Vanadium (V)	5.5	mg/kg	ALS	RG_CORCK_SE-3_2018-10-12_0835
SE	CORCK	668539	5487366	2018	3	2018-10-12	08:35	Zinc (Zn)	727	mg/kg	ALS	RG_CORCK_SE-3_2018-10-12_0835
SE	CORCK	668539	5487366	2018	3	2018-10-12	08:35	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_CORCK_SE-3_2018-10-12_0835
SE	CORCK	668539	5487366	2018	3	2018-10-12	08:35	pH (1:2 soil:water)	8.1	pН	ALS	RG_CORCK_SE-3_2018-10-12_0835
SE	CORCK	668539	5487366	2018	3	2018-10-12	08:35	Total Organic Carbon	6.0	%	ALS	RG_CORCK_SE-3_2018-10-12_0835
SE	CORCK	668539	5487366	2018	4	2018-10-12	08:45	Moisture	61	%	ALS	RG_CORCK_SE-4_2018-10-12_0845
SE	CORCK	668539	5487366	2018	4	2018-10-12	08:45	Acenaphthene	<0.046	mg/kg	ALS	RG_CORCK_SE-4_2018-10-12_0845
SE	CORCK	668539	5487366	2018	4	2018-10-12	08:45	Acenaphthylene	<0.010	mg/kg		RG_CORCK_SE-4_2018-10-12_0845
SE	CORCK	668539	5487366	2018	4	2018-10-12	08:45	Acridine	<0.010	mg/kg		RG_CORCK_SE-4_2018-10-12_0845
SE	CORCK	668539	5487366	2018	4	2018-10-12	08:45	Anthracene	<0.016	mg/kg	ALS	RG_CORCK_SE-4_2018-10-12_0845
SE	CORCK	668539	5487366	2018	4	2018-10-12	08:45	Benz(a)anthracene	0.063	mg/kg	ALS	RG_CORCK_SE-4_2018-10-12_0845
SE	CORCK	668539	5487366	2018	4	2018-10-12	08:45	Benzo(a)pyrene	0.05	mg/kg	ALS	RG_CORCK_SE-4_2018-10-12_0845
SE	CORCK	668539	5487366	2018	4	2018-10-12	08:45	Benzo(b&j)fluoranthene	0.19	mg/kg	ALS	RG_CORCK_SE-4_2018-10-12_0845
SE	CORCK	668539	5487366	2018	4	2018-10-12	08:45	Benzo(g_h_i)perylene	0.11	mg/kg	ALS	RG_CORCK_SE-4_2018-10-12_0845
SE	CORCK	668539	5487366	2018	4	2018-10-12	08:45	Benzo(k)fluoranthene	0.013	mg/kg	ALS	RG_CORCK_SE-4_2018-10-12_0845
SE	CORCK	668539	5487366	2018	4	2018-10-12	08:45	Benzo(e)pyrene	0.24	mg/kg	ALS	RG_CORCK_SE-4_2018-10-12_0845
SE	CORCK	668539	5487366	2018	4	2018-10-12	08:45	Chrysene	0.31	mg/kg	ALS	RG_CORCK_SE-4_2018-10-12_0845

WSP Canada Inc. Page 55 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Type	Station	Location	ı (UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Popult	Unit		Laboratory Information
Гуре	Station	Easting	Northing	rear	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	CORCK	668539	5487366	2018	4	2018-10-12	08:45	Dibenz(a h)anthracene	< 0.033	mg/kg	ALS	RG CORCK SE-4 2018-10-12 0845
SE	CORCK	668539	5487366	2018	4	2018-10-12	08:45	Fluoranthene	0.06	mg/kg	ALS	RG CORCK SE-4 2018-10-12 0845
SE	CORCK	668539	5487366	2018	4	2018-10-12	08:45	Fluorene	0.15	mg/kg	ALS	RG_CORCK_SE-4_2018-10-12_0845
SE	CORCK	668539	5487366	2018	4	2018-10-12	08:45	Indeno(1,2,3-c,d)pyrene	0.024	mg/kg	ALS	RG_CORCK_SE-4_2018-10-12_0845
SE	CORCK	668539	5487366	2018	4	2018-10-12	08:45	1-Methylnaphthalene	1.0	mg/kg	ALS	RG_CORCK_SE-4_2018-10-12_0845
SE	CORCK	668539	5487366	2018	4	2018-10-12	08:45	2-Methylnaphthalene	1.7	mg/kg	ALS	RG CORCK SE-4 2018-10-12 0845
SE	CORCK	668539	5487366	2018	4	2018-10-12	08:45	Naphthalene	0.54	mg/kg	ALS	RG CORCK SE-4 2018-10-12 0845
SE	CORCK	668539	5487366	2018	4	2018-10-12	08:45	Perylene	<0.010	mg/kg	ALS	RG_CORCK_SE-4_2018-10-12_0845
SE	CORCK	668539	5487366	2018	4	2018-10-12	08:45	Phenanthrene	0.83	mg/kg	ALS	RG_CORCK_SE-4_2018-10-12_0845
SE	CORCK	668539	5487366	2018	4	2018-10-12	08:45	Pyrene	0.098	mg/kg	ALS	RG CORCK SE-4 2018-10-12 0845
SE	CORCK	668539	5487366	2018	4	2018-10-12	08:45	Quinoline	<0.010	mg/kg	ALS	RG_CORCK_SE-4_2018-10-12_0845
SE	CORCK	668539	5487366	2018	4	2018-10-12	08:45	IACR (CCME)	1.8	mg/kg	ALS	RG CORCK SE-4 2018-10-12 0845
SE	CORCK	668539	5487366	2018	4	2018-10-12	08:45	B(a)P Total Potency Equivalent	0.099	mg/kg	ALS	RG CORCK SE-4 2018-10-12 0845
SE	CORCK	668539	5487366	2018	4	2018-10-12	08:45	d8-Naphthalene	73	%	ALS	RG CORCK SE-4 2018-10-12 0845
SE	CORCK	668539	5487366	2018	4	2018-10-12	08:45	d10-Acenaphthene	83	%	ALS	RG CORCK SE-4 2018-10-12 0845
SE	CORCK	668539	5487366	2018	4	2018-10-12	08:45	d10-Phenanthrene	93	%	ALS	RG_CORCK_SE-4_2018-10-12_0845
SE	CORCK	668539	5487366	2018	4	2018-10-12	08:45	d12-Chrysene	100	%	ALS	RG_CORCK_SE-4_2018-10-12_0845
SE	CORCK	668539	5487366	2018	4	2018-10-12	08:45	% Gravel (>2 mm)	23	%	ALS	RG CORCK SE-4 2018-10-12 0845
SE	CORCK	668539	5487366	2018	4	2018-10-12	08:45	% Sand (2.00 mm - 1.00 mm)	6.5	%	ALS	RG_CORCK_SE-4_2018-10-12_0845
SE	CORCK	668539	5487366	2018	4	2018-10-12	08:45	% Sand (1.00 mm - 0.50 mm)	3.6	%	ALS	RG CORCK SE-4 2018-10-12 0845
SE	CORCK	668539	5487366	2018	4	2018-10-12	08:45	% Sand (0.50 mm - 0.25 mm)	3.3	%	ALS	RG CORCK SE-4 2018-10-12 0845
SE	CORCK	668539	5487366	2018	4	2018-10-12	08:45	% Sand (0.25 mm - 0.125 mm)	5.6	%	ALS	RG CORCK SE-4 2018-10-12 0845
SE	CORCK	668539	5487366	2018	4	2018-10-12	08:45	% Sand (0.125 mm - 0.063 mm)	10	%	ALS	RG CORCK SE-4 2018-10-12 0845
SE	CORCK	668539	5487366	2018	4	2018-10-12	08:45	% Silt (0.063 mm - 0.0312 mm)	21	%	ALS	RG_CORCK_SE-4_2018-10-12_0845
SE	CORCK	668539	5487366	2018	4	2018-10-12	08:45	% Silt (0.031 mm - 0.004 mm)	25	%	ALS	RG CORCK SE-4 2018-10-12 0845
SE	CORCK	668539	5487366	2018	4	2018-10-12	08:45	% Clay (<4 μm)	3.1	%	ALS	RG CORCK SE-4 2018-10-12 0845
SE	CORCK	668539	5487366	2018	4	2018-10-12	08:45	Texture	Silt loam	-	ALS	RG_CORCK_SE-4_2018-10-12_0845
SE	CORCK	668539	5487366	2018	4	2018-10-12	08:45	Mercury (Hg)	0.015	mg/kg	ALS	RG_CORCK_SE-4_2018-10-12_0845
SE	CORCK	668539	5487366	2018	4	2018-10-12	08:45	Aluminum (Al)	1,860	mg/kg	ALS	RG CORCK SE-4 2018-10-12 0845
SE	CORCK	668539	5487366	2018	4	2018-10-12	08:45	Antimony (Sb)	0.33	mg/kg	ALS	RG CORCK SE-4 2018-10-12 0845
SE	CORCK	668539	5487366	2018	4	2018-10-12	08:45	Arsenic (As)	2.2	mg/kg	ALS	RG_CORCK_SE-4_2018-10-12_0845
SE	CORCK	668539	5487366	2018	4	2018-10-12	08:45	Barium (Ba)	151	mg/kg	ALS	RG CORCK SE-4 2018-10-12 0845
SE	CORCK	668539	5487366	2018	4	2018-10-12	08:45	Beryllium (Be)	0.28	mg/kg	ALS	RG CORCK SE-4 2018-10-12 0845
SE	CORCK	668539	5487366	2018	4	2018-10-12	08:45	Bismuth (Bi)	<0.20	mg/kg	ALS	RG CORCK SE-4 2018-10-12 0845
SE	CORCK	668539	5487366	2018	4	2018-10-12	08:45	Boron (B)	6.1	mg/kg	ALS	RG CORCK SE-4 2018-10-12 0845
SE	CORCK	668539	5487366	2018	4	2018-10-12	08:45	Cadmium (Cd)	5.1	mg/kg	ALS	RG CORCK SE-4 2018-10-12 0845
SE	CORCK	668539	5487366	2018	4	2018-10-12	08:45	Calcium (Ca)	270,000	mg/kg	ALS	RG CORCK SE-4 2018-10-12 0845
SE	CORCK	668539	5487366	2018	4	2018-10-12	08:45	Chromium (Cr)	3.1	mg/kg	ALS	RG CORCK SE-4 2018-10-12 0845
<u></u>	CORCK	668539	5487366	2018	4	2018-10-12	08:45	Cobalt (Co)	288	mg/kg	ALS	RG CORCK SE-4 2018-10-12 0845
⊃⊏ ,		668539	5487366	2018	4	2018-10-12	08:45	Copper (Cu)	4.8	mg/kg	ALS	RG_CORCK_SE-4_2018-10-12_0845
	CORCK	000000			1	2018-10-12	08:45	Iron (Fe)	2,950	mg/kg	ALS	RG_CORCK_SE-4_2018-10-12_0845
SE	CORCK CORCK	668539	5487366	2018	4			. ,				
SE SE			5487366 5487366	2018 2018	4	2018-10-12	08:45	Lead (Pb)	2.7	mg/kg	ALS	RG CORCK SE-4 2018-10-12 0845
SE SE SE	CORCK	668539			4 4 4		08:45 08:45	Lead (Pb) Lithium (Li)	3.2	mg/kg mg/kg	ALS ALS	
SE SE SE SE	CORCK CORCK	668539 668539	5487366	2018	4 4 4 4	2018-10-12		7		mg/kg mg/kg mg/kg	ł	RG_CORCK_SE-4_2018-10-12_0845
SE SE SE SE	CORCK CORCK CORCK	668539 668539 668539	5487366 5487366	2018 2018	4 4 4 4 4	2018-10-12 2018-10-12	08:45	Lithium (Ĺi)	3.2 5,450	mg/kg mg/kg	ALS	RG_CORCK_SE-4_2018-10-12_0845 RG_CORCK_SE-4_2018-10-12_0845
SE SE SE SE SE SE	CORCK CORCK CORCK CORCK	668539 668539 668539 668539	5487366 5487366 5487366	2018 2018 2018	4 4 4 4 4	2018-10-12 2018-10-12 2018-10-12	08:45 08:45	Lithium (Li) Magnesium (Mg)	3.2	mg/kg	ALS ALS	RG_CORCK_SE-4_2018-10-12_0845 RG_CORCK_SE-4_2018-10-12_0845 RG_CORCK_SE-4_2018-10-12_0845 RG_CORCK_SE-4_2018-10-12_0845 RG_CORCK_SE-4_2018-10-12_0845

WSP Canada Inc. Page 56 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	Ctation	Location	ı (UTMs) ^(a)	Vacu	Doubleste	Doto	Time	Analysis	Docult	Unit		Laboratory Information
ype	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
E	CORCK	668539	5487366	2018	4	2018-10-12	08:45	Phosphorus (P)	204	mg/kg	ALS	RG CORCK SE-4 2018-10-12 0845
E	CORCK	668539	5487366	2018	4	2018-10-12	08:45	Potassium (K)	510	mg/kg	ALS	RG CORCK SE-4 2018-10-12 0845
E	CORCK	668539	5487366	2018	4	2018-10-12	08:45	Selenium (Se)	1.6	mg/kg	ALS	RG CORCK SE-4 2018-10-12 0845
E	CORCK	668539	5487366	2018	4	2018-10-12	08:45	Silver (Ag)	<0.10	mg/kg	ALS	RG CORCK SE-4 2018-10-12 0845
E	CORCK	668539	5487366	2018	4	2018-10-12	08:45	Sodium (Na)	287	mg/kg	ALS	RG CORCK SE-4 2018-10-12 0845
E	CORCK	668539	5487366	2018	4	2018-10-12	08:45	Strontium (Sr)	386	mg/kg	ALS	RG CORCK SE-4 2018-10-12 0845
E	CORCK	668539	5487366	2018	4	2018-10-12	08:45	Sulfur (S)	4,800	mg/kg	ALS	RG CORCK SE-4 2018-10-12 0845
E	CORCK	668539	5487366	2018	4	2018-10-12	08:45	Thallium (TI)	0.17	mg/kg	ALS	RG CORCK SE-4 2018-10-12 0845
E	CORCK	668539	5487366	2018	4	2018-10-12	08:45	Tin (Sn)	<2.0	mg/kg	ALS	RG_CORCK_SE-4_2018-10-12_0845
E	CORCK	668539	5487366	2018	4	2018-10-12	08:45	Titanium (Ti)	11	mg/kg	ALS	RG CORCK SE-4 2018-10-12 0845
E	CORCK	668539	5487366	2018	4	2018-10-12	08:45	Tungsten (W)	<0.50	mg/kg	ALS	RG CORCK SE-4 2018-10-12 0845
E	CORCK	668539	5487366	2018	1	2018-10-12	08:45	Uranium (U)	2.5	mg/kg	ALS	RG CORCK SE-4 2018-10-12 0845
E	CORCK	668539	5487366	2018	4	2018-10-12	08:45	Vanadium (V)	5.9	mg/kg	ALS	RG CORCK SE-4 2018-10-12 0845
E	CORCK	668539	5487366	2018	4	2018-10-12	08:45	Zinc (Zn)	643	mg/kg	ALS	RG CORCK SE-4 2018-10-12 0845
E	CORCK	668539	5487366	2018	4	2018-10-12	08:45	Zirconium (Zr)	<1.0	mg/kg	ALS	RG CORCK SE-4 2018-10-12 0845
E	CORCK	668539	5487366	2018	4	2018-10-12	08:45	pH (1:2 soil:water)	8.3	pH	ALS	RG CORCK SE-4 2018-10-12 0845
E	CORCK	668539	5487366	2018	4	2018-10-12	08:45	Total Organic Carbon	6.5	%	ALS	RG CORCK SE-4 2018-10-12 0845
E	CORCK	668539	5487366	2018	5	2018-10-12	08:50	Moisture	63	%	ALS	RG_CORCK_SE-5_2018-10-12_0850
E	CORCK	668539	5487366	2018	5	2018-10-12	08:50	Acenaphthene	<0.031	mg/kg	ALS	RG CORCK SE-5 2018-10-12 0850
E	CORCK	668539	5487366	2018		2018-10-12	08:50	Acenaphthylene	<0.0070		ALS	RG CORCK SE-5 2018-10-12 0850
E	CORCK	668539	5487366	2018	5		08:50	Acridine	<0.0070	mg/kg	ALS	RG CORCK SE-5 2018-10-12 0850
E	CORCK	668539	5487366	2018		2018-10-12 2018-10-12	08:50	Anthracene	<0.010	mg/kg	ALS	RG CORCK SE-5 2018-10-12 0850
					5					mg/kg	-	
E	CORCK	668539	5487366	2018		2018-10-12	08:50	Benz(a)anthracene	0.041	mg/kg	ALS	RG_CORCK_SE-5_2018-10-12_0850
E	CORCK	668539	5487366	2018		2018-10-12	08:50	Benzo(a)pyrene	0.032	mg/kg	ALS	RG_CORCK_SE-5_2018-10-12_0850
E	CORCK	668539	5487366	2018	5	2018-10-12	08:50	Benzo(b&j)fluoranthene	0.12	mg/kg	ALS	RG_CORCK_SE-5_2018-10-12_0850
E	CORCK	668539	5487366	2018	5	2018-10-12	08:50	Benzo(g_h_i)perylene	0.07	mg/kg	ALS	RG_CORCK_SE-5_2018-10-12_0850
E	CORCK	668539	5487366	2018	5	2018-10-12	08:50	Benzo(k)fluoranthene	<0.010	mg/kg	ALS	RG_CORCK_SE-5_2018-10-12_0850
E	CORCK	668539	5487366	2018	5	2018-10-12	08:50	Benzo(e)pyrene	0.16	mg/kg	ALS	RG_CORCK_SE-5_2018-10-12_0850
E	CORCK	668539	5487366	2018		2018-10-12	08:50	Chrysene	0.2	mg/kg	ALS	RG_CORCK_SE-5_2018-10-12_0850
E	CORCK	668539	5487366	2018		2018-10-12	08:50	Dibenz(a_h)anthracene	<0.022	mg/kg	ALS	RG_CORCK_SE-5_2018-10-12_0850
E	CORCK	668539	5487366	2018		2018-10-12	08:50	Fluoranthene	0.041	mg/kg	ALS	RG_CORCK_SE-5_2018-10-12_0850
E	CORCK	668539	5487366	2018		2018-10-12	08:50	Fluorene	0.11	mg/kg	ALS	RG_CORCK_SE-5_2018-10-12_0850
E	CORCK	668539	5487366	2018		2018-10-12	08:50	Indeno(1,2,3-c,d)pyrene	0.017	mg/kg	ALS	RG_CORCK_SE-5_2018-10-12_0850
E	CORCK	668539	5487366	2018	5	2018-10-12	08:50	1-Methylnaphthalene	0.65	mg/kg	ALS	RG_CORCK_SE-5_2018-10-12_0850
E	CORCK	668539	5487366	2018	_	2018-10-12	08:50	2-Methylnaphthalene	1.1	mg/kg	ALS	RG_CORCK_SE-5_2018-10-12_0850
E	CORCK	668539	5487366	2018	5	2018-10-12	08:50	Naphthalene	0.33	mg/kg	ALS	RG_CORCK_SE-5_2018-10-12_0850
E	CORCK	668539	5487366	2018	5	2018-10-12	08:50	Perylene	<0.010	mg/kg	ALS	RG_CORCK_SE-5_2018-10-12_0850
E	CORCK	668539	5487366	2018	5	2018-10-12	08:50	Phenanthrene	0.55	mg/kg	ALS	RG_CORCK_SE-5_2018-10-12_0850
E	CORCK	668539	5487366	2018	5	2018-10-12	08:50	Pyrene	0.07	mg/kg	ALS	RG_CORCK_SE-5_2018-10-12_0850
E	CORCK	668539	5487366	2018	5	2018-10-12	08:50	Quinoline	<0.010	mg/kg	ALS	RG_CORCK_SE-5_2018-10-12_0850
E	CORCK	668539	5487366	2018	5	2018-10-12	08:50	IACR (CCME)	1.2	mg/kg	ALS	RG_CORCK_SE-5_2018-10-12_0850
E	CORCK	668539	5487366	2018	5	2018-10-12	08:50	B(a)P Total Potency Equivalent	0.065	mg/kg	ALS	RG_CORCK_SE-5_2018-10-12_0850
E	CORCK	668539	5487366	2018	5	2018-10-12	08:50	d8-Naphthalene	65	%	ALS	RG_CORCK_SE-5_2018-10-12_0850
E	CORCK	668539	5487366	2018	5	2018-10-12	08:50	d10-Acenaphthene	73	%	ALS	RG_CORCK_SE-5_2018-10-12_0850
E	CORCK	668539	5487366	2018	5	2018-10-12	08:50	d10-Phenanthrene	85	%	ALS	RG_CORCK_SE-5_2018-10-12_0850
E	CORCK	668539	5487366	2018	5	2018-10-12	08:50	d12-Chrysene	93	%	ALS	RG CORCK SE-5 2018-10-12 0850
E	CORCK	668539	5487366	2018	5	2018-10-12	08:50	% Gravel (>2 mm)	<1.0	%	ALS	RG CORCK SE-5 2018-10-12 0850

WSP Canada Inc. Page 57 of 337

Sediment Screening

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

.,,,,	Ctation	Location	ı (UTMs) ^(a)	Vacu	Doubleste	Doto	Time	Analysis	Docult	Half		Laboratory Information
ype	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
Е	CORCK	668539	5487366	2018	5	2018-10-12	08:50	% Sand (2.00 mm - 1.00 mm)	<1.0	%	ALS	RG CORCK SE-5 2018-10-12 0850
E	CORCK	668539	5487366	2018		2018-10-12	08:50	% Sand (1.00 mm - 0.50 mm)	1.2	%	ALS	RG CORCK SE-5 2018-10-12 0850
E	CORCK	668539	5487366	2018	5	2018-10-12	08:50	% Sand (0.50 mm - 0.25 mm)	2.5	%	ALS	RG CORCK SE-5 2018-10-12 0850
E	CORCK	668539	5487366	2018	5	2018-10-12	08:50	% Sand (0.25 mm - 0.125 mm)	8.7	%	ALS	RG CORCK SE-5 2018-10-12 0850
E	CORCK	668539	5487366	2018		2018-10-12	08:50	% Sand (0.125 mm - 0.063 mm)	16	%	ALS	RG CORCK SE-5 2018-10-12 0850
E	CORCK	668539	5487366	2018		2018-10-12	08:50	% Silt (0.063 mm - 0.0312 mm)	30	%	ALS	RG CORCK SE-5 2018-10-12 0850
E	CORCK	668539	5487366	2018	5	2018-10-12	08:50	% Silt (0.031 mm - 0.004 mm)	36	%	ALS	RG CORCK SE-5 2018-10-12 0850
E	CORCK	668539	5487366	2018	5	2018-10-12	08:50	% Clay (<4 μm)	4.5	%	ALS	RG CORCK SE-5 2018-10-12 0850
E	CORCK	668539	5487366	2018	5	2018-10-12	08:50	Texture	Silt loam	-	ALS	RG_CORCK_SE-5_2018-10-12_0850
E	CORCK	668539	5487366	2018	5	2018-10-12	08:50	Mercury (Hg)	<0.0050	mg/kg	ALS	RG CORCK SE-5 2018-10-12 0850
E E	CORCK	668539	5487366	2018	5	2018-10-12	08:50	Aluminum (Al)	965	mg/kg	ALS	RG CORCK SE-5 2018-10-12 0850
E	CORCK	668539	5487366	2018	<u> </u>	2018-10-12	08:50	Antimony (Sb)	0.27	mg/kg	ALS	RG CORCK SE-5 2018-10-12 0850
E	CORCK	668539	5487366	2018	_	2018-10-12	08:50	Arsenic (As)	1.0	mg/kg	ALS	RG CORCK SE-5 2018-10-12 0850
E	CORCK	668539	5487366	2018	5	2018-10-12	08:50	Barium (Ba)	118	mg/kg	ALS	RG CORCK SE-5 2018-10-12 0850
E	CORCK	668539	5487366	2018	5	2018-10-12	08:50	Beryllium (Be)	0.17	mg/kg	ALS	RG CORCK SE-5 2018-10-12 0850
E	CORCK	668539	5487366	2018		2018-10-12	08:50	Bismuth (Bi)	<0.20	mg/kg	ALS	RG CORCK SE-5 2018-10-12 0850
E	CORCK	668539	5487366	2018	5	2018-10-12	08:50	Boron (B)	<5.0	mg/kg	ALS	RG CORCK SE-5 2018-10-12 0850
E	CORCK	668539	5487366	2018	5	2018-10-12	08:50	Cadmium (Cd)	4.6	mg/kg	ALS	RG_CORCK_SE-5_2018-10-12_0850
E	CORCK	668539	5487366	2018	5	2018-10-12	08:50	Calcium (Ca)	256,000		ALS	RG CORCK SE-5 2018-10-12 0850
= E	CORCK	668539	5487366	2018		2018-10-12	08:50	Chromium (Cr)	1.5	mg/kg	ALS	RG CORCK SE-5 2018-10-12 0850
=	CORCK	668539	5487366	2018	5	2018-10-12	08:50	Cobalt (Co)	240	mg/kg	ALS	RG CORCK SE-5 2018-10-12 0850
= =	CORCK		5487366				08:50	7	3.0	mg/kg	ALS	
		668539		2018		2018-10-12		Copper (Cu)		mg/kg	-	RG_CORCK_SE-5_2018-10-12_0850
=	CORCK	668539	5487366	2018	5	2018-10-12	08:50	Iron (Fe)	1,320	mg/kg	ALS	RG_CORCK_SE-5_2018-10-12_0850
E	CORCK	668539	5487366	2018		2018-10-12	08:50	Lead (Pb)	1.2	mg/kg	ALS	RG_CORCK_SE-5_2018-10-12_0850
E	CORCK	668539	5487366	2018	5	2018-10-12	08:50	Lithium (Li)	2.3	mg/kg	ALS	RG_CORCK_SE-5_2018-10-12_0850
E	CORCK	668539	5487366	2018	5	2018-10-12	08:50	Magnesium (Mg)	4,330	mg/kg	ALS	RG_CORCK_SE-5_2018-10-12_0850
E	CORCK	668539	5487366	2018	5	2018-10-12	08:50	Manganese (Mn)	2,020	mg/kg	ALS	RG_CORCK_SE-5_2018-10-12_0850
E	CORCK	668539	5487366	2018	_	2018-10-12	08:50	Molybdenum (Mo)	0.53	mg/kg	ALS	RG_CORCK_SE-5_2018-10-12_0850
E	CORCK	668539	5487366	2018		2018-10-12	08:50	Nickel (Ni)	220	mg/kg	ALS	RG_CORCK_SE-5_2018-10-12_0850
E	CORCK	668539	5487366	2018		2018-10-12	08:50	Phosphorus (P)	128	mg/kg	ALS	RG_CORCK_SE-5_2018-10-12_0850
E	CORCK	668539	5487366	2018		2018-10-12	08:50	Potassium (K)	330	mg/kg		RG_CORCK_SE-5_2018-10-12_0850
E	CORCK	668539	5487366	2018		2018-10-12	08:50	Selenium (Se)	1.5	mg/kg	ALS	RG_CORCK_SE-5_2018-10-12_0850
E	CORCK	668539	5487366	2018		2018-10-12	08:50	Silver (Ag)	<0.10	mg/kg	ALS	RG_CORCK_SE-5_2018-10-12_0850
E	CORCK	668539	5487366	2018		2018-10-12	08:50	Sodium (Na)	283	mg/kg	ALS	RG_CORCK_SE-5_2018-10-12_0850
E	CORCK	668539	5487366	2018	_	2018-10-12	08:50	Strontium (Sr)	379	mg/kg	ALS	RG_CORCK_SE-5_2018-10-12_0850
E	CORCK	668539	5487366	2018		2018-10-12	08:50	Sulfur (S)	4,600	mg/kg	ALS	RG_CORCK_SE-5_2018-10-12_0850
E	CORCK	668539	5487366	2018		2018-10-12	08:50	Thallium (TI)	0.081	mg/kg	ALS	RG_CORCK_SE-5_2018-10-12_0850
E	CORCK	668539	5487366	2018		2018-10-12	08:50	Tin (Sn)	<2.0	mg/kg	ALS	RG_CORCK_SE-5_2018-10-12_0850
E	CORCK	668539	5487366	2018		2018-10-12	08:50	Titanium (Ti)	4.7	mg/kg	ALS	RG_CORCK_SE-5_2018-10-12_0850
E	CORCK	668539	5487366	2018		2018-10-12	08:50	Tungsten (W)	<0.50	mg/kg	ALS	RG_CORCK_SE-5_2018-10-12_0850
E	CORCK	668539	5487366	2018		2018-10-12	08:50	Uranium (U)	2.3	mg/kg	ALS	RG_CORCK_SE-5_2018-10-12_0850
E	CORCK	668539	5487366	2018	5	2018-10-12	08:50	Vanadium (V)	3.1	mg/kg	ALS	RG_CORCK_SE-5_2018-10-12_0850
E	CORCK	668539	5487366	2018		2018-10-12	08:50	Zinc (Zn)	617	mg/kg	ALS	RG_CORCK_SE-5_2018-10-12_0850
E	CORCK	668539	5487366	2018		2018-10-12	08:50	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_CORCK_SE-5_2018-10-12_0850
E	CORCK	668539	5487366	2018	5	2018-10-12	08:50	pH (1:2 soil:water)	8.3	рН	ALS	RG_CORCK_SE-5_2018-10-12_0850
E	CORCK	668539	5487366	2018	5	2018-10-12	08:50	Total Organic Carbon	6.5	%	ALS	RG_CORCK_SE-5_2018-10-12_0850
Е	MI25	668186	5482838	2019	1	2019-09-04	13:15	Moisture	54	%	ALS	RG MI25 SE-1 2019-09-04 1315

WSP Canada Inc. Page 58 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Type	Station	Location	(UTMs) ^(a)	Vaar	Poplieste	Data	Time	Analyta	Pooult-	Unit		Laboratory Information
ype	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE.	MI25	668186	5482838	2019	1	2019-09-04	13:15	Acenaphthene	<0.0050	mg/kg	ALS	RG_MI25_SE-1_2019-09-04_1315
Ε	MI25	668186	5482838	2019	1	2019-09-04	13:15	Acenaphthylene	<0.0050	mg/kg	ALS	RG MI25 SE-1 2019-09-04 1315
E	MI25	668186	5482838	2019	1	2019-09-04	13:15	Acridine	<0.010	mg/kg	ALS	RG MI25 SE-1 2019-09-04 1315
E	MI25	668186	5482838	2019	1	2019-09-04	13:15	Anthracene	0.0041	mg/kg	ALS	RG MI25 SE-1 2019-09-04 1315
SE.	MI25	668186	5482838	2019	1	2019-09-04	13:15	Benz(a)anthracene	0.026	mg/kg	ALS	RG MI25 SE-1 2019-09-04 1315
SE	MI25	668186	5482838	2019	1	2019-09-04	13:15	Benzo(a)pyrene	0.027	mg/kg	ALS	RG MI25 SE-1 2019-09-04 1315
E	MI25	668186	5482838	2019	_	2019-09-04	13:15	Benzo(b&j)fluoranthene	0.036	mg/kg	ALS	RG MI25 SE-1 2019-09-04 1315
SE.	MI25	668186	5482838	2019	1	2019-09-04	13:15	Benzo(g_h_i)perylene	0.019	mg/kg	ALS	RG_MI25_SE-1_2019-09-04_1315
SE	MI25	668186	5482838	2019	_	2019-09-04	13:15	Benzo(k)fluoranthene	0.013	mg/kg	ALS	RG MI25 SE-1 2019-09-04 1315
SE	MI25	668186	5482838	2019		2019-09-04	13:15	Benzo(e)pyrene	0.023	mg/kg	ALS	RG MI25 SE-1 2019-09-04 1315
SE	MI25	668186	5482838	2019		2019-09-04	13:15	Chrysene	0.033	mg/kg	ALS	RG MI25 SE-1 2019-09-04 1315
SE	MI25	668186	5482838	2019		2019-09-04	13:15	Dibenz(a h)anthracene	<0.0050	mg/kg	ALS	RG MI25 SE-1 2019-09-04 1315
SE	MI25	668186	5482838	2019		2019-09-04	13:15	Fluoranthene	0.042	mg/kg	ALS	RG MI25 SE-1 2019-09-04 1315
SE.	MI25	668186	5482838	2019	_	2019-09-04	13:15	Fluorene	<0.010	mg/kg	ALS	RG MI25 SE-1 2019-09-04 1315
SE	MI25	668186	5482838	2019	_	2019-09-04	13:15	Indeno(1,2,3-c,d)pyrene	0.016	mg/kg	ALS	RG MI25 SE-1 2019-09-04 1315
SE.	MI25	668186	5482838	2019	1	2019-09-04	13:15	1-Methylnaphthalene	<0.010	mg/kg	ALS	RG MI25 SE-1 2019-09-04 1315
SE	MI25	668186	5482838	2019		2019-09-04	13:15	2-Methylnaphthalene	<0.010	mg/kg	ALS	RG_MI25_SE-1_2019-09-04_1315
SE	MI25	668186	5482838	2019		2019-09-04	13:15	Naphthalene	<0.010	mg/kg	ALS	RG MI25 SE-1 2019-09-04 1315
SE	MI25	668186	5482838	2019	1	2019-09-04	13:15	Perylene	<0.010	mg/kg	ALS	RG MI25 SE-1 2019-09-04 1315
SE	MI25	668186	5482838	2019	1	2019-09-04	13:15	Phenanthrene	0.021	mg/kg	ALS	RG MI25 SE-1 2019-09-04 1315
SE	MI25	668186	5482838	2019		2019-09-04	13:15	Pyrene	0.038	mg/kg	ALS	RG MI25 SE-1 2019-09-04 1315
SE	MI25	668186	5482838	2019		2019-09-04	13:15	Quinoline	<0.010	mg/kg	ALS	RG_MI25_SE-1_2019-09-04_1315
SE	MI25	668186	5482838	2019		2019-09-04	13:15	IACR (CCME)	0.49	-	ALS	RG MI25 SE-1 2019-09-04 1315
SE	MI25	668186	5482838	2019	1	2019-09-04	13:15	B(a)P Total Potency Equivalent	0.039	mg/kg	ALS	RG MI25 SE-1 2019-09-04 1315
SE	MI25	668186	5482838	2019		2019-09-04	13:15	Benzo(b+j+k)fluoranthene	0.049	mg/kg	ALS	RG MI25 SE-1 2019-09-04 1315
SE	MI25	668186	5482838	2019		2019-09-04	13:15	d8-Naphthalene	85	%	ALS	RG MI25 SE-1 2019-09-04 1315
SE	MI25	668186	5482838	2019		2019-09-04	13:15	d10-Acenaphthene	83	%	ALS	RG MI25 SE-1 2019-09-04 1315
SE	MI25	668186	5482838	2019	1	2019-09-04	13:15	d10-Phenanthrene	88	%	ALS	RG MI25 SE-1 2019-09-04 1315
SE	MI25	668186	5482838	2019		2019-09-04	13:15	d12-Chrysene	92	%	ALS	RG MI25 SE-1 2019-09-04 1315
SE	MI25	668186	5482838	2019		2019-09-04	13:15	% Gravel (>2 mm)	2.5	%	ALS	RG_MI25_SE-1_2019-09-04_1315
SE	MI25	668186	5482838	2019		2019-09-04	13:15	% Sand (2.00 mm - 1.00 mm)	5.1	%		RG_MI25_SE-1_2019-09-04_1315
SE	MI25	668186	5482838	2019	_	2019-09-04	13:15	% Sand (1.00 mm - 0.50 mm)	12	%	ALS	RG MI25 SE-1 2019-09-04 1315
SE	MI25	668186	5482838	2019	_	2019-09-04	13:15	% Sand (0.50 mm - 0.25 mm)	13	%	ALS	RG MI25 SE-1 2019-09-04 1315
SE	MI25	668186	5482838	2019	1	2019-09-04	13:15	% Sand (0.25 mm - 0.125 mm)	8.9	%	ALS	RG MI25 SE-1 2019-09-04 1315
SE	MI25	668186	5482838	2019	1	2019-09-04	13:15	% Sand (0.125 mm - 0.063 mm)	8.3	%	ALS	RG MI25 SE-1 2019-09-04 1315
SE	MI25	668186	5482838	2019	1	2019-09-04	13:15	% Silt (0.063 mm - 0.0312 mm)	23	%	ALS	RG MI25 SE-1 2019-09-04 1315
SE	MI25	668186	5482838	2019	1	2019-09-04	13:15	% Silt (0.031 mm - 0.004 mm)	24	%	ALS	RG MI25 SE-1 2019-09-04 1315
SE	MI25	668186	5482838	2019		2019-09-04	13:15	% Clay (<4 μm)	2.6	%	ALS	RG MI25 SE-1 2019-09-04 1315
SE	MI25	668186	5482838	2019	1	2019-09-04	13:15	Texture	Sandy loam	-	ALS	RG MI25 SE-1 2019-09-04 1315
SE	MI25	668186	5482838	2019	_	2019-09-04	13:15	Mercury (Hg)	0.039	mg/kg	ALS	RG_MI25_SE-1_2019-09-04_1315
SE.	MI25	668186	5482838	2019		2019-09-04	13:15	Aluminum (Al)	22,200	mg/kg		RG_MI25_SE-1_2019-09-04_1315
SE	MI25	668186	5482838	2019	_	2019-09-04	13:15	Antimony (Sb)	0.84	mg/kg	ALS	RG_MI25_SE-1_2019-09-04_1315
SE	MI25	668186	5482838	2019		2019-09-04	13:15	Arsenic (As)	15	mg/kg	ALS	RG MI25 SE-1 2019-09-04 1315
SE	MI25	668186	5482838	2019		2019-09-04	13:15	Barium (Ba)	242	mg/kg	ALS	RG MI25 SE-1 2019-09-04 1315
	MI25	668186	5482838	2019		2019-09-04	13:15	Beryllium (Be)	1.3	mg/kg	ALS	RG_MI25_SE-1_2019-09-04_1315
SE I				-			.	·				 '' - ''
SE SE	MI25	668186	5482838	2019	1	2019-09-04	13:15	Bismuth (Bi)	0.31	mg/kg	ALS	RG MI25 SE-1 2019-09-04 1315

WSP Canada Inc. Page 59 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Гуре			<i>/-</i> \			ations, 2012 to						
AVA OI A	Station		(UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
		Easting	Northing							O.I.I.	Lab	Sample ID
SE	MI25	668186	5482838	2019		2019-09-04	13:15	Cadmium (Cd)	1.8	mg/kg	ALS	RG_MI25_SE-1_2019-09-04_1315
SE	MI25	668186	5482838	2019	1	2019-09-04	13:15	Calcium (Ca)	23,900	mg/kg	ALS	RG_MI25_SE-1_2019-09-04_1315
SE	MI25	668186	5482838	2019	1	2019-09-04	13:15	Chromium (Cr)	28	mg/kg	ALS	RG_MI25_SE-1_2019-09-04_1315
SE	MI25	668186	5482838	2019	1	2019-09-04	13:15	Cobalt (Co)	11	mg/kg	ALS	RG_MI25_SE-1_2019-09-04_1315
SE	MI25	668186	5482838	2019	1	2019-09-04	13:15	Copper (Cu)	35	mg/kg	ALS	RG_MI25_SE-1_2019-09-04_1315
SE	MI25	668186	5482838	2019	1	2019-09-04	13:15	Iron (Fe)	33,000	mg/kg	ALS	RG_MI25_SE-1_2019-09-04_1315
SE	MI25	668186	5482838	2019	1	2019-09-04	13:15	Lead (Pb)	24	mg/kg	ALS	RG_MI25_SE-1_2019-09-04_1315
SE	MI25	668186	5482838	2019	1	2019-09-04	13:15	Lithium (Li)	31	mg/kg	ALS	RG_MI25_SE-1_2019-09-04_1315
SE	MI25	668186	5482838	2019	1	2019-09-04	13:15	Magnesium (Mg)	9,620	mg/kg	ALS	RG_MI25_SE-1_2019-09-04_1315
SE	MI25	668186	5482838	2019	1	2019-09-04	13:15	Manganese (Mn)	887	mg/kg	ALS	RG_MI25_SE-1_2019-09-04_1315
SE	MI25	668186	5482838	2019	1	2019-09-04	13:15	Molybdenum (Mo)	7.0	mg/kg	ALS	RG_MI25_SE-1_2019-09-04_1315
SE	MI25	668186	5482838	2019	1	2019-09-04	13:15	Nickel (Ni)	44	mg/kg	ALS	RG_MI25_SE-1_2019-09-04_1315
SE	MI25	668186	5482838	2019	1	2019-09-04	13:15	Phosphorus (P)	1,710	mg/kg	ALS	RG_MI25_SE-1_2019-09-04_1315
SE	MI25	668186	5482838	2019	1	2019-09-04	13:15	Potassium (K)	4,610	mg/kg	ALS	RG_MI25_SE-1_2019-09-04_1315
SE	MI25	668186	5482838	2019	1	2019-09-04	13:15	Selenium (Se)	1.3	mg/kg	ALS	RG_MI25_SE-1_2019-09-04_1315
SE	MI25	668186	5482838	2019	1	2019-09-04	13:15	Silver (Ag)	0.19	mg/kg	ALS	RG_MI25_SE-1_2019-09-04_1315
SE	MI25	668186	5482838	2019	1	2019-09-04	13:15	Sodium (Na)	126	mg/kg	ALS	RG_MI25_SE-1_2019-09-04_1315
SE	MI25	668186	5482838	2019	1	2019-09-04	13:15	Strontium (Sr)	62	mg/kg	ALS	RG MI25 SE-1 2019-09-04 1315
SE	MI25	668186	5482838	2019	1	2019-09-04	13:15	Sulfur (S)	<1000	mg/kg	ALS	RG_MI25_SE-1_2019-09-04_1315
SE	MI25	668186	5482838	2019	1	2019-09-04	13:15	Thallium (TI)	0.95	mg/kg	ALS	RG MI25 SE-1 2019-09-04 1315
SE	MI25	668186	5482838	2019	1	2019-09-04	13:15	Tin (Sn)	<2.0	mg/kg	ALS	RG_MI25_SE-1_2019-09-04_1315
SE	MI25	668186	5482838	2019	1	2019-09-04	13:15	Titanium (Ti)	30	mg/kg	ALS	RG MI25 SE-1 2019-09-04 1315
SE	MI25	668186	5482838	2019	1	2019-09-04	13:15	Tungsten (W)	<0.50	mg/kg	ALS	RG_MI25_SE-1_2019-09-04_1315
SE	MI25	668186	5482838	2019	1	2019-09-04	13:15	Uranium (U)	1.1	mg/kg	ALS	RG MI25 SE-1 2019-09-04 1315
SE	MI25	668186	5482838	2019	1	2019-09-04	13:15	Vanadium (V)	51	mg/kg	ALS	RG MI25 SE-1 2019-09-04 1315
SE	MI25	668186	5482838	2019	1	2019-09-04	13:15	Zinc (Zn)	191	mg/kg	ALS	RG MI25 SE-1 2019-09-04 1315
SE	MI25	668186	5482838	2019	1	2019-09-04	13:15	Zirconium (Zr)	1.1	mg/kg	ALS	RG MI25 SE-1 2019-09-04 1315
SE	MI25	668186	5482838	2019	1	2019-09-04	13:15	pH (1:2 soil:water)	8.2	pН	ALS	RG MI25 SE-1 2019-09-04 1315
SE	MI25	668186	5482838	2019	1	2019-09-04	13:15	Total Organic Carbon	2.1	%	ALS	RG MI25 SE-1 2019-09-04 1315
SE	MI25	668186	5482838	2019	2	2019-09-04	14:30	Moisture	36	%	ALS	RG MI25 SE-2 2019-09-04 1430
SE	MI25	668186	5482838	2019		2019-09-04	14:30	Acenaphthene	<0.0050	mg/kg	ALS	RG MI25 SE-2 2019-09-04 1430
SE	MI25	668186	5482838	2019		2019-09-04	14:30	Acenaphthylene	<0.0050	mg/kg	ALS	RG MI25 SE-2 2019-09-04 1430
SE	MI25	668186	5482838	2019		2019-09-04	14:30	Acridine	<0.010	mg/kg	ALS	RG MI25 SE-2 2019-09-04 1430
SE	MI25	668186	5482838	2019		2019-09-04	14:30	Anthracene	<0.0040	mg/kg	ALS	RG MI25 SE-2 2019-09-04 1430
SE	MI25	668186	5482838	2019		2019-09-04	14:30	Benz(a)anthracene	<0.010	mg/kg	ALS	RG MI25 SE-2 2019-09-04 1430
SE	MI25	668186	5482838	2019		2019-09-04	14:30	Benzo(a)pyrene	<0.010	mg/kg	ALS	RG MI25 SE-2 2019-09-04 1430
SE	MI25	668186	5482838	2019		2019-09-04	14:30	Benzo(b&j)fluoranthene	<0.010	mg/kg	ALS	RG MI25 SE-2 2019-09-04 1430
SE	MI25	668186	5482838	2019		2019-09-04	14:30	Benzo(g_h_i)perylene	<0.010	mg/kg	ALS	RG MI25 SE-2 2019-09-04 1430
SE	MI25	668186	5482838	2019		2019-09-04	14:30	Benzo(k)fluoranthene	<0.010	mg/kg	ALS	RG MI25 SE-2 2019-09-04 1430
SE	MI25	668186	5482838	2019		2019-09-04	14:30	Benzo(e)pyrene	<0.010	mg/kg	ALS	RG MI25 SE-2 2019-09-04 1430
SE	MI25	668186	5482838	2019	2	2019-09-04	14:30	Chrysene	<0.010	mg/kg	ALS	RG MI25 SE-2 2019-09-04 1430
SE	MI25	668186	5482838	2019		2019-09-04	14:30	Dibenz(a h)anthracene	<0.010	mg/kg	ALS	RG MI25 SE-2 2019-09-04 1430
SE	MI25	668186	5482838	2019	2	2019-09-04	14:30	Fluoranthene	<0.0030	mg/kg	ALS	RG MI25 SE-2 2019-09-04 1430
SE	MI25	668186	5482838	2019		2019-09-04	14:30	Fluorene	<0.010		ALS	RG MI25 SE-2 2019-09-04 1430
	MI25	668186	5482838	2019	2	2019-09-04	14:30		<0.010	mg/kg	ALS	RG MI25 SE-2 2019-09-04 1430
~ L	IVIIZƏ		5482838	2019	2	2019-09-04	14:30	Indeno(1,2,3-c,d)pyrene 1-Methylnaphthalene	<0.010	mg/kg mg/kg	ALS	RG MI25 SE-2 2019-09-04 1430
SE SE	MI25	668186										

WSP Canada Inc. Page 60 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Γ. / (P. 0	Station	Location	(UTMs) ^(a)	Veer	Donlinete	Doto	Time	Anglyte	Dogult	Unit		Laboratory Information
уре	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MI25	668186	5482838	2019	2	2019-09-04	14:30	Naphthalene	<0.010	mg/kg	ALS	RG MI25 SE-2 2019-09-04 1430
SE	MI25	668186	5482838	2019	2	2019-09-04	14:30	Perylene	<0.010	mg/kg	ALS	RG MI25 SE-2 2019-09-04 1430
SE	MI25	668186	5482838	2019	2	2019-09-04	14:30	Phenanthrene	<0.010	mg/kg	ALS	RG_MI25_SE-2_2019-09-04_1430
SE	MI25	668186	5482838	2019	2	2019-09-04	14:30	Pyrene	<0.010	mg/kg	ALS	RG MI25 SE-2 2019-09-04 1430
SE.	MI25	668186	5482838	2019	2	2019-09-04	14:30	Quinoline	<0.010	mg/kg	ALS	RG_MI25_SE-2_2019-09-04_1430
SE	MI25	668186	5482838	2019	2	2019-09-04	14:30	IACR (CCME)	<0.15	-	ALS	RG MI25 SE-2 2019-09-04 1430
SE	MI25	668186	5482838	2019	2	2019-09-04	14:30	B(a)P Total Potency Equivalent	<0.020	mg/kg	ALS	RG MI25 SE-2 2019-09-04 1430
SE	MI25	668186	5482838	2019	2	2019-09-04	14:30	Benzo(b+j+k)fluoranthene	<0.015	mg/kg	ALS	RG MI25 SE-2 2019-09-04 1430
SE	MI25	668186	5482838	2019	2	2019-09-04	14:30	d8-Naphthalene	88	%	ALS	RG MI25 SE-2 2019-09-04 1430
SE.	MI25	668186	5482838	2019	2	2019-09-04	14:30	d10-Acenaphthene	87	%	ALS	RG MI25 SE-2 2019-09-04 1430
SE	MI25	668186	5482838	2019	2	2019-09-04	14:30	d10-Phenanthrene	89	%	ALS	RG_MI25_SE-2_2019-09-04_1430
SE	MI25	668186	5482838	2019	2	2019-09-04	14:30	d12-Chrysene	95	%	ALS	RG MI25 SE-2 2019-09-04 1430
SE	MI25	668186	5482838	2019	2	2019-09-04	14:30	% Gravel (>2 mm)	8.6	%	ALS	RG MI25 SE-2 2019-09-04 1430
SE	MI25	668186	5482838	2019	2	2019-09-04	14:30	% Sand (2.00 mm - 1.00 mm)	5.7	%	ALS	RG MI25 SE-2 2019-09-04 1430
SE	MI25	668186	5482838	2019	2	2019-09-04	14:30	% Sand (1.00 mm - 0.50 mm)	14	%	ALS	RG_MI25_SE-2_2019-09-04_1430
SE.	MI25	668186	5482838	2019	2	2019-09-04	14:30	% Sand (0.50 mm - 0.25 mm)	15	%	ALS	RG_MI25_SE-2_2019-09-04_1430
SE	MI25	668186	5482838	2019	2	2019-09-04	14:30	% Sand (0.25 mm - 0.125 mm)	8.3	%	ALS	RG_MI25_SE-2_2019-09-04_1430
SE	MI25	668186	5482838	2019	2	2019-09-04	14:30	% Sand (0.125 mm - 0.063 mm)	6.9	%	ALS	RG MI25 SE-2 2019-09-04 1430
SE.	MI25	668186	5482838	2019	2	2019-09-04	14:30	% Silt (0.063 mm - 0.0312 mm)	19	%	ALS	RG MI25 SE-2 2019-09-04 1430
SE.	MI25	668186	5482838	2019	2	2019-09-04	14:30	% Silt (0.031 mm - 0.004 mm)	20	%	ALS	RG MI25 SE-2 2019-09-04 1430
SE	MI25	668186	5482838	2019	2	2019-09-04	14:30	% Clay (<4 μm)	1.9	%	ALS	RG MI25 SE-2 2019-09-04 1430
SE.	MI25	668186	5482838	2019	2	2019-09-04	14:30	Texture	Sandy loam	-	ALS	RG_MI25_SE-2_2019-09-04_1430
SE	MI25	668186	5482838	2019	2	2019-09-04	14:30	Mercury (Hg)	0.025	mg/kg	ALS	RG MI25 SE-2 2019-09-04 1430
SE	MI25	668186	5482838	2019	2	2019-09-04	14:30	Aluminum (Al)	28,200	mg/kg	ALS	RG MI25 SE-2 2019-09-04 1430
SE	MI25	668186	5482838	2019	2	2019-09-04	14:30	Antimony (Sb)	0.77	mg/kg	ALS	RG MI25 SE-2 2019-09-04 1430
SE	MI25	668186	5482838	2019	2	2019-09-04	14:30	Arsenic (As)	17	mg/kg	ALS	RG MI25 SE-2 2019-09-04 1430
SE	MI25	668186	5482838	2019	2	2019-09-04	14:30	Barium (Ba)	228	mg/kg	ALS	RG MI25 SE-2 2019-09-04 1430
SE	MI25	668186	5482838	2019	2	2019-09-04	14:30	Beryllium (Be)	1.7	mg/kg	ALS	RG_MI25_SE-2_2019-09-04_1430
SE	MI25	668186	5482838	2019	2	2019-09-04	14:30	Bismuth (Bi)	0.37	mg/kg	ALS	RG MI25 SE-2 2019-09-04 1430
SE	MI25	668186	5482838	2019	2	2019-09-04	14:30	Boron (B)	27	mg/kg	ALS	RG MI25 SE-2 2019-09-04 1430
SE	MI25	668186	5482838	2019	2	2019-09-04	14:30	Cadmium (Cd)	2.0	mg/kg	ALS	RG_MI25_SE-2_2019-09-04_1430
SE	MI25	668186	5482838	2019	2	2019-09-04	14:30	Calcium (Ca)	21,800	mg/kg	ALS	RG MI25 SE-2 2019-09-04 1430
SE	MI25	668186	5482838	2019	2	2019-09-04	14:30	Chromium (Cr)	33	mg/kg	ALS	RG MI25 SE-2 2019-09-04 1430
SE	MI25	668186	5482838	2019	2	2019-09-04	14:30	Cobalt (Co)	15	mg/kg	ALS	RG MI25 SE-2 2019-09-04 1430
SE	MI25	668186	5482838	2019	2	2019-09-04	14:30	Copper (Cu)	39	mg/kg	ALS	RG_MI25_SE-2_2019-09-04_1430
SE	MI25	668186	5482838	2019	2	2019-09-04	14:30	Iron (Fe)	42,300	mg/kg	ALS	RG_MI25_SE-2_2019-09-04_1430
SE	MI25	668186	5482838	2019	2	2019-09-04	14:30	Lead (Pb)	26	mg/kg	ALS	RG MI25 SE-2 2019-09-04 1430
SE	MI25	668186	5482838	2019	2	2019-09-04	14:30	Lithium (Li)	40	mg/kg	ALS	RG MI25 SE-2 2019-09-04 1430
SE	MI25	668186	5482838	2019	2	2019-09-04	14:30	Magnesium (Mg)	10,100	mg/kg	ALS	RG MI25 SE-2 2019-09-04 1430
SE	MI25	668186	5482838	2019	2	2019-09-04	14:30	Manganese (Mn)	1,060	mg/kg	ALS	RG_MI25_SE-2_2019-09-04_1430
SE	MI25	668186	5482838	2019	2	2019-09-04	14:30	Molybdenum (Mo)	6.9	mg/kg	ALS	RG_MI25_SE-2_2019-09-04_1430
SE	MI25	668186	5482838	2019	2	2019-09-04	14:30	Nickel (Ni)	55	mg/kg	ALS	RG_MI25_SE-2_2019-09-04_1430
SE	MI25	668186	5482838	2019	2	2019-09-04	14:30	Phosphorus (P)	1,630	mg/kg	ALS	RG_MI25_SE-2_2019-09-04_1430
SE	MI25	668186	5482838	2019	2	2019-09-04	14:30	Potassium (K)	5,890	mg/kg	ALS	RG_MI25_SE-2_2019-09-04_1430
SE	MI25	668186	5482838	2019	2	2019-09-04	14:30	Selenium (Se)	1.0	mg/kg	ALS	RG_MI25_SE-2_2019-09-04_1430
												
SE	MI25	668186	5482838	2019	2	2019-09-04	14:30	Silver (Ag)	0.17	mg/kg	ALS	RG_MI25_SE-2_2019-09-04_1430

WSP Canada Inc. Page 61 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

_	01-41	Location	(UTMs) ^(a)		Dti			A1	D. 1	11		Laboratory Information
Туре	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MI25	668186	5482838	2019	2	2019-09-04	14:30	Strontium (Sr)	64	mg/kg	ALS	RG MI25 SE-2 2019-09-04 1430
SE	MI25	668186	5482838	2019	2	2019-09-04	14:30	Sulfur (S)	<1000	mg/kg	ALS	RG MI25 SE-2 2019-09-04 1430
SE	MI25	668186	5482838	2019	2	2019-09-04	14:30	Thallium (TI)	0.99	mg/kg	ALS	RG MI25 SE-2 2019-09-04 1430
SE	MI25	668186	5482838	2019	2	2019-09-04	14:30	Tin (Sn)	<2.0	mg/kg	ALS	RG MI25 SE-2 2019-09-04 1430
SE	MI25	668186	5482838	2019	2	2019-09-04	14:30	Titanium (Ti)	26	mg/kg	ALS	RG MI25 SE-2 2019-09-04 1430
SE	MI25	668186	5482838	2019	2	2019-09-04	14:30	Tungsten (W)	<0.50	mg/kg	ALS	RG MI25 SE-2 2019-09-04 1430
SE	MI25	668186	5482838	2019	2	2019-09-04	14:30	Uranium (U)	1.1	mg/kg	ALS	RG MI25 SE-2 2019-09-04 1430
SE	MI25	668186	5482838	2019	2	2019-09-04	14:30	Vanadium (V)	55	mg/kg	ALS	RG MI25 SE-2 2019-09-04 1430
SE	MI25	668186	5482838	2019	2	2019-09-04	14:30	Zinc (Zn)	211	mg/kg	ALS	RG MI25 SE-2 2019-09-04 1430
SE	MI25	668186	5482838	2019	2	2019-09-04	14:30	Zirconium (Zr)	1.5	mg/kg	ALS	RG_MI25_SE-2_2019-09-04_1430
SE	MI25	668186	5482838	2019	2	2019-09-04	14:30	pH (1:2 soil:water)	8.3	pН	ALS	RG_MI25_SE-2_2019-09-04_1430
SE	MI25	668186	5482838	2019	2	2019-09-04	14:30	Total Organic Carbon	2.0	%	ALS	RG MI25 SE-2 2019-09-04 1430
SE	MI25	668186	5482838	2019	3	2019-09-04	16:30	Moisture	42	%	ALS	RG MI25 SE-3 2019-09-04 1630
SE	MI25	668186	5482838	2019	3	2019-09-04	16:30	Acenaphthene	<0.0050	mg/kg	ALS	RG MI25 SE-3 2019-09-04 1630
SE	MI25	668186	5482838	2019	3	2019-09-04	16:30	Acenaphthylene	<0.0050	mg/kg	ALS	RG MI25 SE-3 2019-09-04 1630
SE	MI25	668186	5482838	2019	3	2019-09-04	16:30	Acridine	<0.010	mg/kg	ALS	RG_MI25_SE-3_2019-09-04_1630
SE	MI25	668186	5482838	2019	3	2019-09-04	16:30	Anthracene	<0.0040	mg/kg	ALS	RG_MI25_SE-3_2019-09-04_1630
SE	MI25	668186	5482838	2019	3	2019-09-04	16:30	Benz(a)anthracene	<0.010	mg/kg	ALS	RG MI25 SE-3 2019-09-04 1630
SE	MI25	668186	5482838	2019	3	2019-09-04	16:30	Benzo(a)pyrene	<0.010	mg/kg	ALS	RG MI25 SE-3 2019-09-04 1630
SE	MI25	668186	5482838	2019	3	2019-09-04	16:30	Benzo(b&j)fluoranthene	0.012	mg/kg	ALS	RG MI25 SE-3 2019-09-04 1630
SE	MI25	668186	5482838	2019	3	2019-09-04	16:30	Benzo(g_h_i)perylene	<0.010	mg/kg	ALS	RG MI25 SE-3 2019-09-04 1630
SE	MI25	668186	5482838	2019	3	2019-09-04	16:30	Benzo(k)fluoranthene	<0.010	mg/kg	ALS	RG MI25 SE-3 2019-09-04 1630
SE	MI25	668186	5482838	2019	3	2019-09-04	16:30	Benzo(e)pyrene	<0.010	mg/kg	ALS	RG MI25 SE-3 2019-09-04 1630
SE	MI25	668186	5482838	2019	3	2019-09-04	16:30	Chrysene	0.016	mg/kg	ALS	RG MI25 SE-3 2019-09-04 1630
SE	MI25	668186	5482838	2019	3	2019-09-04	16:30	Dibenz(a_h)anthracene	<0.0050	mg/kg	ALS	RG MI25 SE-3 2019-09-04 1630
SE	MI25	668186	5482838	2019	3	2019-09-04	16:30	Fluoranthene	0.014	mg/kg	ALS	RG MI25 SE-3 2019-09-04 1630
SE	MI25	668186	5482838	2019	3	2019-09-04	16:30	Fluorene	<0.010	mg/kg	ALS	RG_MI25_SE-3_2019-09-04_1630
SE	MI25	668186	5482838	2019	3	2019-09-04	16:30	Indeno(1,2,3-c,d)pyrene	<0.010	mg/kg	ALS	RG MI25 SE-3 2019-09-04 1630
SE	MI25	668186	5482838	2019	3	2019-09-04	16:30	1-Methylnaphthalene	<0.010	mg/kg	ALS	RG MI25 SE-3 2019-09-04 1630
SE	MI25	668186	5482838	2019	3	2019-09-04	16:30	2-Methylnaphthalene	<0.010	mg/kg	ALS	RG MI25 SE-3 2019-09-04 1630
SE	MI25	668186	5482838	2019	3	2019-09-04	16:30	Naphthalene	<0.010	mg/kg		RG_MI25_SE-3_2019-09-04_1630
SE	MI25	668186	5482838	2019	3	2019-09-04	16:30	Perylene	<0.010	mg/kg	ALS	RG MI25 SE-3 2019-09-04 1630
SE	MI25	668186	5482838	2019	3	2019-09-04	16:30	Phenanthrene	0.012	mg/kg	ALS	RG MI25 SE-3 2019-09-04 1630
SE	MI25	668186	5482838	2019	3	2019-09-04	16:30	Pyrene	0.014	mg/kg	ALS	RG MI25 SE-3 2019-09-04 1630
SE	MI25	668186	5482838	2019	3	2019-09-04	16:30	Quinoline	<0.010	mg/kg	ALS	RG MI25 SE-3 2019-09-04 1630
SE	MI25	668186	5482838	2019	3	2019-09-04	16:30	IACR (CCME)	0.16	-	ALS	RG MI25 SE-3 2019-09-04 1630
SE	MI25	668186	5482838	2019	3	2019-09-04	16:30	B(a)P Total Potency Equivalent	<0.020	mg/kg	ALS	RG MI25 SE-3 2019-09-04 1630
SE	MI25	668186	5482838	2019	3	2019-09-04	16:30	Benzo(b+j+k)fluoranthene	0.016	mg/kg	ALS	RG MI25 SE-3 2019-09-04 1630
SE	MI25	668186	5482838	2019	3	2019-09-04	16:30	d8-Naphthalene	88	%	ALS	RG MI25 SE-3 2019-09-04 1630
SE	MI25	668186	5482838	2019	3	2019-09-04	16:30	d10-Acenaphthene	87	%	ALS	RG MI25 SE-3 2019-09-04 1630
SE	MI25	668186	5482838	2019	3	2019-09-04	16:30	d10-Phenanthrene	90	%	ALS	RG MI25 SE-3 2019-09-04 1630
SE	MI25	668186	5482838	2019	3	2019-09-04	16:30	d12-Chrysene	98	%	ALS	RG MI25 SE-3 2019-09-04 1630
SE	MI25	668186	5482838	2019	3	2019-09-04	16:30	% Gravel (>2 mm)	<1.0	%	ALS	RG MI25 SE-3 2019-09-04 1630
SE	MI25	668186	5482838	2019	3	2019-09-04	16:30	% Sand (2.00 mm - 1.00 mm)	<1.0	%	ALS	RG MI25 SE-3 2019-09-04 1630
SE	MI25	668186	5482838	2019	3	2019-09-04	16:30	% Sand (1.00 mm - 0.50 mm)	3.0	%	ALS	RG MI25 SE-3 2019-09-04 1630
SE	MI25	668186	5482838	2019	3	2019-09-04	16:30	% Sand (0.50 mm - 0.25 mm)	10	%	ALS	RG MI25 SE-3 2019-09-04 1630
SE	MI25	668186	5482838	2019	3	2019-09-04	16:30	% Sand (0.25 mm - 0.125 mm)	15	%	ALS	RG MI25 SE-3 2019-09-04 1630

WSP Canada Inc. Page 62 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

VIDA	Station	Location	(UTMs) ^(a)	Vaar	Poplicate	Data	Time	Analyta	Popult	Unit		Laboratory Information
ype	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE.	MI25	668186	5482838	2019	3	2019-09-04	16:30	% Sand (0.125 mm - 0.063 mm)	14	%	ALS	RG MI25 SE-3 2019-09-04 1630
E	MI25	668186	5482838	2019	3	2019-09-04	16:30	% Silt (0.063 mm - 0.0312 mm)	27	%	ALS	RG_MI25_SE-3_2019-09-04_1630
E	MI25	668186	5482838	2019	3	2019-09-04	16:30	% Silt (0.031 mm - 0.004 mm)	28	%	ALS	RG_MI25_SE-3_2019-09-04_1630
SE.	MI25	668186	5482838	2019	3	2019-09-04	16:30	% Clay (<4 μm)	3.2	%	ALS	RG MI25 SE-3 2019-09-04 1630
SE.	MI25	668186	5482838	2019	3	2019-09-04	16:30	Texture	Silt loam	-	ALS	RG_MI25_SE-3_2019-09-04_1630
SE	MI25	668186	5482838	2019	3	2019-09-04	16:30	Mercury (Hg)	0.037	mg/kg	ALS	RG MI25 SE-3 2019-09-04 1630
SE.	MI25	668186	5482838	2019	3	2019-09-04	16:30	Aluminum (Al)	20,800	mg/kg	ALS	RG MI25 SE-3 2019-09-04 1630
SE	MI25	668186	5482838	2019	3	2019-09-04	16:30	Antimony (Sb)	0.8	mg/kg	ALS	RG MI25 SE-3 2019-09-04 1630
SE	MI25	668186	5482838	2019	3	2019-09-04	16:30	Arsenic (As)	14	mg/kg	ALS	RG_MI25_SE-3_2019-09-04_1630
SE.	MI25	668186	5482838	2019	3	2019-09-04	16:30	Barium (Ba)	203	mg/kg	ALS	RG MI25 SE-3 2019-09-04 1630
SE	MI25	668186	5482838	2019	3	2019-09-04	16:30	Beryllium (Be)	1.2	mg/kg	ALS	RG_MI25_SE-3_2019-09-04_1630
SE	MI25	668186	5482838	2019	3	2019-09-04	16:30	Bismuth (Bi)	0.27	mg/kg	ALS	RG MI25 SE-3 2019-09-04 1630
SE	MI25	668186	5482838	2019	3	2019-09-04	16:30	Boron (B)	21	mg/kg	ALS	RG MI25 SE-3 2019-09-04 1630
SE	MI25	668186	5482838	2019	3	2019-09-04	16:30	Cadmium (Cd)	1.7	mg/kg	ALS	RG MI25 SE-3 2019-09-04 1630
SE	MI25	668186	5482838	2019	3	2019-09-04	16:30	Calcium (Ca)	17,500	mg/kg	ALS	RG MI25 SE-3 2019-09-04 1630
SE	MI25	668186	5482838	2019	3	2019-09-04	16:30	Chromium (Cr)	27	mg/kg	ALS	RG MI25 SE-3 2019-09-04 1630
SE	MI25	668186	5482838	2019	3	2019-09-04	16:30	Cobalt (Co)	11	mg/kg	ALS	RG_MI25_SE-3_2019-09-04_1630
SE	MI25	668186	5482838	2019	3	2019-09-04	16:30	Copper (Cu)	32	mg/kg	ALS	RG MI25 SE-3 2019-09-04 1630
SE	MI25	668186	5482838	2019	3	2019-09-04	16:30	Iron (Fe)	29,400	mg/kg	ALS	RG MI25 SE-3 2019-09-04 1630
SE	MI25	668186	5482838	2019	3	2019-09-04	16:30	Lead (Pb)	25	mg/kg	ALS	RG MI25 SE-3 2019-09-04 1630
SE	MI25	668186	5482838	2019	3	2019-09-04	16:30	Lithium (Li)	29	mg/kg	ALS	RG MI25 SE-3 2019-09-04 1630
SE	MI25	668186	5482838	2019	3	2019-09-04	16:30	Magnesium (Mg)	7,540	mg/kg	ALS	RG MI25 SE-3 2019-09-04 1630
SE	MI25	668186	5482838	2019	3	2019-09-04	16:30	Manganese (Mn)	733	mg/kg	ALS	RG MI25 SE-3 2019-09-04 1630
SE	MI25	668186	5482838	2019	3	2019-09-04	16:30	Molybdenum (Mo)	6.8	mg/kg	ALS	RG MI25 SE-3 2019-09-04 1630
SE	MI25	668186	5482838	2019	3	2019-09-04	16:30	Nickel (Ni)	42	mg/kg	ALS	RG MI25 SE-3 2019-09-04 1630
SE	MI25	668186	5482838	2019	3	2019-09-04	16:30	Phosphorus (P)	1,510	mg/kg	ALS	RG MI25 SE-3 2019-09-04 1630
SE	MI25	668186	5482838	2019	3	2019-09-04	16:30	Potassium (K)	4,480	mg/kg	ALS	RG MI25 SE-3 2019-09-04 1630
SE	MI25	668186	5482838	2019	3	2019-09-04	16:30	Selenium (Se)	1.1	mg/kg	ALS	RG MI25 SE-3 2019-09-04 1630
SE	MI25	668186	5482838	2019	3	2019-09-04	16:30	Silver (Ag)	0.17	mg/kg	ALS	RG MI25 SE-3 2019-09-04 1630
SE	MI25	668186	5482838	2019	3	2019-09-04	16:30	Sodium (Na)	110	mg/kg	ALS	RG MI25 SE-3 2019-09-04 1630
SE	MI25	668186	5482838	2019	3	2019-09-04	16:30	Strontium (Sr)	52	mg/kg	ALS	RG MI25 SE-3 2019-09-04 1630
SE	MI25	668186	5482838	2019	3	2019-09-04	16:30	Sulfur (S)	<1000	mg/kg	ALS	RG MI25 SE-3 2019-09-04 1630
SE	MI25	668186	5482838	2019	3	2019-09-04	16:30	Thallium (TI)	0.95	mg/kg	ALS	RG MI25 SE-3 2019-09-04 1630
SE	MI25	668186	5482838	2019	3	2019-09-04	16:30	Tin (Sn)	<2.0	mg/kg	ALS	RG MI25 SE-3 2019-09-04 1630
SE	MI25	668186	5482838	2019	3	2019-09-04	16:30	Titanium (Ti)	27	mg/kg	ALS	RG MI25 SE-3 2019-09-04 1630
SE	MI25	668186	5482838	2019	3	2019-09-04	16:30	Tungsten (W)	<0.50	mg/kg	ALS	RG MI25 SE-3 2019-09-04 1630
SE	MI25	668186	5482838	2019	3	2019-09-04	16:30	Uranium (U)	0.97	mg/kg	ALS	RG MI25 SE-3 2019-09-04 1630
SE	MI25	668186	5482838	2019	3	2019-09-04	16:30	Vanadium (V)	49	mg/kg	ALS	RG MI25 SE-3 2019-09-04 1630
SE	MI25	668186	5482838	2019	3	2019-09-04	16:30	Zinc (Zn)	186	mg/kg	ALS	RG MI25 SE-3 2019-09-04 1630
SE	MI25	668186	5482838	2019	3	2019-09-04	16:30	Zirconium (Zr)	<1.0	mg/kg	ALS	RG MI25 SE-3 2019-09-04 1630
SE	MI25	668186	5482838	2019	3	2019-09-04	16:30	pH (1:2 soil:water)	8.1	pH	ALS	RG MI25 SE-3 2019-09-04 1630
SE	MI25	668186	5482838	2019	3	2019-09-04	16:30	Total Organic Carbon	2.5	%	ALS	RG MI25 SE-3 2019-09-04 1630
SE SE	LE1	659632	5494112	2019	1	2019-09-04	13:30	Moisture	35	%	ALS	RG LE1 SE-1 2019-09-05 1330
	LE1	659632	5494112	2019	1	2019-09-05	13:30	Acenaphthene	<0.0050	mg/kg	ALS	RG LE1 SE-1 2019-09-05 1330
- -				2019	1 1	2019-09-05	13:30	Acenaphthylene	<0.0050	mg/kg	ALS	RG LE1 SE-1 2019-09-05 1330
	l ⊑ 1	hhuh'y'										
SE SE SE	LE1 LE1	659632 659632	5494112 5494112	2019	1	2019-09-05	13:30	Acridine	<0.0030	mg/kg	ALS	RG LE1 SE-1 2019-09-05 1330

WSP Canada Inc. Page 63 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	Ctotion	Location	າ (UTMs) ^(a)	Vacu	Doublecto	Dete	Times	Amaluta	Booult	Heit		Laboratory Information
ype	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
E	LE1	659632	5494112	2019	1	2019-09-05	13:30	Benz(a)anthracene	<0.010	mg/kg	ALS	RG LE1 SE-1 2019-09-05 1330
E	LE1	659632	5494112	2019	1	2019-09-05	13:30	Benzo(a)pyrene	<0.010	mg/kg	ALS	RG LE1 SE-1 2019-09-05 1330
E	LE1	659632	5494112	2019	1	2019-09-05	13:30	Benzo(b&j)fluoranthene	<0.010	mg/kg	ALS	RG LE1 SE-1 2019-09-05 1330
E	LE1	659632	5494112	2019	1	2019-09-05	13:30	Benzo(g_h_i)perylene	<0.010	mg/kg	ALS	RG LE1 SE-1 2019-09-05 1330
E	LE1	659632	5494112	2019	1	2019-09-05	13:30	Benzo(k)fluoranthene	<0.010	mg/kg	ALS	RG LE1 SE-1 2019-09-05 1330
E	LE1	659632	5494112	2019	1	2019-09-05	13:30	Benzo(e)pyrene	<0.010	mg/kg	ALS	RG LE1 SE-1 2019-09-05 1330
E	LE1	659632	5494112	2019	1	2019-09-05	13:30	Chrysene	0.014	mg/kg	ALS	RG LE1 SE-1 2019-09-05 1330
E	LE1	659632	5494112	2019	1	2019-09-05	13:30	Dibenz(a h)anthracene	<0.0050	mg/kg	ALS	RG LE1 SE-1 2019-09-05 1330
E	LE1	659632	5494112	2019	1	2019-09-05	13:30	Fluoranthene	<0.010	mg/kg	ALS	RG LE1 SE-1 2019-09-05 1330
E	LE1	659632	5494112	2019	1	2019-09-05	13:30	Fluorene	<0.010	mg/kg	ALS	RG LE1 SE-1 2019-09-05 1330
E	LE1	659632	5494112	2019	1	2019-09-05	13:30	Indeno(1,2,3-c,d)pyrene	<0.010	mg/kg	ALS	RG LE1 SE-1 2019-09-05 1330
E	LE1	659632	5494112	2019	1	2019-09-05	13:30	1-Methylnaphthalene	0.018	mg/kg	ALS	RG LE1 SE-1 2019-09-05 1330
E	LE1	659632	5494112	2019	1	2019-09-05	13:30	2-Methylnaphthalene	0.018	mg/kg	ALS	RG LE1_SE-1_2019-09-05_1330
E	LE1	659632	5494112	2019	1	2019-09-05	13:30	Naphthalene	<0.010	mg/kg	ALS	RG LE1 SE-1 2019-09-05 1330
E	LE1	659632	5494112	2019	1	2019-09-05	13:30	Perylene	<0.010	mg/kg	ALS	RG LE1 SE-1 2019-09-05 1330
E	LE1	659632	5494112	2019	1	2019-09-05	13:30	Phenanthrene	0.038	mg/kg	ALS	RG LE1_SE-1_2019-09-05_1330
E	LE1	659632	5494112	2019	1	2019-09-05	13:30	Pyrene	<0.010	mg/kg	ALS	RG LE1 SE-1 2019-09-05 1330
E	LE1	659632	5494112	2019	1	2019-09-05	13:30	Quinoline	<0.010	mg/kg	ALS	RG LE1 SE-1 2019-09-05 1330
E	LE1	659632	5494112	2019	1	2019-09-05	13:30	IACR (CCME)	<0.15	- 1119/119	ALS	RG LE1 SE-1 2019-09-05 1330
E	LE1	659632	5494112	2019	1	2019-09-05	13:30	B(a)P Total Potency Equivalent	<0.020	mg/kg	ALS	RG LE1 SE-1 2019-09-05 1330
E	LE1	659632	5494112	2019	1	2019-09-05	13:30	Benzo(b+j+k)fluoranthene	<0.020	mg/kg	ALS	RG LE1 SE-1 2019-09-05 1330
E	LE1	659632	5494112	2019	1	2019-09-05	13:30	d8-Naphthalene	79	%	ALS	RG LE1 SE-1 2019-09-05 1330
E	LE1	659632	5494112	2019	1	2019-09-05	13:30	d10-Acenaphthene	79	%	ALS	RG LE1_SE-1_2019-09-05_1330
E	LE1	659632	5494112	2019	1	2019-09-05	13:30	d10-Phenanthrene	89	%	ALS	RG LE1 SE-1 2019-09-05 1330
E	LE1	659632	5494112	2019	1	2019-09-05	13:30	d12-Chrysene	98	%	ALS	RG LE1 SE-1 2019-09-05 1330
E E	LE1	659632	5494112	2019	1	2019-09-05	13:30	% Gravel (>2 mm)	<1.0	%	ALS	RG LE1 SE-1 2019-09-05 1330
E	LE1	659632	5494112	2019	1	2019-09-05	13:30	% Sand (2.00 mm - 1.00 mm)	1.6	%	ALS	RG LE1 SE-1 2019-09-05 1330
E	LE1	659632	5494112	2019	1	2019-09-05	13:30	% Sand (2.00 mm - 0.50 mm)	28	%	ALS	RG LE1 SE-1 2019-09-05 1330
E E	LE1	659632	5494112	2019	1 1	2019-09-05	13:30	% Sand (1.00 mm - 0.25 mm)	50	%	ALS	RG LE1 SE-1 2019-09-05 1330
E	LE1	659632	5494112	2019	1	2019-09-05	13:30	% Sand (0.25 mm - 0.125 mm)	9.2	%	ALS	RG LE1 SE-1 2019-09-05 1330
E	LE1	659632	5494112	2019	1	2019-09-05	13:30	% Sand (0.125 mm - 0.063 mm)	2.7	%		RG LE1_SE-1_2019-09-05_1330
SE SE	LE1	659632	5494112	2019	1	2019-09-05	13:30	% Salt (0.063 mm - 0.0312 mm)	3.1	%	ALS	RG LE1 SE-1 2019-09-05 1330
SE SE	LE1	659632	5494112	2019	1	2019-09-05	13:30	% Silt (0.003 mm - 0.004 mm)	4.0	%	ALS	RG LE1 SE-1 2019-09-05 1330
E E	LE1	659632	5494112	2019	1	2019-09-05	13:30	% Clay (<4 μm)	1.5	%	ALS	RG LE1 SE-1 2019-09-05 1330
E	LE1	659632	5494112	2019	1 1	2019-09-05	13:30	Texture	Sand	-	ALS	RG LE1 SE-1 2019-09-05 1330
E	LE1	659632	5494112	2019	1 1	2019-09-05	13:30	Mercury (Hg)	0.038	mg/kg	ALS	RG LE1 SE-1 2019-09-05 1330
E E	LE1	659632	5494112	2019	1	2019-09-05	13:30	Aluminum (Al)	8,850		ALS	RG LE1 SE-1 2019-09-05 1330
E	LE1	659632	5494112	2019	1	2019-09-05	13:30	Antimony (Sb)	1.4	mg/kg	ALS	RG LE1 SE-1 2019-09-05 1330
SE SE	LE1	659632	5494112	2019	1	2019-09-05	13:30	Arsenic (As)	7.1	mg/kg	ALS	RG LE1 SE-1 2019-09-05 1330
Έ	LE1	659632	5494112	2019	1	2019-09-05	13:30	,	261	mg/kg	ALS	RG LE1 SE-1 2019-09-05 1330
E	LE1	659632	5494112	2019	1 1	2019-09-05	13:30	Barium (Ba)	0.76	mg/kg	ALS	RG LE1 SE-1 2019-09-05 1330
E	LE1	659632	5494112		1 1			Beryllium (Be)	<0.20	mg/kg		
				2019	1 1	2019-09-05	13:30	Bismuth (Bi)		mg/kg	ALS	RG_LE1_SE-1_2019-09-05_1330
E E	LE1	659632	5494112	2019	1 1	2019-09-05	13:30	Boron (B)	<5.0	mg/kg	ALS	RG_LE1_SE-1_2019-09-05_1330
E	LE1	659632	5494112	2019	1 1	2019-09-05	13:30	Cadmium (Cd)	2.0	mg/kg	ALS	RG_LE1_SE-1_2019-09-05_1330
	LE1	659632	5494112	2019	1 4	2019-09-05	13:30	Calcium (Ca)	5,180	mg/kg	ALS	RG_LE1_SE-1_2019-09-05_1330
E	LE1	659632	5494112	2019	1 1	2019-09-05	13:30	Chromium (Cr)	16	mg/kg	ALS	RG_LE1_SE-1_2019-09-05_1330
SE	LE1	659632	5494112	2019	1	2019-09-05	13:30	Cobalt (Co)	6.6	mg/kg	ALS	RG_LE1_SE-1_2019-09-05_1330

WSP Canada Inc. Page 64 of 337

Sediment Screening

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	Ctation	Location	ı (UTMs) ^(a)	Vacu	Donlington	Doto	Time	Analyte	Daniel Control	Harit		Laboratory Information
/pe	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
E	LE1	659632	5494112	2019	1	2019-09-05	13:30	Copper (Cu)	16	mg/kg	ALS	RG LE1 SE-1 2019-09-05 1330
E	LE1	659632	5494112	2019		2019-09-05	13:30	Iron (Fe)	17,900	mg/kg	ALS	RG LE1 SE-1 2019-09-05 1330
E	LE1	659632	5494112	2019	1	2019-09-05	13:30	Lead (Pb)	10	mg/kg	ALS	RG LE1 SE-1 2019-09-05 1330
E	LE1	659632	5494112	2019	1	2019-09-05	13:30	Lithium (Li)	9.5	mg/kg	ALS	RG LE1 SE-1 2019-09-05 1330
E	LE1	659632	5494112	2019	1 1	2019-09-05	13:30	Magnesium (Mg)	2,130	mg/kg	ALS	RG LE1_SE-1_2019-09-05_1330
E	LE1	659632	5494112	2019	1	2019-09-05	13:30	Manganese (Mn)	382	mg/kg	ALS	RG LE1 SE-1 2019-09-05 1330
E	LE1	659632	5494112	2019	1 1	2019-09-05	13:30	Molybdenum (Mo)	1.7	mg/kg	ALS	RG LE1 SE-1 2019-09-05 1330
E	LE1	659632	5494112	2019	1 1	2019-09-05	13:30	Nickel (Ni)	29	mg/kg	ALS	RG LE1 SE-1 2019-09-05 1330
E	LE1	659632	5494112	2019	1 1	2019-09-05	13:30	Phosphorus (P)	1,220	mg/kg	ALS	RG LE1 SE-1 2019-09-05 1330
E	LE1	659632	5494112	2019	1	2019-09-05	13:30	Potassium (K)	1,530	mg/kg	ALS	RG LE1 SE-1 2019-09-05 1330
E	LE1	659632	5494112	2019	1	2019-09-05	13:30	Selenium (Se)	0.67	mg/kg	ALS	RG LE1 SE-1 2019-09-05 1330
E	LE1	659632	5494112	2019	1	2019-09-05	13:30	Silver (Ag)	0.18	mg/kg	ALS	RG LE1 SE-1 2019-09-05 1330
E	LE1	659632	5494112	2019		2019-09-05	13:30	Sodium (Na)	<50	mg/kg	ALS	RG LE1 SE-1 2019-09-05 1330
E	LE1	659632	5494112	2019		2019-09-05	13:30	Strontium (Sr)	47	mg/kg	ALS	RG LE1 SE-1 2019-09-05 1330
E	LE1	659632	5494112	2019	1 1	2019-09-05	13:30	Sulfur (S)	<1000	mg/kg	ALS	RG LE1 SE-1 2019-09-05 1330
E	LE1	659632	5494112	2019	1	2019-09-05	13:30	Thallium (TI)	0.24	mg/kg	ALS	RG_LE1_SE-1_2019-09-05_1330
E	LE1	659632	5494112	2019	1 1	2019-09-05	13:30	Tin (Sn)	<2.0	mg/kg	ALS	RG LE1 SE-1 2019-09-05 1330
E	LE1	659632	5494112	2019	1	2019-09-05	13:30	Titanium (Ti)	52	1 - 1 - 1 - 1	ALS	RG LE1 SE-1 2019-09-05 1330
E	LE1	659632	5494112	2019	1	2019-09-05	13:30	,	<0.50	mg/kg		RG LE1 SE-1 2019-09-05 1330
E	LE1				1			Tungsten (W) Uranium (U)	1.2	mg/kg	ALS ALS	
_		659632	5494112	2019	1 1	2019-09-05	13:30			mg/kg		RG_LE1_SE-1_2019-09-05_1330
	LE1	659632	5494112	2019	1 1	2019-09-05	13:30	Vanadium (V)	50	mg/kg	ALS	RG_LE1_SE-1_2019-09-05_1330
<u> </u>	LE1	659632	5494112	2019	1 1	2019-09-05	13:30	Zinc (Zn)	126	mg/kg	ALS	RG_LE1_SE-1_2019-09-05_1330
E	LE1	659632	5494112	2019	1 1	2019-09-05	13:30	Zirconium (Zr)	1.3	mg/kg	ALS	RG_LE1_SE-1_2019-09-05_1330
E	LE1	659632	5494112	2019	1	2019-09-05	13:30	pH (1:2 soil:water)	8.0	pH	ALS	RG_LE1_SE-1_2019-09-05_1330
E	LE1	659632	5494112	2019	1	2019-09-05	13:30	Total Organic Carbon	1.4	%	ALS	RG_LE1_SE-1_2019-09-05_1330
E	LE1	659632	5494112	2019		2019-09-05	14:30	Moisture	25	%	ALS	RG_LE1_SE-2_2019-09-05_1430
E	LE1	659632	5494112	2019	2	2019-09-05	14:30	Acenaphthene	<0.0050	mg/kg	ALS	RG_LE1_SE-2_2019-09-05_1430
E	LE1	659632	5494112	2019	_	2019-09-05	14:30	Acenaphthylene	<0.0050	mg/kg	ALS	RG_LE1_SE-2_2019-09-05_1430
E	LE1	659632	5494112	2019		2019-09-05	14:30	Acridine	<0.010	mg/kg	ALS	RG_LE1_SE-2_2019-09-05_1430
E	LE1	659632	5494112	2019		2019-09-05	14:30	Anthracene	<0.0040	mg/kg	ALS	RG_LE1_SE-2_2019-09-05_1430
E	LE1	659632	5494112	2019		2019-09-05	14:30	Benz(a)anthracene	<0.010	mg/kg		RG_LE1_SE-2_2019-09-05_1430
Е	LE1	659632	5494112	2019		2019-09-05	14:30	Benzo(a)pyrene	<0.010	mg/kg	ALS	RG_LE1_SE-2_2019-09-05_1430
E	LE1	659632	5494112	2019	2	2019-09-05	14:30	Benzo(b&j)fluoranthene	<0.010	mg/kg	ALS	RG_LE1_SE-2_2019-09-05_1430
E	LE1	659632	5494112	2019	2	2019-09-05	14:30	Benzo(g_h_i)perylene	<0.010	mg/kg	ALS	RG_LE1_SE-2_2019-09-05_1430
E	LE1	659632	5494112	2019	_	2019-09-05	14:30	Benzo(k)fluoranthene	<0.010	mg/kg	ALS	RG_LE1_SE-2_2019-09-05_1430
E	LE1	659632	5494112	2019	2	2019-09-05	14:30	Benzo(e)pyrene	<0.010	mg/kg	ALS	RG_LE1_SE-2_2019-09-05_1430
E	LE1	659632	5494112	2019	2	2019-09-05	14:30	Chrysene	<0.010	mg/kg	ALS	RG_LE1_SE-2_2019-09-05_1430
E	LE1	659632	5494112	2019	2	2019-09-05	14:30	Dibenz(a_h)anthracene	< 0.0050	mg/kg	ALS	RG_LE1_SE-2_2019-09-05_1430
E	LE1	659632	5494112	2019	2	2019-09-05	14:30	Fluoranthene	<0.010	mg/kg	ALS	RG_LE1_SE-2_2019-09-05_1430
Ε	LE1	659632	5494112	2019	2	2019-09-05	14:30	Fluorene	<0.010	mg/kg	ALS	RG_LE1_SE-2_2019-09-05_1430
E	LE1	659632	5494112	2019	2	2019-09-05	14:30	Indeno(1,2,3-c,d)pyrene	<0.010	mg/kg	ALS	RG_LE1_SE-2_2019-09-05_1430
E	LE1	659632	5494112	2019	2	2019-09-05	14:30	1-Methylnaphthalene	<0.010	mg/kg	ALS	RG_LE1_SE-2_2019-09-05_1430
E	LE1	659632	5494112	2019	2	2019-09-05	14:30	2-Methylnaphthalene	<0.010	mg/kg	ALS	RG_LE1_SE-2_2019-09-05_1430
E	LE1	659632	5494112	2019		2019-09-05	14:30	Naphthalene	<0.010	mg/kg	ALS	RG_LE1_SE-2_2019-09-05_1430
ΕĪ	LE1	659632	5494112	2019		2019-09-05	14:30	Perylene	<0.010	mg/kg	ALS	RG LE1 SE-2 2019-09-05 1430
E	LE1	659632	5494112	2019	2	2019-09-05	14:30	Phenanthrene	0.018	mg/kg	ALS	RG LE1 SE-2 2019-09-05 1430
E	LE1	659632	5494112	2019		2019-09-05	14:30	Pyrene	<0.010	mg/kg	ALS	RG LE1 SE-2 2019-09-05 1430

WSP Canada Inc. Page 65 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Type	Station	Location	ı (UTMs) ^(a)	Year	Poplicate	Date	Time	Analyte	Popult	Unit		Laboratory Information
ype	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	LE1	659632	5494112	2019	2	2019-09-05	14:30	Quinoline	<0.010	mg/kg	ALS	RG LE1 SE-2 2019-09-05 1430
SE	LE1	659632	5494112	2019	2	2019-09-05	14:30	IACR (CCME)	<0.15	-	ALS	RG LE1 SE-2 2019-09-05 1430
SE	LE1	659632	5494112	2019	2	2019-09-05	14:30	B(a)P Total Potency Equivalent	<0.020	mg/kg	ALS	RG LE1 SE-2 2019-09-05 1430
SE	LE1	659632	5494112	2019	2	2019-09-05	14:30	Benzo(b+j+k)fluoranthene	<0.015	mg/kg	ALS	RG LE1 SE-2 2019-09-05 1430
SE	LE1	659632	5494112	2019	2	2019-09-05	14:30	d8-Naphthalene	73	%	ALS	RG LE1 SE-2 2019-09-05 1430
SE	LE1	659632	5494112	2019	2	2019-09-05	14:30	d10-Acenaphthene	77	%	ALS	RG LE1 SE-2 2019-09-05 1430
SE	LE1	659632	5494112	2019	2	2019-09-05	14:30	d10-Phenanthrene	94	%	ALS	RG LE1 SE-2 2019-09-05 1430
SE	LE1	659632	5494112	2019	2	2019-09-05	14:30	d12-Chrysene	108	%	ALS	RG LE1 SE-2 2019-09-05 1430
SE	LE1	659632	5494112	2019	2	2019-09-05	14:30	% Gravel (>2 mm)	4.6	%	ALS	RG LE1 SE-2 2019-09-05 1430
SE	LE1	659632	5494112	2019	2	2019-09-05	14:30	% Sand (2.00 mm - 1.00 mm)	4.2	%	ALS	RG LE1 SE-2 2019-09-05 1430
SE	LE1	659632	5494112	2019	2	2019-09-05	14:30	% Sand (1.00 mm - 0.50 mm)	11	%	ALS	RG_LE1_SE-2_2019-09-05_1430
SE	LE1	659632	5494112	2019	2	2019-09-05	14:30	% Sand (0.50 mm - 0.25 mm)	33	%	ALS	RG LE1 SE-2 2019-09-05 1430
SE	LE1	659632	5494112	2019	2	2019-09-05	14:30	% Sand (0.25 mm - 0.125 mm)	22	%	ALS	RG LE1 SE-2 2019-09-05 1430
SE	LE1	659632	5494112	2019	2	2019-09-05	14:30	% Sand (0.125 mm - 0.063 mm)	8.5	%	ALS	RG LE1 SE-2 2019-09-05 1430
SE	LE1	659632	5494112	2019	2	2019-09-05	14:30	% Silt (0.063 mm - 0.0312 mm)	6.7	%	ALS	RG_LE1_SE-2_2019-09-05_1430
SE	LE1	659632	5494112	2019	2	2019-09-05	14:30	% Silt (0.031 mm - 0.004 mm)	7.4	%	ALS	RG_LE1_SE-2_2019-09-05_1430
SE	LE1	659632	5494112	2019	2	2019-09-05	14:30	% Clay (<4 μm)	2.6	%	ALS	RG LE1 SE-2 2019-09-05 1430
SE	LE1	659632	5494112	2019	2	2019-09-05	14:30	Texture	Loamy sand	-	ALS	RG LE1 SE-2 2019-09-05 1430
SE	LE1	659632	5494112	2019	2	2019-09-05	14:30	Mercury (Hg)	0.049	mg/kg	ALS	RG LE1 SE-2 2019-09-05 1430
SE	LE1	659632	5494112	2019	2	2019-09-05	14:30	Aluminum (Al)	9,630	mg/kg	ALS	RG LE1 SE-2 2019-09-05 1430
SE	LE1	659632	5494112	2019	2	2019-09-05	14:30	Antimony (Sb)	1.6	mg/kg	ALS	RG LE1 SE-2 2019-09-05 1430
SE	LE1	659632	5494112	2019	2	2019-09-05	14:30	Arsenic (As)	9.3	mg/kg	ALS	RG_LE1_SE-2_2019-09-05_1430
SE	LE1	659632	5494112	2019	2	2019-09-05	14:30	Barium (Ba)	269	mg/kg	ALS	RG LE1 SE-2 2019-09-05 1430
SE	LE1	659632	5494112	2019	2	2019-09-05	14:30	Beryllium (Be)	0.73	mg/kg	ALS	RG_LE1_SE-2_2019-09-05_1430
SE	LE1	659632	5494112	2019	2	2019-09-05	14:30	Bismuth (Bi)	<0.20	mg/kg	ALS	RG LE1 SE-2 2019-09-05 1430
SE	LE1	659632	5494112	2019	2	2019-09-05	14:30	Boron (B)	<5.0	mg/kg	ALS	RG LE1 SE-2 2019-09-05 1430
SE	LE1	659632	5494112	2019	2	2019-09-05	14:30	Cadmium (Cd)	1.7	mg/kg	ALS	RG LE1 SE-2 2019-09-05 1430
SE	LE1	659632	5494112	2019	2	2019-09-05	14:30	Calcium (Ca)	8,400	mg/kg	ALS	RG_LE1_SE-2_2019-09-05_1430
SE	LE1	659632	5494112	2019	2	2019-09-05	14:30	Chromium (Cr)	17	mg/kg	ALS	RG LE1 SE-2 2019-09-05 1430
SE	LE1	659632	5494112	2019	2	2019-09-05	14:30	Cobalt (Co)	6.6	mg/kg	ALS	RG LE1 SE-2 2019-09-05 1430
SE	LE1	659632	5494112	2019	2	2019-09-05	14:30	Copper (Cu)	14	mg/kg	ALS	RG_LE1_SE-2_2019-09-05_1430
SE	LE1	659632	5494112	2019	2	2019-09-05	14:30	Iron (Fe)	20,900	mg/kg	ALS	RG_LE1_SE-2_2019-09-05_1430
SE	LE1	659632	5494112	2019	2	2019-09-05	14:30	Lead (Pb)	11	mg/kg	ALS	RG LE1 SE-2 2019-09-05 1430
SE	LE1	659632	5494112	2019	2	2019-09-05	14:30	Lithium (Li)	10	mg/kg	ALS	RG LE1 SE-2 2019-09-05 1430
SE	LE1	659632	5494112	2019	2	2019-09-05	14:30	Magnesium (Mg)	3,360	mg/kg	ALS	RG LE1 SE-2 2019-09-05 1430
SE	LE1	659632	5494112	2019	2	2019-09-05	14:30	Manganese (Mn)	393	mg/kg	ALS	RG_LE1_SE-2_2019-09-05_1430
SE	LE1	659632	5494112	2019	2	2019-09-05	14:30	Molybdenum (Mo)	2.7	mg/kg	ALS	RG_LE1_SE-2_2019-09-05_1430
SE	LE1	659632	5494112	2019	2	2019-09-05	14:30	Nickel (Ni)	30	mg/kg	ALS	RG_LE1_SE-2_2019-09-05_1430
SE	LE1	659632	5494112	2019	2	2019-09-05	14:30	Phosphorus (P)	1,390	mg/kg	ALS	RG_LE1_SE-2_2019-09-05_1430
SE	LE1	659632	5494112	2019	2	2019-09-05	14:30	Potassium (K)	1,590	mg/kg	ALS	RG_LE1_SE-2_2019-09-05_1430
SE	LE1	659632	5494112	2019	2	2019-09-05	14:30	Selenium (Se)	0.77	mg/kg	ALS	RG_LE1_SE-2_2019-09-05_1430
SE	LE1	659632	5494112	2019	2	2019-09-05	14:30	Silver (Ag)	0.2	mg/kg	ALS	RG_LE1_SE-2_2019-09-05_1430
SE	LE1	659632	5494112	2019	2	2019-09-05	14:30	Sodium (Na)	<50	mg/kg	ALS	RG_LE1_SE-2_2019-09-05_1430
SE	LE1	659632	5494112	2019	2	2019-09-05	14:30	Strontium (Sr)	39	mg/kg	ALS	RG_LE1_SE-2_2019-09-05_1430
SE	LE1	659632	5494112	2019	2	2019-09-05	14:30	Sulfur (S)	<1000	mg/kg	ALS	RG_LE1_SE-2_2019-09-05_1430
SE	LE1	659632	5494112	2019	2	2019-09-05	14:30	Thallium (TI)	0.26	mg/kg	ALS	RG_LE1_SE-2_2019-09-05_1430
SE	LE1	659632	5494112	2019	2	2019-09-05	14:30	Tin (Sn)	<2.0	mg/kg	ALS	RG LE1 SE-2 2019-09-05 1430

WSP Canada Inc. Page 66 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Type	Station	Location	ı (UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
Гуре	Station	Easting	Northing	rear	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	LE1	659632	5494112	2019	2	2019-09-05	14:30	Titanium (Ti)	86	mg/kg	ALS	RG_LE1_SE-2_2019-09-05_1430
SE	LE1	659632	5494112	2019	2	2019-09-05	14:30	Tungsten (W)	<0.50	mg/kg	ALS	RG_LE1_SE-2_2019-09-05_1430
SE	LE1	659632	5494112	2019	2	2019-09-05	14:30	Uranium (U)	1.3	mg/kg	ALS	RG_LE1_SE-2_2019-09-05_1430
SE	LE1	659632	5494112	2019	2	2019-09-05	14:30	Vanadium (V)	55	mg/kg	ALS	RG_LE1_SE-2_2019-09-05_1430
SE	LE1	659632	5494112	2019	2	2019-09-05	14:30	Zinc (Zn)	121	mg/kg	ALS	RG_LE1_SE-2_2019-09-05_1430
SE	LE1	659632	5494112	2019	2	2019-09-05	14:30	Zirconium (Zr)	1.2	mg/kg	ALS	RG_LE1_SE-2_2019-09-05_1430
SE	LE1	659632	5494112	2019	2	2019-09-05	14:30	pH (1:2 soil:water)	8.5	pН	ALS	RG_LE1_SE-2_2019-09-05_1430
SE	LE1	659632	5494112	2019	2	2019-09-05	14:30	Total Organic Carbon	1.4	%	ALS	RG_LE1_SE-2_2019-09-05_1430
SE	LE1	659632	5494112	2019	3	2019-09-05	15:15	Moisture	21	%	ALS	RG_LE1_SE-3_2019-09-05_1515
SE	LE1	659632	5494112	2019	3	2019-09-05	15:15	Acenaphthene	<0.0050	mg/kg	ALS	RG_LE1_SE-3_2019-09-05_1515
SE	LE1	659632	5494112	2019	3	2019-09-05	15:15	Acenaphthylene	<0.0050	mg/kg	ALS	RG_LE1_SE-3_2019-09-05_1515
SE	LE1	659632	5494112	2019	3	2019-09-05	15:15	Acridine	<0.010	mg/kg	ALS	RG LE1 SE-3 2019-09-05 1515
SE	LE1	659632	5494112	2019	3	2019-09-05	15:15	Anthracene	<0.0040	mg/kg	ALS	RG LE1 SE-3 2019-09-05 1515
SE	LE1	659632	5494112	2019	3	2019-09-05	15:15	Benz(a)anthracene	<0.010	mg/kg	ALS	RG LE1 SE-3 2019-09-05 1515
SE	LE1	659632	5494112	2019	3	2019-09-05	15:15	Benzo(a)pyrene	<0.010	mg/kg	ALS	RG LE1 SE-3 2019-09-05 1515
SE	LE1	659632	5494112	2019	3	2019-09-05	15:15	Benzo(b&j)fluoranthene	<0.010	mg/kg	ALS	RG LE1 SE-3 2019-09-05 1515
SE	LE1	659632	5494112	2019	3	2019-09-05	15:15	Benzo(g_h_i)perylene	<0.010	mg/kg	ALS	RG LE1 SE-3 2019-09-05 1515
SE	LE1	659632	5494112	2019	3	2019-09-05	15:15	Benzo(k)fluoranthene	<0.010	mg/kg	ALS	RG LE1 SE-3 2019-09-05 1515
SE	LE1	659632	5494112	2019	3	2019-09-05	15:15	Benzo(e)pyrene	<0.010	mg/kg	ALS	RG LE1 SE-3 2019-09-05 1515
SE.	LE1	659632	5494112	2019	3	2019-09-05	15:15	Chrysene	0.01	mg/kg	ALS	RG LE1 SE-3 2019-09-05 1515
SE.	LE1	659632	5494112	2019	3	2019-09-05	15:15	Dibenz(a h)anthracene	<0.0050	mg/kg	ALS	RG LE1 SE-3 2019-09-05 1515
SE.	LE1	659632	5494112	2019	3	2019-09-05	15:15	Fluoranthene	<0.010	mg/kg	ALS	RG LE1_SE-3_2019-09-05_1515
SE	LE1	659632	5494112	2019	3	2019-09-05	15:15	Fluorene	<0.010	mg/kg	ALS	RG LE1 SE-3 2019-09-05 1515
SE	LE1	659632	5494112	2019	3	2019-09-05	15:15	Indeno(1,2,3-c,d)pyrene	<0.010	mg/kg	ALS	RG LE1 SE-3 2019-09-05 1515
SE	LE1	659632	5494112	2019	3	2019-09-05	15:15	1-Methylnaphthalene	<0.010	mg/kg	ALS	RG LE1 SE-3 2019-09-05 1515
SE	LE1	659632	5494112	2019	3	2019-09-05	15:15	2-Methylnaphthalene	<0.010	mg/kg	ALS	RG LE1_SE-3_2019-09-05_1515
SE	LE1	659632	5494112	2019	3	2019-09-05	15:15	Naphthalene	<0.010	mg/kg	ALS	RG LE1 SE-3 2019-09-05 1515
SE	LE1	659632	5494112	2019	3	2019-09-05	15:15	Perylene	<0.010	mg/kg	ALS	RG LE1 SE-3 2019-09-05 1515
SE	LE1	659632	5494112	2019	3	2019-09-05	15:15	Phenanthrene	0.016	mg/kg	ALS	RG LE1 SE-3 2019-09-05_1515
SE	LE1	659632	5494112	2019	3	2019-09-05	15:15	Pyrene	<0.010	mg/kg		RG LE1 SE-3 2019-09-05 1515
SE	LE1	659632	5494112	2019		2019-09-05	15:15	Quinoline	<0.010	mg/kg		RG_LE1_SE-3_2019-09-05_1515
SE	LE1	659632	5494112	2019	3	2019-09-05	15:15	IACR (CCME)	<0.15	- 1119/109	ALS	RG LE1 SE-3 2019-09-05 1515
SE	LE1	659632	5494112	2019	3	2019-09-05	15:15	B(a)P Total Potency Equivalent	<0.020	mg/kg	ALS	RG LE1 SE-3 2019-09-05 1515
SE	LE1	659632	5494112	2019	3	2019-09-05	15:15	Benzo(b+j+k)fluoranthene	<0.015	mg/kg	ALS	RG LE1 SE-3 2019-09-05 1515
SE	LE1	659632	5494112	2019	3	2019-09-05	15:15	d8-Naphthalene	80	%	ALS	RG LE1 SE-3 2019-09-05 1515
SE	LE1	659632	5494112	2019	3	2019-09-05	15:15	d10-Acenaphthene	80	%	ALS	RG LE1 SE-3 2019-09-05 1515
SE	LE1	659632	5494112	2019	3	2019-09-05	15:15	d10-Phenanthrene	92	%	ALS	RG LE1 SE-3 2019-09-05 1515
SE	LE1	659632	5494112	2019	3	2019-09-05	15:15	d12-Chrysene	104	%	ALS	RG LE1 SE-3 2019-09-05 1515
SE .	LE1	659632	5494112	2019	3	2019-09-05	15:15	% Gravel (>2 mm)	22	%	ALS	RG LE1 SE-3 2019-09-05 1515
SE SE	LE1	659632	5494112	2019	3	2019-09-05	15:15	% Sand (2.00 mm - 1.00 mm)	15	%	ALS	RG LE1 SE-3 2019-09-05 1515
SE	LE1	659632	5494112	2019	3	2019-09-05	15:15	% Sand (2.00 mm - 1.00 mm)	28	% %	ALS	RG LE1 SE-3 2019-09-05 1515
SE SE	LE1	659632	5494112	2019	3	2019-09-05	15:15	% Sand (1.00 mm - 0.50 mm) % Sand (0.50 mm - 0.25 mm)	25	%	ALS	RG LE1 SE-3 2019-09-05 1515
SE SE					3			,				
	LE1	659632	5494112	2019	_	2019-09-05	15:15	% Sand (0.25 mm - 0.125 mm)	5.8	%	ALS	RG_LE1_SE-3_2019-09-05_1515
SE	LE1	659632	5494112	2019	3	2019-09-05	15:15	% Sand (0.125 mm - 0.063 mm)	1.2	%	ALS	RG_LE1_SE-3_2019-09-05_1515
SE	LE1	659632	5494112	2019	3	2019-09-05	15:15	% Silt (0.063 mm - 0.0312 mm)	1.7	%	ALS	RG_LE1_SE-3_2019-09-05_1515
SE	LE1 LE1	659632 659632	5494112 5494112	2019 2019	3	2019-09-05 2019-09-05	15:15 15:15	% Silt (0.031 mm - 0.004 mm) % Clay (<4 μm)	2.1 <1.0	% %	ALS ALS	RG_LE1_SE-3_2019-09-05_1515 RG_LE1_SE-3_2019-09-05_1515

WSP Canada Inc. Page 67 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	Station		ı (UTMs) ^(a)	Year	Replicate		Time	Analyta	Pocult.	Unit		Laboratory Information
Type	Station	Easting	Northing	rear	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	LE1	659632	5494112	2019	3	2019-09-05	15:15	Texture	Sand	-	ALS	RG_LE1_SE-3_2019-09-05_1515
SE	LE1	659632	5494112	2019	3	2019-09-05	15:15	Mercury (Hg)	0.04	mg/kg	ALS	RG_LE1_SE-3_2019-09-05_1515
SE	LE1	659632	5494112	2019	3	2019-09-05	15:15	Aluminum (Al)	8,670	mg/kg	ALS	RG_LE1_SE-3_2019-09-05_1515
SE	LE1	659632	5494112	2019	3	2019-09-05	15:15	Antimony (Sb)	1.6	mg/kg	ALS	RG_LE1_SE-3_2019-09-05_1515
SE	LE1	659632	5494112	2019	3	2019-09-05	15:15	Arsenic (As)	8.5	mg/kg	ALS	RG_LE1_SE-3_2019-09-05_1515
SE	LE1	659632	5494112	2019	3	2019-09-05	15:15	Barium (Ba)	232	mg/kg	ALS	RG_LE1_SE-3_2019-09-05_1515
SE	LE1	659632	5494112	2019	3	2019-09-05	15:15	Beryllium (Be)	0.75	mg/kg	ALS	RG_LE1_SE-3_2019-09-05_1515
SE	LE1	659632	5494112	2019	3	2019-09-05	15:15	Bismuth (Bi)	<0.20	mg/kg	ALS	RG_LE1_SE-3_2019-09-05_1515
SE	LE1	659632	5494112	2019	3	2019-09-05	15:15	Boron (B)	<5.0	mg/kg	ALS	RG_LE1_SE-3_2019-09-05_1515
SE	LE1	659632	5494112	2019	3	2019-09-05	15:15	Cadmium (Cd)	1.7	mg/kg	ALS	RG_LE1_SE-3_2019-09-05_1515
SE	LE1	659632	5494112	2019	3	2019-09-05	15:15	Calcium (Ca)	5,350	mg/kg	ALS	RG_LE1_SE-3_2019-09-05_1515
SE	LE1	659632	5494112	2019	3	2019-09-05	15:15	Chromium (Cr)	15	mg/kg	ALS	RG_LE1_SE-3_2019-09-05_1515
SE	LE1	659632	5494112	2019	3	2019-09-05	15:15	Cobalt (Co)	6.2	mg/kg	ALS	RG_LE1_SE-3_2019-09-05_1515
SE	LE1	659632	5494112	2019	3	2019-09-05	15:15	Copper (Cu)	14	mg/kg	ALS	RG_LE1_SE-3_2019-09-05_1515
SE	LE1	659632	5494112	2019	3	2019-09-05	15:15	Iron (Fe)	18,200	mg/kg	ALS	RG_LE1_SE-3_2019-09-05_1515
SE	LE1	659632	5494112	2019	3	2019-09-05	15:15	Lead (Pb)	11	mg/kg	ALS	RG_LE1_SE-3_2019-09-05_1515
SE	LE1	659632	5494112	2019	3	2019-09-05	15:15	Lithium (Li)	11	mg/kg	ALS	RG_LE1_SE-3_2019-09-05_1515
SE	LE1	659632	5494112	2019	3	2019-09-05	15:15	Magnesium (Mg)	2,250	mg/kg	ALS	RG_LE1_SE-3_2019-09-05_1515
SE	LE1	659632	5494112	2019	3	2019-09-05	15:15	Manganese (Mn)	306	mg/kg	ALS	RG_LE1_SE-3_2019-09-05_1515
SE	LE1	659632	5494112	2019	3	2019-09-05	15:15	Molybdenum (Mo)	2.2	mg/kg	ALS	RG_LE1_SE-3_2019-09-05_1515
SE	LE1	659632	5494112	2019	3	2019-09-05	15:15	Nickel (Ni)	28	mg/kg	ALS	RG_LE1_SE-3_2019-09-05_1515
SE	LE1	659632	5494112	2019	3	2019-09-05	15:15	Phosphorus (P)	1,280	mg/kg	ALS	RG_LE1_SE-3_2019-09-05_1515
SE	LE1	659632	5494112	2019	3	2019-09-05	15:15	Potassium (K)	1,330	mg/kg	ALS	RG_LE1_SE-3_2019-09-05_1515
SE	LE1	659632	5494112	2019	3	2019-09-05	15:15	Selenium (Se)	0.55	mg/kg	ALS	RG_LE1_SE-3_2019-09-05_1515
SE	LE1	659632	5494112	2019	3	2019-09-05	15:15	Silver (Ag)	0.18	mg/kg	ALS	RG_LE1_SE-3_2019-09-05_1515
SE	LE1	659632	5494112	2019	3	2019-09-05	15:15	Sodium (Na)	<50	mg/kg	ALS	RG_LE1_SE-3_2019-09-05_1515
SE	LE1	659632	5494112	2019	3	2019-09-05	15:15	Strontium (Sr)	47	mg/kg	ALS	RG_LE1_SE-3_2019-09-05_1515
SE	LE1	659632	5494112	2019	3	2019-09-05	15:15	Sulfur (S)	<1000	mg/kg	ALS	RG_LE1_SE-3_2019-09-05_1515
SE	LE1	659632	5494112	2019	3	2019-09-05	15:15	Thallium (TI)	0.24	mg/kg	ALS	RG_LE1_SE-3_2019-09-05_1515
SE	LE1	659632	5494112	2019	3	2019-09-05	15:15	Tin (Sn)	<2.0	mg/kg	ALS	RG_LE1_SE-3_2019-09-05_1515
SE	LE1	659632	5494112	2019	3	2019-09-05	15:15	Titanium (Ti)	55	mg/kg	ALS	RG_LE1_SE-3_2019-09-05_1515
SE	LE1	659632	5494112	2019	3	2019-09-05	15:15	Tungsten (W)	<0.50	mg/kg	ALS	RG_LE1_SE-3_2019-09-05_1515
SE	LE1	659632	5494112	2019	3	2019-09-05	15:15	Uranium (U)	1.3	mg/kg	ALS	RG_LE1_SE-3_2019-09-05_1515
SE	LE1	659632	5494112	2019	3	2019-09-05	15:15	Vanadium (V)	49	mg/kg	ALS	RG_LE1_SE-3_2019-09-05_1515
SE	LE1	659632	5494112	2019	3	2019-09-05	15:15	Zinc (Zn)	122	mg/kg	ALS	RG_LE1_SE-3_2019-09-05_1515
SE	LE1	659632	5494112	2019	3	2019-09-05	15:15	Zirconium (Zr)	1.8	mg/kg	ALS	RG_LE1_SE-3_2019-09-05_1515
SE	LE1	659632	5494112	2019	3	2019-09-05	15:15	pH (1:2 soil:water)	8.4	рН	ALS	RG_LE1_SE-3_2019-09-05_1515
SE	LE1	659632	5494112	2019	3	2019-09-05	15:15	Total Organic Carbon	1.5	%	ALS	RG_LE1_SE-3_2019-09-05_1515
SE	MI5	659387	5496818	2019	1	2019-09-05	09:00	Moisture	56	%	ALS	RG_MI5_SE-1_2019-09-05_0900
SE	MI5	659387	5496818	2019	1	2019-09-05	09:00	Acenaphthene	<0.0050	mg/kg	ALS	RG_MI5_SE-1_2019-09-05_0900
SE	MI5	659387	5496818	2019	1	2019-09-05	09:00	Acenaphthylene	<0.0050	mg/kg	ALS	RG_MI5_SE-1_2019-09-05_0900
SE	MI5	659387	5496818	2019	1	2019-09-05	09:00	Acridine	<0.010	mg/kg	ALS	RG_MI5_SE-1_2019-09-05_0900
SE	MI5	659387	5496818	2019	1	2019-09-05	09:00	Anthracene	<0.0040	mg/kg	ALS	RG_MI5_SE-1_2019-09-05_0900
SE	MI5	659387	5496818	2019	1	2019-09-05	09:00	Benz(a)anthracene	<0.010	mg/kg	ALS	RG_MI5_SE-1_2019-09-05_0900
SE	MI5	659387	5496818	2019	1	2019-09-05	09:00	Benzo(a)pyrene	<0.010	mg/kg	ALS	RG_MI5_SE-1_2019-09-05_0900
SE	MI5	659387	5496818	2019	1	2019-09-05	09:00	Benzo(b&j)fluoranthene	0.011	mg/kg	ALS	RG_MI5_SE-1_2019-09-05_0900
SE	MI5	659387	5496818	2019	1	2019-09-05	09:00	Benzo(g_h_i)perylene	<0.010	mg/kg	ALS	RG_MI5_SE-1_2019-09-05_0900

WSP Canada Inc. Page 68 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

т	Otation.	Location	ı (UTMs) ^(a)	Voc	Doublest	Data	T :	Auglieta	Daniel -	Llos!4		Laboratory Information
Type	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MI5	659387	5496818	2019	1	2019-09-05	09:00	Benzo(k)fluoranthene	<0.010	mg/kg	ALS	RG MI5 SE-1 2019-09-05 0900
SE	MI5	659387	5496818	2019	1	2019-09-05	09:00	Benzo(e)pyrene	0.012	mg/kg	ALS	RG MI5 SE-1_2019-09-05_0900
SE	MI5	659387	5496818	2019	1	2019-09-05	09:00	Chrysene	0.023	mg/kg	ALS	RG MI5 SE-1 2019-09-05 0900
SE	MI5	659387	5496818	2019	1	2019-09-05	09:00	Dibenz(a h)anthracene	<0.0050	mg/kg	ALS	RG MI5 SE-1 2019-09-05 0900
SE	MI5	659387	5496818	2019	1	2019-09-05	09:00	Fluoranthene	<0.010	mg/kg	ALS	RG MI5 SE-1 2019-09-05 0900
SE	MI5	659387	5496818	2019	1	2019-09-05	09:00	Fluorene	<0.010	mg/kg	ALS	RG MI5 SE-1 2019-09-05 0900
SE	MI5	659387	5496818	2019	1	2019-09-05	09:00	Indeno(1,2,3-c,d)pyrene	<0.010	mg/kg	ALS	RG MI5 SE-1 2019-09-05 0900
SE	MI5	659387	5496818	2019	1	2019-09-05	09:00	1-Methylnaphthalene	0.048	mg/kg	ALS	RG MI5 SE-1 2019-09-05 0900
SE	MI5	659387	5496818	2019	1	2019-09-05	09:00	2-Methylnaphthalene	0.064	mg/kg	ALS	RG MI5 SE-1 2019-09-05 0900
SE	MI5	659387	5496818	2019	1	2019-09-05	09:00	Naphthalene	0.025	mg/kg	ALS	RG MI5 SE-1 2019-09-05 0900
SE	MI5	659387	5496818	2019	1	2019-09-05	09:00	Perylene	<0.010	mg/kg	ALS	RG MI5 SE-1 2019-09-05 0900
SE	MI5	659387	5496818	2019	1	2019-09-05	09:00	Phenanthrene	0.058	mg/kg	ALS	RG MI5 SE-1 2019-09-05 0900
SE	MI5	659387	5496818	2019	1 1	2019-09-05	09:00	Pyrene	0.012	mg/kg	ALS	RG MI5 SE-1 2019-09-05 0900
SE	MI5	659387	5496818	2019	1	2019-09-05	09:00	Quinoline	<0.010	mg/kg	ALS	RG MI5 SE-1 2019-09-05 0900
SE	MI5	659387	5496818	2019	1 1	2019-09-05	09:00	IACR (CCME)	0.15	-	ALS	RG MI5 SE-1 2019-09-05 0900
SE	MI5	659387	5496818	2019	1	2019-09-05	09:00	B(a)P Total Potency Equivalent	<0.020	mg/kg	ALS	RG MI5 SE-1 2019-09-05 0900
SE	MI5	659387	5496818	2019	1	2019-09-05	09:00	Benzo(b+j+k)fluoranthene	<0.015	mg/kg	ALS	RG MI5 SE-1 2019-09-05 0900
SE	MI5	659387	5496818	2019	1	2019-09-05	09:00	d8-Naphthalene	76	%	ALS	RG MI5 SE-1 2019-09-05 0900
SE	MI5	659387	5496818	2019	1	2019-09-05	09:00	d10-Acenaphthene	79	%	ALS	RG MI5 SE-1 2019-09-05 0900
SE	MI5	659387	5496818	2019	1	2019-09-05	09:00	d10-Phenanthrene	94	%	ALS	RG MI5 SE-1 2019-09-05 0900
SE	MI5	659387	5496818	2019	1	2019-09-05	09:00	d12-Chrysene	98	%	ALS	RG MI5 SE-1 2019-09-05 0900
SE	MI5	659387	5496818	2019	1	2019-09-05	09:00	% Gravel (>2 mm)	3.3	%	ALS	RG MI5 SE-1 2019-09-05 0900
SE	MI5	659387	5496818	2019	1	2019-09-05	09:00	% Sand (2.00 mm - 1.00 mm)	<1.0	%	ALS	RG MI5 SE-1 2019-09-05 0900
SE SE	MI5	659387	5496818	2019	1 1	2019-09-05	09:00	% Sand (2.00 mm - 1.00 mm)	1.3	%		RG MI5 SE-1 2019-09-05 0900
SE SE	MI5	659387	5496818	2019	1 1	2019-09-05	09:00	% Sand (1.00 mm - 0.30 mm)	1.3	%	ALS ALS	
SE SE	MI5	659387	5496818	2019	1 1	2019-09-05	09:00	,	37	% %	ALS	RG_MI5_SE-1_2019-09-05_0900 RG_MI5_SE-1_2019-09-05_0900
SE SE	MI5	659387	5496818	2019	1 1	2019-09-05	09:00	% Sand (0.25 mm - 0.125 mm) % Sand (0.125 mm - 0.063 mm)	14	% %	ALS	RG MI5 SE-1 2019-09-05 0900
SE SE	MI5	659387	5496818	2019	1 1		09:00			% %		RG MI5 SE-1 2019-09-05 0900
SE SE	MI5	659387	5496818	2019	1 1	2019-09-05 2019-09-05	09:00	% Silt (0.063 mm - 0.0312 mm) % Silt (0.031 mm - 0.004 mm)	15 14	%	ALS ALS	
SE SE		659387			1 1			,		%		RG_MI5_SE-1_2019-09-05_0900
	MI5		5496818 5496818	2019	1 1	2019-09-05 2019-09-05	09:00	% Clay (<4 μm) Texture	2.6 Sandy loam		ALS	RG_MI5_SE-1_2019-09-05_0900 RG_MI5_SE-1_2019-09-05_0900
SE	MI5	659387		2019	1 1		09:00					
SE_	MI5	659387	5496818	2019	1	2019-09-05	09:00	Mercury (Hg)	0.031	mg/kg	ALS	RG_MI5_SE-1_2019-09-05_0900
SE_	MI5	659387	5496818	2019	1	2019-09-05	09:00	Aluminum (Al)	10,000	mg/kg	ALS	RG_MI5_SE-1_2019-09-05_0900
SE	MI5	659387	5496818	2019	1	2019-09-05	09:00	Antimony (Sb)	1.0	mg/kg	ALS	RG_MI5_SE-1_2019-09-05_0900
SE	MI5	659387	5496818	2019	1	2019-09-05	09:00	Arsenic (As)	7.1	mg/kg	ALS	RG_MI5_SE-1_2019-09-05_0900
SE	MI5	659387	5496818	2019	1	2019-09-05	09:00	Barium (Ba)	227	mg/kg	ALS	RG_MI5_SE-1_2019-09-05_0900
SE	MI5	659387	5496818	2019	1	2019-09-05	09:00	Beryllium (Be)	0.73	mg/kg	ALS	RG_MI5_SE-1_2019-09-05_0900
SE	MI5	659387	5496818	2019	1 .	2019-09-05	09:00	Bismuth (Bi)	<0.20	mg/kg	ALS	RG_MI5_SE-1_2019-09-05_0900
SE	MI5	659387	5496818	2019	1 1	2019-09-05	09:00	Boron (B)	8.8	mg/kg	ALS	RG_MI5_SE-1_2019-09-05_0900
SE	MI5	659387	5496818	2019	1 1	2019-09-05	09:00	Cadmium (Cd)	1.3	mg/kg	ALS	RG_MI5_SE-1_2019-09-05_0900
SE	MI5	659387	5496818	2019	1 1	2019-09-05	09:00	Calcium (Ca)	26,200	mg/kg	ALS	RG_MI5_SE-1_2019-09-05_0900
SE	MI5	659387	5496818	2019	1	2019-09-05	09:00	Chromium (Cr)	17	mg/kg	ALS	RG_MI5_SE-1_2019-09-05_0900
SE	MI5	659387	5496818	2019	1	2019-09-05	09:00	Cobalt (Co)	7.5	mg/kg	ALS	RG_MI5_SE-1_2019-09-05_0900
SE	MI5	659387	5496818	2019	1 1	2019-09-05	09:00	Copper (Cu)	14	mg/kg	ALS	RG_MI5_SE-1_2019-09-05_0900
SE	MI5	659387	5496818	2019	1 1	2019-09-05	09:00	Iron (Fe)	17,100	mg/kg	ALS	RG_MI5_SE-1_2019-09-05_0900
SE	MI5	659387	5496818	2019	1	2019-09-05	09:00	Lead (Pb)	9.3	mg/kg	ALS	RG_MI5_SE-1_2019-09-05_0900
SE	MI5	659387	5496818	2019	1 1	2019-09-05	09:00	Lithium (Li)	11	mg/kg	ALS	RG MI5 SE-1 2019-09-05 0900

WSP Canada Inc. Page 69 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Table I-1	: Sediment Chem	istry Data Col	lected from the	CMm LAEMP S	Sampling Sta	ations, 2012 to	2022					
Туре	Station	Location	ı (UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
Type	Station	Easting	Northing	i Gai	Replicate	Date	Tille	Allalyte	Nesuit	Offic	Lab	Sample ID
SE	MI5	659387	5496818	2019	1	2019-09-05	09:00	Magnesium (Mg)	5,880	mg/kg	ALS	RG_MI5_SE-1_2019-09-05_0900
SE	MI5	659387	5496818	2019	1	2019-09-05	09:00	Manganese (Mn)	203	mg/kg	ALS	RG_MI5_SE-1_2019-09-05_0900
SE	MI5	659387	5496818	2019	1	2019-09-05	09:00	Molybdenum (Mo)	1.6	mg/kg	ALS	RG_MI5_SE-1_2019-09-05_0900
SE	MI5	659387	5496818	2019	1	2019-09-05	09:00	Nickel (Ni)	32	mg/kg	ALS	RG_MI5_SE-1_2019-09-05_0900
SE	MI5	659387	5496818	2019	1	2019-09-05	09:00	Phosphorus (P)	1,400	mg/kg	ALS	RG_MI5_SE-1_2019-09-05_0900
SE	MI5	659387	5496818	2019	1	2019-09-05	09:00	Potassium (K)	1,990	mg/kg	ALS	RG MI5 SE-1 2019-09-05 0900
SE	MI5	659387	5496818	2019	1	2019-09-05	09:00	Selenium (Se)	1.2	mg/kg	ALS	RG MI5 SE-1 2019-09-05 0900
SE	MI5	659387	5496818	2019	1	2019-09-05	09:00	Silver (Ag)	0.17	mg/kg	ALS	RG MI5 SE-1 2019-09-05 0900
SE	MI5	659387	5496818	2019	1	2019-09-05	09:00	Sodium (Na)	76	mg/kg	ALS	RG MI5 SE-1 2019-09-05 0900
SE	MI5	659387	5496818	2019	1	2019-09-05	09:00	Strontium (Sr)	64	mg/kg	ALS	RG_MI5_SE-1_2019-09-05_0900
SE	MI5	659387	5496818	2019	1	2019-09-05	09:00	Sulfur (S)	<1000	mg/kg	ALS	RG_MI5_SE-1_2019-09-05_0900
SE	MI5	659387	5496818	2019	1	2019-09-05	09:00	Thallium (TI)	0.3	mg/kg	ALS	RG MI5 SE-1 2019-09-05 0900
SE	MI5	659387	5496818	2019	1	2019-09-05	09:00	Tin (Sn)	<2.0	mg/kg	ALS	RG MI5 SE-1 2019-09-05 0900
SE	MI5	659387	5496818	2019	1	2019-09-05	09:00	Titanium (Ti)	55	mg/kg	ALS	RG MI5 SE-1 2019-09-05 0900
SE	MI5	659387	5496818	2019	1	2019-09-05	09:00	Tungsten (W)	<0.50	mg/kg	ALS	RG MI5 SE-1 2019-09-05 0900
SE	MI5	659387	5496818	2019	1	2019-09-05	09:00	Uranium (U)	1.1	mg/kg	ALS	RG MI5 SE-1 2019-09-05 0900
SE	MI5	659387	5496818	2019	1	2019-09-05	09:00	Vanadium (V)	47	mg/kg	ALS	RG MI5 SE-1 2019-09-05 0900
SE	MI5	659387	5496818	2019	1	2019-09-05	09:00	Zinc (Zn)	118	mg/kg	ALS	RG MI5 SE-1 2019-09-05 0900
SE	MI5	659387	5496818	2019	1	2019-09-05	09:00	Zirconium (Zr)	1.0	mg/kg	ALS	RG MI5 SE-1 2019-09-05 0900
SE	MI5	659387	5496818	2019	1	2019-09-05	09:00	pH (1:2 soil:water)	7.8	pH	ALS	RG MI5 SE-1 2019-09-05 0900
SE	MI5	659387	5496818	2019	1	2019-09-05	09:00	Total Organic Carbon	4.9	%	ALS	RG MI5 SE-1 2019-09-05 0900
SE	MI5	659387	5496818	2019	2	2019-09-05	10:15	Moisture	90	%	ALS	RG_MI5_SE-2_2019-09-05_1015
SE	MI5	659387	5496818	2019	2	2019-09-05	10:15	Acenaphthene	<0.020	mg/kg	ALS	RG_MI5_SE-2_2019-09-05_1015
SE	MI5	659387	5496818	2019	2	2019-09-05	10:15	Acenaphthylene	<0.020	mg/kg	ALS	RG MI5 SE-2 2019-09-05 1015
SE	MI5	659387	5496818	2019	2	2019-09-05	10:15	Acridine	<0.020	mg/kg	ALS	RG MI5 SE-2 2019-09-05 1015
SE	MI5	659387	5496818	2019	2	2019-09-05	10:15	Anthracene	<0.040		ALS	RG MI5 SE-2 2019-09-05 1015
SE	MI5	659387	5496818	2019	2	2019-09-05	10:15	Benz(a)anthracene	<0.040	mg/kg mg/kg	ALS	RG MI5 SE-2 2019-09-05 1015
SE	MI5	659387	5496818	2019	2		10:15		<0.040		ALS	RG MI5 SE-2 2019-09-05 1015
SE	MI5	659387	5496818	2019	2	2019-09-05 2019-09-05	10:15	Benzo(a)pyrene	<0.040	mg/kg		
SE	MI5				2			Benzo(b&j)fluoranthene		mg/kg	ALS	RG_MI5_SE-2_2019-09-05_1015
		659387	5496818	2019		2019-09-05	10:15	Benzo(g_h_i)perylene	<0.040	mg/kg		RG_MI5_SE-2_2019-09-05_1015
SE	MI5	659387	5496818	2019		2019-09-05	10:15	Benzo(k)fluoranthene	<0.040	mg/kg	ALS	RG_MI5_SE-2_2019-09-05_1015
SE	MI5	659387	5496818	2019	2	2019-09-05	10:15	Benzo(e)pyrene	<0.040	mg/kg	ALS	RG_MI5_SE-2_2019-09-05_1015
SE	MI5	659387	5496818	2019	2	2019-09-05	10:15	Chrysene	0.047	mg/kg	ALS	RG_MI5_SE-2_2019-09-05_1015
SE	MI5	659387	5496818	2019	2	2019-09-05	10:15	Dibenz(a_h)anthracene	<0.020	mg/kg	ALS	RG_MI5_SE-2_2019-09-05_1015
SE	MI5	659387	5496818	2019	2	2019-09-05	10:15	Fluoranthene	<0.040	mg/kg	ALS	RG_MI5_SE-2_2019-09-05_1015
SE	MI5	659387	5496818	2019	2	2019-09-05	10:15	Fluorene	<0.040	mg/kg	ALS	RG_MI5_SE-2_2019-09-05_1015
SE	MI5	659387	5496818	2019	2	2019-09-05	10:15	Indeno(1,2,3-c,d)pyrene	<0.040	mg/kg	ALS	RG_MI5_SE-2_2019-09-05_1015
SE	MI5	659387	5496818	2019	2	2019-09-05	10:15	1-Methylnaphthalene	0.077	mg/kg	ALS	RG_MI5_SE-2_2019-09-05_1015
SE	MI5	659387	5496818	2019	2	2019-09-05	10:15	2-Methylnaphthalene	0.11	mg/kg	ALS	RG_MI5_SE-2_2019-09-05_1015
SE	MI5	659387	5496818	2019	2	2019-09-05	10:15	Naphthalene	<0.040	mg/kg	ALS	RG_MI5_SE-2_2019-09-05_1015
SE	MI5	659387	5496818	2019	2	2019-09-05	10:15	Perylene	<0.040	mg/kg	ALS	RG_MI5_SE-2_2019-09-05_1015
SE	MI5	659387	5496818	2019	2	2019-09-05	10:15	Phenanthrene	0.12	mg/kg	ALS	RG_MI5_SE-2_2019-09-05_1015
SE	MI5	659387	5496818	2019	2	2019-09-05	10:15	Pyrene	<0.040	mg/kg	ALS	RG_MI5_SE-2_2019-09-05_1015
SE	MI5	659387	5496818	2019	2	2019-09-05	10:15	Quinoline	<0.040	mg/kg	ALS	RG_MI5_SE-2_2019-09-05_1015
SE	MI5	659387	5496818	2019	2	2019-09-05	10:15	IACR (CCME)	0.44	-	ALS	RG_MI5_SE-2_2019-09-05_1015
SE	MI5	659387	5496818	2019	2	2019-09-05	10:15	B(a)P Total Potency Equivalent	0.039	mg/kg	ALS	RG_MI5_SE-2_2019-09-05_1015
SE	MI5	659387	5496818	2019	2	2019-09-05	10:15	Benzo(b+j+k)fluoranthene	<0.060	mg/kg	ALS	RG_MI5_SE-2_2019-09-05_1015

WSP Canada Inc. Page 70 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Type	Station	Location	ı (UTMs) ^(a)	Year	Poplicate	Data	Time	Analyta	Popult	Unit		Laboratory Information
уре	Station	Easting	Northing	rear	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MI5	659387	5496818	2019	2	2019-09-05	10:15	d8-Naphthalene	76	%	ALS	RG MI5 SE-2 2019-09-05 1015
SE.	MI5	659387	5496818	2019	2	2019-09-05	10:15	d10-Acenaphthene	85	%	ALS	RG_MI5_SE-2_2019-09-05_1015
SE	MI5	659387	5496818	2019	2	2019-09-05	10:15	d10-Phenanthrene	100	%	ALS	RG_MI5_SE-2_2019-09-05_1015
SE	MI5	659387	5496818	2019	2	2019-09-05	10:15	d12-Chrysene	110	%	ALS	RG MI5 SE-2 2019-09-05 1015
SE	MI5	659387	5496818	2019	2	2019-09-05	10:15	% Gravel (>2 mm)	8.7	%	ALS	RG_MI5_SE-2_2019-09-05_1015
SE	MI5	659387	5496818	2019	2	2019-09-05	10:15	% Sand (2.00 mm - 1.00 mm)	2.1	%	ALS	RG MI5 SE-2 2019-09-05 1015
SE	MI5	659387	5496818	2019	2	2019-09-05	10:15	% Sand (1.00 mm - 0.50 mm)	12	%	ALS	RG MI5 SE-2 2019-09-05 1015
SE	MI5	659387	5496818	2019	2	2019-09-05	10:15	% Sand (0.50 mm - 0.25 mm)	25	%	ALS	RG_MI5_SE-2_2019-09-05_1015
SE	MI5	659387	5496818	2019	2	2019-09-05	10:15	% Sand (0.25 mm - 0.125 mm)	22	%	ALS	RG MI5 SE-2 2019-09-05 1015
SE	MI5	659387	5496818	2019	2	2019-09-05	10:15	% Sand (0.125 mm - 0.063 mm)	9.8	%	ALS	RG MI5 SE-2 2019-09-05 1015
SE	MI5	659387	5496818	2019	2	2019-09-05	10:15	% Silt (0.063 mm - 0.0312 mm)	9.5	%	ALS	RG_MI5_SE-2_2019-09-05_1015
SE	MI5	659387	5496818	2019	2	2019-09-05	10:15	% Silt (0.031 mm - 0.004 mm)	9.2	%	ALS	RG MI5 SE-2 2019-09-05 1015
SE	MI5	659387	5496818	2019	2	2019-09-05	10:15	% Clay (<4 μm)	1.4	%	ALS	RG MI5 SE-2 2019-09-05 1015
SE	MI5	659387	5496818	2019	2	2019-09-05	10:15	Texture	Loamy sand	-	ALS	RG_MI5_SE-2_2019-09-05_1015
SE	MI5	659387	5496818	2019	2	2019-09-05	10:15	pH (1:9)	7.7	pН	ALS	RG MI5 SE-2 2019-09-05 1015
SE	MI5	659387	5496818	2019	2	2019-09-05	10:15	Mercury (Hg)	0.042	mg/kg	ALS	RG_MI5_SE-2_2019-09-05_1015
SE	MI5	659387	5496818	2019	2	2019-09-05	10:15	Aluminum (Al)	9,600	mg/kg	ALS	RG_MI5_SE-2_2019-09-05_1015
SE	MI5	659387	5496818	2019	2	2019-09-05	10:15	Antimony (Sb)	0.79	mg/kg	ALS	RG MI5 SE-2 2019-09-05 1015
SE	MI5	659387	5496818	2019	2	2019-09-05	10:15	Arsenic (As)	5.9	mg/kg	ALS	RG_MI5_SE-2_2019-09-05_1015
SE	MI5	659387	5496818	2019	2	2019-09-05	10:15	Barium (Ba)	256	mg/kg	ALS	RG MI5 SE-2 2019-09-05 1015
SE	MI5	659387	5496818	2019		2019-09-05	10:15	Beryllium (Be)	0.64	mg/kg	ALS	RG MI5 SE-2 2019-09-05 1015
SE	MI5	659387	5496818	2019	2	2019-09-05	10:15	Bismuth (Bi)	<0.20	mg/kg	ALS	RG MI5 SE-2 2019-09-05 1015
SE	MI5	659387	5496818	2019	2	2019-09-05	10:15	Boron (B)	23	mg/kg	ALS	RG MI5 SE-2 2019-09-05 1015
SE	MI5	659387	5496818	2019	2	2019-09-05	10:15	Cadmium (Cd)	1.8	mg/kg	ALS	RG MI5 SE-2 2019-09-05 1015
SE	MI5	659387	5496818	2019	2	2019-09-05	10:15	Calcium (Ca)	54,100	mg/kg	ALS	RG MI5 SE-2 2019-09-05 1015
SE	MI5	659387	5496818	2019	2	2019-09-05	10:15	Chromium (Cr)	15	mg/kg	ALS	RG MI5 SE-2 2019-09-05 1015
SE	MI5	659387	5496818	2019	2	2019-09-05	10:15	Cobalt (Co)	7.9	mg/kg	ALS	RG MI5 SE-2 2019-09-05 1015
SE	MI5	659387	5496818	2019	2	2019-09-05	10:15	Copper (Cu)	14	mg/kg	ALS	RG MI5 SE-2 2019-09-05 1015
SE	MI5	659387	5496818	2019	2	2019-09-05	10:15	Iron (Fe)	14,800	mg/kg	ALS	RG MI5 SE-2 2019-09-05 1015
SE	MI5	659387	5496818	2019	2	2019-09-05	10:15	Lead (Pb)	8.2	mg/kg	ALS	RG MI5 SE-2 2019-09-05 1015
SE	MI5	659387	5496818	2019	2	2019-09-05	10:15	Lithium (Li)	9.9	mg/kg	ALS	RG_MI5_SE-2_2019-09-05_1015
SE	MI5	659387	5496818	2019	2	2019-09-05	10:15	Magnesium (Mg)	5,860	mg/kg	ALS	RG MI5 SE-2 2019-09-05 1015
SE	MI5	659387	5496818	2019		2019-09-05	10:15	Manganese (Mn)	131	mg/kg	ALS	RG MI5 SE-2 2019-09-05 1015
SE	MI5	659387	5496818	2019	2	2019-09-05	10:15	Molybdenum (Mo)	1.4	mg/kg	ALS	RG MI5 SE-2 2019-09-05 1015
SE	MI5	659387	5496818	2019	2	2019-09-05	10:15	Nickel (Ni)	43	mg/kg	ALS	RG MI5 SE-2 2019-09-05 1015
SE	MI5	659387	5496818	2019	2	2019-09-05	10:15	Phosphorus (P)	1,640	mg/kg	ALS	RG MI5 SE-2 2019-09-05 1015
SE	MI5	659387	5496818	2019	2	2019-09-05	10:15	Potassium (K)	2,230	mg/kg	ALS	RG MI5 SE-2 2019-09-05 1015
SE	MI5	659387	5496818	2019	2	2019-09-05	10:15	Selenium (Se)	4.3	mg/kg	ALS	RG MI5 SE-2 2019-09-05 1015
SE	MI5	659387	5496818	2019	2	2019-09-05	10:15	Silver (Ag)	0.22	mg/kg	ALS	RG MI5 SE-2 2019-09-05 1015
SE	MI5	659387	5496818	2019	2	2019-09-05	10:15	Sodium (Na)	168	mg/kg	ALS	RG MI5 SE-2 2019-09-05 1015
SE	MI5	659387	5496818	2019	2	2019-09-05	10:15	Strontium (Sr)	93	mg/kg	ALS	RG MI5 SE-2 2019-09-05 1015
SE	MI5	659387	5496818	2019	2	2019-09-05	10:15	Sulfur (S)	2,800	mg/kg	ALS	RG MI5 SE-2 2019-09-05 1015
SE	MI5	659387	5496818	2019	2	2019-09-05	10:15	Thallium (TI)	0.35	mg/kg	ALS	RG MI5 SE-2 2019-09-05 1015
SE	MI5	659387	5496818	2019		2019-09-05	10:15	Tin (Sn)	<2.0	mg/kg	ALS	RG MI5 SE-2 2019-09-05 1015
SE	MI5	659387	5496818	2019	2	2019-09-05	10:15	Titanium (Ti)	46	mg/kg	ALS	RG MI5 SE-2 2019-09-05 1015
SE	MI5	659387	5496818	2019	2	2019-09-05	10:15	Tungsten (W)	<0.50	mg/kg	ALS	RG MI5 SE-2 2019-09-05 1015
SE	MI5	659387	5496818	2019	2	2019-09-05	10:15	· · ·	1.2		ALS	RG MI5 SE-2 2019-09-05 1015
) <u> </u>	CIIVI	059387	04900 IV	2019	4	<u> </u> 20 3-03-05	10.15	Uranium (U)	J 1.Z	mg/kg	I ALS	NG_INID_OE-2_2018-08-00_1015

WSP Canada Inc. Page 71 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	Ctotion	Location	ı (UTMs) ^(a)	Vacu	Danlingto	Dete	Time	Aughsta	Dooult	Heit		Laboratory Information
ype	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
Ε	MI5	659387	5496818	2019	2	2019-09-05	10:15	Vanadium (V)	37	mg/kg	ALS	RG MI5 SE-2 2019-09-05 1015
E E	MI5	659387	5496818	2019		2019-09-05	10:15	Zinc (Zn)	136	mg/kg	ALS	RG MI5 SE-2 2019-09-05 1015
E E	MI5	659387	5496818	2019	2	2019-09-05	10:15	Zirconium (Zr)	1.3	mg/kg	ALS	RG MI5 SE-2 2019-09-05 1015
E	MI5	659387	5496818	2019	2	2019-09-05	10:15	Total Organic Carbon	3.8	%	ALS	RG MI5 SE-2 2019-09-05 1015
E	MI5	659387	5496818	2019		2019-09-05	11:30	Moisture	47	%	ALS	RG MI5 SE-3 2019-09-05 1130
E E	MI5	659387	5496818	2019		2019-09-05	11:30	Acenaphthene	<0.0050	mg/kg	ALS	RG MI5 SE-3 2019-09-05 1130
E E	MI5	659387	5496818	2019	3	2019-09-05	11:30	Acenaphthylene	<0.0050	mg/kg	ALS	RG MI5 SE-3 2019-09-05 1130
E	MI5	659387	5496818	2019	3	2019-09-05	11:30	Acridine	<0.010	mg/kg	ALS	RG MI5 SE-3 2019-09-05 1130
E E	MI5	659387	5496818	2019	3	2019-09-05	11:30	Anthracene	<0.0040	mg/kg	ALS	RG MI5 SE-3 2019-09-05 1130
E E	MI5	659387	5496818	2019		2019-09-05	11:30	Benz(a)anthracene	<0.010	mg/kg	ALS	RG MI5 SE-3 2019-09-05 1130
E E	MI5	659387	5496818	2019	3	2019-09-05	11:30	Benzo(a)pyrene	<0.010	mg/kg	ALS	RG MI5 SE-3 2019-09-05 1130
E E	MI5	659387	5496818	2019	ŭ	2019-09-05	11:30	Benzo(b&j)fluoranthene	<0.010	mg/kg	ALS	RG MI5 SE-3 2019-09-05 1130
E	MI5	659387	5496818	2019		2019-09-05	11:30	Benzo(g h i)perylene	<0.010	mg/kg	ALS	RG MI5 SE-3 2019-09-05 1130
E	MI5	659387	5496818	2019		2019-09-05	11:30	Benzo(k)fluoranthene	<0.010	mg/kg	ALS	RG MI5 SE-3 2019-09-05 1130
E	MI5	659387	5496818	2019	3	2019-09-05	11:30	Benzo(e)pyrene	<0.010	mg/kg	ALS	RG MI5 SE-3 2019-09-05 1130
E E	MI5	659387	5496818	2019		2019-09-05	11:30	Chrysene	<0.010	mg/kg	ALS	RG MI5 SE-3 2019-09-05 1130
E E	MI5	659387	5496818	2019	3	2019-09-05	11:30	Dibenz(a_h)anthracene	<0.0050	mg/kg	ALS	RG MI5 SE-3 2019-09-05 1130
SE	MI5	659387	5496818	2019	3	2019-09-05	11:30	Fluoranthene	<0.010		ALS	RG_MI5_SE-3_2019-09-05_1130
SE	MI5	659387	5496818	2019	3	2019-09-05	11:30	Fluorene	<0.010	mg/kg	ALS	RG MI5 SE-3 2019-09-05 1130
E	MI5	659387	5496818	2019	Ŭ	2019-09-05	11:30	Indeno(1,2,3-c,d)pyrene	<0.010	mg/kg	ALS	RG MI5 SE-3 2019-09-05 1130
E	MI5	659387	5496818			2019-09-05	11:30	, , , , , , , , , , , , , , , , , , , ,	<0.010	mg/kg	ALS	RG MI5 SE-3 2019-09-05 1130
E	MI5	659387	5496818	2019 2019			11:30	1-Methylnaphthalene	0.013	mg/kg	ALS	RG MI5 SE-3 2019-09-05 1130
						2019-09-05		2-Methylnaphthalene		mg/kg		
E .	MI5	659387	5496818	2019	3	2019-09-05	11:30	Naphthalene	<0.010	mg/kg	ALS	RG_MI5_SE-3_2019-09-05_1130
E .	MI5	659387	5496818	2019		2019-09-05	11:30	Perylene	<0.010	mg/kg	ALS	RG_MI5_SE-3_2019-09-05_1130
SE SE	MI5	659387	5496818	2019	3	2019-09-05	11:30	Phenanthrene	0.016	mg/kg	ALS	RG_MI5_SE-3_2019-09-05_1130
SE SE	MI5	659387	5496818	2019	3	2019-09-05	11:30	Pyrene	<0.010	mg/kg	ALS	RG_MI5_SE-3_2019-09-05_1130
SE	MI5	659387	5496818	2019	3	2019-09-05	11:30	Quinoline	<0.010	mg/kg	ALS	RG_MI5_SE-3_2019-09-05_1130
SE SE	MI5	659387	5496818	2019		2019-09-05	11:30	IACR (CCME)	<0.15		ALS	RG_MI5_SE-3_2019-09-05_1130
SE SE	MI5	659387	5496818	2019		2019-09-05	11:30	B(a)P Total Potency Equivalent	<0.020	mg/kg	ALS	RG_MI5_SE-3_2019-09-05_1130
SE SE	MI5	659387	5496818	2019	-	2019-09-05	11:30	Benzo(b+j+k)fluoranthene	<0.015	mg/kg		RG_MI5_SE-3_2019-09-05_1130
SE SE	MI5	659387	5496818	2019		2019-09-05	11:30	d8-Naphthalene	82	%		RG_MI5_SE-3_2019-09-05_1130
SE SE	MI5	659387	5496818	2019		2019-09-05	11:30	d10-Acenaphthene	89	%	ALS	RG_MI5_SE-3_2019-09-05_1130
SE SE	MI5	659387	5496818	2019		2019-09-05	11:30	d10-Phenanthrene	104	%	ALS	RG_MI5_SE-3_2019-09-05_1130
SE SE	MI5	659387	5496818	2019		2019-09-05	11:30	d12-Chrysene	114	%	ALS	RG_MI5_SE-3_2019-09-05_1130
SE.	MI5	659387	5496818	2019		2019-09-05	11:30	% Gravel (>2 mm)	11	%	ALS	RG_MI5_SE-3_2019-09-05_1130
SE	MI5	659387	5496818	2019		2019-09-05	11:30	% Sand (2.00 mm - 1.00 mm)	35	%	ALS	RG_MI5_SE-3_2019-09-05_1130
SE .	MI5	659387	5496818	2019		2019-09-05	11:30	% Sand (1.00 mm - 0.50 mm)	27	%	ALS	RG_MI5_SE-3_2019-09-05_1130
SE .	MI5	659387	5496818	2019		2019-09-05	11:30	% Sand (0.50 mm - 0.25 mm)	8.1	%	ALS	RG_MI5_SE-3_2019-09-05_1130
E .	MI5	659387	5496818	2019		2019-09-05	11:30	% Sand (0.25 mm - 0.125 mm)	3.3	%	ALS	RG_MI5_SE-3_2019-09-05_1130
E	MI5	659387	5496818	2019		2019-09-05	11:30	% Sand (0.125 mm - 0.063 mm)	1.9	%	ALS	RG_MI5_SE-3_2019-09-05_1130
E	MI5	659387	5496818	2019		2019-09-05	11:30	% Silt (0.063 mm - 0.0312 mm)	6.0	%	ALS	RG_MI5_SE-3_2019-09-05_1130
E	MI5	659387	5496818	2019	3	2019-09-05	11:30	% Silt (0.031 mm - 0.004 mm)	6.8	%	ALS	RG_MI5_SE-3_2019-09-05_1130
E	MI5	659387	5496818	2019		2019-09-05	11:30	% Clay (<4 μm)	1.6	%	ALS	RG_MI5_SE-3_2019-09-05_1130
Ε	MI5	659387	5496818	2019		2019-09-05	11:30	Texture	Loamy sand	-	ALS	RG_MI5_SE-3_2019-09-05_1130
E	MI5	659387	5496818	2019	3	2019-09-05	11:30	Mercury (Hg)	0.025	mg/kg	ALS	RG_MI5_SE-3_2019-09-05_1130
E	MI5	659387	5496818	2019	3	2019-09-05	11:30	Aluminum (Al)	8,960	mg/kg	ALS	RG_MI5_SE-3_2019-09-05_1130
SE	MI5	659387	5496818	2019	3	2019-09-05	11:30	Antimony (Sb)	1.2	mg/kg	ALS	RG_MI5_SE-3_2019-09-05_1130

WSP Canada Inc. Page 72 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Type	Station	Location	(UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
Type	Station	Easting	Northing	i eai	Replicate	Date	Tille	Analyte	Result	Ullit	Lab	Sample ID
SE	MI5	659387	5496818	2019	3	2019-09-05	11:30	Arsenic (As)	8.4	mg/kg	ALS	RG_MI5_SE-3_2019-09-05_1130
SE	MI5	659387	5496818	2019	3	2019-09-05	11:30	Barium (Ba)	316	mg/kg	ALS	RG_MI5_SE-3_2019-09-05_1130
SE	MI5	659387	5496818	2019	3	2019-09-05	11:30	Beryllium (Be)	0.68	mg/kg	ALS	RG_MI5_SE-3_2019-09-05_1130
SE	MI5	659387	5496818	2019	3	2019-09-05	11:30	Bismuth (Bi)	<0.20	mg/kg	ALS	RG_MI5_SE-3_2019-09-05_1130
SE	MI5	659387	5496818	2019	3	2019-09-05	11:30	Boron (B)	7.5	mg/kg	ALS	RG_MI5_SE-3_2019-09-05_1130
SE	MI5	659387	5496818	2019	3	2019-09-05	11:30	Cadmium (Cd)	1.5	mg/kg	ALS	RG_MI5_SE-3_2019-09-05_1130
SE	MI5	659387	5496818	2019	3	2019-09-05	11:30	Calcium (Ca)	32,700	mg/kg	ALS	RG_MI5_SE-3_2019-09-05_1130
SE	MI5	659387	5496818	2019	3	2019-09-05	11:30	Chromium (Cr)	16	mg/kg	ALS	RG_MI5_SE-3_2019-09-05_1130
SE	MI5	659387	5496818	2019	3	2019-09-05	11:30	Cobalt (Co)	7.0	mg/kg	ALS	RG_MI5_SE-3_2019-09-05_1130
SE	MI5	659387	5496818	2019	3	2019-09-05	11:30	Copper (Cu)	14	mg/kg	ALS	RG_MI5_SE-3_2019-09-05_1130
SE	MI5	659387	5496818	2019	3	2019-09-05	11:30	Iron (Fe)	21,300	mg/kg	ALS	RG_MI5_SE-3_2019-09-05_1130
SE	MI5	659387	5496818	2019	3	2019-09-05	11:30	Lead (Pb)	8.9	mg/kg	ALS	RG_MI5_SE-3_2019-09-05_1130
SE	MI5	659387	5496818	2019	3	2019-09-05	11:30	Lithium (Li)	9.2	mg/kg	ALS	RG_MI5_SE-3_2019-09-05_1130
SE	MI5	659387	5496818	2019	3	2019-09-05	11:30	Magnesium (Mg)	5,960	mg/kg	ALS	RG_MI5_SE-3_2019-09-05_1130
SE	MI5	659387	5496818	2019	3	2019-09-05	11:30	Manganese (Mn)	278	mg/kg	ALS	RG_MI5_SE-3_2019-09-05_1130
SE	MI5	659387	5496818	2019	3	2019-09-05	11:30	Molybdenum (Mo)	1.8	mg/kg	ALS	RG_MI5_SE-3_2019-09-05_1130
SE	MI5	659387	5496818	2019	3	2019-09-05	11:30	Nickel (Ni)	32	mg/kg	ALS	RG_MI5_SE-3_2019-09-05_1130
SE	MI5	659387	5496818	2019	3	2019-09-05	11:30	Phosphorus (P)	1,410	mg/kg	ALS	RG_MI5_SE-3_2019-09-05_1130
SE	MI5	659387	5496818	2019	3	2019-09-05	11:30	Potassium (K)	1,690	mg/kg	ALS	RG_MI5_SE-3_2019-09-05_1130
SE	MI5	659387	5496818	2019	3	2019-09-05	11:30	Selenium (Se)	1.1	mg/kg	ALS	RG_MI5_SE-3_2019-09-05_1130
SE	MI5	659387	5496818	2019	3	2019-09-05	11:30	Silver (Ag)	0.14	mg/kg	ALS	RG_MI5_SE-3_2019-09-05_1130
SE	MI5	659387	5496818	2019	3	2019-09-05	11:30	Sodium (Na)	69	mg/kg	ALS	RG_MI5_SE-3_2019-09-05_1130
SE	MI5	659387	5496818	2019	3	2019-09-05	11:30	Strontium (Sr)	80	mg/kg	ALS	RG_MI5_SE-3_2019-09-05_1130
SE	MI5	659387	5496818	2019	3	2019-09-05	11:30	Sulfur (S)	<1000	mg/kg	ALS	RG_MI5_SE-3_2019-09-05_1130
SE	MI5	659387	5496818	2019	3	2019-09-05	11:30	Thallium (TI)	0.27	mg/kg	ALS	RG_MI5_SE-3_2019-09-05_1130
SE	MI5	659387	5496818	2019	3	2019-09-05	11:30	Tin (Sn)	<2.0	mg/kg	ALS	RG MI5 SE-3 2019-09-05 1130
SE	MI5	659387	5496818	2019	3	2019-09-05	11:30	Titanium (Ti)	51	mg/kg	ALS	RG_MI5_SE-3_2019-09-05_1130
SE	MI5	659387	5496818	2019	3	2019-09-05	11:30	Tungsten (W)	<0.50	mg/kg	ALS	RG_MI5_SE-3_2019-09-05_1130
SE	MI5	659387	5496818	2019	3	2019-09-05	11:30	Uranium (U)	1.1	mg/kg	ALS	RG_MI5_SE-3_2019-09-05_1130
SE	MI5	659387	5496818	2019	3	2019-09-05	11:30	Vanadium (V)	49	mg/kg	ALS	RG_MI5_SE-3_2019-09-05_1130
SE	MI5	659387	5496818	2019	3	2019-09-05	11:30	Zinc (Zn)	125	mg/kg	ALS	RG_MI5_SE-3_2019-09-05_1130
SE	MI5	659387	5496818	2019	3	2019-09-05	11:30	Zirconium (Zr)	1.2	mg/kg	ALS	RG_MI5_SE-3_2019-09-05_1130
SE	MI5	659387	5496818	2019	3	2019-09-05	11:30	pH (1:2 soil:water)	7.1	рН	ALS	RG_MI5_SE-3_2019-09-05_1130
SE	MI5	659387	5496818	2019	3	2019-09-05	11:30	Total Organic Carbon	2.5	%	ALS	RG_MI5_SE-3_2019-09-05_1130
SE	MI5	659387	5496818	2019	4	2019-09-05	12:30	Moisture	66	%	ALS	RG_MI5_SE-4_2019-09-05_1230
SE	MI5	659387	5496818	2019	4	2019-09-05	12:30	Acenaphthene	< 0.0070	mg/kg	ALS	RG_MI5_SE-4_2019-09-05_1230
SE	MI5	659387	5496818	2019	4	2019-09-05	12:30	Acenaphthylene	<0.0070	mg/kg	ALS	RG_MI5_SE-4_2019-09-05_1230
SE	MI5	659387	5496818	2019	4	2019-09-05	12:30	Acridine	<0.014	mg/kg	ALS	RG_MI5_SE-4_2019-09-05_1230
SE	MI5	659387	5496818	2019	4	2019-09-05	12:30	Anthracene	<0.0056	mg/kg	ALS	RG_MI5_SE-4_2019-09-05_1230
SE	MI5	659387	5496818	2019	4	2019-09-05	12:30	Benz(a)anthracene	<0.014	mg/kg	ALS	RG_MI5_SE-4_2019-09-05_1230
SE	MI5	659387	5496818	2019	4	2019-09-05	12:30	Benzo(a)pyrene	<0.014	mg/kg	ALS	RG_MI5_SE-4_2019-09-05_1230
SE	MI5	659387	5496818	2019	4	2019-09-05	12:30	Benzo(b&j)fluoranthene	<0.014	mg/kg	ALS	RG_MI5_SE-4_2019-09-05_1230
SE	MI5	659387	5496818	2019	4	2019-09-05	12:30	Benzo(g_h_i)perylene	<0.014	mg/kg		RG_MI5_SE-4_2019-09-05_1230
SE	MI5	659387	5496818	2019	4	2019-09-05	12:30	Benzo(k)fluoranthene	<0.014	mg/kg	ALS	RG MI5 SE-4 2019-09-05 1230
SE	MI5	659387	5496818	2019	4	2019-09-05	12:30	Benzo(e)pyrene	<0.014	mg/kg	ALS	RG MI5 SE-4 2019-09-05 1230
SE	MI5	659387	5496818	2019	4	2019-09-05	12:30	Chrysene	0.021	mg/kg	ALS	RG MI5 SE-4 2019-09-05 1230
SE	MI5	659387	5496818	2019	4	2019-09-05	12:30	Dibenz(a h)anthracene	<0.014	mg/kg		RG MI5 SE-4 2019-09-05 1230

WSP Canada Inc. Page 73 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

уре	Station	L <u>ocation</u>	(UTMs) ^(a)	Year	Donlingto	Data	Time	Analyte	Dogult	Unit		Laboratory Information
	Station	Easting	Northing	rear	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
E	MI5	659387	5496818	2019	4	2019-09-05	12:30	Fluoranthene	<0.014	mg/kg	ALS	RG MI5 SE-4 2019-09-05 1230
E	MI5	659387	5496818	2019	4	2019-09-05	12:30	Fluorene	<0.014	mg/kg	ALS	RG_MI5_SE-4_2019-09-05_1230
E	MI5	659387	5496818	2019	4	2019-09-05	12:30	Indeno(1,2,3-c,d)pyrene	<0.014	mg/kg	ALS	RG MI5 SE-4 2019-09-05 1230
SE.	MI5	659387	5496818	2019	4	2019-09-05	12:30	1-Methylnaphthalene	0.046	mg/kg	ALS	RG MI5 SE-4 2019-09-05 1230
SE	MI5	659387	5496818	2019	4	2019-09-05	12:30	2-Methylnaphthalene	0.067	mg/kg	ALS	RG MI5 SE-4 2019-09-05 1230
SE	MI5	659387	5496818	2019	4	2019-09-05	12:30	Naphthalene	0.027	mg/kg	ALS	RG MI5 SE-4 2019-09-05 1230
SE	MI5	659387	5496818	2019	4	2019-09-05	12:30	Perylene	<0.014	mg/kg	ALS	RG MI5 SE-4 2019-09-05 1230
SE	MI5	659387	5496818	2019	4	2019-09-05	12:30	Phenanthrene	0.053	mg/kg	ALS	RG MI5 SE-4 2019-09-05 1230
SE	MI5	659387	5496818	2019	4	2019-09-05	12:30	Pyrene	<0.014	mg/kg	ALS	RG MI5 SE-4 2019-09-05 1230
SE	MI5	659387	5496818	2019	4	2019-09-05	12:30	Quinoline	<0.014	mg/kg	ALS	RG MI5 SE-4 2019-09-05 1230
SE	MI5	659387	5496818	2019	4	2019-09-05	12:30	IACR (CCME)	0.17	-	ALS	RG_MI5_SE-4_2019-09-05_1230
SE	MI5	659387	5496818	2019	4	2019-09-05	12:30	B(a)P Total Potency Equivalent	<0.020	mg/kg	ALS	RG MI5 SE-4 2019-09-05 1230
SE	MI5	659387	5496818	2019	4	2019-09-05	12:30	Benzo(b+j+k)fluoranthene	<0.020	mg/kg	ALS	RG MI5 SE-4 2019-09-05 1230
SE	MI5	659387	5496818	2019	4	2019-09-05	12:30	d8-Naphthalene	86	%		RG MI5 SE-4 2019-09-05 1230
SE	MI5	659387	5496818	2019	4	2019-09-05	12:30	d10-Acenaphthene	89	%	ALS	RG MI5 SE-4 2019-09-05 1230
SE	MI5	659387	5496818	2019	4	2019-09-05	12:30	d10-Phenanthrene	100	%	ALS	RG MI5 SE-4 2019-09-05 1230
SE	MI5	659387	5496818	2019	4	2019-09-05	12:30	d12-Chrysene	107	%	ALS	RG_MI5_SE-4_2019-09-05_1230
SE	MI5	659387	5496818	2019	4	2019-09-05	12:30	% Gravel (>2 mm)	<1.0	%	ALS	RG MI5 SE-4 2019-09-05 1230
SE	MI5	659387	5496818	2019	4	2019-09-05	12:30	% Sand (2.00 mm - 1.00 mm)	<1.0	%	ALS	RG_MI5_SE-4_2019-09-05_1230
SE	MI5	659387	5496818	2019	4	2019-09-05	12:30	% Sand (1.00 mm - 0.50 mm)	1.1	%	ALS	RG MI5 SE-4 2019-09-05 1230
SE	MI5	659387	5496818	2019	4	2019-09-05	12:30	% Sand (0.50 mm - 0.25 mm)	28	%	ALS	RG MI5 SE-4 2019-09-05 1230
SE	MI5	659387	5496818	2019	4	2019-09-05	12:30	% Sand (0.25 mm - 0.125 mm)	29	%	ALS	RG MI5 SE-4 2019-09-05 1230
SE	MI5	659387	5496818	2019	4	2019-09-05	12:30	% Sand (0.125 mm - 0.063 mm)	12	%	ALS	RG MI5 SE-4 2019-09-05 1230
SE	MI5	659387	5496818	2019	4	2019-09-05	12:30	% Silt (0.063 mm - 0.0312 mm)	15	%	ALS	RG MI5 SE-4 2019-09-05 1230
SE	MI5	659387	5496818	2019	4	2019-09-05	12:30	% Silt (0.031 mm - 0.004 mm)	14	%	ALS	RG MI5 SE-4 2019-09-05 1230
SE	MI5	659387	5496818	2019	4	2019-09-05	12:30	% Clay (<4 μm)	2.0	%	ALS	RG MI5 SE-4 2019-09-05 1230
SE	MI5	659387	5496818	2019	4	2019-09-05	12:30	Texture	Sandy loam	-	ALS	RG MI5 SE-4 2019-09-05 1230
SE	MI5	659387	5496818	2019	4	2019-09-05	12:30	Mercury (Hg)	0.036	mg/kg	ALS	RG MI5 SE-4 2019-09-05 1230
SE	MI5	659387	5496818	2019	4	2019-09-05	12:30	Aluminum (AI)	8,110	mg/kg	ALS	RG MI5 SE-4 2019-09-05 1230
SE	MI5	659387	5496818	2019	4	2019-09-05	12:30	Antimony (Sb)	1.1	mg/kg		RG MI5 SE-4 2019-09-05 1230
SE	MI5	659387	5496818	2019	4	2019-09-05	12:30	Arsenic (As)	7.2	mg/kg		RG MI5 SE-4 2019-09-05 1230
SE	MI5	659387	5496818	2019	4	2019-09-05	12:30	Barium (Ba)	181	mg/kg		RG MI5 SE-4 2019-09-05 1230
SE	MI5	659387	5496818	2019	4	2019-09-05	12:30	Beryllium (Be)	0.72	mg/kg	ALS	RG MI5 SE-4 2019-09-05 1230
SE	MI5	659387	5496818	2019	4	2019-09-05	12:30	Bismuth (Bi)	<0.20	mg/kg	ALS	RG MI5 SE-4 2019-09-05 1230
SE	MI5	659387	5496818	2019	4	2019-09-05	12:30	Boron (B)	8.6	mg/kg	ALS	RG MI5 SE-4 2019-09-05 1230
SE	MI5	659387	5496818	2019	4	2019-09-05	12:30	Cadmium (Cd)	1.4	mg/kg	ALS	RG MI5 SE-4 2019-09-05 1230
SE	MI5	659387	5496818	2019	4	2019-09-05	12:30	Calcium (Ca)	23,500	mg/kg	ALS	RG MI5 SE-4 2019-09-05 1230
SE	MI5	659387	5496818	2019	4	2019-09-05	12:30	Chromium (Cr)	14	mg/kg	ALS	RG MI5 SE-4 2019-09-05 1230
SE	MI5	659387	5496818	2019	4	2019-09-05	12:30	Cobalt (Co)	6.5	mg/kg	ALS	RG MI5 SE-4 2019-09-05 1230
SE	MI5	659387	5496818	2019	4	2019-09-05	12:30	Copper (Cu)	14	mg/kg	ALS	RG MI5 SE-4 2019-09-05 1230
SE	MI5	659387	5496818	2019	4	2019-09-05	12:30	Iron (Fe)	17,000	mg/kg	ALS	RG MI5 SE-4 2019-09-05 1230
SE	MI5	659387	5496818	2019	4	2019-09-05	12:30	Lead (Pb)	11	mg/kg	ALS	RG MI5 SE-4 2019-09-05 1230
	MI5	659387	5496818	2019	1	2019-09-05	12:30	Lithium (Li)	9.9	mg/kg	ALS	RG MI5 SE-4 2019-09-05 1230
SE_	MI5	659387	5496818	2019	4	2019-09-05	12:30	Magnesium (Mg)	4,750	mg/kg	ALS	RG MI5 SE-4 2019-09-05 1230
SE SE		003301	J 4 30010	2018	4	2013-03-00	12.00		· ·	my/kg	ALO	\tag{\tag{\tag{\tag{\tag{\tag{\tag{
SE			5/06919	2010	Л	2010 00 05	12.30	Manganese (Mn)	111	ma/ka	VI C	RC MIS SE_4 2010 00 05 1220
	MI5 MI5	659387 659387	5496818 5496818	2019 2019	4	2019-09-05 2019-09-05	12:30 12:30	Manganese (Mn) Molybdenum (Mo)	111	mg/kg mg/kg	ALS ALS	RG_MI5_SE-4_2019-09-05_1230 RG_MI5_SE-4_2019-09-05_1230

WSP Canada Inc. Page 74 of 337

Sediment Screening

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	1: Sediment Chem		ı (UTMs) ^(a)									Laboratory Information
Type	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MI5	659387	5496818	2019	1	2019-09-05	12:30	Phosphorus (P)	1,310	mg/kg	ALS	RG MI5 SE-4 2019-09-05 1230
SE	MI5	659387	5496818	2019	4	2019-09-05	12:30	Potassium (K)	1,540	mg/kg	ALS	RG MI5 SE-4 2019-09-05 1230
SE	MI5	659387	5496818	2019	4	2019-09-05	12:30	Selenium (Se)	1.4		ALS	RG MI5 SE-4 2019-09-05 1230
SE			5496818	2019	4	2019-09-05	12:30	Silver (Ag)		mg/kg	ALS	
SE	MI5 MI5	659387 659387	5496818	2019	4		12:30	, ,,	0.17	mg/kg	ALS	RG_MI5_SE-4_2019-09-05_1230
						2019-09-05		Sodium (Na)	90	mg/kg		RG_MI5_SE-4_2019-09-05_1230
SE	MI5	659387	5496818 5496818	2019	4	2019-09-05	12:30	Strontium (Sr)	55	mg/kg	ALS	RG_MI5_SE-4_2019-09-05_1230
SE SE	MI5	659387		2019	4	2019-09-05	12:30	Sulfur (S)	1,200	mg/kg	ALS	RG_MI5_SE-4_2019-09-05_1230
	MI5	659387	5496818	2019	4	2019-09-05	12:30	Thallium (TI)	0.29	mg/kg	ALS	RG_MI5_SE-4_2019-09-05_1230
SE	MI5	659387	5496818	2019	4	2019-09-05	12:30	Tin (Sn)	<2.0	mg/kg	ALS	RG_MI5_SE-4_2019-09-05_1230
SE	MI5	659387	5496818	2019	4	2019-09-05	12:30	Titanium (Ti)	35	mg/kg	ALS	RG_MI5_SE-4_2019-09-05_1230
SE	MI5	659387	5496818	2019	4	2019-09-05	12:30	Tungsten (W)	<0.50	mg/kg	ALS	RG_MI5_SE-4_2019-09-05_1230
SE	MI5	659387	5496818	2019	4	2019-09-05	12:30	Uranium (U)	1.0	mg/kg	ALS	RG_MI5_SE-4_2019-09-05_1230
SE	MI5	659387	5496818	2019	4	2019-09-05	12:30	Vanadium (V)	39	mg/kg	ALS	RG_MI5_SE-4_2019-09-05_1230
SE	MI5	659387	5496818	2019	4	2019-09-05	12:30	Zinc (Zn)	119	mg/kg	ALS	RG_MI5_SE-4_2019-09-05_1230
SE	MI5	659387	5496818	2019	4	2019-09-05	12:30	Zirconium (Zr)	1.4	mg/kg	ALS	RG_MI5_SE-4_2019-09-05_1230
SE	MI5	659387	5496818	2019	4	2019-09-05	12:30	pH (1:2 soil:water)	7.2	pН	ALS	RG_MI5_SE-4_2019-09-05_1230
SE	MI5	659387	5496818	2019	4	2019-09-05	12:30	Total Organic Carbon	3.9	%	ALS	RG_MI5_SE-4_2019-09-05_1230
SE	MI5	659387	5496818	2019	5	2019-09-05	13:00	Moisture	89	%	ALS	RG_MI5_SE-5_2019-09-05_1300
SE	MI5	659387	5496818	2019	5	2019-09-05	13:00	Acenaphthene	<0.023	mg/kg	ALS	RG_MI5_SE-5_2019-09-05_1300
SE	MI5	659387	5496818	2019	5	2019-09-05	13:00	Acenaphthylene	<0.023	mg/kg	ALS	RG_MI5_SE-5_2019-09-05_1300
SE	MI5	659387	5496818	2019	5	2019-09-05	13:00	Acridine	<0.045	mg/kg	ALS	RG_MI5_SE-5_2019-09-05_1300
SE	MI5	659387	5496818	2019	5	2019-09-05	13:00	Anthracene	<0.018	mg/kg	ALS	RG_MI5_SE-5_2019-09-05_1300
SE	MI5	659387	5496818	2019	5	2019-09-05	13:00	Benz(a)anthracene	<0.045	mg/kg	ALS	RG_MI5_SE-5_2019-09-05_1300
SE	MI5	659387	5496818	2019	5	2019-09-05	13:00	Benzo(a)pyrene	<0.045	mg/kg	ALS	RG_MI5_SE-5_2019-09-05_1300
SE	MI5	659387	5496818	2019	5	2019-09-05	13:00	Benzo(b&j)fluoranthene	<0.045	mg/kg	ALS	RG_MI5_SE-5_2019-09-05_1300
SE	MI5	659387	5496818	2019	5	2019-09-05	13:00	Benzo(g_h_i)perylene	<0.045	mg/kg	ALS	RG_MI5_SE-5_2019-09-05_1300
SE	MI5	659387	5496818	2019	5	2019-09-05	13:00	Benzo(k)fluoranthene	< 0.045	mg/kg	ALS	RG_MI5_SE-5_2019-09-05_1300
SE	MI5	659387	5496818	2019	5	2019-09-05	13:00	Benzo(e)pyrene	<0.045	mg/kg	ALS	RG_MI5_SE-5_2019-09-05_1300
SE	MI5	659387	5496818	2019	5	2019-09-05	13:00	Chrysene	<0.045	mg/kg	ALS	RG_MI5_SE-5_2019-09-05_1300
SE	MI5	659387	5496818	2019	5	2019-09-05	13:00	Dibenz(a_h)anthracene	<0.023	mg/kg	ALS	RG_MI5_SE-5_2019-09-05_1300
SE	MI5	659387	5496818	2019	5	2019-09-05	13:00	Fluoranthene	<0.045	mg/kg	ALS	RG_MI5_SE-5_2019-09-05_1300
SE	MI5	659387	5496818	2019	5	2019-09-05	13:00	Fluorene	<0.045	mg/kg	ALS	RG_MI5_SE-5_2019-09-05_1300
SE	MI5	659387	5496818	2019	5	2019-09-05	13:00	Indeno(1,2,3-c,d)pyrene	<0.045	mg/kg	ALS	RG_MI5_SE-5_2019-09-05_1300
SE	MI5	659387	5496818	2019	5	2019-09-05	13:00	1-Methylnaphthalene	0.063	mg/kg	ALS	RG_MI5_SE-5_2019-09-05_1300
SE	MI5	659387	5496818	2019	5	2019-09-05	13:00	2-Methylnaphthalene	0.094	mg/kg	ALS	RG_MI5_SE-5_2019-09-05_1300
SE	MI5	659387	5496818	2019	5	2019-09-05	13:00	Naphthalene	<0.045	mg/kg	ALS	RG MI5 SE-5 2019-09-05 1300
SE	MI5	659387	5496818	2019	5	2019-09-05	13:00	Perylene	<0.045	mg/kg	ALS	RG MI5 SE-5 2019-09-05 1300
SE	MI5	659387	5496818	2019	5	2019-09-05	13:00	Phenanthrene	0.12	mg/kg	ALS	RG MI5 SE-5 2019-09-05 1300
SE	MI5	659387	5496818	2019	5	2019-09-05	13:00	Pyrene	<0.045	mg/kg	ALS	RG MI5 SE-5 2019-09-05 1300
SE	MI5	659387	5496818	2019	5	2019-09-05	13:00	Quinoline	<0.045	mg/kg	ALS	RG MI5 SE-5 2019-09-05 1300
SE	MI5	659387	5496818	2019	5	2019-09-05	13:00	IACR (CCME)	<0.48	-	ALS	RG MI5 SE-5 2019-09-05 1300
SE	MI5	659387	5496818	2019	5	2019-09-05	13:00	B(a)P Total Potency Equivalent	<0.043	mg/kg	ALS	RG MI5 SE-5 2019-09-05 1300
SE	MI5	659387	5496818	2019	5	2019-09-05	13:00	Benzo(b+j+k)fluoranthene	<0.060	mg/kg	ALS	RG MI5 SE-5 2019-09-05 1300
SE	MI5	659387	5496818	2019	5	2019-09-05	13:00	d8-Naphthalene	76	%	ALS	RG MI5 SE-5 2019-09-05 1300
SE	MI5	659387	5496818	2019	5	2019-09-05	13:00	d10-Acenaphthene	81	%	ALS	RG MI5 SE-5 2019-09-05 1300
SE	MI5	659387	5496818	2019	5	2019-09-05	13:00	d10-Phenanthrene	94	%	ALS	RG MI5 SE-5 2019-09-05 1300
SE	MI5	659387	5496818	2019	5	2019-09-05	13:00	d12-Chrysene	105	%	ALS	RG MI5 SE-5 2019-09-05 1300
JE	IVIIO	008307	5480010	2019	1 5	ZU 13-U3-U3	13.00	u 12-0111 yselle	105	70	ALO	L/G_IAII9_9E-9_50 19-09-09_1900

WSP Canada Inc. Page 75 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Type -	Station	Location	(UTMs) ^(a)	Year	Replicate	Date	Time	Analyta	Result	Unit		Laboratory Information
ype	Station	Easting	Northing	rear	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
E	MI5	659387	5496818	2019	5	2019-09-05	13:00	% Gravel (>2 mm)	41	%	ALS	RG MI5 SE-5 2019-09-05 1300
E	MI5	659387	5496818	2019	5	2019-09-05	13:00	% Sand (2.00 mm - 1.00 mm)	4.6	%	ALS	RG_MI5_SE-5_2019-09-05_1300
Ε	MI5	659387	5496818	2019	5	2019-09-05	13:00	% Sand (1.00 mm - 0.50 mm)	3.5	%	ALS	RG_MI5_SE-5_2019-09-05_1300
ŝΕ	MI5	659387	5496818	2019	5	2019-09-05	13:00	% Sand (0.50 mm - 0.25 mm)	2.2	%	ALS	RG MI5 SE-5 2019-09-05 1300
SE	MI5	659387	5496818	2019	5	2019-09-05	13:00	% Sand (0.25 mm - 0.125 mm)	1.7	%	ALS	RG_MI5_SE-5_2019-09-05_1300
SE	MI5	659387	5496818	2019	5	2019-09-05	13:00	% Sand (0.125 mm - 0.063 mm)	2.2	%	ALS	RG MI5 SE-5 2019-09-05 1300
SE	MI5	659387	5496818	2019	5	2019-09-05	13:00	% Silt (0.063 mm - 0.0312 mm)	18	%	ALS	RG MI5 SE-5 2019-09-05 1300
SE	MI5	659387	5496818	2019	5	2019-09-05	13:00	% Silt (0.031 mm - 0.004 mm)	21	%	ALS	RG_MI5_SE-5_2019-09-05_1300
SE	MI5	659387	5496818	2019	5	2019-09-05	13:00	% Clay (<4 μm)	6.0	%	ALS	RG_MI5_SE-5_2019-09-05_1300
SE	MI5	659387	5496818	2019	5	2019-09-05	13:00	Texture	Silt loam	-	ALS	RG MI5 SE-5 2019-09-05 1300
SE	MI5	659387	5496818	2019	5	2019-09-05	13:00	pH (1:9)	7.5	рН	ALS	RG_MI5_SE-5_2019-09-05_1300
SE	MI5	659387	5496818	2019	5	2019-09-05	13:00	Mercury (Hg)	0.032	mg/kg	ALS	RG_MI5_SE-5_2019-09-05_1300
SE	MI5	659387	5496818	2019	5	2019-09-05	13:00	Aluminum (AI)	6,850	mg/kg	ALS	RG MI5 SE-5 2019-09-05 1300
SE	MI5	659387	5496818	2019	5	2019-09-05	13:00	Antimony (Sb)	0.62	mg/kg	ALS	RG_MI5_SE-5_2019-09-05_1300
SE	MI5	659387	5496818	2019	5	2019-09-05	13:00	Arsenic (As)	7.2	mg/kg	ALS	RG MI5 SE-5 2019-09-05 1300
SE	MI5	659387	5496818	2019	5	2019-09-05	13:00	Barium (Ba)	246	mg/kg	ALS	RG_MI5_SE-5_2019-09-05_1300
SE	MI5	659387	5496818	2019	5	2019-09-05	13:00	Beryllium (Be)	0.51	mg/kg	ALS	RG_MI5_SE-5_2019-09-05_1300
SE	MI5	659387	5496818	2019	5	2019-09-05	13:00	Bismuth (Bi)	<0.20	mg/kg	ALS	RG MI5 SE-5 2019-09-05 1300
SE	MI5	659387	5496818	2019	5	2019-09-05	13:00	Boron (B)	23	mg/kg	ALS	RG_MI5_SE-5_2019-09-05_1300
SE	MI5	659387	5496818	2019	5	2019-09-05	13:00	Cadmium (Cd)	2.0	mg/kg	ALS	RG MI5 SE-5 2019-09-05 1300
SE	MI5	659387	5496818	2019	5	2019-09-05	13:00	Calcium (Ca)	68,800	mg/kg	ALS	RG MI5 SE-5 2019-09-05 1300
SE	MI5	659387	5496818	2019	5	2019-09-05	13:00	Chromium (Cr)	13	mg/kg	ALS	RG_MI5_SE-5_2019-09-05_1300
SE	MI5	659387	5496818	2019	5	2019-09-05	13:00	Cobalt (Co)	6.4	mg/kg	ALS	RG MI5 SE-5 2019-09-05 1300
SE	MI5	659387	5496818	2019	5	2019-09-05	13:00	Copper (Cu)	12	mg/kg	ALS	RG MI5 SE-5 2019-09-05 1300
SE	MI5	659387	5496818	2019	5	2019-09-05	13:00	Iron (Fe)	12,700	mg/kg	ALS	RG MI5 SE-5 2019-09-05 1300
SE	MI5	659387	5496818	2019	5	2019-09-05	13:00	Lead (Pb)	6.7	mg/kg	ALS	RG MI5 SE-5 2019-09-05 1300
SE	MI5	659387	5496818	2019	5	2019-09-05	13:00	Lithium (Li)	7.5	mg/kg	ALS	RG_MI5_SE-5_2019-09-05_1300
SE	MI5	659387	5496818	2019	5	2019-09-05	13:00	Magnesium (Mg)	5,420	mg/kg	ALS	RG MI5 SE-5 2019-09-05 1300
SE	MI5	659387	5496818	2019	5	2019-09-05	13:00	Manganese (Mn)	141	mg/kg	ALS	RG MI5 SE-5 2019-09-05 1300
SE	MI5	659387	5496818	2019	5	2019-09-05	13:00	Molybdenum (Mo)	1.1	mg/kg	ALS	RG MI5 SE-5 2019-09-05 1300
SE	MI5	659387	5496818	2019	5	2019-09-05	13:00	Nickel (Ni)	39	mg/kg	ALS	RG_MI5_SE-5_2019-09-05_1300
SE	MI5	659387	5496818	2019	5	2019-09-05	13:00	Phosphorus (P)	1,720	mg/kg	ALS	RG MI5 SE-5 2019-09-05 1300
SE	MI5	659387	5496818	2019	5	2019-09-05	13:00	Potassium (K)	1,700	mg/kg	ALS	RG MI5 SE-5 2019-09-05 1300
SE	MI5	659387	5496818	2019	5	2019-09-05	13:00	Selenium (Se)	5.2	mg/kg	ALS	RG MI5 SE-5 2019-09-05 1300
SE	MI5	659387	5496818	2019	5	2019-09-05	13:00	Silver (Ag)	0.16	mg/kg	ALS	RG MI5 SE-5 2019-09-05 1300
SE	MI5	659387	5496818	2019	5	2019-09-05	13:00	Sodium (Na)	302	mg/kg	ALS	RG MI5 SE-5 2019-09-05 1300
SE	MI5	659387	5496818	2019	5	2019-09-05	13:00	Strontium (Sr)	99	mg/kg	ALS	RG MI5 SE-5 2019-09-05 1300
SE	MI5	659387	5496818	2019	5	2019-09-05	13:00	Sulfur (S)	2,000	mg/kg	ALS	RG MI5 SE-5 2019-09-05 1300
SE	MI5	659387	5496818	2019	5	2019-09-05	13:00	Thallium (TI)	0.29	mg/kg	ALS	RG MI5 SE-5 2019-09-05 1300
SE	MI5	659387	5496818	2019	5	2019-09-05	13:00	Tin (Sn)	<2.0	mg/kg	ALS	RG MI5 SE-5 2019-09-05 1300
SE	MI5	659387	5496818	2019	5	2019-09-05	13:00	Titanium (Ti)	30	mg/kg	ALS	RG_MI5_SE-5_2019-09-05_1300
SE	MI5	659387	5496818	2019	5	2019-09-05	13:00	Tungsten (W)	<0.50	mg/kg	ALS	RG MI5 SE-5 2019-09-05 1300
SE	MI5	659387	5496818	2019	5	2019-09-05	13:00	Uranium (U)	0.93	mg/kg	ALS	RG MI5 SE-5 2019-09-05 1300
SE	MI5	659387	5496818	2019		2019-09-05	13:00	Vanadium (V)	31	mg/kg	ALS	RG MI5 SE-5 2019-09-05 1300
SE	MI5	659387	5496818	2019	5	2019-09-05	13:00	Zinc (Zn)	132	mg/kg	ALS	RG MI5 SE-5 2019-09-05 1300
	MI5	659387	5496818	2019	5	2019-09-05	13:00	Zirconium (Zr)	<1.0	mg/kg	ALS	RG MI5 SE-5 2019-09-05 1300
SE	IVIIJ											

WSP Canada Inc. Page 76 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Γνιρο	Station	Location	າ (UTMs) ^(a)	Year	Popliests	Data	Time	Analyte	- Bosult	Unit		Laboratory Information
уре	Station	Easting	Northing	rear	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	AGCK	667555	5488644	2019	1	2019-09-06	09:00	Moisture	37	%	ALS	RG AGCK SE-1 2019-09-06 0900
SE.	AGCK	667555	5488644	2019	1	2019-09-06	09:00	Acenaphthene	<0.0050	mg/kg	ALS	RG_AGCK_SE-1_2019-09-06_0900
SE	AGCK	667555	5488644	2019	1	2019-09-06	09:00	Acenaphthylene	<0.0050	mg/kg	ALS	RG AGCK SE-1 2019-09-06 0900
SE .	AGCK	667555	5488644	2019	1	2019-09-06	09:00	Acridine	<0.010	mg/kg	ALS	RG AGCK SE-1 2019-09-06 0900
SE	AGCK	667555	5488644	2019	1	2019-09-06	09:00	Anthracene	<0.0040	mg/kg	ALS	RG_AGCK_SE-1_2019-09-06_0900
SE	AGCK	667555	5488644	2019	1	2019-09-06	09:00	Benz(a)anthracene	<0.010	mg/kg	ALS	RG AGCK SE-1 2019-09-06 0900
SE	AGCK	667555	5488644	2019	1	2019-09-06	09:00	Benzo(a)pyrene	<0.010	mg/kg	ALS	RG AGCK SE-1 2019-09-06 0900
E	AGCK	667555	5488644	2019	1	2019-09-06	09:00	Benzo(b&j)fluoranthene	<0.010	mg/kg	ALS	RG AGCK SE-1 2019-09-06 0900
E	AGCK	667555	5488644	2019	1	2019-09-06	09:00	Benzo(g_h_i)perylene	<0.010	mg/kg	ALS	RG AGCK SE-1 2019-09-06 0900
E E	AGCK	667555	5488644	2019	1	2019-09-06	09:00	Benzo(k)fluoranthene	<0.010	mg/kg	ALS	RG AGCK SE-1 2019-09-06 0900
E E	AGCK	667555	5488644	2019	1	2019-09-06	09:00	Benzo(e)pyrene	<0.010	mg/kg	ALS	RG AGCK SE-1 2019-09-06 0900
E	AGCK	667555	5488644	2019	1	2019-09-06	09:00	Chrysene	0.017	mg/kg	ALS	RG AGCK SE-1 2019-09-06 0900
E E	AGCK	667555	5488644	2019	1	2019-09-06	09:00	Dibenz(a h)anthracene	<0.0050	mg/kg	ALS	RG AGCK SE-1 2019-09-06 0900
E	AGCK	667555	5488644	2019	1	2019-09-06	09:00	Fluoranthene	<0.010	mg/kg	ALS	RG AGCK SE-1 2019-09-06 0900
E	AGCK	667555	5488644	2019	1	2019-09-06	09:00	Fluorene	<0.010	mg/kg	ALS	RG AGCK SE-1 2019-09-06 0900
E	AGCK	667555	5488644	2019	1	2019-09-06	09:00	Indeno(1,2,3-c,d)pyrene	<0.010	mg/kg	ALS	RG AGCK SE-1 2019-09-06 0900
E	AGCK	667555	5488644	2019	1	2019-09-06	09:00	1-Methylnaphthalene	0.028	mg/kg	ALS	RG AGCK SE-1 2019-09-06 0900
E	AGCK	667555	5488644	2019	1	2019-09-06	09:00	2-Methylnaphthalene	0.041	mg/kg	ALS	RG AGCK SE-1 2019-09-06 0900
E E	AGCK	667555	5488644	2019	1	2019-09-06	09:00	Naphthalene	0.013	mg/kg	ALS	RG AGCK SE-1 2019-09-06 0900
E	AGCK	667555	5488644	2019	1	2019-09-06	09:00	Perylene	<0.010	mg/kg	ALS	RG AGCK SE-1 2019-09-06 0900
E	AGCK	667555	5488644	2019	1	2019-09-06	09:00	Phenanthrene	0.036	mg/kg	ALS	RG AGCK SE-1 2019-09-06 0900
E	AGCK	667555	5488644	2019	1	2019-09-06	09:00	Pyrene	<0.010	mg/kg	ALS	RG AGCK SE-1 2019-09-06 0900
E	AGCK	667555	5488644	2019	1	2019-09-06	09:00	Quinoline	<0.010	mg/kg	ALS	RG AGCK SE-1 2019-09-06 0900
E	AGCK	667555	5488644	2019	1	2019-09-06	09:00	IACR (CCME)	<0.15	-	ALS	RG AGCK SE-1 2019-09-06 0900
E	AGCK	667555	5488644	2019	1	2019-09-06	09:00	B(a)P Total Potency Equivalent	<0.020	mg/kg	ALS	RG AGCK SE-1 2019-09-06 0900
E E	AGCK	667555	5488644	2019	1	2019-09-06	09:00	Benzo(b+j+k)fluoranthene	<0.015	mg/kg	ALS	RG AGCK SE-1 2019-09-06 0900
E	AGCK	667555	5488644	2019	1	2019-09-06	09:00	d8-Naphthalene	75	%	ALS	RG AGCK SE-1 2019-09-06 0900
E E	AGCK	667555	5488644	2019	1	2019-09-06	09:00	d10-Acenaphthene	73	//	ALS	RG_AGCK_SE-1_2019-09-06_0900
E	AGCK	667555	5488644	2019	1	2019-09-06	09:00	d10-Phenanthrene	80	%	ALS	RG AGCK SE-1 2019-09-06 0900
E	AGCK	667555	5488644	2019	1	2019-09-06	09:00	d12-Chrysene	85	//	ALS	RG AGCK SE-1 2019-09-06 0900
E	AGCK	667555	5488644	2019	1	2019-09-06	09:00	% Gravel (>2 mm)	14	%		RG_AGCK_SE-1_2019-09-06_0900
E	AGCK	667555	5488644	2019	1	2019-09-06	09:00	% Sand (2.00 mm - 1.00 mm)	7.8	//	ALS	RG AGCK SE-1 2019-09-06 0900
E	AGCK	667555	5488644	2019	1	2019-09-06	09:00	% Sand (1.00 mm - 0.50 mm)	19	//	ALS	RG AGCK SE-1 2019-09-06 0900
E	AGCK	667555	5488644	2019	1	2019-09-06	09:00	% Sand (0.50 mm - 0.25 mm)	25	//	ALS	RG AGCK SE-1 2019-09-06 0900
E	AGCK	667555	5488644	2019	1 1	2019-09-06	09:00	% Sand (0.35 mm - 0.125 mm)	14	//	ALS	RG AGCK SE-1 2019-09-06 0900
E	AGCK	667555	5488644	2019	1 1	2019-09-06	09:00	% Sand (0.25 mm - 0.125 mm)	6.0	%	ALS	RG AGCK SE-1 2019-09-06 0900
E E	AGCK	667555	5488644	2019	1	2019-09-06	09:00	% Salt (0.123 mm - 0.003 mm)	5.7	// //////////////////////////////////	ALS	RG AGCK SE-1 2019-09-06 0900
E	AGCK	667555	5488644	2019	1	2019-09-06	09:00	% Silt (0.003 Hill - 0.003 12 Hill) % Silt (0.031 mm - 0.004 mm)	6.8	%	ALS	RG AGCK SE-1 2019-09-06 0900
E E	AGCK				1				1.6			RG AGCK SE-1 2019-09-06 0900
E	AGCK	667555 667555	5488644 5488644	2019 2019	1 1	2019-09-06 2019-09-06	09:00 09:00	% Clay (<4 μm) Texture		%	ALS ALS	RG AGCK SE-1 2019-09-06 0900
E	AGCK	667555	5488644	2019	1 1	2019-09-06	09:00	Mercury (Hg)	Loamy sand 0.022	- ma/ka	ALS	RG_AGCK_SE-1_2019-09-06_0900
E	AGCK		5488644	2019	1 1	2019-09-06		, , , ,		mg/kg		RG AGCK SE-1 2019-09-06 0900
		667555			1 4		09:00	Aluminum (Al)	3,900	mg/kg	ALS	
E	AGCK	667555	5488644	2019	1 1	2019-09-06	09:00	Antimony (Sb)	0.58	mg/kg	ALS	RG_AGCK_SE-1_2019-09-06_0900
E	AGCK	667555	5488644	2019	1 1	2019-09-06	09:00	Arsenic (As)	6.8	mg/kg	ALS	RG_AGCK_SE-1_2019-09-06_0900
E	AGCK	667555	5488644	2019	1 1	2019-09-06	09:00	Barium (Ba)	48	mg/kg	ALS	RG_AGCK_SE-1_2019-09-06_0900
SE	AGCK	667555	5488644	2019	1 1	2019-09-06	09:00	Beryllium (Be)	0.52	mg/kg	ALS	RG_AGCK_SE-1_2019-09-06_0900
E	AGCK	667555	5488644	2019	1	2019-09-06	09:00	Bismuth (Bi)	<0.20	mg/kg	ALS	RG AGCK SE-1 2019-09-06 09

WSP Canada Inc. Page 77 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Гуре		1.						The state of the s				
	Station		(UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
		Easting	Northing					·			Lab	Sample ID
SE	AGCK	667555	5488644	2019	+	2019-09-06	09:00	Boron (B)	6.2	mg/kg	ALS	RG_AGCK_SE-1_2019-09-06_0900
SE	AGCK	667555	5488644	2019	1	2019-09-06	09:00	Cadmium (Cd)	0.51	mg/kg	ALS	RG_AGCK_SE-1_2019-09-06_0900
SE	AGCK	667555	5488644	2019		2019-09-06	09:00	Calcium (Ca)	220,000	mg/kg	ALS	RG_AGCK_SE-1_2019-09-06_0900
SE	AGCK	667555	5488644	2019		2019-09-06	09:00	Chromium (Cr)	12	mg/kg	ALS	RG_AGCK_SE-1_2019-09-06_0900
SE	AGCK	667555	5488644	2019		2019-09-06	09:00	Cobalt (Co)	1.9	mg/kg	ALS	RG_AGCK_SE-1_2019-09-06_0900
SE	AGCK	667555	5488644	2019	1	2019-09-06	09:00	Copper (Cu)	5.1	mg/kg	ALS	RG_AGCK_SE-1_2019-09-06_0900
SE	AGCK	667555	5488644	2019		2019-09-06	09:00	Iron (Fe)	6,460	mg/kg	ALS	RG_AGCK_SE-1_2019-09-06_0900
SE	AGCK	667555	5488644	2019		2019-09-06	09:00	Lead (Pb)	3.6	mg/kg	ALS	RG_AGCK_SE-1_2019-09-06_0900
SE	AGCK	667555	5488644	2019		2019-09-06	09:00	Lithium (Li)	5.0	mg/kg	ALS	RG_AGCK_SE-1_2019-09-06_0900
SE	AGCK	667555	5488644	2019	1	2019-09-06	09:00	Magnesium (Mg)	23,100	mg/kg	ALS	RG_AGCK_SE-1_2019-09-06_0900
SE	AGCK	667555	5488644	2019	1	2019-09-06	09:00	Manganese (Mn)	135	mg/kg	ALS	RG_AGCK_SE-1_2019-09-06_0900
SE	AGCK	667555	5488644	2019	1	2019-09-06	09:00	Molybdenum (Mo)	0.71	mg/kg	ALS	RG_AGCK_SE-1_2019-09-06_0900
SE	AGCK	667555	5488644	2019	1	2019-09-06	09:00	Nickel (Ni)	13	mg/kg	ALS	RG_AGCK_SE-1_2019-09-06_0900
SE	AGCK	667555	5488644	2019	1	2019-09-06	09:00	Phosphorus (P)	1,310	mg/kg	ALS	RG_AGCK_SE-1_2019-09-06_0900
SE	AGCK	667555	5488644	2019	1	2019-09-06	09:00	Potassium (K)	1,200	mg/kg	ALS	RG_AGCK_SE-1_2019-09-06_0900
SE	AGCK	667555	5488644	2019	1	2019-09-06	09:00	Selenium (Se)	0.68	mg/kg	ALS	RG_AGCK_SE-1_2019-09-06_0900
SE	AGCK	667555	5488644	2019	1	2019-09-06	09:00	Silver (Ag)	0.16	mg/kg	ALS	RG_AGCK_SE-1_2019-09-06_0900
SE	AGCK	667555	5488644	2019	1	2019-09-06	09:00	Sodium (Na)	155	mg/kg	ALS	RG_AGCK_SE-1_2019-09-06_0900
SE	AGCK	667555	5488644	2019	1	2019-09-06	09:00	Strontium (Sr)	229	mg/kg	ALS	RG_AGCK_SE-1_2019-09-06_0900
SE	AGCK	667555	5488644	2019	1	2019-09-06	09:00	Sulfur (S)	<1000	mg/kg	ALS	RG_AGCK_SE-1_2019-09-06_0900
SE	AGCK	667555	5488644	2019		2019-09-06	09:00	Thallium (TI)	0.6	mg/kg	ALS	RG AGCK SE-1 2019-09-06 0900
SE	AGCK	667555	5488644	2019	1	2019-09-06	09:00	Tin (Sn)	<2.0	mg/kg	ALS	RG AGCK SE-1 2019-09-06 0900
SE	AGCK	667555	5488644	2019	1	2019-09-06	09:00	Titanium (Ti)	14	mg/kg	ALS	RG_AGCK_SE-1_2019-09-06_0900
SE	AGCK	667555	5488644	2019		2019-09-06	09:00	Tungsten (W)	<0.50	mg/kg	ALS	RG_AGCK_SE-1_2019-09-06_0900
SE	AGCK	667555	5488644	2019	+	2019-09-06	09:00	Uranium (U)	0.75	mg/kg	ALS	RG AGCK SE-1 2019-09-06 0900
SE	AGCK	667555	5488644	2019	1	2019-09-06	09:00	Vanadium (V)	20	mg/kg	ALS	RG AGCK SE-1 2019-09-06 0900
SE	AGCK	667555	5488644	2019	+	2019-09-06	09:00	Zinc (Zn)	67	mg/kg	ALS	RG AGCK SE-1 2019-09-06 0900
SE	AGCK	667555	5488644	2019	1	2019-09-06	09:00	Zirconium (Zr)	<1.0	mg/kg	ALS	RG AGCK SE-1 2019-09-06 0900
SE	AGCK	667555	5488644	2019		2019-09-06	09:00	pH (1:2 soil:water)	8.4	pН	ALS	RG AGCK SE-1 2019-09-06 0900
SE	AGCK	667555	5488644	2019		2019-09-06	09:00	Total Organic Carbon	3.1	%	ALS	RG AGCK SE-1 2019-09-06 0900
SE	MIULE	660502	5493059	2019		2019-09-06	13:00	Moisture	53	%	ALS	RG_MIULE_SE-1_2019-09-06_1300
SE	MIULE	660502	5493059	2019	+	2019-09-06	13:00	Acenaphthene	<0.0065	mg/kg		RG MIULE SE-1 2019-09-06 1300
SE	MIULE	660502	5493059	2019	+	2019-09-06	13:00	Acenaphthylene	<0.0050	mg/kg	ALS	RG MIULE SE-1 2019-09-06 1300
SE	MIULE	660502	5493059	2019	1	2019-09-06	13:00	Acridine	<0.010	mg/kg	ALS	RG MIULE SE-1 2019-09-06 1300
SE	MIULE	660502	5493059	2019		2019-09-06	13:00	Anthracene	<0.0040	mg/kg		RG MIULE SE-1 2019-09-06 1300
SE	MIULE	660502	5493059	2019		2019-09-06	13:00	Benz(a)anthracene	<0.010	mg/kg		RG MIULE SE-1 2019-09-06 1300
SE	MIULE	660502	5493059	2019	+	2019-09-06	13:00	Benzo(a)pyrene	<0.010	mg/kg	ALS	RG MIULE SE-1 2019-09-06 1300
SE	MIULE	660502	5493059	2019	+	2019-09-06	13:00	Benzo(b&j)fluoranthene	0.02	mg/kg	ALS	RG MIULE SE-1 2019-09-06 1300
SE	MIULE	660502	5493059	2019	+	2019-09-06	13:00	Benzo(g_h_i)perylene	0.011	mg/kg		RG MIULE SE-1 2019-09-06 1300
SE	MIULE	660502	5493059	2019	+	2019-09-06	13:00	Benzo(k)fluoranthene	<0.010	mg/kg	ALS	RG MIULE SE-1 2019-09-06 1300
SE	MIULE	660502	5493059	2019		2019-09-06	13:00	Benzo(e)pyrene	0.024	mg/kg	ALS	RG MIULE SE-1 2019-09-06 1300
SE	MIULE	660502	5493059	2019		2019-09-06	13:00	Chrysene	0.042	mg/kg	ALS	RG_MIULE_SE-1_2019-09-06_1300
SE	MIULE	660502	5493059	2019		2019-09-06	13:00	Dibenz(a h)anthracene	<0.0050	mg/kg	ALS	RG MIULE SE-1 2019-09-06 1300
SE	MIULE	660502	5493059	2019	_	2019-09-06	13:00	Fluoranthene	0.0030		ALS	RG MIULE SE-1 2019-09-06 1300
SE	MIULE	660502	5493059	2019		2019-09-06	13:00		0.018	mg/kg	ALS	RG MIULE SE-1 2019-09-06 1300
SE_	MIULE	660502	5493059	2019	+	2019-09-06	13:00	Fluorene	<0.013	mg/kg	ALS	RG_MIULE_SE-1_2019-09-06_1300 RG_MIULE_SE-1_2019-09-06_1300
SE		i nounul	J493U39	2019	1 1	∠U I Ⴘ-UႸ-UO	13.00	Indeno(1,2,3-c,d)pyrene	\O.U IU	mg/kg	ALO	NG_NIIOFE_2E-1_5012-02-00_1300

WSP Canada Inc. Page 78 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	1: Sediment Chem		(UTMs) ^(a)									Laboratory Information
Type	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MIULE	660502	5493059	2019	1	2019-09-06	13:00	2-Methylnaphthalene	0.15	mg/kg	ALS	RG MIULE SE-1 2019-09-06 1300
SE	MIULE	660502	5493059	2019		2019-09-06	13:00	Naphthalene	0.058	mg/kg	ALS	RG MIULE SE-1 2019-09-06 1300
SE	MIULE	660502	5493059	2019		2019-09-06	13:00	Perylene	<0.010	mg/kg	ALS	RG MIULE SE-1 2019-09-06 1300
SE	MIULE	660502	5493059	2019		2019-09-06	13:00	Phenanthrene	0.12	mg/kg	ALS	RG MIULE SE-1 2019-09-06 1300
SE	MIULE	660502	5493059	2019		2019-09-06	13:00	Pyrene	0.018	mg/kg	ALS	RG MIULE SE-1 2019-09-06 1300
SE	MIULE	660502	5493059	2019		2019-09-06	13:00	Quinoline	<0.010	mg/kg	ALS	RG MIULE SE-1 2019-09-06 1300
SE	MIULE	660502	5493059	2019		2019-09-06	13:00	IACR (CCME)	0.22	- 1119/119	ALS	RG MIULE SE-1 2019-09-06 1300
SE	MIULE	660502	5493059	2019		2019-09-06	13:00	B(a)P Total Potency Equivalent	<0.020	mg/kg	ALS	RG MIULE SE-1 2019-09-06 1300
SE	MIULE	660502	5493059	2019		2019-09-06	13:00	Benzo(b+j+k)fluoranthene	0.022	mg/kg	ALS	RG MIULE SE-1 2019-09-06 1300
SE	MIULE	660502	5493059	2019		2019-09-06	13:00	d8-Naphthalene	78	%	ALS	RG MIULE SE-1 2019-09-06 1300
SE	MIULE	660502	5493059	2019		2019-09-06	13:00	d10-Acenaphthene	86	%	ALS	RG MIULE SE-1 2019-09-06 1300
SE	MIULE	660502	5493059	2019		2019-09-06	13:00	d10-Phenanthrene	100	%	ALS	RG MIULE SE-1 2019-09-06 1300
SE	MIULE	660502	5493059	2019		2019-09-06	13:00	d12-Chrysene	110	%	ALS	RG MIULE SE-1 2019-09-06 1300
SE	MIULE	660502	5493059	2019		2019-09-06	13:00	% Gravel (>2 mm)	12	%	ALS	RG MIULE SE-1 2019-09-06 1300
SE	MIULE	660502	5493059	2019		2019-09-06	13:00	% Sand (2.00 mm - 1.00 mm)	<1.0	%	ALS	RG MIULE SE-1 2019-09-06 1300
SE	MIULE	660502	5493059	2019		2019-09-06	13:00	% Sand (2.00 mm - 0.50 mm)	4.1	%	ALS	RG MIULE SE-1 2019-09-06 1300
SE	MIULE	660502	5493059	2019		2019-09-06	13:00	% Sand (1.00 mm - 0.35 mm)	21	%	ALS	RG_MIULE_SE-1_2019-09-06_1300
SE	MIULE	660502	5493059	2019			13:00		20	%	ALS	RG MIULE SE-1 2019-09-06 1300
SE						2019-09-06		% Sand (0.25 mm - 0.125 mm)		% %	ALS	
	MIULE	660502	5493059	2019		2019-09-06	13:00	% Sand (0.125 mm - 0.063 mm)	12			RG_MIULE_SE-1_2019-09-06_1300
SE SE	MIULE	660502	5493059	2019		2019-09-06	13:00	% Silt (0.063 mm - 0.0312 mm)	13	%	ALS	RG_MIULE_SE-1_2019-09-06_1300
	MIULE	660502	5493059	2019		2019-09-06	13:00	% Silt (0.031 mm - 0.004 mm)	15	%	ALS	RG_MIULE_SE-1_2019-09-06_1300
SE	MIULE	660502	5493059	2019		2019-09-06	13:00	% Clay (<4 μm)	3.0	%	ALS	RG_MIULE_SE-1_2019-09-06_1300
SE	MIULE	660502	5493059	2019		2019-09-06	13:00	Texture	Sandy loam	- //	ALS	RG_MIULE_SE-1_2019-09-06_1300
SE	MIULE	660502	5493059	2019		2019-09-06	13:00	Mercury (Hg)	0.027	mg/kg	ALS	RG_MIULE_SE-1_2019-09-06_1300
SE	MIULE	660502	5493059	2019		2019-09-06	13:00	Aluminum (Al)	8,890	mg/kg	ALS	RG_MIULE_SE-1_2019-09-06_1300
SE	MIULE	660502	5493059	2019		2019-09-06	13:00	Antimony (Sb)	0.65	mg/kg	ALS	RG_MIULE_SE-1_2019-09-06_1300
SE	MIULE	660502	5493059	2019		2019-09-06	13:00	Arsenic (As)	9.3	mg/kg	ALS	RG_MIULE_SE-1_2019-09-06_1300
SE	MIULE	660502	5493059	2019		2019-09-06	13:00	Barium (Ba)	194	mg/kg	ALS	RG_MIULE_SE-1_2019-09-06_1300
SE	MIULE	660502	5493059	2019		2019-09-06	13:00	Beryllium (Be)	0.75	mg/kg	ALS	RG_MIULE_SE-1_2019-09-06_1300
SE	MIULE	660502	5493059	2019		2019-09-06	13:00	Bismuth (Bi)	<0.20	mg/kg	ALS	RG_MIULE_SE-1_2019-09-06_1300
SE	MIULE	660502	5493059	2019		2019-09-06	13:00	Boron (B)	6.1	mg/kg		RG_MIULE_SE-1_2019-09-06_1300
SE	MIULE	660502	5493059	2019		2019-09-06	13:00	Cadmium (Cd)	1.1	mg/kg	ALS	RG_MIULE_SE-1_2019-09-06_1300
SE	MIULE	660502	5493059	2019		2019-09-06	13:00	Calcium (Ca)	51,000	mg/kg	ALS	RG_MIULE_SE-1_2019-09-06_1300
SE	MIULE	660502	5493059	2019		2019-09-06	13:00	Chromium (Cr)	13	mg/kg	ALS	RG_MIULE_SE-1_2019-09-06_1300
SE	MIULE	660502	5493059	2019		2019-09-06	13:00	Cobalt (Co)	20	mg/kg	ALS	RG_MIULE_SE-1_2019-09-06_1300
SE	MIULE	660502	5493059	2019		2019-09-06	13:00	Copper (Cu)	15	mg/kg	ALS	RG_MIULE_SE-1_2019-09-06_1300
SE	MIULE	660502	5493059	2019		2019-09-06	13:00	Iron (Fe)	19,200	mg/kg	ALS	RG_MIULE_SE-1_2019-09-06_1300
SE	MIULE	660502	5493059	2019		2019-09-06	13:00	Lead (Pb)	11	mg/kg	ALS	RG_MIULE_SE-1_2019-09-06_1300
SE	MIULE	660502	5493059	2019		2019-09-06	13:00	Lithium (Li)	13	mg/kg	ALS	RG_MIULE_SE-1_2019-09-06_1300
SE	MIULE	660502	5493059	2019		2019-09-06	13:00	Magnesium (Mg)	8,420	mg/kg	ALS	RG_MIULE_SE-1_2019-09-06_1300
SE	MIULE	660502	5493059	2019		2019-09-06	13:00	Manganese (Mn)	450	mg/kg	ALS	RG_MIULE_SE-1_2019-09-06_1300
SE	MIULE	660502	5493059	2019		2019-09-06	13:00	Molybdenum (Mo)	1.9	mg/kg	ALS	RG_MIULE_SE-1_2019-09-06_1300
SE	MIULE	660502	5493059	2019		2019-09-06	13:00	Nickel (Ni)	48	mg/kg	ALS	RG_MIULE_SE-1_2019-09-06_1300
SE	MIULE	660502	5493059	2019		2019-09-06	13:00	Phosphorus (P)	1,400	mg/kg	ALS	RG_MIULE_SE-1_2019-09-06_1300
SE	MIULE	660502	5493059	2019		2019-09-06	13:00	Potassium (K)	1,440	mg/kg	ALS	RG_MIULE_SE-1_2019-09-06_1300
SE	MIULE	660502	5493059	2019		2019-09-06	13:00	Selenium (Se)	1.3	mg/kg	ALS	RG_MIULE_SE-1_2019-09-06_1300
SE	MIULE	660502	5493059	2019	1	2019-09-06	13:00	Silver (Ag)	0.14	mg/kg	ALS	RG_MIULE_SE-1_2019-09-06_1300

WSP Canada Inc. Page 79 of 337

Reference No. 22574542-001-R-Rev0-1000

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Type-	Station	Location	(UTMs) ^(a)	Year	Poplicate	Data	Time	Analyta	Booult	Unit		Laboratory Information
уре	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MIULE	660502	5493059	2019	1	2019-09-06	13:00	Sodium (Na)	90	mg/kg	ALS	RG MIULE SE-1 2019-09-06 1300
SE	MIULE	660502	5493059	2019		2019-09-06	13:00	Strontium (Sr)	84	mg/kg	ALS	RG MIULE SE-1 2019-09-06 1300
SE	MIULE	660502	5493059	2019	1	2019-09-06	13:00	Sulfur (S)	<1000	mg/kg	ALS	RG_MIULE_SE-1_2019-09-06_1300
SE	MIULE	660502	5493059	2019	1	2019-09-06	13:00	Thallium (TI)	0.38	mg/kg	ALS	RG MIULE SE-1 2019-09-06 1300
SE	MIULE	660502	5493059	2019	1	2019-09-06	13:00	Tin (Sn)	<2.0	mg/kg	ALS	RG_MIULE_SE-1_2019-09-06_1300
SE	MIULE	660502	5493059	2019	1	2019-09-06	13:00	Titanium (Ti)	13	mg/kg	ALS	RG MIULE SE-1 2019-09-06 1300
SE	MIULE	660502	5493059	2019	1	2019-09-06	13:00	Tungsten (W)	<0.50	mg/kg	ALS	RG MIULE SE-1 2019-09-06 1300
SE	MIULE	660502	5493059	2019	1	2019-09-06	13:00	Uranium (U)	0.79	mg/kg	ALS	RG MIULE SE-1 2019-09-06 1300
SE	MIULE	660502	5493059	2019	1	2019-09-06	13:00	Vanadium (V)	28	mg/kg	ALS	RG MIULE SE-1 2019-09-06 1300
SE	MIULE	660502	5493059	2019	1	2019-09-06	13:00	Zinc (Zn)	139	mg/kg	ALS	RG_MIULE_SE-1_2019-09-06_1300
SE.	MIULE	660502	5493059	2019	1	2019-09-06	13:00	Zirconium (Zr)	1.0	mg/kg	ALS	RG_MIULE_SE-1_2019-09-06_1300
SE.	MIULE	660502	5493059	2019	1	2019-09-06	13:00	pH (1:2 soil:water)	7.6	pН	ALS	RG MIULE SE-1 2019-09-06 1300
SE	MIULE	660502	5493059	2019	1	2019-09-06	13:00	Total Organic Carbon	5.0	%	ALS	RG MIULE SE-1 2019-09-06 1300
SE.	MIULE	660502	5493059	2019	2	2019-09-06	14:15	Moisture	58	%	ALS	RG MIULE SE-2 2019-09-06 1415
SE.	MIULE	660502	5493059	2019	2	2019-09-06	14:15	Acenaphthene	<0.0070	mg/kg	ALS	RG_MIULE_SE-2_2019-09-06_1415
SE.	MIULE	660502	5493059	2019	2	2019-09-06	14:15	Acenaphthylene	<0.0050	mg/kg	ALS	RG_MIULE_SE-2_2019-09-06_1415
SE.	MIULE	660502	5493059	2019	2	2019-09-06	14:15	Acridine	<0.010	mg/kg	ALS	RG_MIULE_SE-2_2019-09-06_1415
Ε	MIULE	660502	5493059	2019	2	2019-09-06	14:15	Anthracene	<0.0040	mg/kg	ALS	RG_MIULE_SE-2_2019-09-06_1415
Ε	MIULE	660502	5493059	2019	2	2019-09-06	14:15	Benz(a)anthracene	<0.010	mg/kg	ALS	RG_MIULE_SE-2_2019-09-06_1415
E	MIULE	660502	5493059	2019	2	2019-09-06	14:15	Benzo(a)pyrene	<0.010	mg/kg	ALS	RG_MIULE_SE-2_2019-09-06_1415
Ε	MIULE	660502	5493059	2019	2	2019-09-06	14:15	Benzo(b&j)fluoranthene	0.02	mg/kg	ALS	RG MIULE SE-2 2019-09-06 1415
Ε	MIULE	660502	5493059	2019	2	2019-09-06	14:15	Benzo(g h i)perylene	0.01	mg/kg	ALS	RG_MIULE_SE-2_2019-09-06_1415
SE.	MIULE	660502	5493059	2019	2	2019-09-06	14:15	Benzo(k)fluoranthene	<0.010	mg/kg	ALS	RG_MIULE_SE-2_2019-09-06_1415
SE.	MIULE	660502	5493059	2019	2	2019-09-06	14:15	Benzo(e)pyrene	0.023	mg/kg	ALS	RG_MIULE_SE-2_2019-09-06_1415
SE.	MIULE	660502	5493059	2019	2	2019-09-06	14:15	Chrysene	0.04	mg/kg	ALS	RG MIULE SE-2 2019-09-06 1415
SE.	MIULE	660502	5493059	2019	2	2019-09-06	14:15	Dibenz(a_h)anthracene	<0.0050	mg/kg	ALS	RG_MIULE_SE-2_2019-09-06_1415
SE	MIULE	660502	5493059	2019	2	2019-09-06	14:15	Fluoranthene	0.018	mg/kg	ALS	RG_MIULE_SE-2_2019-09-06_1415
SE	MIULE	660502	5493059	2019	2	2019-09-06	14:15	Fluorene	0.015	mg/kg	ALS	RG_MIULE_SE-2_2019-09-06_1415
SE	MIULE	660502	5493059	2019	2	2019-09-06	14:15	Indeno(1,2,3-c,d)pyrene	<0.010	mg/kg	ALS	RG_MIULE_SE-2_2019-09-06_1415
SE	MIULE	660502	5493059	2019	2	2019-09-06	14:15	1-Methylnaphthalene	0.096	mg/kg	ALS	RG_MIULE_SE-2_2019-09-06_1415
SE.	MIULE	660502	5493059	2019	2	2019-09-06	14:15	2-Methylnaphthalene	0.14	mg/kg	ALS	RG MIULE SE-2 2019-09-06 1415
SE	MIULE	660502	5493059	2019	2	2019-09-06	14:15	Naphthalene	0.052	mg/kg	ALS	RG_MIULE_SE-2_2019-09-06_1415
SE	MIULE	660502	5493059	2019	2	2019-09-06	14:15	Perylene	<0.010	mg/kg	ALS	RG_MIULE_SE-2_2019-09-06_1415
SE	MIULE	660502	5493059	2019	2	2019-09-06	14:15	Phenanthrene	0.11	mg/kg	ALS	RG_MIULE_SE-2_2019-09-06_1415
SE	MIULE	660502	5493059	2019	2	2019-09-06	14:15	Pyrene	0.019	mg/kg	ALS	RG_MIULE_SE-2_2019-09-06_1415
SE	MIULE	660502	5493059	2019	2	2019-09-06	14:15	Quinoline	<0.010	mg/kg	ALS	RG_MIULE_SE-2_2019-09-06_1415
SE	MIULE	660502	5493059	2019	2	2019-09-06	14:15	IACR (CCME)	0.22	-	ALS	RG_MIULE_SE-2_2019-09-06_1415
SE	MIULE	660502	5493059	2019	2	2019-09-06	14:15	B(a)P Total Potency Equivalent	<0.020	mg/kg	ALS	RG_MIULE_SE-2_2019-09-06_1415
SE.	MIULE	660502	5493059	2019	2	2019-09-06	14:15	Benzo(b+j+k)fluoranthene	0.021	mg/kg	ALS	RG_MIULE_SE-2_2019-09-06_1415
SE.	MIULE	660502	5493059	2019	2	2019-09-06	14:15	d8-Naphthalene	91	%	ALS	RG_MIULE_SE-2_2019-09-06_1415
ŝΕ	MIULE	660502	5493059	2019	2	2019-09-06	14:15	d10-Acenaphthene	94	%	ALS	RG_MIULE_SE-2_2019-09-06_1415
SE.	MIULE	660502	5493059	2019	2	2019-09-06	14:15	d10-Phenanthrene	104	%	ALS	RG_MIULE_SE-2_2019-09-06_1415
SE.	MIULE	660502	5493059	2019	2	2019-09-06	14:15	d12-Chrysene	108	%	ALS	RG_MIULE_SE-2_2019-09-06_1415
SE.	MIULE	660502	5493059	2019	2	2019-09-06	14:15	% Gravel (>2 mm)	51	%	ALS	RG_MIULE_SE-2_2019-09-06_1415
E	MIULE	660502	5493059	2019	2	2019-09-06	14:15	% Sand (2.00 mm - 1.00 mm)	3.5	%	ALS	RG_MIULE_SE-2_2019-09-06_1415
E	MIULE	660502	5493059	2019	2	2019-09-06	14:15	% Sand (1.00 mm - 0.50 mm)	2.1	%	ALS	RG_MIULE_SE-2_2019-09-06_1415
SE	MIULE	660502	5493059	2019	2	2019-09-06	14:15	% Sand (0.50 mm - 0.25 mm)	4.4	%	ALS	RG MIULE SE-2 2019-09-06 1415

WSP Canada Inc. Page 80 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Table I-	1: Sediment Chem			CMm LAEMP	Sampling St	ations, 2012 to	2022					
Туре	Station		(UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
		Easting	Northing								Lab	Sample ID
SE	MIULE	660502	5493059	2019	2	2019-09-06	14:15	% Sand (0.25 mm - 0.125 mm)	8.2	%	ALS	RG_MIULE_SE-2_2019-09-06_1415
SE	MIULE	660502	5493059	2019	2	2019-09-06	14:15	% Sand (0.125 mm - 0.063 mm)	7.6	%	ALS	RG_MIULE_SE-2_2019-09-06_1415
SE	MIULE	660502	5493059	2019	2	2019-09-06	14:15	% Silt (0.063 mm - 0.0312 mm)	11	%	ALS	RG_MIULE_SE-2_2019-09-06_1415
SE	MIULE	660502	5493059	2019	2	2019-09-06	14:15	% Silt (0.031 mm - 0.004 mm)	11	%	ALS	RG_MIULE_SE-2_2019-09-06_1415
SE	MIULE	660502	5493059	2019	2	2019-09-06	14:15	% Clay (<4 μm)	1.7	%	ALS	RG_MIULE_SE-2_2019-09-06_1415
SE	MIULE	660502	5493059	2019	2	2019-09-06	14:15	Texture	Sandy loam	-	ALS	RG_MIULE_SE-2_2019-09-06_1415
SE	MIULE	660502	5493059	2019	2	2019-09-06	14:15	Mercury (Hg)	0.029	mg/kg	ALS	RG_MIULE_SE-2_2019-09-06_1415
SE	MIULE	660502	5493059	2019	2	2019-09-06	14:15	Aluminum (AI)	7,270	mg/kg	ALS	RG_MIULE_SE-2_2019-09-06_1415
SE	MIULE	660502	5493059	2019	2	2019-09-06	14:15	Antimony (Sb)	0.56	mg/kg	ALS	RG_MIULE_SE-2_2019-09-06_1415
SE	MIULE	660502	5493059	2019	2	2019-09-06	14:15	Arsenic (As)	6.7	mg/kg	ALS	RG_MIULE_SE-2_2019-09-06_1415
SE	MIULE	660502	5493059	2019	2	2019-09-06	14:15	Barium (Ba)	174	mg/kg	ALS	RG_MIULE_SE-2_2019-09-06_1415
SE	MIULE	660502	5493059	2019	2	2019-09-06	14:15	Beryllium (Be)	0.62	mg/kg	ALS	RG_MIULE_SE-2_2019-09-06_1415
SE	MIULE	660502	5493059	2019	2	2019-09-06	14:15	Bismuth (Bi)	<0.20	mg/kg	ALS	RG_MIULE_SE-2_2019-09-06_1415
SE	MIULE	660502	5493059	2019	2	2019-09-06	14:15	Boron (B)	5.9	mg/kg	ALS	RG_MIULE_SE-2_2019-09-06_1415
SE	MIULE	660502	5493059	2019	2	2019-09-06	14:15	Cadmium (Cd)	1.1	mg/kg	ALS	RG_MIULE_SE-2_2019-09-06_1415
SE	MIULE	660502	5493059	2019	2	2019-09-06	14:15	Calcium (Ca)	45,400	mg/kg	ALS	RG_MIULE_SE-2_2019-09-06_1415
SE	MIULE	660502	5493059	2019	2	2019-09-06	14:15	Chromium (Cr)	12	mg/kg	ALS	RG_MIULE_SE-2_2019-09-06_1415
SE	MIULE	660502	5493059	2019	2	2019-09-06	14:15	Cobalt (Co)	16	mg/kg	ALS	RG_MIULE_SE-2_2019-09-06_1415
SE	MIULE	660502	5493059	2019	2	2019-09-06	14:15	Copper (Cu)	12	mg/kg	ALS	RG_MIULE_SE-2_2019-09-06_1415
SE	MIULE	660502	5493059	2019	2	2019-09-06	14:15	Iron (Fe)	16,200	mg/kg	ALS	RG MIULE SE-2 2019-09-06 1415
SE	MIULE	660502	5493059	2019	2	2019-09-06	14:15	Lead (Pb)	9.0	mg/kg	ALS	RG MIULE SE-2 2019-09-06 1415
SE	MIULE	660502	5493059	2019	2	2019-09-06	14:15	Lithium (Li)	11	mg/kg	ALS	RG MIULE SE-2 2019-09-06 1415
SE	MIULE	660502	5493059	2019	2	2019-09-06	14:15	Magnesium (Mg)	7,860	mg/kg	ALS	RG_MIULE_SE-2_2019-09-06_1415
SE	MIULE	660502	5493059	2019	2	2019-09-06	14:15	Manganese (Mn)	274	mg/kg	ALS	RG_MIULE_SE-2_2019-09-06_1415
SE	MIULE	660502	5493059	2019	2	2019-09-06	14:15	Molybdenum (Mo)	1.5	mg/kg	ALS	RG_MIULE_SE-2_2019-09-06_1415
SE	MIULE	660502	5493059	2019	2	2019-09-06	14:15	Nickel (Ni)	43	mg/kg	ALS	RG MIULE SE-2 2019-09-06 1415
SE	MIULE	660502	5493059	2019	2	2019-09-06	14:15	Phosphorus (P)	1,240	mg/kg	ALS	RG_MIULE_SE-2_2019-09-06_1415
SE	MIULE	660502	5493059	2019	2	2019-09-06	14:15	Potassium (K)	1,260	mg/kg	ALS	RG_MIULE_SE-2_2019-09-06_1415
SE	MIULE	660502	5493059	2019	2	2019-09-06	14:15	Selenium (Se)	1.7	mg/kg	ALS	RG MIULE SE-2 2019-09-06 1415
SE	MIULE	660502	5493059	2019	2	2019-09-06	14:15	Silver (Ag)	0.14	mg/kg	ALS	RG MIULE SE-2 2019-09-06 1415
SE	MIULE	660502	5493059	2019	2	2019-09-06	14:15	Sodium (Na)	78	mg/kg	ALS	RG MIULE SE-2 2019-09-06 1415
SE	MIULE	660502	5493059	2019	2	2019-09-06	14:15	Strontium (Sr)	70	mg/kg	ALS	RG MIULE SE-2 2019-09-06 1415
SE	MIULE	660502	5493059	2019	2	2019-09-06	14:15	Sulfur (S)	<1000	mg/kg	ALS	RG MIULE SE-2 2019-09-06 1415
SE	MIULE	660502	5493059	2019	2	2019-09-06	14:15	Thallium (TI)	0.34	mg/kg	ALS	RG MIULE SE-2 2019-09-06 1415
SE	MIULE	660502	5493059	2019	2	2019-09-06	14:15	Tin (Sn)	<2.0	mg/kg	ALS	RG MIULE SE-2 2019-09-06 1415
SE	MIULE	660502	5493059	2019	2	2019-09-06	14:15	Titanium (Ti)	19	mg/kg	ALS	RG MIULE SE-2 2019-09-06 1415
SE	MIULE	660502	5493059	2019	2	2019-09-06	14:15	Tungsten (W)	<0.50	mg/kg	ALS	RG MIULE SE-2 2019-09-06 1415
SE	MIULE	660502	5493059	2019	2	2019-09-06	14:15	Uranium (U)	0.85	mg/kg	ALS	RG MIULE SE-2 2019-09-06 1415
SE	MIULE	660502	5493059	2019	2	2019-09-06	14:15	Vanadium (V)	26	mg/kg	ALS	RG MIULE SE-2 2019-09-06 1415
SE	MIULE	660502	5493059	2019	2	2019-09-06	14:15	Zinc (Zn)	170	mg/kg	ALS	RG MIULE SE-2 2019-09-06 1415
SE	MIULE	660502	5493059	2019	2	2019-09-06	14:15	Zirconium (Zr)	<1.0	mg/kg	ALS	RG MIULE SE-2 2019-09-06 1415
SE	MIULE	660502	5493059	2019	2	2019-09-06	14:15	pH (1:2 soil:water)	7.7	pH	ALS	RG MIULE SE-2 2019-09-06 1415
SE	MIULE	660502	5493059	2019	2	2019-09-06	14:15	Total Organic Carbon	3.8	%	ALS	RG MIULE SE-2 2019-09-06 1415
SE	MIULE	660502	5493059	2019	1	2019-09-06	15:45	Moisture	41	%	ALS	RG MIULE SE-2_2019-09-06_1413
SE	MIULE	660502	5493059	2019	1	2019-09-06	15:45		<0.0050		ALS	RG MIULE SE-4 2019-09-06 1545
SE					4			Acenaphthylana		mg/kg		
	MIULE	660502	5493059	2019	4	2019-09-06	15:45	Acenaphthylene	<0.0050	mg/kg	ALS	RG_MIULE_SE-4_2019-09-06_1545
SE	MIULE	660502	5493059	2019	4	2019-09-06	15:45	Acridine	<0.010	mg/kg	ALS	RG_MIULE_SE-4_2019-09-06_1545

WSP Canada Inc. Page 81 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

VDO	Station	Location	(UTMs) ^(a)	Voor	Poplieste	Date	Time	Analyte	Popult	Unit		Laboratory Information
ype	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MIULE	660502	5493059	2019	4	2019-09-06	15:45	Anthracene	<0.0040	mg/kg	ALS	RG MIULE SE-4 2019-09-06 1545
SE	MIULE	660502	5493059	2019	4	2019-09-06	15:45	Benz(a)anthracene	<0.010	mg/kg	ALS	RG MIULE SE-4 2019-09-06 1545
SE	MIULE	660502	5493059	2019	4	2019-09-06	15:45	Benzo(a)pyrene	<0.010	mg/kg	ALS	RG_MIULE_SE-4_2019-09-06_1545
SE	MIULE	660502	5493059	2019	4	2019-09-06	15:45	Benzo(b&j)fluoranthene	0.022	mg/kg	ALS	RG MIULE SE-4 2019-09-06 1545
SE	MIULE	660502	5493059	2019	4	2019-09-06	15:45	Benzo(g_h_i)perylene	<0.010	mg/kg	ALS	RG MIULE SE-4 2019-09-06 1545
SE	MIULE	660502	5493059	2019	4	2019-09-06	15:45	Benzo(k)fluoranthene	<0.010	mg/kg	ALS	RG MIULE SE-4 2019-09-06 1545
SE	MIULE	660502	5493059	2019	4	2019-09-06	15:45	Benzo(e)pyrene	0.025	mg/kg	ALS	RG MIULE SE-4 2019-09-06 1545
SE	MIULE	660502	5493059	2019	4	2019-09-06	15:45	Chrysene	0.048	mg/kg	ALS	RG MIULE SE-4 2019-09-06 1545
SE	MIULE	660502	5493059	2019	4	2019-09-06	15:45	Dibenz(a h)anthracene	<0.0050	mg/kg	ALS	RG MIULE SE-4 2019-09-06 1545
SE	MIULE	660502	5493059	2019	4	2019-09-06	15:45	Fluoranthene	0.014	mg/kg	ALS	RG MIULE SE-4 2019-09-06 1545
SE	MIULE	660502	5493059	2019	4	2019-09-06	15:45	Fluorene	<0.010	mg/kg	ALS	RG MIULE SE-4 2019-09-06 1545
SE	MIULE	660502	5493059	2019	4	2019-09-06	15:45	Indeno(1,2,3-c,d)pyrene	<0.010	mg/kg	ALS	RG_MIULE_SE-4_2019-09-06_1545
SE	MIULE	660502	5493059	2019	4	2019-09-06	15:45	1-Methylnaphthalene	0.06	mg/kg	ALS	RG MIULE SE-4 2019-09-06 1545
SE	MIULE	660502	5493059	2019	4	2019-09-06	15:45	2-Methylnaphthalene	0.091	mg/kg	ALS	RG MIULE SE-4 2019-09-06 1545
SE	MIULE	660502	5493059	2019	4	2019-09-06	15:45	Naphthalene	0.046	mg/kg	ALS	RG MIULE SE-4 2019-09-06 1545
SE.	MIULE	660502	5493059	2019	4	2019-09-06	15:45	Perylene	<0.010	mg/kg	ALS	RG MIULE SE-4 2019-09-06 1545
SE.	MIULE	660502	5493059	2019	4	2019-09-06	15:45	Phenanthrene	0.1	mg/kg	ALS	RG MIULE SE-4 2019-09-06 1545
SE.	MIULE	660502	5493059	2019	4	2019-09-06	15:45	Pyrene	0.014	mg/kg	ALS	RG MIULE SE-4 2019-09-06 1545
SE	MIULE	660502	5493059	2019	4	2019-09-06	15:45	Quinoline	<0.010	mg/kg	ALS	RG MIULE SE-4 2019-09-06 1545
SE SE	MIULE	660502	5493059	2019	4	2019-09-06	15:45	IACR (CCME)	0.23	-	ALS	RG MIULE SE-4 2019-09-06 1545
SE.	MIULE	660502	5493059	2019	4	2019-09-06	15:45	B(a)P Total Potency Equivalent	<0.020	mg/kg	ALS	RG MIULE SE-4 2019-09-06 1545
SE	MIULE	660502	5493059	2019	4	2019-09-06	15:45	Benzo(b+j+k)fluoranthene	0.023	mg/kg	ALS	RG MIULE SE-4 2019-09-06 1545
SE	MIULE	660502	5493059	2019	4	2019-09-06	15:45	d8-Naphthalene	79	%	ALS	RG MIULE SE-4 2019-09-06 1545
SE	MIULE	660502	5493059	2019	4	2019-09-06	15:45	d10-Acenaphthene	79	%	ALS	RG MIULE SE-4 2019-09-06 1545
SE	MIULE	660502	5493059	2019	4	2019-09-06	15:45	d10-Phenanthrene	90	%	ALS	RG MIULE SE-4 2019-09-06 1545
SE	MIULE	660502	5493059	2019	4	2019-09-06	15:45	d12-Chrysene	99	%	ALS	RG MIULE SE-4 2019-09-06 1545
SE	MIULE	660502	5493059	2019	4	2019-09-06	15:45	% Gravel (>2 mm)	3.7	%	ALS	RG MIULE SE-4 2019-09-06 1545
SE	MIULE	660502	5493059	2019	4	2019-09-06	15:45	% Sand (2.00 mm - 1.00 mm)	1.2	%	ALS	RG MIULE SE-4 2019-09-06 1545
SE	MIULE	660502	5493059	2019	4	2019-09-06	15:45	% Sand (1.00 mm - 0.50 mm)	3.7	%	ALS	RG MIULE SE-4 2019-09-06 1545
SE	MIULE	660502	5493059	2019	4	2019-09-06	15:45	% Sand (0.50 mm - 0.25 mm)	23	%	ALS	RG MIULE SE-4 2019-09-06 1545
SE	MIULE	660502	5493059	2019	4	2019-09-06	15:45	% Sand (0.25 mm - 0.125 mm)	30	%		RG MIULE SE-4 2019-09-06 1545
SE	MIULE	660502	5493059	2019	4	2019-09-06	15:45	% Sand (0.125 mm - 0.063 mm)	15	%	ALS	RG MIULE SE-4 2019-09-06 1545
SE	MIULE	660502	5493059	2019	4	2019-09-06	15:45	% Silt (0.063 mm - 0.0312 mm)	12	%	ALS	RG MIULE SE-4 2019-09-06 1545
SE	MIULE	660502	5493059	2019	4	2019-09-06	15:45	% Silt (0.031 mm - 0.004 mm)	10	%	ALS	RG MIULE SE-4 2019-09-06 1545
SE	MIULE	660502	5493059	2019	4	2019-09-06	15:45	% Clay (<4 μm)	1.5	%	ALS	RG MIULE SE-4 2019-09-06 1545
SE	MIULE	660502	5493059	2019	4	2019-09-06	15:45	Texture	Loamy sand	-	ALS	RG MIULE SE-4 2019-09-06 1545
SE	MIULE	660502	5493059	2019	4	2019-09-06	15:45	Mercury (Hg)	0.032	mg/kg	ALS	RG MIULE SE-4 2019-09-06 1545
SE	MIULE	660502	5493059	2019	4	2019-09-06	15:45	Aluminum (Al)	8,850	mg/kg	ALS	RG MIULE SE-4 2019-09-06 1545
SE	MIULE	660502	5493059	2019	4	2019-09-06	15:45	Antimony (Sb)	0.63	mg/kg	ALS	RG MIULE SE-4 2019-09-06 1545
SE	MIULE	660502	5493059	2019	4	2019-09-06	15:45	Arsenic (As)	7.6	mg/kg	ALS	RG MIULE SE-4 2019-09-06 1545
SE	MIULE	660502	5493059	2019	4	2019-09-06	15:45	Barium (Ba)	142	mg/kg		RG MIULE SE-4 2019-09-06 1545
SE	MIULE	660502	5493059	2019	4	2019-09-06	15:45	Beryllium (Be)	0.7	mg/kg	ALS	RG MIULE SE-4 2019-09-06 1545
SE	MIULE	660502	5493059	2019	4	2019-09-06	15:45	Bismuth (Bi)	<0.20	mg/kg	ALS	RG MIULE SE-4 2019-09-06 1545
SE	MIULE	660502	5493059	2019	4	2019-09-06	15:45	Boron (B)	6.7	mg/kg	ALS	RG MIULE SE-4 2019-09-06 1545
SE	MIULE	660502	5493059	2019	4	2019-09-06	15:45	Cadmium (Cd)	0.82	mg/kg	ALS	RG MIULE SE-4 2019-09-06 1545
_				2019	1 1	2019-09-06	15:45	Calcium (Ca)	31,100	mg/kg	ALS	RG MIULE SE-4 2019-09-06 1545
SE	MIULE	660502	5493059	2019	4	12013-03-00	[U.+J		Q1.100	i iiiu/ku		ING MIDLE 3E-4 2019-09-00 1343

WSP Canada Inc. Page 82 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

ype SE		Location	(UTMs) ^(a)	Year	Poplicate	Data	Time	Apolyte	- Popult -	Unit		Laboratory Information
	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
	MIULE	660502	5493059	2019	4	2019-09-06	15:45	Cobalt (Co)	12	mg/kg	ALS	RG MIULE SE-4 2019-09-06 1545
SE	MIULE	660502	5493059	2019	4	2019-09-06	15:45	Copper (Cu)	12	mg/kg	ALS	RG MIULE SE-4 2019-09-06 1545
SE	MIULE	660502	5493059	2019	4	2019-09-06	15:45	Iron (Fe)	17,400	mg/kg	ALS	RG MIULE SE-4 2019-09-06 1545
SE	MIULE	660502	5493059	2019	4	2019-09-06	15:45	Lead (Pb)	8.7	mg/kg	ALS	RG MIULE SE-4 2019-09-06 1545
SE	MIULE	660502	5493059	2019	4	2019-09-06	15:45	Lithium (Li)	11	mg/kg	ALS	RG MIULE SE-4 2019-09-06 1545
SE	MIULE	660502	5493059	2019	4	2019-09-06	15:45	Magnesium (Mg)	6,270	mg/kg	ALS	RG_MIULE_SE-4_2019-09-06_1545
SE	MIULE	660502	5493059	2019	4	2019-09-06	15:45	Manganese (Mn)	266	mg/kg	ALS	RG MIULE SE-4 2019-09-06 1545
SE	MIULE	660502	5493059	2019	4	2019-09-06	15:45	Molybdenum (Mo)	1.6	mg/kg	ALS	RG MIULE SE-4 2019-09-06 1545
SE	MIULE	660502	5493059	2019	4	2019-09-06	15:45	Nickel (Ni)	33	mg/kg	ALS	RG MIULE SE-4 2019-09-06 1545
SE	MIULE	660502	5493059	2019	4	2019-09-06	15:45	Phosphorus (P)	1,270	mg/kg	ALS	RG MIULE SE-4 2019-09-06 1545
SE	MIULE	660502	5493059	2019	4	2019-09-06	15:45	Potassium (K)	1,830	mg/kg	ALS	RG_MIULE_SE-4_2019-09-06_1545
SE	MIULE	660502	5493059	2019	4	2019-09-06	15:45	Selenium (Se)	0.73	mg/kg	ALS	RG_MIULE_SE-4_2019-09-06_1545
SE	MIULE	660502	5493059	2019	4	2019-09-06	15:45	Silver (Ag)	0.11	mg/kg	ALS	RG MIULE SE-4 2019-09-06 1545
SE	MIULE	660502	5493059	2019	4	2019-09-06	15:45	Sodium (Na)	68	mg/kg	ALS	RG MIULE SE-4 2019-09-06 1545
SE	MIULE	660502	5493059	2019	4	2019-09-06	15:45	Strontium (Sr)	57	mg/kg	ALS	RG MIULE SE-4 2019-09-06 1545
SE.	MIULE	660502	5493059	2019	4	2019-09-06	15:45	Sulfur (S)	<1000	mg/kg	ALS	RG MIULE SE-4 2019-09-06 1545
SE.	MIULE	660502	5493059	2019	4	2019-09-06	15:45	Thallium (TI)	0.33	mg/kg	ALS	RG_MIULE_SE-4_2019-09-06_1545
SE	MIULE	660502	5493059	2019	4	2019-09-06	15:45	Tin (Sn)	<2.0	mg/kg	ALS	RG MIULE SE-4 2019-09-06 1545
SE	MIULE	660502	5493059	2019	4	2019-09-06	15:45	Titanium (Ti)	14	mg/kg	ALS	RG MIULE SE-4 2019-09-06 1545
E E	MIULE	660502	5493059	2019	4	2019-09-06	15:45	Tungsten (W)	<0.50	mg/kg	ALS	RG MIULE SE-4 2019-09-06 1545
E	MIULE	660502	5493059	2019	4	2019-09-06	15:45	Uranium (U)	0.68	mg/kg	ALS	RG MIULE SE-4 2019-09-06 1545
E	MIULE	660502	5493059	2019	4	2019-09-06	15:45	Vanadium (V)	29	mg/kg	ALS	RG MIULE SE-4 2019-09-06 1545
SE	MIULE	660502	5493059	2019	4	2019-09-06	15:45	Zinc (Zn)	109	mg/kg	ALS	RG MIULE SE-4 2019-09-06 1545
SE	MIULE	660502	5493059	2019	4	2019-09-06	15:45	Zirconium (Zr)	1.1	mg/kg	ALS	RG MIULE SE-4 2019-09-06 1545
SE	MIULE	660502	5493059	2019	4	2019-09-06	15:45	pH (1:2 soil:water)	7.9	pH	ALS	RG MIULE SE-4 2019-09-06 1545
SE	MIULE	660502	5493059	2019	4	2019-09-06	15:45	Total Organic Carbon	3.0	%	ALS	RG MIULE SE-4 2019-09-06 1545
SE	MIULE	660502	5493059	2019	5	2019-09-06	16:00	Moisture	48	%	ALS	RG MIULE SE-5 2019-09-06 1600
SE	MIULE	660502	5493059	2019	5	2019-09-06	16:00	Acenaphthene	<0.015	mg/kg	ALS	RG MIULE SE-5 2019-09-06 1600
SE	MIULE	660502	5493059	2019	5	2019-09-06	16:00	Acenaphthylene	<0.0050	mg/kg	ALS	RG MIULE SE-5 2019-09-06 1600
SE	MIULE	660502	5493059	2019	5	2019-09-06	16:00	Acridine	<0.017	mg/kg	ALS	RG MIULE SE-5 2019-09-06 1600
SE	MIULE	660502	5493059	2019	5	2019-09-06	16:00	Anthracene	<0.0052	mg/kg	ALS	RG MIULE SE-5 2019-09-06 1600
SE	MIULE	660502	5493059	2019	5	2019-09-06	16:00	Benz(a)anthracene	0.019	mg/kg	ALS	RG MIULE SE-5 2019-09-06 1600
SE	MIULE	660502	5493059	2019	5	2019-09-06	16:00	Benzo(a)pyrene	<0.010	mg/kg	ALS	RG MIULE SE-5 2019-09-06 1600
SE	MIULE	660502	5493059	2019	5	2019-09-06	16:00	Benzo(b&j)fluoranthene	0.047	mg/kg	ALS	RG MIULE SE-5 2019-09-06 1600
SE	MIULE	660502	5493059	2019	5	2019-09-06	16:00	Benzo(g h i)perylene	0.019	mg/kg	ALS	RG MIULE SE-5 2019-09-06 1600
SE	MIULE	660502	5493059	2019	5	2019-09-06	16:00	Benzo(k)fluoranthene	<0.010	mg/kg	ALS	RG MIULE SE-5 2019-09-06 1600
SE	MIULE	660502	5493059	2019	5	2019-09-06	16:00	Benzo(e)pyrene	0.049	mg/kg	ALS	RG MIULE SE-5 2019-09-06 1600
SE	MIULE	660502	5493059	2019	5	2019-09-06	16:00	Chrysene	0.096	mg/kg	ALS	RG MIULE SE-5 2019-09-06 1600
SE.	MIULE	660502	5493059	2019	5	2019-09-06	16:00	Dibenz(a h)anthracene	0.0073	mg/kg	ALS	RG MIULE SE-5 2019-09-06 1600
SE	MIULE	660502	5493059	2019	5	2019-09-06	16:00	Fluoranthene	0.035	mg/kg	ALS	RG MIULE SE-5 2019-09-06 1600
SE	MIULE	660502	5493059	2019	5	2019-09-06	16:00	Fluorene	0.025	mg/kg	ALS	RG MIULE SE-5 2019-09-06 1600
	MIULE	660502	5493059	2019	5	2019-09-06	16:00	Indeno(1,2,3-c,d)pyrene	<0.010	mg/kg	ALS	RG MIULE SE-5 2019-09-06 1600
SE	MIULE	660502	5493059	2019	5	2019-09-06	16:00	1-Methylnaphthalene	0.22	mg/kg	ALS	RG MIULE SE-5 2019-09-06 1600
	.v		5493059	2019		2019-09-06	16:00	2-Methylnaphthalene	0.32	mg/kg	ALS	RG MIULE SE-5 2019-09-06 1600
SE	MILILE	nnunuz					10.00	iou i y i i apria idiorio	0.02	1119/119	, ,	
SE SE	MIULE MILILE	660502 660502			1		16:00	Nanhthalene	0.16			
SE SE SE SE SE	MIULE MIULE MIULE	660502 660502	5493059 5493059 5493059	2019 2019	5 5	2019-09-06 2019-09-06	16:00 16:00	Naphthalene Perylene	0.16 <0.010	mg/kg mg/kg	ALS ALS	RG_MIULE_SE-5_2019-09-06_1600 RG_MIULE_SE-5_2019-09-06_1600

WSP Canada Inc. Page 83 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	Ctation	Location	າ (UTMs) ^(a)	Vaan	Danlingto	Dete	Times	Amaluta	Decult	Heid		Laboratory Information
ype	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
E	MIULE	660502	5493059	2019	5	2019-09-06	16:00	Pyrene	0.045	mg/kg	ALS	RG MIULE SE-5 2019-09-06 1600
E	MIULE	660502	5493059	2019		2019-09-06	16:00	Quinoline	<0.010	mg/kg	ALS	RG MIULE SE-5 2019-09-06 1600
E	MIULE	660502	5493059	2019	5	2019-09-06	16:00	IACR (CCME)	0.48	-	ALS	RG MIULE SE-5 2019-09-06 1600
E	MIULE	660502	5493059	2019	5	2019-09-06	16:00	B(a)P Total Potency Equivalent	0.021	mg/kg	ALS	RG MIULE SE-5 2019-09-06 1600
E	MIULE	660502	5493059	2019		2019-09-06	16:00	Benzo(b+j+k)fluoranthene	0.051	mg/kg	ALS	RG MIULE SE-5 2019-09-06 1600
E	MIULE	660502	5493059	2019		2019-09-06	16:00	d8-Naphthalene	75	%	ALS	RG MIULE SE-5 2019-09-06 1600
E	MIULE	660502	5493059	2019	5	2019-09-06	16:00	d10-Acenaphthene	79	%	ALS	RG MIULE SE-5 2019-09-06 1600
E	MIULE	660502	5493059	2019	5	2019-09-06	16:00	d10-Phenanthrene	94	%	ALS	RG MIULE SE-5 2019-09-06 1600
E	MIULE	660502	5493059	2019	5	2019-09-06	16:00	d12-Chrysene	98	%	ALS	RG MIULE SE-5 2019-09-06 1600
E	MIULE	660502	5493059	2019		2019-09-06	16:00	% Gravel (>2 mm)	<1.0	%	ALS	RG MIULE SE-5 2019-09-06 1600
E	MIULE	660502	5493059	2019	5	2019-09-06	16:00	% Sand (2.00 mm - 1.00 mm)	<1.0	%	ALS	RG MIULE SE-5 2019-09-06 1600
E	MIULE	660502	5493059	2019	Ů	2019-09-06	16:00	% Sand (1.00 mm - 0.50 mm)	1.4	%	ALS	RG MIULE SE-5 2019-09-06 1600
E	MIULE	660502	5493059	2019		2019-09-06	16:00	% Sand (0.50 mm - 0.25 mm)	9.5	%	ALS	RG MIULE SE-5 2019-09-06 1600
E	MIULE	660502	5493059	2019		2019-09-06	16:00	% Sand (0.25 mm - 0.125 mm)	33	%	ALS	RG MIULE SE-5 2019-09-06 1600
E	MIULE	660502	5493059	2019	5	2019-09-06	16:00	% Sand (0.25 mm - 0.125 mm)	23	%	ALS	RG MIULE SE-5 2019-09-06 1600
E	MIULE	660502	5493059	2019		2019-09-06	16:00	% Salid (0.123 mm - 0.003 mm)	17	%	ALS	RG MIULE SE-5 2019-09-06 1600
E	MIULE	660502	5493059	2019	5	2019-09-06	16:00	% Silt (0.003 mm - 0.004 mm)	13	%	ALS	RG MIULE SE-5 2019-09-06 1600
E	MIULE	660502	5493059	2019	5	2019-09-06	16:00	% Clay (<4 μm)	2.3	%	ALS	RG MIULE SE-5 2019-09-06 1600
E	MIULE	660502	5493059	2019	5	2019-09-06	16:00	Texture	Loamy sand	/0	ALS	RG MIULE SE-5 2019-09-06 1600
=	MIULE	660502	5493059	2019		2019-09-06	16:00	Mercury (Hg)	0.035	mg/kg	ALS	RG_MIULE_SE-5_2019-09-06_1600
=	MIULE	660502	5493059	2019	5	2019-09-06	16:00	Aluminum (Al)	7,530		ALS	RG MIULE SE-5 2019-09-06 1600
=	MIULE	660502	5493059	2019		2019-09-06	16:00	Antimony (Sb)	0.69	mg/kg	ALS	RG MIULE SE-5 2019-09-06 1600
=	MIULE	660502	5493059	2019	5	2019-09-06	16:00		8.8	mg/kg	ALS	
					, ,		16:00	Arsenic (As)	126	mg/kg	ALS	RG_MIULE_SE-5_2019-09-06_1600
	MIULE	660502	5493059	2019		2019-09-06		Barium (Ba)		mg/kg		RG_MIULE_SE-5_2019-09-06_1600
E	MIULE	660502	5493059	2019	5	2019-09-06	16:00	Beryllium (Be)	0.66	mg/kg	ALS	RG_MIULE_SE-5_2019-09-06_1600
E	MIULE	660502	5493059	2019	5	2019-09-06	16:00	Bismuth (Bi)	<0.20	mg/kg	ALS	RG_MIULE_SE-5_2019-09-06_1600
	MIULE	660502	5493059	2019	5	2019-09-06	16:00	Boron (B)	<5.0	mg/kg	ALS	RG_MIULE_SE-5_2019-09-06_1600
E	MIULE	660502	5493059	2019	5	2019-09-06	16:00	Cadmium (Cd)	0.93	mg/kg	ALS	RG_MIULE_SE-5_2019-09-06_1600
E	MIULE	660502	5493059	2019		2019-09-06	16:00	Calcium (Ca)	38,600	mg/kg	ALS	RG_MIULE_SE-5_2019-09-06_1600
E	MIULE	660502	5493059	2019	+	2019-09-06	16:00	Chromium (Cr)	11	mg/kg	ALS	RG_MIULE_SE-5_2019-09-06_1600
E	MIULE	660502	5493059	2019		2019-09-06	16:00	Cobalt (Co)	11	mg/kg	ALS	RG_MIULE_SE-5_2019-09-06_1600
E	MIULE	660502	5493059	2019		2019-09-06	16:00	Copper (Cu)	12	mg/kg	ALS	RG_MIULE_SE-5_2019-09-06_1600
E	MIULE	660502	5493059	2019		2019-09-06	16:00	Iron (Fe)	18,900	mg/kg	ALS	RG_MIULE_SE-5_2019-09-06_1600
E	MIULE	660502	5493059	2019	5	2019-09-06	16:00	Lead (Pb)	8.6	mg/kg	ALS	RG_MIULE_SE-5_2019-09-06_1600
E	MIULE	660502	5493059	2019		2019-09-06	16:00	Lithium (Li)	11	mg/kg	ALS	RG_MIULE_SE-5_2019-09-06_1600
E	MIULE	660502	5493059	2019		2019-09-06	16:00	Magnesium (Mg)	6,050	mg/kg	ALS	RG_MIULE_SE-5_2019-09-06_1600
E	MIULE	660502	5493059	2019		2019-09-06	16:00	Manganese (Mn)	345	mg/kg	ALS	RG_MIULE_SE-5_2019-09-06_1600
E	MIULE	660502	5493059	2019		2019-09-06	16:00	Molybdenum (Mo)	1.9	mg/kg	ALS	RG_MIULE_SE-5_2019-09-06_1600
E	MIULE	660502	5493059	2019		2019-09-06	16:00	Nickel (Ni)	35	mg/kg	ALS	RG_MIULE_SE-5_2019-09-06_1600
	MIULE	660502	5493059	2019		2019-09-06	16:00	Phosphorus (P)	1,280	mg/kg	ALS	RG_MIULE_SE-5_2019-09-06_1600
E	MIULE	660502	5493059	2019		2019-09-06	16:00	Potassium (K)	1,300	mg/kg	ALS	RG_MIULE_SE-5_2019-09-06_1600
E	MIULE	660502	5493059	2019	5	2019-09-06	16:00	Selenium (Se)	0.68	mg/kg	ALS	RG_MIULE_SE-5_2019-09-06_1600
E	MIULE	660502	5493059	2019		2019-09-06	16:00	Silver (Ag)	0.12	mg/kg	ALS	RG_MIULE_SE-5_2019-09-06_1600
E	MIULE	660502	5493059	2019		2019-09-06	16:00	Sodium (Na)	63	mg/kg	ALS	RG_MIULE_SE-5_2019-09-06_1600
E	MIULE	660502	5493059	2019	5	2019-09-06	16:00	Strontium (Sr)	74	mg/kg	ALS	RG_MIULE_SE-5_2019-09-06_1600
E	MIULE	660502	5493059	2019	5	2019-09-06	16:00	Sulfur (S)	<1000	mg/kg	ALS	RG_MIULE_SE-5_2019-09-06_1600
E	MIULE	660502	5493059	2019	5	2019-09-06	16:00	Thallium (TI)	0.3	mg/kg	ALS	RG_MIULE_SE-5_2019-09-06_1600

WSP Canada Inc. Page 84 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Type -	Station	Location	ı (UTMs) ^(a)	Year	Poplicate	Data	Time	Analyta	Booult	Unit		Laboratory Information
ype	Station	Easting	Northing	rear	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MIULE	660502	5493059	2019	5	2019-09-06	16:00	Tin (Sn)	<2.0	mg/kg	ALS	RG_MIULE_SE-5_2019-09-06_1600
SE	MIULE	660502	5493059	2019	5	2019-09-06	16:00	Titanium (Ti)	8.9	mg/kg	ALS	RG MIULE SE-5 2019-09-06 1600
SE	MIULE	660502	5493059	2019	5	2019-09-06	16:00	Tungsten (W)	<0.50	mg/kg	ALS	RG MIULE SE-5 2019-09-06 1600
SE	MIULE	660502	5493059	2019	5	2019-09-06	16:00	Uranium (U)	0.75	mg/kg	ALS	RG MIULE SE-5 2019-09-06 1600
SE	MIULE	660502	5493059	2019	5	2019-09-06	16:00	Vanadium (V)	28	mg/kg	ALS	RG MIULE SE-5 2019-09-06 1600
SE	MIULE	660502	5493059	2019	5	2019-09-06	16:00	Zinc (Zn)	113	mg/kg	ALS	RG MIULE SE-5 2019-09-06 1600
SE.	MIULE	660502	5493059	2019	5	2019-09-06	16:00	Zirconium (Zr)	1.0	mg/kg	ALS	RG MIULE SE-5 2019-09-06 1600
SE	MIULE	660502	5493059	2019	5	2019-09-06	16:00	pH (1:2 soil:water)	7.6	pН	ALS	RG MIULE SE-5 2019-09-06 1600
SE	MIULE	660502	5493059	2019	5	2019-09-06	16:00	Total Organic Carbon	3.4	%	ALS	RG MIULE SE-5 2019-09-06 1600
SE	CORCK	668556	5487388	2019	1	2019-09-07	09:00	Moisture	58	%	ALS	RG CORCK SE-1 2019-09-07 0900
SE.	CORCK	668556	5487388	2019	1	2019-09-07	09:00	Acenaphthene	< 0.033	mg/kg	ALS	RG_CORCK_SE-1_2019-09-07_0900
SE.	CORCK	668556	5487388	2019	1	2019-09-07	09:00	Acenaphthylene	0.0066	mg/kg	ALS	RG CORCK SE-1 2019-09-07 0900
SE	CORCK	668556	5487388	2019	1	2019-09-07	09:00	Acridine	<0.055	mg/kg	ALS	RG CORCK SE-1 2019-09-07 0900
SE.	CORCK	668556	5487388	2019	1	2019-09-07	09:00	Anthracene	<0.0090	mg/kg	ALS	RG CORCK SE-1 2019-09-07 0900
ŝΕ	CORCK	668556	5487388	2019	1	2019-09-07	09:00	Benz(a)anthracene	0.035	mg/kg	ALS	RG_CORCK_SE-1_2019-09-07_0900
SE.	CORCK	668556	5487388	2019	1	2019-09-07	09:00	Benzo(a)pyrene	0.024	mg/kg	ALS	RG_CORCK_SE-1_2019-09-07_0900
SE	CORCK	668556	5487388	2019	1	2019-09-07	09:00	Benzo(b&j)fluoranthene	0.091	mg/kg	ALS	RG_CORCK_SE-1_2019-09-07_0900
SE	CORCK	668556	5487388	2019	1	2019-09-07	09:00	Benzo(g_h_i)perylene	0.059	mg/kg	ALS	RG CORCK SE-1 2019-09-07 0900
SE	CORCK	668556	5487388	2019	1	2019-09-07	09:00	Benzo(k)fluoranthene	<0.010	mg/kg	ALS	RG CORCK SE-1 2019-09-07 0900
SE.	CORCK	668556	5487388	2019	1	2019-09-07	09:00	Benzo(e)pyrene	0.12	mg/kg	ALS	RG_CORCK_SE-1_2019-09-07_0900
SE.	CORCK	668556	5487388	2019	1	2019-09-07	09:00	Chrysene	0.17	mg/kg	ALS	RG CORCK SE-1 2019-09-07 0900
SE.	CORCK	668556	5487388	2019	1	2019-09-07	09:00	Dibenz(a_h)anthracene	0.017	mg/kg	ALS	RG_CORCK_SE-1_2019-09-07_0900
SE	CORCK	668556	5487388	2019	1	2019-09-07	09:00	Fluoranthene	0.035	mg/kg	ALS	RG_CORCK_SE-1_2019-09-07_0900
SE	CORCK	668556	5487388	2019	1	2019-09-07	09:00	Fluorene	0.096	mg/kg	ALS	RG_CORCK_SE-1_2019-09-07_0900
SE	CORCK	668556	5487388	2019	1	2019-09-07	09:00	Indeno(1,2,3-c,d)pyrene	0.013	mg/kg	ALS	RG_CORCK_SE-1_2019-09-07_0900
SE	CORCK	668556	5487388	2019	1	2019-09-07	09:00	1-Methylnaphthalene	0.63	mg/kg	ALS	RG_CORCK_SE-1_2019-09-07_0900
SE	CORCK	668556	5487388	2019	1	2019-09-07	09:00	2-Methylnaphthalene	1.0	mg/kg	ALS	RG_CORCK_SE-1_2019-09-07_0900
SE	CORCK	668556	5487388	2019	1	2019-09-07	09:00	Naphthalene	0.36	mg/kg	ALS	RG_CORCK_SE-1_2019-09-07_0900
SE	CORCK	668556	5487388	2019	1	2019-09-07	09:00	Perylene	<0.010	mg/kg	ALS	RG_CORCK_SE-1_2019-09-07_0900
SE	CORCK	668556	5487388	2019	1	2019-09-07	09:00	Phenanthrene	0.49	mg/kg	ALS	RG_CORCK_SE-1_2019-09-07_0900
SE	CORCK	668556	5487388	2019	1	2019-09-07	09:00	Pyrene	0.063	mg/kg	ALS	RG CORCK SE-1 2019-09-07 0900
SE	CORCK	668556	5487388	2019	1	2019-09-07	09:00	Quinoline	<0.010	mg/kg	ALS	RG_CORCK_SE-1_2019-09-07_0900
SE	CORCK	668556	5487388	2019	1	2019-09-07	09:00	IACR (CCME)	0.93	-	ALS	RG_CORCK_SE-1_2019-09-07_0900
SE	CORCK	668556	5487388	2019	1	2019-09-07	09:00	B(a)P Total Potency Equivalent	0.057	mg/kg	ALS	RG_CORCK_SE-1_2019-09-07_0900
SE	CORCK	668556	5487388	2019	1	2019-09-07	09:00	Benzo(b+j+k)fluoranthene	0.094	mg/kg	ALS	RG_CORCK_SE-1_2019-09-07_0900
SE	CORCK	668556	5487388	2019	1	2019-09-07	09:00	d8-Naphthalene	76	%	ALS	RG_CORCK_SE-1_2019-09-07_0900
SE	CORCK	668556	5487388	2019	1	2019-09-07	09:00	d10-Acenaphthene	78	%	ALS	RG_CORCK_SE-1_2019-09-07_0900
SE	CORCK	668556	5487388	2019	1	2019-09-07	09:00	d10-Phenanthrene	82	%	ALS	RG_CORCK_SE-1_2019-09-07_0900
SE	CORCK	668556	5487388	2019	1	2019-09-07	09:00	d12-Chrysene	88	%	ALS	RG_CORCK_SE-1_2019-09-07_0900
SE	CORCK	668556	5487388	2019	1	2019-09-07	09:00	% Gravel (>2 mm)	<1.0	%	ALS	RG_CORCK_SE-1_2019-09-07_0900
SE	CORCK	668556	5487388	2019	1	2019-09-07	09:00	% Sand (2.00 mm - 1.00 mm)	2.3	%	ALS	RG_CORCK_SE-1_2019-09-07_0900
SE	CORCK	668556	5487388	2019	1	2019-09-07	09:00	% Sand (1.00 mm - 0.50 mm)	5.1	%	ALS	RG_CORCK_SE-1_2019-09-07_0900
SE	CORCK	668556	5487388	2019	1	2019-09-07	09:00	% Sand (0.50 mm - 0.25 mm)	10	%	ALS	RG_CORCK_SE-1_2019-09-07_0900
SE	CORCK	668556	5487388	2019	1	2019-09-07	09:00	% Sand (0.25 mm - 0.125 mm)	11	%	ALS	RG_CORCK_SE-1_2019-09-07_0900
SE	CORCK	668556	5487388	2019	1	2019-09-07	09:00	% Sand (0.125 mm - 0.063 mm)	4.7	%	ALS	RG_CORCK_SE-1_2019-09-07_0900
SE	CORCK	668556	5487388	2019	1	2019-09-07	09:00	% Silt (0.063 mm - 0.0312 mm)	25	%	ALS	RG_CORCK_SE-1_2019-09-07_0900
SE	CORCK	668556	5487388	2019	1	2019-09-07	09:00	% Silt (0.031 mm - 0.004 mm)	35	%	ALS	RG CORCK SE-1 2019-09-07 0900

WSP Canada Inc. Page 85 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Type	Station	Location	(UTMs) ^(a)	Year	Replicate	Date	Time	Analyta	Result	Unit		Laboratory Information
ype	Station	Easting	Northing	rear	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
E	CORCK	668556	5487388	2019	1	2019-09-07	09:00	% Clay (<4 μm)	5.8	%	ALS	RG_CORCK_SE-1_2019-09-07_0900
E	CORCK	668556	5487388	2019	1	2019-09-07	09:00	Texture	Silt loam	-	ALS	RG_CORCK_SE-1_2019-09-07_0900
E	CORCK	668556	5487388	2019		2019-09-07	09:00	Mercury (Hg)	0.011	mg/kg	ALS	RG CORCK SE-1 2019-09-07 0900
E	CORCK	668556	5487388	2019	1	2019-09-07	09:00	Aluminum (Al)	2,430	mg/kg	ALS	RG CORCK SE-1 2019-09-07 0900
SE .	CORCK	668556	5487388	2019	1	2019-09-07	09:00	Antimony (Sb)	0.35	mg/kg	ALS	RG CORCK SE-1 2019-09-07 0900
SE	CORCK	668556	5487388	2019	1	2019-09-07	09:00	Arsenic (As)	2.9	mg/kg	ALS	RG CORCK SE-1 2019-09-07 0900
SE	CORCK	668556	5487388	2019		2019-09-07	09:00	Barium (Ba)	240	mg/kg	ALS	RG CORCK SE-1 2019-09-07 0900
SE	CORCK	668556	5487388	2019		2019-09-07	09:00	Beryllium (Be)	0.4	mg/kg	ALS	RG CORCK SE-1 2019-09-07 0900
SE	CORCK	668556	5487388	2019		2019-09-07	09:00	Bismuth (Bi)	<0.20	mg/kg	ALS	RG CORCK SE-1 2019-09-07 0900
SE	CORCK	668556	5487388	2019		2019-09-07	09:00	Boron (B)	5.8	mg/kg	ALS	RG CORCK SE-1 2019-09-07 0900
SE	CORCK	668556	5487388	2019		2019-09-07	09:00	Cadmium (Cd)	11	mg/kg	ALS	RG CORCK SE-1 2019-09-07 0900
SE	CORCK	668556	5487388	2019		2019-09-07	09:00	Calcium (Ca)	398,000	mg/kg	ALS	RG CORCK SE-1 2019-09-07 0900
SE	CORCK	668556	5487388	2019		2019-09-07	09:00	Chromium (Cr)	3.8	mg/kg	ALS	RG CORCK SE-1 2019-09-07 0900
SE	CORCK	668556	5487388	2019		2019-09-07	09:00	Cobalt (Co)	434	mg/kg	ALS	RG CORCK SE-1 2019-09-07 0900
SE	CORCK	668556	5487388	2019		2019-09-07	09:00	Copper (Cu)	7.5	mg/kg	ALS	RG CORCK SE-1 2019-09-07 0900
SE	CORCK	668556	5487388	2019		2019-09-07	09:00	Iron (Fe)	3,980	mg/kg	ALS	RG_CORCK_SE-1_2019-09-07_0900
SE	CORCK	668556	5487388	2019		2019-09-07	09:00	Lead (Pb)	3.2	mg/kg	ALS	RG_CORCK_SE-1_2019-09-07_0900
SE	CORCK	668556	5487388	2019		2019-09-07	09:00	Lithium (Li)	3.7	mg/kg	ALS	RG CORCK SE-1 2019-09-07 0900
SE	CORCK	668556	5487388	2019	1	2019-09-07	09:00	Magnesium (Mg)	7,830	mg/kg	ALS	RG CORCK SE-1 2019-09-07 0900
SE	CORCK	668556	5487388	2019	1	2019-09-07	09:00	Manganese (Mn)	3,220	mg/kg	ALS	RG CORCK SE-1 2019-09-07 0900
SE	CORCK	668556	5487388	2019		2019-09-07	09:00	Molybdenum (Mo)	0.98	mg/kg	ALS	RG CORCK SE-1 2019-09-07 0900
SE	CORCK	668556	5487388	2019		2019-09-07	09:00	Nickel (Ni)	365	mg/kg	ALS	RG_CORCK_SE-1_2019-09-07_0900
SE	CORCK	668556	5487388	2019		2019-09-07	09:00	Phosphorus (P)	328	mg/kg	ALS	RG CORCK SE-1 2019-09-07 0900
SE	CORCK	668556	5487388	2019		2019-09-07	09:00	Potassium (K)	620	mg/kg	ALS	RG CORCK SE-1 2019-09-07 0900
SE	CORCK	668556	5487388	2019		2019-09-07	09:00	Selenium (Se)	2.3	mg/kg	ALS	RG CORCK SE-1 2019-09-07 0900
SE	CORCK	668556	5487388	2019		2019-09-07	09:00	Silver (Ag)	<0.10	mg/kg	ALS	RG CORCK SE-1 2019-09-07 0900
SE	CORCK	668556	5487388	2019	1	2019-09-07	09:00	Sodium (Na)	340	mg/kg	ALS	RG_CORCK_SE-1_2019-09-07_0900
SE	CORCK	668556	5487388	2019	1	2019-09-07	09:00	Strontium (Sr)	482	mg/kg	ALS	RG_CORCK_SE-1_2019-09-07_0900
SE	CORCK	668556	5487388	2019		2019-09-07	09:00	Sulfur (S)	5,500	mg/kg	ALS	RG_CORCK_SE-1_2019-09-07_0900
SE	CORCK	668556	5487388	2019		2019-09-07	09:00	Thallium (TI)	0.31	mg/kg	ALS	RG CORCK SE-1 2019-09-07 0900
SE	CORCK	668556	5487388	2019		2019-09-07	09:00	Tin (Sn)	<2.0	mg/kg	ALS	RG_CORCK_SE-1_2019-09-07_0900
SE	CORCK	668556	5487388	2019	_	2019-09-07	09:00	Titanium (Ti)	9.3	mg/kg	ALS	RG CORCK SE-1 2019-09-07 0900
SE	CORCK	668556	5487388	2019		2019-09-07	09:00	Tungsten (W)	<0.50	mg/kg	ALS	RG_CORCK_SE-1_2019-09-07_0900
SE	CORCK	668556	5487388	2019	_	2019-09-07	09:00	Uranium (U)	2.7	mg/kg	ALS	RG CORCK SE-1 2019-09-07 0900
SE	CORCK	668556	5487388	2019		2019-09-07	09:00	Vanadium (V)	7.9	mg/kg	ALS	RG CORCK SE-1 2019-09-07 0900
SE	CORCK	668556	5487388	2019		2019-09-07	09:00	Zinc (Zn)	1,150	mg/kg	ALS	RG CORCK SE-1 2019-09-07 0900
SE	CORCK	668556	5487388	2019		2019-09-07	09:00	Zirconium (Zr)	<1.0	mg/kg	ALS	RG CORCK SE-1 2019-09-07 0900
SE	CORCK	668556	5487388	2019		2019-09-07	09:00	pH (1:2 soil:water)	8.1	pН	ALS	RG CORCK SE-1 2019-09-07 0900
SE	CORCK	668556	5487388	2019		2019-09-07	09:00	Total Organic Carbon	8.7	%	ALS	RG CORCK SE-1 2019-09-07 0900
SE	CORCK	668556	5487388	2019		2019-09-07	09:30	Moisture	69	%	ALS	RG CORCK SE-2 2019-09-07 0930
SE	CORCK	668556	5487388	2019		2019-09-07	09:30	Acenaphthene	<0.060	mg/kg	ALS	RG CORCK SE-2 2019-09-07 0930
SE SE	CORCK	668556	5487388	2019		2019-09-07	09:30	Acenaphthylene	0.0097	mg/kg	ALS	RG CORCK SE-2 2019-09-07 0930
SE	CORCK	668556	5487388	2019		2019-09-07	09:30	Acridine	<0.10	mg/kg	ALS	RG CORCK SE-2 2019-09-07 0930
SE	CORCK	668556	5487388	2019		2019-09-07	09:30	Anthracene	<0.0064	mg/kg	ALS	RG CORCK SE-2 2019-09-07 0930
SE	CORCK	668556	5487388	2019		2019-09-07	09:30	Benz(a)anthracene	0.069	mg/kg	ALS	RG CORCK SE-2 2019-09-07 0930
												RG CORCK SE-2 2019-09-07 0930
SE	CORCK	668556	5487388	2019	2	2019-09-07	09:30	Benzo(a)pyrene	0.054	mg/kg	ALS	IRG CORCK SE-2 2019-09-07 0930

WSP Canada Inc. Page 86 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	Station		າ (UTMs) ^(a)		T i			Analysis	Popult	Unit		Laboratory Information
Type	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	CORCK	668556	5487388	2019	2	2019-09-07	09:30	Benzo(g_h_i)perylene	0.12	mg/kg	ALS	RG_CORCK_SE-2_2019-09-07_0930
SE	CORCK	668556	5487388	2019	2	2019-09-07	09:30	Benzo(k)fluoranthene	<0.016	mg/kg	ALS	RG_CORCK_SE-2_2019-09-07_0930
SE	CORCK	668556	5487388	2019	2	2019-09-07	09:30	Benzo(e)pyrene	0.23	mg/kg	ALS	RG_CORCK_SE-2_2019-09-07_0930
SE	CORCK	668556	5487388	2019	2	2019-09-07	09:30	Chrysene	0.31	mg/kg	ALS	RG_CORCK_SE-2_2019-09-07_0930
SE	CORCK	668556	5487388	2019	2	2019-09-07	09:30	Dibenz(a_h)anthracene	0.034	mg/kg	ALS	RG_CORCK_SE-2_2019-09-07_0930
SE	CORCK	668556	5487388	2019	2	2019-09-07	09:30	Fluoranthene	0.068	mg/kg	ALS	RG_CORCK_SE-2_2019-09-07_0930
SE	CORCK	668556	5487388	2019	2	2019-09-07	09:30	Fluorene	0.18	mg/kg	ALS	RG_CORCK_SE-2_2019-09-07_0930
SE	CORCK	668556	5487388	2019	2	2019-09-07	09:30	Indeno(1,2,3-c,d)pyrene	0.027	mg/kg	ALS	RG_CORCK_SE-2_2019-09-07_0930
SE	CORCK	668556	5487388	2019	2	2019-09-07	09:30	1-Methylnaphthalene	1.1	mg/kg	ALS	RG_CORCK_SE-2_2019-09-07_0930
SE	CORCK	668556	5487388	2019	2	2019-09-07	09:30	2-Methylnaphthalene	1.9	mg/kg	ALS	RG_CORCK_SE-2_2019-09-07_0930
SE	CORCK	668556	5487388	2019	2	2019-09-07	09:30	Naphthalene	0.65	mg/kg	ALS	RG_CORCK_SE-2_2019-09-07_0930
SE	CORCK	668556	5487388	2019	2	2019-09-07	09:30	Perylene	<0.016	mg/kg	ALS	RG_CORCK_SE-2_2019-09-07_0930
SE	CORCK	668556	5487388	2019	2	2019-09-07	09:30	Phenanthrene	0.87	mg/kg	ALS	RG_CORCK_SE-2_2019-09-07_0930
SE	CORCK	668556	5487388	2019	2	2019-09-07	09:30	Pyrene	0.11	mg/kg	ALS	RG_CORCK_SE-2_2019-09-07_0930
SE	CORCK	668556	5487388	2019	2	2019-09-07	09:30	Quinoline	<0.016	mg/kg	ALS	RG_CORCK_SE-2_2019-09-07_0930
SE	CORCK	668556	5487388	2019	2	2019-09-07	09:30	IACR (CCME)	1.8	-	ALS	RG_CORCK_SE-2_2019-09-07_0930
SE	CORCK	668556	5487388	2019	2	2019-09-07	09:30	B(a)P Total Potency Equivalent	0.12	mg/kg	ALS	RG_CORCK_SE-2_2019-09-07_0930
SE	CORCK	668556	5487388	2019	2	2019-09-07	09:30	Benzo(b+j+k)fluoranthene	0.18	mg/kg	ALS	RG_CORCK_SE-2_2019-09-07_0930
SE	CORCK	668556	5487388	2019	2	2019-09-07	09:30	d8-Naphthalene	81	%	ALS	RG_CORCK_SE-2_2019-09-07_0930
SE	CORCK	668556	5487388	2019	2	2019-09-07	09:30	d10-Acenaphthene	84	%	ALS	RG_CORCK_SE-2_2019-09-07_0930
SE	CORCK	668556	5487388	2019	2	2019-09-07	09:30	d10-Phenanthrene	87	%	ALS	RG_CORCK_SE-2_2019-09-07_0930
SE	CORCK	668556	5487388	2019	2	2019-09-07	09:30	d12-Chrysene	96	%	ALS	RG_CORCK_SE-2_2019-09-07_0930
SE	CORCK	668556	5487388	2019	2	2019-09-07	09:30	% Gravel (>2 mm)	<1.0	%	ALS	RG_CORCK_SE-2_2019-09-07_0930
SE	CORCK	668556	5487388	2019	2	2019-09-07	09:30	% Sand (2.00 mm - 1.00 mm)	1.6	%	ALS	RG_CORCK_SE-2_2019-09-07_0930
SE	CORCK	668556	5487388	2019	2	2019-09-07	09:30	% Sand (1.00 mm - 0.50 mm)	3.8	%	ALS	RG_CORCK_SE-2_2019-09-07_0930
SE	CORCK	668556	5487388	2019	2	2019-09-07	09:30	% Sand (0.50 mm - 0.25 mm)	5.4	%	ALS	RG_CORCK_SE-2_2019-09-07_0930
SE	CORCK	668556	5487388	2019	2	2019-09-07	09:30	% Sand (0.25 mm - 0.125 mm)	6.4	%	ALS	RG_CORCK_SE-2_2019-09-07_0930
SE	CORCK	668556	5487388	2019	2	2019-09-07	09:30	% Sand (0.125 mm - 0.063 mm)	3.3	%	ALS	RG_CORCK_SE-2_2019-09-07_0930
SE	CORCK	668556	5487388	2019	2	2019-09-07	09:30	% Silt (0.063 mm - 0.0312 mm)	32	%	ALS	RG_CORCK_SE-2_2019-09-07_0930
SE	CORCK	668556	5487388	2019	2	2019-09-07	09:30	% Silt (0.031 mm - 0.004 mm)	42	%	ALS	RG_CORCK_SE-2_2019-09-07_0930
SE	CORCK	668556	5487388	2019	2	2019-09-07	09:30	% Clay (<4 μm)	5.4	%	ALS	RG_CORCK_SE-2_2019-09-07_0930
SE	CORCK	668556	5487388	2019	2	2019-09-07	09:30	Texture	Silt loam	-	ALS	RG_CORCK_SE-2_2019-09-07_0930
SE	CORCK	668556	5487388	2019	2	2019-09-07	09:30	Mercury (Hg)	0.014	mg/kg	ALS	RG_CORCK_SE-2_2019-09-07_0930
SE	CORCK	668556	5487388	2019	2	2019-09-07	09:30	Aluminum (AI)	2,180	mg/kg	ALS	RG_CORCK_SE-2_2019-09-07_0930
SE	CORCK	668556	5487388	2019	2	2019-09-07	09:30	Antimony (Sb)	0.32	mg/kg	ALS	RG_CORCK_SE-2_2019-09-07_0930
SE	CORCK	668556	5487388	2019	2	2019-09-07	09:30	Arsenic (As)	2.3	mg/kg	ALS	RG_CORCK_SE-2_2019-09-07_0930
SE	CORCK	668556	5487388	2019	2	2019-09-07	09:30	Barium (Ba)	205	mg/kg	ALS	RG_CORCK_SE-2_2019-09-07_0930
SE	CORCK	668556	5487388	2019	2	2019-09-07	09:30	Beryllium (Be)	0.37	mg/kg	ALS	RG_CORCK_SE-2_2019-09-07_0930
SE	CORCK	668556	5487388	2019	2	2019-09-07	09:30	Bismuth (Bi)	<0.20	mg/kg	ALS	RG_CORCK_SE-2_2019-09-07_0930
SE	CORCK	668556	5487388	2019	2	2019-09-07	09:30	Boron (B)	9.0	mg/kg	ALS	RG_CORCK_SE-2_2019-09-07_0930
SE	CORCK	668556	5487388	2019	2	2019-09-07	09:30	Cadmium (Cd)	10	mg/kg	ALS	RG_CORCK_SE-2_2019-09-07_0930
SE	CORCK	668556	5487388	2019	2	2019-09-07	09:30	Calcium (Ca)	381,000	mg/kg	ALS	RG_CORCK_SE-2_2019-09-07_0930
SE	CORCK	668556	5487388	2019	2	2019-09-07	09:30	Chromium (Cr)	3.6	mg/kg	ALS	RG_CORCK_SE-2_2019-09-07_0930
SE	CORCK	668556	5487388	2019	2	2019-09-07	09:30	Cobalt (Co)	343	mg/kg	ALS	RG_CORCK_SE-2_2019-09-07_0930
SE	CORCK	668556	5487388	2019	2	2019-09-07	09:30	Copper (Cu)	7.2	mg/kg	ALS	RG_CORCK_SE-2_2019-09-07_0930
SE	CORCK	668556	5487388	2019	2	2019-09-07	09:30	Iron (Fe)	2,950	mg/kg	ALS	RG_CORCK_SE-2_2019-09-07_0930
SE	CORCK	668556	5487388	2019	2	2019-09-07	09:30	Lead (Pb)	2.6	mg/kg	ALS	RG_CORCK_SE-2_2019-09-07_0930

WSP Canada Inc. Page 87 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Type -	Station	Location	ı (UTMs) ^(a)	Year	Poplicate	Data	Time	Analyta	Popult	Unit		Laboratory Information
ype	Station	Easting	Northing	rear	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE.	CORCK	668556	5487388	2019	2	2019-09-07	09:30	Lithium (Li)	3.2	mg/kg	ALS	RG CORCK SE-2 2019-09-07 0930
Ε	CORCK	668556	5487388	2019	2	2019-09-07	09:30	Magnesium (Mg)	7,940	mg/kg	ALS	RG CORCK SE-2 2019-09-07 0930
E	CORCK	668556	5487388	2019	2	2019-09-07	09:30	Manganese (Mn)	2,650	mg/kg	ALS	RG CORCK SE-2 2019-09-07 0930
Е	CORCK	668556	5487388	2019	2	2019-09-07	09:30	Molybdenum (Mo)	0.83	mg/kg	ALS	RG CORCK SE-2 2019-09-07 0930
Ε	CORCK	668556	5487388	2019	2	2019-09-07	09:30	Nickel (Ni)	319	mg/kg	ALS	RG CORCK SE-2 2019-09-07 0930
Ε	CORCK	668556	5487388	2019	2	2019-09-07	09:30	Phosphorus (P)	426	mg/kg	ALS	RG_CORCK_SE-2_2019-09-07_0930
E	CORCK	668556	5487388	2019	2	2019-09-07	09:30	Potassium (K)	750	mg/kg	ALS	RG CORCK SE-2 2019-09-07 0930
SE.	CORCK	668556	5487388	2019	2	2019-09-07	09:30	Selenium (Se)	3.2	mg/kg	ALS	RG CORCK SE-2 2019-09-07 0930
SE.	CORCK	668556	5487388	2019	2	2019-09-07	09:30	Silver (Ag)	<0.10	mg/kg	ALS	RG CORCK SE-2 2019-09-07 0930
SE	CORCK	668556	5487388	2019	2	2019-09-07	09:30	Sodium (Na)	355	mg/kg	ALS	RG CORCK SE-2 2019-09-07 0930
SE	CORCK	668556	5487388	2019	2	2019-09-07	09:30	Strontium (Sr)	401	mg/kg	ALS	RG_CORCK_SE-2_2019-09-07_0930
SE	CORCK	668556	5487388	2019	2	2019-09-07	09:30	Sulfur (S)	6,000	mg/kg	ALS	RG CORCK SE-2 2019-09-07 0930
SE	CORCK	668556	5487388	2019	2	2019-09-07	09:30	Thallium (TI)	0.24	mg/kg	ALS	RG CORCK SE-2 2019-09-07 0930
SE	CORCK	668556	5487388	2019	2	2019-09-07	09:30	Tin (Sn)	<2.0	mg/kg	ALS	RG CORCK SE-2 2019-09-07 0930
SE	CORCK	668556	5487388	2019	2	2019-09-07	09:30	Titanium (Ti)	8.6	mg/kg	ALS	RG_CORCK_SE-2_2019-09-07_0930
SE	CORCK	668556	5487388	2019	2	2019-09-07	09:30	Tungsten (W)	<0.50	mg/kg	ALS	RG_CORCK_SE-2_2019-09-07_0930
SE	CORCK	668556	5487388	2019	2	2019-09-07	09:30	Uranium (U)	2.3	mg/kg	ALS	RG_CORCK_SE-2_2019-09-07_0930
SE	CORCK	668556	5487388	2019	2	2019-09-07	09:30	Vanadium (V)	7.1	mg/kg	ALS	RG CORCK SE-2 2019-09-07 0930
SE	CORCK	668556	5487388	2019	2	2019-09-07	09:30	Zinc (Zn)	915	mg/kg	ALS	RG CORCK SE-2 2019-09-07 0930
SE	CORCK	668556	5487388	2019	2	2019-09-07	09:30	Zirconium (Zr)	<1.0	mg/kg	ALS	RG CORCK SE-2 2019-09-07 0930
SE.	CORCK	668556	5487388	2019	2	2019-09-07	09:30	pH (1:2 soil:water)	7.9	рН	ALS	RG CORCK SE-2 2019-09-07 0930
SE	CORCK	668556	5487388	2019	2	2019-09-07	09:30	Total Organic Carbon	9.9	%	ALS	RG CORCK SE-2 2019-09-07 0930
SE	CORCK	668556	5487388	2019	3	2019-09-07	10:15	Moisture	65	%	ALS	RG_CORCK_SE-3_2019-09-07_1015
SE	CORCK	668556	5487388	2019	3	2019-09-07	10:15	Acenaphthene	<0.056	mg/kg	ALS	RG CORCK SE-3 2019-09-07 1015
SE	CORCK	668556	5487388	2019	3	2019-09-07	10:15	Acenaphthylene	0.012	mg/kg	ALS	RG_CORCK_SE-3_2019-09-07_1015
SE	CORCK	668556	5487388	2019	3	2019-09-07	10:15	Acridine	<0.10	mg/kg	ALS	RG_CORCK_SE-3_2019-09-07_1015
SE	CORCK	668556	5487388	2019	3	2019-09-07	10:15	Anthracene	<0.014	mg/kg	ALS	RG_CORCK_SE-3_2019-09-07_1015
SE	CORCK	668556	5487388	2019	3	2019-09-07	10:15	Benz(a)anthracene	0.063	mg/kg	ALS	RG_CORCK_SE-3_2019-09-07_1015
SE	CORCK	668556	5487388	2019	3	2019-09-07	10:15	Benzo(a)pyrene	0.043	mg/kg	ALS	RG_CORCK_SE-3_2019-09-07_1015
SE	CORCK	668556	5487388	2019	3	2019-09-07	10:15	Benzo(b&j)fluoranthene	0.16	mg/kg	ALS	RG_CORCK_SE-3_2019-09-07_1015
SE	CORCK	668556	5487388	2019	3	2019-09-07	10:15	Benzo(g_h_i)perylene	0.11	mg/kg	ALS	RG_CORCK_SE-3_2019-09-07_1015
SE	CORCK	668556	5487388	2019	3	2019-09-07	10:15	Benzo(k)fluoranthene	<0.014	mg/kg	ALS	RG_CORCK_SE-3_2019-09-07_1015
SE	CORCK	668556	5487388	2019	3	2019-09-07	10:15	Benzo(e)pyrene	0.21	mg/kg	ALS	RG_CORCK_SE-3_2019-09-07_1015
SE	CORCK	668556	5487388	2019	3	2019-09-07	10:15	Chrysene	0.31	mg/kg	ALS	RG_CORCK_SE-3_2019-09-07_1015
SE	CORCK	668556	5487388	2019	3	2019-09-07	10:15	Dibenz(a_h)anthracene	0.032	mg/kg	ALS	RG_CORCK_SE-3_2019-09-07_1015
SE	CORCK	668556	5487388	2019	3	2019-09-07	10:15	Fluoranthene	0.061	mg/kg	ALS	RG_CORCK_SE-3_2019-09-07_1015
SE	CORCK	668556	5487388	2019	3	2019-09-07	10:15	Fluorene	0.17	mg/kg	ALS	RG_CORCK_SE-3_2019-09-07_1015
SE	CORCK	668556	5487388	2019	3	2019-09-07	10:15	Indeno(1,2,3-c,d)pyrene	0.023	mg/kg	ALS	RG_CORCK_SE-3_2019-09-07_1015
SE	CORCK	668556	5487388	2019	3	2019-09-07	10:15	1-Methylnaphthalene	1.0	mg/kg	ALS	RG_CORCK_SE-3_2019-09-07_1015
SE	CORCK	668556	5487388	2019	3	2019-09-07	10:15	2-Methylnaphthalene	1.7	mg/kg	ALS	RG_CORCK_SE-3_2019-09-07_1015
SE.	CORCK	668556	5487388	2019	3	2019-09-07	10:15	Naphthalene	0.56	mg/kg	ALS	RG_CORCK_SE-3_2019-09-07_1015
SE	CORCK	668556	5487388	2019	3	2019-09-07	10:15	Perylene	<0.014	mg/kg	ALS	RG_CORCK_SE-3_2019-09-07_1015
SE	CORCK	668556	5487388	2019	3	2019-09-07	10:15	Phenanthrene	0.83	mg/kg	ALS	RG_CORCK_SE-3_2019-09-07_1015
SE	CORCK	668556	5487388	2019	3	2019-09-07	10:15	Pyrene	0.11	mg/kg	ALS	RG_CORCK_SE-3_2019-09-07_1015
SE	CORCK	668556	5487388	2019	3	2019-09-07	10:15	Quinoline	<0.014	mg/kg	ALS	RG_CORCK_SE-3_2019-09-07_1015
SE	CORCK	668556	5487388	2019	3	2019-09-07	10:15	IACR (CCME)	1.6	-	ALS	RG_CORCK_SE-3_2019-09-07_1015
SE	CORCK	668556	5487388	2019	3	2019-09-07	10:15	B(a)P Total Potency Equivalent	0.1	mg/kg	ALS	RG_CORCK_SE-3_2019-09-07_1015

WSP Canada Inc. Page 88 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Type	Station	Location	(UTMs) ^(a)	Year	Replicate	Date	Time	Analyta	Result	Unit		Laboratory Information
уре	Station	Easting	Northing	rear	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	CORCK	668556	5487388	2019	3	2019-09-07	10:15	Benzo(b+j+k)fluoranthene	0.16	mg/kg	ALS	RG CORCK SE-3 2019-09-07 1015
SE.	CORCK	668556	5487388	2019	3	2019-09-07	10:15	d8-Naphthalene	72	%	ALS	RG_CORCK_SE-3_2019-09-07_1015
SE.	CORCK	668556	5487388	2019	3	2019-09-07	10:15	d10-Acenaphthene	77	%	ALS	RG CORCK SE-3 2019-09-07 1015
SE .	CORCK	668556	5487388	2019	3	2019-09-07	10:15	d10-Phenanthrene	83	%	ALS	RG CORCK SE-3 2019-09-07 1015
SE	CORCK	668556	5487388	2019	3	2019-09-07	10:15	d12-Chrysene	91	%	ALS	RG CORCK SE-3 2019-09-07 1015
SE	CORCK	668556	5487388	2019	3	2019-09-07	10:15	% Gravel (>2 mm)	<1.0	%	ALS	RG_CORCK_SE-3_2019-09-07_1015
SE	CORCK	668556	5487388	2019	3	2019-09-07	10:15	% Sand (2.00 mm - 1.00 mm)	<1.0	%	ALS	RG CORCK SE-3 2019-09-07 1015
SE.	CORCK	668556	5487388	2019	3	2019-09-07	10:15	% Sand (1.00 mm - 0.50 mm)	1.1	%	ALS	RG CORCK SE-3 2019-09-07 1015
SE	CORCK	668556	5487388	2019	3	2019-09-07	10:15	% Sand (0.50 mm - 0.25 mm)	2.2	%	ALS	RG_CORCK_SE-3_2019-09-07_1015
SE	CORCK	668556	5487388	2019	3	2019-09-07	10:15	% Sand (0.25 mm - 0.125 mm)	5.1	%	ALS	RG CORCK SE-3 2019-09-07 1015
SE.	CORCK	668556	5487388	2019	3	2019-09-07	10:15	% Sand (0.125 mm - 0.063 mm)	3.8	%	ALS	RG_CORCK_SE-3_2019-09-07_1015
SE	CORCK	668556	5487388	2019	3	2019-09-07	10:15	% Silt (0.063 mm - 0.0312 mm)	33	%	ALS	RG CORCK SE-3 2019-09-07 1015
SE	CORCK	668556	5487388	2019	3	2019-09-07	10:15	% Silt (0.031 mm - 0.004 mm)	47	%	ALS	RG_CORCK_SE-3_2019-09-07_1015
SE	CORCK	668556	5487388	2019	3	2019-09-07	10:15	% Clay (<4 μm)	6.6	%	ALS	RG CORCK SE-3 2019-09-07 1015
SE	CORCK	668556	5487388	2019	3	2019-09-07	10:15	Texture	Silt	-	ALS	RG CORCK SE-3 2019-09-07 1015
SE .	CORCK	668556	5487388	2019	3	2019-09-07	10:15	Mercury (Hg)	0.013	mg/kg	ALS	RG CORCK SE-3 2019-09-07 1015
SE	CORCK	668556	5487388	2019	3	2019-09-07	10:15	Aluminum (Al)	2,780	mg/kg	ALS	RG CORCK SE-3 2019-09-07 1015
SE.	CORCK	668556	5487388	2019	3	2019-09-07	10:15	Antimony (Sb)	0.32	mg/kg	ALS	RG CORCK SE-3 2019-09-07 1015
SE.	CORCK	668556	5487388	2019	3	2019-09-07	10:15	Arsenic (As)	2.6	mg/kg	ALS	RG CORCK SE-3 2019-09-07 1015
E	CORCK	668556	5487388	2019	3	2019-09-07	10:15	Barium (Ba)	212	mg/kg	ALS	RG CORCK SE-3 2019-09-07 1015
SE	CORCK	668556	5487388	2019	3	2019-09-07	10:15	Beryllium (Be)	0.39	mg/kg	ALS	RG CORCK SE-3 2019-09-07 1015
SE.	CORCK	668556	5487388	2019	3	2019-09-07	10:15	Bismuth (Bi)	<0.20	mg/kg	ALS	RG CORCK SE-3 2019-09-07 1015
SE	CORCK	668556	5487388	2019	3	2019-09-07	10:15	Boron (B)	8.1	mg/kg	ALS	RG CORCK SE-3 2019-09-07 1015
SE	CORCK	668556	5487388	2019	3	2019-09-07	10:15	Cadmium (Cd)	11	mg/kg	ALS	RG CORCK SE-3 2019-09-07 1015
SE	CORCK	668556	5487388	2019	3	2019-09-07	10:15	Calcium (Ca)	397,000	mg/kg	ALS	RG CORCK SE-3 2019-09-07 1015
SE	CORCK	668556	5487388	2019	3	2019-09-07	10:15	Chromium (Cr)	4.1	mg/kg	ALS	RG CORCK SE-3 2019-09-07 1015
SE	CORCK	668556	5487388	2019	3	2019-09-07	10:15	Cobalt (Co)	391	mg/kg	ALS	RG CORCK SE-3 2019-09-07 1015
SE	CORCK	668556	5487388	2019	3	2019-09-07	10:15	Copper (Cu)	7.8	mg/kg	ALS	RG CORCK SE-3 2019-09-07 1015
SE	CORCK	668556	5487388	2019	3	2019-09-07	10:15	Iron (Fe)	3,330	mg/kg	ALS	RG CORCK SE-3 2019-09-07 1015
SE	CORCK	668556	5487388	2019	3	2019-09-07	10:15	Lead (Pb)	2.9	mg/kg	ALS	RG_CORCK_SE-3_2019-09-07_1015
SE	CORCK	668556	5487388	2019	3	2019-09-07	10:15	Lithium (Li)	3.6	mg/kg	ALS	RG_CORCK_SE-3_2019-09-07_1015
SE	CORCK	668556	5487388	2019	3	2019-09-07	10:15	Magnesium (Mg)	8,010	mg/kg	ALS	RG CORCK SE-3 2019-09-07 1015
SE	CORCK	668556	5487388	2019	3	2019-09-07	10:15	Manganese (Mn)	2,960	mg/kg	ALS	RG_CORCK_SE-3_2019-09-07_1015
SE	CORCK	668556	5487388	2019	3	2019-09-07	10:15	Molybdenum (Mo)	0.89	mg/kg	ALS	RG_CORCK_SE-3_2019-09-07_1015
SE	CORCK	668556	5487388	2019	3	2019-09-07	10:15	Nickel (Ni)	313	mg/kg	ALS	RG_CORCK_SE-3_2019-09-07_1015
SE	CORCK	668556	5487388	2019	3	2019-09-07	10:15	Phosphorus (P)	326	mg/kg	ALS	RG_CORCK_SE-3_2019-09-07_1015
SE	CORCK	668556	5487388	2019	3	2019-09-07	10:15	Potassium (K)	840	mg/kg	ALS	RG_CORCK_SE-3_2019-09-07_1015
SE	CORCK	668556	5487388	2019	3	2019-09-07	10:15	Selenium (Se)	2.2	mg/kg	ALS	RG_CORCK_SE-3_2019-09-07_1015
SE	CORCK	668556	5487388	2019	3	2019-09-07	10:15	Silver (Ag)	<0.10	mg/kg	ALS	RG_CORCK_SE-3_2019-09-07_1015
SE	CORCK	668556	5487388	2019	3	2019-09-07	10:15	Sodium (Na)	327	mg/kg	ALS	RG_CORCK_SE-3_2019-09-07_1015
SE	CORCK	668556	5487388	2019	3	2019-09-07	10:15	Strontium (Sr)	398	mg/kg	ALS	RG_CORCK_SE-3_2019-09-07_1015
SE	CORCK	668556	5487388	2019	3	2019-09-07	10:15	Sulfur (S)	5,800	mg/kg	ALS	RG_CORCK_SE-3_2019-09-07_1015
SE	CORCK	668556	5487388	2019	3	2019-09-07	10:15	Thallium (TI)	0.27	mg/kg	ALS	RG_CORCK_SE-3_2019-09-07_1015
SE	CORCK	668556	5487388	2019	3	2019-09-07	10:15	Tin (Sn)	<2.0	mg/kg	ALS	RG_CORCK_SE-3_2019-09-07_1015
SE	CORCK	668556	5487388	2019	3	2019-09-07	10:15	Titanium (Ti)	10	mg/kg	ALS	RG_CORCK_SE-3_2019-09-07_1015
			5487388	2019	3	2019-09-07	10:15	Tungsten (W)	<0.50	mg/kg	ALS	RG CORCK SE-3 2019-09-07 1015
SE	CORCK	668556	3407300	2019	1 3	2010 00 01	10.10	Trungsten (vv)	~0.50	mg/kg	ALO	110_00101C_0E-0_2010-00-01 1010

WSP Canada Inc. Page 89 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Table I-	I: Sediment Chem			CMm LAEMP	Sampling St	ations, 2012 to	2022					
Туре	Station		ı (UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
		Easting	Northing		rtopnouto						Lab	Sample ID
SE	CORCK	668556	5487388	2019	3	2019-09-07	10:15	Vanadium (V)	8.9	mg/kg	ALS	RG_CORCK_SE-3_2019-09-07_1015
SE	CORCK	668556	5487388	2019	3	2019-09-07	10:15	Zinc (Zn)	1,050	mg/kg	ALS	RG_CORCK_SE-3_2019-09-07_1015
SE	CORCK	668556	5487388	2019	3	2019-09-07	10:15	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_CORCK_SE-3_2019-09-07_1015
SE	CORCK	668556	5487388	2019	3	2019-09-07	10:15	pH (1:2 soil:water)	8.1	pН	ALS	RG_CORCK_SE-3_2019-09-07_1015
SE	CORCK	668556	5487388	2019	3	2019-09-07	10:15	Total Organic Carbon	9.3	%	ALS	RG_CORCK_SE-3_2019-09-07_1015
SE	CORCK	668556	5487388	2019	4	2019-09-07	11:15	Moisture	73	%	ALS	RG_CORCK_SE-4_2019-09-07_1115
SE	CORCK	668556	5487388	2019	4	2019-09-07	11:15	Acenaphthene	<0.073	mg/kg	ALS	RG_CORCK_SE-4_2019-09-07_1115
SE	CORCK	668556	5487388	2019	4	2019-09-07	11:15	Acenaphthylene	0.016	mg/kg	ALS	RG_CORCK_SE-4_2019-09-07_1115
SE	CORCK	668556	5487388	2019	4	2019-09-07	11:15	Acridine	<0.14	mg/kg	ALS	RG_CORCK_SE-4_2019-09-07_1115
SE	CORCK	668556	5487388	2019	4	2019-09-07	11:15	Anthracene	<0.021	mg/kg	ALS	RG_CORCK_SE-4_2019-09-07_1115
SE	CORCK	668556	5487388	2019	4	2019-09-07	11:15	Benz(a)anthracene	0.091	mg/kg	ALS	RG_CORCK_SE-4_2019-09-07_1115
SE	CORCK	668556	5487388	2019	4	2019-09-07	11:15	Benzo(a)pyrene	0.068	mg/kg	ALS	RG_CORCK_SE-4_2019-09-07_1115
SE	CORCK	668556	5487388	2019	4	2019-09-07	11:15	Benzo(b&j)fluoranthene	0.22	mg/kg	ALS	RG_CORCK_SE-4_2019-09-07_1115
SE	CORCK	668556	5487388	2019	4	2019-09-07	11:15	Benzo(g_h_i)perylene	0.16	mg/kg	ALS	RG_CORCK_SE-4_2019-09-07_1115
SE	CORCK	668556	5487388	2019	4	2019-09-07	11:15	Benzo(k)fluoranthene	<0.018	mg/kg	ALS	RG_CORCK_SE-4_2019-09-07_1115
SE	CORCK	668556	5487388	2019	4	2019-09-07	11:15	Benzo(e)pyrene	0.28	mg/kg	ALS	RG_CORCK_SE-4_2019-09-07_1115
SE	CORCK	668556	5487388	2019	4	2019-09-07	11:15	Chrysene	0.4	mg/kg	ALS	RG_CORCK_SE-4_2019-09-07_1115
SE	CORCK	668556	5487388	2019	4	2019-09-07	11:15	Dibenz(a_h)anthracene	0.046	mg/kg	ALS	RG_CORCK_SE-4_2019-09-07_1115
SE	CORCK	668556	5487388	2019	4	2019-09-07	11:15	Fluoranthene	0.085	mg/kg	ALS	RG_CORCK_SE-4_2019-09-07_1115
SE	CORCK	668556	5487388	2019	4	2019-09-07	11:15	Fluorene	0.24	mg/kg	ALS	RG_CORCK_SE-4_2019-09-07_1115
SE	CORCK	668556	5487388	2019	4	2019-09-07	11:15	Indeno(1,2,3-c,d)pyrene	0.037	mg/kg	ALS	RG_CORCK_SE-4_2019-09-07_1115
SE	CORCK	668556	5487388	2019	4	2019-09-07	11:15	1-Methylnaphthalene	1.5	mg/kg	ALS	RG_CORCK_SE-4_2019-09-07_1115
SE	CORCK	668556	5487388	2019	4	2019-09-07	11:15	2-Methylnaphthalene	2.4	mg/kg	ALS	RG_CORCK_SE-4_2019-09-07_1115
SE	CORCK	668556	5487388	2019	4	2019-09-07	11:15	Naphthalene	0.81	mg/kg	ALS	RG_CORCK_SE-4_2019-09-07_1115
SE	CORCK	668556	5487388	2019	4	2019-09-07	11:15	Perylene	<0.018	mg/kg	ALS	RG_CORCK_SE-4_2019-09-07_1115
SE	CORCK	668556	5487388	2019	4	2019-09-07	11:15	Phenanthrene	1.2	mg/kg	ALS	RG_CORCK_SE-4_2019-09-07_1115
SE	CORCK	668556	5487388	2019	4	2019-09-07	11:15	Pyrene	0.15	mg/kg	ALS	RG_CORCK_SE-4_2019-09-07_1115
SE	CORCK	668556	5487388	2019	4	2019-09-07	11:15	Quinoline	<0.018	mg/kg	ALS	RG_CORCK_SE-4_2019-09-07_1115
SE	CORCK	668556	5487388	2019	4	2019-09-07	11:15	IACR (CCME)	2.3	-	ALS	RG_CORCK_SE-4_2019-09-07_1115
SE	CORCK	668556	5487388	2019	4	2019-09-07	11:15	B(a)P Total Potency Equivalent	0.16	mg/kg	ALS	RG_CORCK_SE-4_2019-09-07_1115
SE	CORCK	668556	5487388	2019	4	2019-09-07	11:15	Benzo(b+j+k)fluoranthene	0.23	mg/kg	ALS	RG_CORCK_SE-4_2019-09-07_1115
SE	CORCK	668556	5487388	2019	4	2019-09-07	11:15	d8-Naphthalene	74	%	ALS	RG_CORCK_SE-4_2019-09-07_1115
SE	CORCK	668556	5487388	2019	4	2019-09-07	11:15	d10-Acenaphthene	80	%	ALS	RG_CORCK_SE-4_2019-09-07_1115
SE	CORCK	668556	5487388	2019	4	2019-09-07	11:15	d10-Phenanthrene	86	%	ALS	RG_CORCK_SE-4_2019-09-07_1115
SE	CORCK	668556	5487388	2019	4	2019-09-07	11:15	d12-Chrysene	95	%	ALS	RG_CORCK_SE-4_2019-09-07_1115
SE	CORCK	668556	5487388	2019	4	2019-09-07	11:15	% Gravel (>2 mm)	<1.0	%	ALS	RG_CORCK_SE-4_2019-09-07_1115
SE	CORCK	668556	5487388	2019	4	2019-09-07	11:15	% Sand (2.00 mm - 1.00 mm)	2.6	%	ALS	RG_CORCK_SE-4_2019-09-07_1115
SE	CORCK	668556	5487388	2019	4	2019-09-07	11:15	% Sand (1.00 mm - 0.50 mm)	5.0	%	ALS	RG_CORCK_SE-4_2019-09-07_1115
SE	CORCK	668556	5487388	2019	4	2019-09-07	11:15	% Sand (0.50 mm - 0.25 mm)	6.6	%	ALS	RG_CORCK_SE-4_2019-09-07_1115
SE	CORCK	668556	5487388	2019	4	2019-09-07	11:15	% Sand (0.25 mm - 0.125 mm)	9.7	%	ALS	RG_CORCK_SE-4_2019-09-07_1115
SE	CORCK	668556	5487388	2019	4	2019-09-07	11:15	% Sand (0.125 mm - 0.063 mm)	6.6	%	ALS	RG_CORCK_SE-4_2019-09-07_1115
SE	CORCK	668556	5487388	2019	4	2019-09-07	11:15	% Silt (0.063 mm - 0.0312 mm)	28	%	ALS	RG_CORCK_SE-4_2019-09-07_1115
SE	CORCK	668556	5487388	2019	4	2019-09-07	11:15	% Silt (0.031 mm - 0.004 mm)	37	%	ALS	RG_CORCK_SE-4_2019-09-07_1115
SE	CORCK	668556	5487388	2019	4	2019-09-07	11:15	% Clay (<4 μm)	5.1	%	ALS	RG_CORCK_SE-4_2019-09-07_1115
SE	CORCK	668556	5487388	2019	4	2019-09-07	11:15	Texture	Silt loam	-	ALS	RG_CORCK_SE-4_2019-09-07_1115
SE	CORCK	668556	5487388	2019	4	2019-09-07	11:15	Mercury (Hg)	0.019	mg/kg	ALS	RG_CORCK_SE-4_2019-09-07_1115
SE	CORCK	668556	5487388	2019	4	2019-09-07	11:15	Aluminum (AI)	3,610	mg/kg	ALS	RG CORCK SE-4 2019-09-07 1115

WSP Canada Inc. Page 90 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Type	Station	Location	ı (UTMs) ^(a)	Year	Replicate	Date	Time	Analyta	Result	Unit		Laboratory Information
ype	Station	Easting	Northing	rear	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	CORCK	668556	5487388	2019	4	2019-09-07	11:15	Antimony (Sb)	0.4	mg/kg	ALS	RG_CORCK_SE-4_2019-09-07_1115
SE	CORCK	668556	5487388	2019	4	2019-09-07	11:15	Arsenic (As)	2.7	mg/kg	ALS	RG_CORCK_SE-4_2019-09-07_1115
SE	CORCK	668556	5487388	2019	4	2019-09-07	11:15	Barium (Ba)	236	mg/kg	ALS	RG_CORCK_SE-4_2019-09-07_1115
SE	CORCK	668556	5487388	2019	4	2019-09-07	11:15	Beryllium (Be)	0.45	mg/kg	ALS	RG CORCK SE-4 2019-09-07 1115
SE	CORCK	668556	5487388	2019	4	2019-09-07	11:15	Bismuth (Bi)	<0.20	mg/kg	ALS	RG CORCK SE-4 2019-09-07 1115
SE	CORCK	668556	5487388	2019	4	2019-09-07	11:15	Boron (B)	9.5	mg/kg	ALS	RG CORCK SE-4 2019-09-07 1115
SE	CORCK	668556	5487388	2019	4	2019-09-07	11:15	Cadmium (Cd)	12	mg/kg	ALS	RG_CORCK_SE-4_2019-09-07_1115
SE	CORCK	668556	5487388	2019	4	2019-09-07	11:15	Calcium (Ca)	316,000	mg/kg	ALS	RG CORCK SE-4 2019-09-07 1115
SE	CORCK	668556	5487388	2019	4	2019-09-07	11:15	Chromium (Cr)	5.4	mg/kg	ALS	RG CORCK SE-4 2019-09-07 1115
SE	CORCK	668556	5487388	2019	4	2019-09-07	11:15	Cobalt (Co)	256	mg/kg	ALS	RG CORCK SE-4 2019-09-07 1115
SE	CORCK	668556	5487388	2019	4	2019-09-07	11:15	Copper (Cu)	8.9	mg/kg	ALS	RG_CORCK_SE-4_2019-09-07_1115
SE	CORCK	668556	5487388	2019	4	2019-09-07	11:15	Iron (Fe)	3,860	mg/kg	ALS	RG CORCK SE-4 2019-09-07 1115
SE	CORCK	668556	5487388	2019	4	2019-09-07	11:15	Lead (Pb)	3.4	mg/kg	ALS	RG_CORCK_SE-4_2019-09-07_1115
SE	CORCK	668556	5487388	2019	4	2019-09-07	11:15	Lithium (Li)	3.7	mg/kg	ALS	RG CORCK SE-4 2019-09-07 1115
SE.	CORCK	668556	5487388	2019	4	2019-09-07	11:15	Magnesium (Mg)	6,710	mg/kg	ALS	RG CORCK SE-4 2019-09-07 1115
SE.	CORCK	668556	5487388	2019	4	2019-09-07	11:15	Manganese (Mn)	2,000	mg/kg	ALS	RG_CORCK_SE-4_2019-09-07_1115
SE.	CORCK	668556	5487388	2019	4	2019-09-07	11:15	Molybdenum (Mo)	0.75	mg/kg	ALS	RG_CORCK_SE-4_2019-09-07_1115
SE	CORCK	668556	5487388	2019	4	2019-09-07	11:15	Nickel (Ni)	247	mg/kg	ALS	RG CORCK SE-4 2019-09-07 1115
SE	CORCK	668556	5487388	2019	4	2019-09-07	11:15	Phosphorus (P)	355	mg/kg	ALS	RG_CORCK_SE-4_2019-09-07_1115
SE	CORCK	668556	5487388	2019	4	2019-09-07	11:15	Potassium (K)	980	mg/kg	ALS	RG CORCK SE-4 2019-09-07 1115
SE	CORCK	668556	5487388	2019	4	2019-09-07	11:15	Selenium (Se)	5.5	mg/kg	ALS	RG CORCK SE-4 2019-09-07 1115
SE	CORCK	668556	5487388	2019	4	2019-09-07	11:15	Silver (Ag)	<0.10	mg/kg	ALS	RG CORCK SE-4 2019-09-07 1115
SE	CORCK	668556	5487388	2019	4	2019-09-07	11:15	Sodium (Na)	312	mg/kg	ALS	RG CORCK SE-4 2019-09-07 1115
SE	CORCK	668556	5487388	2019	4	2019-09-07	11:15	Strontium (Sr)	392	mg/kg	ALS	RG CORCK SE-4 2019-09-07 1115
SE	CORCK	668556	5487388	2019	4	2019-09-07	11:15	Sulfur (S)	5,300	mg/kg	ALS	RG CORCK SE-4 2019-09-07 1115
SE	CORCK	668556	5487388	2019	4	2019-09-07	11:15	Thallium (TI)	0.21	mg/kg	ALS	RG CORCK SE-4 2019-09-07 1115
SE	CORCK	668556	5487388	2019	4	2019-09-07	11:15	Tin (Sn)	<2.0	mg/kg	ALS	RG CORCK SE-4 2019-09-07 1115
SE	CORCK	668556	5487388	2019	4	2019-09-07	11:15	Titanium (Ti)	12	mg/kg	ALS	RG CORCK SE-4 2019-09-07 1115
SE	CORCK	668556	5487388	2019	4	2019-09-07	11:15	Tungsten (W)	<0.50	mg/kg	ALS	RG_CORCK_SE-4_2019-09-07_1115
SE	CORCK	668556	5487388	2019	4	2019-09-07	11:15	Uranium (U)	2.4	mg/kg	ALS	RG_CORCK_SE-4_2019-09-07_1115
SE	CORCK	668556	5487388	2019	4	2019-09-07	11:15	Vanadium (V)	11	mg/kg	ALS	RG_CORCK_SE-4_2019-09-07_1115
SE	CORCK	668556	5487388	2019	4	2019-09-07	11:15	Zinc (Zn)	1,210	mg/kg	ALS	RG CORCK SE-4 2019-09-07 1115
SE	CORCK	668556	5487388	2019	4	2019-09-07	11:15	Zirconium (Zr)	<1.0	mg/kg	ALS	RG CORCK SE-4 2019-09-07 1115
SE	CORCK	668556	5487388	2019	4	2019-09-07	11:15	pH (1:2 soil:water)	7.9	рН	ALS	RG CORCK SE-4 2019-09-07 1115
SE	CORCK	668556	5487388	2019	4	2019-09-07	11:15	Total Organic Carbon	9.3	%	ALS	RG CORCK SE-4 2019-09-07 1115
SE	CORCK	668556	5487388	2019	5	2019-09-07	11:30	Moisture	60	%	ALS	RG CORCK SE-5 2019-09-07 1130
SE	CORCK	668556	5487388	2019	5	2019-09-07	11:30	Acenaphthene	<0.045	mg/kg	ALS	RG CORCK SE-5 2019-09-07 1130
SE	CORCK	668556	5487388	2019	5	2019-09-07	11:30	Acenaphthylene	0.0088	mg/kg	ALS	RG CORCK SE-5 2019-09-07 1130
SE	CORCK	668556	5487388	2019	5	2019-09-07	11:30	Acridine	<0.075	mg/kg	ALS	RG CORCK SE-5 2019-09-07 1130
SE	CORCK	668556	5487388	2019	5	2019-09-07	11:30	Anthracene	<0.012	mg/kg	ALS	RG CORCK SE-5 2019-09-07 1130
SE	CORCK	668556	5487388	2019	5	2019-09-07	11:30	Benz(a)anthracene	0.046	mg/kg	ALS	RG CORCK SE-5 2019-09-07 1130
SE SE	CORCK	668556	5487388	2019	5	2019-09-07	11:30	Benzo(a)pyrene	0.036	mg/kg	ALS	RG CORCK SE-5 2019-09-07 1130
SE	CORCK	668556	5487388	2019	5	2019-09-07	11:30	Benzo(b&j)fluoranthene	0.12	mg/kg	ALS	RG CORCK SE-5 2019-09-07 1130
SE	CORCK	668556	5487388	2019	5	2019-09-07	11:30	Benzo(g_h_i)perylene	0.075	mg/kg	ALS	RG CORCK SE-5 2019-09-07 1130
SE SE	CORCK	668556	5487388	2019	5	2019-09-07	11:30	Benzo(k)fluoranthene	<0.010	mg/kg	ALS	RG CORCK SE-5 2019-09-07 1130
SE SE	CORCK	668556	5487388	2019	5	2019-09-07	11:30	Benzo(e)pyrene	0.16	mg/kg	ALS	RG CORCK SE-5 2019-09-07 1130
SE	CORCK	668556	5487388	2019	5	2019-09-07	11:30	Chrysene	0.10		ALS	RG CORCK SE-5_2019-09-07_1130
, ⊏	CORCR	000000	5407300	2019	j j	∠U ७-U૭-U <i> </i>	11.30	Onlyselle	0.23	mg/kg	ALO	NG_CONON_SE-5_2019-09-01_1130

WSP Canada Inc. Page 91 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

VDC	Station	Location	(UTMs) ^(a)	Year	Poplieste	Date	Time	Apolyto	Popult -	Unit		Laboratory Information
ype	Station	Easting	Northing	rear	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	CORCK	668556	5487388	2019	5	2019-09-07	11:30	Dibenz(a h)anthracene	0.023	mg/kg	ALS	RG CORCK SE-5 2019-09-07 1130
SE.	CORCK	668556	5487388	2019	5	2019-09-07	11:30	Fluoranthene	0.046	mg/kg	ALS	RG_CORCK_SE-5_2019-09-07_1130
SE.	CORCK	668556	5487388	2019	5	2019-09-07	11:30	Fluorene	0.12	mg/kg	ALS	RG CORCK SE-5 2019-09-07 1130
SE	CORCK	668556	5487388	2019	5	2019-09-07	11:30	Indeno(1,2,3-c,d)pyrene	0.016	mg/kg	ALS	RG CORCK SE-5 2019-09-07 1130
SE	CORCK	668556	5487388	2019	5	2019-09-07	11:30	1-Methylnaphthalene	0.83	mg/kg	ALS	RG CORCK SE-5 2019-09-07 1130
SE.	CORCK	668556	5487388	2019	5	2019-09-07	11:30	2-Methylnaphthalene	1.4	mg/kg	ALS	RG_CORCK_SE-5_2019-09-07_1130
SE.	CORCK	668556	5487388	2019	5	2019-09-07	11:30	Naphthalene	0.48	mg/kg	ALS	RG CORCK SE-5 2019-09-07 1130
SE .	CORCK	668556	5487388	2019	5	2019-09-07	11:30	Perylene	<0.010	mg/kg	ALS	RG CORCK SE-5 2019-09-07 1130
SE	CORCK	668556	5487388	2019	5	2019-09-07	11:30	Phenanthrene	0.63	mg/kg	ALS	RG_CORCK_SE-5_2019-09-07_1130
SE	CORCK	668556	5487388	2019	5	2019-09-07	11:30	Pyrene	0.079	mg/kg	ALS	RG CORCK SE-5 2019-09-07 1130
SE.	CORCK	668556	5487388	2019	5	2019-09-07	11:30	Quinoline	<0.010	mg/kg	ALS	RG_CORCK_SE-5_2019-09-07_1130
SE	CORCK	668556	5487388	2019	5	2019-09-07	11:30	IACR (CCME)	1.2	-	ALS	RG CORCK SE-5 2019-09-07 1130
SE	CORCK	668556	5487388	2019	5	2019-09-07	11:30	B(a)P Total Potency Equivalent	0.08	mg/kg	ALS	RG CORCK SE-5 2019-09-07 1130
SE.	CORCK	668556	5487388	2019	5	2019-09-07	11:30	Benzo(b+j+k)fluoranthene	0.13	mg/kg	ALS	RG CORCK SE-5 2019-09-07 1130
SE	CORCK	668556	5487388	2019	5	2019-09-07	11:30	d8-Naphthalene	76	%	ALS	RG CORCK SE-5 2019-09-07 1130
SE.	CORCK	668556	5487388	2019	5	2019-09-07	11:30	d10-Acenaphthene	77	%	ALS	RG_CORCK_SE-5_2019-09-07_1130
SE	CORCK	668556	5487388	2019	5	2019-09-07	11:30	d10-Phenanthrene	81	%	ALS	RG_CORCK_SE-5_2019-09-07_1130
SE.	CORCK	668556	5487388	2019	5	2019-09-07	11:30	d12-Chrysene	90	%	ALS	RG CORCK SE-5 2019-09-07 1130
SE.	CORCK	668556	5487388	2019	5	2019-09-07	11:30	% Gravel (>2 mm)	<1.0	%	ALS	RG CORCK SE-5 2019-09-07 1130
SE .	CORCK	668556	5487388	2019	5	2019-09-07	11:30	% Sand (2.00 mm - 1.00 mm)	<1.0	%	ALS	RG CORCK SE-5 2019-09-07 1130
SE .	CORCK	668556	5487388	2019	5	2019-09-07	11:30	% Sand (1.00 mm - 0.50 mm)	1.7	%	ALS	RG CORCK SE-5 2019-09-07 1130
SE.	CORCK	668556	5487388	2019	5	2019-09-07	11:30	% Sand (0.50 mm - 0.25 mm)	4.5	%	ALS	RG CORCK SE-5 2019-09-07 1130
SE	CORCK	668556	5487388	2019	5	2019-09-07	11:30	% Sand (0.25 mm - 0.125 mm)	11	%	ALS	RG CORCK SE-5 2019-09-07 1130
SE	CORCK	668556	5487388	2019	5	2019-09-07	11:30	% Sand (0.125 mm - 0.063 mm)	7.6	%	ALS	RG CORCK SE-5 2019-09-07 1130
SE	CORCK	668556	5487388	2019	5	2019-09-07	11:30	% Silt (0.063 mm - 0.0312 mm)	29	%	ALS	RG CORCK SE-5 2019-09-07 1130
SE	CORCK	668556	5487388	2019	5	2019-09-07	11:30	% Silt (0.031 mm - 0.004 mm)	39	%	ALS	RG CORCK SE-5 2019-09-07 1130
SE	CORCK	668556	5487388	2019	5	2019-09-07	11:30	% Clay (<4 μm)	7.3	%	ALS	RG CORCK SE-5 2019-09-07 1130
SE	CORCK	668556	5487388	2019	5	2019-09-07	11:30	Texture	Silt loam	-	ALS	RG_CORCK_SE-5_2019-09-07_1130
SE	CORCK	668556	5487388	2019	5	2019-09-07	11:30	Mercury (Hg)	0.012	mg/kg	ALS	RG CORCK SE-5 2019-09-07 1130
SE	CORCK	668556	5487388	2019	5	2019-09-07	11:30	Aluminum (Al)	2,860	mg/kg	ALS	RG_CORCK_SE-5_2019-09-07_1130
SE	CORCK	668556	5487388	2019	5	2019-09-07	11:30	Antimony (Sb)	0.34	mg/kg	ALS	RG_CORCK_SE-5_2019-09-07_1130
SE	CORCK	668556	5487388	2019	5	2019-09-07	11:30	Arsenic (As)	2.6	mg/kg	ALS	RG CORCK SE-5 2019-09-07 1130
SE	CORCK	668556	5487388	2019	5	2019-09-07	11:30	Barium (Ba)	232	mg/kg	ALS	RG CORCK SE-5 2019-09-07 1130
SE	CORCK	668556	5487388	2019	5	2019-09-07	11:30	Beryllium (Be)	0.38	mg/kg	ALS	RG CORCK SE-5 2019-09-07 1130
SE	CORCK	668556	5487388	2019	5	2019-09-07	11:30	Bismuth (Bi)	<0.20	mg/kg	ALS	RG CORCK SE-5 2019-09-07 1130
SE	CORCK	668556	5487388	2019	5	2019-09-07	11:30	Boron (B)	8.4	mg/kg	ALS	RG CORCK SE-5 2019-09-07 1130
SE	CORCK	668556	5487388	2019	5	2019-09-07	11:30	Cadmium (Cd)	12	mg/kg	ALS	RG CORCK SE-5 2019-09-07 1130
SE	CORCK	668556	5487388	2019	5	2019-09-07	11:30	Calcium (Ca)	406,000	mg/kg	ALS	RG CORCK SE-5 2019-09-07 1130
SE	CORCK	668556	5487388	2019	5	2019-09-07	11:30	Chromium (Cr)	4.2	mg/kg	ALS	RG CORCK SE-5 2019-09-07 1130
SE.	CORCK	668556	5487388	2019	5	2019-09-07	11:30	Cobalt (Co)	389	mg/kg	ALS	RG_CORCK_SE-5_2019-09-07_1130
SE	CORCK	668556	5487388	2019	5	2019-09-07	11:30	Copper (Cu)	6.9	mg/kg	ALS	RG_CORCK_SE-5_2019-09-07_1130
SE	CORCK	668556	5487388	2019	5	2019-09-07	11:30	Iron (Fe)	3,300	mg/kg	ALS	RG CORCK SE-5 2019-09-07 1130
SE	CORCK	668556	5487388	2019	5	2019-09-07	11:30	Lead (Pb)	2.8	mg/kg	ALS	RG CORCK SE-5 2019-09-07 1130
SE	CORCK	668556	5487388	2019	·	2019-09-07	11:30	Lithium (Li)	3.4	mg/kg	ALS	RG CORCK SE-5 2019-09-07 1130
SE	CORCK	668556	5487388	2019	5	2019-09-07	11:30	Magnesium (Mg)	7,940	mg/kg	ALS	RG CORCK SE-5 2019-09-07 1130
		668556	5487388	2019	5	2019-09-07	11:30	Manganese (Mn)	3,090	mg/kg	ALS	RG CORCK SE-5 2019-09-07 1130
SE	CORCK	000000	0 7 07000	2010								

WSP Canada Inc. Page 92 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	r ocaminone enem		ected from the	CIVIIII LALIVIF	Samping St	ations, 2012 to	LULL					
Туре	Station		(UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
		Easting	Northing		replicate		Time	Analyto	Result	Oilit	Lab	Sample ID
SE	CORCK	668556	5487388	2019	5	2019-09-07	11:30	Nickel (Ni)	344	mg/kg	ALS	RG_CORCK_SE-5_2019-09-07_1130
SE	CORCK	668556	5487388	2019	5	2019-09-07	11:30	Phosphorus (P)	278	mg/kg	ALS	RG_CORCK_SE-5_2019-09-07_1130
SE	CORCK	668556	5487388	2019	5	2019-09-07	11:30	Potassium (K)	890	mg/kg	ALS	RG_CORCK_SE-5_2019-09-07_1130
SE	CORCK	668556	5487388	2019	5	2019-09-07	11:30	Selenium (Se)	2.6	mg/kg	ALS	RG_CORCK_SE-5_2019-09-07_1130
SE	CORCK	668556	5487388	2019	5	2019-09-07	11:30	Silver (Ag)	<0.10	mg/kg	ALS	RG_CORCK_SE-5_2019-09-07_1130
SE	CORCK	668556	5487388	2019	5	2019-09-07	11:30	Sodium (Na)	367	mg/kg	ALS	RG_CORCK_SE-5_2019-09-07_1130
SE	CORCK	668556	5487388	2019	5	2019-09-07	11:30	Strontium (Sr)	463	mg/kg	ALS	RG_CORCK_SE-5_2019-09-07_1130
SE	CORCK	668556	5487388	2019	5	2019-09-07	11:30	Sulfur (S)	6,200	mg/kg	ALS	RG_CORCK_SE-5_2019-09-07_1130
SE	CORCK	668556	5487388	2019	5	2019-09-07	11:30	Thallium (TI)	0.27	mg/kg	ALS	RG_CORCK_SE-5_2019-09-07_1130
SE	CORCK	668556	5487388	2019	5	2019-09-07	11:30	Tin (Sn)	<2.0	mg/kg	ALS	RG_CORCK_SE-5_2019-09-07_1130
SE	CORCK	668556	5487388	2019	5	2019-09-07	11:30	Titanium (Ti)	12	mg/kg	ALS	RG_CORCK_SE-5_2019-09-07_1130
SE	CORCK	668556	5487388	2019	5	2019-09-07	11:30	Tungsten (W)	<0.50	mg/kg	ALS	RG_CORCK_SE-5_2019-09-07_1130
SE	CORCK	668556	5487388	2019	5	2019-09-07	11:30	Uranium (U)	2.6	mg/kg	ALS	RG_CORCK_SE-5_2019-09-07_1130
SE	CORCK	668556	5487388	2019	5	2019-09-07	11:30	Vanadium (V)	9.0	mg/kg	ALS	RG_CORCK_SE-5_2019-09-07_1130
SE	CORCK	668556	5487388	2019	5	2019-09-07	11:30	Zinc (Zn)	1,190	mg/kg	ALS	RG CORCK SE-5 2019-09-07 1130
SE	CORCK	668556	5487388	2019	5	2019-09-07	11:30	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_CORCK_SE-5_2019-09-07_1130
SE	CORCK	668556	5487388	2019	5	2019-09-07	11:30	pH (1:2 soil:water)	8.0	pН	ALS	RG CORCK SE-5 2019-09-07 1130
SE	CORCK	668556	5487388	2019	5	2019-09-07	11:30	Total Organic Carbon	10	%	ALS	RG CORCK SE-5 2019-09-07 1130
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	Moisture	34	%	ALS	RG_MIDCO_SE-2_2019-09-07_1330
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	Acenaphthene	<0.0050	mg/kg	ALS	RG MIDCO SE-2 2019-09-07 1330
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	Acenaphthylene	<0.0050	mg/kg	ALS	RG_MIDCO_SE-2_2019-09-07_1330
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	Acridine	<0.010	mg/kg	ALS	RG MIDCO SE-2 2019-09-07 1330
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	Anthracene	<0.0040	mg/kg	ALS	RG_MIDCO_SE-2_2019-09-07_1330
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	Benz(a)anthracene	<0.010	mg/kg	ALS	RG MIDCO SE-2 2019-09-07 1330
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	Benzo(a)pyrene	<0.010	mg/kg	ALS	RG_MIDCO_SE-2_2019-09-07_1330
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	Benzo(b&j)fluoranthene	<0.010	mg/kg	ALS	RG MIDCO SE-2 2019-09-07_1330
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	Benzo(g h i)perylene	<0.010	mg/kg	ALS	RG MIDCO SE-2 2019-09-07_1330
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	Benzo(k)fluoranthene	<0.010	mg/kg	ALS	RG_MIDCO_SE-2_2019-09-07_1330
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	Benzo(e)pyrene	<0.010	mg/kg	ALS	RG MIDCO SE-2 2019-09-07 1330
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	Chrysene	0.011	mg/kg	ALS	RG MIDCO SE-2 2019-09-07 1330
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	Dibenz(a h)anthracene	<0.0050	mg/kg		RG MIDCO SE-2 2019-09-07 1330
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	Fluoranthene	<0.010	mg/kg	ALS	RG MIDCO SE-2 2019-09-07 1330
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	Fluorene	<0.010	mg/kg	ALS	RG MIDCO SE-2 2019-09-07 1330
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	Indeno(1,2,3-c,d)pyrene	<0.010	mg/kg	ALS	RG MIDCO SE-2 2019-09-07 1330
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	1-Methylnaphthalene	0.033	mg/kg	ALS	RG MIDCO SE-2 2019-09-07 1330
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	2-Methylnaphthalene	0.049	mg/kg		RG MIDCO SE-2 2019-09-07 1330
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	Naphthalene	0.016	mg/kg	ALS	RG MIDCO SE-2 2019-09-07 1330
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	Perylene	<0.010	mg/kg	ALS	RG MIDCO SE-2 2019-09-07 1330
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	Phenanthrene	0.029	mg/kg	ALS	RG MIDCO SE-2 2019-09-07 1330
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	Pyrene	<0.010	mg/kg	ALS	RG MIDCO SE-2 2019-09-07 1330
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	Quinoline	<0.010	mg/kg	ALS	RG MIDCO SE-2 2019-09-07 1330
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	IACR (CCME)	<0.15		ALS	RG MIDCO SE-2 2019-09-07 1330
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	B(a)P Total Potency Equivalent	<0.020	mg/kg	ALS	RG MIDCO SE-2 2019-09-07 1330
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	Benzo(b+j+k)fluoranthene	<0.020	mg/kg	ALS	RG MIDCO SE-2 2019-09-07 1330
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	d8-Naphthalene	80	mg/kg %	ALS	RG MIDCO SE-2 2019-09-07 1330
	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	d10-Acenaphthene	83	%	ALS	RG MIDCO SE-2 2019-09-07 1330
SE			J T U/UZJ	2013	. 4	14013-03-01	10.00	IN IN-AUGUADURIEUG	. 00	//		11\C V DOO OL=2 20 B=0B=0 1000

WSP Canada Inc. Page 93 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	Station		ı (UTMs) ^(a)	Year	Replicate		Time	Analyte	Result	Unit		Laboratory Information
Type	Station	Easting	Northing	rear	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	d12-Chrysene	95	%	ALS	RG_MIDCO_SE-2_2019-09-07_1330
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	% Gravel (>2 mm)	31	%	ALS	RG_MIDCO_SE-2_2019-09-07_1330
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	% Sand (2.00 mm - 1.00 mm)	14	%	ALS	RG_MIDCO_SE-2_2019-09-07_1330
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	% Sand (1.00 mm - 0.50 mm)	20	%	ALS	RG_MIDCO_SE-2_2019-09-07_1330
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	% Sand (0.50 mm - 0.25 mm)	9.9	%	ALS	RG_MIDCO_SE-2_2019-09-07_1330
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	% Sand (0.25 mm - 0.125 mm)	5.5	%	ALS	RG_MIDCO_SE-2_2019-09-07_1330
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	% Sand (0.125 mm - 0.063 mm)	3.9	%	ALS	RG_MIDCO_SE-2_2019-09-07_1330
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	% Silt (0.063 mm - 0.0312 mm)	6.4	%	ALS	RG_MIDCO_SE-2_2019-09-07_1330
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	% Silt (0.031 mm - 0.004 mm)	7.4	%	ALS	RG_MIDCO_SE-2_2019-09-07_1330
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	% Clay (<4 μm)	1.5	%	ALS	RG_MIDCO_SE-2_2019-09-07_1330
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	Texture	Loamy sand	-	ALS	RG_MIDCO_SE-2_2019-09-07_1330
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	Mercury (Hg)	0.017	mg/kg	ALS	RG MIDCO SE-2 2019-09-07 1330
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	Aluminum (Al)	14,900	mg/kg	ALS	RG_MIDCO_SE-2_2019-09-07_1330
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	Antimony (Sb)	0.35	mg/kg	ALS	RG MIDCO SE-2 2019-09-07 1330
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	Arsenic (As)	8.1	mg/kg	ALS	RG MIDCO SE-2 2019-09-07 1330
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	Barium (Ba)	108	mg/kg	ALS	RG MIDCO SE-2 2019-09-07 1330
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	Beryllium (Be)	1.0	mg/kg	ALS	RG MIDCO SE-2 2019-09-07 1330
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	Bismuth (Bi)	0.23	mg/kg	ALS	RG MIDCO SE-2 2019-09-07 1330
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	Boron (B)	11	mg/kg	ALS	RG MIDCO SE-2 2019-09-07 1330
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	Cadmium (Cd)	0.79	mg/kg	ALS	RG MIDCO SE-2 2019-09-07 1330
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	Calcium (Ca)	29,500	mg/kg	ALS	RG_MIDCO_SE-2_2019-09-07_1330
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	Chromium (Cr)	18	mg/kg	ALS	RG MIDCO SE-2 2019-09-07 1330
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	Cobalt (Co)	24	mg/kg	ALS	RG MIDCO SE-2 2019-09-07 1330
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	Copper (Cu)	19	mg/kg	ALS	RG MIDCO SE-2 2019-09-07 1330
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	Iron (Fe)	26,700	mg/kg	ALS	RG MIDCO SE-2 2019-09-07 1330
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	Lead (Pb)	13	mg/kg	ALS	RG_MIDCO_SE-2_2019-09-07_1330
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	Lithium (Li)	28	mg/kg	ALS	RG MIDCO SE-2 2019-09-07 1330
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	Magnesium (Mg)	7,190	mg/kg	ALS	RG_MIDCO_SE-2_2019-09-07_1330
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	Manganese (Mn)	479	mg/kg	ALS	RG MIDCO SE-2 2019-09-07 1330
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	Molybdenum (Mo)	1.8	mg/kg	ALS	RG MIDCO SE-2 2019-09-07 1330
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	Nickel (Ni)	52	mg/kg	ALS	RG_MIDCO_SE-2_2019-09-07_1330
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	Phosphorus (P)	1,070	mg/kg	ALS	RG MIDCO SE-2 2019-09-07 1330
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	Potassium (K)	2,870	mg/kg	ALS	RG MIDCO SE-2 2019-09-07 1330
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	Selenium (Se)	0.8	mg/kg	ALS	RG MIDCO SE-2 2019-09-07 1330
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	Silver (Ag)	<0.10	mg/kg	ALS	RG MIDCO SE-2 2019-09-07 1330
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	Sodium (Na)	88	mg/kg	ALS	RG_MIDCO_SE-2_2019-09-07_1330
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	Strontium (Sr)	62	mg/kg	ALS	RG MIDCO SE-2 2019-09-07 1330
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	Sulfur (S)	<1000	mg/kg	ALS	RG MIDCO SE-2 2019-09-07 1330
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	Thallium (TI)	0.29	mg/kg	ALS	RG MIDCO SE-2 2019-09-07 1330
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	Tin (Sn)	<2.0	mg/kg	ALS	RG MIDCO SE-2 2019-09-07 1330
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	Titanium (Ti)	10	mg/kg	ALS	RG MIDCO SE-2 2019-09-07 1330
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	Tungsten (W)	<0.50	mg/kg	ALS	RG MIDCO SE-2 2019-09-07 1330
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	Uranium (U)	0.49	mg/kg	ALS	RG MIDCO SE-2 2019-09-07 1330
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	Vanadium (V)	26	mg/kg	ALS	RG MIDCO SE-2 2019-09-07 1330
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	Zinc (Zn)	124	mg/kg	ALS	RG MIDCO SE-2 2019-09-07 1330
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	Zirconium (Zr)	1.2	mg/kg	ALS	RG MIDCO SE-2 2019-09-07 1330
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	pH (1:2 soil:water)	7.5	pH	ALS	RG MIDCO SE-2 2019-09-07 1330

WSP Canada Inc. Page 94 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

able I-1	I: Sediment Chem			CIVIM LAEIVIP	Sampling St	ations, 2012 to	2022					
Туре	Station		(UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
		Easting	Northing		rtophouto		111110	7 that yes	rtoodit		Lab	Sample ID
SE	MIDCO	667711	5487625	2019	2	2019-09-07	13:30	Total Organic Carbon	2.4	%	ALS	RG_MIDCO_SE-2_2019-09-07_1330
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	Moisture	28	%	ALS	RG_MIDCO_SE-3_2019-09-07_1400
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	Acenaphthene	<0.0050	mg/kg	ALS	RG_MIDCO_SE-3_2019-09-07_1400
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	Acenaphthylene	<0.0050	mg/kg	ALS	RG_MIDCO_SE-3_2019-09-07_1400
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	Acridine	<0.010	mg/kg	ALS	RG_MIDCO_SE-3_2019-09-07_1400
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	Anthracene	<0.0040	mg/kg	ALS	RG_MIDCO_SE-3_2019-09-07_1400
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	Benz(a)anthracene	<0.010	mg/kg	ALS	RG_MIDCO_SE-3_2019-09-07_1400
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	Benzo(a)pyrene	<0.010	mg/kg	ALS	RG_MIDCO_SE-3_2019-09-07_1400
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	Benzo(b&j)fluoranthene	<0.010	mg/kg	ALS	RG_MIDCO_SE-3_2019-09-07_1400
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	Benzo(g_h_i)perylene	<0.010	mg/kg	ALS	RG_MIDCO_SE-3_2019-09-07_1400
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	Benzo(k)fluoranthene	<0.010	mg/kg	ALS	RG_MIDCO_SE-3_2019-09-07_1400
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	Benzo(e)pyrene	<0.010	mg/kg	ALS	RG_MIDCO_SE-3_2019-09-07_1400
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	Chrysene	<0.010	mg/kg	ALS	RG_MIDCO_SE-3_2019-09-07_1400
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	Dibenz(a_h)anthracene	<0.0050	mg/kg	ALS	RG_MIDCO_SE-3_2019-09-07_1400
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	Fluoranthene	<0.010	mg/kg	ALS	RG_MIDCO_SE-3_2019-09-07_1400
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	Fluorene	<0.010	mg/kg	ALS	RG_MIDCO_SE-3_2019-09-07_1400
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	Indeno(1,2,3-c,d)pyrene	<0.010	mg/kg	ALS	RG_MIDCO_SE-3_2019-09-07_1400
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	1-Methylnaphthalene	0.022	mg/kg	ALS	RG_MIDCO_SE-3_2019-09-07_1400
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	2-Methylnaphthalene	0.037	mg/kg	ALS	RG_MIDCO_SE-3_2019-09-07_1400
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	Naphthalene	0.013	mg/kg	ALS	RG MIDCO SE-3 2019-09-07 1400
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	Perylene	<0.010	mg/kg	ALS	RG MIDCO SE-3 2019-09-07 1400
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	Phenanthrene	0.021	mg/kg	ALS	RG MIDCO SE-3 2019-09-07 1400
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	Pyrene	<0.010	mg/kg	ALS	RG_MIDCO_SE-3_2019-09-07_1400
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	Quinoline	<0.010	mg/kg	ALS	RG MIDCO SE-3 2019-09-07 1400
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	IACR (CCME)	<0.15	-	ALS	RG_MIDCO_SE-3_2019-09-07_1400
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	B(a)P Total Potency Equivalent	<0.020	mg/kg	ALS	RG_MIDCO_SE-3_2019-09-07_1400
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	Benzo(b+j+k)fluoranthene	<0.015	mg/kg	ALS	RG_MIDCO_SE-3_2019-09-07_1400
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	d8-Naphthalene	83	%	ALS	RG MIDCO SE-3 2019-09-07 1400
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	d10-Acenaphthene	83	%	ALS	RG MIDCO SE-3 2019-09-07 1400
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	d10-Phenanthrene	87	%	ALS	RG MIDCO SE-3 2019-09-07 1400
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	d12-Chrysene	93	%	ALS	RG MIDCO SE-3 2019-09-07 1400
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	% Gravel (>2 mm)	26	%	ALS	RG MIDCO SE-3 2019-09-07 1400
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	% Sand (2.00 mm - 1.00 mm)	18	%	ALS	RG MIDCO SE-3 2019-09-07 1400
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	% Sand (1.00 mm - 0.50 mm)	26	%	ALS	RG MIDCO SE-3 2019-09-07 1400
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	% Sand (0.50 mm - 0.25 mm)	10	%	ALS	RG MIDCO SE-3 2019-09-07 1400
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	% Sand (0.25 mm - 0.125 mm)	3.6	%	ALS	RG MIDCO SE-3 2019-09-07 1400
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	% Sand (0.125 mm - 0.063 mm)	2.5	%	ALS	RG MIDCO SE-3 2019-09-07 1400
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	% Silt (0.063 mm - 0.0312 mm)	5.7	%	ALS	RG MIDCO SE-3 2019-09-07 1400
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	% Silt (0.031 mm - 0.004 mm)	7.0	%	ALS	RG MIDCO SE-3 2019-09-07 1400
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	% Clay (<4 μm)	1.3	%	ALS	RG MIDCO SE-3 2019-09-07 1400
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	Texture	Loamy sand	-	ALS	RG MIDCO SE-3 2019-09-07 1400
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	Mercury (Hg)	0.017	mg/kg	ALS	RG MIDCO SE-3 2019-09-07 1400
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	Aluminum (Al)	19,000	mg/kg	ALS	RG MIDCO SE-3 2019-09-07 1400
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	Antimony (Sb)	0.41	mg/kg	ALS	RG MIDCO SE-3 2019-09-07 1400
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	Arsenic (As)	9.9	mg/kg	ALS	RG MIDCO SE-3 2019-09-07 1400
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	Barium (Ba)	103	mg/kg	ALS	RG MIDCO SE-3 2019-09-07 1400
<u> </u>	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	Beryllium (Be)	1.3	mg/kg		RG MIDCO SE-3 2019-09-07 1400

WSP Canada Inc. Page 95 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

able i-	i: Seaiment Chen			CIMIM LAEINIP	Sampling St	tations, 2012 to	2022		_			
Туре	Station		ı (UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
		Easting	Northing		rtophouto			7 that yes	rtocait	J	Lab	Sample ID
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	Bismuth (Bi)	0.29	mg/kg	ALS	RG_MIDCO_SE-3_2019-09-07_1400
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	Boron (B)	13	mg/kg	ALS	RG_MIDCO_SE-3_2019-09-07_1400
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	Cadmium (Cd)	0.84	mg/kg	ALS	RG_MIDCO_SE-3_2019-09-07_1400
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	Calcium (Ca)	23,400	mg/kg	ALS	RG_MIDCO_SE-3_2019-09-07_1400
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	Chromium (Cr)	22	mg/kg	ALS	RG_MIDCO_SE-3_2019-09-07_1400
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	Cobalt (Co)	31	mg/kg	ALS	RG_MIDCO_SE-3_2019-09-07_1400
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	Copper (Cu)	24	mg/kg	ALS	RG_MIDCO_SE-3_2019-09-07_1400
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	Iron (Fe)	33,900	mg/kg	ALS	RG_MIDCO_SE-3_2019-09-07_1400
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	Lead (Pb)	16	mg/kg	ALS	RG_MIDCO_SE-3_2019-09-07_1400
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	Lithium (Li)	33	mg/kg	ALS	RG_MIDCO_SE-3_2019-09-07_1400
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	Magnesium (Mg)	9,030	mg/kg	ALS	RG_MIDCO_SE-3_2019-09-07_1400
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	Manganese (Mn)	700	mg/kg	ALS	RG_MIDCO_SE-3_2019-09-07_1400
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	Molybdenum (Mo)	2.2	mg/kg	ALS	RG_MIDCO_SE-3_2019-09-07_1400
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	Nickel (Ni)	56	mg/kg	ALS	RG MIDCO SE-3 2019-09-07 1400
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	Phosphorus (P)	1,450	mg/kg	ALS	RG MIDCO SE-3 2019-09-07 1400
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	Potassium (K)	3,630	mg/kg	ALS	RG MIDCO SE-3 2019-09-07 1400
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	Selenium (Se)	0.55	mg/kg	ALS	RG_MIDCO_SE-3_2019-09-07_1400
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	Silver (Ag)	<0.10	mg/kg	ALS	RG MIDCO SE-3 2019-09-07 1400
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	Sodium (Na)	101	mg/kg	ALS	RG_MIDCO_SE-3_2019-09-07_1400
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	Strontium (Sr)	59	mg/kg	ALS	RG_MIDCO_SE-3_2019-09-07_1400
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	Sulfur (S)	<1000	mg/kg	ALS	RG_MIDCO_SE-3_2019-09-07_1400
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	Thallium (TI)	0.33	mg/kg	ALS	RG MIDCO SE-3 2019-09-07 1400
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	Tin (Sn)	<2.0	mg/kg	ALS	RG_MIDCO_SE-3_2019-09-07_1400
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	Titanium (Ti)	13	mg/kg	ALS	RG MIDCO SE-3 2019-09-07 1400
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	Tungsten (W)	<0.50	mg/kg	ALS	RG_MIDCO_SE-3_2019-09-07_1400
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	Uranium (U)	0.51	mg/kg	ALS	RG MIDCO SE-3 2019-09-07 1400
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	Vanadium (V)	33	mg/kg	ALS	RG_MIDCO_SE-3_2019-09-07_1400
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	Zinc (Zn)	145	mg/kg	ALS	RG MIDCO SE-3 2019-09-07 1400
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	Zirconium (Zr)	1.3	mg/kg	ALS	RG MIDCO SE-3 2019-09-07 1400
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	pH (1:2 soil:water)	7.3	pН	ALS	RG MIDCO SE-3 2019-09-07 1400
SE	MIDCO	667711	5487625	2019	3	2019-09-07	14:00	Total Organic Carbon	1.8	%	ALS	RG MIDCO SE-3 2019-09-07 1400
SE	MIDCO	667711	5487625	2019	1	2019-09-09	09:00	Moisture	53	%	ALS	RG MIDCO SE-1 2019-09-09 0900
SE	MIDCO	667711	5487625	2019	1	2019-09-09	09:00	Acenaphthene	0.0053	mg/kg	ALS	RG MIDCO SE-1 2019-09-09 0900
SE	MIDCO	667711	5487625	2019	1	2019-09-09	09:00	Acenaphthylene	<0.0050	mg/kg	ALS	RG MIDCO SE-1 2019-09-09 0900
SE	MIDCO	667711	5487625	2019	1	2019-09-09	09:00	Acridine	<0.010	mg/kg	ALS	RG MIDCO SE-1 2019-09-09 0900
SE	MIDCO	667711	5487625	2019	1	2019-09-09	09:00	Anthracene	<0.0040	mg/kg	ALS	RG MIDCO SE-1 2019-09-09 0900
SE	MIDCO	667711	5487625	2019	1	2019-09-09	09:00	Benz(a)anthracene	<0.010	mg/kg	ALS	RG MIDCO SE-1 2019-09-09 0900
SE	MIDCO	667711	5487625	2019	1	2019-09-09	09:00	Benzo(a)pyrene	<0.010	mg/kg	ALS	RG MIDCO SE-1 2019-09-09 0900
SE	MIDCO	667711	5487625	2019	1	2019-09-09	09:00	Benzo(b&j)fluoranthene	0.028	mg/kg	ALS	RG MIDCO SE-1 2019-09-09 0900
SE	MIDCO	667711	5487625	2019	1	2019-09-09	09:00	Benzo(g_h_i)perylene	0.01	mg/kg	ALS	RG MIDCO SE-1 2019-09-09 0900
SE	MIDCO	667711	5487625	2019	1	2019-09-09	09:00	Benzo(k)fluoranthene	<0.010	mg/kg	ALS	RG MIDCO SE-1 2019-09-09 0900
SE	MIDCO	667711	5487625	2019	1	2019-09-09	09:00	Benzo(e)pyrene	0.037	mg/kg	ALS	RG MIDCO SE-1 2019-09-09 0900
SE	MIDCO	667711	5487625	2019	1	2019-09-09	09:00	Chrysene	0.042	mg/kg	ALS	RG MIDCO SE-1 2019-09-09 0900
SE	MIDCO	667711	5487625	2019	1	2019-09-09	09:00	Dibenz(a h)anthracene	<0.0050	mg/kg	ALS	RG MIDCO SE-1 2019-09-09 0900
SE	MIDCO	667711	5487625	2019	1	2019-09-09	09:00	Fluoranthene	<0.010	mg/kg	ALS	RG MIDCO SE-1 2019-09-09 0900
SE	MIDCO	667711	5487625	2019	1	2019-09-09	09:00	Fluorene	0.017	mg/kg	ALS	RG MIDCO SE-1 2019-09-09 0900
SE	MIDCO	667711	5487625	2019	+ '-	2019-09-09	09:00	Indeno(1,2,3-c,d)pyrene	<0.010	mg/kg		RG MIDCO SE-1 2019-09-09 0900

WSP Canada Inc. Page 96 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	Ctotion	Location	ı (UTMs) ^(a)	Vasii	Doubleste	Dete	Time	Aughsta	Booult	Helt		Laboratory Information
ype	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE.	MIDCO	667711	5487625	2019	1	2019-09-09	09:00	1-Methylnaphthalene	0.13	mg/kg	ALS	RG MIDCO SE-1 2019-09-09 0900
E E	MIDCO	667711	5487625	2019	1	2019-09-09	09:00	2-Methylnaphthalene	0.2	mg/kg	ALS	RG MIDCO SE-1 2019-09-09 0900
E E	MIDCO	667711	5487625	2019	1	2019-09-09	09:00	Naphthalene	0.072	mg/kg	ALS	RG MIDCO SE-1 2019-09-09 0900
SE SE	MIDCO	667711	5487625	2019	1	2019-09-09	09:00	Perylene	<0.010	mg/kg	ALS	RG MIDCO SE-1 2019-09-09 0900
SE	MIDCO	667711	5487625	2019	1 1	2019-09-09	09:00	Phenanthrene	0.11	mg/kg	ALS	RG MIDCO SE-1_2019-09-09 0900
SE	MIDCO	667711	5487625	2019	1	2019-09-09	09:00	Pyrene	0.013	mg/kg	ALS	RG MIDCO SE-1 2019-09-09 0900
SE SE	MIDCO	667711	5487625	2019	1 1	2019-09-09	09:00	Quinoline	<0.010	mg/kg	ALS	RG MIDCO SE-1 2019-09-09 0900
E E	MIDCO	667711	5487625	2019	1 1	2019-09-09	09:00	IACR (CCME)	0.27	-	ALS	RG MIDCO SE-1 2019-09-09 0900
SE SE	MIDCO	667711	5487625	2019	1 1	2019-09-09	09:00	B(a)P Total Potency Equivalent	<0.020	mg/kg	ALS	RG MIDCO SE-1 2019-09-09 0900
SE SE	MIDCO	667711	5487625	2019	1	2019-09-09	09:00	Benzo(b+j+k)fluoranthene	0.029	mg/kg	ALS	RG MIDCO SE-1 2019-09-09 0900
SE SE	MIDCO	667711	5487625	2019	1 1	2019-09-09	09:00	d8-Naphthalene	80	%	ALS	RG MIDCO SE-1 2019-09-09 0900
SE SE	MIDCO	667711	5487625	2019	1	2019-09-09	09:00	d10-Acenaphthene	87	%	ALS	RG MIDCO SE-1 2019-09-09 0900
SE SE	MIDCO	667711	5487625	2019	1	2019-09-09	09:00	d10-Phenanthrene	92	//	ALS	RG MIDCO SE-1 2019-09-09 0900
SE SE	MIDCO	667711	5487625	2019	1	2019-09-09	09:00	d12-Chrysene	108		ALS	RG MIDCO SE-1 2019-09-09 0900
E E	MIDCO	667711	5487625	2019	1	2019-09-09	09:00	% Gravel (>2 mm)			ALS	RG MIDCO SE-1 2019-09-09 0900
SE E					1			, ,	20	%		
	MIDCO	667711	5487625	2019	1 1	2019-09-09	09:00	% Sand (2.00 mm - 1.00 mm)	25		ALS	RG_MIDCO_SE-1_2019-09-09_0900
SE	MIDCO	667711	5487625	2019	1 1	2019-09-09	09:00	% Sand (1.00 mm - 0.50 mm)	21	%	ALS	RG_MIDCO_SE-1_2019-09-09_0900
SE .	MIDCO	667711	5487625	2019	1	2019-09-09	09:00	% Sand (0.50 mm - 0.25 mm)	6.7	%	ALS	RG_MIDCO_SE-1_2019-09-09_0900
E	MIDCO	667711	5487625	2019	1 1	2019-09-09	09:00	% Sand (0.25 mm - 0.125 mm)	5.1	%	ALS	RG_MIDCO_SE-1_2019-09-09_0900
E	MIDCO	667711	5487625	2019	1	2019-09-09	09:00	% Sand (0.125 mm - 0.063 mm)	5.0	%	ALS	RG_MIDCO_SE-1_2019-09-09_0900
E	MIDCO	667711	5487625	2019	1	2019-09-09	09:00	% Silt (0.063 mm - 0.0312 mm)	6.4	%	ALS	RG_MIDCO_SE-1_2019-09-09_0900
E	MIDCO	667711	5487625	2019	1	2019-09-09	09:00	% Silt (0.031 mm - 0.004 mm)	8.9	%	ALS	RG_MIDCO_SE-1_2019-09-09_0900
E	MIDCO	667711	5487625	2019	1	2019-09-09	09:00	% Clay (<4 μm)	2.5	%	ALS	RG_MIDCO_SE-1_2019-09-09_0900
E	MIDCO	667711	5487625	2019	1 1	2019-09-09	09:00	Texture	Loamy sand	-	ALS	RG_MIDCO_SE-1_2019-09-09_0900
E	MIDCO	667711	5487625	2019	1 1	2019-09-09	09:00	Mercury (Hg)	0.021	mg/kg	ALS	RG_MIDCO_SE-1_2019-09-09_0900
E	MIDCO	667711	5487625	2019	1	2019-09-09	09:00	Aluminum (Al)	16,200	mg/kg	ALS	RG_MIDCO_SE-1_2019-09-09_0900
SE	MIDCO	667711	5487625	2019	1	2019-09-09	09:00	Antimony (Sb)	0.48	mg/kg	ALS	RG_MIDCO_SE-1_2019-09-09_0900
E	MIDCO	667711	5487625	2019	1	2019-09-09	09:00	Arsenic (As)	10	mg/kg	ALS	RG_MIDCO_SE-1_2019-09-09_0900
SE	MIDCO	667711	5487625	2019	1	2019-09-09	09:00	Barium (Ba)	159	mg/kg	ALS	RG_MIDCO_SE-1_2019-09-09_0900
E	MIDCO	667711	5487625	2019	1	2019-09-09	09:00	Beryllium (Be)	1.1	mg/kg	ALS	RG_MIDCO_SE-1_2019-09-09_0900
E	MIDCO	667711	5487625	2019	1	2019-09-09	09:00	Bismuth (Bi)	0.25	mg/kg	ALS	RG_MIDCO_SE-1_2019-09-09_0900
ŝΕ	MIDCO	667711	5487625	2019	1	2019-09-09	09:00	Boron (B)	11	mg/kg	ALS	RG_MIDCO_SE-1_2019-09-09_0900
SE	MIDCO	667711	5487625	2019	1	2019-09-09	09:00	Cadmium (Cd)	1.5	mg/kg	ALS	RG_MIDCO_SE-1_2019-09-09_0900
SE	MIDCO	667711	5487625	2019	1	2019-09-09	09:00	Calcium (Ca)	40,200	mg/kg	ALS	RG_MIDCO_SE-1_2019-09-09_0900
ŝΕ	MIDCO	667711	5487625	2019	1	2019-09-09	09:00	Chromium (Cr)	20	mg/kg	ALS	RG_MIDCO_SE-1_2019-09-09_0900
E	MIDCO	667711	5487625	2019	1	2019-09-09	09:00	Cobalt (Co)	51	mg/kg	ALS	RG_MIDCO_SE-1_2019-09-09_0900
ŝΕ	MIDCO	667711	5487625	2019	1	2019-09-09	09:00	Copper (Cu)	21	mg/kg	ALS	RG_MIDCO_SE-1_2019-09-09_0900
E	MIDCO	667711	5487625	2019	1	2019-09-09	09:00	Iron (Fe)	29,500	mg/kg	ALS	RG MIDCO SE-1 2019-09-09 0900
E	MIDCO	667711	5487625	2019	1	2019-09-09	09:00	Lead (Pb)	16	mg/kg	ALS	RG_MIDCO_SE-1_2019-09-09_0900
SE	MIDCO	667711	5487625	2019	1	2019-09-09	09:00	Lithium (Li)	29	mg/kg	ALS	RG_MIDCO_SE-1_2019-09-09_0900
E	MIDCO	667711	5487625	2019	1	2019-09-09	09:00	Magnesium (Mg)	9,610	mg/kg	ALS	RG_MIDCO_SE-1_2019-09-09_0900
E	MIDCO	667711	5487625	2019	1	2019-09-09	09:00	Manganese (Mn)	1,270	mg/kg	ALS	RG MIDCO SE-1 2019-09-09 0900
E	MIDCO	667711	5487625	2019	1	2019-09-09	09:00	Molybdenum (Mo)	2.6	mg/kg	ALS	RG MIDCO SE-1 2019-09-09 0900
E E	MIDCO	667711	5487625	2019	1	2019-09-09	09:00	Nickel (Ni)	92	mg/kg	ALS	RG MIDCO SE-1 2019-09-09 0900
E	MIDCO	667711	5487625	2019	1	2019-09-09	09:00	Phosphorus (P)	1,560	mg/kg	ALS	RG MIDCO SE-1 2019-09-09 0900
E	MIDCO	667711	5487625	2019	1	2019-09-09	09:00	Potassium (K)	2,790	mg/kg	ALS	RG MIDCO SE-1 2019-09-09 0900
SE SE	MIDCO	667711	5487625	2019	 	2019-09-09	09:00	Selenium (Se)	1.1	mg/kg	ALS	RG MIDCO SE-1 2019-09-09 0900

WSP Canada Inc. Page 97 of 337

Sediment Screening

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	Ctotion	Location	ı (UTMs) ^(a)	Vacu	Doubleste	Dete	Time	Aughsta	Decult	Herit		Laboratory Information
ype	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE.	MIDCO	667711	5487625	2019	1	2019-09-09	09:00	Silver (Ag)	0.11	mg/kg	ALS	RG MIDCO SE-1 2019-09-09 0900
E E	MIDCO	667711	5487625	2019	1	2019-09-09	09:00	Sodium (Na)	120	mg/kg	ALS	RG MIDCO SE-1 2019-09-09 0900
SE SE	MIDCO	667711	5487625	2019	1 1	2019-09-09	09:00	Strontium (Sr)	74	mg/kg	ALS	RG MIDCO SE-1 2019-09-09 0900
SE SE	MIDCO	667711	5487625	2019	1 1	2019-09-09	09:00	Sulfur (S)	<1000	mg/kg	ALS	RG MIDCO SE-1 2019-09-09 0900
SE SE	MIDCO	667711	5487625	2019	1 1	2019-09-09	09:00	Thallium (TI)	0.4	mg/kg	ALS	RG MIDCO SE-1 2019-09-09 0900
SE SE	MIDCO	667711	5487625	2019	1 1	2019-09-09	09:00	Tin (Sn)	<2.0	mg/kg	ALS	RG MIDCO SE-1 2019-09-09 0900
SE SE	MIDCO	667711	5487625	2019	1 1	2019-09-09	09:00	Titanium (Ti)	17	mg/kg	ALS	RG MIDCO SE-1 2019-09-09 0900
E E	MIDCO	667711	5487625	2019	1 1	2019-09-09	09:00	Tungsten (W)	<0.50	mg/kg	ALS	RG MIDCO SE-1 2019-09-09 0900
SE	MIDCO	667711	5487625	2019	1 1	2019-09-09	09:00	Uranium (U)	0.86	mg/kg	ALS	RG MIDCO SE-1 2019-09-09 0900
SE SE	MIDCO	667711	5487625	2019	1 1	2019-09-09	09:00	Vanadium (V)	32	mg/kg	ALS	RG MIDCO SE-1 2019-09-09 0900
SE SE	MIDCO	667711	5487625	2019	1 1	2019-09-09	09:00	Zinc (Zn)	180	mg/kg	ALS	RG MIDCO SE-1 2019-09-09 0900
SE SE	MIDCO	667711	5487625	2019	1	2019-09-09	09:00	Zirconium (Zr)	1.3	mg/kg	ALS	RG MIDCO SE-1 2019-09-09 0900
SE SE	MIDCO	667711	5487625	2019	1	2019-09-09	09:00	pH (1:2 soil:water)	7.2	pH	ALS	RG MIDCO SE-1 2019-09-09 0900
SE SE	MIDCO	667711	5487625	2019	1	2019-09-09	09:00	Total Organic Carbon	1.9	%	ALS	RG MIDCO SE-1 2019-09-09 0900
SE SE	MIDCO	667711	5487625	2019	1	2019-09-09	10:15	Moisture	56	%	ALS	RG MIDCO SE-4 2019-09-09 1015
SE SE	MIDCO	667711	5487625	2019	4	2019-09-09	10:15	Acenaphthene	<0.0050	mg/kg	ALS	RG MIDCO SE-4 2019-09-09 1015
SE SE	MIDCO	667711	5487625	2019	4	2019-09-09	10:15	Acenaphthylene	<0.0050	mg/kg	ALS	RG MIDCO SE-4 2019-09-09 1015
SE SE	MIDCO	667711	5487625	2019	4	2019-09-09	10:15	Acridine	<0.0030	1 - 1	ALS	RG MIDCO SE-4 2019-09-09 1015
E E	MIDCO	667711	5487625	2019	4	2019-09-09	10:15	Anthracene	<0.010	mg/kg	ALS	RG MIDCO SE-4 2019-09-09 1015
E	MIDCO	667711	5487625	2019	4	2019-09-09	10:15	Benz(a)anthracene	<0.0040	mg/kg	ALS	RG MIDCO SE-4 2019-09-09 1015
E	MIDCO		5487625	2019	4				<0.010	mg/kg	ALS	RG MIDCO SE-4 2019-09-09 1015
E	MIDCO	667711 667711	5487625		4	2019-09-09 2019-09-09	10:15 10:15	Benzo(a)pyrene	0.026	mg/kg	ALS	RG MIDCO SE-4 2019-09-09 1015
			+	2019	4			Benzo(b&j)fluoranthene		mg/kg	-	
E	MIDCO	667711	5487625	2019	4	2019-09-09	10:15	Benzo(g_h_i)perylene	<0.010	mg/kg	ALS	RG_MIDCO_SE-4_2019-09-09_1015
E	MIDCO	667711	5487625	2019	4	2019-09-09	10:15	Benzo(k)fluoranthene	<0.010	mg/kg	ALS	RG_MIDCO_SE-4_2019-09-09_1015
SE .	MIDCO	667711	5487625	2019	4	2019-09-09	10:15	Benzo(e)pyrene	0.036	mg/kg	ALS	RG_MIDCO_SE-4_2019-09-09_1015
E	MIDCO	667711	5487625	2019	4	2019-09-09	10:15	Chrysene	0.039	mg/kg	ALS	RG_MIDCO_SE-4_2019-09-09_1015
SE .	MIDCO	667711	5487625	2019	4	2019-09-09	10:15	Dibenz(a_h)anthracene	<0.0050	mg/kg	ALS	RG_MIDCO_SE-4_2019-09-09_1015
SE SE	MIDCO	667711	5487625	2019	4	2019-09-09	10:15	Fluoranthene	<0.010	mg/kg	ALS	RG_MIDCO_SE-4_2019-09-09_1015
SE .	MIDCO	667711	5487625	2019	4	2019-09-09	10:15	Fluorene	0.018	mg/kg	ALS	RG_MIDCO_SE-4_2019-09-09_1015
SE .	MIDCO	667711	5487625	2019	4	2019-09-09	10:15	Indeno(1,2,3-c,d)pyrene	<0.010	mg/kg	ALS	RG_MIDCO_SE-4_2019-09-09_1015
SE	MIDCO	667711	5487625	2019	4	2019-09-09	10:15	1-Methylnaphthalene	0.11	mg/kg	ALS	RG_MIDCO_SE-4_2019-09-09_1015
SE _	MIDCO	667711	5487625	2019	4	2019-09-09	10:15	2-Methylnaphthalene	0.18	mg/kg	ALS	RG_MIDCO_SE-4_2019-09-09_1015
SE .	MIDCO	667711	5487625	2019	4	2019-09-09	10:15	Naphthalene	0.062	mg/kg	ALS	RG_MIDCO_SE-4_2019-09-09_1015
SE .	MIDCO	667711	5487625	2019	4	2019-09-09	10:15	Perylene	<0.010	mg/kg	ALS	RG_MIDCO_SE-4_2019-09-09_1015
E .	MIDCO	667711	5487625	2019	4	2019-09-09	10:15	Phenanthrene	0.095	mg/kg	ALS	RG_MIDCO_SE-4_2019-09-09_1015
SE	MIDCO	667711	5487625	2019	4	2019-09-09	10:15	Pyrene	0.011	mg/kg	ALS	RG_MIDCO_SE-4_2019-09-09_1015
E	MIDCO	667711	5487625	2019	4	2019-09-09	10:15	Quinoline	<0.010	mg/kg	ALS	RG_MIDCO_SE-4_2019-09-09_1015
SE	MIDCO	667711	5487625	2019	4	2019-09-09	10:15	IACR (CCME)	0.25	-	ALS	RG_MIDCO_SE-4_2019-09-09_1015
E	MIDCO	667711	5487625	2019	4	2019-09-09	10:15	B(a)P Total Potency Equivalent	<0.020	mg/kg	ALS	RG_MIDCO_SE-4_2019-09-09_1015
SE	MIDCO	667711	5487625	2019	4	2019-09-09	10:15	Benzo(b+j+k)fluoranthene	0.027	mg/kg	ALS	RG_MIDCO_SE-4_2019-09-09_1015
SE	MIDCO	667711	5487625	2019	4	2019-09-09	10:15	d8-Naphthalene	79	%	ALS	RG_MIDCO_SE-4_2019-09-09_1015
E	MIDCO	667711	5487625	2019	4	2019-09-09	10:15	d10-Acenaphthene	85	%	ALS	RG_MIDCO_SE-4_2019-09-09_1015
E	MIDCO	667711	5487625	2019	4	2019-09-09	10:15	d10-Phenanthrene	87	%	ALS	RG_MIDCO_SE-4_2019-09-09_1015
E	MIDCO	667711	5487625	2019	4	2019-09-09	10:15	d12-Chrysene	100	%	ALS	RG_MIDCO_SE-4_2019-09-09_1015
E	MIDCO	667711	5487625	2019	4	2019-09-09	10:15	% Gravel (>2 mm)	24	%	ALS	RG_MIDCO_SE-4_2019-09-09_1015
E	MIDCO	667711	5487625	2019	4	2019-09-09	10:15	% Sand (2.00 mm - 1.00 mm)	32	%	ALS	RG_MIDCO_SE-4_2019-09-09_1015
SE	MIDCO	667711	5487625	2019	4	2019-09-09	10:15	% Sand (1.00 mm - 0.50 mm)	22	%	ALS	RG MIDCO SE-4 2019-09-09 1015

WSP Canada Inc. Page 98 of 337

Sediment Screening

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	Ctation	Location	ı (UTMs) ^(a)	Vacu	Danlington	Dete	Times	Analysis	Beaut	1114		Laboratory Information
ype	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MIDCO	667711	5487625	2019	4	2019-09-09	10:15	% Sand (0.50 mm - 0.25 mm)	3.8	%	ALS	RG MIDCO SE-4 2019-09-09 1015
SE SE	MIDCO	667711	5487625	2019	4	2019-09-09	10:15	% Sand (0.25 mm - 0.125 mm)	1.3	%	ALS	RG MIDCO SE-4 2019-09-09 1015
SE .	MIDCO	667711	5487625	2019	4	2019-09-09	10:15	% Sand (0.125 mm - 0.063 mm)	1.2	%	ALS	RG MIDCO SE-4 2019-09-09 1015
SE SE	MIDCO	667711	5487625	2019	4	2019-09-09	10:15	% Silt (0.063 mm - 0.0312 mm)	5.1	%	ALS	RG MIDCO SE-4 2019-09-09 1015
SE .	MIDCO	667711	5487625	2019	4	2019-09-09	10:15	% Silt (0.031 mm - 0.004 mm)	7.8	%	ALS	RG MIDCO SE-4 2019-09-09 1015
SE SE	MIDCO	667711	5487625	2019	4	2019-09-09	10:15	% Clay (<4 μm)	2.1	%	ALS	RG MIDCO SE-4 2019-09-09 1015
SE SE	MIDCO	667711	5487625	2019	4	2019-09-09	10:15	Texture	Loamy sand	-	ALS	RG MIDCO SE-4 2019-09-09 1015
SE	MIDCO	667711	5487625	2019	4	2019-09-09	10:15	Mercury (Hg)	0.024	mg/kg	ALS	RG MIDCO SE-4 2019-09-09 1015
SE SE	MIDCO	667711	5487625	2019	4	2019-09-09	10:15	Aluminum (Al)	16,100	mg/kg	ALS	RG_MIDCO_SE-4_2019-09-09_1015
E E	MIDCO	667711	5487625	2019	4	2019-09-09	10:15	Antimony (Sb)	0.48	mg/kg	ALS	RG MIDCO SE-4 2019-09-09 1015
SE SE	MIDCO	667711	5487625	2019	4	2019-09-09	10:15	Arsenic (As)	12	mg/kg	ALS	RG MIDCO SE-4 2019-09-09 1015
SE SE	MIDCO	667711	5487625	2019	1	2019-09-09	10:15	Barium (Ba)	150	mg/kg	ALS	RG MIDCO SE-4 2019-09-09 1015
SE	MIDCO	667711	5487625	2019	4	2019-09-09	10:15	Beryllium (Be)	1.2	mg/kg	ALS	RG MIDCO SE-4 2019-09-09 1015
SE .	MIDCO	667711	5487625	2019	4	2019-09-09	10:15	Bismuth (Bi)	0.28	mg/kg	ALS	RG_MIDCO_SE-4_2019-09-09_1015
SE SE	MIDCO	667711	5487625	2019	4	2019-09-09	10:15	Boron (B)	9.9	mg/kg	ALS	RG MIDCO SE-4 2019-09-09 1015
SE SE	MIDCO	667711	5487625	2019	4	2019-09-09	10:15	Cadmium (Cd)	1.2	mg/kg	ALS	RG MIDCO SE-4 2019-09-09 1015
SE SE	MIDCO	667711	5487625	2019	4	2019-09-09	10:15	Calcium (Ca)	50,500	mg/kg	ALS	RG MIDCO SE-4 2019-09-09 1015
SE SE	MIDCO	667711	5487625	2019	4	2019-09-09	10:15	Chromium (Cr)	20		ALS	RG MIDCO SE-4 2019-09-09 1015
E E	MIDCO	667711	5487625	2019	4	2019-09-09	10:15	Cobalt (Co)	58	mg/kg	ALS	RG MIDCO SE-4 2019-09-09 1015
E	MIDCO	667711	5487625	2019	4	2019-09-09	10:15	7	23	mg/kg	ALS	RG_MIDCO_SE-4_2019-09-09_1015
Ε	MIDCO		5487625		4		10:15	Copper (Cu)	33,000	mg/kg	ALS	RG MIDCO SE-4 2019-09-09 1015
E		667711 667711	5487625	2019 2019	4	2019-09-09 2019-09-09	10:15	Iron (Fe)	·	mg/kg	ALS	RG MIDCO SE-4 2019-09-09 1015
	MIDCO				4			Lead (Pb)	17	mg/kg		
E	MIDCO	667711	5487625	2019	4	2019-09-09	10:15	Lithium (Li)	31	mg/kg	ALS	RG_MIDCO_SE-4_2019-09-09_1015
E E	MIDCO	667711	5487625	2019	4	2019-09-09	10:15	Magnesium (Mg)	11,100	mg/kg	ALS	RG_MIDCO_SE-4_2019-09-09_1015
SE SE	MIDCO	667711	5487625	2019	4	2019-09-09	10:15	Manganese (Mn)	915	mg/kg	ALS	RG_MIDCO_SE-4_2019-09-09_1015
SE SE	MIDCO	667711	5487625	2019	4	2019-09-09	10:15	Molybdenum (Mo)	2.7	mg/kg	ALS	RG_MIDCO_SE-4_2019-09-09_1015
SE .	MIDCO	667711	5487625	2019	4	2019-09-09	10:15	Nickel (Ni)	92	mg/kg	ALS	RG_MIDCO_SE-4_2019-09-09_1015
SE.	MIDCO	667711	5487625	2019	4	2019-09-09	10:15	Phosphorus (P)	1,520	mg/kg	ALS	RG_MIDCO_SE-4_2019-09-09_1015
SE.	MIDCO	667711	5487625	2019	4	2019-09-09	10:15	Potassium (K)	2,600	mg/kg	ALS	RG_MIDCO_SE-4_2019-09-09_1015
SE	MIDCO	667711	5487625	2019	4	2019-09-09	10:15	Selenium (Se)	1.7	mg/kg	ALS	RG_MIDCO_SE-4_2019-09-09_1015
SE.	MIDCO	667711	5487625	2019	4	2019-09-09	10:15	Silver (Ag)	0.11	mg/kg	ALS	RG_MIDCO_SE-4_2019-09-09_1015
SE	MIDCO	667711	5487625	2019	4	2019-09-09	10:15	Sodium (Na)	119	mg/kg	ALS	RG_MIDCO_SE-4_2019-09-09_1015
SE	MIDCO	667711	5487625	2019	4	2019-09-09	10:15	Strontium (Sr)	94	mg/kg	ALS	RG_MIDCO_SE-4_2019-09-09_1015
SE.	MIDCO	667711	5487625	2019	4	2019-09-09	10:15	Sulfur (S)	1,000	mg/kg	ALS	RG_MIDCO_SE-4_2019-09-09_1015
SE.	MIDCO	667711	5487625	2019	4	2019-09-09	10:15	Thallium (TI)	0.37	mg/kg	ALS	RG_MIDCO_SE-4_2019-09-09_1015
SE	MIDCO	667711	5487625	2019	4	2019-09-09	10:15	Tin (Sn)	<2.0	mg/kg	ALS	RG_MIDCO_SE-4_2019-09-09_1015
ŝΕ	MIDCO	667711	5487625	2019	4	2019-09-09	10:15	Titanium (Ti)	12	mg/kg	ALS	RG_MIDCO_SE-4_2019-09-09_1015
SE.	MIDCO	667711	5487625	2019	4	2019-09-09	10:15	Tungsten (W)	<0.50	mg/kg	ALS	RG_MIDCO_SE-4_2019-09-09_1015
SE.	MIDCO	667711	5487625	2019	4	2019-09-09	10:15	Uranium (U)	0.81	mg/kg	ALS	RG_MIDCO_SE-4_2019-09-09_1015
SE.	MIDCO	667711	5487625	2019	4	2019-09-09	10:15	Vanadium (V)	29	mg/kg	ALS	RG_MIDCO_SE-4_2019-09-09_1015
SE	MIDCO	667711	5487625	2019	4	2019-09-09	10:15	Zinc (Zn)	169	mg/kg	ALS	RG_MIDCO_SE-4_2019-09-09_1015
SE.	MIDCO	667711	5487625	2019	4	2019-09-09	10:15	Zirconium (Zr)	1.2	mg/kg	ALS	RG_MIDCO_SE-4_2019-09-09_1015
E	MIDCO	667711	5487625	2019	4	2019-09-09	10:15	pH (1:2 soil:water)	7.1	pН	ALS	RG_MIDCO_SE-4_2019-09-09_1015
E	MIDCO	667711	5487625	2019	4	2019-09-09	10:15	Total Organic Carbon	1.8	%	ALS	RG_MIDCO_SE-4_2019-09-09_1015
E	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	Moisture	31	%	ALS	RG_MIDCO_SE-5_2019-09-09_1130
E	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	Acenaphthene	<0.0050	mg/kg	ALS	RG_MIDCO_SE-5_2019-09-09_1130
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	Acenaphthylene	<0.0050	mg/kg	ALS	RG MIDCO SE-5 2019-09-09 1130

WSP Canada Inc. Page 99 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	Station		ı (UTMs) ^(a)	Year	Replicate		Time	Analyta	Pagult	Unit		Laboratory Information
Type	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	Acridine	<0.010	mg/kg	ALS	RG_MIDCO_SE-5_2019-09-09_1130
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	Anthracene	<0.0040	mg/kg	ALS	RG_MIDCO_SE-5_2019-09-09_1130
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	Benz(a)anthracene	<0.010	mg/kg	ALS	RG_MIDCO_SE-5_2019-09-09_1130
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	Benzo(a)pyrene	<0.010	mg/kg	ALS	RG_MIDCO_SE-5_2019-09-09_1130
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	Benzo(b&j)fluoranthene	<0.010	mg/kg	ALS	RG_MIDCO_SE-5_2019-09-09_1130
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	Benzo(g_h_i)perylene	<0.010	mg/kg	ALS	RG_MIDCO_SE-5_2019-09-09_1130
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	Benzo(k)fluoranthene	<0.010	mg/kg	ALS	RG_MIDCO_SE-5_2019-09-09_1130
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	Benzo(e)pyrene	<0.010	mg/kg	ALS	RG_MIDCO_SE-5_2019-09-09_1130
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	Chrysene	0.015	mg/kg	ALS	RG_MIDCO_SE-5_2019-09-09_1130
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	Dibenz(a_h)anthracene	<0.0050	mg/kg	ALS	RG_MIDCO_SE-5_2019-09-09_1130
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	Fluoranthene	<0.010	mg/kg	ALS	RG_MIDCO_SE-5_2019-09-09_1130
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	Fluorene	<0.010	mg/kg	ALS	RG_MIDCO_SE-5_2019-09-09_1130
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	Indeno(1,2,3-c,d)pyrene	<0.010	mg/kg	ALS	RG_MIDCO_SE-5_2019-09-09_1130
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	1-Methylnaphthalene	0.036	mg/kg	ALS	RG_MIDCO_SE-5_2019-09-09_1130
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	2-Methylnaphthalene	0.057	mg/kg	ALS	RG_MIDCO_SE-5_2019-09-09_1130
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	Naphthalene	0.021	mg/kg	ALS	RG_MIDCO_SE-5_2019-09-09_1130
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	Perylene	<0.010	mg/kg	ALS	RG_MIDCO_SE-5_2019-09-09_1130
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	Phenanthrene	0.035	mg/kg	ALS	RG_MIDCO_SE-5_2019-09-09_1130
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	Pyrene	<0.010	mg/kg	ALS	RG_MIDCO_SE-5_2019-09-09_1130
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	Quinoline	<0.010	mg/kg	ALS	RG_MIDCO_SE-5_2019-09-09_1130
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	IACR (CCME)	<0.15	-	ALS	RG_MIDCO_SE-5_2019-09-09_1130
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	B(a)P Total Potency Equivalent	<0.020	mg/kg	ALS	RG_MIDCO_SE-5_2019-09-09_1130
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	Benzo(b+j+k)fluoranthene	<0.015	mg/kg	ALS	RG_MIDCO_SE-5_2019-09-09_1130
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	d8-Naphthalene	73	%	ALS	RG_MIDCO_SE-5_2019-09-09_1130
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	d10-Acenaphthene	80	%	ALS	RG_MIDCO_SE-5_2019-09-09_1130
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	d10-Phenanthrene	85	%	ALS	RG_MIDCO_SE-5_2019-09-09_1130
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	d12-Chrysene	92	%	ALS	RG_MIDCO_SE-5_2019-09-09_1130
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	% Gravel (>2 mm)	14	%	ALS	RG_MIDCO_SE-5_2019-09-09_1130
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	% Sand (2.00 mm - 1.00 mm)	6.8	%	ALS	RG_MIDCO_SE-5_2019-09-09_1130
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	% Sand (1.00 mm - 0.50 mm)	14	%	ALS	RG_MIDCO_SE-5_2019-09-09_1130
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	% Sand (0.50 mm - 0.25 mm)	20	%		RG_MIDCO_SE-5_2019-09-09_1130
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	% Sand (0.25 mm - 0.125 mm)	14	%	ALS	RG_MIDCO_SE-5_2019-09-09_1130
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	% Sand (0.125 mm - 0.063 mm)	8.9	%	ALS	RG_MIDCO_SE-5_2019-09-09_1130
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	% Silt (0.063 mm - 0.0312 mm)	9.8	%	ALS	RG_MIDCO_SE-5_2019-09-09_1130
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	% Silt (0.031 mm - 0.004 mm)	10	%	ALS	RG_MIDCO_SE-5_2019-09-09_1130
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	% Clay (<4 μm)	2.6	%	ALS	RG_MIDCO_SE-5_2019-09-09_1130
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	Texture	Loamy sand	-	ALS	RG_MIDCO_SE-5_2019-09-09_1130
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	Mercury (Hg)	0.017	mg/kg	ALS	RG_MIDCO_SE-5_2019-09-09_1130
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	Aluminum (Al)	14,900	mg/kg	ALS	RG_MIDCO_SE-5_2019-09-09_1130
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	Antimony (Sb)	0.42	mg/kg	ALS	RG_MIDCO_SE-5_2019-09-09_1130
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	Arsenic (As)	9.8	mg/kg	ALS	RG_MIDCO_SE-5_2019-09-09_1130
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	Barium (Ba)	151	mg/kg	ALS	RG_MIDCO_SE-5_2019-09-09_1130
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	Beryllium (Be)	1.1	mg/kg	ALS	RG_MIDCO_SE-5_2019-09-09_1130
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	Bismuth (Bi)	0.23	mg/kg	ALS	RG_MIDCO_SE-5_2019-09-09_1130
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	Boron (B)	9.8	mg/kg	ALS	RG_MIDCO_SE-5_2019-09-09_1130
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	Cadmium (Cd)	0.82	mg/kg	ALS	RG_MIDCO_SE-5_2019-09-09_1130
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	Calcium (Ca)	31,600	mg/kg	ALS	RG_MIDCO_SE-5_2019-09-09_1130

WSP Canada Inc. Page 100 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Table I-	1: Sediment Chem			CMm LAEMP	Sampling St	ations, 2012 to	2022					
Туре	Station	Location	ı (UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
Type	Station	Easting	Northing	i cai	Replicate	Date	Tille	Allalyte	Result	Onit	Lab	Sample ID
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	Chromium (Cr)	18	mg/kg	ALS	RG_MIDCO_SE-5_2019-09-09_1130
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	Cobalt (Co)	27	mg/kg	ALS	RG_MIDCO_SE-5_2019-09-09_1130
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	Copper (Cu)	19	mg/kg	ALS	RG_MIDCO_SE-5_2019-09-09_1130
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	Iron (Fe)	28,800	mg/kg	ALS	RG_MIDCO_SE-5_2019-09-09_1130
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	Lead (Pb)	14	mg/kg	ALS	RG_MIDCO_SE-5_2019-09-09_1130
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	Lithium (Li)	26	mg/kg	ALS	RG_MIDCO_SE-5_2019-09-09_1130
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	Magnesium (Mg)	8,260	mg/kg	ALS	RG_MIDCO_SE-5_2019-09-09_1130
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	Manganese (Mn)	525	mg/kg	ALS	RG_MIDCO_SE-5_2019-09-09_1130
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	Molybdenum (Mo)	2.0	mg/kg	ALS	RG_MIDCO_SE-5_2019-09-09_1130
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	Nickel (Ni)	55	mg/kg	ALS	RG_MIDCO_SE-5_2019-09-09_1130
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	Phosphorus (P)	2,060	mg/kg	ALS	RG_MIDCO_SE-5_2019-09-09_1130
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	Potassium (K)	2,840	mg/kg	ALS	RG_MIDCO_SE-5_2019-09-09_1130
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	Selenium (Se)	0.63	mg/kg	ALS	RG_MIDCO_SE-5_2019-09-09_1130
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	Silver (Ag)	<0.10	mg/kg	ALS	RG_MIDCO_SE-5_2019-09-09_1130
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	Sodium (Na)	124	mg/kg	ALS	RG_MIDCO_SE-5_2019-09-09_1130
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	Strontium (Sr)	67	mg/kg	ALS	RG_MIDCO_SE-5_2019-09-09_1130
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	Sulfur (S)	<1000	mg/kg	ALS	RG_MIDCO_SE-5_2019-09-09_1130
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	Thallium (TI)	0.29	mg/kg	ALS	RG_MIDCO_SE-5_2019-09-09_1130
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	Tin (Sn)	<2.0	mg/kg	ALS	RG_MIDCO_SE-5_2019-09-09_1130
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	Titanium (Ti)	10	mg/kg	ALS	RG_MIDCO_SE-5_2019-09-09_1130
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	Tungsten (W)	< 0.50	mg/kg	ALS	RG_MIDCO_SE-5_2019-09-09_1130
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	Uranium (U)	0.78	mg/kg	ALS	RG_MIDCO_SE-5_2019-09-09_1130
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	Vanadium (V)	28	mg/kg	ALS	RG_MIDCO_SE-5_2019-09-09_1130
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	Zinc (Zn)	129	mg/kg	ALS	RG_MIDCO_SE-5_2019-09-09_1130
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	Zirconium (Zr)	1.4	mg/kg	ALS	RG_MIDCO_SE-5_2019-09-09_1130
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	pH (1:2 soil:water)	7.6	рН	ALS	RG_MIDCO_SE-5_2019-09-09_1130
SE	MIDCO	667711	5487625	2019	5	2019-09-09	11:30	Total Organic Carbon	1.6	%	ALS	RG_MIDCO_SE-5_2019-09-09_1130
SE	MIUCO	668134	5486767	2019	1	2019-09-09	13:00	Moisture	42	%	ALS	RG_MIUCO_SE-1_2019-09-09_1300
SE	MIUCO	668134	5486767	2019	1	2019-09-09	13:00	Acenaphthene	<0.0050	mg/kg	ALS	RG_MIUCO_SE-1_2019-09-09_1300
SE	MIUCO	668134	5486767	2019	1	2019-09-09	13:00	Acenaphthylene	<0.0050	mg/kg	ALS	RG_MIUCO_SE-1_2019-09-09_1300
SE	MIUCO	668134	5486767	2019	1	2019-09-09	13:00	Acridine	<0.010	mg/kg	ALS	RG_MIUCO_SE-1_2019-09-09_1300
SE	MIUCO	668134	5486767	2019	1	2019-09-09	13:00	Anthracene	<0.0040	mg/kg	ALS	RG_MIUCO_SE-1_2019-09-09_1300
SE	MIUCO	668134	5486767	2019	1	2019-09-09	13:00	Benz(a)anthracene	<0.010	mg/kg	ALS	RG_MIUCO_SE-1_2019-09-09_1300
SE	MIUCO	668134	5486767	2019	1	2019-09-09	13:00	Benzo(a)pyrene	<0.010	mg/kg	ALS	RG_MIUCO_SE-1_2019-09-09_1300
SE	MIUCO	668134	5486767	2019	1	2019-09-09	13:00	Benzo(b&j)fluoranthene	<0.010	mg/kg	ALS	RG_MIUCO_SE-1_2019-09-09_1300
SE	MIUCO	668134	5486767	2019	1	2019-09-09	13:00	Benzo(g_h_i)perylene	<0.010	mg/kg	ALS	RG_MIUCO_SE-1_2019-09-09_1300
SE	MIUCO	668134	5486767	2019	1	2019-09-09	13:00	Benzo(k)fluoranthene	<0.010	mg/kg	ALS	RG_MIUCO_SE-1_2019-09-09_1300
SE	MIUCO	668134	5486767	2019	1	2019-09-09	13:00	Benzo(e)pyrene	<0.010	mg/kg	ALS	RG_MIUCO_SE-1_2019-09-09_1300
SE	MIUCO	668134	5486767	2019	1	2019-09-09	13:00	Chrysene	0.015	mg/kg	ALS	RG_MIUCO_SE-1_2019-09-09_1300
SE	MIUCO	668134	5486767	2019	1	2019-09-09	13:00	Dibenz(a_h)anthracene	<0.0050	mg/kg	ALS	RG_MIUCO_SE-1_2019-09-09_1300
SE	MIUCO	668134	5486767	2019	1	2019-09-09	13:00	Fluoranthene	<0.010	mg/kg	ALS	RG_MIUCO_SE-1_2019-09-09_1300
SE	MIUCO	668134	5486767	2019	1	2019-09-09	13:00	Fluorene	<0.010	mg/kg	ALS	RG_MIUCO_SE-1_2019-09-09_1300
SE	MIUCO	668134	5486767	2019	1	2019-09-09	13:00	Indeno(1,2,3-c,d)pyrene	<0.010	mg/kg	ALS	RG_MIUCO_SE-1_2019-09-09_1300
SE	MIUCO	668134	5486767	2019	1	2019-09-09	13:00	1-Methylnaphthalene	0.028	mg/kg	ALS	RG_MIUCO_SE-1_2019-09-09_1300
SE	MIUCO	668134	5486767	2019	1	2019-09-09	13:00	2-Methylnaphthalene	0.039	mg/kg	ALS	RG_MIUCO_SE-1_2019-09-09_1300
SE	MIUCO	668134	5486767	2019	1	2019-09-09	13:00	Naphthalene	0.016	mg/kg	ALS	RG_MIUCO_SE-1_2019-09-09_1300
SE	MIUCO	668134	5486767	2019	1	2019-09-09	13:00	Perylene	<0.010	mg/kg	ALS	RG MIUCO SE-1 2019-09-09 1300

WSP Canada Inc. Page 101 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	Ctation	Location	ı (UTMs) ^(a)	Vacu	Doubleste	Doto	Time	Analysis	Docult	Lluit		Laboratory Information
ype	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
E	MIUCO	668134	5486767	2019	1	2019-09-09	13:00	Phenanthrene	0.033	mg/kg	ALS	RG MIUCO SE-1 2019-09-09 1300
E	MIUCO	668134	5486767	2019	1	2019-09-09	13:00	Pyrene	<0.010	mg/kg	ALS	RG MIUCO SE-1 2019-09-09 1300
- E	MIUCO	668134	5486767	2019	1	2019-09-09	13:00	Quinoline	<0.010	mg/kg	ALS	RG MIUCO SE-1 2019-09-09 1300
E	MIUCO	668134	5486767	2019	1	2019-09-09	13:00	IACR (CCME)	<0.15	-	ALS	RG MIUCO SE-1 2019-09-09 1300
E	MIUCO	668134	5486767	2019	1 1	2019-09-09	13:00	B(a)P Total Potency Equivalent	<0.020	mg/kg	ALS	RG MIUCO SE-1 2019-09-09 1300
E	MIUCO	668134	5486767	2019	1	2019-09-09	13:00	Benzo(b+j+k)fluoranthene	<0.015	mg/kg	ALS	RG MIUCO SE-1 2019-09-09 1300
E	MIUCO	668134	5486767	2019	1	2019-09-09	13:00	d8-Naphthalene	73		ALS	RG MIUCO SE-1 2019-09-09 1300
E	MIUCO	668134	5486767	2019	1	2019-09-09	13:00	d10-Acenaphthene	79	%	ALS	RG MIUCO SE-1 2019-09-09 1300
E	MIUCO	668134	5486767	2019	1	2019-09-09	13:00	d10-Phenanthrene	80	%	ALS	RG_MIUCO_SE-1_2019-09-09_1300
E	MIUCO	668134	5486767	2019	1 1	2019-09-09	13:00	d12-Chrysene	91	%	ALS	RG MIUCO SE-1 2019-09-09 1300
E	MIUCO	668134	5486767	2019	1	2019-09-09	13:00	% Gravel (>2 mm)	5.1	%	ALS	RG MIUCO SE-1 2019-09-09 1300
E	MIUCO	668134	5486767	2019	1	2019-09-09	13:00	% Sand (2.00 mm - 1.00 mm)	7.4	%	ALS	RG MIUCO SE-1 2019-09-09 1300
E	MIUCO	668134	5486767	2019	1	2019-09-09	13:00	% Sand (2.00 mm - 0.50 mm)	13	//	ALS	RG MIUCO SE-1 2019-09-09 1300
E	MIUCO	668134	5486767	2019	1 1	2019-09-09	13:00	% Sand (1.50 mm - 0.55 mm)	21	//	ALS	RG MIUCO SE-1 2019-09-09 1300
E	MIUCO	668134	5486767	2019	1	2019-09-09	13:00	% Sand (0.25 mm - 0.125 mm)	13	//	ALS	RG MIUCO SE-1 2019-09-09 1300
E	MIUCO	668134	5486767	2019	1	2019-09-09	13:00	% Sand (0.125 mm - 0.163 mm)	8.2	//	ALS	RG MIUCO SE-1 2019-09-09 1300
E	MIUCO	668134	5486767	2019	1 1	2019-09-09	13:00	% Silt (0.063 mm - 0.0312 mm)	14	%	ALS	RG MIUCO SE-1 2019-09-09 1300
E	MIUCO	668134	5486767	2019	1	2019-09-09	13:00	% Silt (0.003 mm - 0.004 mm)	16	%	ALS	RG MIUCO SE-1 2019-09-09 1300
E	MIUCO	668134	5486767	2019	1	2019-09-09	13:00	% Sit (0.031 Hill - 0.004 Hill) % Clay (<4 μm)	2.6	//	ALS	RG MIUCO SE-1 2019-09-09 1300
	MIUCO	668134	5486767	2019	1	2019-09-09	13:00	Texture	Sandy loam	- -	ALS	RG_MIUCO_SE-1_2019-09-09_1300
=	MIUCO	668134	5486767		1		13:00				ALS	RG MIUCO SE-1 2019-09-09 1300
			5486767	2019 2019	1 1	2019-09-09	13:00	Mercury (Hg)	0.019	mg/kg	ALS	RG MIUCO SE-1 2019-09-09 1300
	MIUCO	668134			1 1	2019-09-09		Aluminum (Al)	17,500	mg/kg		
	MIUCO	668134	5486767	2019		2019-09-09	13:00	Antimony (Sb)	0.41	mg/kg	ALS	RG_MIUCO_SE-1_2019-09-09_1300
E	MIUCO	668134	5486767	2019	1 1	2019-09-09	13:00	Arsenic (As)	9.9	mg/kg	ALS	RG_MIUCO_SE-1_2019-09-09_1300
E	MIUCO	668134	5486767	2019	1 1	2019-09-09	13:00	Barium (Ba)	193	mg/kg	ALS	RG_MIUCO_SE-1_2019-09-09_1300
E	MIUCO	668134	5486767	2019	1 1	2019-09-09	13:00	Beryllium (Be)	1.1	mg/kg	ALS	RG_MIUCO_SE-1_2019-09-09_1300
E	MIUCO	668134	5486767	2019	1 1	2019-09-09	13:00	Bismuth (Bi)	0.27	mg/kg	ALS	RG_MIUCO_SE-1_2019-09-09_1300
E	MIUCO	668134	5486767	2019	1 1	2019-09-09	13:00	Boron (B)	11	mg/kg	ALS	RG_MIUCO_SE-1_2019-09-09_1300
E	MIUCO	668134	5486767	2019	1 1	2019-09-09	13:00	Cadmium (Cd)	0.84	mg/kg	ALS	RG_MIUCO_SE-1_2019-09-09_1300
E	MIUCO	668134	5486767	2019	1	2019-09-09	13:00	Calcium (Ca)	16,800	mg/kg	ALS	RG_MIUCO_SE-1_2019-09-09_1300
E	MIUCO	668134	5486767	2019		2019-09-09	13:00	Chromium (Cr)	21	mg/kg	ALS	RG_MIUCO_SE-1_2019-09-09_1300
E	MIUCO	668134	5486767	2019		2019-09-09	13:00	Cobalt (Co)	11	mg/kg	ALS	RG_MIUCO_SE-1_2019-09-09_1300
E	MIUCO	668134	5486767	2019	1	2019-09-09	13:00	Copper (Cu)	22	mg/kg	ALS	RG_MIUCO_SE-1_2019-09-09_1300
E	MIUCO	668134	5486767	2019	1 1	2019-09-09	13:00	Iron (Fe)	32,500	mg/kg	ALS	RG_MIUCO_SE-1_2019-09-09_1300
E	MIUCO	668134	5486767	2019	_	2019-09-09	13:00	Lead (Pb)	16	mg/kg	ALS	RG_MIUCO_SE-1_2019-09-09_1300
Е	MIUCO	668134	5486767	2019		2019-09-09	13:00	Lithium (Li)	29	mg/kg	ALS	RG_MIUCO_SE-1_2019-09-09_1300
E	MIUCO	668134	5486767	2019	1	2019-09-09	13:00	Magnesium (Mg)	7,380	mg/kg	ALS	RG_MIUCO_SE-1_2019-09-09_1300
E	MIUCO	668134	5486767	2019	1	2019-09-09	13:00	Manganese (Mn)	786	mg/kg	ALS	RG_MIUCO_SE-1_2019-09-09_1300
E	MIUCO	668134	5486767	2019		2019-09-09	13:00	Molybdenum (Mo)	2.6	mg/kg	ALS	RG_MIUCO_SE-1_2019-09-09_1300
E	MIUCO	668134	5486767	2019	1	2019-09-09	13:00	Nickel (Ni)	32	mg/kg	ALS	RG_MIUCO_SE-1_2019-09-09_1300
E	MIUCO	668134	5486767	2019	1	2019-09-09	13:00	Phosphorus (P)	1,460	mg/kg	ALS	RG_MIUCO_SE-1_2019-09-09_1300
E	MIUCO	668134	5486767	2019	1	2019-09-09	13:00	Potassium (K)	3,100	mg/kg	ALS	RG_MIUCO_SE-1_2019-09-09_1300
E	MIUCO	668134	5486767	2019	1	2019-09-09	13:00	Selenium (Se)	0.59	mg/kg	ALS	RG_MIUCO_SE-1_2019-09-09_1300
E	MIUCO	668134	5486767	2019	1	2019-09-09	13:00	Silver (Ag)	<0.10	mg/kg	ALS	RG_MIUCO_SE-1_2019-09-09_1300
Ε	MIUCO	668134	5486767	2019	1	2019-09-09	13:00	Sodium (Na)	82	mg/kg	ALS	RG_MIUCO_SE-1_2019-09-09_1300
E	MIUCO	668134	5486767	2019	1	2019-09-09	13:00	Strontium (Sr)	55	mg/kg	ALS	RG_MIUCO_SE-1_2019-09-09_1300
Е	MIUCO	668134	5486767	2019	1	2019-09-09	13:00	Sulfur (S)	<1000	mg/kg	ALS	RG MIUCO SE-1 2019-09-09 1300

WSP Canada Inc. Page 102 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

able I-1	i. Sealinent Chen	-		CIVIM LAEIVIP	Sampling St	ations, 2012 to	2022					
Туре	Station		(UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
		Easting	Northing		Replicate		Time	Analyte	Result	Onic	Lab	Sample ID
SE	MIUCO	668134	5486767	2019	1	2019-09-09	13:00	Thallium (TI)	0.37	mg/kg	ALS	RG_MIUCO_SE-1_2019-09-09_1300
SE	MIUCO	668134	5486767	2019	1	2019-09-09	13:00	Tin (Sn)	<2.0	mg/kg	ALS	RG_MIUCO_SE-1_2019-09-09_1300
SE	MIUCO	668134	5486767	2019	1	2019-09-09	13:00	Titanium (Ti)	12	mg/kg	ALS	RG_MIUCO_SE-1_2019-09-09_1300
SE	MIUCO	668134	5486767	2019	1	2019-09-09	13:00	Tungsten (W)	<0.50	mg/kg	ALS	RG_MIUCO_SE-1_2019-09-09_1300
SE	MIUCO	668134	5486767	2019	1	2019-09-09	13:00	Uranium (U)	0.54	mg/kg	ALS	RG_MIUCO_SE-1_2019-09-09_1300
SE	MIUCO	668134	5486767	2019	1	2019-09-09	13:00	Vanadium (V)	32	mg/kg	ALS	RG_MIUCO_SE-1_2019-09-09_1300
SE	MIUCO	668134	5486767	2019	1	2019-09-09	13:00	Zinc (Zn)	120	mg/kg	ALS	RG_MIUCO_SE-1_2019-09-09_1300
SE	MIUCO	668134	5486767	2019	1	2019-09-09	13:00	Zirconium (Zr)	1.3	mg/kg	ALS	RG_MIUCO_SE-1_2019-09-09_1300
SE	MIUCO	668134	5486767	2019	1	2019-09-09	13:00	pH (1:2 soil:water)	7.3	рН	ALS	RG_MIUCO_SE-1_2019-09-09_1300
SE	MIUCO	668134	5486767	2019	1	2019-09-09	13:00	Total Organic Carbon	2.0	%	ALS	RG_MIUCO_SE-1_2019-09-09_1300
SE	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	Moisture	50	%	ALS	RG_MIUCO_SE-2_2019-09-09_1415
SE	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	Acenaphthene	<0.0050	mg/kg	ALS	RG_MIUCO_SE-2_2019-09-09_1415
SE	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	Acenaphthylene	<0.0050	mg/kg	ALS	RG_MIUCO_SE-2_2019-09-09_1415
SE	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	Acridine	<0.010	mg/kg	ALS	RG_MIUCO_SE-2_2019-09-09_1415
SE	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	Anthracene	<0.0040	mg/kg	ALS	RG MIUCO SE-2 2019-09-09 1415
SE	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	Benz(a)anthracene	<0.010	mg/kg	ALS	RG_MIUCO_SE-2_2019-09-09_1415
SE	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	Benzo(a)pyrene	<0.010	mg/kg	ALS	RG MIUCO SE-2 2019-09-09 1415
SE	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	Benzo(b&j)fluoranthene	0.019	mg/kg	ALS	RG MIUCO SE-2 2019-09-09 1415
SE	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	Benzo(g_h_i)perylene	<0.010	mg/kg	ALS	RG_MIUCO_SE-2_2019-09-09_1415
SE	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	Benzo(k)fluoranthene	<0.010	mg/kg	ALS	RG MIUCO SE-2 2019-09-09 1415
SE	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	Benzo(e)pyrene	0.023	mg/kg	ALS	RG MIUCO SE-2 2019-09-09 1415
SE	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	Chrysene	0.036	mg/kg	ALS	RG MIUCO SE-2 2019-09-09 1415
SE	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	Dibenz(a_h)anthracene	<0.0050	mg/kg	ALS	RG MIUCO SE-2 2019-09-09 1415
SE	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	Fluoranthene	<0.010	mg/kg	ALS	RG MIUCO SE-2 2019-09-09 1415
SE	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	Fluorene	<0.010	mg/kg	ALS	RG_MIUCO_SE-2_2019-09-09_1415
SE	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	Indeno(1,2,3-c,d)pyrene	<0.010	mg/kg	ALS	RG MIUCO SE-2 2019-09-09 1415
SE	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	1-Methylnaphthalene	0.07	mg/kg	ALS	RG MIUCO SE-2 2019-09-09 1415
SE	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	2-Methylnaphthalene	0.095	mg/kg	ALS	RG_MIUCO_SE-2_2019-09-09_1415
SE	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	Naphthalene	0.038	mg/kg	ALS	RG MIUCO SE-2 2019-09-09 1415
SE	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	Perylene	0.016	mg/kg	ALS	RG MIUCO SE-2 2019-09-09 1415
SE	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	Phenanthrene	0.081	mg/kg	ALS	RG MIUCO SE-2 2019-09-09 1415
SE	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	Pyrene	<0.010	mg/kg	ALS	RG MIUCO SE-2 2019-09-09 1415
SE	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	Quinoline	<0.010	mg/kg	ALS	RG MIUCO SE-2 2019-09-09 1415
SE	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	IACR (CCME)	0.21	-	ALS	RG MIUCO SE-2 2019-09-09 1415
SE	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	B(a)P Total Potency Equivalent	<0.020	mg/kg	ALS	RG MIUCO SE-2 2019-09-09 1415
SE	MIUCO	668134	5486767	2019		2019-09-09	14:15	Benzo(b+j+k)fluoranthene	0.021	mg/kg	ALS	RG MIUCO SE-2 2019-09-09 1415
SE	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	d8-Naphthalene	85	%	ALS	RG MIUCO SE-2 2019-09-09 1415
SE	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	d10-Acenaphthene	86	%	ALS	RG MIUCO SE-2 2019-09-09 1415
SE	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	d10-Phenanthrene	89	%	ALS	RG MIUCO SE-2 2019-09-09 1415
SE	MIUCO	668134	5486767	2019		2019-09-09	14:15	d12-Chrysene	98	%	ALS	RG MIUCO SE-2 2019-09-09 1415
SE	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	% Gravel (>2 mm)	22	%	ALS	RG MIUCO SE-2 2019-09-09 1415
SE	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	% Sand (2.00 mm - 1.00 mm)	4.8	%	ALS	RG MIUCO SE-2 2019-09-09 1415
SE	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	% Sand (1.00 mm - 0.50 mm)	12	%	ALS	RG MIUCO SE-2 2019-09-09 1415
SE	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	% Sand (0.50 mm - 0.25 mm)	18	%	ALS	RG MIUCO SE-2 2019-09-09 1415
SE	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	% Sand (0.25 mm - 0.125 mm)	12	%	ALS	RG MIUCO SE-2 2019-09-09 1415
SE	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	% Sand (0.125 mm - 0.063 mm)	7.0	%	ALS	RG MIUCO SE-2 2019-09-09 1415
١	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	% Silt (0.063 mm - 0.0312 mm)	11	%		RG MIUCO SE-2 2019-09-09 1415

WSP Canada Inc. Page 103 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Table I-1	l: Sediment Chem			CMm LAEMP	Sampling St	ations, 2012 to	2022					
Туре	Station	Location	(UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
Type	Station	Easting	Northing	i cai	Replicate	Date	Tille	Allalyte	Nesuit	Offic	Lab	Sample ID
SE	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	% Silt (0.031 mm - 0.004 mm)	12	%	ALS	RG_MIUCO_SE-2_2019-09-09_1415
SE	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	% Clay (<4 μm)	2.5	%	ALS	RG_MIUCO_SE-2_2019-09-09_1415
SE	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	Texture	Sandy loam	-	ALS	RG_MIUCO_SE-2_2019-09-09_1415
SE	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	Mercury (Hg)	0.025	mg/kg	ALS	RG_MIUCO_SE-2_2019-09-09_1415
SE	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	Aluminum (AI)	15,700	mg/kg	ALS	RG_MIUCO_SE-2_2019-09-09_1415
SE	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	Antimony (Sb)	0.37	mg/kg	ALS	RG_MIUCO_SE-2_2019-09-09_1415
SE	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	Arsenic (As)	8.2	mg/kg	ALS	RG_MIUCO_SE-2_2019-09-09_1415
SE	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	Barium (Ba)	183	mg/kg	ALS	RG_MIUCO_SE-2_2019-09-09_1415
SE	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	Beryllium (Be)	1.0	mg/kg	ALS	RG_MIUCO_SE-2_2019-09-09_1415
SE	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	Bismuth (Bi)	0.21	mg/kg	ALS	RG_MIUCO_SE-2_2019-09-09_1415
SE	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	Boron (B)	12	mg/kg	ALS	RG_MIUCO_SE-2_2019-09-09_1415
SE	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	Cadmium (Cd)	0.84	mg/kg	ALS	RG_MIUCO_SE-2_2019-09-09_1415
SE	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	Calcium (Ca)	14,100	mg/kg	ALS	RG_MIUCO_SE-2_2019-09-09_1415
SE	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	Chromium (Cr)	19	mg/kg	ALS	RG_MIUCO_SE-2_2019-09-09_1415
SE	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	Cobalt (Co)	8.7	mg/kg	ALS	RG_MIUCO_SE-2_2019-09-09_1415
SE	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	Copper (Cu)	19	mg/kg	ALS	RG_MIUCO_SE-2_2019-09-09_1415
SE	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	Iron (Fe)	23,800	mg/kg	ALS	RG_MIUCO_SE-2_2019-09-09_1415
SE	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	Lead (Pb)	14	mg/kg	ALS	RG_MIUCO_SE-2_2019-09-09_1415
SE	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	Lithium (Li)	23	mg/kg	ALS	RG_MIUCO_SE-2_2019-09-09_1415
SE	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	Magnesium (Mg)	6,410	mg/kg	ALS	RG_MIUCO_SE-2_2019-09-09_1415
SE	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	Manganese (Mn)	568	mg/kg	ALS	RG_MIUCO_SE-2_2019-09-09_1415
SE	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	Molybdenum (Mo)	2.3	mg/kg	ALS	RG_MIUCO_SE-2_2019-09-09_1415
SE	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	Nickel (Ni)	28	mg/kg	ALS	RG_MIUCO_SE-2_2019-09-09_1415
SE	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	Phosphorus (P)	1,460	mg/kg	ALS	RG_MIUCO_SE-2_2019-09-09_1415
SE	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	Potassium (K)	3,210	mg/kg	ALS	RG_MIUCO_SE-2_2019-09-09_1415
SE	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	Selenium (Se)	0.77	mg/kg	ALS	RG_MIUCO_SE-2_2019-09-09_1415
SE	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	Silver (Ag)	0.1	mg/kg	ALS	RG_MIUCO_SE-2_2019-09-09_1415
SE	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	Sodium (Na)	80	mg/kg	ALS	RG_MIUCO_SE-2_2019-09-09_1415
SE	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	Strontium (Sr)	45	mg/kg	ALS	RG_MIUCO_SE-2_2019-09-09_1415
SE	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	Sulfur (S)	<1000	mg/kg	ALS	RG_MIUCO_SE-2_2019-09-09_1415
SE	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	Thallium (TI)	0.35	mg/kg	ALS	RG_MIUCO_SE-2_2019-09-09_1415
SE	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	Tin (Sn)	<2.0	mg/kg	ALS	RG_MIUCO_SE-2_2019-09-09_1415
SE	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	Titanium (Ti)	13	mg/kg	ALS	RG_MIUCO_SE-2_2019-09-09_1415
SE	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	Tungsten (W)	<0.50	mg/kg	ALS	RG_MIUCO_SE-2_2019-09-09_1415
SE	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	Uranium (U)	0.65	mg/kg	ALS	RG_MIUCO_SE-2_2019-09-09_1415
SE	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	Vanadium (V)	30	mg/kg	ALS	RG_MIUCO_SE-2_2019-09-09_1415
SE	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	Zinc (Zn)	102	mg/kg	ALS	RG_MIUCO_SE-2_2019-09-09_1415
SE	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	Zirconium (Zr)	1.1	mg/kg	ALS	RG_MIUCO_SE-2_2019-09-09_1415
SE	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	pH (1:2 soil:water)	7.2	рН	ALS	RG_MIUCO_SE-2_2019-09-09_1415
SE	MIUCO	668134	5486767	2019	2	2019-09-09	14:15	Total Organic Carbon	2.1	%	ALS	RG_MIUCO_SE-2_2019-09-09_1415
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	Moisture	44	%	ALS	RG_MIUCO_SE-3_2019-09-09_1530
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	Acenaphthene	<0.0050	mg/kg	ALS	RG_MIUCO_SE-3_2019-09-09_1530
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	Acenaphthylene	<0.0050	mg/kg	ALS	RG_MIUCO_SE-3_2019-09-09_1530
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	Acridine	<0.010	mg/kg	ALS	RG_MIUCO_SE-3_2019-09-09_1530
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	Anthracene	<0.0040	mg/kg	ALS	RG_MIUCO_SE-3_2019-09-09_1530
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	Benz(a)anthracene	<0.010	mg/kg	ALS	RG_MIUCO_SE-3_2019-09-09_1530
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	Benzo(a)pyrene	<0.010	mg/kg	ALS	RG MIUCO SE-3 2019-09-09 1530

WSP Canada Inc. Page 104 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Table I-1	: Sediment Chem			CMm LAEMP	Sampling St	ations, 2012 to	2022					
Туре	Station	Location	(UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
Type	Otation	Easting	Northing	i cai	Replicate	Date	11110	Analyte	Result	Oille	Lab	Sample ID
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	Benzo(b&j)fluoranthene	<0.010	mg/kg	ALS	RG_MIUCO_SE-3_2019-09-09_1530
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	Benzo(g_h_i)perylene	<0.010	mg/kg	ALS	RG_MIUCO_SE-3_2019-09-09_1530
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	Benzo(k)fluoranthene	<0.010	mg/kg	ALS	RG_MIUCO_SE-3_2019-09-09_1530
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	Benzo(e)pyrene	0.011	mg/kg	ALS	RG_MIUCO_SE-3_2019-09-09_1530
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	Chrysene	0.017	mg/kg	ALS	RG_MIUCO_SE-3_2019-09-09_1530
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	Dibenz(a_h)anthracene	<0.0050	mg/kg	ALS	RG_MIUCO_SE-3_2019-09-09_1530
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	Fluoranthene	<0.010	mg/kg	ALS	RG_MIUCO_SE-3_2019-09-09_1530
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	Fluorene	<0.010	mg/kg	ALS	RG_MIUCO_SE-3_2019-09-09_1530
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	Indeno(1,2,3-c,d)pyrene	<0.010	mg/kg	ALS	RG_MIUCO_SE-3_2019-09-09_1530
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	1-Methylnaphthalene	0.028	mg/kg	ALS	RG_MIUCO_SE-3_2019-09-09_1530
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	2-Methylnaphthalene	0.039	mg/kg	ALS	RG_MIUCO_SE-3_2019-09-09_1530
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	Naphthalene	0.016	mg/kg	ALS	RG_MIUCO_SE-3_2019-09-09_1530
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	Perylene	<0.010	mg/kg	ALS	RG_MIUCO_SE-3_2019-09-09_1530
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	Phenanthrene	0.034	mg/kg	ALS	RG_MIUCO_SE-3_2019-09-09_1530
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	Pyrene	<0.010	mg/kg	ALS	RG_MIUCO_SE-3_2019-09-09_1530
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	Quinoline	<0.010	mg/kg	ALS	RG_MIUCO_SE-3_2019-09-09_1530
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	IACR (CCME)	<0.15	-	ALS	RG_MIUCO_SE-3_2019-09-09_1530
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	B(a)P Total Potency Equivalent	<0.020	mg/kg	ALS	RG_MIUCO_SE-3_2019-09-09_1530
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	Benzo(b+j+k)fluoranthene	<0.015	mg/kg	ALS	RG_MIUCO_SE-3_2019-09-09_1530
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	d8-Naphthalene	73	%	ALS	RG_MIUCO_SE-3_2019-09-09_1530
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	d10-Acenaphthene	83	%	ALS	RG_MIUCO_SE-3_2019-09-09_1530
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	d10-Phenanthrene	86	%	ALS	RG_MIUCO_SE-3_2019-09-09_1530
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	d12-Chrysene	99	%	ALS	RG_MIUCO_SE-3_2019-09-09_1530
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	% Gravel (>2 mm)	2.7	%	ALS	RG_MIUCO_SE-3_2019-09-09_1530
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	% Sand (2.00 mm - 1.00 mm)	15	%	ALS	RG_MIUCO_SE-3_2019-09-09_1530
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	% Sand (1.00 mm - 0.50 mm)	5.3	%	ALS	RG_MIUCO_SE-3_2019-09-09_1530
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	% Sand (0.50 mm - 0.25 mm)	5.1	%	ALS	RG_MIUCO_SE-3_2019-09-09_1530
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	% Sand (0.25 mm - 0.125 mm)	8.3	%	ALS	RG_MIUCO_SE-3_2019-09-09_1530
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	% Sand (0.125 mm - 0.063 mm)	13	%	ALS	RG_MIUCO_SE-3_2019-09-09_1530
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	% Silt (0.063 mm - 0.0312 mm)	21	%	ALS	RG_MIUCO_SE-3_2019-09-09_1530
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	% Silt (0.031 mm - 0.004 mm)	25	%	ALS	RG_MIUCO_SE-3_2019-09-09_1530
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	% Clay (<4 μm)	4.9	%	ALS	RG_MIUCO_SE-3_2019-09-09_1530
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	Texture	Sandy loam	-	ALS	RG_MIUCO_SE-3_2019-09-09_1530
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	Mercury (Hg)	0.024	mg/kg	ALS	RG_MIUCO_SE-3_2019-09-09_1530
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	Aluminum (Al)	14,900	mg/kg	ALS	RG_MIUCO_SE-3_2019-09-09_1530
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	Antimony (Sb)	0.33	mg/kg	ALS	RG_MIUCO_SE-3_2019-09-09_1530
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	Arsenic (As)	8.2	mg/kg	ALS	RG_MIUCO_SE-3_2019-09-09_1530
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	Barium (Ba)	143	mg/kg	ALS	RG_MIUCO_SE-3_2019-09-09_1530
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	Beryllium (Be)	0.98	mg/kg	ALS	RG_MIUCO_SE-3_2019-09-09_1530
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	Bismuth (Bi)	0.21	mg/kg	ALS	RG_MIUCO_SE-3_2019-09-09_1530
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	Boron (B)	11	mg/kg	ALS	RG_MIUCO_SE-3_2019-09-09_1530
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	Cadmium (Cd)	0.7	mg/kg	ALS	RG_MIUCO_SE-3_2019-09-09_1530
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	Calcium (Ca)	19,400	mg/kg	ALS	RG_MIUCO_SE-3_2019-09-09_1530
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	Chromium (Cr)	18	mg/kg	ALS	RG_MIUCO_SE-3_2019-09-09_1530
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	Cobalt (Co)	7.2	mg/kg	ALS	RG_MIUCO_SE-3_2019-09-09_1530
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	Copper (Cu)	20	mg/kg	ALS	RG_MIUCO_SE-3_2019-09-09_1530
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	Iron (Fe)	23,800	mg/kg	ALS	RG MIUCO SE-3 2019-09-09 1530

WSP Canada Inc. Page 105 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	Station	Location	(UTMs) ^(a)	Vaar	Donlingto	Dete	Times	Analyta	Booult	Heit		Laboratory Information
уре	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	Lead (Pb)	13	mg/kg	ALS	RG MIUCO SE-3 2019-09-09 1530
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	Lithium (Li)	25	mg/kg	ALS	RG MIUCO SE-3 2019-09-09 1530
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	Magnesium (Mg)	6,790	mg/kg	ALS	RG_MIUCO_SE-3_2019-09-09_1530
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	Manganese (Mn)	279	mg/kg	ALS	RG MIUCO SE-3 2019-09-09 1530
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	Molybdenum (Mo)	2.1	mg/kg	ALS	RG_MIUCO_SE-3_2019-09-09_1530
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	Nickel (Ni)	25	mg/kg	ALS	RG MIUCO SE-3 2019-09-09 1530
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	Phosphorus (P)	1,300	mg/kg	ALS	RG MIUCO SE-3 2019-09-09 1530
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	Potassium (K)	3,020	mg/kg	ALS	RG_MIUCO_SE-3_2019-09-09_1530
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	Selenium (Se)	0.65	mg/kg	ALS	RG_MIUCO_SE-3_2019-09-09_1530
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	Silver (Ag)	<0.10	mg/kg	ALS	RG MIUCO SE-3 2019-09-09 1530
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	Sodium (Na)	105	mg/kg	ALS	RG_MIUCO_SE-3_2019-09-09_1530
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	Strontium (Sr)	46	mg/kg	ALS	RG MIUCO SE-3 2019-09-09 1530
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	Sulfur (S)	<1000	mg/kg	ALS	RG MIUCO SE-3 2019-09-09 1530
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	Thallium (TI)	0.34	mg/kg	ALS	RG MIUCO SE-3 2019-09-09 1530
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	Tin (Sn)	<2.0	mg/kg	ALS	RG MIUCO SE-3 2019-09-09 1530
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	Titanium (Ti)	13	mg/kg	ALS	RG MIUCO SE-3 2019-09-09 1530
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	Tungsten (W)	<0.50	mg/kg	ALS	RG_MIUCO_SE-3_2019-09-09_1530
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	Uranium (U)	0.52	mg/kg	ALS	RG_MIUCO_SE-3_2019-09-09_1530
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	Vanadium (V)	28	mg/kg	ALS	RG_MIUCO_SE-3_2019-09-09_1530
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	Zinc (Zn)	100	mg/kg	ALS	RG_MIUCO_SE-3_2019-09-09_1530
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	Zirconium (Zr)	<1.0	mg/kg	ALS	RG MIUCO SE-3 2019-09-09 1530
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	pH (1:2 soil:water)	6.9	рН	ALS	RG MIUCO SE-3 2019-09-09 1530
SE	MIUCO	668134	5486767	2019	3	2019-09-09	15:30	Total Organic Carbon	2.3	%	ALS	RG MIUCO SE-3 2019-09-09 1530
SE	MIUCO	668134	5486767	2019	4	2019-09-09	13:25	Moisture	71	%	ALS	RG MIUCO SE-4 2019-09-09 1325
SE	MIUCO	668134	5486767	2019	4	2019-09-09	13:25	Acenaphthene	<0.0085	mg/kg	ALS	RG MIUCO SE-4 2019-09-09 1325
SE	MIUCO	668134	5486767	2019	4	2019-09-09	13:25	Acenaphthylene	<0.0085	mg/kg	ALS	RG_MIUCO_SE-4_2019-09-09_1325
SE	MIUCO	668134	5486767	2019	4	2019-09-09	13:25	Acridine	<0.017	mg/kg	ALS	RG MIUCO SE-4 2019-09-09 1325
SE	MIUCO	668134	5486767	2019	4	2019-09-09	13:25	Anthracene	<0.0068	mg/kg	ALS	RG MIUCO SE-4 2019-09-09 1325
SE	MIUCO	668134	5486767	2019	4	2019-09-09	13:25	Benz(a)anthracene	<0.017	mg/kg	ALS	RG MIUCO SE-4 2019-09-09 1325
SE	MIUCO	668134	5486767	2019	4	2019-09-09	13:25	Benzo(a)pyrene	<0.017	mg/kg	ALS	RG MIUCO SE-4 2019-09-09 1325
SE	MIUCO	668134	5486767	2019	4	2019-09-09	13:25	Benzo(b&j)fluoranthene	<0.017	mg/kg	ALS	RG MIUCO SE-4 2019-09-09 1325
SE	MIUCO	668134	5486767	2019	4	2019-09-09	13:25	Benzo(g h i)perylene	<0.017	mg/kg	ALS	RG MIUCO SE-4 2019-09-09 1325
SE	MIUCO	668134	5486767	2019	4	2019-09-09	13:25	Benzo(k)fluoranthene	<0.017	mg/kg	ALS	RG MIUCO SE-4 2019-09-09 1325
SE	MIUCO	668134	5486767	2019	4	2019-09-09	13:25	Benzo(e)pyrene	0.018	mg/kg	ALS	RG MIUCO SE-4 2019-09-09 1325
SE	MIUCO	668134	5486767	2019	4	2019-09-09	13:25	Chrysene	0.027	mg/kg	ALS	RG MIUCO SE-4 2019-09-09 1325
SE	MIUCO	668134	5486767	2019	4	2019-09-09	13:25	Dibenz(a h)anthracene	<0.0085	mg/kg	ALS	RG MIUCO SE-4 2019-09-09 1325
SE	MIUCO	668134	5486767	2019	4	2019-09-09	13:25	Fluoranthene	<0.017	mg/kg	ALS	RG MIUCO SE-4 2019-09-09 1325
SE	MIUCO	668134	5486767	2019	4	2019-09-09	13:25	Fluorene	<0.017	mg/kg	ALS	RG MIUCO SE-4 2019-09-09 1325
SE	MIUCO	668134	5486767	2019	4	2019-09-09	13:25	Indeno(1,2,3-c,d)pyrene	<0.017	mg/kg	ALS	RG MIUCO SE-4 2019-09-09 1325
SE	MIUCO	668134	5486767	2019	4	2019-09-09	13:25	1-Methylnaphthalene	0.031	mg/kg	ALS	RG MIUCO SE-4 2019-09-09 1325
SE	MIUCO	668134	5486767	2019	4	2019-09-09	13:25	2-Methylnaphthalene	0.041	mg/kg	ALS	RG MIUCO SE-4 2019-09-09 1325
SE	MIUCO	668134	5486767	2019	4	2019-09-09	13:25	Naphthalene	0.022	mg/kg	ALS	RG MIUCO SE-4 2019-09-09 1325
SE	MIUCO	668134	5486767	2019	4	2019-09-09	13:25	Perylene	0.032	mg/kg	ALS	RG MIUCO SE-4 2019-09-09 1325
-	MIUCO	668134	5486767	2019	4	2019-09-09	13:25	Phenanthrene	0.045	mg/kg	ALS	RG MIUCO SE-4 2019-09-09 1325
SF I	1411000				+ -							
	MILICO	668134	5486767	2019	4	17()19 <u>-</u> 119-119	13.75	IPvrene .	<() ()1 /	l maika		IRG MILICO SE-A 2019-09-09 1325
SE SE SE	MIUCO MIUCO	668134 668134	5486767 5486767	2019 2019	<u>4</u> Δ	2019-09-09 2019-09-09	13:25 13:25	Pyrene Quinoline	<0.017 <0.017	mg/kg mg/kg	ALS ALS	RG_MIUCO_SE-4_2019-09-09_1325 RG_MIUCO_SE-4_2019-09-09_1325

WSP Canada Inc. Page 106 of 337

Sediment Screening

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	Station	Location	ı (UTMs) ^(a)	Vacu	Donlington	Data	Times	Analyte	Doord	LL _i St4		Laboratory Information
ype	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MIUCO	668134	5486767	2019	4	2019-09-09	13:25	B(a)P Total Potency Equivalent	<0.020	mg/kg	ALS	RG MIUCO SE-4 2019-09-09 1325
E	MIUCO	668134	5486767	2019	4	2019-09-09	13:25	Benzo(b+j+k)fluoranthene	<0.025	mg/kg	ALS	RG MIUCO SE-4 2019-09-09 1325
E	MIUCO	668134	5486767	2019	4	2019-09-09	13:25	d8-Naphthalene	75	%	ALS	RG MIUCO SE-4 2019-09-09 1325
E E	MIUCO	668134	5486767	2019	4	2019-09-09	13:25	d10-Acenaphthene	82	%	ALS	RG MIUCO SE-4 2019-09-09 1325
E E	MIUCO	668134	5486767	2019	4	2019-09-09	13:25	d10-Phenanthrene	85	%	ALS	RG MIUCO SE-4 2019-09-09 1325
E E	MIUCO	668134	5486767	2019	4	2019-09-09	13:25	d12-Chrysene	98	%	ALS	RG MIUCO SE-4 2019-09-09 1325
E	MIUCO	668134	5486767	2019	4	2019-09-09	13:25	% Gravel (>2 mm)	<1.0	%	ALS	RG MIUCO SE-4 2019-09-09 1325
E	MIUCO	668134	5486767	2019	4	2019-09-09	13:25	% Sand (2.00 mm - 1.00 mm)	<1.0	%	ALS	RG MIUCO SE-4 2019-09-09 1325
E	MIUCO	668134	5486767	2019	4	2019-09-09	13:25	% Sand (1.00 mm - 0.50 mm)	<1.0	%	ALS	RG_MIUCO_SE-4_2019-09-09_1325
E	MIUCO	668134	5486767	2019	4	2019-09-09	13:25	% Sand (0.50 mm - 0.25 mm)	<1.0	%	ALS	RG MIUCO SE-4 2019-09-09 1325
E	MIUCO	668134	5486767	2019	4	2019-09-09	13:25	% Sand (0.25 mm - 0.125 mm)	2.4	%	ALS	RG MIUCO SE-4 2019-09-09 1325
E	MIUCO	668134	5486767	2019	4	2019-09-09	13:25	% Sand (0.125 mm - 0.063 mm)	9.8	%	ALS	RG MIUCO SE-4 2019-09-09 1325
E	MIUCO	668134	5486767	2019	4	2019-09-09	13:25	% Silt (0.063 mm - 0.0312 mm)	32	%	ALS	RG MIUCO SE-4 2019-09-09 1325
E	MIUCO	668134	5486767	2019	4	2019-09-09	13:25	% Silt (0.031 mm - 0.004 mm)	45	%	ALS	RG_MIUCO_SE-4_2019-09-09_1325
E	MIUCO	668134	5486767	2019	4	2019-09-09	13:25	% Clay (<4 μm)	9.8	%	ALS	RG MIUCO SE-4 2019-09-09 1325
E	MIUCO	668134	5486767	2019	4	2019-09-09	13:25	Texture	Silt loam	-	ALS	RG MIUCO SE-4 2019-09-09 1325
E	MIUCO	668134	5486767	2019	1	2019-09-09	13:25	Mercury (Hg)	0.032	mg/kg	ALS	RG MIUCO SE-4 2019-09-09 1325
E	MIUCO	668134	5486767	2019	1	2019-09-09	13:25	Aluminum (Al)	15,000		ALS	RG MIUCO SE-4 2019-09-09 1325
E	MIUCO	668134	5486767	2019	4	2019-09-09	13:25	Antimony (Sb)	0.35	mg/kg	ALS	RG MIUCO SE-4 2019-09-09 1325
E	MIUCO	668134	5486767	2019	4	2019-09-09	13:25	Arsenic (As)	5.6	mg/kg	ALS	RG_MIUCO_SE-4_2019-09-09_1325
=	MIUCO		5486767		4		13:25	Barium (Ba)	173	mg/kg	ALS	RG MIUCO SE-4 2019-09-09 1325
=		668134	5486767	2019 2019	4	2019-09-09	13:25	,	0.89	mg/kg	ALS	
	MIUCO	668134			4	2019-09-09		Beryllium (Be)		mg/kg		RG_MIUCO_SE-4_2019-09-09_1325
=	MIUCO	668134	5486767	2019	4	2019-09-09	13:25	Bismuth (Bi)	0.2	mg/kg	ALS	RG_MIUCO_SE-4_2019-09-09_1325
	MIUCO	668134	5486767	2019	4	2019-09-09	13:25	Boron (B)	14	mg/kg	ALS	RG_MIUCO_SE-4_2019-09-09_1325
E	MIUCO	668134	5486767	2019	4	2019-09-09	13:25	Cadmium (Cd)	0.97	mg/kg	ALS	RG_MIUCO_SE-4_2019-09-09_1325
E	MIUCO	668134	5486767	2019	4	2019-09-09	13:25	Calcium (Ca)	16,300	mg/kg	ALS	RG_MIUCO_SE-4_2019-09-09_1325
<u>E</u>	MIUCO	668134	5486767	2019	4	2019-09-09	13:25	Chromium (Cr)	20	mg/kg	ALS	RG_MIUCO_SE-4_2019-09-09_1325
E	MIUCO	668134	5486767	2019	4	2019-09-09	13:25	Cobalt (Co)	6.8	mg/kg	ALS	RG_MIUCO_SE-4_2019-09-09_1325
E	MIUCO	668134	5486767	2019	4	2019-09-09	13:25	Copper (Cu)	20	mg/kg	ALS	RG_MIUCO_SE-4_2019-09-09_1325
E	MIUCO	668134	5486767	2019	4	2019-09-09	13:25	Iron (Fe)	20,600	mg/kg	ALS	RG_MIUCO_SE-4_2019-09-09_1325
E	MIUCO	668134	5486767	2019		2019-09-09	13:25	Lead (Pb)	13	mg/kg	ALS	RG_MIUCO_SE-4_2019-09-09_1325
E	MIUCO	668134	5486767	2019	+	2019-09-09	13:25	Lithium (Li)	23	mg/kg	ALS	RG_MIUCO_SE-4_2019-09-09_1325
E	MIUCO	668134	5486767	2019	4	2019-09-09	13:25	Magnesium (Mg)	6,940	mg/kg	ALS	RG_MIUCO_SE-4_2019-09-09_1325
E	MIUCO	668134	5486767	2019	4	2019-09-09	13:25	Manganese (Mn)	243	mg/kg	ALS	RG_MIUCO_SE-4_2019-09-09_1325
E	MIUCO	668134	5486767	2019		2019-09-09	13:25	Molybdenum (Mo)	2.0	mg/kg	ALS	RG_MIUCO_SE-4_2019-09-09_1325
E	MIUCO	668134	5486767	2019	4	2019-09-09	13:25	Nickel (Ni)	27	mg/kg	ALS	RG_MIUCO_SE-4_2019-09-09_1325
E	MIUCO	668134	5486767	2019	4	2019-09-09	13:25	Phosphorus (P)	1,520	mg/kg	ALS	RG_MIUCO_SE-4_2019-09-09_1325
E	MIUCO	668134	5486767	2019	4	2019-09-09	13:25	Potassium (K)	3,110	mg/kg	ALS	RG_MIUCO_SE-4_2019-09-09_1325
E	MIUCO	668134	5486767	2019	4	2019-09-09	13:25	Selenium (Se)	1.0	mg/kg	ALS	RG_MIUCO_SE-4_2019-09-09_1325
E	MIUCO	668134	5486767	2019	4	2019-09-09	13:25	Silver (Ag)	0.14	mg/kg	ALS	RG_MIUCO_SE-4_2019-09-09_1325
Ε	MIUCO	668134	5486767	2019	4	2019-09-09	13:25	Sodium (Na)	89	mg/kg	ALS	RG_MIUCO_SE-4_2019-09-09_1325
Ε	MIUCO	668134	5486767	2019	4	2019-09-09	13:25	Strontium (Sr)	51	mg/kg	ALS	RG_MIUCO_SE-4_2019-09-09_1325
	MIUCO	668134	5486767	2019	4	2019-09-09	13:25	Sulfur (S)	1,100	mg/kg	ALS	RG_MIUCO_SE-4_2019-09-09_1325
Ξ	MIUCO	668134	5486767	2019	4	2019-09-09	13:25	Thallium (TI)	0.41	mg/kg	ALS	RG_MIUCO_SE-4_2019-09-09_1325
=	MIUCO	668134	5486767	2019	4	2019-09-09	13:25	Tin (Sn)	<2.0	mg/kg	ALS	RG_MIUCO_SE-4_2019-09-09_1325
=	MIUCO	668134	5486767	2019	4	2019-09-09	13:25	Titanium (Ti)	19	mg/kg	ALS	RG_MIUCO_SE-4_2019-09-09_1325
E	MIUCO	668134	5486767	2019	1	2019-09-09	13:25	Tungsten (W)	<0.50	mg/kg	ALS	RG MIUCO SE-4 2019-09-09 1325

WSP Canada Inc. Page 107 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Table I-1	: Sediment Chem	istry Data Col	lected from the	CMm LAEMP S	Sampling Sta	ations, 2012 to	2022					
Туре	Station	Location	ı (UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
Турс	Otation	Easting	Northing	i cai	replicate	Date	11110	Analyte	Result	Oiiit	Lab	Sample ID
SE	MIUCO	668134	5486767	2019	4	2019-09-09	13:25	Uranium (U)	0.7	mg/kg	ALS	RG_MIUCO_SE-4_2019-09-09_1325
SE	MIUCO	668134	5486767	2019	4	2019-09-09	13:25	Vanadium (V)	30	mg/kg	ALS	RG_MIUCO_SE-4_2019-09-09_1325
SE	MIUCO	668134	5486767	2019	4	2019-09-09	13:25	Zinc (Zn)	105	mg/kg	ALS	RG_MIUCO_SE-4_2019-09-09_1325
SE	MIUCO	668134	5486767	2019	4	2019-09-09	13:25	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_MIUCO_SE-4_2019-09-09_1325
SE	MIUCO	668134	5486767	2019	4	2019-09-09	13:25	pH (1:2 soil:water)	7.5	рН	ALS	RG_MIUCO_SE-4_2019-09-09_1325
SE	MIUCO	668134	5486767	2019	4	2019-09-09	13:25	Total Organic Carbon	4.1	%	ALS	RG_MIUCO_SE-4_2019-09-09_1325
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	Moisture	40	%	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	Acenaphthene	0.0063	mg/kg	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	Acenaphthylene	<0.0050	mg/kg	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	Acridine	<0.012	mg/kg	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	Anthracene	<0.0040	mg/kg	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	Benz(a)anthracene	<0.010	mg/kg	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	Benzo(a)pyrene	<0.010	mg/kg	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	Benzo(b&j)fluoranthene	0.029	mg/kg	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	Benzo(g_h_i)perylene	<0.010	mg/kg	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	Benzo(k)fluoranthene	<0.010	mg/kg	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	Benzo(e)pyrene	0.035	mg/kg	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	Chrysene	0.047	mg/kg	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	Dibenz(a_h)anthracene	<0.0050	mg/kg	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	Fluoranthene	<0.010	mg/kg	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	Fluorene	0.02	mg/kg	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	Indeno(1,2,3-c,d)pyrene	<0.010	mg/kg	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	1-Methylnaphthalene	0.19	mg/kg	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	2-Methylnaphthalene	0.3	mg/kg	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	Naphthalene	0.12	mg/kg	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	Perylene	<0.010	mg/kg	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	Phenanthrene	0.13	mg/kg	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	Pyrene	0.013	mg/kg	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	Quinoline	<0.010	mg/kg	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	IACR (CCME)	0.28	-	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	B(a)P Total Potency Equivalent	<0.020	mg/kg	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	Benzo(b+j+k)fluoranthene	0.031	mg/kg	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	d8-Naphthalene	80	%	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	d10-Acenaphthene	87	%	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	d10-Phenanthrene	86	%	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	d12-Chrysene	93	%	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	% Gravel (>2 mm)	23	%	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	% Sand (2.00 mm - 1.00 mm)	7.3	%	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	% Sand (1.00 mm - 0.50 mm)	6.9	%	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	% Sand (0.50 mm - 0.25 mm)	13	%	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	% Sand (0.25 mm - 0.125 mm)	14	%	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	% Sand (0.125 mm - 0.063 mm)	8.2	%	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	% Silt (0.063 mm - 0.0312 mm)	13	%	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	% Silt (0.031 mm - 0.004 mm)	13	%	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	% Clay (<4 μm)	2.3	%	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	Texture	Sandy loam	-	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	Mercury (Hg)	0.027	mg/kg	ALS	RG_MIUCO_SE-5_2019-09-09_1545

WSP Canada Inc. Page 108 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	Station		ı (UTMs) ^(a)					Analyta	Pocult -	Unit		Laboratory Information
Type	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	Aluminum (Al)	15,000	mg/kg	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	Antimony (Sb)	0.44	mg/kg	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	Arsenic (As)	8.8	mg/kg	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	Barium (Ba)	172	mg/kg	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	Beryllium (Be)	1.1	mg/kg	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	Bismuth (Bi)	0.23	mg/kg	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	Boron (B)	10	mg/kg	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	Cadmium (Cd)	0.79	mg/kg	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	Calcium (Ca)	15,400	mg/kg	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	Chromium (Cr)	18	mg/kg	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	Cobalt (Co)	9.4	mg/kg	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	Copper (Cu)	21	mg/kg	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	Iron (Fe)	26,500	mg/kg	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	Lead (Pb)	15	mg/kg	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	Lithium (Li)	26	mg/kg	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	Magnesium (Mg)	6,770	mg/kg	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	Manganese (Mn)	450	mg/kg	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	Molybdenum (Mo)	2.3	mg/kg	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	Nickel (Ni)	29	mg/kg	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	Phosphorus (P)	1,350	mg/kg	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	Potassium (K)	2,620	mg/kg	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	Selenium (Se)	0.57	mg/kg	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	Silver (Ag)	<0.10	mg/kg	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	Sodium (Na)	94	mg/kg	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	Strontium (Sr)	50	mg/kg	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	Sulfur (S)	<1000	mg/kg	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	Thallium (TI)	0.33	mg/kg	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	Tin (Sn)	<2.0	mg/kg	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	Titanium (Ti)	13	mg/kg	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	Tungsten (W)	<0.50	mg/kg	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	Uranium (U)	0.58	mg/kg		RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	Vanadium (V)	30	mg/kg	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	Zinc (Zn)	112	mg/kg	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	Zirconium (Zr)	1.3	mg/kg	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	pH (1:2 soil:water)	7.2	pН	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIUCO	668134	5486767	2019	5	2019-09-09	15:45	Total Organic Carbon	13	%	ALS	RG_MIUCO_SE-5_2019-09-09_1545
SE	MIDAG	665258	5489417	2019	1 1	2019-09-10	09:00	Moisture	39	%	ALS	RG_MIDAG_SE-1_2019-09-10_0900
SE	MIDAG	665258	5489417	2019	1 1	2019-09-10	09:00	Acenaphthene	<0.0070	mg/kg	ALS	RG_MIDAG_SE-1_2019-09-10_0900
SE	MIDAG	665258	5489417	2019	1 1	2019-09-10	09:00	Acenaphthylene	<0.0050	mg/kg	ALS	RG_MIDAG_SE-1_2019-09-10_0900
SE	MIDAG	665258	5489417	2019	1 1	2019-09-10	09:00	Acridine	<0.010	mg/kg	ALS	RG_MIDAG_SE-1_2019-09-10_0900
SE	MIDAG	665258	5489417	2019	1 1	2019-09-10	09:00	Anthracene	<0.0040	mg/kg	ALS	RG_MIDAG_SE-1_2019-09-10_0900
SE	MIDAG	665258	5489417	2019	1 1	2019-09-10	09:00	Benz(a)anthracene	<0.010	mg/kg		RG_MIDAG_SE-1_2019-09-10_0900
SE	MIDAG	665258	5489417	2019	1 1	2019-09-10	09:00	Benzo(a)pyrene	<0.010	mg/kg	ALS	RG_MIDAG_SE-1_2019-09-10_0900
SE	MIDAG	665258	5489417	2019	1 1	2019-09-10	09:00	Benzo(b&j)fluoranthene	0.023	mg/kg	ALS	RG_MIDAG_SE-1_2019-09-10_0900
SE	MIDAG	665258	5489417	2019	1 1	2019-09-10	09:00	Benzo(g_h_i)perylene	<0.010	mg/kg	ALS	RG_MIDAG_SE-1_2019-09-10_0900
SE	MIDAG	665258	5489417	2019	1 1	2019-09-10	09:00	Benzo(k)fluoranthene	<0.010	mg/kg	ALS	RG_MIDAG_SE-1_2019-09-10_0900
SE	MIDAG	665258	5489417	2019	1	2019-09-10	09:00	Benzo(e)pyrene	0.027	mg/kg	ALS	RG_MIDAG_SE-1_2019-09-10_0900

WSP Canada Inc. Page 109 of 337

Reference No. 22574542-001-R-Rev0-1000

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	- Ocalinent Onen		ected from the	OWITH LALIVITY		1						l abandon dofernation
Туре	Station		(UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
	AUD A C	Easting	Northing	0040		2010.00.10	00.00	· ·	0.007	//	Lab	Sample ID
SE	MIDAG	665258	5489417	2019	1	2019-09-10	09:00	Chrysene	0.037	mg/kg	ALS	RG_MIDAG_SE-1_2019-09-10_0900
SE	MIDAG	665258	5489417	2019	1	2019-09-10	09:00	Dibenz(a_h)anthracene	<0.0050	mg/kg	ALS	RG_MIDAG_SE-1_2019-09-10_0900
SE	MIDAG	665258	5489417	2019	1	2019-09-10	09:00	Fluoranthene	0.014	mg/kg	ALS	RG_MIDAG_SE-1_2019-09-10_0900
SE	MIDAG	665258	5489417	2019	1	2019-09-10	09:00	Fluorene	0.015	mg/kg	ALS	RG_MIDAG_SE-1_2019-09-10_0900
SE	MIDAG	665258	5489417	2019	1	2019-09-10	09:00	Indeno(1,2,3-c,d)pyrene	<0.010	mg/kg	ALS	RG_MIDAG_SE-1_2019-09-10_0900
SE	MIDAG	665258	5489417	2019	1	2019-09-10	09:00	1-Methylnaphthalene	0.15	mg/kg	ALS	RG_MIDAG_SE-1_2019-09-10_0900
SE	MIDAG	665258	5489417	2019	1	2019-09-10	09:00	2-Methylnaphthalene	0.23	mg/kg	ALS	RG_MIDAG_SE-1_2019-09-10_0900
SE	MIDAG	665258	5489417	2019	1 1	2019-09-10	09:00	Naphthalene	0.094	mg/kg	ALS	RG_MIDAG_SE-1_2019-09-10_0900
SE	MIDAG	665258	5489417	2019	1	2019-09-10	09:00	Perylene	<0.010	mg/kg	ALS	RG_MIDAG_SE-1_2019-09-10_0900
SE	MIDAG	665258	5489417	2019	1	2019-09-10	09:00	Phenanthrene	0.12	mg/kg	ALS	RG_MIDAG_SE-1_2019-09-10_0900
SE	MIDAG	665258	5489417	2019	1	2019-09-10	09:00	Pyrene	0.016	mg/kg	ALS	RG_MIDAG_SE-1_2019-09-10_0900
SE	MIDAG	665258	5489417	2019	1	2019-09-10	09:00	Quinoline	<0.010	mg/kg	ALS	RG_MIDAG_SE-1_2019-09-10_0900
SE	MIDAG	665258	5489417	2019	1	2019-09-10	09:00	IACR (CCME)	0.23	-	ALS	RG_MIDAG_SE-1_2019-09-10_0900
SE	MIDAG	665258	5489417	2019	1	2019-09-10	09:00	B(a)P Total Potency Equivalent	<0.020	mg/kg	ALS	RG_MIDAG_SE-1_2019-09-10_0900
SE	MIDAG	665258	5489417	2019	1	2019-09-10	09:00	Benzo(b+j+k)fluoranthene	0.024	mg/kg	ALS	RG_MIDAG_SE-1_2019-09-10_0900
SE	MIDAG	665258	5489417	2019	1	2019-09-10	09:00	d8-Naphthalene	79	%	ALS	RG_MIDAG_SE-1_2019-09-10_0900
SE	MIDAG	665258	5489417	2019	1	2019-09-10	09:00	d10-Acenaphthene	85	%	ALS	RG_MIDAG_SE-1_2019-09-10_0900
SE	MIDAG	665258	5489417	2019	1	2019-09-10	09:00	d10-Phenanthrene	87	%	ALS	RG_MIDAG_SE-1_2019-09-10_0900
SE	MIDAG	665258	5489417	2019	1	2019-09-10	09:00	d12-Chrysene	93	%	ALS	RG_MIDAG_SE-1_2019-09-10_0900
SE	MIDAG	665258	5489417	2019	1	2019-09-10	09:00	% Gravel (>2 mm)	1.2	%	ALS	RG_MIDAG_SE-1_2019-09-10_0900
SE	MIDAG	665258	5489417	2019	1	2019-09-10	09:00	% Sand (2.00 mm - 1.00 mm)	8.1	%	ALS	RG_MIDAG_SE-1_2019-09-10_0900
SE	MIDAG	665258	5489417	2019	1	2019-09-10	09:00	% Sand (1.00 mm - 0.50 mm)	39	%	ALS	RG_MIDAG_SE-1_2019-09-10_0900
SE	MIDAG	665258	5489417	2019	1	2019-09-10	09:00	% Sand (0.50 mm - 0.25 mm)	26	%	ALS	RG_MIDAG_SE-1_2019-09-10_0900
SE	MIDAG	665258	5489417	2019	1	2019-09-10	09:00	% Sand (0.25 mm - 0.125 mm)	6.8	%	ALS	RG_MIDAG_SE-1_2019-09-10_0900
SE	MIDAG	665258	5489417	2019	1	2019-09-10	09:00	% Sand (0.125 mm - 0.063 mm)	3.4	%	ALS	RG_MIDAG_SE-1_2019-09-10_0900
SE	MIDAG	665258	5489417	2019	1	2019-09-10	09:00	% Silt (0.063 mm - 0.0312 mm)	6.5	%	ALS	RG MIDAG SE-1 2019-09-10 0900
SE	MIDAG	665258	5489417	2019	1	2019-09-10	09:00	% Silt (0.031 mm - 0.004 mm)	7.4	%	ALS	RG_MIDAG_SE-1_2019-09-10_0900
SE	MIDAG	665258	5489417	2019	1	2019-09-10	09:00	% Clay (<4 μm)	1.1	%	ALS	RG MIDAG SE-1 2019-09-10 0900
SE	MIDAG	665258	5489417	2019	1	2019-09-10	09:00	Texture	Sandy loam	-	ALS	RG MIDAG SE-1 2019-09-10 0900
SE	MIDAG	665258	5489417	2019	1	2019-09-10	09:00	Mercury (Hg)	0.02	mg/kg	ALS	RG_MIDAG_SE-1_2019-09-10_0900
SE	MIDAG	665258	5489417	2019	1	2019-09-10	09:00	Aluminum (AI)	10,800	mg/kg	ALS	RG MIDAG SE-1 2019-09-10 0900
SE	MIDAG	665258	5489417	2019	1	2019-09-10	09:00	Antimony (Sb)	0.45	mg/kg	ALS	RG MIDAG SE-1 2019-09-10 0900
SE	MIDAG	665258	5489417	2019	1	2019-09-10	09:00	Arsenic (As)	9.1	mg/kg	ALS	RG MIDAG SE-1 2019-09-10 0900
SE	MIDAG	665258	5489417	2019	1	2019-09-10	09:00	Barium (Ba)	102	mg/kg	ALS	RG MIDAG SE-1 2019-09-10 0900
SE	MIDAG	665258	5489417	2019	1	2019-09-10	09:00	Beryllium (Be)	0.89	mg/kg	ALS	RG MIDAG SE-1 2019-09-10 0900
SE	MIDAG	665258	5489417	2019	1	2019-09-10	09:00	Bismuth (Bi)	<0.20	mg/kg	ALS	RG MIDAG SE-1 2019-09-10 0900
SE	MIDAG	665258	5489417	2019	+	2019-09-10	09:00	Boron (B)	7.9	mg/kg	ALS	RG MIDAG SE-1 2019-09-10 0900
SE	MIDAG	665258	5489417	2019	+	2019-09-10	09:00	Cadmium (Cd)	0.75	mg/kg	ALS	RG MIDAG SE-1 2019-09-10 0900
SE	MIDAG	665258	5489417	2019	+	2019-09-10	09:00	Calcium (Ca)	60,700	mg/kg	ALS	RG MIDAG SE-1 2019-09-10 0900
SE	MIDAG	665258	5489417	2019	+	2019-09-10	09:00	Chromium (Cr)	13	mg/kg	ALS	RG MIDAG SE-1 2019-09-10 0900
SE	MIDAG	665258	5489417	2019	1	2019-09-10	09:00	Cobalt (Co)	20	mg/kg	ALS	RG MIDAG SE-1 2019-09-10 0900
SE	MIDAG	665258	5489417	2019	1	2019-09-10	09:00	Copper (Cu)	15	mg/kg	ALS	RG MIDAG SE-1 2019-09-10 0900
SE	MIDAG	665258	5489417	2019	1	2019-09-10	09:00	Iron (Fe)	21,000	mg/kg	ALS	RG MIDAG SE-1 2019-09-10 0900
SE	MIDAG	665258	5489417	2019	1	2019-09-10	09:00	Lead (Pb)	12	mg/kg	ALS	RG MIDAG SE-1 2019-09-10 0900
SE	MIDAG	665258	5489417	2019	1	2019-09-10	09:00	Lithium (Li)	19	mg/kg	ALS	RG MIDAG SE-1 2019-09-10 0900
SE	MIDAG	665258	5489417	2019	1	2019-09-10	09:00	Magnesium (Mg)	7,390	mg/kg	ALS	RG MIDAG SE-1 2019-09-10 0900
	MUDAG	000200	J403411	2019	1	<u> </u>	09.00	piviagnesium (ivig)	1,390	ilig/kg	ALO	NO_IVIIDAG_GL-1_ZU18-08-10_0800

WSP Canada Inc. Page 110 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

יייייייייייייייייייייייייייייייייייייי	l: Sediment Chen			OMINI LACIVIP		utionis, 2012 l0				I		
Туре	Station		(UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
	LUD A C	Easting	Northing	00.10		2242 22 42	20.00	· ·	4.0	"	Lab	Sample ID
SE	MIDAG	665258	5489417	2019	1	2019-09-10	09:00	Molybdenum (Mo)	1.9	mg/kg	ALS	RG_MIDAG_SE-1_2019-09-10_0900
SE	MIDAG	665258	5489417	2019	1	2019-09-10	09:00	Nickel (Ni)	43	mg/kg	ALS	RG_MIDAG_SE-1_2019-09-10_0900
SE	MIDAG	665258	5489417	2019	1 1	2019-09-10	09:00	Phosphorus (P)	1,190	mg/kg	ALS	RG_MIDAG_SE-1_2019-09-10_0900
SE	MIDAG	665258	5489417	2019	1 1	2019-09-10	09:00	Potassium (K)	2,010	mg/kg	ALS	RG_MIDAG_SE-1_2019-09-10_0900
SE	MIDAG	665258	5489417	2019	1	2019-09-10	09:00	Selenium (Se)	0.67	mg/kg	ALS	RG_MIDAG_SE-1_2019-09-10_0900
SE	MIDAG	665258	5489417	2019	1	2019-09-10	09:00	Silver (Ag)	0.11	mg/kg	ALS	RG_MIDAG_SE-1_2019-09-10_0900
SE	MIDAG	665258	5489417	2019	1	2019-09-10	09:00	Sodium (Na)	79	mg/kg	ALS	RG_MIDAG_SE-1_2019-09-10_0900
SE	MIDAG	665258	5489417	2019	1	2019-09-10	09:00	Strontium (Sr)	95	mg/kg	ALS	RG_MIDAG_SE-1_2019-09-10_0900
SE	MIDAG	665258	5489417	2019	1	2019-09-10	09:00	Sulfur (S)	<1000	mg/kg	ALS	RG_MIDAG_SE-1_2019-09-10_0900
SE	MIDAG	665258	5489417	2019	1	2019-09-10	09:00	Thallium (TI)	0.48	mg/kg	ALS	RG_MIDAG_SE-1_2019-09-10_0900
SE	MIDAG	665258	5489417	2019	1	2019-09-10	09:00	Tin (Sn)	<2.0	mg/kg	ALS	RG_MIDAG_SE-1_2019-09-10_0900
SE	MIDAG	665258	5489417	2019	1	2019-09-10	09:00	Titanium (Ti)	5.8	mg/kg	ALS	RG_MIDAG_SE-1_2019-09-10_0900
SE	MIDAG	665258	5489417	2019	1	2019-09-10	09:00	Tungsten (W)	<0.50	mg/kg	ALS	RG_MIDAG_SE-1_2019-09-10_0900
SE	MIDAG	665258	5489417	2019	1	2019-09-10	09:00	Uranium (U)	0.63	mg/kg	ALS	RG_MIDAG_SE-1_2019-09-10_0900
SE	MIDAG	665258	5489417	2019	1	2019-09-10	09:00	Vanadium (V)	23	mg/kg	ALS	RG_MIDAG_SE-1_2019-09-10_0900
SE	MIDAG	665258	5489417	2019	1	2019-09-10	09:00	Zinc (Zn)	121	mg/kg	ALS	RG_MIDAG_SE-1_2019-09-10_0900
SE	MIDAG	665258	5489417	2019	1	2019-09-10	09:00	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_MIDAG_SE-1_2019-09-10_0900
SE	MIDAG	665258	5489417	2019	1	2019-09-10	09:00	pH (1:2 soil:water)	7.3	рН	ALS	RG_MIDAG_SE-1_2019-09-10_0900
SE	MIDAG	665258	5489417	2019	1	2019-09-10	09:00	Total Organic Carbon	2.7	%	ALS	RG_MIDAG_SE-1_2019-09-10_0900
SE	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	Moisture	43	%	ALS	RG_MIDAG_SE-2_2019-09-10_1130
SE	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	Acenaphthene	<0.020	mg/kg	ALS	RG MIDAG SE-2 2019-09-10 1130
SE	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	Acenaphthylene	<0.0050	mg/kg	ALS	RG_MIDAG_SE-2_2019-09-10_1130
SE	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	Acridine	<0.020	mg/kg	ALS	RG_MIDAG_SE-2_2019-09-10_1130
SE	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	Anthracene	<0.0040	mg/kg	ALS	RG MIDAG SE-2 2019-09-10 1130
SE	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	Benz(a)anthracene	0.017	mg/kg	ALS	RG MIDAG SE-2 2019-09-10 1130
SE	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	Benzo(a)pyrene	0.014	mg/kg	ALS	RG_MIDAG_SE-2_2019-09-10_1130
SE	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	Benzo(b&j)fluoranthene	0.056	mg/kg	ALS	RG_MIDAG_SE-2_2019-09-10_1130
SE	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	Benzo(g_h_i)perylene	0.02	mg/kg	ALS	RG_MIDAG_SE-2_2019-09-10_1130
SE	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	Benzo(k)fluoranthene	<0.010	mg/kg	ALS	RG MIDAG SE-2 2019-09-10 1130
SE	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	Benzo(e)pyrene	0.066	mg/kg	ALS	RG MIDAG SE-2 2019-09-10 1130
SE	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	Chrysene	0.098	mg/kg	ALS	RG MIDAG SE-2 2019-09-10 1130
SE	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	Dibenz(a h)anthracene	0.0062	mg/kg	ALS	RG MIDAG SE-2 2019-09-10 1130
SE	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	Fluoranthene	0.036	mg/kg	ALS	RG MIDAG SE-2 2019-09-10 1130
SE	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	Fluorene	0.039	mg/kg	ALS	RG MIDAG SE-2 2019-09-10 1130
SE	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	Indeno(1,2,3-c,d)pyrene	<0.010	mg/kg	ALS	RG MIDAG SE-2 2019-09-10 1130
SE	MIDAG	665258	5489417	2019		2019-09-10	11:30	1-Methylnaphthalene	0.25	mg/kg	ALS	RG MIDAG SE-2 2019-09-10 1130
SE	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	2-Methylnaphthalene	0.38	mg/kg	ALS	RG MIDAG SE-2 2019-09-10 1130
SE	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	Naphthalene	0.16	mg/kg	ALS	RG MIDAG SE-2 2019-09-10 1130
SE	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	Perylene	<0.010	mg/kg	ALS	RG MIDAG SE-2 2019-09-10 1130
SE	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	Phenanthrene	0.3	mg/kg	ALS	RG MIDAG SE-2 2019-09-10 1130
SE	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	Pyrene	0.037	mg/kg	ALS	RG MIDAG SE-2 2019-09-10 1130
SE	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	Quinoline	<0.037	mg/kg	ALS	RG MIDAG SE-2 2019-09-10 1130
SE	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	IACR (CCME)	0.55	mg/ k g	ALS	RG MIDAG SE-2 2019-09-10 1130
					+			· · · · · · · · · · · · · · · · · · ·		malka		
SE	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	B(a)P Total Potency Equivalent	0.03	mg/kg	ALS	RG_MIDAG_SE-2_2019-09-10_1130
SE	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	Benzo(b+j+k)fluoranthene	0.06	mg/kg	ALS	RG_MIDAG_SE-2_2019-09-10_1130
SE	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	d8-Naphthalene	90	%	ALS	RG_MIDAG_SE-2_2019-09-10_1130
SE	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	d10-Acenaphthene	98	%	ALS	RG_MIDAG_SE-2_2019-09-10_1

WSP Canada Inc. Page 111 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

adie i-	1: Sediment Chen				Sampling St	lations, 2012 to	ZUZZ					
Туре	Station		ı (UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
	MIDAG	Easting	Northing	00.10		2010 00 10	44.00	· ·	100	0/	Lab	Sample ID
SE	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	d10-Phenanthrene	106	%	ALS	RG_MIDAG_SE-2_2019-09-10_1130
SE	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	d12-Chrysene	115	%	ALS	RG_MIDAG_SE-2_2019-09-10_1130
SE	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	% Gravel (>2 mm)	1.2	%	ALS	RG_MIDAG_SE-2_2019-09-10_1130
SE	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	% Sand (2.00 mm - 1.00 mm)	5.7	%	ALS	RG_MIDAG_SE-2_2019-09-10_1130
SE	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	% Sand (1.00 mm - 0.50 mm)	27	%	ALS	RG_MIDAG_SE-2_2019-09-10_1130
SE	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	% Sand (0.50 mm - 0.25 mm)	24	%	ALS	RG_MIDAG_SE-2_2019-09-10_1130
SE	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	% Sand (0.25 mm - 0.125 mm)	11	%	ALS	RG_MIDAG_SE-2_2019-09-10_1130
SE	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	% Sand (0.125 mm - 0.063 mm)	6.2	%	ALS	RG_MIDAG_SE-2_2019-09-10_1130
SE	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	% Silt (0.063 mm - 0.0312 mm)	11	%	ALS	RG_MIDAG_SE-2_2019-09-10_1130
SE	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	% Silt (0.031 mm - 0.004 mm)	13	%	ALS	RG_MIDAG_SE-2_2019-09-10_1130
SE	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	% Clay (<4 μm)	2.0	%	ALS	RG_MIDAG_SE-2_2019-09-10_1130
SE	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	Texture	Loamy sand	-	ALS	RG_MIDAG_SE-2_2019-09-10_1130
SE	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	Mercury (Hg)	0.026	mg/kg	ALS	RG_MIDAG_SE-2_2019-09-10_1130
SE	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	Aluminum (Al)	9,630	mg/kg	ALS	RG_MIDAG_SE-2_2019-09-10_1130
SE	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	Antimony (Sb)	0.47	mg/kg	ALS	RG_MIDAG_SE-2_2019-09-10_1130
SE	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	Arsenic (As)	8.7	mg/kg	ALS	RG_MIDAG_SE-2_2019-09-10_1130
SE	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	Barium (Ba)	120	mg/kg	ALS	RG_MIDAG_SE-2_2019-09-10_1130
SE	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	Beryllium (Be)	0.83	mg/kg	ALS	RG_MIDAG_SE-2_2019-09-10_1130
SE	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	Bismuth (Bi)	<0.20	mg/kg	ALS	RG_MIDAG_SE-2_2019-09-10_1130
SE	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	Boron (B)	7.5	mg/kg	ALS	RG_MIDAG_SE-2_2019-09-10_1130
SE	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	Cadmium (Cd)	0.95	mg/kg	ALS	RG MIDAG SE-2 2019-09-10 1130
SE	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	Calcium (Ca)	74,300	mg/kg	ALS	RG MIDAG SE-2 2019-09-10 1130
SE	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	Chromium (Cr)	14	mg/kg	ALS	RG_MIDAG_SE-2_2019-09-10_1130
SE	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	Cobalt (Co)	26	mg/kg	ALS	RG MIDAG SE-2 2019-09-10 1130
SE	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	Copper (Cu)	14	mg/kg	ALS	RG MIDAG SE-2 2019-09-10 1130
SE	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	Iron (Fe)	19,000	mg/kg	ALS	RG_MIDAG_SE-2_2019-09-10_1130
SE	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	Lead (Pb)	11	mg/kg	ALS	RG MIDAG SE-2 2019-09-10 1130
SE	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	Lithium (Li)	16	mg/kg	ALS	RG_MIDAG_SE-2_2019-09-10_1130
SE	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	Magnesium (Mg)	11,100	mg/kg	ALS	RG MIDAG SE-2 2019-09-10 1130
SE	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	Manganese (Mn)	507	mg/kg	ALS	RG MIDAG SE-2 2019-09-10 1130
SE	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	Molybdenum (Mo)	1.7	mg/kg	ALS	RG MIDAG SE-2 2019-09-10 1130
SE	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	Nickel (Ni)	54	mg/kg	ALS	RG MIDAG SE-2 2019-09-10 1130
SE	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	Phosphorus (P)	1,420	mg/kg	ALS	RG MIDAG SE-2 2019-09-10 1130
SE	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	Potassium (K)	1,620	mg/kg	ALS	RG MIDAG SE-2 2019-09-10 1130
SE	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	Selenium (Se)	1.0	mg/kg	ALS	RG MIDAG SE-2 2019-09-10 1130
SE	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	Silver (Ag)	0.14	mg/kg	ALS	RG MIDAG SE-2 2019-09-10 1130
SE	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	Sodium (Na)	90	mg/kg	ALS	RG MIDAG SE-2 2019-09-10 1130
SE	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	Strontium (Sr)	98	mg/kg	ALS	RG MIDAG SE-2 2019-09-10 1130
SE	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	Sulfur (S)	<1000	mg/kg	ALS	RG MIDAG SE-2 2019-09-10 1130
SE	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	Thallium (TI)	0.47	mg/kg	ALS	RG MIDAG SE-2 2019-09-10 1130
SE	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	Tin (Sn)	<2.0	mg/kg	ALS	RG MIDAG SE-2 2019-09-10 1130
SE	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	Titanium (Ti)	15	mg/kg	ALS	RG MIDAG SE-2 2019-09-10 1130
SE	MIDAG	665258	5489417	2019	2	2019-09-10	11:30		<0.50		ALS	RG MIDAG SE-2 2019-09-10 1130
SE								Tungsten (W)		mg/kg		
	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	Uranium (U)	0.79	mg/kg	ALS	RG_MIDAG_SE-2_2019-09-10_1130
SE	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	Vanadium (V)	23	mg/kg	ALS	RG_MIDAG_SE-2_2019-09-10_1130
SE	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	Zinc (Zn)	129	mg/kg	ALS	RG_MIDAG_SE-2_2019-09-10_1130
SE	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_MIDAG_SE-2_2019-09-10_1130

WSP Canada Inc. Page 112 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

\/no	Station	Location	(UTMs) ^(a)	Year	Poplicate	Data	Time	Analyta	Popult	Unit		Laboratory Information
ype	Station	Easting	Northing	rear	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	pH (1:2 soil:water)	7.3	рН	ALS	RG MIDAG SE-2 2019-09-10 1130
SE.	MIDAG	665258	5489417	2019	2	2019-09-10	11:30	Total Organic Carbon	2.6	%	ALS	RG MIDAG SE-2 2019-09-10 1130
SE.	MIDAG	665258	5489417	2019	3	2019-09-10	10:15	Moisture	42	%	ALS	RG MIDAG SE-3 2019-09-10 1015
SE	MIDAG	665258	5489417	2019	3	2019-09-10	10:15	Acenaphthene	<0.0050	mg/kg	ALS	RG MIDAG SE-3 2019-09-10 1015
SE	MIDAG	665258	5489417	2019	3	2019-09-10	10:15	Acenaphthylene	<0.0050	mg/kg	ALS	RG MIDAG SE-3 2019-09-10 1015
SE	MIDAG	665258	5489417	2019	3	2019-09-10	10:15	Acridine	<0.010	mg/kg	ALS	RG MIDAG SE-3 2019-09-10 1015
SE.	MIDAG	665258	5489417	2019	3	2019-09-10	10:15	Anthracene	<0.0040	mg/kg	ALS	RG MIDAG SE-3 2019-09-10 1015
SE.	MIDAG	665258	5489417	2019	3	2019-09-10	10:15	Benz(a)anthracene	<0.010	mg/kg	ALS	RG MIDAG SE-3 2019-09-10 1015
SE	MIDAG	665258	5489417	2019	3	2019-09-10	10:15	Benzo(a)pyrene	<0.010	mg/kg	ALS	RG MIDAG SE-3 2019-09-10 1015
SE.	MIDAG	665258	5489417	2019	3	2019-09-10	10:15	Benzo(b&j)fluoranthene	0.019	mg/kg	ALS	RG MIDAG SE-3 2019-09-10 1015
SE	MIDAG	665258	5489417	2019	3	2019-09-10	10:15	Benzo(g_h_i)perylene	<0.010	mg/kg	ALS	RG MIDAG SE-3 2019-09-10 1015
SE.	MIDAG	665258	5489417	2019	3	2019-09-10	10:15	Benzo(k)fluoranthene	<0.010	mg/kg	ALS	RG MIDAG SE-3 2019-09-10 1015
SE	MIDAG	665258	5489417	2019	3	2019-09-10	10:15	Benzo(e)pyrene	0.024	mg/kg	ALS	RG MIDAG SE-3 2019-09-10 1015
E E	MIDAG	665258	5489417	2019	3	2019-09-10	10:15	Chrysene	0.031	mg/kg	ALS	RG MIDAG SE-3 2019-09-10 1015
E E	MIDAG	665258	5489417	2019	3	2019-09-10	10:15	Dibenz(a_h)anthracene	<0.0050	mg/kg	ALS	RG MIDAG SE-3 2019-09-10 1015
E SE	MIDAG	665258	5489417	2019	3	2019-09-10	10:15	Fluoranthene	0.011	mg/kg	ALS	RG MIDAG SE-3 2019-09-10 1015
E E	MIDAG	665258	5489417	2019	3	2019-09-10	10:15	Fluorene	<0.010	mg/kg	ALS	RG MIDAG SE-3 2019-09-10 1015
E	MIDAG	665258	5489417	2019	3	2019-09-10	10:15	Indeno(1,2,3-c,d)pyrene	<0.010	mg/kg	ALS	RG MIDAG SE-3 2019-09-10 1015
E	MIDAG	665258	5489417	2019	3	2019-09-10	10:15	1-Methylnaphthalene	0.073	mg/kg	ALS	RG MIDAG SE-3 2019-09-10 1015
E	MIDAG	665258	5489417	2019	3	2019-09-10	10:15	2-Methylnaphthalene	0.11	mg/kg	ALS	RG MIDAG SE-3 2019-09-10 1015
E E	MIDAG	665258	5489417	2019	3	2019-09-10	10:15	Naphthalene	0.043	mg/kg	ALS	RG MIDAG SE-3 2019-09-10 1015
E E	MIDAG	665258	5489417	2019	3	2019-09-10	10:15	Perylene	<0.010	mg/kg	ALS	RG_MIDAG_SE-3_2019-09-10_1015
E	MIDAG	665258	5489417	2019	3	2019-09-10	10:15	Phenanthrene	0.076	mg/kg	ALS	RG MIDAG SE-3 2019-09-10 1015
E	MIDAG	665258	5489417	2019	3	2019-09-10	10:15	Pyrene	0.011	mg/kg	ALS	RG MIDAG SE-3 2019-09-10 1015
E	MIDAG	665258	5489417	2019	3	2019-09-10	10:15	Quinoline	<0.011		ALS	RG MIDAG SE-3 2019-09-10 1015
E E	MIDAG	665258	5489417	2019	3	2019-09-10	10:15	IACR (CCME)	0.21	mg/kg	ALS	RG MIDAG SE-3 2019-09-10 1015
SE SE	MIDAG	665258	5489417	2019	3	2019-09-10	10:15	B(a)P Total Potency Equivalent	<0.020	mg/kg	ALS	RG_MIDAG_SE-3_2019-09-10_1015
SE	MIDAG	665258	5489417	2019	3	2019-09-10	10:15	Benzo(b+j+k)fluoranthene	0.020		ALS	RG MIDAG SE-3 2019-09-10 1015
SE	MIDAG	665258	5489417	2019	3	2019-09-10	10:15	d8-Naphthalene	78	mg/kg %	ALS	RG MIDAG SE-3 2019-09-10 1015
SE	MIDAG	665258	5489417	2019	3	2019-09-10	10:15	d10-Acenaphthene	84	%	ALS	RG_MIDAG_SE-3_2019-09-10_1015
			t		3							
SE SE	MIDAG	665258	5489417	2019	3	2019-09-10	10:15	d10-Phenanthrene	87	%		RG_MIDAG_SE-3_2019-09-10_1015
SE	MIDAG	665258	5489417	2019		2019-09-10	10:15	d12-Chrysene	98	%	ALS	RG_MIDAG_SE-3_2019-09-10_1015
SE SE	MIDAG	665258	5489417	2019	3	2019-09-10	10:15	% Gravel (>2 mm)	3.9	%	ALS	RG_MIDAG_SE-3_2019-09-10_1015 RG_MIDAG_SE-3_2019-09-10_1015
	MIDAG	665258	5489417	2019		2019-09-10	10:15	% Sand (2.00 mm - 1.00 mm)	14	%	ALS	
E	MIDAG	665258	5489417	2019	3	2019-09-10	10:15	% Sand (1.00 mm - 0.50 mm)	30	%	ALS	RG_MIDAG_SE-3_2019-09-10_1015
SE SE	MIDAG	665258	5489417	2019	3	2019-09-10	10:15	% Sand (0.50 mm - 0.25 mm)	13	%	ALS	RG_MIDAG_SE-3_2019-09-10_1015
SE	MIDAG	665258	5489417	2019	3	2019-09-10	10:15	% Sand (0.25 mm - 0.125 mm)	5.1	%	ALS	RG_MIDAG_SE-3_2019-09-10_1015
SE	MIDAG	665258	5489417	2019	3	2019-09-10	10:15	% Sand (0.125 mm - 0.063 mm)	5.2	%	ALS	RG_MIDAG_SE-3_2019-09-10_1015
E	MIDAG	665258	5489417	2019	3	2019-09-10	10:15	% Silt (0.063 mm - 0.0312 mm)	12	%	ALS	RG_MIDAG_SE-3_2019-09-10_1015
E	MIDAG	665258	5489417	2019	3	2019-09-10	10:15	% Silt (0.031 mm - 0.004 mm)	14	%	ALS	RG_MIDAG_SE-3_2019-09-10_1015
E	MIDAG	665258	5489417	2019	3	2019-09-10	10:15	% Clay (<4 μm)	2.9	%	ALS	RG_MIDAG_SE-3_2019-09-10_1015
E	MIDAG	665258	5489417	2019	3	2019-09-10	10:15	Texture	Sandy loam	-	ALS	RG_MIDAG_SE-3_2019-09-10_1015
Ε	MIDAG	665258	5489417	2019	3	2019-09-10	10:15	Mercury (Hg)	0.021	mg/kg	ALS	RG_MIDAG_SE-3_2019-09-10_1015
E	MIDAG	665258	5489417	2019	1	2019-09-10	10:15	Aluminum (Al)	10,700	mg/kg	ALS	RG_MIDAG_SE-3_2019-09-10_1015
Ε	MIDAG	665258	5489417	2019	3	2019-09-10	10:15	Antimony (Sb)	0.34	mg/kg	ALS	RG_MIDAG_SE-3_2019-09-10_1015
E	MIDAG	665258	5489417	2019	3	2019-09-10	10:15	Arsenic (As)	7.2	mg/kg	ALS	RG_MIDAG_SE-3_2019-09-10_1015
SE	MIDAG	665258	5489417	2019	3	2019-09-10	10:15	Barium (Ba)	93	mg/kg	ALS	RG_MIDAG_SE-3_2019-09-10_1015

WSP Canada Inc. Page 113 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

T	Ctotion	Location	ı (UTMs) ^(a)	Vacu	Danlingto	Doto	Time	Analysis	Doorld	Hest		Laboratory Information
Type	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MIDAG	665258	5489417	2019	3	2019-09-10	10:15	Beryllium (Be)	0.77	mg/kg	ALS	RG_MIDAG_SE-3_2019-09-10_1015
SE	MIDAG	665258	5489417	2019	3	2019-09-10	10:15	Bismuth (Bi)	<0.20	mg/kg	ALS	RG_MIDAG_SE-3_2019-09-10_1015
SE	MIDAG	665258	5489417	2019	3	2019-09-10	10:15	Boron (B)	8.6	mg/kg	ALS	RG MIDAG SE-3 2019-09-10 1015
SE	MIDAG	665258	5489417	2019	3	2019-09-10	10:15	Cadmium (Cd)	0.72	mg/kg	ALS	RG MIDAG SE-3 2019-09-10 1015
SE	MIDAG	665258	5489417	2019	3	2019-09-10	10:15	Calcium (Ca)	61,700	mg/kg	ALS	RG MIDAG SE-3 2019-09-10 1015
SE	MIDAG	665258	5489417	2019	3	2019-09-10	10:15	Chromium (Cr)	14	mg/kg	ALS	RG_MIDAG_SE-3_2019-09-10_1015
SE	MIDAG	665258	5489417	2019	3	2019-09-10	10:15	Cobalt (Co)	22	mg/kg	ALS	RG MIDAG SE-3 2019-09-10 1015
SE	MIDAG	665258	5489417	2019	3	2019-09-10	10:15	Copper (Cu)	13	mg/kg	ALS	RG MIDAG SE-3 2019-09-10 1015
SE	MIDAG	665258	5489417	2019	3	2019-09-10	10:15	Iron (Fe)	17,500	mg/kg	ALS	RG MIDAG SE-3 2019-09-10 1015
SE	MIDAG	665258	5489417	2019	3	2019-09-10	10:15	Lead (Pb)	9.5	mg/kg	ALS	RG_MIDAG_SE-3_2019-09-10_1015
SE	MIDAG	665258	5489417	2019	3	2019-09-10	10:15	Lithium (Li)	18	mg/kg	ALS	RG MIDAG SE-3 2019-09-10 1015
SE	MIDAG	665258	5489417	2019	3	2019-09-10	10:15	Magnesium (Mg)	9,280	mg/kg	ALS	RG MIDAG SE-3 2019-09-10 1015
SE	MIDAG	665258	5489417	2019	3	2019-09-10	10:15	Manganese (Mn)	469	mg/kg	ALS	RG MIDAG SE-3 2019-09-10 1015
SE	MIDAG	665258	5489417	2019	3	2019-09-10	10:15	Molybdenum (Mo)	1.5	mg/kg	ALS	RG MIDAG SE-3 2019-09-10 1015
SE	MIDAG	665258	5489417	2019	3	2019-09-10	10:15	Nickel (Ni)	51	mg/kg	ALS	RG MIDAG SE-3 2019-09-10 1015
SE	MIDAG	665258	5489417	2019	3	2019-09-10	10:15	Phosphorus (P)	1,010	mg/kg	ALS	RG_MIDAG_SE-3_2019-09-10_1015
SE	MIDAG	665258	5489417	2019	3	2019-09-10	10:15	Potassium (K)	2,090	mg/kg	ALS	RG MIDAG SE-3 2019-09-10 1015
SE	MIDAG	665258	5489417	2019	3	2019-09-10	10:15	Selenium (Se)	0.83	mg/kg	ALS	RG MIDAG SE-3 2019-09-10 1015
SE	MIDAG	665258	5489417	2019	3	2019-09-10	10:15	Silver (Ag)	0.1	mg/kg	ALS	RG MIDAG SE-3 2019-09-10 1015
SE	MIDAG	665258	5489417	2019	3	2019-09-10	10:15	Sodium (Na)	82	mg/kg	ALS	RG MIDAG SE-3 2019-09-10 1015
SE	MIDAG	665258	5489417	2019	3	2019-09-10	10:15	Strontium (Sr)	77	mg/kg	ALS	RG MIDAG SE-3 2019-09-10 1015
SE	MIDAG	665258	5489417	2019	3	2019-09-10	10:15	Sulfur (S)	<1000	mg/kg	ALS	RG MIDAG SE-3 2019-09-10 1015
SE	MIDAG	665258	5489417	2019	3	2019-09-10	10:15	Thallium (TI)	0.46	mg/kg	ALS	RG MIDAG SE-3 2019-09-10 1015
SE	MIDAG	665258	5489417	2019	3	2019-09-10	10:15	Tin (Sn)	<2.0	mg/kg	ALS	RG MIDAG SE-3 2019-09-10 1015
SE	MIDAG	665258	5489417	2019	3	2019-09-10	10:15	Titanium (Ti)	12	mg/kg	ALS	RG_MIDAG_SE-3_2019-09-10_1015
SE	MIDAG	665258	5489417	2019	3	2019-09-10	10:15	Tungsten (W)	<0.50	mg/kg	ALS	RG MIDAG SE-3 2019-09-10 1015
SE	MIDAG	665258	5489417	2019	3	2019-09-10	10:15	Uranium (U)	0.54	mg/kg	ALS	RG_MIDAG_SE-3_2019-09-10_1015
SE	MIDAG	665258	5489417	2019	3	2019-09-10	10:15	Vanadium (V)	23	mg/kg	ALS	RG MIDAG SE-3 2019-09-10 1015
SE	MIDAG	665258	5489417	2019	3	2019-09-10	10:15	Zinc (Zn)	115	mg/kg	ALS	RG MIDAG SE-3 2019-09-10 1015
SE	MIDAG	665258	5489417	2019	3	2019-09-10	10:15	Zirconium (Zr)	<1.0	mg/kg	ALS	RG MIDAG SE-3 2019-09-10 1015
SE	MIDAG	665258	5489417	2019	3	2019-09-10	10:15	pH (1:2 soil:water)	7.1	pH		RG_MIDAG_SE-3_2019-09-10_1015
SE	MIDAG	665258	5489417	2019	3	2019-09-10	10:15	Total Organic Carbon	4.4	%	ALS	RG MIDAG SE-3 2019-09-10 1015
SE	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	Moisture	34	%	ALS	RG MIDAG SE-4 2019-09-10 1200
SE	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	Acenaphthene	<0.0050	mg/kg	ALS	RG MIDAG SE-4 2019-09-10 1200
SE	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	Acenaphthylene	<0.0050	mg/kg	ALS	RG MIDAG SE-4 2019-09-10 1200
SE	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	Acridine	<0.010	mg/kg	ALS	RG MIDAG SE-4 2019-09-10 1200
SE	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	Anthracene	<0.0040	mg/kg	ALS	RG MIDAG SE-4 2019-09-10 1200
SE	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	Benz(a)anthracene	<0.010	mg/kg	ALS	RG MIDAG SE-4 2019-09-10 1200
SE	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	Benzo(a)pyrene	<0.010	mg/kg	ALS	RG MIDAG SE-4 2019-09-10 1200
SE	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	Benzo(b&j)fluoranthene	0.012	mg/kg	ALS	RG MIDAG SE-4 2019-09-10 1200
SE	MIDAG	665258	5489417	2019	1	2019-09-10	12:00	Benzo(g_h_i)perylene	<0.012	mg/kg	ALS	RG MIDAG SE-4 2019-09-10 1200
SE	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	Benzo(k)fluoranthene	<0.010	mg/kg	ALS	RG MIDAG SE-4 2019-09-10 1200
SE SE	MIDAG	665258	5489417	2019	1	2019-09-10	12:00		0.016	1 - 1 - 1 - 1	ALS	RG MIDAG SE-4 2019-09-10 1200
SE SE	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	Benzo(e)pyrene Chrysene	0.016	mg/kg	ALS	
SE SE					4					mg/kg		RG_MIDAG_SE-4_2019-09-10_1200
	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	Dibenz(a_h)anthracene	<0.0050	mg/kg	ALS	RG_MIDAG_SE-4_2019-09-10_1200
SE	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	Fluoranthene	<0.010	mg/kg	ALS	RG_MIDAG_SE-4_2019-09-10_1200
SE	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	Fluorene	< 0.010	mg/kg	ALS	RG MIDAG SE-4 2019-09-10 1200

WSP Canada Inc. Page 114 of 337

Reference No. 22574542-001-R-Rev0-1000

Sediment Screening

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Table I-1	: Sediment Chem	•		CMm LAEMP S	Sampling Sta	ations, 2012 to	2022					
Туре	Station	Location	ı (UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
Type	Station	Easting	Northing	i cai	Replicate	Date	Tille	Allalyte	Nesuit	Oilit	Lab	Sample ID
SE	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	Indeno(1,2,3-c,d)pyrene	<0.010	mg/kg	ALS	RG_MIDAG_SE-4_2019-09-10_1200
SE	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	1-Methylnaphthalene	0.036	mg/kg	ALS	RG_MIDAG_SE-4_2019-09-10_1200
SE	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	2-Methylnaphthalene	0.053	mg/kg	ALS	RG_MIDAG_SE-4_2019-09-10_1200
SE	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	Naphthalene	0.02	mg/kg	ALS	RG_MIDAG_SE-4_2019-09-10_1200
SE	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	Perylene	<0.010	mg/kg	ALS	RG_MIDAG_SE-4_2019-09-10_1200
SE	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	Phenanthrene	0.056	mg/kg	ALS	RG_MIDAG_SE-4_2019-09-10_1200
SE	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	Pyrene	<0.010	mg/kg	ALS	RG_MIDAG_SE-4_2019-09-10_1200
SE	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	Quinoline	<0.010	mg/kg	ALS	RG_MIDAG_SE-4_2019-09-10_1200
SE	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	IACR (CCME)	0.16	-	ALS	RG_MIDAG_SE-4_2019-09-10_1200
SE	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	B(a)P Total Potency Equivalent	<0.020	mg/kg	ALS	RG_MIDAG_SE-4_2019-09-10_1200
SE	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	Benzo(b+j+k)fluoranthene	<0.015	mg/kg	ALS	RG_MIDAG_SE-4_2019-09-10_1200
SE	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	d8-Naphthalene	74	%	ALS	RG_MIDAG_SE-4_2019-09-10_1200
SE	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	d10-Acenaphthene	82	%	ALS	RG_MIDAG_SE-4_2019-09-10_1200
SE	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	d10-Phenanthrene	91	%	ALS	RG_MIDAG_SE-4_2019-09-10_1200
SE	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	d12-Chrysene	97	%	ALS	RG_MIDAG_SE-4_2019-09-10_1200
SE	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	% Gravel (>2 mm)	<1.0	%	ALS	RG_MIDAG_SE-4_2019-09-10_1200
SE	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	% Sand (2.00 mm - 1.00 mm)	5.5	%	ALS	RG_MIDAG_SE-4_2019-09-10_1200
SE	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	% Sand (1.00 mm - 0.50 mm)	29	%	ALS	RG_MIDAG_SE-4_2019-09-10_1200
SE	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	% Sand (0.50 mm - 0.25 mm)	26	%	ALS	RG_MIDAG_SE-4_2019-09-10_1200
SE	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	% Sand (0.25 mm - 0.125 mm)	9.0	%	ALS	RG_MIDAG_SE-4_2019-09-10_1200
SE	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	% Sand (0.125 mm - 0.063 mm)	4.7	%	ALS	RG_MIDAG_SE-4_2019-09-10_1200
SE	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	% Silt (0.063 mm - 0.0312 mm)	11	%	ALS	RG_MIDAG_SE-4_2019-09-10_1200
SE	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	% Silt (0.031 mm - 0.004 mm)	13	%	ALS	RG_MIDAG_SE-4_2019-09-10_1200
SE	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	% Clay (<4 μm)	2.1	%	ALS	RG_MIDAG_SE-4_2019-09-10_1200
SE	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	Texture	Loamy sand	-	ALS	RG_MIDAG_SE-4_2019-09-10_1200
SE	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	Mercury (Hg)	0.018	mg/kg	ALS	RG_MIDAG_SE-4_2019-09-10_1200
SE	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	Aluminum (Al)	12,900	mg/kg	ALS	RG_MIDAG_SE-4_2019-09-10_1200
SE	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	Antimony (Sb)	0.38	mg/kg	ALS	RG_MIDAG_SE-4_2019-09-10_1200
SE	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	Arsenic (As)	8.6	mg/kg	ALS	RG_MIDAG_SE-4_2019-09-10_1200
SE	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	Barium (Ba)	106	mg/kg	ALS	RG_MIDAG_SE-4_2019-09-10_1200
SE	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	Beryllium (Be)	0.97	mg/kg	ALS	RG_MIDAG_SE-4_2019-09-10_1200
SE	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	Bismuth (Bi)	<0.20	mg/kg	ALS	RG_MIDAG_SE-4_2019-09-10_1200
SE	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	Boron (B)	10	mg/kg	ALS	RG_MIDAG_SE-4_2019-09-10_1200
SE	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	Cadmium (Cd)	0.73	mg/kg	ALS	RG_MIDAG_SE-4_2019-09-10_1200
SE	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	Calcium (Ca)	66,100	mg/kg	ALS	RG_MIDAG_SE-4_2019-09-10_1200
SE	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	Chromium (Cr)	16	mg/kg	ALS	RG_MIDAG_SE-4_2019-09-10_1200
SE	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	Cobalt (Co)	19	mg/kg	ALS	RG_MIDAG_SE-4_2019-09-10_1200
SE	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	Copper (Cu)	15	mg/kg	ALS	RG_MIDAG_SE-4_2019-09-10_1200
SE	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	Iron (Fe)	22,300	mg/kg	ALS	RG_MIDAG_SE-4_2019-09-10_1200
SE	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	Lead (Pb)	11	mg/kg	ALS	RG_MIDAG_SE-4_2019-09-10_1200
SE	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	Lithium (Li)	21	mg/kg	ALS	RG_MIDAG_SE-4_2019-09-10_1200
SE	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	Magnesium (Mg)	9,520	mg/kg	ALS	RG_MIDAG_SE-4_2019-09-10_1200
SE	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	Manganese (Mn)	469	mg/kg	ALS	RG_MIDAG_SE-4_2019-09-10_1200
SE	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	Molybdenum (Mo)	1.9	mg/kg	ALS	RG_MIDAG_SE-4_2019-09-10_1200
SE	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	Nickel (Ni)	48	mg/kg	ALS	RG_MIDAG_SE-4_2019-09-10_1200
SE	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	Phosphorus (P)	1,140	mg/kg	ALS	RG_MIDAG_SE-4_2019-09-10_1200
SE	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	Potassium (K)	2,620	mg/kg	ALS	RG_MIDAG_SE-4_2019-09-10_1200

WSP Canada Inc. Page 115 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Table I-1	: Sediment Chem	•		CMm LAEMP S	Sampling Sta	ations, 2012 to	2022					
Туре	Station	Location	ı (UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
Type	Station	Easting	Northing	i cai	Replicate	Date	Tille	Allalyte	Result	Offic	Lab	Sample ID
SE	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	Selenium (Se)	0.57	mg/kg	ALS	RG_MIDAG_SE-4_2019-09-10_1200
SE	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	Silver (Ag)	<0.10	mg/kg	ALS	RG_MIDAG_SE-4_2019-09-10_1200
SE	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	Sodium (Na)	91	mg/kg	ALS	RG_MIDAG_SE-4_2019-09-10_1200
SE	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	Strontium (Sr)	88	mg/kg	ALS	RG_MIDAG_SE-4_2019-09-10_1200
SE	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	Sulfur (S)	<1000	mg/kg	ALS	RG_MIDAG_SE-4_2019-09-10_1200
SE	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	Thallium (TI)	0.46	mg/kg	ALS	RG_MIDAG_SE-4_2019-09-10_1200
SE	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	Tin (Sn)	<2.0	mg/kg	ALS	RG_MIDAG_SE-4_2019-09-10_1200
SE	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	Titanium (Ti)	11	mg/kg	ALS	RG_MIDAG_SE-4_2019-09-10_1200
SE	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	Tungsten (W)	<0.50	mg/kg	ALS	RG_MIDAG_SE-4_2019-09-10_1200
SE	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	Uranium (U)	0.55	mg/kg	ALS	RG_MIDAG_SE-4_2019-09-10_1200
SE	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	Vanadium (V)	27	mg/kg	ALS	RG_MIDAG_SE-4_2019-09-10_1200
SE	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	Zinc (Zn)	119	mg/kg	ALS	RG_MIDAG_SE-4_2019-09-10_1200
SE	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_MIDAG_SE-4_2019-09-10_1200
SE	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	pH (1:2 soil:water)	7.3	рН	ALS	RG_MIDAG_SE-4_2019-09-10_1200
SE	MIDAG	665258	5489417	2019	4	2019-09-10	12:00	Total Organic Carbon	3.0	%	ALS	RG_MIDAG_SE-4_2019-09-10_1200
SE	MIDAG	665258	5489417	2019	5	2019-09-10	12:15	Moisture	61	%	ALS	RG_MIDAG_SE-5_2019-09-10_1215
SE	MIDAG	665258	5489417	2019	5	2019-09-10	12:15	Acenaphthene	0.0089	mg/kg	ALS	RG_MIDAG_SE-5_2019-09-10_1215
SE	MIDAG	665258	5489417	2019	5	2019-09-10	12:15	Acenaphthylene	<0.0050	mg/kg	ALS	RG_MIDAG_SE-5_2019-09-10_1215
SE	MIDAG	665258	5489417	2019	5	2019-09-10	12:15	Acridine	<0.012	mg/kg	ALS	RG_MIDAG_SE-5_2019-09-10_1215
SE	MIDAG	665258	5489417	2019	5	2019-09-10	12:15	Anthracene	<0.0040	mg/kg	ALS	RG_MIDAG_SE-5_2019-09-10_1215
SE	MIDAG	665258	5489417	2019	5	2019-09-10	12:15	Benz(a)anthracene	0.012	mg/kg	ALS	RG_MIDAG_SE-5_2019-09-10_1215
SE	MIDAG	665258	5489417	2019	5	2019-09-10	12:15	Benzo(a)pyrene	0.013	mg/kg	ALS	RG_MIDAG_SE-5_2019-09-10_1215
SE	MIDAG	665258	5489417	2019	5	2019-09-10	12:15	Benzo(b&j)fluoranthene	0.045	mg/kg	ALS	RG_MIDAG_SE-5_2019-09-10_1215
SE	MIDAG	665258	5489417	2019	5	2019-09-10	12:15	Benzo(g_h_i)perylene	0.013	mg/kg	ALS	RG_MIDAG_SE-5_2019-09-10_1215
SE	MIDAG	665258	5489417	2019	5	2019-09-10	12:15	Benzo(k)fluoranthene	<0.010	mg/kg	ALS	RG_MIDAG_SE-5_2019-09-10_1215
SE	MIDAG	665258	5489417	2019	5	2019-09-10	12:15	Benzo(e)pyrene	0.055	mg/kg	ALS	RG_MIDAG_SE-5_2019-09-10_1215
SE	MIDAG	665258	5489417	2019	5	2019-09-10	12:15	Chrysene	0.066	mg/kg	ALS	RG_MIDAG_SE-5_2019-09-10_1215
SE	MIDAG	665258	5489417	2019	5	2019-09-10	12:15	Dibenz(a_h)anthracene	<0.0050	mg/kg	ALS	RG_MIDAG_SE-5_2019-09-10_1215
SE	MIDAG	665258	5489417	2019	5	2019-09-10	12:15	Fluoranthene	0.019	mg/kg	ALS	RG_MIDAG_SE-5_2019-09-10_1215
SE	MIDAG	665258	5489417	2019	5	2019-09-10	12:15	Fluorene	0.021	mg/kg	ALS	RG_MIDAG_SE-5_2019-09-10_1215
SE	MIDAG	665258	5489417	2019	5	2019-09-10	12:15	Indeno(1,2,3-c,d)pyrene	<0.010	mg/kg	ALS	RG_MIDAG_SE-5_2019-09-10_1215
SE	MIDAG	665258	5489417	2019	5	2019-09-10	12:15	1-Methylnaphthalene	0.17	mg/kg	ALS	RG_MIDAG_SE-5_2019-09-10_1215
SE	MIDAG	665258	5489417	2019	5	2019-09-10	12:15	2-Methylnaphthalene	0.25	mg/kg	ALS	RG_MIDAG_SE-5_2019-09-10_1215
SE	MIDAG	665258	5489417	2019	5	2019-09-10	12:15	Naphthalene	0.1	mg/kg	ALS	RG_MIDAG_SE-5_2019-09-10_1215
SE	MIDAG	665258	5489417	2019	5	2019-09-10	12:15	Perylene	<0.010	mg/kg	ALS	RG_MIDAG_SE-5_2019-09-10_1215
SE	MIDAG	665258	5489417	2019	5	2019-09-10	12:15	Phenanthrene	0.18	mg/kg	ALS	RG_MIDAG_SE-5_2019-09-10_1215
SE	MIDAG	665258	5489417	2019	5	2019-09-10	12:15	Pyrene	0.021	mg/kg	ALS	RG_MIDAG_SE-5_2019-09-10_1215
SE	MIDAG	665258	5489417	2019	5	2019-09-10	12:15	Quinoline	<0.010	mg/kg	ALS	RG_MIDAG_SE-5_2019-09-10_1215
SE	MIDAG	665258	5489417	2019	5	2019-09-10	12:15	IACR (CCME)	0.43	-	ALS	RG_MIDAG_SE-5_2019-09-10_1215
SE	MIDAG	665258	5489417	2019	5	2019-09-10	12:15	B(a)P Total Potency Equivalent	0.023	mg/kg	ALS	RG_MIDAG_SE-5_2019-09-10_1215
SE	MIDAG	665258	5489417	2019	5	2019-09-10	12:15	Benzo(b+j+k)fluoranthene	0.049	mg/kg	ALS	RG_MIDAG_SE-5_2019-09-10_1215
SE	MIDAG	665258	5489417	2019	5	2019-09-10	12:15	d8-Naphthalene	81	%	ALS	RG_MIDAG_SE-5_2019-09-10_1215
SE	MIDAG	665258	5489417	2019	5	2019-09-10	12:15	d10-Acenaphthene	88	%	ALS	RG_MIDAG_SE-5_2019-09-10_1215
SE	MIDAG	665258	5489417	2019	5	2019-09-10	12:15	d10-Phenanthrene	92	%	ALS	RG_MIDAG_SE-5_2019-09-10_1215
SE	MIDAG	665258	5489417	2019	5	2019-09-10	12:15	d12-Chrysene	107	%	ALS	RG_MIDAG_SE-5_2019-09-10_1215
SE	MIDAG	665258	5489417	2019	5	2019-09-10	12:15	% Gravel (>2 mm)	<1.0	%	ALS	RG_MIDAG_SE-5_2019-09-10_1215
SE	MIDAG	665258	5489417	2019	5	2019-09-10	12:15	% Sand (2.00 mm - 1.00 mm)	<1.0	%	ALS	RG_MIDAG_SE-5_2019-09-10_1215

WSP Canada Inc. Page 116 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Type	Station	Location	ı (UTMs) ^(a)	Veer	Poplicate	Data	Time	Analyta	Popult	Hoit		Laboratory Information
Туре	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MIDAG	665258	5489417	2019	5	2019-09-10	12:15	% Sand (1.00 mm - 0.50 mm)	14	%	ALS	RG_MIDAG_SE-5_2019-09-10_1215
SE	MIDAG	665258	5489417	2019	5	2019-09-10	12:15	% Sand (0.50 mm - 0.25 mm)	46	%	ALS	RG MIDAG SE-5 2019-09-10 1215
SE	MIDAG	665258	5489417	2019	5	2019-09-10	12:15	% Sand (0.25 mm - 0.125 mm)	11	%	ALS	RG MIDAG SE-5 2019-09-10 1215
SE	MIDAG	665258	5489417	2019	5	2019-09-10	12:15	% Sand (0.125 mm - 0.063 mm)	4.1	%	ALS	RG MIDAG SE-5 2019-09-10 1215
SE	MIDAG	665258	5489417	2019	5	2019-09-10	12:15	% Silt (0.063 mm - 0.0312 mm)	11	%	ALS	RG MIDAG SE-5 2019-09-10 1215
SE	MIDAG	665258	5489417	2019	5	2019-09-10	12:15	% Silt (0.031 mm - 0.004 mm)	12	%	ALS	RG MIDAG SE-5 2019-09-10 1215
SE	MIDAG	665258	5489417	2019	5	2019-09-10	12:15	% Clay (<4 μm)	1.4	%	ALS	RG MIDAG SE-5 2019-09-10 1215
SE	MIDAG	665258	5489417	2019	5	2019-09-10	12:15	Texture	Loamy sand	-	ALS	RG MIDAG SE-5 2019-09-10 1215
SE	MIDAG	665258	5489417	2019	5	2019-09-10	12:15	Mercury (Hg)	0.025	mg/kg	ALS	RG MIDAG SE-5 2019-09-10 1215
SE	MIDAG	665258	5489417	2019	5	2019-09-10	12:15	Aluminum (Al)	12,100	mg/kg	ALS	RG MIDAG SE-5 2019-09-10 1215
SE	MIDAG	665258	5489417	2019	5	2019-09-10	12:15	Antimony (Sb)	0.38	mg/kg	ALS	RG MIDAG SE-5 2019-09-10 1215
SE	MIDAG	665258	5489417	2019	5	2019-09-10	12:15	Arsenic (As)	8.5	mg/kg	ALS	RG MIDAG SE-5 2019-09-10 1215
SE	MIDAG	665258	5489417	2019	5	2019-09-10	12:15	Barium (Ba)	116	mg/kg	ALS	RG_MIDAG_SE-5_2019-09-10_1215
SE	MIDAG	665258	5489417	2019	5	2019-09-10	12:15	Beryllium (Be)	0.87	mg/kg	ALS	RG MIDAG SE-5 2019-09-10 1215
SE	MIDAG	665258	5489417	2019	5	2019-09-10	12:15	Bismuth (Bi)	<0.20	mg/kg	ALS	RG MIDAG SE-5 2019-09-10 1215
SE	MIDAG	665258	5489417	2019	5	2019-09-10	12:15	Boron (B)	11	mg/kg	ALS	RG MIDAG SE-5 2019-09-10 1215
SE	MIDAG	665258	5489417	2019	5	2019-09-10	12:15	Cadmium (Cd)	0.88	mg/kg	ALS	RG MIDAG SE-5 2019-09-10 1215
SE	MIDAG	665258	5489417	2019	5	2019-09-10	12:15	Calcium (Ca)	55,300	mg/kg	ALS	RG MIDAG SE-5 2019-09-10 1215
SE	MIDAG	665258	5489417	2019	5	2019-09-10	12:15	Chromium (Cr)	16	mg/kg	ALS	RG MIDAG SE-5 2019-09-10 1215
SE	MIDAG	665258	5489417	2019	5	2019-09-10	12:15	Cobalt (Co)	27	mg/kg	ALS	RG MIDAG SE-5 2019-09-10 1215
SE	MIDAG	665258	5489417	2019	5	2019-09-10	12:15	Copper (Cu)	14	mg/kg	ALS	RG MIDAG SE-5 2019-09-10 1215
SE	MIDAG	665258	5489417	2019	5	2019-09-10	12:15	Iron (Fe)	19,300		ALS	RG_MIDAG_SE-5_2019-09-10_1215
SE	MIDAG	665258	5489417	2019	5	2019-09-10	12:15	Lead (Pb)	19,300	mg/kg	ALS	RG MIDAG SE-5 2019-09-10 1215
SE		665258	5489417		5			Lithium (Li)		mg/kg		
SE	MIDAG MIDAG	665258	5489417	2019 2019	5	2019-09-10	12:15 12:15		17 8,790	mg/kg	ALS ALS	RG_MIDAG_SE-5_2019-09-10_1215
SE					5	2019-09-10		Magnesium (Mg)		mg/kg		RG_MIDAG_SE-5_2019-09-10_1215
SE	MIDAG	665258	5489417	2019	5	2019-09-10	12:15	Manganese (Mn)	562	mg/kg	ALS	RG_MIDAG_SE-5_2019-09-10_1215
	MIDAG	665258	5489417	2019	5	2019-09-10	12:15	Molybdenum (Mo)	1.5	mg/kg	ALS	RG_MIDAG_SE-5_2019-09-10_1215
SE	MIDAG	665258	5489417	2019		2019-09-10	12:15	Nickel (Ni)	59	mg/kg	ALS	RG_MIDAG_SE-5_2019-09-10_1215
SE	MIDAG	665258	5489417	2019	5	2019-09-10	12:15	Phosphorus (P)	1,140	mg/kg	ALS	RG_MIDAG_SE-5_2019-09-10_1215
SE	MIDAG	665258	5489417	2019	5	2019-09-10	12:15	Potassium (K)	2,740	mg/kg	ALS	RG_MIDAG_SE-5_2019-09-10_1215
SE	MIDAG	665258	5489417	2019		2019-09-10	12:15	Selenium (Se)	1.1	mg/kg	ALS	RG_MIDAG_SE-5_2019-09-10_1215
SE	MIDAG	665258	5489417	2019	5	2019-09-10	12:15	Silver (Ag)	0.1	mg/kg	ALS	RG_MIDAG_SE-5_2019-09-10_1215
SE	MIDAG	665258	5489417	2019	5	2019-09-10	12:15	Sodium (Na)	95	mg/kg	ALS	RG_MIDAG_SE-5_2019-09-10_1215
SE	MIDAG	665258	5489417	2019	5	2019-09-10	12:15	Strontium (Sr)	78	mg/kg	ALS	RG_MIDAG_SE-5_2019-09-10_1215
SE	MIDAG	665258	5489417	2019	5	2019-09-10	12:15	Sulfur (S)	<1000	mg/kg	ALS	RG_MIDAG_SE-5_2019-09-10_1215
SE	MIDAG	665258	5489417	2019	5	2019-09-10	12:15	Thallium (TI)	0.48	mg/kg	ALS	RG_MIDAG_SE-5_2019-09-10_1215
SE	MIDAG	665258	5489417	2019	5	2019-09-10	12:15	Tin (Sn)	<2.0	mg/kg	ALS	RG_MIDAG_SE-5_2019-09-10_1215
SE	MIDAG	665258	5489417	2019	5	2019-09-10	12:15	Titanium (Ti)	11	mg/kg	ALS	RG_MIDAG_SE-5_2019-09-10_1215
SE	MIDAG	665258	5489417	2019	5	2019-09-10	12:15	Tungsten (W)	<0.50	mg/kg	ALS	RG_MIDAG_SE-5_2019-09-10_1215
SE	MIDAG	665258	5489417	2019	5	2019-09-10	12:15	Uranium (U)	0.61	mg/kg	ALS	RG_MIDAG_SE-5_2019-09-10_1215
SE	MIDAG	665258	5489417	2019	5	2019-09-10	12:15	Vanadium (V)	27	mg/kg	ALS	RG_MIDAG_SE-5_2019-09-10_1215
SE	MIDAG	665258	5489417	2019	5	2019-09-10	12:15	Zinc (Zn)	130	mg/kg	ALS	RG_MIDAG_SE-5_2019-09-10_1215
SE	MIDAG	665258	5489417	2019	5	2019-09-10	12:15	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_MIDAG_SE-5_2019-09-10_1215
SE	MIDAG	665258	5489417	2019	5	2019-09-10	12:15	pH (1:2 soil:water)	7.4	рН	ALS	RG_MIDAG_SE-5_2019-09-10_1215
SE	MIDAG	665258	5489417	2019	5	2019-09-10	12:15	Total Organic Carbon	2.1	%	ALS	RG_MIDAG_SE-5_2019-09-10_1215
SE	MIULE	660502	5493059	2019	3	2019-09-06	15:30	Moisture	35	%	ALS	RG_MIULE_SE-3_2019-09-06-1530
SE	MIULE	660502	5493059	2019	3	2019-09-06	15:30	Acenaphthene	<0.0050	mg/kg	ALS	RG MIULE SE-3 2019-09-06-1530

WSP Canada Inc. Page 117 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

See Mille 669092 549099 2019 3 2019-09-06 15-30 Acenaphthylene <0.0050 mg/kg ALS RG Mill RE	ratory Information Sample ID SE-3 2019-09-06-1530 SE-3 2019-09-06-1530 SE-3 2019-09-06-1530
SE MIULE 660502 5493059 2019 3 2019-09-06 15:30 Antriacene <0.0040 mg/kg ALS RG MIU RE 660502 5493059 2019 3 2019-09-06 15:30 Antriacene <0.0040 mg/kg ALS RG MIU RE 660502 5493059 2019 3 2019-09-06 15:30 Benz(a)pyrene <0.010 mg/kg ALS RG MIU RE 660502 5493059 2019 3 2019-09-06 15:30 Benz(a)pyrene <0.010 mg/kg ALS RG MIU RE 660502 5493059 2019 3 2019-09-06 15:30 Benz(a)pyrene <0.010 mg/kg ALS RG MIU RE 660502 5493059 2019 3 2019-09-06 15:30 Benz(a)pyrene <0.010 mg/kg ALS RG MIU RE 660502 5493059 2019 3 2019-09-06 15:30 Benz(a)pyrene <0.010 mg/kg ALS RG MIU RE 660502 5493059 2019 3 2019-09-06 15:30 Benz(a)pyrene <0.010 mg/kg ALS RG MIU RE 660502 5493059 2019 3 2019-09-06 15:30 Benz(a)pyrene <0.010 mg/kg ALS RG MIU RE 660502 5493059 2019 3 2019-09-06 15:30 Benz(a)pyrene <0.010 mg/kg ALS RG MIU RE 660502 5493059 2019 3 2019-09-06 15:30 Benz(a)pyrene <0.010 mg/kg ALS RG MIU RE 660502 5493059 2019 3 2019-09-06 15:30 Benz(a)pyrene <0.010 mg/kg ALS RG MIU RE 660502 5493059 2019 3 2019-09-06 15:30 Benz(a)pyrene <0.010 mg/kg ALS RG MIU RE 660502 5493059 2019 3 2019-09-06 15:30 Benz(a)pyrene <0.010 mg/kg ALS RG MIU RE 660502 5493059 2019 3 2019-09-06 15:30 Benz(a)pyrene <0.010 mg/kg ALS RG MIU RE 660502 5493059 2019 3 2019-09-06 15:30 Benz(a)pyrene <0.010 mg/kg ALS RG MIU RE 660502 5493059 2019 3 2019-09-06 15:30 Benz(a)pyrene <0.010 mg/kg ALS RG MIU RE 660502 5493059 2019 3 2019-09-06 15:30 Benz(a)pyrene <0.010 mg/kg ALS RG MIU RE 660502 5493059 2019 3 2019-09-06 15:30 Benz(a)pyrene <0.010 mg/kg ALS RG MIU RE 660502 5493059 2019 3 2019-09-06 15:30 Benz(a)p	SE-3_2019-09-06-1530 SE-3_2019-09-06-1530
MIULE 680502 5493059 2019 3 2019-09-06 15:30 Anchiene < 0.010 mg/kg ALS RG MIULE 680502 5493059 2019 3 2019-09-06 15:30 Anchiene < 0.0040 mg/kg ALS RG MIULE 680502 5493059 2019 3 2019-09-06 15:30 Benz(a)gnthracene < 0.010 mg/kg ALS RG MIULE 680502 5493059 2019 3 2019-09-06 15:30 Benz(a)gnthracene < 0.010 mg/kg ALS RG MIULE 680502 5493059 2019 3 2019-09-06 15:30 Benz(a)gnthracene < 0.010 mg/kg ALS RG MIULE 680502 5493059 2019 3 2019-09-06 15:30 Benz(a)gnthracene < 0.010 mg/kg ALS RG MIULE 680502 5493059 2019 3 2019-09-06 15:30 Benz(a)gnthracene < 0.010 mg/kg ALS RG MIULE 680502 5493059 2019 3 2019-09-06 15:30 Benz(a)gnthracene < 0.010 mg/kg ALS RG MIULE 680502 5493059 2019 3 2019-09-06 15:30 Benz(a)gnthracene < 0.010 mg/kg ALS RG MIULE 680502 5493059 2019 3 2019-09-06 15:30 Benz(a)gnthracene < 0.010 mg/kg ALS RG MIULE 680502 5493059 2019 3 2019-09-06 15:30 Benz(a)gnthracene < 0.010 mg/kg ALS RG MIULE 680502 5493059 2019 3 2019-09-06 15:30 Benz(a)gnthracene < 0.010 mg/kg ALS RG MIULE 680502 5493059 2019 3 2019-09-06 15:30 Dibenz(a, h)anthracene < 0.010 mg/kg ALS RG MIULE 680502 5493059 2019 3 2019-09-06 15:30 Dibenz(a, h)anthracene < 0.010 mg/kg ALS RG MIULE 680502 5493059 2019 3 2019-09-06 15:30 Dibenz(a, h)anthracene < 0.010 mg/kg ALS RG MIULE 680502 5493059 2019 3 2019-09-06 15:30 Dibenz(a, h)anthracene < 0.010 mg/kg ALS RG MIULE 680502 5493059 2019 3 2019-09-06 15:30 Dibenz(a, h)anthracene < 0.010 mg/kg ALS RG MIULE 680502 5493059 2019 3 2019-09-06 15:30 Dibenz(a, h)anthracene < 0.010 mg/kg ALS RG MIULE 680502 5493059 2019 3 2019-09-06 15:30 Dibenz(a, h)anthracene < 0.010 mg/kg ALS RG MIULE 6805	E_SE-3_2019-09-06-1530
MIULE	
MIULE 660502 5493059 2019 3 2019-09-06 15:30 Benza(planthracene -0.010 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Benza(planthracene -0.010 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Benza(planthracene -0.010 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Benza(planthracene -0.010 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Benza(planthracene -0.010 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Benza(planthracene -0.010 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Benza(planthracene -0.010 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Benza(planthracene -0.010 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Benza(planthracene -0.010 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Dibenz(planthracene -0.010 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Dibenz(planthracene -0.010 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Dibenz(planthracene -0.010 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Dibenz(planthracene -0.010 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Dibenz(planthracene -0.010 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Dibenz(planthracene -0.010 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Dibenz(planthracene -0.010 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Dibenz(planthracene -0.010 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Dibenz(planthracene -0.010 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Dibenz(planthracene -0.010 mg/kg ALS RG MIULE 660502 549	
MIULE 660502 5493059 2019 3 2019-09-06 15:30 Benzo(a)pyrene -0.010 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Benzo(g, h.)perylene -0.010 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Benzo(g, h.)perylene -0.010 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Benzo(g, h.)perylene -0.010 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Benzo(g, h.)perylene -0.010 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Benzo(g, h.)perylene -0.010 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Benzo(g, h.)perylene -0.010 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Benzo(g, h.)perylene -0.010 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Benzo(g, h.)perylene -0.010 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Benzo(g, h.)perylene -0.010 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Benzo(g, h.)perylene -0.010 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Benzo(g, h.)perylene -0.010 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Benzo(g, h.)perylene -0.010 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Benzo(g, h.)perylene -0.010 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Benzo(g, h.)perylene -0.010 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Benzo(g, h.)perylene -0.010 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Benzo(g, h.)perylene -0.010 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Benzo(g, h.)perylene -0.010 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Benzo(g, h.)perylene -0.010 mg/kg ALS R	E SE-3 2019-09-06-1530
MIULE	E SE-3 2019-09-06-1530
MIULE 660502 5493059 2019 3 2019-09-06 15:30 Benzo(p) pjerylene <0.010 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Benzo(p) pjerylene <0.010 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Benzo(p) pyrene <0.010 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Chrysene <0.010 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Chrysene <0.010 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Chrysene <0.010 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Fluoranthene <0.010 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Fluoranthene <0.010 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Fluoranthene <0.010 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Fluoranthene <0.010 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Fluoranthene <0.010 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Thethylniphthalene 0.021 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Thethylniphthalene 0.021 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Thethylniphthalene <0.010 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Thethylniphthalene <0.010 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Thethylniphthalene <0.010 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Thethylniphthalene <0.010 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Pyrene <0.010 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Pyrene <0.010 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Pyrene <0.010 mg/kg ALS RG MIULE 660502 5493059	E SE-3 2019-09-06-1530
MILLE 660502 5483059 2019 3 2019-09-06 15:30 Benzo(k) Locarathene <0.010 mg/kg ALS RG MIU RG MIULE 660502 5483059 2019 3 2019-09-06 15:30 Chrysene <0.010 mg/kg ALS RG MIU RG MIULE 660502 5483059 2019 3 2019-09-06 15:30 Chrysene <0.0000 mg/kg ALS RG MIU RG MIULE 660502 5483059 2019 3 2019-09-06 15:30 Chrysene <0.0000 mg/kg ALS RG MIU RG MIULE 660502 5483059 2019 3 2019-09-06 15:30 Chrysene <0.0000 mg/kg ALS RG MIU RG MIULE 660502 5483059 2019 3 2019-09-06 15:30 Chrysene <0.0010 mg/kg ALS RG MIU RG MIULE 660502 5483059 2019 3 2019-09-06 15:30 Chrysene <0.0010 mg/kg ALS RG MIU RG MIULE 660502 5483059 2019 3 2019-09-06 15:30 Chrysene <0.0010 mg/kg ALS RG MIU RG MIULE 660502 5483059 2019 3 2019-09-06 15:30 Chrysene <0.0010 mg/kg ALS RG MIU RG MIULE 660502 5483059 2019 3 2019-09-06 15:30 Chrysene <0.0010 mg/kg ALS RG MIU RG MIULE 660502 5483059 2019 3 2019-09-06 15:30 Chrysene <0.0010 mg/kg ALS RG MIU RG MIULE 660502 5483059 2019 3 2019-09-06 15:30 Chrysene <0.0010 mg/kg ALS RG MIU RG MIULE 660502 5483059 2019 3 2019-09-06 15:30 Chrysene <0.0010 mg/kg ALS RG MIU RG MIULE 660502 5483059 2019 3 2019-09-06 15:30 Chrysene <0.0010 mg/kg ALS RG MIU RG MIULE 660502 5483059 2019 3 2019-09-06 15:30 Chrysene <0.0010 mg/kg ALS RG MIU RG MIULE 660502 5483059 2019 3 2019-09-06 15:30 Chrysene <0.0010 mg/kg ALS RG MIU RG MIULE 660502 5483059 2019 3 2019-09-06 15:30 Chrysene <0.0010 mg/kg ALS RG MIU RG MIULE 660502 5483059 2019 3 2019-09-06 15:30 Chrysene <0.0010 mg/kg ALS RG MIU RG MIULE 660502 5483059 2019 3 2019-09-06 15:30 Chrysene <0.0010 mg/kg ALS RG MIU RG MIULE 660502 548	E SE-3 2019-09-06-1530
MIULE 660502 5493059 2019 3 2019-09-06 15:30 Chrysene <0.010 mg/kg ALS RG MIU RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Chrysene <0.0000 mg/kg ALS RG MIU RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Diben2(a h)anthracene <0.0000 mg/kg ALS RG MIU RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Fluorantene <0.010 mg/kg ALS RG MIU RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Fluorantene <0.010 mg/kg ALS RG MIU RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Indeno(12.3-c.d)pyrene <0.010 mg/kg ALS RG MIU RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Indeno(12.3-c.d)pyrene <0.010 mg/kg ALS RG MIU RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Indeno(12.3-c.d)pyrene <0.010 mg/kg ALS RG MIU RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Indeno(12.3-c.d)pyrene <0.010 mg/kg ALS RG MIU RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Ambithalene 0.021 mg/kg ALS RG MIU RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Perylene <0.010 mg/kg ALS RG MIU RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Perylene <0.010 mg/kg ALS RG MIU RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Perylene <0.010 mg/kg ALS RG MIU RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Perylene <0.010 mg/kg ALS RG MIU RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Perylene <0.010 mg/kg ALS RG MIU RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Perylene <0.010 mg/kg ALS RG MIU RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 RG MIULE 660502 5493059 2019 3	E SE-3 2019-09-06-1530
MIULE 660502 5493059 2019 3 2019-09-06 15:30 Chrysene <0.010 mg/kg ALS RG MIU	E SE-3 2019-09-06-1530
MIULE 660502 5493059 2019 3 2019-09-06 15:30 Dibenz(a_h)anthracene <0.0050 mg/kg ALS RG_MIU	E SE-3 2019-09-06-1530
MIULE 660502 5493059 2019 3 2019-09-06 15:30 Fluoranthene <0.010 mg/kg ALS RG MIU	E_SE-3_2019-09-06-1530
MIULE 660502 5493059 2019 3 2019-09-06 15:30 Indeno(1,2,3-c,d)pyrene <0.010 mg/kg ALS RG MIU	E SE-3 2019-09-06-1530
MIULE 660502 5493059 2019 3 2019-09-06 15:30 Indeno(1,2,3-c,d)pyrene <0.010 mg/kg ALS RG MIU	E SE-3 2019-09-06-1530
MIULE	E SE-3 2019-09-06-1530
MIULE 660502 5493059 2019 3 2019-09-06 15:30 2-Methylnaphthalene 0.021 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Naphthalene 0.021 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Perylene 0.010 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Phenanthrene 0.02 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Phenanthrene 0.02 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Phenanthrene 0.010 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Pyrene 0.010 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 ACR (CCME) 0.015 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 ACR (CCME) 0.015 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 B(a)P Total Potency Equivalent 0.020 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 B(a)P Total Potency Equivalent 0.020 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 B(a)P Total Potency Equivalent 0.020 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 B(a)P Total Potency Equivalent 0.020 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 B(a)P Total Potency Equivalent 0.020 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 B(a)P Total Potency Equivalent 0.020 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 B(a)P Total Potency Equivalent 0.020 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 B(a)P Total Potency Equivalent 0.020 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 B(a)P Total Potency Equivalent 0.020 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Mg/kg ALS	E SE-3 2019-09-06-1530
MIULE 660502 5493059 2019 3 2019-09-06 15:30 Naphthalene <0.010 mg/kg ALS RG_MIU	E SE-3 2019-09-06-1530
MIULE 660502 5493059 2019 3 2019-09-06 15:30 Perylene <0.010 mg/kg ALS RG MIULE R	E SE-3 2019-09-06-1530
MIULE 660502 5493059 2019 3 2019-09-06 15:30 Phenanthrene 0.02 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Pyrene <0.010 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Quinoline <0.010 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 IACR (CCME) <0.15 - ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 IACR (CCME) <0.010 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Benzo(b+j+k)fluoranthene <0.020 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Benzo(b+j+k)fluoranthene <0.015 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 d8-Naphthalene 85 % ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 d10-Acenaphthene 86 % ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 d10-Phenanthrene 98 % ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 d12-Chrysene 105 % ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 d12-Chrysene 105 % ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 d12-Chrysene 105 % ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Sand (2.00 mm - 1.00 mm) 2.3 % ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Sand (0.50 mm - 0.25 mm) 28 % ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Sand (0.50 mm - 0.25 mm) 28 % ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Sand (0.50 mm - 0.05 mm) 11 % ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Sand (0.50 mm - 0.05 mm) 11 % ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Sand (0.25 mm - 0.031 mm) 11 % ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Sand (0.25 mm - 0.031 mm) 11 % A	E SE-3 2019-09-06-1530
MIULE 660502 5493059 2019 3 2019-09-06 15:30 Pyrene <0.010 mg/kg ALS RG_MIU	E SE-3 2019-09-06-1530
MIULE 660502 5493059 2019 3 2019-09-06 15:30 Quinoline <0.010 mg/kg ALS RG_MIU	E_SE-3_2019-09-06-1530
MIULE 660502 5493059 2019 3 2019-09-06 15:30 IACR (CCME) < 0.15 - ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 B(a)P Total Potency Equivalent < 0.020 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 Benzo(b+j+k)fluoranthene < 0.015 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 d8-Naphthalene 85 % ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 d10-Acenaphthene 86 % ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 d10-Phenanthrene 98 % ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 d12-Chrysene 105 % ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 d12-Chrysene 105 % ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 d12-Chrysene 105 % ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Gravel (>2 mm) <1.0 % ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Sand (2.00 mm - 1.00 mm) 2.3 % ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Sand (1.00 mm - 0.50 mm) 15 % ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Sand (0.50 mm - 0.25 mm) 28 % ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Sand (0.50 mm - 0.25 mm) 21 % ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Sand (0.50 mm - 0.063 mm) 11 % ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Sand (0.25 mm - 0.063 mm) 11 % ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Sand (0.25 mm - 0.063 mm) 11 % ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Sand (0.25 mm - 0.063 mm) 11 % ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Sand (0.03 mm - 0.004 mm) 9.4 % ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:3	E SE-3 2019-09-06-1530
MIULE 660502 5493059 2019 3 2019-09-06 15:30 B(a)P Total Potency Equivalent <0.020 mg/kg ALS RG MIULE MIULE 660502 5493059 2019 3 2019-09-06 15:30 Benzo(b+j+k)fluoranthene <0.015 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 d8-Naphthalene 85 % ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 d10-Acenaphthene 86 % ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 d10-Phenanthrene 98 % ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 d12-Chrysene 105 % ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 d12-Chrysene 105 % ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Gravel (>2 mm) <1.0 % ALS RG MIULE MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Sand (2.00 mm - 1.00 mm) 2.3 % ALS RG MIULE MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Sand (1.00 mm - 0.50 mm) 15 % ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Sand (0.05 mm - 0.05 mm) 15 % ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Sand (0.25 mm - 0.125 mm) 28 % ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Sand (0.125 mm - 0.063 mm) 11 % ALS RG MIULE MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Sand (0.125 mm - 0.063 mm) 11 % ALS RG MIULE MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Sand (0.125 mm - 0.063 mm) 11 % ALS RG MIULE MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Sand (0.031 mm - 0.004 mm) 9.4 % ALS RG MIULE MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Sand (0.031 mm - 0.004 mm) 9.4 % ALS RG MIULE MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Sand (0.031 mm - 0.004 mm) 9.4 % ALS RG MIULE MIULE 660502 5493059 2019 3 2019-09-06 15:30	E SE-3 2019-09-06-1530
MIULE 660502 5493059 2019 3 2019-09-06 15:30 Benzo(b+j+k)fluoranthene <0.015 mg/kg ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 d8-Naphthalene 85 % ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 d10-Acenaphthene 86 % ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 d10-Phenanthrene 98 % ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 d12-Chrysene 105 % ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 d12-Chrysene 105 % ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Gravel (>2 mm) <1.0 % ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Sand (2.00 mm - 1.00 mm) 2.3 % ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Sand (1.00 mm - 0.50 mm) 15 % ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Sand (0.50 mm - 0.25 mm) 28 % ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Sand (0.50 mm - 0.125 mm) 28 % ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Sand (0.50 mm - 0.063 mm) 11 % ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Sand (0.125 mm - 0.063 mm) 11 % ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Sand (0.125 mm - 0.063 mm) 11 % ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Sand (0.125 mm - 0.063 mm) 11 % ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Sand (0.125 mm - 0.0063 mm) 11 % ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Sand (0.125 mm - 0.0063 mm) 10 % ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Sand (0.125 mm - 0.0063 mm) 10 % ALS RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Sand (0.125 mm - 0.0064 mm) 9.4 % ALS RG MIULE 660502 5493059 201	E SE-3 2019-09-06-1530
MIULE 660502 5493059 2019 3 2019-09-06 15:30 d8-Naphthalene 85 % ALS RG MIULE RG	E SE-3 2019-09-06-1530
MIULE 660502 5493059 2019 3 2019-09-06 15:30 d10-Acenaphthene 86 % ALS RG MIULE RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 d10-Phenanthrene 98 % ALS RG MIULE RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 d12-Chrysene 105 % ALS RG MIULE RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Gravel (>2 mm) <1.0 % ALS RG MIULE RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Sand (2.00 mm - 1.00 mm) 2.3 % ALS RG MIULE RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Sand (1.00 mm - 0.50 mm) 15 % ALS RG MIULE RG MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Sand (0.50 mm - 0.25 mm) 28 % ALS RG MIULE GG MIULE GG GG GG GG GG GG GG	E SE-3 2019-09-06-1530
MIULE 660502 5493059 2019 3 2019-09-06 15:30 d10-Phenanthrene 98 % ALS RG_MIU RG_MIULE 660502 5493059 2019 3 2019-09-06 15:30 d12-Chrysene 105 % ALS RG_MIU RG_MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Gravel (>2 mm) <1.0 % ALS RG_MIU RG_MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Sand (2.00 mm - 1.00 mm) 2.3 % ALS RG_MIU RG_MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Sand (1.00 mm - 0.50 mm) 15 % ALS RG_MIU RG_MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Sand (0.50 mm - 0.25 mm) 28 % ALS RG_MIU RG_MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Sand (0.25 mm - 0.125 mm) 21 % ALS RG_MIU RG_MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Sand (0.125 mm - 0.063 mm) 11 % ALS RG_MIU RG_MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Sand (0.125 mm - 0.063 mm) 11 % ALS RG_MIU RG_MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Sand (0.125 mm - 0.0312 mm) 10 % ALS RG_MIU RG_MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Silt (0.063 mm - 0.0312 mm) 10 % ALS RG_MIU RG_MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Silt (0.063 mm - 0.00312 mm) 10 % ALS RG_MIULE RG_MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Silt (0.063 mm - 0.00312 mm) 10 % ALS RG_MIULE RG_MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Silt (0.031 mm - 0.004 mm) 9.4 % ALS RG_MIULE	E SE-3 2019-09-06-1530
MIULE 660502 5493059 2019 3 2019-09-06 15:30 d12-Chrysene 105 % ALS RG_MIU	E_SE-3_2019-09-06-1530
SE MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Gravel (>2 mm) <1.0 % ALS RG_MIU SE MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Sand (2.00 mm - 1.00 mm) 2.3 % ALS RG_MIU SE MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Sand (0.00 mm - 0.50 mm) 15 % ALS RG_MIU SE MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Sand (0.50 mm - 0.25 mm) 28 % ALS RG_MIU SE MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Sand (0.25 mm - 0.125 mm) 21 % ALS RG_MIU SE MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Sand (0.125 mm - 0.063 mm) 11 % ALS RG_MIU SE MIULE <t< td=""><td>E SE-3 2019-09-06-1530</td></t<>	E SE-3 2019-09-06-1530
SE MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Sand (2.00 mm - 1.00 mm) 2.3 % ALS RG_MIU SE MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Sand (1.00 mm - 0.50 mm) 15 % ALS RG_MIU SE MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Sand (0.50 mm - 0.25 mm) 28 % ALS RG_MIU SE MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Sand (0.25 mm - 0.125 mm) 21 % ALS RG_MIU SE MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Sand (0.125 mm - 0.063 mm) 11 % ALS RG_MIU SE MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Silt (0.063 mm - 0.0312 mm) 10 % ALS RG_MIU SE MIULE	E SE-3 2019-09-06-1530
SE MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Sand (1.00 mm - 0.50 mm) 15 % ALS RG_MIU SE MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Sand (0.50 mm - 0.25 mm) 28 % ALS RG_MIU SE MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Sand (0.25 mm - 0.125 mm) 21 % ALS RG_MIU SE MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Sand (0.125 mm - 0.063 mm) 11 % ALS RG_MIU SE MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Silt (0.063 mm - 0.0312 mm) 10 % ALS RG_MIU SE MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Silt (0.063 mm - 0.004 mm) 9.4 % ALS RG_MIU	E SE-3 2019-09-06-1530
SE MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Sand (0.50 mm - 0.25 mm) 28 % ALS RG_MIU SE MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Sand (0.25 mm - 0.125 mm) 21 % ALS RG_MIU SE MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Sand (0.125 mm - 0.063 mm) 11 % ALS RG_MIU SE MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Silt (0.063 mm - 0.0312 mm) 10 % ALS RG_MIU SE MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Silt (0.031 mm - 0.004 mm) 9.4 % ALS RG_MIU	E SE-3 2019-09-06-1530
SE MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Sand (0.25 mm - 0.125 mm) 21 % ALS RG_MIU SE MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Sand (0.125 mm - 0.063 mm) 11 % ALS RG_MIU SE MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Silt (0.063 mm - 0.0312 mm) 10 % ALS RG_MIU SE MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Silt (0.031 mm - 0.004 mm) 9.4 % ALS RG_MIU	E SE-3 2019-09-06-1530
SE MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Sand (0.125 mm - 0.063 mm) 11 % ALS RG_MIU SE MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Silt (0.063 mm - 0.0312 mm) 10 % ALS RG_MIU SE MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Silt (0.031 mm - 0.004 mm) 9.4 % ALS RG_MIU	E SE-3 2019-09-06-1530
SE MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Silt (0.063 mm - 0.0312 mm) 10 % ALS RG_MIU SE MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Silt (0.031 mm - 0.004 mm) 9.4 % ALS RG_MIU	E SE-3 2019-09-06-1530
SE MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Silt (0.031 mm - 0.004 mm) 9.4 % ALS RG_MIU	E SE-3 2019-09-06-1530
	E SE-3 2019-09-06-1530
SE MIULE 660502 5493059 2019 3 2019-09-06 15:30 % Clay (<4 μm) 2.2 % ALS RG_MIU	E SE-3 2019-09-06-1530
	E SE-3 2019-09-06-1530
	E_SE-3_2019-09-06-1530
	E SE-3 2019-09-06-1530
	E_SE-3_2019-09-06-1530 E_SE-3_2019-09-06-1530
SE MIULE 660502 5493059 2019 3 2019-09-06 15:30 Boron (B) 6.7 mg/kg ALS RG_MIU SE MIULE 660502 5493059 2019 3 2019-09-06 15:30 Cadmium (Cd) 1.0 mg/kg ALS RG_MIU	E_SE-3_2019-09-06-1530 E_SE-3_2019-09-06-1530

WSP Canada Inc. Page 118 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

SE	MIULE MIULE	Easting 660502 660502 660502 660502 660502 660502 660502 660502 660502 660502 660502 660502 660502 660502	Northing 5493059 5493059 5493059 5493059 5493059 5493059 5493059 5493059 5493059 5493059 5493059 5493059 5493059 5493059 5493059 5493059	2019 2019 2019 2019 2019 2019 2019 2019	Replicate 3	2019-09-06 2019-09-06 2019-09-06 2019-09-06 2019-09-06 2019-09-06 2019-09-06 2019-09-06 2019-09-06 2019-09-06	15:30 15:30 15:30 15:30 15:30 15:30 15:30 15:30	Calcium (Ca) Chromium (Cr) Cobalt (Co) Copper (Cu) Iron (Fe) Lead (Pb) Lithium (Li) Magnesium (Mg) Manganese (Mn)	Result 30,500 13 9.3 13 14,400 8.2 11 7,310	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	ALS ALS ALS ALS ALS ALS ALS ALS ALS	Sample ID RG_MIULE_SE-3_2019-09-06-1530 RG_MIULE_SE-3_2019-09-06-1530 RG_MIULE_SE-3_2019-09-06-1530 RG_MIULE_SE-3_2019-09-06-1530 RG_MIULE_SE-3_2019-09-06-1530 RG_MIULE_SE-3_2019-09-06-1530 RG_MIULE_SE-3_2019-09-06-1530 RG_MIULE_SE-3_2019-09-06-1530 RG_MIULE_SE-3_2019-09-06-1530
SE	MIULE MIULE	660502 660502 660502 660502 660502 660502 660502 660502 660502 660502 660502 660502 660502	5493059 5493059 5493059 5493059 5493059 5493059 5493059 5493059 5493059 5493059 5493059	2019 2019 2019 2019 2019 2019 2019 2019	3 3 3 3 3 3 3 3 3 3	2019-09-06 2019-09-06 2019-09-06 2019-09-06 2019-09-06 2019-09-06 2019-09-06 2019-09-06	15:30 15:30 15:30 15:30 15:30 15:30 15:30	Chromium (Cr) Cobalt (Co) Copper (Cu) Iron (Fe) Lead (Pb) Lithium (Li) Magnesium (Mg)	13 9.3 13 14,400 8.2 11 7,310	mg/kg mg/kg mg/kg mg/kg mg/kg	ALS ALS ALS ALS ALS	RG_MIULE_SE-3_2019-09-06-1530 RG_MIULE_SE-3_2019-09-06-1530 RG_MIULE_SE-3_2019-09-06-1530 RG_MIULE_SE-3_2019-09-06-1530 RG_MIULE_SE-3_2019-09-06-1530 RG_MIULE_SE-3_2019-09-06-1530
SE	MIULE MIULE MIULE MIULE MIULE MIULE MIULE MIULE MIULE MIULE MIULE MIULE MIULE MIULE MIULE MIULE MIULE MIULE MIULE	660502 660502 660502 660502 660502 660502 660502 660502 660502 660502 660502 660502	5493059 5493059 5493059 5493059 5493059 5493059 5493059 5493059 5493059 5493059	2019 2019 2019 2019 2019 2019 2019 2019	3 3 3 3 3 3 3 3 3 3	2019-09-06 2019-09-06 2019-09-06 2019-09-06 2019-09-06 2019-09-06 2019-09-06	15:30 15:30 15:30 15:30 15:30 15:30 15:30	Cobalt (Co) Copper (Cu) Iron (Fe) Lead (Pb) Lithium (Li) Magnesium (Mg)	9.3 13 14,400 8.2 11 7,310	mg/kg mg/kg mg/kg mg/kg mg/kg	ALS ALS ALS ALS ALS	RG_MIULE_SE-3_2019-09-06-1530 RG_MIULE_SE-3_2019-09-06-1530 RG_MIULE_SE-3_2019-09-06-1530 RG_MIULE_SE-3_2019-09-06-1530 RG_MIULE_SE-3_2019-09-06-1530
SE	MIULE MIULE MIULE MIULE MIULE MIULE MIULE MIULE MIULE MIULE MIULE MIULE MIULE MIULE MIULE MIULE MIULE MIULE	660502 660502 660502 660502 660502 660502 660502 660502 660502 660502 660502	5493059 5493059 5493059 5493059 5493059 5493059 5493059 5493059 5493059	2019 2019 2019 2019 2019 2019 2019 2019	3 3 3 3 3 3 3 3	2019-09-06 2019-09-06 2019-09-06 2019-09-06 2019-09-06 2019-09-06 2019-09-06	15:30 15:30 15:30 15:30 15:30 15:30	Copper (Cu) Iron (Fe) Lead (Pb) Lithium (Li) Magnesium (Mg)	13 14,400 8.2 11 7,310	mg/kg mg/kg mg/kg mg/kg	ALS ALS ALS	RG_MIULE_SE-3_2019-09-06-1530 RG_MIULE_SE-3_2019-09-06-1530 RG_MIULE_SE-3_2019-09-06-1530 RG_MIULE_SE-3_2019-09-06-1530
SE	MIULE MIULE MIULE MIULE MIULE MIULE MIULE MIULE MIULE MIULE MIULE MIULE MIULE MIULE MIULE MIULE	660502 660502 660502 660502 660502 660502 660502 660502 660502 660502	5493059 5493059 5493059 5493059 5493059 5493059 5493059 5493059	2019 2019 2019 2019 2019 2019 2019 2019	3 3 3 3 3 3 3	2019-09-06 2019-09-06 2019-09-06 2019-09-06 2019-09-06 2019-09-06	15:30 15:30 15:30 15:30 15:30	Iron (Fe) Lead (Pb) Lithium (Li) Magnesium (Mg)	14,400 8.2 11 7,310	mg/kg mg/kg mg/kg	ALS ALS	RG_MIULE_SE-3_2019-09-06-1530 RG_MIULE_SE-3_2019-09-06-1530 RG_MIULE_SE-3_2019-09-06-1530
SE	MIULE MIULE MIULE MIULE MIULE MIULE MIULE MIULE MIULE MIULE MIULE MIULE MIULE MIULE	660502 660502 660502 660502 660502 660502 660502 660502 660502	5493059 5493059 5493059 5493059 5493059 5493059 5493059 5493059	2019 2019 2019 2019 2019 2019 2019	3 3 3 3 3 3	2019-09-06 2019-09-06 2019-09-06 2019-09-06 2019-09-06	15:30 15:30 15:30 15:30	Lead (Pb) Lithium (Li) Magnesium (Mg)	8.2 11 7,310	mg/kg mg/kg	ALS ALS	RG_MIULE_SE-3_2019-09-06-1530 RG_MIULE_SE-3_2019-09-06-1530
SE SE SE SE SE SE SE SE	MIULE MIULE MIULE MIULE MIULE MIULE MIULE MIULE MIULE MIULE MIULE MIULE MIULE MIULE	660502 660502 660502 660502 660502 660502 660502 660502	5493059 5493059 5493059 5493059 5493059 5493059 5493059	2019 2019 2019 2019 2019 2019	3 3 3 3 3	2019-09-06 2019-09-06 2019-09-06 2019-09-06	15:30 15:30 15:30	Lithium (Li) Magnesium (Mg)	11 7,310	mg/kg	ALS	RG_MIULE_SE-3_2019-09-06-1530
SE SE SE SE SE SE SE SE	MIULE MIULE MIULE MIULE MIULE MIULE MIULE MIULE MIULE MIULE MIULE MIULE	660502 660502 660502 660502 660502 660502 660502	5493059 5493059 5493059 5493059 5493059 5493059	2019 2019 2019 2019 2019	3 3 3 3	2019-09-06 2019-09-06 2019-09-06	15:30 15:30	Magnesium (Mg)	7,310			
SE SE SE SE SE SE SE SE	MIULE MIULE MIULE MIULE MIULE MIULE MIULE MIULE MIULE MIULE MIULE	660502 660502 660502 660502 660502 660502	5493059 5493059 5493059 5493059 5493059	2019 2019 2019 2019	3 3 3	2019-09-06 2019-09-06	15:30	, ,,		mg/kg	ALS	RG MILI F SF-3 2019-09-06-1530
SE	MIULE MIULE MIULE MIULE MIULE MIULE MIULE MIULE MIULE MIULE	660502 660502 660502 660502 660502	5493059 5493059 5493059 5493059	2019 2019 2019	3	2019-09-06		Manganese (Mn)				\S_\mathred{\sigma} \sigma \
SE SE SE SE SE SE SE SE	MIULE MIULE MIULE MIULE MIULE MIULE MIULE MIULE	660502 660502 660502 660502 660502	5493059 5493059 5493059	2019 2019	3		15.20		127	mg/kg	ALS	RG_MIULE_SE-3_2019-09-06-1530
SE SE SE SE SE SE SE SE SE	MIULE MIULE MIULE MIULE MIULE MIULE MIULE	660502 660502 660502 660502	5493059 5493059	2019	-	2019-09-06	15:30	Molybdenum (Mo)	1.3	mg/kg	ALS	RG_MIULE_SE-3_2019-09-06-1530
SE SE SE SE SE SE SE SE	MIULE MIULE MIULE MIULE MIULE	660502 660502 660502	5493059		3		15:30	Nickel (Ni)	30	mg/kg	ALS	RG_MIULE_SE-3_2019-09-06-1530
SE SE SE SE SE SE SE	MIULE MIULE MIULE MIULE	660502 660502		2019		2019-09-06	15:30	Phosphorus (P)	1,170	mg/kg	ALS	RG MIULE SE-3 2019-09-06-1530
SE SE SE SE SE	MIULE MIULE MIULE	660502	5493059		3	2019-09-06	15:30	Potassium (K)	1,520	mg/kg	ALS	RG MIULE SE-3 2019-09-06-1530
SE SE SE	MIULE MIULE		0-100000	2019	3	2019-09-06	15:30	Selenium (Se)	1.5	mg/kg	ALS	RG MIULE SE-3 2019-09-06-1530
SE SE SE	MIULE		5493059	2019	3	2019-09-06	15:30	Silver (Ag)	0.16	mg/kg	ALS	RG MIULE SE-3 2019-09-06-1530
SE SE		660502	5493059	2019	3	2019-09-06	15:30	Sodium (Na)	77	mg/kg	ALS	RG MIULE SE-3 2019-09-06-1530
SE SE	–	660502	5493059	2019	3	2019-09-06	15:30	Strontium (Sr)	59	mg/kg	ALS	RG MIULE SE-3 2019-09-06-1530
SE SE	MIULE	660502	5493059	2019	3	2019-09-06	15:30	Sulfur (S)	<1000	mg/kg	ALS	RG MIULE SE-3 2019-09-06-1530
SE .	MIULE	660502	5493059	2019	3	2019-09-06	15:30	Thallium (TI)	0.32	mg/kg	ALS	RG MIULE SE-3 2019-09-06-1530
	MIULE	660502	5493059	2019	3	2019-09-06	15:30	Tin (Sn)	<2.0	mg/kg	ALS	RG MIULE SE-3 2019-09-06-1530
	MIULE	660502	5493059	2019	3	2019-09-06	15:30	Titanium (Ti)	16	mg/kg	ALS	RG MIULE SE-3 2019-09-06-1530
	MIULE	660502	5493059	2019	3	2019-09-06	15:30	Tungsten (W)	<0.50	mg/kg	ALS	RG MIULE SE-3 2019-09-06-1530
SE SE	MIULE	660502	5493059	2019	3	2019-09-06	15:30	Uranium (U)	0.8	mg/kg	ALS	RG MIULE SE-3 2019-09-06-1530
	MIULE	660502	5493059	2019	3	2019-09-06	15:30	Vanadium (V)	29	mg/kg	ALS	RG MIULE SE-3 2019-09-06-1530
SE SE	MIULE	660502	5493059	2019	3	2019-09-06	15:30	Zinc (Zn)	104	mg/kg	ALS	RG MIULE SE-3 2019-09-06-1530
SE SE	MIULE	660502	5493059	2019	3	2019-09-06	15:30	Zirconium (Zr)	1.5	mg/kg	ALS	RG MIULE SE-3 2019-09-06-1530
SE SE	MIULE	660502	5493059	2019	3	2019-09-06	15:30	pH (1:2 soil:water)	7.9	pH	ALS	RG MIULE SE-3 2019-09-06-1530
	MIULE	660502	5493059	2019	3	2019-09-06	15:30	Total Organic Carbon	2.1	%	ALS	RG MIULE SE-3 2019-09-06-1530
SE SE	AGCK	667555	5488644	2020	1	2020-09-10	16:22	Moisture	90.8	%	ALS	RG AGCK SE-1 2020-09-10 1622
SE SE	AGCK	667555	5488644	2020	1	2020-09-10	16:22	Acenaphthene	<0.025	mg/kg	ALS	RG AGCK SE-1 2020-09-10 1622
SE SE	AGCK	667555	5488644	2020	1	2020-09-10	16:22	Acenaphthylene	<0.025	mg/kg		RG_AGCK_SE-1_2020-09-10_1622
SE SE	AGCK	667555	5488644	2020	1	2020-09-10	16:22	Anthracene	<0.020	mg/kg	ALS	RG AGCK SE-1 2020-09-10 1622
SE SE	AGCK	667555	5488644	2020	1	2020-09-10	16:22	Acridine	<0.050	mg/kg	ALS	RG AGCK SE-1 2020-09-10 1622
E E	AGCK	667555	5488644	2020	1	2020-09-10	16:22	Benz(a)anthracene	<0.050	mg/kg	ALS	RG AGCK SE-1 2020-09-10 1622
SE SE	AGCK	667555	5488644	2020	1	2020-09-10	16:22	Benzo(a)pyrene	<0.050	mg/kg	ALS	RG AGCK SE-1 2020-09-10 1622
SE SE	AGCK	667555	5488644	2020	1	2020-09-10	16:22	Benzo(b&j)fluoranthene	<0.050	mg/kg	ALS	RG AGCK SE-1 2020-09-10 1622
SE SE	AGCK	667555	5488644	2020	1	2020-09-10	16:22	Benzo(e)pyrene	<0.050	mg/kg	ALS	RG AGCK SE-1 2020-09-10 1622
SE SE	AGCK	667555	5488644	2020	1	2020-09-10	16:22	Benzo(g h i)perylene	<0.050	mg/kg	ALS	RG AGCK SE-1 2020-09-10 1022
SE SE	AGCK	667555	5488644	2020	1	2020-09-10	16:22	Benzo(k)fluoranthene	<0.050	mg/kg	ALS	RG AGCK SE-1 2020-09-10 1022
SE	AGCK	667555	5488644	2020	1	2020-09-10	16:22	Chrysene	0.064		ALS	RG AGCK SE-1 2020-09-10 1622
SE	AGCK	667555	5488644	2020	1	2020-09-10	16:22	Dibenz(a h)anthracene	<0.025	mg/kg	ALS	RG_AGCK_SE-1_2020-09-10_1622 RG_AGCK_SE-1_2020-09-10_1622
SE	AGCK	667555	5488644	2020	1	2020-09-10	16:22	Fluoranthene	<0.025	mg/kg	ALS	RG_AGCK_SE-1_2020-09-10_1622 RG_AGCK_SE-1_2020-09-10_1622
					1					mg/kg		
SE .	AGCK	667555	5488644	2020	1 1	2020-09-10	16:22	Fluorene	<0.050	mg/kg	ALS	RG_AGCK_SE-1_2020-09-10_1622
SE SE	AGCK	667555	5488644	2020	1 4	2020-09-10	16:22	Indeno(1,2,3-c,d)pyrene	<0.050	mg/kg	ALS	RG_AGCK_SE-1_2020-09-10_1622
SE SE	AGCK	667555	5488644	2020	1	2020-09-10	16:22	2-Methylnaphthalene	0.120	mg/kg	ALS	RG_AGCK_SE-1_2020-09-10_1622
SE SE	AGCK AGCK	667555 667555	5488644 5488644	2020 2020	1 1	2020-09-10 2020-09-10	16:22 16:22	Naphthalene Perylene	0.061 <0.050	mg/kg mg/kg	ALS ALS	RG_AGCK_SE-1_2020-09-10_1622 RG_AGCK_SE-1_2020-09-10_1622

WSP Canada Inc. Page 119 of 337

Reference No. 22574542-001-R-Rev0-1000

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

[vne	Station	Location	ı (UTMs) ^(a)	Year	Poplieste	Data	Time	Analyta	Popult	Unit		Laboratory Information
ype	Station	Easting	Northing	rear	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
E	AGCK	667555	5488644	2020	1	2020-09-10	16:22	Phenanthrene	0.159	mg/kg	ALS	RG AGCK SE-1 2020-09-10 1622
E	AGCK	667555	5488644	2020	1	2020-09-10	16:22	Pyrene	< 0.050	mg/kg	ALS	RG_AGCK_SE-1_2020-09-10_1622
Е	AGCK	667555	5488644	2020	1	2020-09-10	16:22	1-Methylnaphthalene	0.094	mg/kg	ALS	RG AGCK SE-1 2020-09-10 1622
Е	AGCK	667555	5488644	2020	1	2020-09-10	16:22	Quinoline	<0.050	mg/kg	ALS	RG AGCK SE-1 2020-09-10 1622
SE.	AGCK	667555	5488644	2020	1	2020-09-10	16:22	IACR (CCME)	0.55	-	ALS	RG AGCK SE-1 2020-09-10 1622
SE	AGCK	667555	5488644	2020	1	2020-09-10	16:22	B(a)P Total Potency Equivalent	0.048	mg/kg	ALS	RG AGCK SE-1 2020-09-10 1622
SE	AGCK	667555	5488644	2020	1	2020-09-10	16:22	Benzo(b+j+k)fluoranthene	< 0.075	mg/kg	ALS	RG AGCK SE-1 2020-09-10 1622
SE	AGCK	667555	5488644	2020	1	2020-09-10	16:22	IACR:Coarse	< 0.050	-	ALS	RG AGCK SE-1 2020-09-10 1622
SE	AGCK	667555	5488644	2020	1	2020-09-10	16:22	IACR:Fine	0.060	-	ALS	RG AGCK SE-1 2020-09-10 1622
SE	AGCK	667555	5488644	2020	1	2020-09-10	16:22	d8-Naphthalene	98.6	%	ALS	RG_AGCK_SE-1_2020-09-10_1622
SE	AGCK	667555	5488644	2020	1	2020-09-10	16:22	d10-Acenaphthene	99.9	%	ALS	RG_AGCK_SE-1_2020-09-10_1622
SE	AGCK	667555	5488644	2020	1	2020-09-10	16:22	d10-Phenanthrene	102.5	%	ALS	RG AGCK SE-1 2020-09-10 1622
SE	AGCK	667555	5488644	2020	1	2020-09-10	16:22	d12-Chrysene	112.1	%	ALS	RG AGCK SE-1 2020-09-10 1622
SE	AGCK	667555	5488644	2020	1	2020-09-10	16:22	% Gravel (>2 mm)	1.5	%	ALS	RG AGCK SE-1 2020-09-10 1622
SE	AGCK	667555	5488644	2020		2020-09-10	16:22	% Sand (2.00 mm - 1.00 mm)	4.6	%	ALS	RG_AGCK_SE-1_2020-09-10_1622
SE	AGCK	667555	5488644	2020	1	2020-09-10	16:22	% Sand (1.00 mm - 0.50 mm)	7.7	%	ALS	RG_AGCK_SE-1_2020-09-10_1622
SE	AGCK	667555	5488644	2020	1	2020-09-10	16:22	% Sand (0.50 mm - 0.25 mm)	6.8	%	ALS	RG_AGCK_SE-1_2020-09-10_1622
SE	AGCK	667555	5488644	2020	1	2020-09-10	16:22	% Sand (0.25 mm - 0.125 mm)	7.0	%	ALS	RG_AGCK_SE-1_2020-09-10_1622
SE	AGCK	667555	5488644	2020	1	2020-09-10	16:22	% Sand (0.125 mm - 0.063 mm)	8.3	%	ALS	RG AGCK SE-1 2020-09-10 1622
SE	AGCK	667555	5488644	2020	1	2020-09-10	16:22	% Silt (0.063 mm - 0.0312 mm)	27.8	%	ALS	RG_AGCK_SE-1_2020-09-10_1622
SE	AGCK	667555	5488644	2020	1	2020-09-10	16:22	% Silt (0.031 mm - 0.004 mm)	29.0	%	ALS	RG AGCK SE-1 2020-09-10 1622
SE	AGCK	667555	5488644	2020	1	2020-09-10	16:22	% Clay (<4 μm)	7.4	%	ALS	RG_AGCK_SE-1_2020-09-10_1622
SE	AGCK	667555	5488644	2020	1	2020-09-10	16:22	Texture	Silt loam	-	ALS	RG_AGCK_SE-1_2020-09-10_1622
SE	AGCK	667555	5488644	2020	1	2020-09-10	16:22	Mercury (Hg)	0.0437	mg/kg	ALS	RG_AGCK_SE-1_2020-09-10_1622
SE	AGCK	667555	5488644	2020	1	2020-09-10	16:22	Aluminum (AI)	3550	mg/kg	ALS	RG AGCK SE-1 2020-09-10 1622
SE	AGCK	667555	5488644	2020	1	2020-09-10	16:22	Antimony (Sb)	0.43	mg/kg	ALS	RG_AGCK_SE-1_2020-09-10_1622
SE	AGCK	667555	5488644	2020	1	2020-09-10	16:22	Arsenic (As)	6.07	mg/kg	ALS	RG_AGCK_SE-1_2020-09-10_1622
SE	AGCK	667555	5488644	2020	1	2020-09-10	16:22	Barium (Ba)	71.9	mg/kg	ALS	RG AGCK SE-1 2020-09-10 1622
SE	AGCK	667555	5488644	2020	1	2020-09-10	16:22	Beryllium (Be)	0.44	mg/kg	ALS	RG_AGCK_SE-1_2020-09-10_1622
SE	AGCK	667555	5488644	2020	1	2020-09-10	16:22	Bismuth (Bi)	<0.20	mg/kg	ALS	RG_AGCK_SE-1_2020-09-10_1622
SE	AGCK	667555	5488644	2020	1	2020-09-10	16:22	Boron (B)	7.0	mg/kg	ALS	RG AGCK SE-1 2020-09-10 1622
SE	AGCK	667555	5488644	2020	1	2020-09-10	16:22	Cadmium (Cd)	0.558	mg/kg	ALS	RG_AGCK_SE-1_2020-09-10_1622
SE	AGCK	667555	5488644	2020	1	2020-09-10	16:22	Calcium (Ca)	138000	mg/kg	ALS	RG_AGCK_SE-1_2020-09-10_1622
SE	AGCK	667555	5488644	2020	1	2020-09-10	16:22	Chromium (Cr)	9.03	mg/kg	ALS	RG_AGCK_SE-1_2020-09-10_1622
SE	AGCK	667555	5488644	2020	1	2020-09-10	16:22	Cobalt (Co)	2.28	mg/kg	ALS	RG_AGCK_SE-1_2020-09-10_1622
SE	AGCK	667555	5488644	2020	1	2020-09-10	16:22	Copper (Cu)	6.40	mg/kg	ALS	RG_AGCK_SE-1_2020-09-10_1622
SE	AGCK	667555	5488644	2020	1	2020-09-10	16:22	Iron (Fe)	6170	mg/kg	ALS	RG_AGCK_SE-1_2020-09-10_1622
SE	AGCK	667555	5488644	2020	1	2020-09-10	16:22	Lead (Pb)	4.12	mg/kg	ALS	RG_AGCK_SE-1_2020-09-10_1622
SE	AGCK	667555	5488644	2020	1	2020-09-10	16:22	Lithium (Li)	4.6	mg/kg	ALS	RG_AGCK_SE-1_2020-09-10_1622
SE	AGCK	667555	5488644	2020	1	2020-09-10	16:22	Magnesium (Mg)	12300	mg/kg	ALS	RG_AGCK_SE-1_2020-09-10_1622
SE	AGCK	667555	5488644	2020	1	2020-09-10	16:22	Manganese (Mn)	111	mg/kg	ALS	RG_AGCK_SE-1_2020-09-10_1622
SE	AGCK	667555	5488644	2020	1	2020-09-10	16:22	Molybdenum (Mo)	0.70	mg/kg	ALS	RG_AGCK_SE-1_2020-09-10_1622
SE	AGCK	667555	5488644	2020	1	2020-09-10	16:22	Nickel (Ni)	15.0	mg/kg	ALS	RG_AGCK_SE-1_2020-09-10_1622
SE	AGCK	667555	5488644	2020	1	2020-09-10	16:22	Phosphorus (P)	830	mg/kg	ALS	RG_AGCK_SE-1_2020-09-10_1622
SE	AGCK	667555	5488644	2020	1	2020-09-10	16:22	Potassium (K)	1090	mg/kg	ALS	RG_AGCK_SE-1_2020-09-10_1622
SE	AGCK	667555	5488644	2020	1	2020-09-10	16:22	Selenium (Se)	1.55	mg/kg	ALS	RG_AGCK_SE-1_2020-09-10_1622
SE	AGCK	667555	5488644	2020	1	2020-09-10	16:22	Silver (Ag)	0.13	mg/kg	ALS	RG AGCK SE-1 2020-09-10 1622

WSP Canada Inc. Page 120 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Type	Station	Location	(UTMs) ^(a)	Year	Poplieste	Date	Time	Analyta	Popult	Unit		Laboratory Information
ype	Station	Easting	Northing	rear	Replicate	Date	rime	Analyte	Result	Unit	Lab	Sample ID
ŝΕ	AGCK	667555	5488644	2020	1	2020-09-10	16:22	Sodium (Na)	149	mg/kg	ALS	RG AGCK SE-1 2020-09-10 1622
Ε	AGCK	667555	5488644	2020	1	2020-09-10	16:22	Strontium (Sr)	157	mg/kg	ALS	RG_AGCK_SE-1_2020-09-10_1622
Е	AGCK	667555	5488644	2020	1	2020-09-10	16:22	Sulfur (S)	1100	mg/kg	ALS	RG_AGCK_SE-1_2020-09-10_1622
ŝΕ	AGCK	667555	5488644	2020	1	2020-09-10	16:22	Thallium (TI)	0.693	mg/kg	ALS	RG AGCK SE-1 2020-09-10 1622
SE.	AGCK	667555	5488644	2020	1	2020-09-10	16:22	Tin (Sn)	<2.0	mg/kg	ALS	RG AGCK SE-1 2020-09-10 1622
SE.	AGCK	667555	5488644	2020	1	2020-09-10	16:22	Titanium (Ti)	25.2	mg/kg	ALS	RG AGCK SE-1 2020-09-10 1622
SE	AGCK	667555	5488644	2020	1	2020-09-10	16:22	Tungsten (W)	<0.50	mg/kg	ALS	RG AGCK SE-1 2020-09-10 1622
SE	AGCK	667555	5488644	2020	1	2020-09-10	16:22	Uranium (U)	0.681	mg/kg	ALS	RG AGCK SE-1 2020-09-10 1622
SE	AGCK	667555	5488644	2020	1	2020-09-10	16:22	Vanadium (V)	15.3	mg/kg	ALS	RG AGCK SE-1 2020-09-10 1622
SE	AGCK	667555	5488644	2020	1	2020-09-10	16:22	Zinc (Zn)	105	mg/kg	ALS	RG AGCK SE-1 2020-09-10 1622
SE	AGCK	667555	5488644	2020	1	2020-09-10	16:22	Zirconium (Zr)	<1.0	mg/kg	ALS	RG AGCK SE-1 2020-09-10 1622
SE	AGCK	667555	5488644	2020	1	2020-09-10	16:22	pH (1:2 soil:water)	7.12	pН	ALS	RG AGCK SE-1 2020-09-10 1622
SE	AGCK	667555	5488644	2020	1	2020-09-10	16:22	Total Organic Carbon	8.9	%	ALS	RG AGCK SE-1 2020-09-10 1622
SE	CORCK-DUP	668556	5487388	2020	5	2020-09-13	09:46	Moisture	64.7	%	ALS	RG RIVER SE-5 2020-09-13 0946
SE	CORCK-DUP	668556	5487388	2020	5	2020-09-13	09:46	Acenaphthene	<0.040	mg/kg	ALS	RG RIVER SE-5 2020-09-13 0946
SE	CORCK-DUP	668556	5487388	2020	5	2020-09-13	09:46	Acenaphthylene	<0.015	mg/kg	ALS	RG RIVER SE-5 2020-09-13 0946
SE	CORCK-DUP	668556	5487388	2020	5	2020-09-13	09:46	Anthracene	<0.0060	mg/kg	ALS	RG RIVER SE-5 2020-09-13 0946
SE	CORCK-DUP	668556	5487388	2020	5	2020-09-13	09:46	Acridine	0.081	mg/kg	ALS	RG RIVER SE-5 2020-09-13 0946
SE	CORCK-DUP	668556	5487388	2020	5	2020-09-13	09:46	Benz(a)anthracene	0.055	mg/kg	ALS	RG RIVER SE-5 2020-09-13 0946
SE	CORCK-DUP	668556	5487388	2020	5	2020-09-13	09:46	Benzo(a)pyrene	0.040	mg/kg	ALS	RG RIVER SE-5 2020-09-13 0946
SE.	CORCK-DUP	668556	5487388	2020	5	2020-09-13	09:46	Benzo(b&j)fluoranthene	0.169	mg/kg	ALS	RG RIVER SE-5 2020-09-13 0946
SE	CORCK-DUP	668556	5487388	2020	5	2020-09-13	09:46	Benzo(e)pyrene	0.205	mg/kg	ALS	RG RIVER SE-5 2020-09-13 0946
SE	CORCK-DUP	668556	5487388	2020	5	2020-09-13	09:46	Benzo(g_h_i)perylene	0.096	mg/kg	ALS	RG RIVER SE-5 2020-09-13 0946
SE	CORCK-DUP	668556	5487388	2020	5	2020-09-13	09:46	Benzo(k)fluoranthene	<0.015	mg/kg	ALS	RG RIVER SE-5 2020-09-13 0946
SE	CORCK-DUP	668556	5487388	2020	5	2020-09-13	09:46	Chrysene	0.271	mg/kg	ALS	RG RIVER SE-5 2020-09-13 0946
SE	CORCK-DUP	668556	5487388	2020	5	2020-09-13	09:46	Dibenz(a h)anthracene	<0.025	mg/kg	ALS	RG RIVER SE-5 2020-09-13 0946
SE	CORCK-DUP	668556	5487388	2020	5	2020-09-13	09:46	Fluoranthene	0.057	mg/kg	ALS	RG RIVER SE-5 2020-09-13 0946
SE	CORCK-DUP	668556	5487388	2020	5	2020-09-13	09:46	Fluorene	0.141	mg/kg	ALS	RG RIVER SE-5 2020-09-13 0946
SE	CORCK-DUP	668556	5487388	2020	5	2020-09-13	09:46	Indeno(1,2,3-c,d)pyrene	0.015	mg/kg	ALS	RG RIVER SE-5 2020-09-13 0946
SE	CORCK-DUP	668556	5487388	2020	5	2020-09-13	09:46	2-Methylnaphthalene	1.60	mg/kg	ALS	RG RIVER SE-5 2020-09-13 0946
SE	CORCK-DUP	668556	5487388	2020	5	2020-09-13	09:46	Naphthalene	0.558	mg/kg	ALS	RG_RIVER_SE-5_2020-09-13_0946
SE	CORCK-DUP	668556	5487388	2020	5	2020-09-13	09:46	Perylene	<0.015	mg/kg	ALS	RG RIVER SE-5 2020-09-13 0946
SE	CORCK-DUP	668556	5487388	2020	5	2020-09-13	09:46	Phenanthrene	0.753	mg/kg	ALS	RG RIVER SE-5 2020-09-13 0946
SE	CORCK-DUP	668556	5487388	2020	5	2020-09-13	09:46	Pyrene	0.089	mg/kg	ALS	RG RIVER SE-5 2020-09-13 0946
SE	CORCK-DUP	668556	5487388	2020	5	2020-09-13	09:46	1-Methylnaphthalene	0.955	mg/kg	ALS	RG RIVER SE-5 2020-09-13 0946
SE	CORCK-DUP	668556	5487388	2020		2020-09-13	09:46	Quinoline	<0.015	mg/kg	ALS	RG RIVER SE-5 2020-09-13 0946
SE	CORCK-DUP	668556	5487388	2020		2020-09-13	09:46	IACR (CCME)	1.58	-	ALS	RG RIVER SE-5 2020-09-13 0946
SE	CORCK-DUP	668556	5487388	2020	5	2020-09-13	09:46	B(a)P Total Potency Equivalent	0.081	mg/kg	ALS	RG RIVER SE-5 2020-09-13 0946
SE	CORCK-DUP	668556	5487388	2020	5	2020-09-13	09:46	Benzo(b+j+k)fluoranthene	0.169	mg/kg	ALS	RG RIVER SE-5 2020-09-13 0946
SE	CORCK-DUP	668556	5487388	2020	5	2020-09-13	09:46	IACR:Coarse	<0.050	-	ALS	RG RIVER SE-5 2020-09-13 0946
SE	CORCK-DUP	668556	5487388	2020	5	2020-09-13	09:46	IACR:Fine	0.093	-	ALS	RG RIVER SE-5 2020-09-13 0946
SE	CORCK-DUP	668556	5487388	2020	5	2020-09-13	09:46	d8-Naphthalene	106.0	%	ALS	RG RIVER SE-5 2020-09-13 0946
SE	CORCK-DUP	668556	5487388	2020	5	2020-09-13	09:46	d10-Acenaphthene	110.8	%	ALS	RG RIVER SE-5 2020-09-13 0946
SE	CORCK-DUP	668556	5487388	2020	5	2020-09-13	09:46	d10-Phenanthrene	106.1	%	ALS	RG RIVER SE-5 2020-09-13 0946
SE	CORCK-DUP	668556	5487388	2020	5	2020-09-13	09:46	d12-Chrysene	114.5	%	ALS	RG RIVER SE-5 2020-09-13 0946
_		668556	5487388	2020	5	2020-09-13	09:46	% Gravel (>2 mm)	1.2	%	ALS	RG RIVER SE-5 2020-09-13 0946
SE	CORCK-DUP	บุทุกจาก	34 07300	ZUZU								

WSP Canada Inc. Page 121 of 337

Sediment Screening

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	Ctotion	Location	ı (UTMs) ^(a)	Veer	Donlingto	Dete	Time	Analuta	Dooult	Heit		Laboratory Information
ype	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	CORCK-DUP	668556	5487388	2020	5	2020-09-13	09:46	% Sand (1.00 mm - 0.50 mm)	5.7	%	ALS	RG RIVER SE-5 2020-09-13 0946
SE.	CORCK-DUP	668556	5487388	2020	5	2020-09-13	09:46	% Sand (0.50 mm - 0.25 mm)	15.0	%	ALS	RG RIVER SE-5 2020-09-13 0946
SE.	CORCK-DUP	668556	5487388	2020	5	2020-09-13	09:46	% Sand (0.25 mm - 0.125 mm)	16.7	%	ALS	RG RIVER SE-5 2020-09-13 0946
SE.	CORCK-DUP	668556	5487388	2020	5	2020-09-13	09:46	% Sand (0.125 mm - 0.063 mm)	12.9	%	ALS	RG RIVER SE-5 2020-09-13 0946
E SE	CORCK-DUP	668556	5487388	2020	5	2020-09-13	09:46	% Silt (0.063 mm - 0.0312 mm)	17.2	%	ALS	RG RIVER SE-5 2020-09-13 0946
E SE	CORCK-DUP	668556	5487388	2020	5	2020-09-13	09:46	% Silt (0.031 mm - 0.004 mm)	22.9	%	ALS	RG RIVER SE-5 2020-09-13 0946
SE	CORCK-DUP	668556	5487388	2020	5	2020-09-13	09:46	% Clay (<4 μm)	5.2	%	ALS	RG RIVER SE-5 2020-09-13 0946
E E	CORCK-DUP	668556	5487388	2020	5	2020-09-13	09:46	Texture	Sandy loam	-	ALS	RG RIVER SE-5 2020-09-13 0946
E E	CORCK-DUP	668556	5487388	2020	5	2020-09-13	09:46	Mercury (Hg)	0.0552	mg/kg	ALS	RG_RIVER_SE-5_2020-09-13_0946
E	CORCK-DUP	668556	5487388	2020	5	2020-09-13	09:46	Aluminum (AI)	3630	mg/kg	ALS	RG RIVER SE-5 2020-09-13 0946
E	CORCK-DUP	668556	5487388	2020	5	2020-09-13	09:46	Antimony (Sb)	0.32	mg/kg	ALS	RG RIVER SE-5 2020-09-13 0946
E	CORCK-DUP	668556	5487388	2020	5	2020-09-13	09:46	Arsenic (As)	3.06	mg/kg	ALS	RG RIVER SE-5 2020-09-13 0946
SE	CORCK-DUP	668556	5487388	2020	5	2020-09-13	09:46	Barium (Ba)	168	mg/kg	ALS	RG_RIVER_SE-5_2020-09-13_0946
E	CORCK-DUP	668556	5487388	2020	5	2020-09-13	09:46	Beryllium (Be)	0.41	mg/kg	ALS	RG RIVER SE-5 2020-09-13 0946
E	CORCK-DUP	668556	5487388	2020	5	2020-09-13	09:46	Bismuth (Bi)	<0.20		ALS	RG RIVER SE-5 2020-09-13 0946
SE	CORCK-DUP	668556	5487388	2020	5	2020-09-13	09:46	Boron (B)	9.3	mg/kg	ALS	RG RIVER SE-5 2020-09-13 0946
E E	CORCK-DUP	668556	5487388		5	2020-09-13	09:46	` '	9.13	mg/kg	ALS	RG RIVER SE-5 2020-09-13 0946
				2020				Cadmium (Cd)		mg/kg		
E	CORCK-DUP	668556	5487388	2020	5	2020-09-13	09:46	Calcium (Ca)	218000	mg/kg	ALS	RG_RIVER_SE-5_2020-09-13_0946
E	CORCK-DUP	668556	5487388	2020	5	2020-09-13	09:46	Chromium (Cr)	5.70	mg/kg	ALS	RG_RIVER_SE-5_2020-09-13_0946
<u>E</u>	CORCK-DUP	668556	5487388	2020	5	2020-09-13	09:46	Cobalt (Co)	190	mg/kg	ALS	RG_RIVER_SE-5_2020-09-13_0946
E	CORCK-DUP	668556	5487388	2020	5	2020-09-13	09:46	Copper (Cu)	7.49	mg/kg	ALS	RG_RIVER_SE-5_2020-09-13_0946
E	CORCK-DUP	668556	5487388	2020	5	2020-09-13	09:46	Iron (Fe)	4710	mg/kg	ALS	RG_RIVER_SE-5_2020-09-13_0946
E	CORCK-DUP	668556	5487388	2020	5	2020-09-13	09:46	Lead (Pb)	3.95	mg/kg	ALS	RG_RIVER_SE-5_2020-09-13_0946
E_	CORCK-DUP	668556	5487388	2020	5	2020-09-13	09:46	Lithium (Li)	4.0	mg/kg	ALS	RG_RIVER_SE-5_2020-09-13_0946
E	CORCK-DUP	668556	5487388	2020	5	2020-09-13	09:46	Magnesium (Mg)	6230	mg/kg	ALS	RG_RIVER_SE-5_2020-09-13_0946
E	CORCK-DUP	668556	5487388	2020	5	2020-09-13	09:46	Manganese (Mn)	1420	mg/kg	ALS	RG_RIVER_SE-5_2020-09-13_0946
ŝΕ	CORCK-DUP	668556	5487388	2020	5	2020-09-13	09:46	Molybdenum (Mo)	0.70	mg/kg	ALS	RG_RIVER_SE-5_2020-09-13_0946
SE	CORCK-DUP	668556	5487388	2020	5	2020-09-13	09:46	Nickel (Ni)	201	mg/kg	ALS	RG_RIVER_SE-5_2020-09-13_0946
SE.	CORCK-DUP	668556	5487388	2020	5	2020-09-13	09:46	Phosphorus (P)	306	mg/kg	ALS	RG_RIVER_SE-5_2020-09-13_0946
SE.	CORCK-DUP	668556	5487388	2020	5	2020-09-13	09:46	Potassium (K)	960	mg/kg	ALS	RG_RIVER_SE-5_2020-09-13_0946
SE	CORCK-DUP	668556	5487388	2020	5	2020-09-13	09:46	Selenium (Se)	2.79	mg/kg	ALS	RG_RIVER_SE-5_2020-09-13_0946
SE.	CORCK-DUP	668556	5487388	2020	5	2020-09-13	09:46	Silver (Ag)	<0.10	mg/kg	ALS	RG_RIVER_SE-5_2020-09-13_0946
SE	CORCK-DUP	668556	5487388	2020	5	2020-09-13	09:46	Sodium (Na)	313	mg/kg	ALS	RG_RIVER_SE-5_2020-09-13_0946
SE.	CORCK-DUP	668556	5487388	2020	5	2020-09-13	09:46	Strontium (Sr)	307	mg/kg	ALS	RG_RIVER_SE-5_2020-09-13_0946
ŝΕ	CORCK-DUP	668556	5487388	2020	5	2020-09-13	09:46	Sulfur (S)	3200	mg/kg	ALS	RG_RIVER_SE-5_2020-09-13_0946
E	CORCK-DUP	668556	5487388	2020	5	2020-09-13	09:46	Thallium (TI)	0.263	mg/kg	ALS	RG_RIVER_SE-5_2020-09-13_0946
Ē	CORCK-DUP	668556	5487388	2020	5	2020-09-13	09:46	Tin (Sn)	<2.0	mg/kg	ALS	RG_RIVER_SE-5_2020-09-13_0946
ŝΕ	CORCK-DUP	668556	5487388	2020	5	2020-09-13	09:46	Titanium (Ti)	12.7	mg/kg	ALS	RG_RIVER_SE-5_2020-09-13_0946
Ē	CORCK-DUP	668556	5487388	2020	5	2020-09-13	09:46	Tungsten (W)	<0.50	mg/kg	ALS	RG_RIVER_SE-5_2020-09-13_0946
šΕ	CORCK-DUP	668556	5487388	2020	5	2020-09-13	09:46	Uranium (U)	1.75	mg/kg	ALS	RG RIVER SE-5 2020-09-13 0946
E	CORCK-DUP	668556	5487388	2020	5	2020-09-13	09:46	Vanadium (V)	11.4	mg/kg	ALS	RG_RIVER_SE-5_2020-09-13_0946
Ε	CORCK-DUP	668556	5487388	2020	5	2020-09-13	09:46	Zinc (Zn)	842	mg/kg	ALS	RG RIVER SE-5 2020-09-13 0946
Е	CORCK-DUP	668556	5487388	2020	5	2020-09-13	09:46	Zirconium (Zr)	<1.0	mg/kg	ALS	RG RIVER SE-5 2020-09-13 0946
E	CORCK-DUP	668556	5487388	2020	5	2020-09-13	09:46	pH (1:2 soil:water)	8.14	pH	ALS	RG RIVER SE-5 2020-09-13 0946
E	CORCK-DUP	668556	5487388	2020	5	2020-09-13	09:46	Total Organic Carbon	8.6	%	ALS	RG RIVER SE-5 2020-09-13 0946
_	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	Moisture	70.6	%	ALS	RG RIVER SE-2 2020-09-12 1137
SE												

WSP Canada Inc. Page 122 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Type	Station	Location	(UTMs) ^(a)	Year	Poplieste	Date	Time	Analyto	Posult	Unit		Laboratory Information
Гуре	Station	Easting	Northing	rear	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	Acenaphthylene	<0.0075	mg/kg	ALS	RG_RIVER_SE-2_2020-09-12_1137
SE	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	Anthracene	<0.0060	mg/kg	ALS	RG RIVER SE-2 2020-09-12 1137
SE	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	Acridine	<0.015	mg/kg	ALS	RG_RIVER_SE-2_2020-09-12_1137
SE	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	Benz(a)anthracene	<0.015	mg/kg	ALS	RG_RIVER_SE-2_2020-09-12_1137
SE	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	Benzo(a)pyrene	<0.015	mg/kg	ALS	RG_RIVER_SE-2_2020-09-12_1137
SE	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	Benzo(b&j)fluoranthene	0.032	mg/kg	ALS	RG RIVER SE-2 2020-09-12 1137
SE	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	Benzo(e)pyrene	0.030	mg/kg	ALS	RG RIVER SE-2 2020-09-12 1137
SE	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	Benzo(g_h_i)perylene	<0.015	mg/kg	ALS	RG RIVER SE-2 2020-09-12 1137
SE	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	Benzo(k)fluoranthene	<0.015	mg/kg	ALS	RG RIVER SE-2 2020-09-12 1137
SE	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	Chrysene	0.058	mg/kg	ALS	RG RIVER SE-2 2020-09-12 1137
SE	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	Dibenz(a h)anthracene	< 0.0075	mg/kg	ALS	RG RIVER SE-2 2020-09-12 1137
SE	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	Fluoranthene	<0.015	mg/kg	ALS	RG_RIVER_SE-2_2020-09-12_1137
SE	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	Fluorene	0.017	mg/kg	ALS	RG RIVER SE-2 2020-09-12 1137
SE	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	Indeno(1,2,3-c,d)pyrene	<0.015	mg/kg	ALS	RG_RIVER_SE-2_2020-09-12_1137
SE	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	2-Methylnaphthalene	0.180	mg/kg	ALS	RG RIVER SE-2 2020-09-12 1137
SE	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	Naphthalene	0.057	mg/kg	ALS	RG_RIVER_SE-2_2020-09-12_1137
SE.	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	Perylene	<0.015	mg/kg	ALS	RG_RIVER_SE-2_2020-09-12_1137
SE.	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	Phenanthrene	0.138	mg/kg	ALS	RG_RIVER_SE-2_2020-09-12_1137
SE.	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	Pyrene	0.019	mg/kg	ALS	RG_RIVER_SE-2_2020-09-12_1137
Έ	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	1-Methylnaphthalene	0.122	mg/kg	ALS	RG_RIVER_SE-2_2020-09-12_1137
E	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	Quinoline	<0.015	mg/kg	ALS	RG RIVER SE-2 2020-09-12 1137
E	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	IACR (CCME)	0.34	-	ALS	RG RIVER SE-2 2020-09-12 1137
SE	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	B(a)P Total Potency Equivalent	<0.020	mg/kg	ALS	RG_RIVER_SE-2_2020-09-12_1137
SE	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	Benzo(b+j+k)fluoranthene	0.032	mg/kg	ALS	RG_RIVER_SE-2_2020-09-12_1137
SE	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	IACR:Coarse	<0.050	-	ALS	RG RIVER SE-2 2020-09-12 1137
SE	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	IACR:Fine	<0.050	_	ALS	RG RIVER SE-2 2020-09-12 1137
SE	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	d8-Naphthalene	106.2	%	ALS	RG RIVER SE-2 2020-09-12 1137
SE	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	d10-Acenaphthene	109.5	%	ALS	RG RIVER SE-2 2020-09-12 1137
SE	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	d10-Phenanthrene	107.7	%	ALS	RG RIVER SE-2 2020-09-12 1137
SE	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	d12-Chrysene	115.2	%	ALS	RG RIVER SE-2 2020-09-12 1137
SE	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	% Gravel (>2 mm)	<1.0	%	ALS	RG_RIVER_SE-2_2020-09-12_1137
SE	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	% Sand (2.00 mm - 1.00 mm)	1.3	%	ALS	RG RIVER SE-2 2020-09-12 1137
SE	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	% Sand (1.00 mm - 0.50 mm)	5.0	%	ALS	RG RIVER SE-2 2020-09-12 1137
SE	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	% Sand (0.50 mm - 0.25 mm)	7.5	%	ALS	RG RIVER SE-2 2020-09-12 1137
SE	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	% Sand (0.25 mm - 0.125 mm)	8.1	%	ALS	RG RIVER SE-2 2020-09-12 1137
SE	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	% Sand (0.125 mm - 0.063 mm)	14.6	%	ALS	RG RIVER SE-2 2020-09-12 1137
SE	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	% Silt (0.063 mm - 0.0312 mm)	26.4	%	ALS	RG RIVER SE-2 2020-09-12 1137
SE	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	% Silt (0.031 mm - 0.004 mm)	31.2	%	ALS	RG RIVER SE-2 2020-09-12 1137
SE	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	% Clay (<4 μm)	5.8	%	ALS	RG RIVER SE-2 2020-09-12 1137
SE	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	Texture	Silt loam	-	ALS	RG RIVER SE-2 2020-09-12 1137
SE	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	Mercury (Hg)	0.0476	mg/kg	ALS	RG RIVER SE-2 2020-09-12 1137
SE	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	Aluminum (Al)	14200	mg/kg	ALS	RG RIVER SE-2 2020-09-12 1137
SE	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	Antimony (Sb)	0.39	mg/kg	ALS	RG RIVER SE-2 2020-09-12 1137
SE	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	Arsenic (As)	7.05	mg/kg	ALS	RG RIVER SE-2 2020-09-12 1137
SE	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	Barium (Ba)	229	mg/kg	ALS	RG RIVER SE-2 2020-09-12 1137
SE	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	Beryllium (Be)	0.84	mg/kg	ALS	RG RIVER SE-2 2020-09-12 1137
SE SE					2			, ,				
	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	Bismuth (Bi)	<0.20	mg/kg	ALS	RG_RIVER_SE-2_2020-09-1

WSP Canada Inc. Page 123 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Type	Station	Location	(UTMs) ^(a)	Year	Poplieste	Date	Time	Apolyto	Popult	Unit		Laboratory Information
Гуре	Station	Easting	Northing	rear	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	Boron (B)	15.3	mg/kg	ALS	RG_RIVER_SE-2_2020-09-12_1137
SE	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	Cadmium (Cd)	0.869	mg/kg	ALS	RG RIVER SE-2 2020-09-12 1137
SE	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	Calcium (Ca)	32400	mg/kg	ALS	RG_RIVER_SE-2_2020-09-12_1137
SE	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	Chromium (Cr)	17.9	mg/kg	ALS	RG_RIVER_SE-2_2020-09-12_1137
SE	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	Cobalt (Co)	6.95	mg/kg	ALS	RG_RIVER_SE-2_2020-09-12_1137
SE	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	Copper (Cu)	19.2	mg/kg	ALS	RG RIVER SE-2 2020-09-12 1137
SE	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	Iron (Fe)	20200	mg/kg	ALS	RG RIVER SE-2 2020-09-12 1137
SE	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	Lead (Pb)	11.3	mg/kg	ALS	RG RIVER SE-2 2020-09-12 1137
SE	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	Lithium (Li)	18.9	mg/kg	ALS	RG_RIVER_SE-2_2020-09-12_1137
SE	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	Magnesium (Mg)	7630	mg/kg	ALS	RG RIVER SE-2 2020-09-12 1137
SE	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	Manganese (Mn)	261	mg/kg	ALS	RG_RIVER_SE-2_2020-09-12_1137
SE	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	Molybdenum (Mo)	2.13	mg/kg	ALS	RG_RIVER_SE-2_2020-09-12_1137
SE	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	Nickel (Ni)	22.8	mg/kg	ALS	RG RIVER SE-2 2020-09-12 1137
SE	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	Phosphorus (P)	1110	mg/kg	ALS	RG_RIVER_SE-2_2020-09-12_1137
SE	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	Potassium (K)	3000	mg/kg	ALS	RG RIVER SE-2 2020-09-12 1137
SE	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	Selenium (Se)	1.06	mg/kg	ALS	RG_RIVER_SE-2_2020-09-12_1137
SE	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	Silver (Ag)	0.12	mg/kg	ALS	RG_RIVER_SE-2_2020-09-12_1137
SE	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	Sodium (Na)	89	mg/kg	ALS	RG_RIVER_SE-2_2020-09-12_1137
SE	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	Strontium (Sr)	72.2	mg/kg	ALS	RG_RIVER_SE-2_2020-09-12_1137
SE	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	Sulfur (S)	<1000	mg/kg	ALS	RG_RIVER_SE-2_2020-09-12_1137
SE	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	Thallium (TI)	0.401	mg/kg	ALS	RG_RIVER_SE-2_2020-09-12_1137
SE	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	Tin (Sn)	<2.0	mg/kg	ALS	RG_RIVER_SE-2_2020-09-12_1137
SE	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	Titanium (Ti)	21.8	mg/kg	ALS	RG_RIVER_SE-2_2020-09-12_1137
SE	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	Tungsten (W)	<0.50	mg/kg	ALS	RG_RIVER_SE-2_2020-09-12_1137
SE	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	Uranium (U)	0.638	mg/kg	ALS	RG RIVER SE-2 2020-09-12 1137
SE	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	Vanadium (V)	30.4	mg/kg	ALS	RG RIVER SE-2 2020-09-12 1137
SE	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	Zinc (Zn)	94.4	mg/kg	ALS	RG_RIVER_SE-2_2020-09-12_1137
SE	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	Zirconium (Zr)	<1.0	mg/kg	ALS	RG RIVER SE-2 2020-09-12 1137
SE	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	pH (1:2 soil:water)	7.94	pH	ALS	RG RIVER SE-2 2020-09-12 1137
SE	MIUCO-DUP	668134	5486767	2020	2	2020-09-12	11:37	Total Organic Carbon	5.60	%	ALS	RG RIVER SE-2 2020-09-12 1137
SE	MI25-DUP	668186	5482838	2020	1	2020-09-11	10:16	Moisture	57.8	%	ALS	RG RIVER SE-1_2020-09-11_1016
SE	MI25-DUP	668186	5482838	2020	1	2020-09-11	10:16	Acenaphthene	<0.0050	mg/kg	ALS	RG RIVER SE-1 2020-09-11 1016
SE	MI25-DUP	668186	5482838	2020	1	2020-09-11	10:16	Acenaphthylene	<0.0050	mg/kg	ALS	RG RIVER SE-1 2020-09-11 1016
SE	MI25-DUP	668186	5482838	2020	1	2020-09-11	10:16	Anthracene	<0.0040	mg/kg	ALS	RG RIVER SE-1 2020-09-11 1016
SE	MI25-DUP	668186	5482838	2020	1	2020-09-11	10:16	Acridine	<0.010	mg/kg	ALS	RG_RIVER_SE-1_2020-09-11_1016
SE	MI25-DUP	668186	5482838	2020	1	2020-09-11	10:16	Benz(a)anthracene	<0.010	mg/kg	ALS	RG_RIVER_SE-1_2020-09-11_1016
SE	MI25-DUP	668186	5482838	2020	1	2020-09-11	10:16	Benzo(a)pyrene	<0.010	mg/kg	ALS	RG_RIVER_SE-1_2020-09-11_1016
SE	MI25-DUP	668186	5482838	2020	1	2020-09-11	10:16	Benzo(b&j)fluoranthene	0.014	mg/kg	ALS	RG_RIVER_SE-1_2020-09-11_1016
SE	MI25-DUP	668186	5482838	2020	1	2020-09-11	10:16	Benzo(e)pyrene	0.016	mg/kg	ALS	RG RIVER SE-1 2020-09-11 1016
SE	MI25-DUP	668186	5482838	2020	1	2020-09-11	10:16	Benzo(g_h_i)perylene	<0.010	mg/kg	ALS	RG RIVER SE-1 2020-09-11 1016
SE	MI25-DUP	668186	5482838	2020	1	2020-09-11	10:16	Benzo(k)fluoranthene	<0.010	mg/kg	ALS	RG_RIVER_SE-1_2020-09-11_1016
SE	MI25-DUP	668186	5482838	2020	1	2020-09-11	10:16	Chrysene	0.033	mg/kg	ALS	RG RIVER SE-1 2020-09-11 1016
SE	MI25-DUP	668186	5482838	2020	1	2020-09-11	10:16	Dibenz(a h)anthracene	<0.0050	mg/kg	ALS	RG_RIVER_SE-1_2020-09-11_1016
SE	MI25-DUP	668186	5482838	2020	1	2020-09-11	10:16	Fluoranthene	0.012	mg/kg	ALS	RG RIVER SE-1 2020-09-11 1016
SE	MI25-DUP	668186	5482838	2020	1	2020-09-11	10:16	Fluorene	<0.012	mg/kg	ALS	RG RIVER SE-1 2020-09-11 1016
SE	MI25-DUP	668186	5482838	2020	1	2020-09-11	10:16	Indeno(1,2,3-c,d)pyrene	<0.010	mg/kg	ALS	RG RIVER SE-1 2020-09-11 1016
SE	MI25-DUP	668186	5482838	2020	1	2020-09-11	10:16	2-Methylnaphthalene	0.015		ALS	RG RIVER SE-1 2020-09-11 1016
-	IVIIZ5-DUP	000100	J40ZŎJŎ	2020		ZUZU-U9-11	10:10	z-ivietriyinapritrialerie	0.015	mg/kg	ALO	NG_KIVEK_SE-1_2020-09-11_1016

WSP Canada Inc. Page 124 of 337

Sediment Screening

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Table I-1	1: Sediment Chem	istry Data Col	lected from the	CMm LAEMP	Sampling Sta	ations, 2012 to	2022					
Туре	Station	Location	ı (UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
Type	Station	Easting	Northing	i eai	Replicate	Date	Tille	Allalyte	Nesuit	Offic	Lab	Sample ID
SE	MI25-DUP	668186	5482838	2020	1	2020-09-11	10:16	Naphthalene	<0.010	mg/kg	ALS	RG_RIVER_SE-1_2020-09-11_1016
SE	MI25-DUP	668186	5482838	2020	1	2020-09-11	10:16	Perylene	<0.010	mg/kg	ALS	RG_RIVER_SE-1_2020-09-11_1016
SE	MI25-DUP	668186	5482838	2020	1	2020-09-11	10:16	Phenanthrene	0.029	mg/kg	ALS	RG_RIVER_SE-1_2020-09-11_1016
SE	MI25-DUP	668186	5482838	2020	1	2020-09-11	10:16	Pyrene	0.015	mg/kg	ALS	RG_RIVER_SE-1_2020-09-11_1016
SE	MI25-DUP	668186	5482838	2020	1	2020-09-11	10:16	1-Methylnaphthalene	<0.050	mg/kg	ALS	RG_RIVER_SE-1_2020-09-11_1016
SE	MI25-DUP	668186	5482838	2020	1	2020-09-11	10:16	Quinoline	<0.050	mg/kg	ALS	RG_RIVER_SE-1_2020-09-11_1016
SE	MI25-DUP	668186	5482838	2020	1	2020-09-11	10:16	IACR (CCME)	0.17	-	ALS	RG_RIVER_SE-1_2020-09-11_1016
SE	MI25-DUP	668186	5482838	2020	1	2020-09-11	10:16	B(a)P Total Potency Equivalent	<0.020	mg/kg	ALS	RG_RIVER_SE-1_2020-09-11_1016
SE	MI25-DUP	668186	5482838	2020	1	2020-09-11	10:16	Benzo(b+j+k)fluoranthene	<0.015	mg/kg	ALS	RG_RIVER_SE-1_2020-09-11_1016
SE	MI25-DUP	668186	5482838	2020	1	2020-09-11	10:16	IACR:Coarse	<0.050	-	ALS	RG_RIVER_SE-1_2020-09-11_1016
SE	MI25-DUP	668186	5482838	2020	1	2020-09-11	10:16	IACR:Fine	<0.050	-	ALS	RG_RIVER_SE-1_2020-09-11_1016
SE	MI25-DUP	668186	5482838	2020	1	2020-09-11	10:16	d8-Naphthalene	102.1	%	ALS	RG_RIVER_SE-1_2020-09-11_1016
SE	MI25-DUP	668186	5482838	2020	1	2020-09-11	10:16	d10-Acenaphthene	107.2	%	ALS	RG_RIVER_SE-1_2020-09-11_1016
SE	MI25-DUP	668186	5482838	2020	1	2020-09-11	10:16	d10-Phenanthrene	105.7	%	ALS	RG_RIVER_SE-1_2020-09-11_1016
SE	MI25-DUP	668186	5482838	2020	1	2020-09-11	10:16	d12-Chrysene	113.5	%	ALS	RG_RIVER_SE-1_2020-09-11_1016
SE	MI25-DUP	668186	5482838	2020	1	2020-09-11	10:16	% Gravel (>2 mm)	<1.0	%	ALS	RG_RIVER_SE-1_2020-09-11_1016
SE	MI25-DUP	668186	5482838	2020	1	2020-09-11	10:16	% Sand (2.00 mm - 1.00 mm)	<1.0	%	ALS	RG_RIVER_SE-1_2020-09-11_1016
SE	MI25-DUP	668186	5482838	2020	1	2020-09-11	10:16	% Sand (1.00 mm - 0.50 mm)	1.4	%	ALS	RG_RIVER_SE-1_2020-09-11_1016
SE	MI25-DUP	668186	5482838	2020	1	2020-09-11	10:16	% Sand (0.50 mm - 0.25 mm)	4.4	%	ALS	RG_RIVER_SE-1_2020-09-11_1016
SE	MI25-DUP	668186	5482838	2020	1	2020-09-11	10:16	% Sand (0.25 mm - 0.125 mm)	11.1	%	ALS	RG_RIVER_SE-1_2020-09-11_1016
SE	MI25-DUP	668186	5482838	2020	1	2020-09-11	10:16	% Sand (0.125 mm - 0.063 mm)	19.0	%	ALS	RG_RIVER_SE-1_2020-09-11_1016
SE	MI25-DUP	668186	5482838	2020	1	2020-09-11	10:16	% Silt (0.063 mm - 0.0312 mm)	27.0	%	ALS	RG_RIVER_SE-1_2020-09-11_1016
SE	MI25-DUP	668186	5482838	2020	1	2020-09-11	10:16	% Silt (0.031 mm - 0.004 mm)	29.6	%	ALS	RG_RIVER_SE-1_2020-09-11_1016
SE	MI25-DUP	668186	5482838	2020	1	2020-09-11	10:16	% Clay (<4 μm)	6.9	%	ALS	RG_RIVER_SE-1_2020-09-11_1016
SE	MI25-DUP	668186	5482838	2020	1	2020-09-11	10:16	Texture	Silt loam	-	ALS	RG_RIVER_SE-1_2020-09-11_1016
SE	MI25-DUP	668186	5482838	2020	1	2020-09-11	10:16	Mercury (Hg)	0.0606	mg/kg	ALS	RG_RIVER_SE-1_2020-09-11_1016
SE	MI25-DUP	668186	5482838	2020	1	2020-09-11	10:16	Aluminum (Al)	17100	mg/kg	ALS	RG_RIVER_SE-1_2020-09-11_1016
SE	MI25-DUP	668186	5482838	2020	1	2020-09-11	10:16	Antimony (Sb)	2.96	mg/kg	ALS	RG_RIVER_SE-1_2020-09-11_1016
SE	MI25-DUP	668186	5482838	2020	1	2020-09-11	10:16	Arsenic (As)	11.1	mg/kg	ALS	RG_RIVER_SE-1_2020-09-11_1016
SE	MI25-DUP	668186	5482838	2020	1	2020-09-11	10:16	Barium (Ba)	192	mg/kg		RG_RIVER_SE-1_2020-09-11_1016
SE	MI25-DUP	668186	5482838	2020	1	2020-09-11	10:16	Beryllium (Be)	0.92	mg/kg		RG_RIVER_SE-1_2020-09-11_1016
SE	MI25-DUP	668186	5482838	2020	1	2020-09-11	10:16	Bismuth (Bi)	0.25	mg/kg	ALS	RG_RIVER_SE-1_2020-09-11_1016
SE	MI25-DUP	668186	5482838	2020	1	2020-09-11	10:16	Boron (B)	17.3	mg/kg	ALS	RG_RIVER_SE-1_2020-09-11_1016
SE	MI25-DUP	668186	5482838	2020	1	2020-09-11	10:16	Cadmium (Cd)	1.39	mg/kg	ALS	RG_RIVER_SE-1_2020-09-11_1016
SE	MI25-DUP	668186	5482838	2020	1	2020-09-11	10:16	Calcium (Ca)	16600	mg/kg		RG_RIVER_SE-1_2020-09-11_1016
SE	MI25-DUP	668186	5482838	2020	1	2020-09-11	10:16	Chromium (Cr)	21.6	mg/kg		RG_RIVER_SE-1_2020-09-11_1016
SE	MI25-DUP	668186	5482838	2020	1	2020-09-11	10:16	Cobalt (Co)	8.60	mg/kg	ALS	RG_RIVER_SE-1_2020-09-11_1016
SE	MI25-DUP	668186	5482838	2020	1	2020-09-11	10:16	Copper (Cu)	29.4	mg/kg		RG_RIVER_SE-1_2020-09-11_1016
SE	MI25-DUP	668186	5482838	2020	1	2020-09-11	10:16	Iron (Fe)	21800	mg/kg	ALS	RG_RIVER_SE-1_2020-09-11_1016
SE	MI25-DUP	668186	5482838	2020	1	2020-09-11	10:16	Lead (Pb)	23.0	mg/kg		RG_RIVER_SE-1_2020-09-11_1016
SE	MI25-DUP	668186	5482838	2020	1 1	2020-09-11	10:16	Lithium (Li)	23.7	mg/kg	ALS	RG_RIVER_SE-1_2020-09-11_1016
SE	MI25-DUP	668186	5482838	2020	1	2020-09-11	10:16	Magnesium (Mg)	6910	mg/kg		RG_RIVER_SE-1_2020-09-11_1016
SE	MI25-DUP	668186	5482838	2020	1	2020-09-11	10:16	Manganese (Mn)	592	mg/kg	ALS	RG_RIVER_SE-1_2020-09-11_1016
SE	MI25-DUP	668186	5482838	2020	1	2020-09-11	10:16	Molybdenum (Mo)	6.10	mg/kg	ALS	RG_RIVER_SE-1_2020-09-11_1016
SE	MI25-DUP	668186	5482838	2020	1	2020-09-11	10:16	Nickel (Ni)	33.7	mg/kg	ALS	RG_RIVER_SE-1_2020-09-11_1016
SE	MI25-DUP	668186	5482838	2020	1	2020-09-11	10:16	Phosphorus (P)	1260	mg/kg	ALS	RG_RIVER_SE-1_2020-09-11_1016
SE	MI25-DUP	668186	5482838	2020	1	2020-09-11	10:16	Potassium (K)	3360	mg/kg	ALS	RG_RIVER_SE-1_2020-09-11_1016

WSP Canada Inc. Page 125 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Table I-	1: Sediment Chem			CMm LAEMP	Sampling Stat	ions, 2012 to	2022					
Туре	Station		(UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
	Otation	Easting	Northing	ı cui	Replicate	Dute	111110	Allayto	rtosuit	Oint	Lab	Sample ID
SE	MI25-DUP	668186	5482838	2020		2020-09-11	10:16	Selenium (Se)	1.13	mg/kg		RG_RIVER_SE-1_2020-09-11_1016
SE	MI25-DUP	668186	5482838	2020		2020-09-11	10:16	Silver (Ag)	0.20	mg/kg	ALS	RG_RIVER_SE-1_2020-09-11_1016
SE	MI25-DUP	668186	5482838	2020		2020-09-11	10:16	Sodium (Na)	94	mg/kg	ALS	RG_RIVER_SE-1_2020-09-11_1016
SE	MI25-DUP	668186	5482838	2020		2020-09-11	10:16	Strontium (Sr)	49.4	mg/kg	ALS	RG_RIVER_SE-1_2020-09-11_1016
SE	MI25-DUP	668186	5482838	2020		2020-09-11	10:16	Sulfur (S)	<1000	mg/kg	ALS	RG_RIVER_SE-1_2020-09-11_1016
SE	MI25-DUP	668186	5482838	2020		2020-09-11	10:16	Thallium (TI)	0.804	mg/kg	ALS	RG_RIVER_SE-1_2020-09-11_1016
SE	MI25-DUP	668186	5482838	2020		2020-09-11	10:16	Tin (Sn)	<2.0	mg/kg	ALS	RG_RIVER_SE-1_2020-09-11_1016
SE	MI25-DUP	668186	5482838	2020		2020-09-11	10:16	Titanium (Ti)	22.7	mg/kg	ALS	RG_RIVER_SE-1_2020-09-11_1016
SE	MI25-DUP	668186	5482838	2020		2020-09-11	10:16	Tungsten (W)	<0.50	mg/kg	ALS	RG_RIVER_SE-1_2020-09-11_1016
SE	MI25-DUP	668186	5482838	2020	+	2020-09-11	10:16	Uranium (U)	0.983	mg/kg	ALS	RG_RIVER_SE-1_2020-09-11_1016
SE	MI25-DUP	668186	5482838	2020		2020-09-11	10:16	Vanadium (V)	40.6	mg/kg	ALS	RG_RIVER_SE-1_2020-09-11_1016
SE	MI25-DUP	668186	5482838	2020		2020-09-11	10:16	Zinc (Zn)	143	mg/kg	ALS	RG_RIVER_SE-1_2020-09-11_1016
SE	MI25-DUP	668186	5482838	2020		2020-09-11	10:16	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_RIVER_SE-1_2020-09-11_1016
SE	MI25-DUP	668186	5482838	2020		2020-09-11	10:16	pH (1:2 soil:water)	7.91	pН	ALS	RG_RIVER_SE-1_2020-09-11_1016
SE	MI25-DUP	668186	5482838	2020	+	2020-09-11	10:16	Total Organic Carbon	3.49	%	ALS	RG_RIVER_SE-1_2020-09-11_1016
SE	CORCK	668556	5487388	2020	+	2020-09-12	16:14	Moisture	73.1	%	ALS	RG_CORCK_SE-1_2020-09-12_1614
SE	CORCK	668556	5487388	2020		2020-09-12	16:14	Acenaphthene	<0.020	mg/kg	ALS	RG_CORCK_SE-1_2020-09-12_1614
SE	CORCK	668556	5487388	2020		2020-09-12	16:14	Acenaphthylene	<0.0085	mg/kg	ALS	RG_CORCK_SE-1_2020-09-12_1614
SE	CORCK	668556	5487388	2020		2020-09-12	16:14	Anthracene	<0.017	mg/kg	ALS	RG_CORCK_SE-1_2020-09-12_1614
SE	CORCK	668556	5487388	2020		2020-09-12	16:14	Acridine	<0.040	mg/kg	ALS	RG_CORCK_SE-1_2020-09-12_1614
SE	CORCK	668556	5487388	2020	1 2	2020-09-12	16:14	Benz(a)anthracene	0.025	mg/kg	ALS	RG_CORCK_SE-1_2020-09-12_1614
SE	CORCK	668556	5487388	2020	+	2020-09-12	16:14	Benzo(a)pyrene	0.019	mg/kg	ALS	RG_CORCK_SE-1_2020-09-12_1614
SE	CORCK	668556	5487388	2020		2020-09-12	16:14	Benzo(b&j)fluoranthene	0.070	mg/kg	ALS	RG_CORCK_SE-1_2020-09-12_1614
SE	CORCK	668556	5487388	2020		2020-09-12	16:14	Benzo(e)pyrene	0.090	mg/kg	ALS	RG_CORCK_SE-1_2020-09-12_1614
SE	CORCK	668556	5487388	2020		2020-09-12	16:14	Benzo(g_h_i)perylene	0.043	mg/kg	ALS	RG_CORCK_SE-1_2020-09-12_1614
SE	CORCK	668556	5487388	2020		2020-09-12	16:14	Benzo(k)fluoranthene	<0.017	mg/kg	ALS	RG_CORCK_SE-1_2020-09-12_1614
SE	CORCK	668556	5487388	2020		2020-09-12	16:14	Chrysene	0.121	mg/kg	ALS	RG_CORCK_SE-1_2020-09-12_1614
SE	CORCK	668556	5487388	2020	+	2020-09-12	16:14	Dibenz(a_h)anthracene	<0.017	mg/kg	ALS	RG_CORCK_SE-1_2020-09-12_1614
SE	CORCK	668556	5487388	2020		2020-09-12	16:14	Fluoranthene	0.020	mg/kg	ALS	RG_CORCK_SE-1_2020-09-12_1614
SE	CORCK	668556	5487388	2020	+	2020-09-12	16:14	Fluorene	0.065	mg/kg	ALS	RG_CORCK_SE-1_2020-09-12_1614
SE	CORCK	668556	5487388	2020		2020-09-12	16:14	Indeno(1,2,3-c,d)pyrene	<0.017	mg/kg		RG_CORCK_SE-1_2020-09-12_1614
SE	CORCK	668556	5487388	2020		2020-09-12	16:14	2-Methylnaphthalene	0.717	mg/kg		RG_CORCK_SE-1_2020-09-12_1614
SE	CORCK	668556	5487388	2020		2020-09-12	16:14	Naphthalene	0.230	mg/kg	ALS	RG_CORCK_SE-1_2020-09-12_1614
SE	CORCK	668556	5487388	2020	+	2020-09-12	16:14	Perylene	<0.017	mg/kg	ALS	RG_CORCK_SE-1_2020-09-12_1614
SE	CORCK	668556	5487388	2020	+	2020-09-12	16:14	Phenanthrene	0.334	mg/kg		RG_CORCK_SE-1_2020-09-12_1614
SE	CORCK	668556	5487388	2020		2020-09-12	16:14	Pyrene	0.039	mg/kg		RG_CORCK_SE-1_2020-09-12_1614
SE	CORCK	668556	5487388	2020		2020-09-12	16:14	1-Methylnaphthalene	0.429	mg/kg	ALS	RG_CORCK_SE-1_2020-09-12_1614
SE	CORCK	668556	5487388	2020		2020-09-12	16:14	Quinoline	<0.017	mg/kg		RG_CORCK_SE-1_2020-09-12_1614
SE	CORCK	668556	5487388	2020		2020-09-12	16:14	IACR (CCME)	0.72	-	ALS	RG_CORCK_SE-1_2020-09-12_1614
SE	CORCK	668556	5487388	2020	+	2020-09-12	16:14	B(a)P Total Potency Equivalent	0.040	mg/kg	ALS	RG_CORCK_SE-1_2020-09-12_1614
SE	CORCK	668556	5487388	2020	+	2020-09-12	16:14	Benzo(b+j+k)fluoranthene	0.070	mg/kg	ALS	RG_CORCK_SE-1_2020-09-12_1614
SE	CORCK	668556	5487388	2020		2020-09-12	16:14	IACR:Coarse	<0.050	-	ALS	RG_CORCK_SE-1_2020-09-12_1614
SE	CORCK	668556	5487388	2020		2020-09-12	16:14	IACR:Fine	<0.050	-	ALS	RG_CORCK_SE-1_2020-09-12_1614
SE	CORCK	668556	5487388	2020		2020-09-12	16:14	d8-Naphthalene	105.4	%	ALS	RG_CORCK_SE-1_2020-09-12_1614
SE	CORCK	668556	5487388	2020		2020-09-12	16:14	d10-Acenaphthene	107.8	%	ALS	RG_CORCK_SE-1_2020-09-12_1614
SE	CORCK	668556	5487388	2020		2020-09-12	16:14	d10-Phenanthrene	106.6	%	ALS	RG_CORCK_SE-1_2020-09-12_1614
SE	CORCK	668556	5487388	2020	1 2	2020-09-12	16:14	d12-Chrysene	115.1	%	ALS	RG_CORCK_SE-1_2020-09-12_1614

WSP Canada Inc. Page 126 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Type	Station	Location	ı (UTMs) ^(a)	Voor	Donlingto	Doto	Time	Analysta	Docult	Lloit		Laboratory Information
Туре	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	CORCK	668556	5487388	2020	1	2020-09-12	16:14	% Gravel (>2 mm)	<1.0	%	ALS	RG_CORCK_SE-1_2020-09-12_1614
SE	CORCK	668556	5487388	2020	1	2020-09-12	16:14	% Sand (2.00 mm - 1.00 mm)	1.0	%	ALS	RG CORCK SE-1 2020-09-12 1614
SE	CORCK	668556	5487388	2020	1	2020-09-12	16:14	% Sand (1.00 mm - 0.50 mm)	2.9	%	ALS	RG CORCK SE-1 2020-09-12 1614
SE	CORCK	668556	5487388	2020	1	2020-09-12	16:14	% Sand (0.50 mm - 0.25 mm)	12.1	%	ALS	RG CORCK SE-1 2020-09-12 1614
SE	CORCK	668556	5487388	2020	1	2020-09-12	16:14	% Sand (0.25 mm - 0.125 mm)	20.2	%	ALS	RG CORCK SE-1 2020-09-12 1614
SE	CORCK	668556	5487388	2020	1	2020-09-12	16:14	% Sand (0.125 mm - 0.063 mm)	16.4	%	ALS	RG CORCK SE-1 2020-09-12 1614
SE	CORCK	668556	5487388	2020	1	2020-09-12	16:14	% Silt (0.063 mm - 0.0312 mm)	21.9	%	ALS	RG CORCK SE-1 2020-09-12 1614
SE	CORCK	668556	5487388	2020	1	2020-09-12	16:14	% Silt (0.031 mm - 0.004 mm)	22.7	%	ALS	RG CORCK SE-1 2020-09-12 1614
SE	CORCK	668556	5487388	2020	1	2020-09-12	16:14	% Clay (<4 µm)	2.9	%	ALS	RG CORCK SE-1 2020-09-12 1614
SE	CORCK	668556	5487388	2020	1	2020-09-12	16:14	Texture	Sandy loam	-	ALS	RG CORCK SE-1 2020-09-12 1614
SE	CORCK	668556	5487388	2020	1	2020-09-12	16:14	Mercury (Hg)	0.0295	mg/kg	ALS	RG_CORCK_SE-1_2020-09-12_1614
SE	CORCK	668556	5487388	2020	1	2020-09-12	16:14	Aluminum (Al)	2010	mg/kg	ALS	RG CORCK SE-1 2020-09-12 1614
SE	CORCK	668556	5487388	2020	1	2020-09-12	16:14	Antimony (Sb)	0.25	mg/kg	ALS	RG CORCK SE-1 2020-09-12 1614
SE	CORCK	668556	5487388	2020	1	2020-09-12	16:14	Arsenic (As)	1.61	mg/kg	ALS	RG CORCK SE-1 2020-09-12 1614
SE	CORCK	668556	5487388	2020	1	2020-09-12	16:14	Barium (Ba)	135	mg/kg	ALS	RG CORCK SE-1_2020-09-12_1614
SE	CORCK	668556	5487388	2020	1	2020-09-12	16:14	Beryllium (Be)	0.29	mg/kg	ALS	RG CORCK SE-1 2020-09-12 1614
SE	CORCK	668556	5487388	2020	1	2020-09-12	16:14	Bismuth (Bi)	<0.20	mg/kg	ALS	RG CORCK SE-1 2020-09-12 1614
SE	CORCK	668556	5487388	2020	1	2020-09-12	16:14	Boron (B)	6.4	mg/kg	ALS	RG CORCK SE-1 2020-09-12 1614
SE	CORCK	668556	5487388	2020	1	2020-09-12	16:14	Cadmium (Cd)	7.94		ALS	RG CORCK SE-1 2020-09-12 1614
SE	CORCK	668556	5487388	2020	1	2020-09-12	16:14		289000	mg/kg	ALS	RG CORCK SE-1 2020-09-12 1614
SE		668556	5487388	2020	1		16:14	Calcium (Ca) Chromium (Cr)	3.18	mg/kg	ALS	
	CORCK				1 1	2020-09-12		, ,		mg/kg		RG_CORCK_SE-1_2020-09-12_1614
SE SE	CORCK	668556	5487388	2020	1 1	2020-09-12	16:14 16:14	Cobalt (Co)	244	mg/kg	ALS	RG_CORCK_SE-1_2020-09-12_1614
	CORCK	668556	5487388	2020	1 1	2020-09-12		Copper (Cu)	4.46	mg/kg	ALS	RG_CORCK_SE-1_2020-09-12_1614
SE	CORCK	668556	5487388	2020	1 1	2020-09-12	16:14	Iron (Fe)	2640	mg/kg	ALS	RG_CORCK_SE-1_2020-09-12_1614
SE	CORCK	668556	5487388	2020	1	2020-09-12	16:14	Lead (Pb)	1.85	mg/kg	ALS	RG_CORCK_SE-1_2020-09-12_1614
SE	CORCK	668556	5487388	2020	1 1	2020-09-12	16:14	Lithium (Li)	3.2	mg/kg	ALS	RG_CORCK_SE-1_2020-09-12_1614
SE	CORCK	668556	5487388	2020	1 1	2020-09-12	16:14	Magnesium (Mg)	5760	mg/kg	ALS	RG_CORCK_SE-1_2020-09-12_1614
SE	CORCK	668556	5487388	2020	1	2020-09-12	16:14	Manganese (Mn)	1640	mg/kg	ALS	RG_CORCK_SE-1_2020-09-12_1614
SE	CORCK	668556	5487388	2020	1	2020-09-12	16:14	Molybdenum (Mo)	0.61	mg/kg	ALS	RG_CORCK_SE-1_2020-09-12_1614
SE	CORCK	668556	5487388	2020	1	2020-09-12	16:14	Nickel (Ni)	218	mg/kg	ALS	RG_CORCK_SE-1_2020-09-12_1614
SE	CORCK	668556	5487388	2020	1 1	2020-09-12	16:14	Phosphorus (P)	166	mg/kg	ALS	RG_CORCK_SE-1_2020-09-12_1614
SE	CORCK	668556	5487388	2020	1 1	2020-09-12	16:14	Potassium (K)	590	mg/kg	ALS	RG_CORCK_SE-1_2020-09-12_1614
SE	CORCK	668556	5487388	2020	1 1	2020-09-12	16:14	Selenium (Se)	1.56	mg/kg	ALS	RG_CORCK_SE-1_2020-09-12_1614
SE	CORCK	668556	5487388	2020	1	2020-09-12	16:14	Silver (Ag)	<0.10	mg/kg	ALS	RG_CORCK_SE-1_2020-09-12_1614
SE	CORCK	668556	5487388	2020	1	2020-09-12	16:14	Sodium (Na)	361	mg/kg	ALS	RG_CORCK_SE-1_2020-09-12_1614
SE	CORCK	668556	5487388	2020	1	2020-09-12	16:14	Strontium (Sr)	392	mg/kg	ALS	RG_CORCK_SE-1_2020-09-12_1614
SE	CORCK	668556	5487388	2020	1	2020-09-12	16:14	Sulfur (S)	4000	mg/kg	ALS	RG_CORCK_SE-1_2020-09-12_1614
SE	CORCK	668556	5487388	2020	1	2020-09-12	16:14	Thallium (TI)	0.191	mg/kg	ALS	RG_CORCK_SE-1_2020-09-12_1614
SE	CORCK	668556	5487388	2020	1	2020-09-12	16:14	Tin (Sn)	<2.0	mg/kg	ALS	RG_CORCK_SE-1_2020-09-12_1614
SE	CORCK	668556	5487388	2020	1	2020-09-12	16:14	Titanium (Ti)	10.1	mg/kg	ALS	RG_CORCK_SE-1_2020-09-12_1614
SE.	CORCK	668556	5487388	2020	1	2020-09-12	16:14	Tungsten (W)	<0.50	mg/kg	ALS	RG_CORCK_SE-1_2020-09-12_1614
SE	CORCK	668556	5487388	2020	1	2020-09-12	16:14	Uranium (U)	2.11	mg/kg	ALS	RG_CORCK_SE-1_2020-09-12_1614
SE	CORCK	668556	5487388	2020	1	2020-09-12	16:14	Vanadium (V)	6.08	mg/kg	ALS	RG_CORCK_SE-1_2020-09-12_1614
SE	CORCK	668556	5487388	2020	1	2020-09-12	16:14	Zinc (Zn)	773	mg/kg	ALS	RG_CORCK_SE-1_2020-09-12_1614
SE	CORCK	668556	5487388	2020	1	2020-09-12	16:14	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_CORCK_SE-1_2020-09-12_1614
SE	CORCK	668556	5487388	2020	1	2020-09-12	16:14	pH (1:2 soil:water)	8.17	pН	ALS	RG_CORCK_SE-1_2020-09-12_1614
SE	CORCK	668556	5487388	2020	1	2020-09-12	16:14	Total Organic Carbon	7.3	%	ALS	RG CORCK SE-1 2020-09-12 1614

WSP Canada Inc. Page 127 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Typo	Station	Location	ı (UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
Type	Station	Easting	Northing	i eai	Replicate	Date	Tille	Allalyte	Result	Oilit	Lab	Sample ID
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	Moisture	70.2	%	ALS	RG_CORCK_SE-2_2020-09-12_1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	Acenaphthene	< 0.035	mg/kg	ALS	RG_CORCK_SE-2_2020-09-12_1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	Acenaphthylene	<0.0090	mg/kg	ALS	RG_CORCK_SE-2_2020-09-12_1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	Anthracene	<0.0060	mg/kg	ALS	RG_CORCK_SE-2_2020-09-12_1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	Acridine	<0.070	mg/kg	ALS	RG_CORCK_SE-2_2020-09-12_1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	Benz(a)anthracene	0.040	mg/kg	ALS	RG_CORCK_SE-2_2020-09-12_1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	Benzo(a)pyrene	0.027	mg/kg	ALS	RG_CORCK_SE-2_2020-09-12_1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	Benzo(b&j)fluoranthene	0.118	mg/kg	ALS	RG_CORCK_SE-2_2020-09-12_1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	Benzo(e)pyrene	0.150	mg/kg	ALS	RG_CORCK_SE-2_2020-09-12_1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	Benzo(g_h_i)perylene	0.071	mg/kg	ALS	RG_CORCK_SE-2_2020-09-12_1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	Benzo(k)fluoranthene	<0.015	mg/kg	ALS	RG_CORCK_SE-2_2020-09-12_1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	Chrysene	0.193	mg/kg	ALS	RG_CORCK_SE-2_2020-09-12_1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	Dibenz(a_h)anthracene	0.019	mg/kg	ALS	RG_CORCK_SE-2_2020-09-12_1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	Fluoranthene	0.032	mg/kg	ALS	RG_CORCK_SE-2_2020-09-12_1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	Fluorene	0.106	mg/kg	ALS	RG_CORCK_SE-2_2020-09-12_1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	Indeno(1,2,3-c,d)pyrene	0.022	mg/kg	ALS	RG_CORCK_SE-2_2020-09-12_1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	2-Methylnaphthalene	1.16	mg/kg	ALS	RG_CORCK_SE-2_2020-09-12_1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	Naphthalene	0.387	mg/kg	ALS	RG_CORCK_SE-2_2020-09-12_1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	Perylene	<0.015	mg/kg	ALS	RG_CORCK_SE-2_2020-09-12_1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	Phenanthrene	0.553	mg/kg	ALS	RG_CORCK_SE-2_2020-09-12_1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	Pyrene	0.064	mg/kg	ALS	RG_CORCK_SE-2_2020-09-12_1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	1-Methylnaphthalene	0.690	mg/kg	ALS	RG_CORCK_SE-2_2020-09-12_1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	Quinoline	<0.015	mg/kg	ALS	RG_CORCK_SE-2_2020-09-12_1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	IACR (CCME)	1.17	-	ALS	RG_CORCK_SE-2_2020-09-12_1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	B(a)P Total Potency Equivalent	0.068	mg/kg	ALS	RG_CORCK_SE-2_2020-09-12_1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	Benzo(b+j+k)fluoranthene	0.118	mg/kg	ALS	RG_CORCK_SE-2_2020-09-12_1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	IACR:Coarse	<0.050	-	ALS	RG_CORCK_SE-2_2020-09-12_1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	IACR:Fine	0.071	-	ALS	RG_CORCK_SE-2_2020-09-12_1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	d8-Naphthalene	100.1	%	ALS	RG_CORCK_SE-2_2020-09-12_1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	d10-Acenaphthene	101.7	%	ALS	RG_CORCK_SE-2_2020-09-12_1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	d10-Phenanthrene	101.2	%	ALS	RG_CORCK_SE-2_2020-09-12_1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	d12-Chrysene	109.3	%	ALS	RG_CORCK_SE-2_2020-09-12_1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	% Gravel (>2 mm)	<1.0	%	ALS	RG_CORCK_SE-2_2020-09-12_1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	% Sand (2.00 mm - 1.00 mm)	<1.0	%	ALS	RG_CORCK_SE-2_2020-09-12_1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	% Sand (1.00 mm - 0.50 mm)	<1.0	%	ALS	RG_CORCK_SE-2_2020-09-12_1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	% Sand (0.50 mm - 0.25 mm)	2.9	%	ALS	RG_CORCK_SE-2_2020-09-12_1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	% Sand (0.25 mm - 0.125 mm)	13.3	%	ALS	RG_CORCK_SE-2_2020-09-12_1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	% Sand (0.125 mm - 0.063 mm)	16.7	%	ALS	RG_CORCK_SE-2_2020-09-12_1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	% Silt (0.063 mm - 0.0312 mm)	28.8	%	ALS	RG_CORCK_SE-2_2020-09-12_1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	% Silt (0.031 mm - 0.004 mm)	32.5	%	ALS	RG_CORCK_SE-2_2020-09-12_1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	% Clay (<4 μm)	4.3	%	ALS	RG_CORCK_SE-2_2020-09-12_1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	Texture	Silt loam	-	ALS	RG_CORCK_SE-2_2020-09-12_1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	Mercury (Hg)	0.0172	mg/kg	ALS	RG_CORCK_SE-2_2020-09-12_1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	Aluminum (Al)	3030	mg/kg	ALS	RG_CORCK_SE-2_2020-09-12_1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	Antimony (Sb)	0.23	mg/kg	ALS	RG_CORCK_SE-2_2020-09-12_1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	Arsenic (As)	1.93	mg/kg	ALS	RG_CORCK_SE-2_2020-09-12_1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	Barium (Ba)	145	mg/kg	ALS	RG_CORCK_SE-2_2020-09-12_1657

WSP Canada Inc. Page 128 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Type	Station	Location	ı (UTMs) ^(a)	Year	Poplicate	Date	Time	Analyta	Popult	Unit		Laboratory Information
Гуре	Station	Easting	Northing	rear	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	Beryllium (Be)	0.35	mg/kg	ALS	RG CORCK SE-2 2020-09-12 1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	Bismuth (Bi)	<0.20	mg/kg	ALS	RG CORCK SE-2 2020-09-12 1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	Boron (B)	9.2	mg/kg	ALS	RG_CORCK_SE-2_2020-09-12_1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	Cadmium (Cd)	9.39	mg/kg	ALS	RG CORCK SE-2 2020-09-12 1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	Calcium (Ca)	278000	mg/kg	ALS	RG_CORCK_SE-2_2020-09-12_1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	Chromium (Cr)	4.24	mg/kg	ALS	RG CORCK SE-2 2020-09-12 1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	Cobalt (Co)	191	mg/kg	ALS	RG CORCK SE-2 2020-09-12 1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	Copper (Cu)	5.46	mg/kg	ALS	RG CORCK SE-2 2020-09-12 1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	Iron (Fe)	3340	mg/kg	ALS	RG_CORCK_SE-2_2020-09-12_1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	Lead (Pb)	2.23	mg/kg	ALS	RG CORCK SE-2 2020-09-12 1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	Lithium (Li)	3.8	mg/kg	ALS	RG_CORCK_SE-2_2020-09-12_1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	Magnesium (Mg)	6170	mg/kg	ALS	RG_CORCK_SE-2_2020-09-12_1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	Manganese (Mn)	1530	mg/kg	ALS	RG_CORCK_SE-2_2020-09-12_1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	Molybdenum (Mo)	0.57	mg/kg	ALS	RG CORCK SE-2 2020-09-12 1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	Nickel (Ni)	223	mg/kg	ALS	RG CORCK SE-2 2020-09-12 1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	Phosphorus (P)	241	mg/kg	ALS	RG CORCK SE-2 2020-09-12 1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	Potassium (K)	840	mg/kg	ALS	RG CORCK SE-2 2020-09-12 1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	Selenium (Se)	2.86	mg/kg	ALS	RG CORCK SE-2 2020-09-12 1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	Silver (Ag)	<0.10	mg/kg	ALS	RG CORCK SE-2 2020-09-12 1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	Sodium (Na)	433	mg/kg	ALS	RG CORCK SE-2 2020-09-12 1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	Strontium (Sr)	411	mg/kg	ALS	RG CORCK SE-2 2020-09-12 1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	Sulfur (S)	4700	mg/kg	ALS	RG CORCK SE-2 2020-09-12 1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	Thallium (TI)	0.165	mg/kg	ALS	RG_CORCK_SE-2_2020-09-12_1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	Tin (Sn)	<2.0	mg/kg	ALS	RG_CORCK_SE-2_2020-09-12_1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	Titanium (Ti)	10.3	mg/kg	ALS	RG CORCK SE-2 2020-09-12 1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	Tungsten (W)	<0.50	mg/kg	ALS	RG CORCK SE-2 2020-09-12 1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	Uranium (U)	2.13	mg/kg	ALS	RG_CORCK_SE-2_2020-09-12_1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	Vanadium (V)	8.51	mg/kg	ALS	RG_CORCK_SE-2_2020-09-12_1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	Zinc (Zn)	922	mg/kg	ALS	RG CORCK SE-2 2020-09-12 1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	Zirconium (Zr)	<1.0	mg/kg	ALS	RG CORCK SE-2 2020-09-12 1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	pH (1:2 soil:water)	8.10	pH	ALS	RG_CORCK_SE-2_2020-09-12_1657
SE	CORCK	668556	5487388	2020	2	2020-09-12	16:57	Total Organic Carbon	7.7	%	ALS	RG CORCK SE-2 2020-09-12 1657
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04	Moisture	57.2	%	ALS	RG CORCK SE-3 2020-09-12 1704
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04	Acenaphthene	<0.060	mg/kg	ALS	RG CORCK SE-3 2020-09-12 1704
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04	Acenaphthylene	<0.0060	mg/kg	ALS	RG CORCK SE-3 2020-09-12 1704
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04	Anthracene	0.0123	mg/kg	ALS	RG CORCK SE-3 2020-09-12 1704
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04	Acridine	<0.10	mg/kg	ALS	RG CORCK SE-3 2020-09-12 1704
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04	Benz(a)anthracene	0.056	mg/kg	ALS	RG CORCK SE-3 2020-09-12 1704
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04	Benzo(a)pyrene	0.047	mg/kg	ALS	RG CORCK SE-3 2020-09-12 1704
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04	Benzo(b&j)fluoranthene	0.179	mg/kg	ALS	RG CORCK SE-3 2020-09-12 1704
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04	Benzo(e)pyrene	0.228	mg/kg	ALS	RG CORCK SE-3 2020-09-12 1704
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04	Benzo(g_h_i)perylene	0.106	mg/kg	ALS	RG CORCK SE-3 2020-09-12 1704
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04	Benzo(k)fluoranthene	<0.010	mg/kg	ALS	RG CORCK SE-3 2020-09-12 1704
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04	Chrysene	0.285	mg/kg	ALS	RG CORCK SE-3 2020-09-12 1704
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04	Dibenz(a h)anthracene	0.0264	mg/kg	ALS	RG CORCK SE-3 2020-09-12 1704
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04	Fluoranthene	0.052	mg/kg	ALS	RG CORCK SE-3 2020-09-12 1704
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04		0.052		ALS	RG CORCK SE-3 2020-09-12 1704
>	CORCR	000000	J40/J00	2020	3	2020-09-12	17:04	Fluorene	0.105	mg/kg	ALO	

WSP Canada Inc. Page 129 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Type	Station	Location	(UTMs) ^(a)	Year	Poplicate	Data	Time	Apolyto	Popult	Unit		Laboratory Information
Гуре	Station	Easting	Northing	rear	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04	Indeno(1,2,3-c,d)pyrene	0.029	mg/kg	ALS	RG CORCK SE-3 2020-09-12 1704
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04	2-Methylnaphthalene	1.67	mg/kg	ALS	RG CORCK SE-3 2020-09-12 1704
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04	Naphthalene	0.561	mg/kg	ALS	RG_CORCK_SE-3_2020-09-12_1704
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04	Perylene	<0.010	mg/kg	ALS	RG_CORCK_SE-3_2020-09-12_1704
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04	Phenanthrene	0.813	mg/kg	ALS	RG_CORCK_SE-3_2020-09-12_1704
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04	Pyrene	0.095	mg/kg	ALS	RG CORCK SE-3 2020-09-12 1704
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04	1-Methylnaphthalene	0.988	mg/kg	ALS	RG CORCK SE-3 2020-09-12 1704
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04	Quinoline	<0.050	mg/kg	ALS	RG CORCK SE-3 2020-09-12 1704
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04	IACR (CCME)	1.72	<u> </u>	ALS	RG CORCK SE-3 2020-09-12 1704
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04	B(a)P Total Potency Equivalent	0.104	mg/kg	ALS	RG CORCK SE-3 2020-09-12 1704
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04	Benzo(b+j+k)fluoranthene	0.179	mg/kg	ALS	RG_CORCK_SE-3_2020-09-12_1704
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04	IACR:Coarse	0.050	-	ALS	RG CORCK SE-3 2020-09-12 1704
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04	IACR:Fine	0.097	_	ALS	RG CORCK SE-3 2020-09-12 1704
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04	d8-Naphthalene	108.9	%	ALS	RG CORCK SE-3 2020-09-12 1704
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04	d10-Acenaphthene	111.1	%	ALS	RG CORCK SE-3 2020-09-12 1704
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04	d10-Phenanthrene	109.2	%	ALS	RG CORCK SE-3 2020-09-12 1704
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04	d12-Chrysene	117.5	%	ALS	RG CORCK SE-3 2020-09-12 1704
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04	% Gravel (>2 mm)	1.2	%	ALS	RG CORCK SE-3 2020-09-12 1704
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04	% Sand (2.00 mm - 1.00 mm)	2.5	%	ALS	RG CORCK SE-3 2020-09-12 1704
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04	% Sand (1.00 mm - 0.50 mm)	4.4	%	ALS	RG CORCK SE-3 2020-09-12 1704
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04	% Sand (0.50 mm - 0.25 mm)	10.8	%	ALS	RG CORCK SE-3 2020-09-12 1704
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04	% Sand (0.25 mm - 0.125 mm)	21.0	%	ALS	RG CORCK SE-3 2020-09-12 1704
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04	% Sand (0.125 mm - 0.063 mm)	18.0	%	ALS	RG CORCK SE-3 2020-09-12 1704
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04	% Silt (0.063 mm - 0.0312 mm)	17.1	%	ALS	RG CORCK SE-3 2020-09-12 1704
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04	% Silt (0.031 mm - 0.004 mm)	20.5	%	ALS	RG CORCK SE-3 2020-09-12 1704
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04	% Clay (<4 µm)	4.5	%	ALS	RG CORCK SE-3 2020-09-12 1704
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04	Texture	Sandy loam	-	ALS	RG_CORCK_SE-3_2020-09-12_1704
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04	Mercury (Hg)	0.0237	mg/kg	ALS	RG CORCK SE-3 2020-09-12 1704
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04	Aluminum (Al)	4420	mg/kg	ALS	RG CORCK SE-3 2020-09-12 1704
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04	Antimony (Sb)	0.12	mg/kg	ALS	RG CORCK SE-3 2020-09-12 1704
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04	Arsenic (As)	3.09	mg/kg	ALS	RG CORCK SE-3 2020-09-12 1704
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04	Barium (Ba)	161	mg/kg	ALS	RG CORCK SE-3 2020-09-12 1704
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04	Beryllium (Be)	0.43	mg/kg	ALS	RG CORCK SE-3 2020-09-12 1704
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04	Bismuth (Bi)	<0.20	mg/kg	ALS	RG CORCK SE-3 2020-09-12 1704
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04	Boron (B)	9.2	mg/kg	ALS	RG CORCK SE-3 2020-09-12 1704
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04	Cadmium (Cd)	8.36	mg/kg	ALS	RG CORCK SE-3 2020-09-12 1704
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04	Calcium (Ca)	243000	mg/kg	ALS	RG CORCK SE-3 2020-09-12 1704
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04	Chromium (Cr)	6.42	mg/kg	ALS	RG CORCK SE-3 2020-09-12 1704
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04	Cobalt (Co)	247	mg/kg	ALS	RG CORCK SE-3 2020-09-12 1704
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04	Copper (Cu)	7.42	mg/kg	ALS	RG CORCK SE-3 2020-09-12 1704
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04	Iron (Fe)	4980	mg/kg	ALS	RG CORCK SE-3 2020-09-12 1704
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04	Lead (Pb)	3.56	mg/kg	ALS	RG CORCK SE-3 2020-09-12 1704
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04	Lithium (Li)	5.1	mg/kg	ALS	RG CORCK SE-3 2020-09-12 1704
~	CORCK	668556	5487388	2020	3	2020-09-12	17:04	Magnesium (Mg)	6370	mg/kg	ALS	RG CORCK SE-3 2020-09-12 1704
SF	551,51					2020-09-12	17:04	Manganese (Mn)	1610			
	CORCK	668556	5487388	ついつい	.5					[[](()/K()	AI >	1K(1 (.()K(.)K .>(=>)()/(=()(=()(=()()()()()()()()()()()()()
SE SE SE	CORCK CORCK	668556 668556	5487388 5487388	2020 2020	3	2020-09-12	17:04	Molybdenum (Mo)	0.77	mg/kg mg/kg	ALS ALS	RG_CORCK_SE-3_2020-09-12_1704 RG_CORCK_SE-3_2020-09-12_1704

WSP Canada Inc. Page 130 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

able I-1	l: Sediment Chem			CMM LAEMP	Sampling St	ations, 2012 to	2022					
Туре	Station		(UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
		Easting	Northing		rtophicato			7 mary to	rtoodit	S.I.I.C	Lab	Sample ID
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04	Phosphorus (P)	276	mg/kg	ALS	RG_CORCK_SE-3_2020-09-12_1704
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04	Potassium (K)	1080	mg/kg	ALS	RG_CORCK_SE-3_2020-09-12_1704
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04	Selenium (Se)	2.13	mg/kg	ALS	RG_CORCK_SE-3_2020-09-12_1704
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04	Silver (Ag)	<0.10	mg/kg	ALS	RG_CORCK_SE-3_2020-09-12_1704
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04	Sodium (Na)	324	mg/kg	ALS	RG_CORCK_SE-3_2020-09-12_1704
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04	Strontium (Sr)	321	mg/kg	ALS	RG_CORCK_SE-3_2020-09-12_1704
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04	Sulfur (S)	3600	mg/kg	ALS	RG_CORCK_SE-3_2020-09-12_1704
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04	Thallium (TI)	0.308	mg/kg	ALS	RG_CORCK_SE-3_2020-09-12_1704
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04	Tin (Sn)	<2.0	mg/kg	ALS	RG_CORCK_SE-3_2020-09-12_1704
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04	Titanium (Ti)	10.9	mg/kg	ALS	RG_CORCK_SE-3_2020-09-12_1704
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04	Tungsten (W)	<0.50	mg/kg	ALS	RG_CORCK_SE-3_2020-09-12_1704
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04	Uranium (U)	1.83	mg/kg	ALS	RG_CORCK_SE-3_2020-09-12_1704
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04	Vanadium (V)	12.5	mg/kg	ALS	RG_CORCK_SE-3_2020-09-12_1704
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04	Zinc (Zn)	777	mg/kg	ALS	RG_CORCK_SE-3_2020-09-12_1704
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_CORCK_SE-3_2020-09-12_1704
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04	pH (1:2 soil:water)	8.22	рН	ALS	RG_CORCK_SE-3_2020-09-12_1704
SE	CORCK	668556	5487388	2020	3	2020-09-12	17:04	Total Organic Carbon	6.1	%	ALS	RG_CORCK_SE-3_2020-09-12_1704
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	Moisture	79.6	%	ALS	RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	Acenaphthene	<0.060	mg/kg	ALS	RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	Acenaphthylene	<0.015	mg/kg	ALS	RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	Anthracene	<0.020	mg/kg	ALS	RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	Acridine	<0.13	mg/kg	ALS	RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	Benz(a)anthracene	0.070	mg/kg	ALS	RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	Benzo(a)pyrene	0.050	mg/kg	ALS	RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	Benzo(b&j)fluoranthene	0.217	mg/kg	ALS	RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	Benzo(e)pyrene	0.270	mg/kg	ALS	RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	Benzo(g_h_i)perylene	0.137	mg/kg	ALS	RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	Benzo(k)fluoranthene	<0.025	mg/kg	ALS	RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	Chrysene	0.362	mg/kg	ALS	RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	Dibenz(a_h)anthracene	0.034	mg/kg	ALS	RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	Fluoranthene	0.071	mg/kg	ALS	RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	Fluorene	0.219	mg/kg	ALS	RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	Indeno(1,2,3-c,d)pyrene	0.032	mg/kg	ALS	RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	2-Methylnaphthalene	2.05	mg/kg	ALS	RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	Naphthalene	0.682	mg/kg	ALS	RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	Perylene	<0.025	mg/kg	ALS	RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	Phenanthrene	0.972	mg/kg	ALS	RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	Pyrene	0.111	mg/kg	ALS	RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	1-Methylnaphthalene	1.20	mg/kg	ALS	RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	Quinoline	<0.025	mg/kg	ALS	RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	IACR (CCME)	2.14	-	ALS	RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	B(a)P Total Potency Equivalent	0.122	mg/kg	ALS	RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	Benzo(b+j+k)fluoranthene	0.217	mg/kg	ALS	RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	IACR:Coarse	0.067	-	ALS	RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	IACR:Fine	0.128	-	ALS	RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	d8-Naphthalene	115.3	%	ALS	RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	d10-Acenaphthene	118.1	%	ALS	RG_CORCK_SE-4_2020-09-13_0936

WSP Canada Inc. Page 131 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	Station		ı (UTMs) ^(a)					Analyta	Decult-	Unit		Laboratory Information
Туре	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	d10-Phenanthrene	117.9	%	ALS	RG CORCK SE-4 2020-09-13 0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	d12-Chrysene	128.4	%	ALS	RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	% Gravel (>2 mm)	<1.0	%	ALS	RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	% Sand (2.00 mm - 1.00 mm)	<1.0	%	ALS	RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	% Sand (1.00 mm - 0.50 mm)	1.1	%	ALS	RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	% Sand (0.50 mm - 0.25 mm)	3.5	%	ALS	RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	% Sand (0.25 mm - 0.125 mm)	14.7	%	ALS	RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	% Sand (0.125 mm - 0.063 mm)	16.5	%	ALS	RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	% Silt (0.063 mm - 0.0312 mm)	26.6	%	ALS	RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	% Silt (0.031 mm - 0.004 mm)	30.8	%	ALS	RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	% Clay (<4 μm)	5.6	%	ALS	RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	Texture	Silt loam	-	ALS	RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	Mercury (Hg)	0.0266	mg/kg	ALS	RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	Aluminum (AI)	4300	mg/kg	ALS	RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	Antimony (Sb)	0.25	mg/kg	ALS	RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	Arsenic (As)	2.48	mg/kg	ALS	RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	Barium (Ba)	201	mg/kg	ALS	RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	Beryllium (Be)	0.44	mg/kg	ALS	RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	Bismuth (Bi)	<0.20	mg/kg	ALS	RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	Boron (B)	10.6	mg/kg	ALS	RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	Cadmium (Cd)	8.80	mg/kg	ALS	RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	Calcium (Ca)	255000	mg/kg	ALS	RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	Chromium (Cr)	6.77	mg/kg	ALS	RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	Cobalt (Co)	232	mg/kg	ALS	RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	Copper (Cu)	8.59	mg/kg	ALS	RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	Iron (Fe)	4300	mg/kg	ALS	RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	Lead (Pb)	3.35	mg/kg	ALS	RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	Lithium (Li)	4.3	mg/kg	ALS	RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	Magnesium (Mg)	6190	mg/kg	ALS	RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	Manganese (Mn)	1490	mg/kg		RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	Molybdenum (Mo)	0.80	mg/kg		RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	Nickel (Ni)	228	mg/kg	ALS	RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	Phosphorus (P)	285	mg/kg	ALS	RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	Potassium (K)	1140	mg/kg	ALS	RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	Selenium (Se)	4.88	mg/kg	ALS	RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	Silver (Ag)	<0.10	mg/kg	ALS	RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	Sodium (Na)	405	mg/kg	ALS	RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	Strontium (Sr)	351	mg/kg	ALS	RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	Sulfur (S)	4400	mg/kg	ALS	RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	Thallium (TI)	0.241	mg/kg	ALS	RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	Tin (Sn)	<2.0	mg/kg	ALS	RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	Titanium (Ti)	11.5	mg/kg	ALS	RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	Tungsten (W)	<0.50	mg/kg	ALS	RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	Uranium (U)	2.10	mg/kg	ALS	RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	Vanadium (V)	13.0	mg/kg	ALS	RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	Zinc (Zn)	852	mg/kg	ALS	RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_CORCK_SE-4_2020-09-13_0936

WSP Canada Inc. Page 132 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	Station		າ (UTMs) ^(a)	Year	Replicate		Time	Analyte	Result	Unit		Laboratory Information
Type	Station	Easting	Northing	i eai	Replicate	Date	Tillle	Allalyte	Result	Ullit	Lab	Sample ID
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	pH (1:2 soil:water)	8.00	pН	ALS	RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	4	2020-09-13	09:36	Total Organic Carbon	9.2	%	ALS	RG_CORCK_SE-4_2020-09-13_0936
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	Moisture	61.7	%	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	Acenaphthene	0.0488	mg/kg	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	Acenaphthylene	0.0123	mg/kg	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	Anthracene	0.0062	mg/kg	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	Acridine	<0.10	mg/kg	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	Benz(a)anthracene	0.055	mg/kg	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	Benzo(a)pyrene	0.038	mg/kg	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	Benzo(b&j)fluoranthene	0.170	mg/kg	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	Benzo(e)pyrene	0.203	mg/kg	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	Benzo(g_h_i)perylene	0.092	mg/kg	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	Benzo(k)fluoranthene	<0.010	mg/kg	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	Chrysene	0.277	mg/kg	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	Dibenz(a_h)anthracene	0.0246	mg/kg	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	Fluoranthene	0.053	mg/kg	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	Fluorene	0.139	mg/kg	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	Indeno(1,2,3-c,d)pyrene	0.025	mg/kg	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	2-Methylnaphthalene	1.58	mg/kg	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	Naphthalene	0.555	mg/kg	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	Perylene	<0.010	mg/kg	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	Phenanthrene	0.777	mg/kg	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	Pyrene	0.090	mg/kg	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	1-Methylnaphthalene	0.943	mg/kg	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	Quinoline	<0.050	mg/kg	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	IACR (CCME)	1.63	-	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	B(a)P Total Potency Equivalent	0.092	mg/kg	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	Benzo(b+j+k)fluoranthene	0.170	mg/kg	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	IACR:Coarse	<0.050	-	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	IACR:Fine	0.092	-	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	d8-Naphthalene	105.5	%	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	d10-Acenaphthene	108.4	%	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	d10-Phenanthrene	104.7	%	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	d12-Chrysene	113.9	%	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	% Gravel (>2 mm)	<1.0	%	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	% Sand (2.00 mm - 1.00 mm)	<1.0	%	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	% Sand (1.00 mm - 0.50 mm)	5.2	%	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	% Sand (0.50 mm - 0.25 mm)	11.9	%	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	% Sand (0.25 mm - 0.125 mm)	18.9	%	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	% Sand (0.125 mm - 0.063 mm)	15.0	%	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	% Silt (0.063 mm - 0.0312 mm)	16.8	%	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	% Silt (0.031 mm - 0.004 mm)	24.7	%	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	% Clay (<4 μm)	6.2	%	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	Texture	Sandy loam	_	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	Mercury (Hg)	0.0251	mg/kg	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	Aluminum (Al)	3900	mg/kg	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	Antimony (Sb)	0.22	mg/kg	ALS	RG CORCK SE-5 2020-09-13 0946

WSP Canada Inc. Page 133 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	Station		(UTMs) ^(a)	Year	Replicate		Time	Analyta	Pocult	Unit		Laboratory Information
Type	Station	Easting	Northing	rear	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	Arsenic (As)	3.23	mg/kg	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	Barium (Ba)	167	mg/kg	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	Beryllium (Be)	0.44	mg/kg	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	Bismuth (Bi)	<0.20	mg/kg	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	Boron (B)	9.2	mg/kg	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	Cadmium (Cd)	9.08	mg/kg	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	Calcium (Ca)	216000	mg/kg	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	Chromium (Cr)	5.90	mg/kg	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	Cobalt (Co)	191	mg/kg	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	Copper (Cu)	8.52	mg/kg	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	Iron (Fe)	4790	mg/kg	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	Lead (Pb)	3.96	mg/kg	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	Lithium (Li)	4.2	mg/kg	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	Magnesium (Mg)	6170	mg/kg	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	Manganese (Mn)	1360	mg/kg	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	Molybdenum (Mo)	0.71	mg/kg	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	Nickel (Ni)	201	mg/kg	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	Phosphorus (P)	330	mg/kg	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	Potassium (K)	1010	mg/kg	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	Selenium (Se)	2.74	mg/kg	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	Silver (Ag)	<0.10	mg/kg	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	Sodium (Na)	328	mg/kg	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	Strontium (Sr)	295	mg/kg	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	Sulfur (S)	3200	mg/kg	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	Thallium (TI)	0.258	mg/kg	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	Tin (Sn)	<2.0	mg/kg	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	Titanium (Ti)	9.8	mg/kg	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	Tungsten (W)	<0.50	mg/kg	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	Uranium (U)	1.74	mg/kg	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	Vanadium (V)	12.1	mg/kg		RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	Zinc (Zn)	849	mg/kg		RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	pH (1:2 soil:water)	8.16	pН	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	CORCK	668556	5487388	2020	5	2020-09-13	09:46	Total Organic Carbon	8.9	%	ALS	RG_CORCK_SE-5_2020-09-13_0946
SE	MI25	668186	5482838	2020	1	2020-09-11	10:16	Moisture	56.0	%	ALS	RG_MI25_SE-1_2020-09-11_1016
SE	MI25	668186	5482838	2020	1	2020-09-11	10:16	Acenaphthene	<0.0050	mg/kg	ALS	RG_MI25_SE-1_2020-09-11_1016
SE	MI25	668186	5482838	2020	1	2020-09-11	10:16	Acenaphthylene	<0.0050	mg/kg	ALS	RG_MI25_SE-1_2020-09-11_1016
SE	MI25	668186	5482838	2020	1	2020-09-11	10:16	Anthracene	<0.0040	mg/kg	ALS	RG_MI25_SE-1_2020-09-11_1016
SE	MI25	668186	5482838	2020	1	2020-09-11	10:16	Acridine	<0.010	mg/kg	ALS	RG_MI25_SE-1_2020-09-11_1016
SE	MI25	668186	5482838	2020	1 1	2020-09-11	10:16	Benz(a)anthracene	<0.010	mg/kg	ALS	RG_MI25_SE-1_2020-09-11_1016
SE	MI25	668186	5482838	2020	1 1	2020-09-11	10:16	Benzo(a)pyrene	<0.010	mg/kg	ALS	RG_MI25_SE-1_2020-09-11_1016
SE	MI25	668186	5482838	2020	1	2020-09-11	10:16	Benzo(b&j)fluoranthene	0.011	mg/kg		RG_MI25_SE-1_2020-09-11_1016
SE	MI25	668186	5482838	2020	1	2020-09-11	10:16	Benzo(e)pyrene	0.014	mg/kg	ALS	RG_MI25_SE-1_2020-09-11_1016
SE	MI25	668186	5482838	2020	1 1	2020-09-11	10:16	Benzo(g_h_i)perylene	<0.010	mg/kg	ALS	RG_MI25_SE-1_2020-09-11_1016
SE	MI25	668186	5482838	2020	1 1	2020-09-11	10:16	Benzo(k)fluoranthene	<0.010	mg/kg	ALS	RG_MI25_SE-1_2020-09-11_1016
SE	MI25	668186	5482838	2020	1 1	2020-09-11	10:16	Chrysene	0.025	mg/kg	ALS	RG_MI25_SE-1_2020-09-11_1016
SE	MI25	668186	5482838	2020	1	2020-09-11	10:16	Dibenz(a_h)anthracene	<0.0050	mg/kg	ALS	RG_MI25_SE-1_2020-09-11_1016

WSP Canada Inc. Page 134 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	Ctotion	Location	n (UTMs) ^(a)	Vasu	Donlingto	Dete	Time	Amaluta	Decult	Herit		Laboratory Information
ype	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE .	MI25	668186	5482838	2020	1	2020-09-11	10:16	Fluoranthene	<0.010	mg/kg	ALS	RG MI25 SE-1 2020-09-11 1016
E	MI25	668186	5482838	2020	1	2020-09-11	10:16	Fluorene	<0.010	mg/kg	ALS	RG MI25 SE-1 2020-09-11 1016
E	MI25	668186	5482838	2020	1	2020-09-11	10:16	Indeno(1,2,3-c,d)pyrene	<0.010	mg/kg	ALS	RG MI25 SE-1 2020-09-11 1016
E	MI25	668186	5482838	2020	1	2020-09-11	10:16	2-Methylnaphthalene	0.013	mg/kg	ALS	RG MI25 SE-1 2020-09-11 1016
E	MI25	668186	5482838	2020	1 1	2020-09-11	10:16	Naphthalene	<0.010	mg/kg	ALS	RG MI25 SE-1_2020-09-11_1016
E E	MI25	668186	5482838	2020	1	2020-09-11	10:16	Perylene	<0.010	mg/kg	ALS	RG MI25 SE-1 2020-09-11 1016
E E	MI25	668186	5482838	2020	1 1	2020-09-11	10:16	Phenanthrene	0.024	mg/kg	ALS	RG MI25 SE-1 2020-09-11 1016
E	MI25	668186	5482838	2020	1 1	2020-09-11	10:16	Pyrene	0.010	mg/kg	ALS	RG MI25 SE-1 2020-09-11 1016
E	MI25	668186	5482838	2020	1	2020-09-11	10:16	1-Methylnaphthalene	<0.050	mg/kg	ALS	RG MI25 SE-1 2020-09-11 1016
E	MI25	668186	5482838	2020	1 1	2020-09-11	10:16	Quinoline	<0.050	mg/kg	ALS	RG MI25 SE-1 2020-09-11 1016
E	MI25	668186	5482838	2020	1	2020-09-11	10:16	IACR (CCME)	0.15	mg/kg	ALS	RG MI25 SE-1 2020-09-11 1016
E	MI25	668186	5482838	2020	1	2020-09-11	10:16	B(a)P Total Potency Equivalent	<0.020	mg/kg	ALS	RG MI25 SE-1 2020-09-11 1016
E	MI25	668186	5482838	2020	1	2020-09-11	10:16	Benzo(b+j+k)fluoranthene	<0.020		ALS	RG MI25 SE-1 2020-09-11 1016
E	MI25	668186	5482838	2020	1	2020-09-11	10:16	IACR:Coarse	<0.013	mg/kg	ALS	RG MI25 SE-1 2020-09-11 1016
E	MI25	668186	5482838	2020	1	2020-09-11	10:16	IACR:Coarse	<0.050	-	ALS	RG MI25 SE-1 2020-09-11 1016
E					1					- 0/		
	MI25	668186	5482838	2020	1 1	2020-09-11	10:16	d8-Naphthalene	97.1	%	ALS	RG_MI25_SE-1_2020-09-11_1016
E	MI25	668186	5482838	2020	1 1	2020-09-11	10:16	d10-Acenaphthene	98.6	%	ALS	RG_MI25_SE-1_2020-09-11_1016
E	MI25	668186	5482838	2020	1 1	2020-09-11	10:16	d10-Phenanthrene	98.2	%	ALS	RG_MI25_SE-1_2020-09-11_1016
E	MI25	668186	5482838	2020	1 1	2020-09-11	10:16	d12-Chrysene	108.4	%	ALS	RG_MI25_SE-1_2020-09-11_1016
E	MI25	668186	5482838	2020	1	2020-09-11	10:16	% Gravel (>2 mm)	<1.0	%	ALS	RG_MI25_SE-1_2020-09-11_1016
E	MI25	668186	5482838	2020	1	2020-09-11	10:16	% Sand (2.00 mm - 1.00 mm)	<1.0	%	ALS	RG_MI25_SE-1_2020-09-11_1016
E	MI25	668186	5482838	2020	1	2020-09-11	10:16	% Sand (1.00 mm - 0.50 mm)	1.5	%	ALS	RG_MI25_SE-1_2020-09-11_1016
E	MI25	668186	5482838	2020	1	2020-09-11	10:16	% Sand (0.50 mm - 0.25 mm)	3.2	%	ALS	RG_MI25_SE-1_2020-09-11_1016
Е	MI25	668186	5482838	2020	1 1	2020-09-11	10:16	% Sand (0.25 mm - 0.125 mm)	14.0	%	ALS	RG_MI25_SE-1_2020-09-11_1016
E	MI25	668186	5482838	2020	1 1	2020-09-11	10:16	% Sand (0.125 mm - 0.063 mm)	18.1	%	ALS	RG_MI25_SE-1_2020-09-11_1016
E	MI25	668186	5482838	2020	1	2020-09-11	10:16	% Silt (0.063 mm - 0.0312 mm)	26.8	%	ALS	RG_MI25_SE-1_2020-09-11_1016
E	MI25	668186	5482838	2020	1	2020-09-11	10:16	% Silt (0.031 mm - 0.004 mm)	29.1	%	ALS	RG_MI25_SE-1_2020-09-11_1016
E	MI25	668186	5482838	2020	1	2020-09-11	10:16	% Clay (<4 μm)	6.9	%	ALS	RG_MI25_SE-1_2020-09-11_1016
E	MI25	668186	5482838	2020	1	2020-09-11	10:16	Texture	Silt loam	-	ALS	RG_MI25_SE-1_2020-09-11_1016
E	MI25	668186	5482838	2020	1	2020-09-11	10:16	Mercury (Hg)	0.0487	mg/kg	ALS	RG_MI25_SE-1_2020-09-11_1016
Ε	MI25	668186	5482838	2020	1	2020-09-11	10:16	Aluminum (Al)	16000	mg/kg	ALS	RG_MI25_SE-1_2020-09-11_1016
E	MI25	668186	5482838	2020	1	2020-09-11	10:16	Antimony (Sb)	0.57	mg/kg	ALS	RG_MI25_SE-1_2020-09-11_1016
E	MI25	668186	5482838	2020	1	2020-09-11	10:16	Arsenic (As)	10.2	mg/kg	ALS	RG_MI25_SE-1_2020-09-11_1016
E	MI25	668186	5482838	2020	1	2020-09-11	10:16	Barium (Ba)	164	mg/kg	ALS	RG_MI25_SE-1_2020-09-11_1016
E	MI25	668186	5482838	2020	1	2020-09-11	10:16	Beryllium (Be)	0.88	mg/kg	ALS	RG_MI25_SE-1_2020-09-11_1016
E	MI25	668186	5482838	2020	1	2020-09-11	10:16	Bismuth (Bi)	0.24	mg/kg	ALS	RG_MI25_SE-1_2020-09-11_1016
E	MI25	668186	5482838	2020	1	2020-09-11	10:16	Boron (B)	15.2	mg/kg	ALS	RG_MI25_SE-1_2020-09-11_1016
E	MI25	668186	5482838	2020	1	2020-09-11	10:16	Cadmium (Cd)	1.31	mg/kg	ALS	RG MI25 SE-1 2020-09-11 1016
E	MI25	668186	5482838	2020	1	2020-09-11	10:16	Calcium (Ca)	17100	mg/kg	ALS	RG MI25 SE-1 2020-09-11 1016
E	MI25	668186	5482838	2020	1	2020-09-11	10:16	Chromium (Cr)	20.3	mg/kg	ALS	RG_MI25_SE-1_2020-09-11_1016
E	MI25	668186	5482838	2020	1	2020-09-11	10:16	Cobalt (Co)	8.16	mg/kg	ALS	RG_MI25_SE-1_2020-09-11_1016
E	MI25	668186	5482838	2020	1	2020-09-11	10:16	Copper (Cu)	27.5	mg/kg	ALS	RG_MI25_SE-1_2020-09-11_1016
E	MI25	668186	5482838	2020	1	2020-09-11	10:16	Iron (Fe)	20900	mg/kg	ALS	RG MI25 SE-1 2020-09-11 1016
E	MI25	668186	5482838	2020	1	2020-09-11	10:16	Lead (Pb)	16.3	mg/kg	ALS	RG MI25 SE-1 2020-09-11 1016
E	MI25	668186	5482838	2020	1 1	2020-09-11	10:16	Lithium (Li)	21.3	mg/kg	ALS	RG MI25 SE-1 2020-09-11 1016
E	MI25	668186	5482838	2020	1	2020-09-11	10:16	Magnesium (Mg)	6850	mg/kg	ALS	RG MI25 SE-1 2020-09-11 1016
Ε	MI25	668186	5482838	2020	1 1	2020-09-11	10:16	Manganese (Mn)	551			RG MI25 SE-1_2020-09-11_1016
/ С	IVIIZO	000100	J402030	ZUZU		ZUZU-U3-11	10.10	liviariyariese (iviii)	ี บับ เ	mg/kg	ALO	NG_WIZ5_3E-1_2020-09-11_1016

WSP Canada Inc. Page 135 of 337

Sediment Screening

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	Ctation	Location	ı (UTMs) ^(a)	Vasu	Danlingto	Dete	Times	Aughsta	Dogulf.	Herit		Laboratory Information
ype	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
E	MI25	668186	5482838	2020	1	2020-09-11	10:16	Molybdenum (Mo)	5.78	mg/kg	ALS	RG MI25 SE-1 2020-09-11 1016
E	MI25	668186	5482838	2020	1	2020-09-11	10:16	Nickel (Ni)	31.4	mg/kg	ALS	RG MI25 SE-1 2020-09-11 1016
- E	MI25	668186	5482838	2020	1	2020-09-11	10:16	Phosphorus (P)	1130	mg/kg	ALS	RG MI25_SE-1_2020-09-11_1016
E	MI25	668186	5482838	2020	1	2020-09-11	10:16	Potassium (K)	3140	mg/kg	ALS	RG MI25 SE-1 2020-09-11 1016
E	MI25	668186	5482838	2020	1	2020-09-11	10:16	Selenium (Se)	1.02	mg/kg	ALS	RG_MI25_SE-1_2020-09-11_1016
E	MI25	668186	5482838	2020	1	2020-09-11	10:16	Silver (Ag)	0.17	mg/kg	ALS	RG MI25 SE-1 2020-09-11 1016
E	MI25	668186	5482838	2020	1	2020-09-11	10:16	Sodium (Na)	89	mg/kg	ALS	RG MI25 SE-1 2020-09-11 1016
E	MI25	668186	5482838	2020	1	2020-09-11	10:16	Strontium (Sr)	47.8	mg/kg	ALS	RG MI25 SE-1 2020-09-11 1016
E	MI25	668186	5482838	2020	1	2020-09-11	10:16	Sulfur (S)	<1000	mg/kg	ALS	RG MI25 SE-1 2020-09-11 1016
E	MI25	668186	5482838	2020	1	2020-09-11	10:16	Thallium (TI)	0.756	mg/kg	ALS	RG MI25 SE-1 2020-09-11 1016
E	MI25	668186	5482838	2020	1	2020-09-11	10:16	Tin (Sn)	<2.0	mg/kg	ALS	RG MI25 SE-1 2020-09-11 1016
E	MI25	668186	5482838	2020	1	2020-09-11	10:16	Titanium (Ti)	22.2	mg/kg	ALS	RG MI25 SE-1 2020-09-11 1016
E	MI25	668186	5482838	2020	1	2020-09-11	10:16	Tungsten (W)	<0.50	mg/kg	ALS	RG MI25 SE-1 2020-09-11 1016
E	MI25	668186	5482838	2020	1	2020-09-11	10:16	Uranium (U)	0.929	mg/kg	ALS	RG MI25 SE-1 2020-09-11 1016
E E	MI25	668186	5482838	2020	1	2020-09-11	10:16	Vanadium (V)	38.4	mg/kg	ALS	RG MI25 SE-1 2020-09-11 1016
E	MI25	668186	5482838	2020	1	2020-09-11	10:16	Zinc (Zn)	136	mg/kg	ALS	RG_MI25_SE-1_2020-09-11_1016
E	MI25	668186	5482838	2020	1	2020-09-11	10:16	Zirconium (Zr)	1.0	mg/kg	ALS	RG MI25 SE-1 2020-09-11 1016
E	MI25	668186	5482838	2020	1	2020-09-11	10:16	pH (1:2 soil:water)	8.00	pH	ALS	RG MI25 SE-1 2020-09-11 1016
E	MI25	668186	5482838	2020	1	2020-09-11	10:16	Total Organic Carbon	3.43	%	ALS	RG MI25 SE-1 2020-09-11 1016
=	MI25	668186	5482838	2020	2	2020-09-11	10:10	Moisture	57.4	%	ALS	RG MI25 SE-2 2020-09-11_1033
= †	MI25	668186	5482838	2020	2	2020-09-11	10:33	Acenaphthene	<0.0050	mg/kg	ALS	RG MI25 SE-2 2020-09-11 1033
	MI25	668186	5482838	2020	2	2020-09-11	10:33	Acenaphthylene	<0.0050		ALS	RG MI25 SE-2 2020-09-11 1033
=	MI25	668186	5482838	2020	2	2020-09-11	10:33	Anthracene	<0.0030	mg/kg	ALS	RG MI25 SE-2 2020-09-11_1033
	MI25	668186	5482838	2020	2		10.33	Acridine	<0.0040	mg/kg	ALS	
					_	2020-09-11				mg/kg	<u> </u>	RG_MI25_SE-2_2020-09-11_1033
E E	MI25 MI25	668186	5482838 5482838	2020	2	2020-09-11	10:33	Benz(a)anthracene	<0.010	mg/kg	ALS	RG_MI25_SE-2_2020-09-11_1033
		668186		2020	2	2020-09-11	10:33	Benzo(a)pyrene	<0.010	mg/kg	ALS	RG_MI25_SE-2_2020-09-11_1033
E	MI25	668186	5482838	2020		2020-09-11	10:33	Benzo(b&j)fluoranthene	<0.010	mg/kg	ALS	RG_MI25_SE-2_2020-09-11_1033
SE SE	MI25	668186	5482838	2020	2	2020-09-11	10:33	Benzo(e)pyrene	0.011	mg/kg	ALS	RG_MI25_SE-2_2020-09-11_1033
E	MI25	668186	5482838	2020	2	2020-09-11	10:33	Benzo(g_h_i)perylene	<0.010	mg/kg	ALS	RG_MI25_SE-2_2020-09-11_1033
	MI25	668186	5482838	2020	2	2020-09-11	10:33	Benzo(k)fluoranthene	<0.010	mg/kg	ALS	RG_MI25_SE-2_2020-09-11_1033
E	MI25	668186	5482838	2020		2020-09-11	10:33	Chrysene	0.019	mg/kg	ALS	RG_MI25_SE-2_2020-09-11_1033
E	MI25	668186	5482838	2020	2	2020-09-11	10:33	Dibenz(a_h)anthracene	<0.0050	mg/kg	ALS	RG_MI25_SE-2_2020-09-11_1033
E	MI25	668186	5482838	2020	2	2020-09-11	10:33	Fluoranthene	<0.010	mg/kg	ALS	RG_MI25_SE-2_2020-09-11_1033
E	MI25	668186	5482838	2020	2	2020-09-11	10:33	Fluorene	<0.010	mg/kg	ALS	RG_MI25_SE-2_2020-09-11_1033
E	MI25	668186	5482838	2020	2	2020-09-11	10:33	Indeno(1,2,3-c,d)pyrene	<0.010	mg/kg	ALS	RG_MI25_SE-2_2020-09-11_1033
E	MI25	668186	5482838	2020	2	2020-09-11	10:33	2-Methylnaphthalene	<0.010	mg/kg	ALS	RG_MI25_SE-2_2020-09-11_1033
E	MI25	668186	5482838	2020	2	2020-09-11	10:33	Naphthalene	<0.010	mg/kg	ALS	RG_MI25_SE-2_2020-09-11_1033
<u>E</u>	MI25	668186	5482838	2020	2	2020-09-11	10:33	Perylene	<0.010	mg/kg	ALS	RG_MI25_SE-2_2020-09-11_1033
E	MI25	668186	5482838	2020	2	2020-09-11	10:33	Phenanthrene	0.016	mg/kg	ALS	RG_MI25_SE-2_2020-09-11_1033
E	MI25	668186	5482838	2020	2	2020-09-11	10:33	Pyrene	<0.010	mg/kg	ALS	RG_MI25_SE-2_2020-09-11_1033
E	MI25	668186	5482838	2020	2	2020-09-11	10:33	1-Methylnaphthalene	<0.050	mg/kg	ALS	RG_MI25_SE-2_2020-09-11_1033
<u>E</u>	MI25	668186	5482838	2020	2	2020-09-11	10:33	Quinoline	<0.050	mg/kg	ALS	RG_MI25_SE-2_2020-09-11_1033
E	MI25	668186	5482838	2020	2	2020-09-11	10:33	IACR (CCME)	<0.15	-	ALS	RG_MI25_SE-2_2020-09-11_1033
E	MI25	668186	5482838	2020	2	2020-09-11	10:33	B(a)P Total Potency Equivalent	<0.020	mg/kg	ALS	RG_MI25_SE-2_2020-09-11_1033
E	MI25	668186	5482838	2020	2	2020-09-11	10:33	Benzo(b+j+k)fluoranthene	<0.015	mg/kg	ALS	RG_MI25_SE-2_2020-09-11_1033
E	MI25	668186	5482838	2020	2	2020-09-11	10:33	IACR:Coarse	<0.050	-	ALS	RG_MI25_SE-2_2020-09-11_1033
E	MI25	668186	5482838	2020	2	2020-09-11	10:33	IACR:Fine	< 0.050	_	ALS	RG_MI25_SE-2_2020-09-11_1033

WSP Canada Inc. Page 136 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Гуре	Station	Location	າ (UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
ype	Station	Easting	Northing	i eai	Replicate	Date	Tille	Allalyte	Result	Oiil	Lab	Sample ID
SE	MI25	668186	5482838	2020	2	2020-09-11	10:33	d8-Naphthalene	108.4	%	ALS	RG_MI25_SE-2_2020-09-11_1033
SE	MI25	668186	5482838	2020	2	2020-09-11	10:33	d10-Acenaphthene	110.7	%	ALS	RG_MI25_SE-2_2020-09-11_1033
SE	MI25	668186	5482838	2020	2	2020-09-11	10:33	d10-Phenanthrene	109.2	%	ALS	RG_MI25_SE-2_2020-09-11_1033
SE	MI25	668186	5482838	2020	2	2020-09-11	10:33	d12-Chrysene	116.8	%	ALS	RG_MI25_SE-2_2020-09-11_1033
SE	MI25	668186	5482838	2020	2	2020-09-11	10:33	% Gravel (>2 mm)	<1.0	%	ALS	RG_MI25_SE-2_2020-09-11_1033
SE	MI25	668186	5482838	2020	2	2020-09-11	10:33	% Sand (2.00 mm - 1.00 mm)	4.4	%	ALS	RG_MI25_SE-2_2020-09-11_1033
SE	MI25	668186	5482838	2020	2	2020-09-11	10:33	% Sand (1.00 mm - 0.50 mm)	15.5	%	ALS	RG_MI25_SE-2_2020-09-11_1033
SE.	MI25	668186	5482838	2020	2	2020-09-11	10:33	% Sand (0.50 mm - 0.25 mm)	28.1	%	ALS	RG_MI25_SE-2_2020-09-11_1033
SE	MI25	668186	5482838	2020	2	2020-09-11	10:33	% Sand (0.25 mm - 0.125 mm)	17.9	%	ALS	RG_MI25_SE-2_2020-09-11_1033
SE.	MI25	668186	5482838	2020	2	2020-09-11	10:33	% Sand (0.125 mm - 0.063 mm)	9.0	%	ALS	RG_MI25_SE-2_2020-09-11_1033
SE.	MI25	668186	5482838	2020	2	2020-09-11	10:33	% Silt (0.063 mm - 0.0312 mm)	7.8	%	ALS	RG_MI25_SE-2_2020-09-11_1033
SE.	MI25	668186	5482838	2020	2	2020-09-11	10:33	% Silt (0.031 mm - 0.004 mm)	10.5	%	ALS	RG_MI25_SE-2_2020-09-11_1033
SE	MI25	668186	5482838	2020	2	2020-09-11	10:33	% Clay (<4 μm)	6.1	%	ALS	RG MI25 SE-2 2020-09-11 1033
SE	MI25	668186	5482838	2020	2	2020-09-11	10:33	Texture	Loamy sand	-	ALS	RG_MI25_SE-2_2020-09-11_1033
SE	MI25	668186	5482838	2020	2	2020-09-11	10:33	Mercury (Hg)	0.0416	mg/kg	ALS	RG_MI25_SE-2_2020-09-11_1033
SE	MI25	668186	5482838	2020	2	2020-09-11	10:33	Aluminum (AI)	15400	mg/kg	ALS	RG_MI25_SE-2_2020-09-11_1033
SE.	MI25	668186	5482838	2020	2	2020-09-11	10:33	Antimony (Sb)	0.63	mg/kg	ALS	RG MI25 SE-2 2020-09-11 1033
SE.	MI25	668186	5482838	2020	2	2020-09-11	10:33	Arsenic (As)	11.5	mg/kg	ALS	RG MI25 SE-2 2020-09-11 1033
SE.	MI25	668186	5482838	2020	2	2020-09-11	10:33	Barium (Ba)	171	mg/kg	ALS	RG MI25 SE-2 2020-09-11 1033
Е	MI25	668186	5482838	2020	2	2020-09-11	10:33	Beryllium (Be)	0.93	mg/kg	ALS	RG MI25 SE-2 2020-09-11 1033
Е	MI25	668186	5482838	2020	2	2020-09-11	10:33	Bismuth (Bi)	0.25	mg/kg	ALS	RG MI25 SE-2 2020-09-11 1033
Е	MI25	668186	5482838	2020	2	2020-09-11	10:33	Boron (B)	13.0	mg/kg	ALS	RG_MI25_SE-2_2020-09-11_1033
Ε	MI25	668186	5482838	2020	2	2020-09-11	10:33	Cadmium (Cd)	1.47	mg/kg	ALS	RG MI25 SE-2 2020-09-11 1033
E	MI25	668186	5482838	2020	2	2020-09-11	10:33	Calcium (Ca)	16700	mg/kg	ALS	RG MI25 SE-2 2020-09-11 1033
SE	MI25	668186	5482838	2020	2	2020-09-11	10:33	Chromium (Cr)	19.8	mg/kg	ALS	RG MI25 SE-2 2020-09-11 1033
SE.	MI25	668186	5482838	2020	2	2020-09-11	10:33	Cobalt (Co)	9.43	mg/kg	ALS	RG MI25 SE-2 2020-09-11 1033
SE.	MI25	668186	5482838	2020	2	2020-09-11	10:33	Copper (Cu)	29.4	mg/kg	ALS	RG MI25 SE-2 2020-09-11 1033
SE	MI25	668186	5482838	2020	2	2020-09-11	10:33	Iron (Fe)	24800	mg/kg	ALS	RG MI25 SE-2 2020-09-11 1033
SE.	MI25	668186	5482838	2020	2	2020-09-11	10:33	Lead (Pb)	18.3	mg/kg	ALS	RG MI25 SE-2 2020-09-11 1033
SE.	MI25	668186	5482838	2020	2	2020-09-11	10:33	Lithium (Ĺi)	23.5	mg/kg	ALS	RG MI25 SE-2 2020-09-11 1033
SE.	MI25	668186	5482838	2020	2	2020-09-11	10:33	Magnesium (Mg)	6570	mg/kg	ALS	RG_MI25_SE-2_2020-09-11_1033
SE	MI25	668186	5482838	2020	2	2020-09-11	10:33	Manganese (Mn)	593	mg/kg	ALS	RG MI25 SE-2 2020-09-11 1033
E	MI25	668186	5482838	2020	2	2020-09-11	10:33	Molybdenum (Mo)	5.87	mg/kg	ALS	RG MI25 SE-2 2020-09-11 1033
SE.	MI25	668186	5482838	2020	2	2020-09-11	10:33	Nickel (Ni)	33.7	mg/kg	ALS	RG MI25 SE-2 2020-09-11 1033
E	MI25	668186	5482838	2020	2	2020-09-11	10:33	Phosphorus (P)	1240	mg/kg	ALS	RG MI25 SE-2 2020-09-11 1033
SE.	MI25	668186	5482838	2020	2	2020-09-11	10:33	Potassium (K)	2740	mg/kg	ALS	RG MI25 SE-2 2020-09-11 1033
SE	MI25	668186	5482838	2020	2	2020-09-11	10:33	Selenium (Se)	1.02	mg/kg	ALS	RG MI25 SE-2 2020-09-11 1033
SE	MI25	668186	5482838	2020	2	2020-09-11	10:33	Silver (Ag)	0.15	mg/kg	ALS	RG MI25 SE-2 2020-09-11 1033
E	MI25	668186	5482838	2020	2	2020-09-11	10:33	Sodium (Na)	86	mg/kg	ALS	RG MI25 SE-2 2020-09-11 1033
SE	MI25	668186	5482838	2020	2	2020-09-11	10:33	Strontium (Sr)	49.5	mg/kg	ALS	RG MI25 SE-2 2020-09-11 1033
SE.	MI25	668186	5482838	2020	2	2020-09-11	10:33	Sulfur (S)	<1000	mg/kg	ALS	RG MI25 SE-2 2020-09-11 1033
SE.	MI25	668186	5482838	2020	2	2020-09-11	10:33	Thallium (TI)	0.768	mg/kg	ALS	RG MI25 SE-2 2020-09-11 1033
SE	MI25	668186	5482838	2020	2	2020-09-11	10:33	Tin (Sn)	<2.0	mg/kg	ALS	RG MI25 SE-2 2020-09-11 1033
SE	MI25	668186	5482838	2020	2	2020-09-11	10:33	Titanium (Ti)	17.8	mg/kg	ALS	RG MI25 SE-2 2020-09-11 1033
SE SE	MI25	668186	5482838	2020	2	2020-09-11	10:33	Tungsten (W)	<0.50	mg/kg	ALS	RG MI25 SE-2 2020-09-11 1033
SE	MI25	668186	5482838	2020	2	2020-09-11	10:33	Uranium (U)	0.877	mg/kg	ALS	RG MI25 SE-2 2020-09-11 1033
SE	MI25	668186	5482838	2020	2	2020-09-11	10:33	Vanadium (V)	36.1	mg/kg		RG MI25 SE-2 2020-09-11 1033

WSP Canada Inc. Page 137 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Table I-	1: Sediment Chem			CMm LAEMP	Sampling St	ations, 2012 to	2022					
Туре	Station		(UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
	Station	Easting	Northing		rtophodio		111110	7 mary to	rtoodit	O	Lab	Sample ID
SE	MI25	668186	5482838	2020	2	2020-09-11	10:33	Zinc (Zn)	155	mg/kg	ALS	RG_MI25_SE-2_2020-09-11_1033
SE	MI25	668186	5482838	2020	2	2020-09-11	10:33	Zirconium (Zr)	1.1	mg/kg	ALS	RG_MI25_SE-2_2020-09-11_1033
SE	MI25	668186	5482838	2020	2	2020-09-11	10:33	pH (1:2 soil:water)	7.94	pН	ALS	RG_MI25_SE-2_2020-09-11_1033
SE	MI25	668186	5482838	2020	2	2020-09-11	10:33	Total Organic Carbon	1.96	%	ALS	RG_MI25_SE-2_2020-09-11_1033
SE	MI25	668186	5482838	2020	3	2020-09-11	14:55	Moisture	55.3	%	ALS	RG_MI25_SE-3_2020-09-11_1455
SE	MI25	668186	5482838	2020	3	2020-09-11	14:55	Acenaphthene	<0.0050	mg/kg	ALS	RG_MI25_SE-3_2020-09-11_1455
SE	MI25	668186	5482838	2020	3	2020-09-11	14:55	Acenaphthylene	<0.0050	mg/kg	ALS	RG_MI25_SE-3_2020-09-11_1455
SE	MI25	668186	5482838	2020	3	2020-09-11	14:55	Anthracene	<0.0040	mg/kg	ALS	RG_MI25_SE-3_2020-09-11_1455
SE	MI25	668186	5482838	2020	3	2020-09-11	14:55	Acridine	<0.010	mg/kg	ALS	RG_MI25_SE-3_2020-09-11_1455
SE	MI25	668186	5482838	2020	3	2020-09-11	14:55	Benz(a)anthracene	<0.010	mg/kg	ALS	RG_MI25_SE-3_2020-09-11_1455
SE	MI25	668186	5482838	2020	3	2020-09-11	14:55	Benzo(a)pyrene	<0.010	mg/kg	ALS	RG_MI25_SE-3_2020-09-11_1455
SE	MI25	668186	5482838	2020	3	2020-09-11	14:55	Benzo(b&j)fluoranthene	<0.010	mg/kg	ALS	RG_MI25_SE-3_2020-09-11_1455
SE	MI25	668186	5482838	2020	3	2020-09-11	14:55	Benzo(e)pyrene	0.012	mg/kg	ALS	RG_MI25_SE-3_2020-09-11_1455
SE	MI25	668186	5482838	2020	3	2020-09-11	14:55	Benzo(g_h_i)perylene	<0.010	mg/kg	ALS	RG_MI25_SE-3_2020-09-11_1455
SE	MI25	668186	5482838	2020	3	2020-09-11	14:55	Benzo(k)fluoranthene	<0.010	mg/kg	ALS	RG_MI25_SE-3_2020-09-11_1455
SE	MI25	668186	5482838	2020	3	2020-09-11	14:55	Chrysene	<0.026	mg/kg	ALS	RG_MI25_SE-3_2020-09-11_1455
SE	MI25	668186	5482838	2020	3	2020-09-11	14:55	Dibenz(a h)anthracene	<0.0050	mg/kg	ALS	RG_MI25_SE-3_2020-09-11_1455
SE	MI25	668186	5482838	2020	3	2020-09-11	14:55	Fluoranthene	<0.010	mg/kg	ALS	RG MI25 SE-3 2020-09-11 1455
SE	MI25	668186	5482838	2020	3	2020-09-11	14:55	Fluorene	<0.010	mg/kg	ALS	RG MI25 SE-3 2020-09-11 1455
SE	MI25	668186	5482838	2020	3	2020-09-11	14:55	Indeno(1,2,3-c,d)pyrene	<0.010	mg/kg	ALS	RG MI25 SE-3 2020-09-11 1455
SE	MI25	668186	5482838	2020	3	2020-09-11	14:55	2-Methylnaphthalene	0.011	mg/kg	ALS	RG MI25 SE-3 2020-09-11 1455
SE	MI25	668186	5482838	2020	3	2020-09-11	14:55	Naphthalene	<0.010	mg/kg	ALS	RG MI25 SE-3 2020-09-11 1455
SE	MI25	668186	5482838	2020	3	2020-09-11	14:55	Perylene	<0.010	mg/kg	ALS	RG MI25 SE-3 2020-09-11 1455
SE	MI25	668186	5482838	2020	3	2020-09-11	14:55	Phenanthrene	0.023	mg/kg	ALS	RG MI25 SE-3 2020-09-11 1455
SE	MI25	668186	5482838	2020	3	2020-09-11	14:55	Pyrene	<0.010	mg/kg	ALS	RG MI25 SE-3 2020-09-11 1455
SE	MI25	668186	5482838	2020	3	2020-09-11	14:55	1-Methylnaphthalene	<0.050	mg/kg	ALS	RG MI25 SE-3 2020-09-11 1455
SE	MI25	668186	5482838	2020	3	2020-09-11	14:55	Quinoline	<0.050	mg/kg	ALS	RG MI25 SE-3 2020-09-11 1455
SE	MI25	668186	5482838	2020	3	2020-09-11	14:55	IACR (CCME)	<0.15	-	ALS	RG MI25 SE-3 2020-09-11_1455
SE	MI25	668186	5482838	2020	3	2020-09-11	14:55	B(a)P Total Potency Equivalent	<0.020	mg/kg	ALS	RG MI25 SE-3 2020-09-11 1455
SE	MI25	668186	5482838	2020	3	2020-09-11	14:55	Benzo(b+j+k)fluoranthene	<0.015	mg/kg	ALS	RG MI25 SE-3 2020-09-11 1455
SE	MI25	668186	5482838	2020	3	2020-09-11	14:55	IACR:Coarse	<0.050	-	ALS	RG_MI25_SE-3_2020-09-11_1455
SE	MI25	668186	5482838	2020	3	2020-09-11	14:55	IACR:Fine	<0.050	_	ALS	RG MI25 SE-3 2020-09-11 1455
SE	MI25	668186	5482838	2020	3	2020-09-11	14:55	d8-Naphthalene	99.2	%	ALS	RG MI25 SE-3 2020-09-11 1455
SE	MI25	668186	5482838	2020	3	2020-09-11	14:55	d10-Acenaphthene	102.2	%	ALS	RG MI25 SE-3 2020-09-11 1455
SE	MI25	668186	5482838	2020	3	2020-09-11	14:55	d10-Phenanthrene	99.2	%	ALS	RG MI25 SE-3 2020-09-11 1455
SE	MI25	668186	5482838	2020	3	2020-09-11	14:55	d12-Chrysene	106.8	%	ALS	RG MI25 SE-3 2020-09-11_1455
SE	MI25	668186	5482838	2020	3	2020-09-11	14:55	% Gravel (>2 mm)	<1.0	%	ALS	RG MI25 SE-3 2020-09-11 1455
SE	MI25	668186	5482838	2020	3	2020-09-11	14:55	% Sand (2.00 mm - 1.00 mm)	<1.0	%	ALS	RG MI25 SE-3 2020-09-11 1455
SE	MI25	668186	5482838	2020	3	2020-09-11	14:55	% Sand (1.00 mm - 0.50 mm)	<1.0	%	ALS	RG MI25 SE-3 2020-09-11 1455
SE	MI25	668186	5482838	2020	3	2020-09-11	14:55	% Sand (1.50 mm - 0.25 mm)	2.7	%	ALS	RG MI25 SE-3 2020-09-11 1455
SE	MI25	668186	5482838	2020	3	2020-09-11	14:55	% Sand (0.25 mm - 0.125 mm)	13.3	%	ALS	RG MI25 SE-3 2020-09-11 1455
SE	MI25	668186	5482838	2020	3	2020-09-11	14:55	% Sand (0.25 mm - 0.063 mm)	20.5	%	ALS	RG MI25 SE-3 2020-09-11 1455
SE	MI25	668186	5482838	2020	3	2020-09-11	14:55	% Silt (0.063 mm - 0.0312 mm)	26.6	%	ALS	RG MI25 SE-3 2020-09-11 1455
SE	MI25	668186	5482838	2020	3	2020-09-11	14.55	% Silt (0.063 mm - 0.0312 mm)	28.8	%	ALS	RG MI25 SE-3 2020-09-11 1455
SE	MI25	668186	5482838	2020	3	2020-09-11	14.55	% Siii (0.031 min - 0.004 min) % Clay (<4 μm)	7.1	% %	ALS	RG MI25 SE-3 2020-09-11 1455
SE	MI25	668186	5482838	2020	3	2020-09-11	14.55	76 Clay (<4 μπ) Texture	Silt loam	/0	ALS	RG MI25 SE-3 2020-09-11 1455
			ł – – – – – – – – – – – – – – – – – – –							malka		
SE	MI25	668186	5482838	2020	3	2020-09-11	14:55	Mercury (Hg)	0.0448	mg/kg	ALS	RG_MI25_SE-3_2020-09-11_1455

WSP Canada Inc. Page 138 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

.//20	Ctation	Location	(UTMs) ^(a)	Veer	Donlinete	Doto	Times	Analyte	Decuit-	Lloit		Laboratory Information
ype	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MI25	668186	5482838	2020	3	2020-09-11	14:55	Aluminum (AI)	15900	mg/kg	ALS	RG MI25 SE-3 2020-09-11 1455
SE	MI25	668186	5482838	2020	3	2020-09-11	14:55	Antimony (Sb)	0.54	mg/kg	ALS	RG MI25 SE-3 2020-09-11 1455
SE.	MI25	668186	5482838	2020	3	2020-09-11	14:55	Arsenic (As)	10.3	mg/kg	ALS	RG MI25 SE-3 2020-09-11 1455
SE	MI25	668186	5482838	2020	3	2020-09-11	14:55	Barium (Ba)	164	mg/kg	ALS	RG MI25 SE-3 2020-09-11 1455
SE	MI25	668186	5482838	2020	3	2020-09-11	14:55	Beryllium (Be)	0.90	mg/kg	ALS	RG_MI25_SE-3_2020-09-11_1455
<u>=</u> SE	MI25	668186	5482838	2020	3	2020-09-11	14:55	Bismuth (Bi)	0.22	mg/kg	ALS	RG MI25 SE-3 2020-09-11 1455
<u>=</u> E	MI25	668186	5482838	2020	3	2020-09-11	14:55	Boron (B)	16.0	mg/kg	ALS	RG MI25 SE-3 2020-09-11 1455
<u>=</u>	MI25	668186	5482838	2020	3	2020-09-11	14:55	Cadmium (Cd)	1.31	mg/kg	ALS	RG MI25 SE-3 2020-09-11 1455
<u>=</u>	MI25	668186	5482838	2020	3	2020-09-11	14:55	Calcium (Ca)	16500	mg/kg	ALS	RG_MI25_SE-3_2020-09-11_1455
<u></u>	MI25	668186	5482838	2020	3	2020-09-11	14:55	Chromium (Cr)	19.9	mg/kg	ALS	RG_MI25_SE-3_2020-09-11_1455
<u>-</u> Е	MI25	668186	5482838	2020	3	2020-09-11	14:55	Cobalt (Co)	8.10	mg/kg	ALS	RG MI25 SE-3 2020-09-11 1455
<u>– </u>	MI25	668186	5482838	2020	3	2020-09-11	14:55	Copper (Cu)	27.3	mg/kg	ALS	RG MI25 SE-3 2020-09-11 1455
<u>–</u> Е	MI25	668186	5482838	2020	3	2020-09-11	14:55	Iron (Fe)	21600	mg/kg	ALS	RG MI25 SE-3 2020-09-11 1455
<u>– </u>	MI25	668186	5482838	2020	3	2020-09-11	14:55	Lead (Pb)	15.2	mg/kg	ALS	RG MI25 SE-3 2020-09-11 1455
<u>– </u>	MI25	668186	5482838	2020	3	2020-09-11	14:55	Lithium (Li)	22.2	mg/kg	ALS	RG MI25 SE-3 2020-09-11 1455
<u>-</u> Е	MI25	668186	5482838	2020	3	2020-09-11	14:55	Magnesium (Mg)	6780	mg/kg	ALS	RG_MI25_SE-3_2020-09-11_1455
<u></u> E	MI25	668186	5482838	2020	3	2020-09-11	14:55	Manganese (Mn)	508	mg/kg	ALS	RG MI25 SE-3 2020-09-11 1455
<u>-</u> Е	MI25	668186	5482838	2020	3	2020-09-11	14:55	Molybdenum (Mo)	6.02	mg/kg	ALS	RG MI25 SE-3 2020-09-11 1455
<u> </u>	MI25	668186	5482838	2020	3	2020-09-11	14:55	Nickel (Ni)	31.5	mg/kg	ALS	RG MI25 SE-3 2020-09-11 1455
<u></u>	MI25	668186	5482838	2020	3	2020-09-11	14:55	Phosphorus (P)	1210	mg/kg	ALS	RG MI25 SE-3 2020-09-11 1455
<u>-</u>	MI25	668186	5482838	2020	3	2020-09-11	14:55	` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `	3180		ALS	RG MI25 SE-3 2020-09-11 1455
	MI25	668186	5482838		3	4	14:55	Potassium (K) Selenium (Se)	1.04	mg/kg	ALS	RG MI25 SE-3 2020-09-11 1455
<u> </u>			-	2020		2020-09-11		` '		mg/kg		
	MI25	668186	5482838	2020	3	2020-09-11	14:55	Silver (Ag)	0.16	mg/kg	ALS	RG_MI25_SE-3_2020-09-11_1455
	MI25	668186	5482838	2020	3	2020-09-11	14:55	Sodium (Na)	87	mg/kg	ALS	RG_MI25_SE-3_2020-09-11_1455
<u> </u>	MI25	668186	5482838	2020	3	2020-09-11	14:55	Strontium (Sr)	49.7	mg/kg	ALS	RG_MI25_SE-3_2020-09-11_1455
	MI25	668186	5482838	2020	3	2020-09-11	14:55	Sulfur (S)	<1000	mg/kg	ALS	RG_MI25_SE-3_2020-09-11_1455
<u> </u>	MI25	668186	5482838	2020	3	2020-09-11	14:55	Thallium (TI)	0.819	mg/kg	ALS	RG_MI25_SE-3_2020-09-11_1455
	MI25	668186	5482838	2020	3	2020-09-11	14:55	Tin (Sn)	<2.0	mg/kg	ALS	RG_MI25_SE-3_2020-09-11_1455
	MI25	668186	5482838	2020	3	2020-09-11	14:55	Titanium (Ti)	21.1	mg/kg	ALS	RG_MI25_SE-3_2020-09-11_1455
<u> </u>	MI25	668186	5482838	2020	3	2020-09-11	14:55	Tungsten (W)	<0.50	mg/kg	ALS	RG_MI25_SE-3_2020-09-11_1455
=	MI25	668186	5482838	2020	3	2020-09-11	14:55	Uranium (U)	0.941	mg/kg	ALS	RG_MI25_SE-3_2020-09-11_1455
<u> </u>	MI25	668186	5482838	2020	3	2020-09-11	14:55	Vanadium (V)	38.1	mg/kg	ALS	RG_MI25_SE-3_2020-09-11_1455
:	MI25	668186	5482838	2020	3	2020-09-11	14:55	Zinc (Zn)	138	mg/kg	ALS	RG_MI25_SE-3_2020-09-11_1455
	MI25	668186	5482838	2020	3	2020-09-11	14:55	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_MI25_SE-3_2020-09-11_1455
	MI25	668186	5482838	2020	3	2020-09-11	14:55	pH (1:2 soil:water)	8.11	pН	ALS	RG_MI25_SE-3_2020-09-11_1455
=	MI25	668186	5482838	2020	3	2020-09-11	14:55	Total Organic Carbon	2.88	%	ALS	RG_MI25_SE-3_2020-09-11_1455
	MIUCO	668134	5486767	2020	1	2020-09-12	10:26	Moisture	60.6	%	ALS	RG_MIUCO_SE-1_2020-09-12_1026
<u> </u>	MIUCO	668134	5486767	2020	1	2020-09-12	10:26	Acenaphthene	<0.0050	mg/kg	ALS	RG_MIUCO_SE-1_2020-09-12_1026
:	MIUCO	668134	5486767	2020	1	2020-09-12	10:26	Acenaphthylene	<0.0050	mg/kg	ALS	RG_MIUCO_SE-1_2020-09-12_1026
:	MIUCO	668134	5486767	2020	1	2020-09-12	10:26	Anthracene	<0.0040	mg/kg	ALS	RG_MIUCO_SE-1_2020-09-12_1026
	MIUCO	668134	5486767	2020	1	2020-09-12	10:26	Acridine	<0.010	mg/kg	ALS	RG_MIUCO_SE-1_2020-09-12_1026
	MIUCO	668134	5486767	2020	1	2020-09-12	10:26	Benz(a)anthracene	<0.010	mg/kg	ALS	RG_MIUCO_SE-1_2020-09-12_1026
	MIUCO	668134	5486767	2020	1	2020-09-12	10:26	Benzo(a)pyrene	<0.010	mg/kg	ALS	RG_MIUCO_SE-1_2020-09-12_1026
:	MIUCO	668134	5486767	2020	1	2020-09-12	10:26	Benzo(b&j)fluoranthene	0.010	mg/kg	ALS	RG_MIUCO_SE-1_2020-09-12_1026
	MIUCO	668134	5486767	2020	1	2020-09-12	10:26	Benzo(e)pyrene	0.014	mg/kg	ALS	RG_MIUCO_SE-1_2020-09-12_1026
	MIUCO	668134	5486767	2020	1	2020-09-12	10:26	Benzo(g_h_i)perylene	<0.010	mg/kg	ALS	RG_MIUCO_SE-1_2020-09-12_1026
	MIUCO	668134	5486767	2020	†	2020-09-12	10:26	Benzo(k)fluoranthene	<0.010	mg/kg	ALS	RG MIUCO SE-1 2020-09-12 1026

WSP Canada Inc. Page 139 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	Station		(UTMs) ^(a)					Analyte	- Posult -	Unit		Laboratory Information
Type	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MIUCO	668134	5486767	2020	1	2020-09-12	10:26	Chrysene	< 0.030	mg/kg	ALS	RG_MIUCO_SE-1_2020-09-12_1026
SE	MIUCO	668134	5486767	2020	1	2020-09-12	10:26	Dibenz(a_h)anthracene	<0.0050	mg/kg	ALS	RG_MIUCO_SE-1_2020-09-12_1026
SE	MIUCO	668134	5486767	2020	1	2020-09-12	10:26	Fluoranthene	<0.010	mg/kg	ALS	RG_MIUCO_SE-1_2020-09-12_1026
SE	MIUCO	668134	5486767	2020	1	2020-09-12	10:26	Fluorene	<0.010	mg/kg	ALS	RG_MIUCO_SE-1_2020-09-12_1026
SE	MIUCO	668134	5486767	2020	1	2020-09-12	10:26	Indeno(1,2,3-c,d)pyrene	<0.010	mg/kg	ALS	RG_MIUCO_SE-1_2020-09-12_1026
SE	MIUCO	668134	5486767	2020	1	2020-09-12	10:26	2-Methylnaphthalene	0.027	mg/kg	ALS	RG_MIUCO_SE-1_2020-09-12_1026
SE	MIUCO	668134	5486767	2020	1	2020-09-12	10:26	Naphthalene	0.016	mg/kg	ALS	RG_MIUCO_SE-1_2020-09-12_1026
SE	MIUCO	668134	5486767	2020	1	2020-09-12	10:26	Perylene	0.023	mg/kg	ALS	RG_MIUCO_SE-1_2020-09-12_1026
SE	MIUCO	668134	5486767	2020	1	2020-09-12	10:26	Phenanthrene	0.037	mg/kg	ALS	RG_MIUCO_SE-1_2020-09-12_1026
SE	MIUCO	668134	5486767	2020	1	2020-09-12	10:26	Pyrene	<0.010	mg/kg	ALS	RG_MIUCO_SE-1_2020-09-12_1026
SE	MIUCO	668134	5486767	2020	1	2020-09-12	10:26	1-Methylnaphthalene	<0.050	mg/kg	ALS	RG_MIUCO_SE-1_2020-09-12_1026
SE	MIUCO	668134	5486767	2020	1	2020-09-12	10:26	Quinoline	<0.050	mg/kg	ALS	RG_MIUCO_SE-1_2020-09-12_1026
SE	MIUCO	668134	5486767	2020	1	2020-09-12	10:26	IACR (CCME)	<0.15	-	ALS	RG_MIUCO_SE-1_2020-09-12_1026
SE	MIUCO	668134	5486767	2020	1	2020-09-12	10:26	B(a)P Total Potency Equivalent	<0.020	mg/kg	ALS	RG_MIUCO_SE-1_2020-09-12_1026
SE	MIUCO	668134	5486767	2020	1	2020-09-12	10:26	Benzo(b+j+k)fluoranthene	<0.015	mg/kg	ALS	RG_MIUCO_SE-1_2020-09-12_1026
SE	MIUCO	668134	5486767	2020	1	2020-09-12	10:26	IACR:Coarse	<0.050	-	ALS	RG_MIUCO_SE-1_2020-09-12_1026
SE	MIUCO	668134	5486767	2020	1	2020-09-12	10:26	IACR:Fine	<0.050	-	ALS	RG_MIUCO_SE-1_2020-09-12_1026
SE	MIUCO	668134	5486767	2020	1	2020-09-12	10:26	d8-Naphthalene	103.7	%	ALS	RG_MIUCO_SE-1_2020-09-12_1026
SE	MIUCO	668134	5486767	2020	1	2020-09-12	10:26	d10-Acenaphthene	104.5	%	ALS	RG_MIUCO_SE-1_2020-09-12_1026
SE	MIUCO	668134	5486767	2020	1	2020-09-12	10:26	d10-Phenanthrene	102.3	%	ALS	RG_MIUCO_SE-1_2020-09-12_1026
SE	MIUCO	668134	5486767	2020	1	2020-09-12	10:26	d12-Chrysene	111.6	%	ALS	RG_MIUCO_SE-1_2020-09-12_1026
SE	MIUCO	668134	5486767	2020	1	2020-09-12	10:26	% Gravel (>2 mm)	<1.0	%	ALS	RG_MIUCO_SE-1_2020-09-12_1026
SE	MIUCO	668134	5486767	2020	1	2020-09-12	10:26	% Sand (2.00 mm - 1.00 mm)	<1.0	%	ALS	RG_MIUCO_SE-1_2020-09-12_1026
SE	MIUCO	668134	5486767	2020	1	2020-09-12	10:26	% Sand (1.00 mm - 0.50 mm)	1.6	%	ALS	RG_MIUCO_SE-1_2020-09-12_1026
SE	MIUCO	668134	5486767	2020	1	2020-09-12	10:26	% Sand (0.50 mm - 0.25 mm)	5.1	%	ALS	RG_MIUCO_SE-1_2020-09-12_1026
SE	MIUCO	668134	5486767	2020	1	2020-09-12	10:26	% Sand (0.25 mm - 0.125 mm)	10.2	%	ALS	RG_MIUCO_SE-1_2020-09-12_1026
SE	MIUCO	668134	5486767	2020	1	2020-09-12	10:26	% Sand (0.125 mm - 0.063 mm)	17.3	%	ALS	RG_MIUCO_SE-1_2020-09-12_1026
SE	MIUCO	668134	5486767	2020	1	2020-09-12	10:26	% Silt (0.063 mm - 0.0312 mm)	27.1	%	ALS	RG_MIUCO_SE-1_2020-09-12_1026
SE	MIUCO	668134	5486767	2020	1	2020-09-12	10:26	% Silt (0.031 mm - 0.004 mm)	31.1	%	ALS	RG_MIUCO_SE-1_2020-09-12_1026
SE	MIUCO	668134	5486767	2020	1	2020-09-12	10:26	% Clay (<4 μm)	7.1	%	ALS	RG_MIUCO_SE-1_2020-09-12_1026
SE	MIUCO	668134	5486767	2020	1	2020-09-12	10:26	Texture	Silt loam	-		RG_MIUCO_SE-1_2020-09-12_1026
SE	MIUCO	668134	5486767	2020	1 1	2020-09-12	10:26	Mercury (Hg)	0.0330	mg/kg	ALS	RG_MIUCO_SE-1_2020-09-12_1026
SE	MIUCO	668134	5486767	2020	1 1	2020-09-12	10:26	Aluminum (Al)	15900	mg/kg	ALS	RG_MIUCO_SE-1_2020-09-12_1026
SE	MIUCO	668134	5486767	2020	1	2020-09-12	10:26	Antimony (Sb)	0.27	mg/kg	ALS	RG_MIUCO_SE-1_2020-09-12_1026
SE	MIUCO	668134	5486767	2020	1	2020-09-12	10:26	Arsenic (As)	7.54	mg/kg	ALS	RG_MIUCO_SE-1_2020-09-12_1026
SE	MIUCO	668134	5486767	2020	1	2020-09-12	10:26	Barium (Ba)	208	mg/kg	ALS	RG_MIUCO_SE-1_2020-09-12_1026
SE	MIUCO	668134	5486767	2020	1 1	2020-09-12	10:26	Beryllium (Be)	0.86	mg/kg	ALS	RG_MIUCO_SE-1_2020-09-12_1026
SE	MIUCO	668134	5486767	2020	1 1	2020-09-12	10:26	Bismuth (Bi)	0.20	mg/kg	ALS	RG_MIUCO_SE-1_2020-09-12_1026
SE	MIUCO	668134	5486767	2020	1	2020-09-12	10:26	Boron (B)	17.3	mg/kg	ALS	RG_MIUCO_SE-1_2020-09-12_1026
SE	MIUCO	668134	5486767	2020	1 1	2020-09-12	10:26	Cadmium (Cd)	0.861	mg/kg	ALS	RG_MIUCO_SE-1_2020-09-12_1026
SE	MIUCO	668134	5486767	2020	1 1	2020-09-12	10:26	Calcium (Ca)	17900	mg/kg	ALS	RG_MIUCO_SE-1_2020-09-12_1026
SE	MIUCO	668134	5486767	2020	1	2020-09-12	10:26	Chromium (Cr)	20.0	mg/kg		RG_MIUCO_SE-1_2020-09-12_1026
SE	MIUCO	668134	5486767	2020	1 1	2020-09-12	10:26	Cobalt (Co)	8.12	mg/kg	ALS	RG_MIUCO_SE-1_2020-09-12_1026
SE	MIUCO	668134	5486767	2020	1 1	2020-09-12	10:26	Copper (Cu)	19.5	mg/kg	ALS	RG_MIUCO_SE-1_2020-09-12_1026
SE	MIUCO	668134	5486767	2020	1 1	2020-09-12	10:26	Iron (Fe)	21200	mg/kg	ALS	RG_MIUCO_SE-1_2020-09-12_1026
SE	MIUCO	668134	5486767	2020	1	2020-09-12	10:26	Lead (Pb)	12.3	mg/kg	ALS	RG_MIUCO_SE-1_2020-09-12_1026
SE	MIUCO	668134	5486767	2020	1	2020-09-12	10:26	Lithium (Li)	20.5	mg/kg	ALS	RG_MIUCO_SE-1_2020-09-12_1026

WSP Canada Inc. Page 140 of 337

Sediment Screening

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Type	Station	Location	(UTMs) ^(a)	Voor	Poplicate	Data	Time	Analyte	Popult	Unit		Laboratory Information
Туре	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MIUCO	668134	5486767	2020	1	2020-09-12	10:26	Magnesium (Mg)	7050	mg/kg	ALS	RG_MIUCO_SE-1_2020-09-12_1026
SE	MIUCO	668134	5486767	2020	1	2020-09-12	10:26	Manganese (Mn)	607	mg/kg	ALS	RG MIUCO SE-1 2020-09-12 1026
SE	MIUCO	668134	5486767	2020	1	2020-09-12	10:26	Molybdenum (Mo)	2.31	mg/kg	ALS	RG MIUCO SE-1 2020-09-12 1026
SE	MIUCO	668134	5486767	2020	1	2020-09-12	10:26	Nickel (Ni)	24.2	mg/kg	ALS	RG MIUCO SE-1 2020-09-12 1026
SE	MIUCO	668134	5486767	2020	1	2020-09-12	10:26	Phosphorus (P)	1290	mg/kg	ALS	RG MIUCO SE-1 2020-09-12 1026
SE	MIUCO	668134	5486767	2020	1	2020-09-12	10:26	Potassium (K)	3590	mg/kg	ALS	RG MIUCO SE-1 2020-09-12 1026
SE	MIUCO	668134	5486767	2020	1	2020-09-12	10:26	Selenium (Se)	0.82	mg/kg	ALS	RG MIUCO SE-1 2020-09-12 1026
SE	MIUCO	668134	5486767	2020	1	2020-09-12	10:26	Silver (Ag)	0.13	mg/kg	ALS	RG MIUCO SE-1 2020-09-12 1026
SE	MIUCO	668134	5486767	2020	1	2020-09-12	10:26	Sodium (Na)	86	mg/kg	ALS	RG MIUCO SE-1 2020-09-12 1026
SE	MIUCO	668134	5486767	2020	1	2020-09-12	10:26	Strontium (Sr)	51.7	mg/kg	ALS	RG MIUCO SE-1 2020-09-12 1026
SE	MIUCO	668134	5486767	2020	1	2020-09-12	10:26	Sulfur (S)	<1000	mg/kg	ALS	RG_MIUCO_SE-1_2020-09-12_1026
SE	MIUCO	668134	5486767	2020	1	2020-09-12	10:26	Thallium (TI)	0.438	mg/kg	ALS	RG MIUCO SE-1 2020-09-12 1026
SE	MIUCO	668134	5486767	2020	1	2020-09-12	10:26	Tin (Sn)	<2.0	mg/kg	ALS	RG MIUCO SE-1 2020-09-12 1026
SE	MIUCO	668134	5486767	2020	1	2020-09-12	10:26	Titanium (Ti)	19.6	mg/kg	ALS	RG MIUCO SE-1 2020-09-12 1026
SE	MIUCO	668134	5486767	2020	1	2020-09-12	10:26	Tungsten (W)	<0.50	mg/kg	ALS	RG_MIUCO_SE-1_2020-09-12_1026
SE	MIUCO	668134	5486767	2020	1	2020-09-12	10:26	Uranium (U)	0.701	mg/kg	ALS	RG MIUCO SE-1 2020-09-12 1026
SE	MIUCO	668134	5486767	2020	1	2020-09-12	10:26	Vanadium (V)	32.8	mg/kg	ALS	RG MIUCO SE-1 2020-09-12 1026
SE	MIUCO	668134	5486767	2020	1	2020-09-12	10:26	Zinc (Zn)	99.1	mg/kg	ALS	RG MIUCO SE-1 2020-09-12 1026
SE	MIUCO	668134	5486767	2020	1	2020-09-12	10:26	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_MIUCO_SE-1_2020-09-12_1026
SE	MIUCO	668134	5486767	2020	1	2020-09-12	10:26	pH (1:2 soil:water)	7.91	pH	ALS	RG MIUCO SE-1 2020-09-12 1026
SE	MIUCO	668134	5486767	2020	1	2020-09-12	10:26	Total Organic Carbon	3.37	%	ALS	RG_MIUCO_SE-1_2020-09-12_1026
SE	MIUCO	668134	5486767	2020	2	2020-09-12	11:37	Moisture	69.8	%	ALS	RG_MIUCO_SE-1_2020-09-12_1020
SE	MIUCO	668134	5486767	2020	2	2020-09-12	11:37	Acenaphthene	<0.0080		ALS	RG MIUCO SE-2 2020-09-12 1137
SE			-	2020	2			·	<0.0080	mg/kg		
SE	MIUCO	668134 668134	5486767 5486767	2020	2	2020-09-12 2020-09-12	11:37 11:37	Acenaphthylene Anthracene	<0.0064	mg/kg	ALS ALS	RG_MIUCO_SE-2_2020-09-12_1137 RG_MIUCO_SE-2_2020-09-12_1137
SE	MIUCO		5486767		2		11:37	Acridine	<0.0064	mg/kg	ALS	RG_MIUCO_SE-2_2020-09-12_1137
SE	MIUCO	668134		2020	2	2020-09-12				mg/kg		
SE		668134	5486767	2020	_	2020-09-12 2020-09-12	11:37	Benz(a)anthracene	<0.016	mg/kg	ALS	RG_MIUCO_SE-2_2020-09-12_1137
SE	MIUCO	668134	5486767	2020	2		11:37	Benzo(a)pyrene	<0.016	mg/kg	ALS	RG_MIUCO_SE-2_2020-09-12_1137
SE	MIUCO	668134	5486767	2020	2	2020-09-12	11:37	Benzo(b&j)fluoranthene	0.028	mg/kg	ALS	RG_MIUCO_SE-2_2020-09-12_1137
	MIUCO	668134	5486767	2020	2	2020-09-12	11:37	Benzo(e)pyrene	0.031	mg/kg	ALS	RG_MIUCO_SE-2_2020-09-12_1137
SE	MIUCO	668134	5486767	2020		2020-09-12	11:37	Benzo(g_h_i)perylene	<0.016	mg/kg	ALS	RG_MIUCO_SE-2_2020-09-12_1137
SE	MIUCO	668134	5486767	2020	2	2020-09-12	11:37	Benzo(k)fluoranthene	<0.016	mg/kg	ALS	RG_MIUCO_SE-2_2020-09-12_1137
SE	MIUCO	668134	5486767	2020	2	2020-09-12	11:37	Chrysene	0.055	mg/kg	ALS	RG_MIUCO_SE-2_2020-09-12_1137
SE	MIUCO	668134	5486767	2020	2	2020-09-12	11:37	Dibenz(a_h)anthracene	<0.0080	mg/kg	ALS	RG_MIUCO_SE-2_2020-09-12_1137
SE	MIUCO	668134	5486767	2020	2	2020-09-12	11:37	Fluoranthene	<0.016	mg/kg	ALS	RG_MIUCO_SE-2_2020-09-12_1137
SE	MIUCO	668134	5486767	2020	2	2020-09-12	11:37	Fluorene	<0.016	mg/kg	ALS	RG_MIUCO_SE-2_2020-09-12_1137
SE	MIUCO	668134	5486767	2020	2	2020-09-12	11:37	Indeno(1,2,3-c,d)pyrene	<0.016	mg/kg	ALS	RG_MIUCO_SE-2_2020-09-12_1137
SE	MIUCO	668134	5486767	2020	2	2020-09-12	11:37	2-Methylnaphthalene	0.164	mg/kg	ALS	RG_MIUCO_SE-2_2020-09-12_1137
SE	MIUCO	668134	5486767	2020	2	2020-09-12	11:37	Naphthalene	0.055	mg/kg	ALS	RG_MIUCO_SE-2_2020-09-12_1137
SE	MIUCO	668134	5486767	2020	2	2020-09-12	11:37	Perylene	<0.016	mg/kg	ALS	RG_MIUCO_SE-2_2020-09-12_1137
SE	MIUCO	668134	5486767	2020	2	2020-09-12	11:37	Phenanthrene	0.130	mg/kg	ALS	RG_MIUCO_SE-2_2020-09-12_1137
SE	MIUCO	668134	5486767	2020	2	2020-09-12	11:37	Pyrene	0.018	mg/kg	ALS	RG_MIUCO_SE-2_2020-09-12_1137
SE	MIUCO	668134	5486767	2020	2	2020-09-12	11:37	1-Methylnaphthalene	0.115	mg/kg	ALS	RG_MIUCO_SE-2_2020-09-12_1137
SE	MIUCO	668134	5486767	2020	2	2020-09-12	11:37	Quinoline	<0.016	mg/kg	ALS	RG_MIUCO_SE-2_2020-09-12_1137
SE	MIUCO	668134	5486767	2020	2	2020-09-12	11:37	IACR (CCME)	0.32	-	ALS	RG_MIUCO_SE-2_2020-09-12_1137
SE	MIUCO	668134	5486767	2020		2020-09-12	11:37	B(a)P Total Potency Equivalent	<0.020	mg/kg	ALS	RG_MIUCO_SE-2_2020-09-12_1137
SE	MIUCO	668134	5486767	2020	2	2020-09-12	11:37	Benzo(b+j+k)fluoranthene	0.028	mg/kg	ALS	RG_MIUCO_SE-2_2020-09-12_1137

WSP Canada Inc. Page 141 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Гура	Station	Location	(UTMs) ^(a)	Vacr	Donlinete	Doto	Time	Analyte	Docult	Unit		Laboratory Information
Гуре	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MIUCO	668134	5486767	2020	2	2020-09-12	11:37	IACR:Coarse	<0.050	-	ALS	RG MIUCO SE-2 2020-09-12 1137
SE	MIUCO	668134	5486767	2020	2	2020-09-12	11:37	IACR:Fine	< 0.050	-	ALS	RG MIUCO SE-2 2020-09-12 1137
SE	MIUCO	668134	5486767	2020	2	2020-09-12	11:37	d8-Naphthalene	109.3	%	ALS	RG_MIUCO_SE-2_2020-09-12_1137
SE	MIUCO	668134	5486767	2020	2	2020-09-12	11:37	d10-Acenaphthene	110.9	%	ALS	RG MIUCO SE-2 2020-09-12 1137
SE	MIUCO	668134	5486767	2020	2	2020-09-12	11:37	d10-Phenanthrene	109.3	%	ALS	RG_MIUCO_SE-2_2020-09-12_1137
SE	MIUCO	668134	5486767	2020	2	2020-09-12	11:37	d12-Chrysene	117.6	%	ALS	RG MIUCO SE-2 2020-09-12 1137
SE	MIUCO	668134	5486767	2020	2	2020-09-12	11:37	% Gravel (>2 mm)	<1.0	%	ALS	RG MIUCO SE-2 2020-09-12 1137
SE	MIUCO	668134	5486767	2020	2	2020-09-12	11:37	% Sand (2.00 mm - 1.00 mm)	2.8	%	ALS	RG_MIUCO_SE-2_2020-09-12_1137
SE	MIUCO	668134	5486767	2020	2	2020-09-12	11:37	% Sand (1.00 mm - 0.50 mm)	4.9	%	ALS	RG_MIUCO_SE-2_2020-09-12_1137
SE	MIUCO	668134	5486767	2020	2	2020-09-12	11:37	% Sand (0.50 mm - 0.25 mm)	6.0	%	ALS	RG MIUCO SE-2 2020-09-12 1137
SE	MIUCO	668134	5486767	2020	2	2020-09-12	11:37	% Sand (0.25 mm - 0.125 mm)	6.4	%	ALS	RG_MIUCO_SE-2_2020-09-12_1137
SE	MIUCO	668134	5486767	2020	2	2020-09-12	11:37	% Sand (0.125 mm - 0.063 mm)	12.7	%	ALS	RG MIUCO SE-2 2020-09-12 1137
SE	MIUCO	668134	5486767	2020	2	2020-09-12	11:37	% Silt (0.063 mm - 0.0312 mm)	28.8	%	ALS	RG MIUCO SE-2 2020-09-12 1137
SE	MIUCO	668134	5486767	2020	2	2020-09-12	11:37	% Silt (0.031 mm - 0.004 mm)	33.1	%	ALS	RG MIUCO SE-2 2020-09-12 1137
SE	MIUCO	668134	5486767	2020	2	2020-09-12	11:37	% Clay (<4 μm)	5.2	%	ALS	RG MIUCO SE-2 2020-09-12 1137
SE	MIUCO	668134	5486767	2020	2	2020-09-12	11:37	Texture	Silt loam	-	ALS	RG_MIUCO_SE-2_2020-09-12_1137
SE	MIUCO	668134	5486767	2020	2	2020-09-12	11:37	Mercury (Hg)	0.0342	mg/kg	ALS	RG_MIUCO_SE-2_2020-09-12_1137
SE	MIUCO	668134	5486767	2020	2	2020-09-12	11:37	Aluminum (Al)	14100	mg/kg	ALS	RG MIUCO SE-2 2020-09-12 1137
SE	MIUCO	668134	5486767	2020	2	2020-09-12	11:37	Antimony (Sb)	0.15	mg/kg	ALS	RG_MIUCO_SE-2_2020-09-12_1137
SE	MIUCO	668134	5486767	2020	2	2020-09-12	11:37	Arsenic (As)	6.43	mg/kg	ALS	RG MIUCO SE-2 2020-09-12 1137
SE	MIUCO	668134	5486767	2020	2	2020-09-12	11:37	Barium (Ba)	229	mg/kg	ALS	RG MIUCO SE-2 2020-09-12 1137
SE	MIUCO	668134	5486767	2020	2	2020-09-12	11:37	Beryllium (Be)	0.85	mg/kg	ALS	RG_MIUCO_SE-2_2020-09-12_1137
SE	MIUCO	668134	5486767	2020	2	2020-09-12	11:37	Bismuth (Bi)	<0.20	mg/kg	ALS	RG MIUCO SE-2 2020-09-12 1137
SE	MIUCO	668134	5486767	2020	2	2020-09-12	11:37	Boron (B)	15.1	mg/kg	ALS	RG_MIUCO_SE-2_2020-09-12_1137
SE	MIUCO	668134	5486767	2020	2	2020-09-12	11:37	Cadmium (Cd)	0.880	mg/kg	ALS	RG MIUCO SE-2 2020-09-12 1137
SE	MIUCO	668134	5486767	2020	2	2020-09-12	11:37	Calcium (Ca)	32600	mg/kg	ALS	RG MIUCO SE-2 2020-09-12 1137
SE	MIUCO	668134	5486767	2020	2	2020-09-12	11:37	Chromium (Cr)	18.3	mg/kg	ALS	RG MIUCO SE-2 2020-09-12 1137
SE	MIUCO	668134	5486767	2020	2	2020-09-12	11:37	Cobalt (Co)	6.55	mg/kg	ALS	RG MIUCO SE-2 2020-09-12 1137
SE	MIUCO	668134	5486767	2020	2	2020-09-12	11:37	Copper (Cu)	18.3	mg/kg	ALS	RG MIUCO SE-2 2020-09-12 1137
SE	MIUCO	668134	5486767	2020	2	2020-09-12	11:37	Iron (Fe)	18800	mg/kg	ALS	RG MIUCO SE-2 2020-09-12 1137
SE	MIUCO	668134	5486767	2020	2	2020-09-12	11:37	Lead (Pb)	10.7	mg/kg	ALS	RG_MIUCO_SE-2_2020-09-12_1137
SE	MIUCO	668134	5486767	2020	2	2020-09-12	11:37	Lithium (Li)	18.6	mg/kg	ALS	RG_MIUCO_SE-2_2020-09-12_1137
SE	MIUCO	668134	5486767	2020	2	2020-09-12	11:37	Magnesium (Mg)	8050	mg/kg	ALS	RG_MIUCO_SE-2_2020-09-12_1137
SE	MIUCO	668134	5486767	2020	2	2020-09-12	11:37	Manganese (Mn)	264	mg/kg	ALS	RG_MIUCO_SE-2_2020-09-12_1137
SE	MIUCO	668134	5486767	2020	2	2020-09-12	11:37	Molybdenum (Mo)	1.85	mg/kg	ALS	RG_MIUCO_SE-2_2020-09-12_1137
SE	MIUCO	668134	5486767	2020	2	2020-09-12	11:37	Nickel (Ni)	21.9	mg/kg	ALS	RG_MIUCO_SE-2_2020-09-12_1137
SE	MIUCO	668134	5486767	2020	2	2020-09-12	11:37	Phosphorus (P)	1170	mg/kg	ALS	RG_MIUCO_SE-2_2020-09-12_1137
SE	MIUCO	668134	5486767	2020	2	2020-09-12	11:37	Potassium (K)	3310	mg/kg	ALS	RG_MIUCO_SE-2_2020-09-12_1137
SE	MIUCO	668134	5486767	2020	2	2020-09-12	11:37	Selenium (Se)	1.12	mg/kg	ALS	RG_MIUCO_SE-2_2020-09-12_1137
SE	MIUCO	668134	5486767	2020	2	2020-09-12	11:37	Silver (Ag)	0.12	mg/kg	ALS	RG_MIUCO_SE-2_2020-09-12_1137
SE	MIUCO	668134	5486767	2020	2	2020-09-12	11:37	Sodium (Na)	87	mg/kg	ALS	RG_MIUCO_SE-2_2020-09-12_1137
SE	MIUCO	668134	5486767	2020	2	2020-09-12	11:37	Strontium (Sr)	73.0	mg/kg	ALS	RG_MIUCO_SE-2_2020-09-12_1137
SE	MIUCO	668134	5486767	2020	2	2020-09-12	11:37	Sulfur (S)	<1000	mg/kg	ALS	RG MIUCO SE-2 2020-09-12 1137
	MIUCO	668134	5486767	2020	2	2020-09-12	11:37	Thallium (TI)	0.417	mg/kg	ALS	RG MIUCO SE-2 2020-09-12 1137
>⊨ I		668134	5486767	2020	2	2020-09-12	11:37	Tin (Sn)	<2.0	mg/kg	ALS	RG MIUCO SE-2 2020-09-12 1137
	MIUCO	000134	3 1 00707	2020			1 1.07	11 (3)	-2.0		/ \LO	110 MIOOO OL 2 2020 00 12 1107
SE SE SE	MIUCO	668134	5486767	2020	2	2020-09-12	11:37	Titanium (Ti)	11.7	mg/kg	ALS	RG MIUCO SE-2 2020-09-12 1137

WSP Canada Inc. Page 142 of 337

Sediment Screening

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	Station	Location	າ (UTMs) ^(a)	Vee	Donlington	Dete	Times	Avaluta	Dooult	Ll _{io} it		Laboratory Information
ype	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
E	MIUCO	668134	5486767	2020	2	2020-09-12	11:37	Uranium (U)	0.650	mg/kg	ALS	RG MIUCO SE-2 2020-09-12 1137
E	MIUCO	668134	5486767	2020	2	2020-09-12	11:37	Vanadium (V)	30.8	mg/kg	ALS	RG MIUCO SE-2 2020-09-12 1137
E	MIUCO	668134	5486767	2020	2	2020-09-12	11:37	Zinc (Zn)	92.5	mg/kg	ALS	RG MIUCO SE-2 2020-09-12 1137
E	MIUCO	668134	5486767	2020	2	2020-09-12	11:37	Zirconium (Zr)	<1.0	mg/kg	ALS	RG MIUCO SE-2 2020-09-12 1137
E	MIUCO	668134	5486767	2020	2	2020-09-12	11:37	pH (1:2 soil:water)	7.93	pH	ALS	RG MIUCO SE-2 2020-09-12 1137
E E	MIUCO	668134	5486767	2020	2	2020-09-12	11:37	Total Organic Carbon	5.22	%	ALS	RG MIUCO SE-2 2020-09-12 1137
E E	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	Moisture	39.3	%	ALS	RG MIUCO SE-3 2020-09-12 1403
E	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	Acenaphthene	<0.0050	mg/kg	ALS	RG MIUCO SE-3 2020-09-12 1403
E	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	Acenaphthylene	<0.0050	mg/kg	ALS	RG_MIUCO_SE-3_2020-09-12_1403
E	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	Anthracene	<0.0040	mg/kg	ALS	RG MIUCO SE-3 2020-09-12 1403
E	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	Acridine	<0.010	mg/kg	ALS	RG MIUCO SE-3 2020-09-12 1403
E	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	Benz(a)anthracene	<0.010	mg/kg	ALS	RG MIUCO SE-3 2020-09-12 1403
E	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	Benzo(a)pyrene	<0.010		ALS	RG MIUCO SE-3 2020-09-12 1403
E	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<0.010	mg/kg	ALS	RG MIUCO SE-3 2020-09-12 1403
E	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	Benzo(b&j)fluoranthene	<0.010	mg/kg	ALS	RG MIUCO SE-3 2020-09-12 1403
E					<u> </u>			Benzo(e)pyrene		mg/kg		
	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	Benzo(g_h_i)perylene	<0.010	mg/kg	ALS	RG_MIUCO_SE-3_2020-09-12_1403
E	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	Benzo(k)fluoranthene	<0.010	mg/kg	ALS	RG_MIUCO_SE-3_2020-09-12_1403
E	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	Chrysene	0.017	mg/kg	ALS	RG_MIUCO_SE-3_2020-09-12_1403
	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	Dibenz(a_h)anthracene	<0.0050	mg/kg	ALS	RG_MIUCO_SE-3_2020-09-12_1403
	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	Fluoranthene	<0.010	mg/kg	ALS	RG_MIUCO_SE-3_2020-09-12_1403
=	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	Fluorene	<0.010	mg/kg	ALS	RG_MIUCO_SE-3_2020-09-12_1403
	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	Indeno(1,2,3-c,d)pyrene	<0.010	mg/kg	ALS	RG_MIUCO_SE-3_2020-09-12_1403
	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	2-Methylnaphthalene	0.022	mg/kg	ALS	RG_MIUCO_SE-3_2020-09-12_1403
E	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	Naphthalene	<0.010	mg/kg	ALS	RG_MIUCO_SE-3_2020-09-12_1403
E	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	Perylene	<0.010	mg/kg	ALS	RG_MIUCO_SE-3_2020-09-12_1403
E	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	Phenanthrene	0.027	mg/kg	ALS	RG_MIUCO_SE-3_2020-09-12_1403
E	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	Pyrene	<0.010	mg/kg	ALS	RG_MIUCO_SE-3_2020-09-12_1403
E	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	1-Methylnaphthalene	<0.050	mg/kg	ALS	RG_MIUCO_SE-3_2020-09-12_1403
E	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	Quinoline	<0.050	mg/kg	ALS	RG_MIUCO_SE-3_2020-09-12_1403
E	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	IACR (CCME)	<0.15	-	ALS	RG_MIUCO_SE-3_2020-09-12_1403
E	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	B(a)P Total Potency Equivalent	<0.020	mg/kg	ALS	RG_MIUCO_SE-3_2020-09-12_1403
E	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	Benzo(b+j+k)fluoranthene	<0.015	mg/kg	ALS	RG_MIUCO_SE-3_2020-09-12_1403
E	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	IACR:Coarse	<0.050	-	ALS	RG_MIUCO_SE-3_2020-09-12_1403
E	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	IACR:Fine	<0.050	-	ALS	RG_MIUCO_SE-3_2020-09-12_1403
E	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	d8-Naphthalene	103.0	%	ALS	RG_MIUCO_SE-3_2020-09-12_1403
Е	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	d10-Acenaphthene	105.8	%	ALS	RG_MIUCO_SE-3_2020-09-12_1403
E	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	d10-Phenanthrene	104.2	%	ALS	RG_MIUCO_SE-3_2020-09-12_1403
E	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	d12-Chrysene	111.8	%	ALS	RG MIUCO SE-3 2020-09-12 1403
E	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	% Gravel (>2 mm)	<1.0	%	ALS	RG_MIUCO_SE-3_2020-09-12_1403
E	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	% Sand (2.00 mm - 1.00 mm)	1.7	%	ALS	RG_MIUCO_SE-3_2020-09-12_1403
E	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	% Sand (1.00 mm - 0.50 mm)	3.4	%	ALS	RG_MIUCO_SE-3_2020-09-12_1403
E	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	% Sand (0.50 mm - 0.25 mm)	14.2	%	ALS	RG MIUCO SE-3 2020-09-12 1403
E	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	% Sand (0.25 mm - 0.125 mm)	29.7	%	ALS	RG MIUCO SE-3 2020-09-12 1403
E E	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	% Sand (0.125 mm - 0.063 mm)	24.1	%	ALS	RG MIUCO SE-3 2020-09-12 1403
E	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	% Silt (0.063 mm - 0.0312 mm)	12.4	%	ALS	RG MIUCO SE-3 2020-09-12 1403
E	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	% Silt (0.031 mm - 0.004 mm)	10.3	%	ALS	RG MIUCO SE-3 2020-09-12 1403
E	MIUCO	668134	5486767	2020		2020-09-12	14:03	% Clay (<4 μm)	3.2	%	ALS	RG MIUCO SE-3 2020-09-12 1403
- [MICOO	000104	0-1 00101	2020		2020-03°12	17.00	10 Olay (די μιιι)	٥.८	/0	ALO	\C_WIIOCC_OL-0_2020-03-12_1400

WSP Canada Inc. Page 143 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

VDO	Station	Location	(UTMs) ^(a)	Year	Donlingto	Doto	Time	Analyte	Popult -	Unit		Laboratory Information
уре	Station	Easting	Northing	rear	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	Texture	Loamy sand	-	ALS	RG MIUCO SE-3 2020-09-12 1403
SE.	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	Mercury (Hg)	0.0211	mg/kg	ALS	RG MIUCO SE-3 2020-09-12 1403
SE.	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	Aluminum (Al)	15400	mg/kg	ALS	RG MIUCO SE-3 2020-09-12 1403
ŝΕ	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	Antimony (Sb)	0.20	mg/kg	ALS	RG MIUCO SE-3 2020-09-12 1403
ŝΕ	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	Arsenic (As)	7.01	mg/kg	ALS	RG_MIUCO_SE-3_2020-09-12_1403
E	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	Barium (Ba)	223	mg/kg	ALS	RG MIUCO SE-3 2020-09-12 1403
Е	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	Beryllium (Be)	0.83	mg/kg	ALS	RG MIUCO SE-3 2020-09-12 1403
E	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	Bismuth (Bi)	<0.20	mg/kg	ALS	RG MIUCO SE-3 2020-09-12 1403
E	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	Boron (B)	16.1	mg/kg	ALS	RG MIUCO SE-3 2020-09-12 1403
E	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	Cadmium (Cd)	0.610	mg/kg	ALS	RG MIUCO SE-3 2020-09-12 1403
E	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	Calcium (Ca)	18800	mg/kg	ALS	RG MIUCO SE-3 2020-09-12 1403
E	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	Chromium (Cr)	18.3	mg/kg	ALS	RG MIUCO SE-3 2020-09-12 1403
E	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	Cobalt (Co)	7.20	mg/kg	ALS	RG MIUCO SE-3 2020-09-12 1403
E	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	Copper (Cu)	16.2	mg/kg	ALS	RG MIUCO SE-3 2020-09-12 1403
E	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	Iron (Fe)	20200	mg/kg	ALS	RG MIUCO SE-3 2020-09-12 1403
Ε	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	Lead (Pb)	11.3	mg/kg	ALS	RG_MIUCO_SE-3_2020-09-12_1403
Ξ	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	Lithium (Li)	20.1	mg/kg	ALS	RG MIUCO SE-3 2020-09-12 1403
Ξ	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	Magnesium (Mg)	6540	mg/kg	ALS	RG_MIUCO_SE-3_2020-09-12_1403
	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	Manganese (Mn)	342	mg/kg	ALS	RG MIUCO SE-3 2020-09-12 1403
Ξ	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	Molybdenum (Mo)	2.01	mg/kg	ALS	RG_MIUCO_SE-3_2020-09-12_1403
	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	Nickel (Ni)	20.9	mg/kg	ALS	RG MIUCO SE-3 2020-09-12 1403
=	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	Phosphorus (P)	1300	mg/kg	ALS	RG MIUCO SE-3 2020-09-12 1403
Ξ	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	Potassium (K)	3610	mg/kg	ALS	RG_MIUCO_SE-3_2020-09-12_1403
E	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	Selenium (Se)	0.49	mg/kg	ALS	RG MIUCO SE-3 2020-09-12 1403
E	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	Silver (Ag)	<0.10	mg/kg	ALS	RG MIUCO SE-3 2020-09-12 1403
E	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	Sodium (Na)	84	mg/kg	ALS	RG MIUCO SE-3 2020-09-12 1403
E	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	Strontium (Sr)	50.0	mg/kg	ALS	RG MIUCO SE-3 2020-09-12 1403
E	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	Sulfur (S)	<1000	mg/kg	ALS	RG MIUCO SE-3 2020-09-12 1403
E	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	Thallium (TI)	0.361	mg/kg	ALS	RG MIUCO SE-3 2020-09-12 1403
E	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	Tin (Sn)	<2.0	mg/kg	ALS	RG MIUCO SE-3 2020-09-12 1403
E	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	Titanium (Ti)	12.3	mg/kg	ALS	RG MIUCO SE-3 2020-09-12 1403
E	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	Tungsten (W)	<0.50	mg/kg	ALS	RG MIUCO SE-3 2020-09-12 1403
E	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	Uranium (U)	0.629	mg/kg	ALS	RG MIUCO SE-3 2020-09-12 1403
E	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	Vanadium (V)	30.8	mg/kg	ALS	RG MIUCO SE-3 2020-09-12 1403
E	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	Zinc (Zn)	87.5	mg/kg	ALS	RG MIUCO SE-3 2020-09-12 1403
E	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	Zirconium (Zr)	<1.0	mg/kg	ALS	RG MIUCO SE-3 2020-09-12 1403
E	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	pH (1:2 soil:water)	8.14	pH	ALS	RG MIUCO SE-3 2020-09-12 1403
Ε	MIUCO	668134	5486767	2020	3	2020-09-12	14:03	Total Organic Carbon	1.42	%	ALS	RG MIUCO SE-3 2020-09-12 1403
E	MIUCO	668134	5486767	2020	4	2020-09-12	13:48	Moisture	46.2	%	ALS	RG MIUCO SE-4 2020-09-12 1348
E	MIUCO	668134	5486767	2020	4	2020-09-12	13:48	Acenaphthene	<0.0050	mg/kg	ALS	RG MIUCO SE-4 2020-09-12 1348
 E	MIUCO	668134	5486767	2020	4	2020-09-12	13:48	Acenaphthylene	<0.0050	mg/kg	ALS	RG MIUCO SE-4 2020-09-12 1348
E	MIUCO	668134	5486767	2020	4	2020-09-12	13:48	Anthracene	<0.0040	mg/kg	ALS	RG MIUCO SE-4 2020-09-12 1348
E	MIUCO	668134	5486767	2020	4	2020-09-12	13:48	Acridine	<0.010	mg/kg	ALS	RG MIUCO SE-4 2020-09-12 1348
E	MIUCO	668134	5486767	2020	4	2020-09-12	13:48	Benz(a)anthracene	<0.010	mg/kg	ALS	RG MIUCO SE-4 2020-09-12 1348
E	MIUCO	668134	5486767	2020	4	2020-09-12	13:48	Benzo(a)pyrene	<0.010	mg/kg	ALS	RG MIUCO SE-4 2020-09-12 1348
	MIUCO	668134	5486767	2020	4	2020-09-12	13:48	Benzo(b&j)fluoranthene	<0.010	mg/kg	ALS	RG MIUCO SE-4 2020-09-12 1348
E												

WSP Canada Inc. Page 144 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Section	Table I-	1: Sediment Chem			CMm LAEMP	Sampling St	ations, 2012 to	2022					
MILCO	Type	Station			Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
SE MIUCO 668134 5486767 2020 4 2020-0912 1348 Sencepúfjurarentence -0.010 mpkg ALS R6 MIUCO R68134 5486767 2020 4 2020-0912 1348 SE MIUCO 668134 5486767 2020 4 2020-0912 1348 Dibergia hjanthranone -0.0000 mpkg ALS R6 MIUCO R68134 5486767 2020 4 2020-0912 1348 Dibergia hjanthranone -0.0000 mpkg ALS R6 MIUCO R68134 5486767 2020 4 2020-0912 1348 Dibergia hjanthranone -0.0000 mpkg ALS R6 MIUCO R68134 S686767 2020 4 2020-0912 1348 Dibergia hjanthranone -0.0000 mpkg ALS R6 MIUCO R68134 S686767 2020 4 2020-0912 1348 Dibergia hjanthranone -0.0000 mpkg ALS R6 MIUCO R68134 S686767 2020 4 2020-0912 1348 Dibergia hjanthranone -0.0000 mpkg ALS R6 MIUCO R68134 S686767 2020 4 2020-0912 1348 Dibergia hjanthranone -0.0012 mpkg ALS R6 MIUCO R68134 S686767 2020 4 2020-0912 1348 Dibergia hjanthranone -0.0012 mpkg ALS R6 MIUCO R68134 S686767 2020 4 2020-0912 1348 Dibergia hjanthranone -0.0012 mpkg ALS R6 MIUCO R68134 S686767 2020 4 2020-0912 1348 Dibergia hjanthranone -0.0022 mpkg ALS R6 MIUCO R68134 S686767 2020 4 2020-0912 1348 Dibergia hjanthranone -0.0022 mpkg ALS R6 MIUCO R68134 S686767 2020 4 2020-0912 1348 Dibergia hjanthranone -0.0022 mpkg ALS R6 MIUCO R68134 S686767 2020 4 2020-0912 1348 Dibergia hjanthranone -0.0022 mpkg ALS R6 MIUCO R68134 S686767 2020 4 2020-0912 1348 Dibergia hjanthranone -0.0022 mpkg ALS R6 MIUCO R68134 S686767 2020 4 2020-0912 1348 Dibergia hjanthranone -0.0022 mpkg ALS R6 MIUCO R68134 S686767 2020 4 2020-0912 1348 Dibergia hjanthranone -0.0022 mpkg ALS R6 MIUCO R68134 S686767 2020 4 2020-0912 1348 Dibergia hjanthranone -0.0020 mpkg ALS R6 MIUCO R68134 S686767 2020 4 2020-0912 134						333			•				
Record R						4							
SE MILCO						4			· · · · · · · · · · · · · · · · · · ·				
SE MUCO 688134 5489767 2020 4 2020-0-12 1348 Fluoramberro -0.010 mg/kg ALS R6 MUCO SE-4 2020-0-12 1348 Fluoramberro -0.010 mg/kg ALS R6 MUCO SE-4 2020-0-12 1348 Fluoramberro -0.010 mg/kg ALS R6 MUCO SE-4 2020-0-12 1348 Fluoramberro -0.010 mg/kg ALS R6 MUCO SE-4 2020-0-12 1348 Fluoramberro -0.010 mg/kg ALS R6 MUCO SE-4 2020-0-12 1348 Fluoramberro -0.010 mg/kg ALS R6 MUCO SE-4 2020-0-12 1348 Fluoramberro -0.010 mg/kg ALS R6 MUCO SE-4 2020-0-12 1348 Fluoramberro -0.010 mg/kg ALS R6 MUCO SE-4 2020-0-12 1348 Fluoramberro -0.010 mg/kg ALS R6 MUCO SE-4 2020-0-12 1348 Fluoramberro -0.010 mg/kg ALS R6 MUCO SE-4 2020-0-12 1348 Fluoramberro -0.010 mg/kg ALS R6 MUCO SE-4 2020-0-12 1348 Fluoramberro -0.010 mg/kg ALS R6 MUCO SE-4 2020-0-12 1348 Fluoramberro -0.010 mg/kg ALS R6 MUCO SE-4 2020-0-12 1348 Fluoramberro -0.010 mg/kg ALS R6 MUCO SE-4 2020-0-12 1348 Fluoramberro -0.010 mg/kg ALS R6 MUCO SE-4 2020-0-12 1348 Fluoramberro -0.010 mg/kg ALS R6 MUCO SE-4 2020-0-12 1348 Fluoramberro -0.010 mg/kg ALS R6 MUCO SE-4 2020-0-12 1348 Fluoramberro -0.050 mg/kg ALS R6 MUCO SE-4 2020-0-12 1348 Fluoramberro -0.050 mg/kg ALS R6 MUCO SE-4 2020-0-12 1348 Fluoramberro -0.050 mg/kg ALS R6 MUCO SE-4 2020-0-12 1348 Fluoramberro -0.050 mg/kg ALS R6 MUCO SE-4 2020-0-12 1348 Fluoramberro -0.050 mg/kg ALS R6 MUCO SE-4 2020-0-12 1348 Fluoramberro -0.050 mg/kg ALS R6 MUCO SE-4 2020-0-12 1348 Fluoramberro -0.050 -1.48 R6 MUCO SE-4 2020-0-1						4			· ·				
SE MILCO						4							
SE MILCO 668134 548767 2020 4 2020-09-12 13:48 IndemCt 22-6-0-bymne 4.0 10.0 mg/kg ALS RO, MILCO 82-6-0-bymne 4.0 10.0						4					mg/kg	ALS	
SE MILCO 668134 5486767 2020 4 2020-09-12 1348 24869t/ngpt/malene 0.012 mg/kg ALS RG MUCO SE4_2020-09-12 1348 Replytatione 0.010 mg/kg ALS RG MUC				5486767	2020	4				<0.010	mg/kg	ALS	
SE MILICO 668134 5486767 2020 4 2020-091-12 13:48 Naphthelene -0.010 mg/kg ALS RG MUCO SEA 2020-091-12 13:48 RS						4			7: •		mg/kg		
SE MUCO 688134 5488767 2020 4 2020-091-12 1348 Parylema 0.012 mg/hg ALS RG MUCO SE4 2020-091-12 1348 RS MUCO 688134 5488767 2020 4 2020-091-12 1348 Pyrene <0.010 mg/hg ALS RG MUCO SE4 2020-091-12 1348 RS MUCO 888134 5488767 2020 4 2020-091-12 1348 MICO 688134 5486767 2020 4 2						4			2-Methylnaphthalene	0.012	mg/kg	ALS	
SE MIUCO 688134 5486767 2020 4 2020-09-12 1348 Primarine 0.012 mg/kg ALS RG MIUCO SE-4 2020-09-12 1348 SE MIUCO Milko 5486767 2020 4 2020-09-12 1348 1-Membry 1			668134		2020	4		13:48	Naphthalene	<0.010	mg/kg	ALS	
SE MUICO 688134 5488767 2020 4 2020-09-12 1348 Pyrme 0.010 mg/kg ALS RG MUICO SE4 2020-09-12 1348 SE MUICO 688134 5488767 2020 4 2020-09-12 1348 Cuincine 0.050 mg/kg ALS RG MUICO SE4 2020-09-12 1348 SE MUICO 688134 5488767 2020 4 2020-09-12 1348 Cuincine 0.050 mg/kg ALS RG MUICO SE4 2020-09-12 1348 SE MUICO 688134 5488767 2020 4 2020-09-12 1348 Cuincine 0.050 mg/kg ALS RG MUICO SE4 2020-09-12 1348 Cuincine 0.050 mg/kg ALS RG MUICO SE4 2020-09-12 1348 Cuincine 0.050 mg/kg ALS RG MUICO SE4 2020-09-12 1348 Cuincine 0.020 Millor 0.000 Millor 0.0000 Millor 0.000 Millor 0.000 Millor 0.000 Millor			668134			4			·		mg/kg	ALS	
SE MIUCO 688134 5486767 2020 4 2020-09-12 1348 Moleymaphthalane <0.050 mg/kg ALS RG MIUCO SE4 2020-09-12 348 SE MIUCO 688134 5486767 2020 4 2020-09-12 1348 Moleymaphthalane <0.050 mg/kg ALS RG MIUCO SE4 2020-09-12 348 SE MIUCO 688134 5486767 2020 4 2020-09-12 1348 Rg FUGAL Polary Fluvialane <0.020 mg/kg ALS RG MIUCO SE4 2020-09-12 348 SE MIUCO 688134 5486767 2020 4 2020-09-12 1348 Rg FUGAL Polary Fluvialane <0.016 mg/kg ALS RG MIUCO SE4 2020-09-12 348 Rg FUGAL Polary Fluvialane <0.016 mg/kg ALS RG MIUCO SE4 2020-09-12 348 Rg FUGAL Polary Fluvialane <0.016 mg/kg ALS RG MIUCO SE4 2020-09-12 348 RG MIUCO SE4 2020-09-12 34		MIUCO	668134	5486767	2020	4	2020-09-12	13:48	Phenanthrene	0.022	mg/kg	ALS	RG_MIUCO_SE-4_2020-09-12_1348
SE MIUCO 688134 5486767 2020 4 2020-09-12 1348 IACR (COME) 40-15 - A.S. RG MIUCO SE-4 2020-09-12 348		MIUCO	668134	5486767	2020	4		13:48	Pyrene	<0.010	mg/kg	ALS	
SE MIUCO 668134 5486767 2020 4 2020-09-12 1348 IACR (COME) 4 2020-09-12 348 SE MIUCO 668134 5486767 2020 4 2020-09-12 348 SE MIUCO 668134		MIUCO	668134	5486767	2020	4	2020-09-12	13:48	1-Methylnaphthalene	<0.050	mg/kg	ALS	RG_MIUCO_SE-4_2020-09-12_1348
SE MIUCO 668134 5486767 2020 4 2020-09-12 13-48 Benzoph-th/filloranthene -0.015 mg/kg ALS RG MIUCO SE-4 2020-09-12 1348 Benzoph-th/filloranthene -0.015 mg/kg ALS RG MIUCO SE-4 2020-09-12 1348 Benzoph-th/filloranthene -0.015 mg/kg ALS RG MIUCO SE-4 2020-09-12 1348 RS MIUCO MIUCO 688134 5486767 2020 4 2020-09-12 1348 IACR-Charse -0.050 - ALS RG MIUCO SE-4 2020-09-12 1348 IACR-Charse -0.050 - ALS RG MIUCO SE-4 2020-09-12 1348 IACR-Charse -0.050 - ALS RG MIUCO SE-4 2020-09-12 1348 IACR-Charse -0.050 - ALS RG MIUCO SE-4 2020-09-12 1348 IACR-Charse -0.050 - ALS RG MIUCO SE-4 2020-09-12 1348 IACR-Charse -0.050 - ALS RG MIUCO SE-4 2020-09-12 1348 IACR-Charse -0.050 - ALS RG MIUCO SE-4 2020-09-12 1348 IACR-Charse -0.050 - ALS RG MIUCO SE-4 2020-09-12 1348 IACR-Charse -0.050 - ALS RG MIUCO SE-4 2020-09-12 1348 IACR-Charse -0.050 - ALS RG MIUCO SE-4 2020-09-12 1348 IACR-Charse -0.050 - ALS RG MIUCO SE-4 2020-09-12 1348 IACR-Charse -0.050 - ALS RG MIUCO SE-4 2020-09-12 1348 IACR-Charse -0.050 - ALS RG MIUCO SE-4 2020-09-12 1348 IACR-Charse -0.050 - ALS RG MIUCO SE-4 2020-09-12 1348 IACR-Charse -0.050 - ALS RG MIUCO SE-4 2020-09-12 1348 IACR-Charse -0.050 - ALS RG MIUCO SE-4 2020-09-12 1348 IACR-Charse -0.050 - ALS RG MIUCO SE-4 2020-09-12 1348 IACR-Charse -0.050 - ALS RG MIUCO SE-4 2020-09-12 1348 IACR-Charse -0.050 - ALS RG MIUCO SE-4 2020-09-12 1348 IACR-Charse -0.050 - ALS RG MIUCO SE-4 2020-09-12 1348 IACR-Charse -0.050 - ALS RG MIUCO SE-4 2020-09-12 1348 IACR-Charse -0.050 - ALS RG MIUCO SE-4 2020-09-12 1348 IACR-Charse -0.050 - ALS RG MIUCO SE-4 2020-09-12 1348 IACR-Charse -0.050 - ALS RG MIUCO SE-4 2020-09-12 1348 IACR-Charse -0.050 - ALS RG MIUCO S	SE	MIUCO	668134	5486767	2020	4	2020-09-12	13:48	Quinoline	<0.050	mg/kg	ALS	RG_MIUCO_SE-4_2020-09-12_1348
SE MIUCO 688134 5486767 2020 4 2020-09-12 13-48 IACRESTORY 13-48 IACRES	SE	MIUCO	668134	5486767	2020	4	2020-09-12	13:48	IACR (CCME)	<0.15	-	ALS	RG_MIUCO_SE-4_2020-09-12_1348
SE MIUCO 686134 5486767 2020 4 2020-09-12 13-48 IACR: Coarse <0.050 - ALS RG MIUCO SE4 2020-09-12 13-48 IACR: Coarse <0.050 - ALS RG MIUCO SE4 2020-09-12 13-48 IACR: Coarse <0.050 - ALS RG MIUCO SE4 2020-09-12 13-48 IACR: Coarse <0.050 - ALS RG MIUCO SE4 2020-09-12 13-48 IACR: Coarse <0.050 - ALS RG MIUCO SE4 2020-09-12 13-48 IACR: Coarse <0.050 - ALS RG MIUCO SE4 2020-09-12 13-48 IACR: Coarse	SE	MIUCO	668134	5486767	2020	4	2020-09-12	13:48	B(a)P Total Potency Equivalent	<0.020	mg/kg	ALS	RG_MIUCO_SE-4_2020-09-12_1348
SE MIUCO 668134 5486767 2020 4 2020-09-12 13.48 AGR.Fine 90.060 - ALS RG MIUCO SE-4 2020-09-12 13.48 AGR.Fine 10.19 % ALS RG MIUCO SE-4 2020-09-12 13.48 AGR.Fine 10.19 % ALS RG MIUCO SE-4 2020-09-12 13.48 AGR.Fine 10.19 MIUCO SE-4 2020-09-12 13.48 AGR.Fine	SE	MIUCO	668134	5486767	2020	4	2020-09-12	13:48	Benzo(b+j+k)fluoranthene	<0.015	mg/kg	ALS	RG_MIUCO_SE-4_2020-09-12_1348
SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 d8-Naphthalene 101.9 % ALS RG MIUCO SE-4 2020-09-12 13:48 d10-Acenaphthene 104.8 % ALS RG MIUCO SE-4 2020-09-12 13:48 d10-Acenaphthene 101.9 % ALS RG MIUCO SE-4 2020-09-12 13:48 d10-Acenaphthene 101.9 % ALS RG MIUCO SE-4 2020-09-12 13:48 d10-Phenanthrene 101.9 % ALS RG MIUCO SE-4 2020-09-12 13:48 d10-Phenanthrene 101.9 % ALS RG MIUCO SE-4 2020-09-12 13:48 d10-Phenanthrene 101.9 % ALS RG MIUCO SE-4 2020-09-12 13:48 d12-Chrysene 109.7 % ALS RG MIUCO SE-4 2020-09-12 13:48 d12-Chrysene 109.7 % ALS RG MIUCO SE-4 2020-09-12 13:48 SE MIUCO SE-14 2020-09-12 13:48 % Sand (2.00 mm - 1.00 mm) 1.0 % ALS RG MIUCO SE-4 2020-09-12 13:48 SE MIUCO SE-13 SE-45 SE-	SE	MIUCO	668134	5486767	2020	4	2020-09-12	13:48	IACR:Coarse	<0.050	ı	ALS	RG_MIUCO_SE-4_2020-09-12_1348
SE MIUCO 668134 5486767 2020 4 2020-09-12 13.48 d10-Acenaphthene 104.8 % ALS RG MIUCO SE-4 2020-09-12 13.48 d10-Acenaphthene 101.9 % ALS RG MIUCO SE-4 2020-09-12 13.48 d12-Chrysene 109.7 % ALS RG MIUCO SE-4 2020-09-12 13.48 d12-Chrysene 109.7 % ALS RG MIUCO SE-4 2020-09-12 13.48 d12-Chrysene 109.7 % ALS RG MIUCO SE-4 2020-09-12 13.48 d12-Chrysene 109.7 % ALS RG MIUCO SE-4 2020-09-12 13.48 MIUCO SE-4 2	SE	MIUCO	668134	5486767	2020	4	2020-09-12	13:48	IACR:Fine	<0.050	ı	ALS	RG_MIUCO_SE-4_2020-09-12_1348
SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 d10-Phenamhrene 101.9 % ALS RG MIUCO SE-4 2020-09-12 1348 SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 % Gravel (2-2 mm) +1.0 % ALS RG MIUCO RG	SE	MIUCO	668134	5486767	2020	4	2020-09-12	13:48	d8-Naphthalene	101.9	%	ALS	RG_MIUCO_SE-4_2020-09-12_1348
SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 d12-Chrysene 109.7 % ALS RG MIUCO SE-4 2020-09-12 1348 SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 % Sand (2.00 mm - 1.00 mm) 1.0 % ALS RG MIUCO SE-4 2020-09-12 13:48 % Sand (2.00 mm - 1.00 mm) 1.0 % ALS RG MIUCO SE-4 2020-09-12 13:48 % Sand (3.00 mm - 0.50 mm) 2.9 % ALS RG MIUCO SE-4 2020-09-12 13:48 % Sand (1.00 mm - 0.50 mm) 2.9 % ALS RG MIUCO SE-4 2020-09-12 13:48 % Sand (5.00 mm - 0.25 mm) 14.4 % ALS RG MIUCO SE-4 2020-09-12 13:48 % Sand (5.00 mm - 0.25 mm) 14.4 % ALS RG MIUCO SE-4 2020-09-12 13:48 % Sand (0.05 mm - 0.05 mm) 2.9 % ALS RG MIUCO SE-4 2020-09-12 13:48 % Sand (0.05 mm - 0.05 mm) 14.4 % ALS RG MIUCO SE-4 2020-09-12 13:48 % Sand (0.05 mm - 0.05 mm) 14.4 % ALS RG MIUCO SE-4 2020-09-12 13:48 % Sand (0.25 mm - 0.125 mm) 31.4 % ALS RG MIUCO SE-4 2020-09-12 13:48 % Sand (0.25 mm - 0.053 mm) 22.7 % ALS RG MIUCO SE-4 2020-09-12 13:48 % Sand (0.25 mm - 0.053 mm) 22.7 % ALS RG MIUCO SE-4 2020-09-12 13:48 % SIM (0.068 mm - 0.0312 mm) 12.0 % ALS RG MIUCO SE-4 2020-09-12 13:48 % SIM (0.068 mm - 0.0312 mm) 12.0 % ALS RG MIUCO SE-4 2020-09-12 13:48 % SIM (0.068 mm - 0.0312 mm) 14.1 % ALS RG MIUCO SE-4 2020-09-12 13:48 % SIM (0.068 mm - 0.0312 mm) 14.0 % ALS RG MIUCO SE-4 2020-09-12 13:48 % SIM (0.068 mm - 0.0312 mm) 14.1 % ALS RG MIUCO SE-4 2020-09-12 13:48 % SIM (0.068 mm - 0.0312 mm) 14.0 % ALS RG MIUCO SE-4 2020-09-12 13:48 SE MIUCO SE8134 S486767 2020 4 2020-09-12 13:48 MERCO SE-4 2020-09-12 13:48 SE MIUCO SE8134 S486767 2020 4 2020-09-12 13:48 MERCO SE-4 2020-09-12 13:48 SE MIUCO SE8134 S486767 2020 4 2020-09-12 13:48 SE	SE	MIUCO	668134	5486767	2020	4	2020-09-12	13:48	d10-Acenaphthene	104.8	%	ALS	RG_MIUCO_SE-4_2020-09-12_1348
SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 % (Gravel (>2 mm) < 1.0 % ALS RG MIUCO SE-4 2020-09-12 13:48 % (Sand (2.00 mm - 1.00 mm) 1.0 % ALS RG MIUCO SE-4 2020-09-12 13:48 % (Sand (2.00 mm - 1.00 mm) 1.0 % ALS RG MIUCO SE-4 2020-09-12 13:48 % (Sand (2.00 mm - 0.50 mm) 2.9 % ALS RG MIUCO SE-4 2020-09-12 13:48 % (Sand (1.00 mm - 0.50 mm) 2.9 % ALS RG MIUCO SE-4 2020-09-12 13:48 % (Sand (0.50 mm - 0.25 mm) 14.4 % ALS RG MIUCO SE-4 2020-09-12 13:48 % (Sand (0.50 mm - 0.25 mm) 14.4 % ALS RG MIUCO SE-4 2020-09-12 13:48 % (Sand (0.50 mm - 0.25 mm) 14.4 % ALS RG MIUCO SE-4 2020-09-12 13:48 % (Sand (0.50 mm - 0.03 mm) 3:1 % ALS RG MIUCO SE-4 2020-09-12 13:48 % (Sand (0.50 mm - 0.03 mm) 3:1 % ALS RG MIUCO SE-4 2020-09-12 13:48 % (Sand (0.125 mm - 0.063 mm) 2:2 7 % ALS RG MIUCO SE-4 2020-09-12 13:48 % (Sand (0.125 mm - 0.063 mm) 2:2 7 % ALS RG MIUCO SE-4 2020-09-12 13:48 % (Sand (0.125 mm - 0.063 mm) 2:2 7 % ALS RG MIUCO SE-4 2020-09-12 13:48 % (Sand (0.125 mm - 0.063 mm) 1:0 % ALS RG MIUCO SE-4 2020-09-12 13:48 % (Sand (0.125 mm - 0.031 mm) 1:0 % ALS RG MIUCO SE-4 2020-09-12 13:48 % (Sand (0.125 mm - 0.031 mm) 1:0 % ALS RG MIUCO SE-4 2020-09-12 13:48 % (Sand (0.125 mm - 0.031 mm) 1:0 % ALS RG MIUCO SE-4 2020-09-12 13:48 % (Sand (0.125 mm - 0.031 mm) 1:0 % ALS RG MIUCO SE-4 2020-09-12 13:48 % (Sand (0.125 mm - 0.031 mm) 1:0 % ALS RG MIUCO SE-4 2020-09-12 13:48 % (Sand (0.125 mm - 0.031 mm) 1:0 % ALS RG MIUCO SE-4 2020-09-12 13:48 SE MIUCO Se8134 5486767 2020 4 2020-09-12 13:48 Mercury (re) 10:48 Mercury (re	SE	MIUCO	668134	5486767	2020	4	2020-09-12	13:48	d10-Phenanthrene	101.9	%	ALS	RG_MIUCO_SE-4_2020-09-12_1348
SE MIUCO 668134 5486767 2020 4 2020-09-12 13.48 % Sand (2.00 mm - 1.00 mm) 1.0 % ALS RG MIUCO SE-4 2020-09-12 1348 SE MIUCO 668134 5486767 2020 4 2020-09-12 13.48 % Sand (0.50 mm - 0.55 mm) 14.4 % ALS RG MIUCO SE-4 2020-09-12 1348 SE MIUCO 668134 5486767 2020 4 2020-09-12 13.48 % Sand (0.50 mm - 0.25 mm) 14.4 % ALS RG MIUCO SE-4 2020-09-12 1348 SE MIUCO 668134 5486767 2020 4 2020-09-12 13.48 % Sand (0.50 mm - 0.125 mm) 31.4 % ALS RG MIUCO SE-4 2020-09-12 1348 SE MIUCO 668134 5486767 2020 4 2020-09-12 13.48 % Sand (0.25 mm - 0.063 mm) 22.7 % ALS RG MIUCO SE-4 2020-09-12 1348 SE MIUCO 668134 5486767 2020 4 2020-09-12 13.48 % Silt (0.063 mm - 0.0312 mm) 12.0 % ALS RG MIUCO SE-4 2020-09-12 1348 SE MIUCO 668134 5486767 2020 4 2020-09-12 13.48 % Silt (0.063 mm - 0.0312 mm) 11.0 % ALS RG MIUCO SE-4 2020-09-12 1348 SE MIUCO 668134 5486767 2020 4 2020-09-12 13.48 % Silt (0.031 mm - 0.004 mm) 11.0 % ALS RG MIUCO SE-4 2020-09-12 1348 SE MIUCO 668134 5486767 2020 4 2020-09-12 13.48 SILT SE MIUCO 668134 5486767 2020 4 2020-09-12 13.48 Mercury (Hg) 0.0253 mg/kg ALS RG MIUCO SE-4 2020-09-12 1348 SE MIUCO 668134 5486767 2020 4 2020-09-12 13.48 Aluminum (A) 15100 mg/kg ALS RG MIUCO SE-4 2020-09-12 1348 SE MIUCO 668134 5486767 2020 4 2020-09-12 13.48 Aluminum (A) 15100 mg/kg ALS RG MIUCO SE-4 2020-09-12 1348 SE MIUCO 668134 5486767 2020 4 2020-09-12 13.48 Aluminum (A) 15100 mg/kg ALS RG MIUCO SE-4 2020-09-12 1348 SE MIUCO 668134 5486767 2020 4 2020-09-12 13.48 Aluminum (A) 15100 mg/kg ALS RG MIUCO SE-4 2020-09-12 1348 SE MIUCO 668134 5486767 2020 4 2020-09-12 13.48 Barum (Ba) 220 mg/kg ALS RG MIUCO SE	SE	MIUCO	668134	5486767	2020	4	2020-09-12	13:48	d12-Chrysene	109.7	%	ALS	RG_MIUCO_SE-4_2020-09-12_1348
SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 % Sand (1.00 mm - 0.50 mm) 2.9 % ALS RG MIUCO SE-4 2020-09-12 1348 SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 % Sand (0.25 mm - 0.125 mm) 14:4 % ALS RG MIUCO SE-4 2020-09-12 1348 SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 % Sand (0.25 mm - 0.125 mm) 31:4 % ALS RG MIUCO SE-4 2020-09-12 13:48 SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 % Sand (0.25 mm - 0.063 mm) 22:7 % ALS RG MIUCO SE-4 2020-09-12 13:48 % Sand (0.25 mm - 0.063 mm) 22:7 % ALS RG MIUCO SE-4 2020-09-12 13:48 % Sand (0.25 mm - 0.063 mm) 12:0 % ALS RG MIUCO SE-4 2020-09-12 13:48 % Sand (0.25 mm - 0.063 mm) 12:0 % ALS RG MIUCO SE-4 2020-09-12 13:48 % Sand (0.25 mm - 0.063 mm) 12:0 % ALS RG MIUCO SE-4 2020-09-12 13:48 % Sand (0.25 mm - 0.063 mm) 12:0 % ALS RG MIUCO SE-4 2020-09-12 13:48 % Sand (0.25 mm - 0.063 mm) 11:0 % ALS RG MIUCO SE-4 2020-09-12 13:48 % Sand (0.25 mm - 0.063 mm) 11:0 % ALS RG MIUCO SE-4 2020-09-12 13:48 % Sand (0.25 mm - 0.063 mm) 11:0 % ALS RG MIUCO SE-4 2020-09-12 13:48 % Sand (0.25 mm - 0.063 mm) 11:0 % ALS RG MIUCO SE-4 2020-09-12 13:48 % Sand (0.25 mm - 0.063 mm) 11:0 % ALS RG MIUCO SE-4 2020-09-12 13:48 % Sand (0.25 mm - 0.063 mm) 11:0 % ALS RG MIUCO SE-4 2020-09-12 13:48 % Sand (0.25 mm - 0.063 mm) 11:0 % ALS RG MIUCO SE-4 2020-09-12 13:48 % Sand (0.25 mm - 0.063 mm) 11:0 MIUCO SE-4 2020-09-12 13:48 SE MIUCO SE-6 3:48 SE SE MIUCO SE-6 3:48 SE SE SE SE SE SE SE S	SE	MIUCO	668134	5486767	2020	4	2020-09-12	13:48	% Gravel (>2 mm)	<1.0	%	ALS	RG_MIUCO_SE-4_2020-09-12_1348
SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 % Sand (0.50 mm - 0.25 mm) 14.4 % ALS RG MIUCO SE-4 2020-09-12 1348 SE MIUCO 668134 5486767 2020 4 2020-09-12 1348 % Sand (0.25 mm - 0.125 mm) 31.4 % ALS RG MIUCO SE-4 2020-09-12 1348 % Sand (0.125 mm - 0.063 mm) 22.7 % ALS RG MIUCO SE-4 2020-09-12 1348 % Sand (0.125 mm - 0.0312 mm) 12.0 % ALS RG MIUCO SE-4 2020-09-12 1348 % Silt (0.063 mm - 0.0312 mm) 12.0 % ALS RG MIUCO SE-4 2020-09-12 1348 % Silt (0.063 mm - 0.004 mm) 11.0 % ALS RG MIUCO SE-4 2020-09-12 1348 % Silt (0.063 mm - 0.004 mm) 11.0 % ALS RG MIUCO SE-4 2020-09-12 1348 Yesture Loany sand - ALS RG MIUCO SE-4 2020-09-12 1348 Text	SE	MIUCO	668134	5486767	2020	4	2020-09-12	13:48	% Sand (2.00 mm - 1.00 mm)	1.0	%	ALS	RG_MIUCO_SE-4_2020-09-12_1348
SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 % Sand (0.25 mm - 0.125 mm) 31.4 % ALS RG MIUCO SE-4 2020-09-12 1348 SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 % Sand (0.125 mm - 0.063 mm) 22.7 % ALS RG MIUCO SE-4 2020-09-12 13:48 % Silt (0.063 mm - 0.031 mm) 12:0 % ALS RG MIUCO SE-4 2020-09-12 13:48 % Silt (0.063 mm - 0.031 mm) 12:0 % ALS RG MIUCO SE-4 2020-09-12 13:48 % Silt (0.063 mm - 0.031 mm) 11:0 % ALS RG MIUCO SE-4 2020-09-12 13:48 % Silt (0.031 mm - 0.004 mm) 11:0 % ALS RG MIUCO SE-4 2020-09-12 13:48 % Silt (0.031 mm - 0.004 mm) 11:0 % ALS RG MIUCO SE-4 2020-09-12 13:48 % Silt (0.031 mm - 0.004 mm) 11:0 % ALS RG MIUCO SE-4 2020-09-12 13:48 SE MIUCO SE-4	SE	MIUCO	668134	5486767	2020	4	2020-09-12	13:48	% Sand (1.00 mm - 0.50 mm)	2.9	%	ALS	RG_MIUCO_SE-4_2020-09-12_1348
SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 % Sand (0.125 mm - 0.063 mm) 22.7 % ALS RG_MIUCO_SE-4_2020-09-12_1348 SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 % Silt (0.063 mm - 0.0312 mm) 12.0 % ALS RG_MIUCO_SE-4_2020-09-12_1348 SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 % Silt (0.031 mm - 0.004 mm) 11.0 % ALS RG_MIUCO_SE-4_2020-09-12_1348 SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 % Silt (0.031 mm - 0.004 mm) 14.1 % ALS RG_MIUCO_SE-4_2020-09-12_1348 SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 Texture Loamy sand - ALS RG_MIUCO_SE-4_2020-09-12_1348 SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 Mercury (Hg) 0.0253 mg/kg ALS RG_MIUCO_SE-4_2020-09-12_1348 SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 Aluminum (Al) 15:100 mg/kg ALS RG_MIUCO_SE-4_2020-09-12_1348 SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 Antimony (Sb) 0.33 mg/kg ALS RG_MIUCO_SE-4_2020-09-12_1348 SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 Antimony (Sb) 0.33 mg/kg ALS RG_MIUCO_SE-4_2020-09-12_1348 SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 Barium (Ba) 220 mg/kg ALS RG_MIUCO_SE-4_2020-09-12_1348 SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 Barium (Ba) 220 mg/kg ALS RG_MIUCO_SE-4_2020-09-12_1348 SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 Barium (Ba) 220 mg/kg ALS RG_MIUCO_SE-4_2020-09-12_1348 SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 Barium (Ba) 220 mg/kg ALS RG_MIUCO_SE-4_2020-09-12_1348 SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 Barium (Ba) 0.0675 mg/kg ALS RG_MIUCO_SE-4_2020-09-12_1348 SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 Barium (Cd) 0.0675 mg/kg ALS RG_MIUCO_SE-4_2020-09-12_1348 SE MIUCO 6681	SE	MIUCO	668134	5486767	2020	4	2020-09-12	13:48	% Sand (0.50 mm - 0.25 mm)	14.4	%	ALS	RG_MIUCO_SE-4_2020-09-12_1348
SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 % Silt (0.063 mm - 0.0312 mm) 12.0 % ALS RG MIUCO SE-4 2020-09-12 1348 SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 % Silt (0.031 mm - 0.004 mm) 11.0 % ALS RG MIUCO SE-4 2020-09-12 1348 SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 % Clay (~4 µm) 4.1 % ALS RG MIUCO SE-4 2020-09-12 1348 SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 Mercury (Hg) 0.0253 mg/kg ALS RG MIUCO SE-4 2020-09-12 1348 SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 Mercury (Hg) 0.0253 mg/kg ALS RG MIUCO SE-4 2020-09-12 1348 SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 Aluminum (Al) 15100 mg/kg ALS RG MIUCO SE-4 2020-09-12 1348 SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 Antimory (Sb) 0.33 mg/kg ALS RG MIUCO SE-4 2020-09-12 1348 SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 Arsenic (As) 8.05 mg/kg ALS RG MIUCO SE-4 2020-09-12 1348 SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 Barium (Ba) 220 mg/kg ALS RG MIUCO SE-4 2020-09-12 1348 SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 Barium (Ba) 220 mg/kg ALS RG MIUCO SE-4 2020-09-12 1348 SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 Beryllium (Be) 0.89 mg/kg ALS RG MIUCO SE-4 2020-09-12 1348 SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 Beryllium (Cd) 0.675 mg/kg ALS RG MIUCO SE-4 2020-09-12 1348 SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 Beryllium (Cd) 0.675 mg/kg ALS RG MIUCO SE-4 2020-09-12 1348 SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 Cadmium (Cd) 0.675 mg/kg ALS RG MIUCO SE-4 2020-09-12 1348 SE MIUCO 668134 5486767 2020 4 2020-09	SE	MIUCO	668134	5486767	2020	4	2020-09-12	13:48	% Sand (0.25 mm - 0.125 mm)	31.4	%	ALS	RG_MIUCO_SE-4_2020-09-12_1348
SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 % Silt (0.031 mm - 0.004 mm) 11.0 % ALS RG MIUCO SE-4 2020-09-12 13:48 % Clay (<4 \(\pm \)	SE	MIUCO	668134	5486767	2020	4	2020-09-12	13:48	% Sand (0.125 mm - 0.063 mm)	22.7	%	ALS	RG_MIUCO_SE-4_2020-09-12_1348
SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 % Clay (<4 μm) 4.1 % ALS RG MIUCO SE-4_2020-09-12_1348 SE MIUCO 668134 5486767 2020 4 2020-09-12_1348 13:48 Texture Loamy sand - ALS RG MIUCO SE-4_2020-09-12_1348 SE MIUCO 668134 5486767 2020 4 2020-09-12_1348 Mercury (Hg) 0.0253 mg/kg ALS RG MIUCO_SE-4_2020-09-12_1348 SE MIUCO 668134 5486767 2020 4 2020-09-12_1348 Aluminum (Al) 15100 mg/kg ALS RG MIUCO_SE-4_2020-09-12_1348 SE MIUCO 668134 5486767 2020 4 2020-09-12_1348 Antimony (Sb) 0.33 mg/kg ALS RG MIUCO_SE-4_2020-09-12_1348 SE MIUCO 668134 5486767 2020 4 2020-09-12_1348 Barium (Ba) 220 mg/kg ALS RG MIUCO_SE-4_2020-09-12_1348 SE	SE	MIUCO	668134	5486767	2020	4	2020-09-12	13:48	% Silt (0.063 mm - 0.0312 mm)	12.0	%	ALS	RG_MIUCO_SE-4_2020-09-12_1348
SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 Texture Loamy sand - ALS RG_MIUCO_SE-4_2020-09-12_1348 SE MIUCO 668134 5486767 2020 4 2020-09-12_1348 Mercury (Hg) 0.0253 mg/kg ALS RG_MIUCO_SE-4_2020-09-12_1348 SE MIUCO 668134 5486767 2020 4 2020-09-12_1348 Aluminum (Al) 15100 mg/kg ALS RG_MIUCO_SE-4_2020-09-12_1348 SE MIUCO 668134 5486767 2020 4 2020-09-12_1348 Aluminum (Al) 15100 mg/kg ALS RG_MIUCO_SE-4_2020-09-12_1348 SE MIUCO 668134 5486767 2020 4 2020-09-12_1348 Arsenic (As) 8.05 mg/kg ALS RG_MIUCO_SE-4_2020-09-12_1348 SE MIUCO 668134 5486767 2020 4 2020-09-12_1348 Barium (Ba) 220 mg/kg ALS RG_MIUCO_SE-4_2020-09-12_1348 SE MIUCO	SE	MIUCO	668134	5486767	2020	4	2020-09-12	13:48	% Silt (0.031 mm - 0.004 mm)	11.0	%	ALS	RG_MIUCO_SE-4_2020-09-12_1348
SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 Texture Loamy sand - ALS RG_MIUCO_SE-4_2020-09-12_1348 SE MIUCO 668134 5486767 2020 4 2020-09-12_1348 Mercury (Hg) 0.0253 mg/kg ALS RG_MIUCO_SE-4_2020-09-12_1348 SE MIUCO 668134 5486767 2020 4 2020-09-12_1348 Aluminum (Al) 15100 mg/kg ALS RG_MIUCO_SE-4_2020-09-12_1348 SE MIUCO 668134 5486767 2020 4 2020-09-12_1348 Aluminum (Al) 15100 mg/kg ALS RG_MIUCO_SE-4_2020-09-12_1348 SE MIUCO 668134 5486767 2020 4 2020-09-12_1348 Arsenic (As) 8.05 mg/kg ALS RG_MIUCO_SE-4_2020-09-12_1348 SE MIUCO 668134 5486767 2020 4 2020-09-12_1348 Barring (Bs) 8.05 mg/kg ALS RG_MIUCO_SE-4_2020-09-12_1348 SE MIUCO	SE	MIUCO	668134	5486767	2020	4	2020-09-12	13:48	% Clay (<4 μm)	4.1	%	ALS	RG MIUCO SE-4 2020-09-12 1348
SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 Mercury (Hg) 0.0253 mg/kg ALS RG_MIUCO_SE-4_2020-09-12_1348 SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 Aluminum (Al) 15100 mg/kg ALS RG_MIUCO_SE-4_2020-09-12_1348 SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 Antimony (Sb) 0.33 mg/kg ALS RG_MIUCO_SE-4_2020-09-12_1348 SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 Arsenic (As) 8.05 mg/kg ALS RG_MIUCO_SE-4_2020-09-12_1348 SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 Barium (Ba) 220 mg/kg ALS RG_MIUCO_SE-4_2020-09-12_1348 SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 Beryllium (Be) 0.89 mg/kg ALS RG_MIUCO	SE	MIUCO	668134	5486767	2020	4	2020-09-12	13:48	Texture	Loamy sand	-	ALS	RG MIUCO SE-4 2020-09-12 1348
SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 Antimony (Sb) 0.33 mg/kg ALS RG_MIUCO_SE-4_2020-09-12_1348 SE MIUCO 668134 5486767 2020 4 2020-09-12_1348 Arsenic (As) 8.05 mg/kg ALS RG_MIUCO_SE-4_2020-09-12_1348 SE MIUCO 668134 5486767 2020 4 2020-09-12_1348 Barium (Ba) 220 mg/kg ALS RG_MIUCO_SE-4_2020-09-12_1348 SE MIUCO 668134 5486767 2020 4 2020-09-12_1348 Beryllium (Be) 0.89 mg/kg ALS RG_MIUCO_SE-4_2020-09-12_1348 SE MIUCO 668134 5486767 2020 4 2020-09-12_1348 Bismuth (Bi) <0.20	SE	MIUCO	668134	5486767	2020	4	2020-09-12	13:48	Mercury (Hg)	0.0253	mg/kg	ALS	RG_MIUCO_SE-4_2020-09-12_1348
SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 Antimony (Sb) 0.33 mg/kg ALS RG_MIUCO_SE-4_2020-09-12_1348 SE MIUCO 668134 5486767 2020 4 2020-09-12_1348 Arsenic (As) 8.05 mg/kg ALS RG_MIUCO_SE-4_2020-09-12_1348 SE MIUCO 668134 5486767 2020 4 2020-09-12_1348 Barium (Ba) 220 mg/kg ALS RG_MIUCO_SE-4_2020-09-12_1348 SE MIUCO 668134 5486767 2020 4 2020-09-12_1348 Beryllium (Be) 0.89 mg/kg ALS RG_MIUCO_SE-4_2020-09-12_1348 SE MIUCO 668134 5486767 2020 4 2020-09-12_1348 Bismuth (Bi) <0.20	SE	MIUCO	668134	5486767	2020	4	2020-09-12	13:48	Aluminum (Al)	15100	mg/kg	ALS	RG MIUCO SE-4 2020-09-12 1348
SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 Arsenic (As) 8.05 mg/kg ALS RG_MIUCO_SE-4_2020-09-12_1348 SE MIUCO 668134 5486767 2020 4 2020-09-12_1348 Barium (Ba) 220 mg/kg ALS RG_MIUCO_SE-4_2020-09-12_1348 SE MIUCO 668134 5486767 2020 4 2020-09-12_1348 Beryllium (Be) 0.89 mg/kg ALS RG_MIUCO_SE-4_2020-09-12_1348 SE MIUCO 668134 5486767 2020 4 2020-09-12_1348 Bismuth (Bi) <0.20	SE	MIUCO	668134	5486767	2020	4	2020-09-12	13:48	` ,	0.33		ALS	RG MIUCO SE-4 2020-09-12 1348
SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 Barium (Ba) 220 mg/kg ALS RG_MIUCO_SE-4_2020-09-12_1348 SE MIUCO 668134 5486767 2020 4 2020-09-12_1348 Beryllium (Be) 0.89 mg/kg ALS RG_MIUCO_SE-4_2020-09-12_1348 SE MIUCO 668134 5486767 2020 4 2020-09-12_1348 Bismuth (Bi) <0.20	SE	MIUCO	668134	5486767	2020	4	2020-09-12	13:48	Arsenic (As)	8.05		ALS	RG MIUCO SE-4 2020-09-12 1348
SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 Beryllium (Be) 0.89 mg/kg ALS RG_MIUCO_SE-4_2020-09-12_1348 SE MIUCO 668134 5486767 2020 4 2020-09-12_1348 Bismuth (Bi) <0.20 mg/kg ALS RG_MIUCO_SE-4_2020-09-12_1348 SE MIUCO 668134 5486767 2020 4 2020-09-12_1348 Cadmium (Cd) 0.675 mg/kg ALS RG_MIUCO_SE-4_2020-09-12_1348 SE MIUCO 668134 5486767 2020 4 2020-09-12_1348 Cadmium (Cd) 0.675 mg/kg ALS RG_MIUCO_SE-4_2020-09-12_1348 SE MIUCO 668134 5486767 2020 4 2020-09-12_1348 Calcium (Ca) 12600 mg/kg ALS RG_MIUCO_SE-4_2020-09-12_1348 SE MIUCO 668134 5486767 2020 4 2020-09-12_1348 Chromium (Cr) 19.0 mg/kg ALS RG_MIUCO_SE-4_2020-09-12_1348 SE MIUCO		MIUCO	668134	5486767		4			, ,			ALS	
SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 Bismuth (Bi) <0.20 mg/kg ALS RG_MIUCO_SE-4_2020-09-12_1348 SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 Boron (B) 16.1 mg/kg ALS RG_MIUCO_SE-4_2020-09-12_1348 SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 Cadmium (Cd) 0.675 mg/kg ALS RG_MIUCO_SE-4_2020-09-12_1348 SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 Calcium (Ca) 12600 mg/kg ALS RG_MIUCO_SE-4_2020-09-12_1348 SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 Chromium (Cr) 19.0 mg/kg ALS RG_MIUCO_SE-4_2020-09-12_1348 SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 Cobalt (Co) 8.22 mg/kg ALS RG_MIUCO_SE-4	SE	MIUCO	668134	5486767	2020	4	2020-09-12	13:48	` '	0.89		ALS	RG MIUCO SE-4 2020-09-12 1348
SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 Boron (B) 16.1 mg/kg ALS RG_MIUCO_SE-4_2020-09-12_1348 SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 Cadmium (Cd) 0.675 mg/kg ALS RG_MIUCO_SE-4_2020-09-12_1348 SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 Calcium (Ca) 12600 mg/kg ALS RG_MIUCO_SE-4_2020-09-12_1348 SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 Chromium (Cr) 19.0 mg/kg ALS RG_MIUCO_SE-4_2020-09-12_1348 SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 Cobalt (Co) 8.22 mg/kg ALS RG_MIUCO_SE-4_2020-09-12_1348 SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 Copper (Cu) 17.9 mg/kg ALS RG_MIUCO_SE-4_2						4			, , ,				
SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 Cadmium (Cd) 0.675 mg/kg ALS RG_MIUCO_SE-4_2020-09-12_1348 SE MIUCO 668134 5486767 2020 4 2020-09-12_1348 Calcium (Ca) 12600 mg/kg ALS RG_MIUCO_SE-4_2020-09-12_1348 SE MIUCO 668134 5486767 2020 4 2020-09-12_1348 Chromium (Cr) 19.0 mg/kg ALS RG_MIUCO_SE-4_2020-09-12_1348 SE MIUCO 668134 5486767 2020 4 2020-09-12_1348 Cobalt (Co) 8.22 mg/kg ALS RG_MIUCO_SE-4_2020-09-12_1348 SE MIUCO 668134 5486767 2020 4 2020-09-12_1348 Copper (Cu) 17.9 mg/kg ALS RG_MIUCO_SE-4_2020-09-12_1348						4							
SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 Calcium (Ca) 12600 mg/kg ALS RG_MIUCO_SE-4_2020-09-12_1348 SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 Chromium (Cr) 19.0 mg/kg ALS RG_MIUCO_SE-4_2020-09-12_1348 SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 Cobalt (Co) 8.22 mg/kg ALS RG_MIUCO_SE-4_2020-09-12_1348 SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 Copper (Cu) 17.9 mg/kg ALS RG_MIUCO_SE-4_2020-09-12_1348						4			· /				
SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 Chromium (Cr) 19.0 mg/kg ALS RG_MIUCO_SE-4_2020-09-12_1348 SE MIUCO 668134 5486767 2020 4 2020-09-12_1348 Cobalt (Co) 8.22 mg/kg ALS RG_MIUCO_SE-4_2020-09-12_1348 SE MIUCO 668134 5486767 2020 4 2020-09-12_1348 Copper (Cu) 17.9 mg/kg ALS RG_MIUCO_SE-4_2020-09-12_1348				-		4			, , ,				
SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 Cobalt (Co) 8.22 mg/kg ALS RG_MIUCO_SE-4_2020-09-12_1348 SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 Copper (Cu) 17.9 mg/kg ALS RG_MIUCO_SE-4_2020-09-12_1348						4			` '				
SE MIUCO 668134 5486767 2020 4 2020-09-12 13:48 Copper (Cu) 17.9 mg/kg ALS RG_MIUCO_SE-4_2020-09-12_1348						4			` '				
						4							
OL I MICOO I COCIOT I CTOCCO I TELECOCONOTE I COCO I TELECONOTE I COCO I I COCONOTE I COCO I COCONOTE I COCONO	SE	MIUCO	668134	5486767	2020	4	2020-09-12	13:48	Iron (Fe)	21500	mg/kg	ALS	RG MIUCO SE-4 2020-09-12 1348

WSP Canada Inc. Page 145 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	Station		(UTMs) ^(a)	Year	Replicate		Time	Analyte	Result	Unit		Laboratory Information
Type	Station	Easting	Northing	rear	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MIUCO	668134	5486767	2020	4	2020-09-12	13:48	Lead (Pb)	11.8	mg/kg	ALS	RG_MIUCO_SE-4_2020-09-12_1348
SE	MIUCO	668134	5486767	2020	4	2020-09-12	13:48	Lithium (Li)	21.3	mg/kg	ALS	RG_MIUCO_SE-4_2020-09-12_1348
SE	MIUCO	668134	5486767	2020	4	2020-09-12	13:48	Magnesium (Mg)	6420	mg/kg	ALS	RG_MIUCO_SE-4_2020-09-12_1348
SE	MIUCO	668134	5486767	2020	4	2020-09-12	13:48	Manganese (Mn)	396	mg/kg	ALS	RG_MIUCO_SE-4_2020-09-12_1348
SE	MIUCO	668134	5486767	2020	4	2020-09-12	13:48	Molybdenum (Mo)	2.37	mg/kg	ALS	RG_MIUCO_SE-4_2020-09-12_1348
SE	MIUCO	668134	5486767	2020	4	2020-09-12	13:48	Nickel (Ni)	22.8	mg/kg	ALS	RG_MIUCO_SE-4_2020-09-12_1348
SE	MIUCO	668134	5486767	2020	4	2020-09-12	13:48	Phosphorus (P)	1270	mg/kg	ALS	RG_MIUCO_SE-4_2020-09-12_1348
SE	MIUCO	668134	5486767	2020	4	2020-09-12	13:48	Potassium (K)	3410	mg/kg	ALS	RG_MIUCO_SE-4_2020-09-12_1348
SE	MIUCO	668134	5486767	2020	4	2020-09-12	13:48	Selenium (Se)	0.53	mg/kg	ALS	RG_MIUCO_SE-4_2020-09-12_1348
SE	MIUCO	668134	5486767	2020	4	2020-09-12	13:48	Silver (Ag)	0.10	mg/kg	ALS	RG_MIUCO_SE-4_2020-09-12_1348
SE	MIUCO	668134	5486767	2020	4	2020-09-12	13:48	Sodium (Na)	81	mg/kg	ALS	RG_MIUCO_SE-4_2020-09-12_1348
SE	MIUCO	668134	5486767	2020	4	2020-09-12	13:48	Strontium (Sr)	42.1	mg/kg	ALS	RG_MIUCO_SE-4_2020-09-12_1348
SE	MIUCO	668134	5486767	2020	4	2020-09-12	13:48	Sulfur (S)	<1000	mg/kg	ALS	RG_MIUCO_SE-4_2020-09-12_1348
SE	MIUCO	668134	5486767	2020	4	2020-09-12	13:48	Thallium (TI)	0.378	mg/kg	ALS	RG_MIUCO_SE-4_2020-09-12_1348
SE	MIUCO	668134	5486767	2020	4	2020-09-12	13:48	Tin (Sn)	<2.0	mg/kg	ALS	RG_MIUCO_SE-4_2020-09-12_1348
SE	MIUCO	668134	5486767	2020	4	2020-09-12	13:48	Titanium (Ti)	17.5	mg/kg	ALS	RG_MIUCO_SE-4_2020-09-12_1348
SE	MIUCO	668134	5486767	2020	4	2020-09-12	13:48	Tungsten (W)	<0.50	mg/kg	ALS	RG_MIUCO_SE-4_2020-09-12_1348
SE	MIUCO	668134	5486767	2020	4	2020-09-12	13:48	Uranium (U)	0.584	mg/kg	ALS	RG_MIUCO_SE-4_2020-09-12_1348
SE	MIUCO	668134	5486767	2020	4	2020-09-12	13:48	Vanadium (V)	31.9	mg/kg	ALS	RG_MIUCO_SE-4_2020-09-12_1348
SE	MIUCO	668134	5486767	2020	4	2020-09-12	13:48	Zinc (Zn)	94.8	mg/kg	ALS	RG_MIUCO_SE-4_2020-09-12_1348
SE	MIUCO	668134	5486767	2020	4	2020-09-12	13:48	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_MIUCO_SE-4_2020-09-12_1348
SE	MIUCO	668134	5486767	2020	4	2020-09-12	13:48	pH (1:2 soil:water)	8.10	рН	ALS	RG_MIUCO_SE-4_2020-09-12_1348
SE	MIUCO	668134	5486767	2020	4	2020-09-12	13:48	Total Organic Carbon	2.04	%	ALS	RG_MIUCO_SE-4_2020-09-12_1348
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	Moisture	43.7	%	ALS	RG_MIUCO_SE-5_2020-09-12_1325
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	Acenaphthene	<0.0050	mg/kg	ALS	RG_MIUCO_SE-5_2020-09-12_1325
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	Acenaphthylene	<0.0050	mg/kg	ALS	RG_MIUCO_SE-5_2020-09-12_1325
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	Anthracene	<0.0040	mg/kg	ALS	RG_MIUCO_SE-5_2020-09-12_1325
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	Acridine	<0.010	mg/kg	ALS	RG_MIUCO_SE-5_2020-09-12_1325
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	Benz(a)anthracene	<0.010	mg/kg	ALS	RG_MIUCO_SE-5_2020-09-12_1325
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	Benzo(a)pyrene	<0.010	mg/kg	ALS	RG_MIUCO_SE-5_2020-09-12_1325
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	Benzo(b&j)fluoranthene	<0.010	mg/kg		RG_MIUCO_SE-5_2020-09-12_1325
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	Benzo(e)pyrene	<0.010	mg/kg	ALS	RG_MIUCO_SE-5_2020-09-12_1325
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	Benzo(g_h_i)perylene	<0.010	mg/kg	ALS	RG_MIUCO_SE-5_2020-09-12_1325
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	Benzo(k)fluoranthene	<0.010	mg/kg	ALS	RG_MIUCO_SE-5_2020-09-12_1325
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	Chrysene	0.015	mg/kg	ALS	RG_MIUCO_SE-5_2020-09-12_1325
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	Dibenz(a_h)anthracene	<0.0050	mg/kg	ALS	RG_MIUCO_SE-5_2020-09-12_1325
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	Fluoranthene	<0.010	mg/kg	ALS	RG_MIUCO_SE-5_2020-09-12_1325
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	Fluorene	<0.010	mg/kg	ALS	RG_MIUCO_SE-5_2020-09-12_1325
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	Indeno(1,2,3-c,d)pyrene	<0.010	mg/kg	ALS	RG_MIUCO_SE-5_2020-09-12_1325
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	2-Methylnaphthalene	0.014	mg/kg	ALS	RG_MIUCO_SE-5_2020-09-12_1325
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	Naphthalene	<0.010	mg/kg	ALS	RG_MIUCO_SE-5_2020-09-12_1325
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	Perylene	0.013	mg/kg	ALS	RG_MIUCO_SE-5_2020-09-12_1325
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	Phenanthrene	0.021	mg/kg	ALS	RG_MIUCO_SE-5_2020-09-12_1325
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	Pyrene	<0.010	mg/kg	ALS	RG_MIUCO_SE-5_2020-09-12_1325
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	1-Methylnaphthalene	<0.050	mg/kg	ALS	RG_MIUCO_SE-5_2020-09-12_1325
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	Quinoline	<0.050	mg/kg	ALS	RG_MIUCO_SE-5_2020-09-12_1325
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	IACR (CCME)	<0.15	-	ALS	RG_MIUCO_SE-5_2020-09-12_1325

WSP Canada Inc. Page 146 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

\/D0	Station	Location	(UTMs) ^(a)	Veer	Donlinete	Doto	Time	Analyte	Dogult	Unit		Laboratory Information
уре	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	B(a)P Total Potency Equivalent	<0.020	mg/kg	ALS	RG MIUCO SE-5 2020-09-12 1325
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	Benzo(b+j+k)fluoranthene	<0.015	mg/kg	ALS	RG MIUCO SE-5 2020-09-12 1325
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	IACR:Coarse	<0.050	-	ALS	RG_MIUCO_SE-5_2020-09-12_1325
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	IACR:Fine	<0.050	-	ALS	RG MIUCO SE-5 2020-09-12 1325
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	d8-Naphthalene	101.8	%	ALS	RG_MIUCO_SE-5_2020-09-12_1325
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	d10-Acenaphthene	104.6	%	ALS	RG MIUCO SE-5 2020-09-12 1325
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	d10-Phenanthrene	102.1	%	ALS	RG MIUCO SE-5 2020-09-12 1325
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	d12-Chrysene	109.8	%	ALS	RG_MIUCO_SE-5_2020-09-12_1325
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	% Gravel (>2 mm)	<1.0	%	ALS	RG MIUCO SE-5 2020-09-12 1325
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	% Sand (2.00 mm - 1.00 mm)	<1.0	%	ALS	RG MIUCO SE-5 2020-09-12 1325
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	% Sand (1.00 mm - 0.50 mm)	2.3	%	ALS	RG_MIUCO_SE-5_2020-09-12_1325
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	% Sand (0.50 mm - 0.25 mm)	10.2	%	ALS	RG MIUCO SE-5 2020-09-12 1325
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	% Sand (0.25 mm - 0.125 mm)	21.0	%	ALS	RG MIUCO SE-5 2020-09-12 1325
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	% Sand (0.125 mm - 0.063 mm)	22.4	%	ALS	RG MIUCO SE-5 2020-09-12 1325
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	% Silt (0.063 mm - 0.0312 mm)	18.6	%	ALS	RG MIUCO SE-5 2020-09-12 1325
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	% Silt (0.031 mm - 0.004 mm)	18.9	%	ALS	RG_MIUCO_SE-5_2020-09-12_1325
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	% Clay (<4 μm)	5.4	%	ALS	RG MIUCO SE-5 2020-09-12 1325
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	Texture	Sandy loam	_	ALS	RG MIUCO SE-5 2020-09-12 1325
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	Mercury (Hg)	0.0251	mg/kg	ALS	RG MIUCO SE-5 2020-09-12 1325
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	Aluminum (Al)	15800	mg/kg	ALS	RG_MIUCO_SE-5_2020-09-12_1325
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	Antimony (Sb)	0.34	mg/kg	ALS	RG MIUCO SE-5 2020-09-12 1325
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	Arsenic (As)	7.56	mg/kg	ALS	RG_MIUCO_SE-5_2020-09-12_1325
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	Barium (Ba)	173	mg/kg	ALS	RG MIUCO SE-5 2020-09-12 1325
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	Beryllium (Be)	0.90	mg/kg	ALS	RG MIUCO SE-5 2020-09-12 1325
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	Bismuth (Bi)	<0.20	mg/kg	ALS	RG MIUCO SE-5 2020-09-12 1325
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	Boron (B)	16.2	mg/kg	ALS	RG MIUCO SE-5 2020-09-12 1325
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	Cadmium (Cd)	0.765	mg/kg	ALS	RG MIUCO SE-5 2020-09-12 1325
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	Calcium (Ca)	12700	mg/kg	ALS	RG_MIUCO_SE-5_2020-09-12_1325
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	Chromium (Cr)	19.3	mg/kg	ALS	RG MIUCO SE-5 2020-09-12 1325
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	Cobalt (Co)	8.27	mg/kg	ALS	RG MIUCO SE-5 2020-09-12 1325
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	Copper (Cu)	18.7	mg/kg	ALS	RG MIUCO SE-5 2020-09-12 1325
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	Iron (Fe)	20800	mg/kg	ALS	RG MIUCO SE-5 2020-09-12 1325
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	Lead (Pb)	11.8	mg/kg	ALS	RG MIUCO SE-5 2020-09-12 1325
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	Lithium (Li)	21.2	mg/kg	ALS	RG MIUCO SE-5 2020-09-12 1325
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	Magnesium (Mg)	6620	mg/kg	ALS	RG MIUCO SE-5 2020-09-12 1325
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	Manganese (Mn)	430	mg/kg	ALS	RG_MIUCO_SE-5_2020-09-12_1325
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	Molybdenum (Mo)	2.38	mg/kg	ALS	RG MIUCO SE-5 2020-09-12 1325
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	Nickel (Ni)	23.5	mg/kg	ALS	RG MIUCO SE-5 2020-09-12 1325
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	Phosphorus (P)	1350	mg/kg	ALS	RG_MIUCO_SE-5_2020-09-12_1325
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	Potassium (K)	3470	mg/kg	ALS	RG_MIUCO_SE-5_2020-09-12_1325
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	Selenium (Se)	0.58	mg/kg	ALS	RG_MIUCO_SE-5_2020-09-12_1325
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	Silver (Ag)	<0.10	mg/kg	ALS	RG_MIUCO_SE-5_2020-09-12_1325
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	Sodium (Na)	79	mg/kg	ALS	RG MIUCO SE-5 2020-09-12 1325
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	Strontium (Sr)	37.5	mg/kg	ALS	RG MIUCO SE-5 2020-09-12 1325
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	Sulfur (S)	<1000	mg/kg	ALS	RG MIUCO SE-5 2020-09-12 1325
					1							
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	Thallium (TI)	0.391	mg/kg	ALS	RG_MIUCO_SE-5_2020-09-12_1325

WSP Canada Inc. Page 147 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Table I-1	l: Sediment Chem			CMm LAEMP	Sampling St	ations, 2012 to	2022					
Туре	Station	Location	ı (UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
Type	Station	Easting	Northing	i cai	Replicate	Date	Tille	Allalyte	Result	Onic	Lab	Sample ID
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	Titanium (Ti)	21.3	mg/kg	ALS	RG_MIUCO_SE-5_2020-09-12_1325
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	Tungsten (W)	<0.50	mg/kg	ALS	RG_MIUCO_SE-5_2020-09-12_1325
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	Uranium (U)	0.661	mg/kg	ALS	RG_MIUCO_SE-5_2020-09-12_1325
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	Vanadium (V)	32.8	mg/kg	ALS	RG_MIUCO_SE-5_2020-09-12_1325
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	Zinc (Zn)	97.1	mg/kg	ALS	RG_MIUCO_SE-5_2020-09-12_1325
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	Zirconium (Zr)	1.1	mg/kg	ALS	RG_MIUCO_SE-5_2020-09-12_1325
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	pH (1:2 soil:water)	8.00	рН	ALS	RG_MIUCO_SE-5_2020-09-12_1325
SE	MIUCO	668134	5486767	2020	5	2020-09-12	13:25	Total Organic Carbon	2.38	%	ALS	RG_MIUCO_SE-5_2020-09-12_1325
SE	MIDCO	667711	5487625	2020	1	2020-09-15	08:01	Moisture	66.7	%	ALS	RG_MIDCO_SE-1_2020-09-15_0801
SE	MIDCO	667711	5487625	2020	1	2020-09-15	08:01	Acenaphthene	0.0076	mg/kg	ALS	RG_MIDCO_SE-1_2020-09-15_0801
SE	MIDCO	667711	5487625	2020	1	2020-09-15	08:01	Acenaphthylene	<0.0075	mg/kg	ALS	RG_MIDCO_SE-1_2020-09-15_0801
SE	MIDCO	667711	5487625	2020	1	2020-09-15	08:01	Anthracene	<0.0060	mg/kg	ALS	RG_MIDCO_SE-1_2020-09-15_0801
SE	MIDCO	667711	5487625	2020	1	2020-09-15	08:01	Acridine	<0.015	mg/kg	ALS	RG_MIDCO_SE-1_2020-09-15_0801
SE	MIDCO	667711	5487625	2020	1	2020-09-15	08:01	Benz(a)anthracene	<0.015	mg/kg	ALS	RG_MIDCO_SE-1_2020-09-15_0801
SE	MIDCO	667711	5487625	2020	1	2020-09-15	08:01	Benzo(a)pyrene	<0.015	mg/kg	ALS	RG_MIDCO_SE-1_2020-09-15_0801
SE	MIDCO	667711	5487625	2020	1	2020-09-15	08:01	Benzo(b&j)fluoranthene	0.034	mg/kg	ALS	RG_MIDCO_SE-1_2020-09-15_0801
SE	MIDCO	667711	5487625	2020	1	2020-09-15	08:01	Benzo(e)pyrene	0.041	mg/kg	ALS	RG_MIDCO_SE-1_2020-09-15_0801
SE	MIDCO	667711	5487625	2020	1	2020-09-15	08:01	Benzo(g_h_i)perylene	<0.015	mg/kg	ALS	RG_MIDCO_SE-1_2020-09-15_0801
SE	MIDCO	667711	5487625	2020	1	2020-09-15	08:01	Benzo(k)fluoranthene	<0.015	mg/kg	ALS	RG_MIDCO_SE-1_2020-09-15_0801
SE	MIDCO	667711	5487625	2020	1	2020-09-15	08:01	Chrysene	0.057	mg/kg	ALS	RG_MIDCO_SE-1_2020-09-15_0801
SE	MIDCO	667711	5487625	2020	1	2020-09-15	08:01	Dibenz(a_h)anthracene	<0.0075	mg/kg	ALS	RG_MIDCO_SE-1_2020-09-15_0801
SE	MIDCO	667711	5487625	2020	1	2020-09-15	08:01	Fluoranthene	<0.015	mg/kg	ALS	RG_MIDCO_SE-1_2020-09-15_0801
SE	MIDCO	667711	5487625	2020	1	2020-09-15	08:01	Fluorene	0.024	mg/kg	ALS	RG_MIDCO_SE-1_2020-09-15_0801
SE	MIDCO	667711	5487625	2020	1	2020-09-15	08:01	Indeno(1,2,3-c,d)pyrene	< 0.015	mg/kg	ALS	RG_MIDCO_SE-1_2020-09-15_0801
SE	MIDCO	667711	5487625	2020	1	2020-09-15	08:01	2-Methylnaphthalene	0.242	mg/kg	ALS	RG_MIDCO_SE-1_2020-09-15_0801
SE	MIDCO	667711	5487625	2020	1	2020-09-15	08:01	Naphthalene	0.094	mg/kg	ALS	RG_MIDCO_SE-1_2020-09-15_0801
SE	MIDCO	667711	5487625	2020	1	2020-09-15	08:01	Perylene	<0.015	mg/kg	ALS	RG_MIDCO_SE-1_2020-09-15_0801
SE	MIDCO	667711	5487625	2020	1	2020-09-15	08:01	Phenanthrene	0.145	mg/kg	ALS	RG_MIDCO_SE-1_2020-09-15_0801
SE	MIDCO	667711	5487625	2020	1	2020-09-15	08:01	Pyrene	0.019	mg/kg	ALS	RG_MIDCO_SE-1_2020-09-15_0801
SE	MIDCO	667711	5487625	2020	1	2020-09-15	08:01	1-Methylnaphthalene	0.154	mg/kg	ALS	RG_MIDCO_SE-1_2020-09-15_0801
SE	MIDCO	667711	5487625	2020	1	2020-09-15	08:01	Quinoline	< 0.015	mg/kg	ALS	RG_MIDCO_SE-1_2020-09-15_0801
SE	MIDCO	667711	5487625	2020	1	2020-09-15	08:01	IACR (CCME)	0.35	-	ALS	RG_MIDCO_SE-1_2020-09-15_0801
SE	MIDCO	667711	5487625	2020	1	2020-09-15	08:01	B(a)P Total Potency Equivalent	<0.020	mg/kg	ALS	RG_MIDCO_SE-1_2020-09-15_0801
SE	MIDCO	667711	5487625	2020	1	2020-09-15	08:01	Benzo(b+j+k)fluoranthene	0.034	mg/kg	ALS	RG_MIDCO_SE-1_2020-09-15_0801
SE	MIDCO	667711	5487625	2020	1	2020-09-15	08:01	IACR:Coarse	<0.050	-	ALS	RG_MIDCO_SE-1_2020-09-15_0801
SE	MIDCO	667711	5487625	2020	1	2020-09-15	08:01	IACR:Fine	<0.050	-	ALS	RG_MIDCO_SE-1_2020-09-15_0801
SE	MIDCO	667711	5487625	2020	1	2020-09-15	08:01	d8-Naphthalene	103.5	%	ALS	RG MIDCO SE-1 2020-09-15 0801
SE	MIDCO	667711	5487625	2020	1	2020-09-15	08:01	d10-Acenaphthene	104.4	%	ALS	RG MIDCO SE-1 2020-09-15 0801
SE	MIDCO	667711	5487625	2020	1	2020-09-15	08:01	d10-Phenanthrene	102.0	%	ALS	RG_MIDCO_SE-1_2020-09-15_0801
SE	MIDCO	667711	5487625	2020	1	2020-09-15	08:01	d12-Chrysene	110.3	%	ALS	RG_MIDCO_SE-1_2020-09-15_0801
SE	MIDCO	667711	5487625	2020	1	2020-09-15	08:01	% Gravel (>2 mm)	<1.0	%	ALS	RG_MIDCO_SE-1_2020-09-15_0801
SE	MIDCO	667711	5487625	2020	1	2020-09-15	08:01	% Sand (2.00 mm - 1.00 mm)	1.6	%	ALS	RG_MIDCO_SE-1_2020-09-15_0801
SE	MIDCO	667711	5487625	2020	1	2020-09-15	08:01	% Sand (1.00 mm - 0.50 mm)	7.2	%	ALS	RG_MIDCO_SE-1_2020-09-15_0801
SE	MIDCO	667711	5487625	2020	1	2020-09-15	08:01	% Sand (0.50 mm - 0.25 mm)	17.1	%	ALS	RG_MIDCO_SE-1_2020-09-15_0801
SE	MIDCO	667711	5487625	2020	1	2020-09-15	08:01	% Sand (0.25 mm - 0.125 mm)	14.0	%	ALS	RG_MIDCO_SE-1_2020-09-15_0801
SE	MIDCO	667711	5487625	2020	1	2020-09-15	08:01	% Sand (0.125 mm - 0.063 mm)	9.2	%	ALS	RG_MIDCO_SE-1_2020-09-15_0801
SE	MIDCO	667711	5487625	2020	1	2020-09-15	08:01	% Silt (0.063 mm - 0.0312 mm)	20.8	%	ALS	RG MIDCO SE-1 2020-09-15 0801

WSP Canada Inc. Page 148 of 337

Sediment Screening

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	Ctation	Location	ı (UTMs) ^(a)	Vacu	Doubleste	Doto	Time	Analysis	- Beerly -	Heit		Laboratory Information
ype	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MIDCO	667711	5487625	2020	1	2020-09-15	08:01	% Silt (0.031 mm - 0.004 mm)	25.1	%	ALS	RG MIDCO SE-1 2020-09-15 0801
SE	MIDCO	667711	5487625	2020	1	2020-09-15	08:01	% Clay (<4 μm)	4.7	%	ALS	RG MIDCO SE-1 2020-09-15 0801
SE .	MIDCO	667711	5487625	2020	1	2020-09-15	08:01	Texture	Sandy loam	-	ALS	RG MIDCO SE-1 2020-09-15 0801
SE	MIDCO	667711	5487625	2020	1	2020-09-15	08:01	Mercury (Hg)	0.0230	mg/kg	ALS	RG MIDCO SE-1 2020-09-15 0801
SE	MIDCO	667711	5487625	2020	1	2020-09-15	08:01	Aluminum (AI)	10800	mg/kg	ALS	RG_MIDCO_SE-1_2020-09-15_0801
SE SE	MIDCO	667711	5487625	2020	1	2020-09-15	08:01	Antimony (Sb)	0.36	mg/kg	ALS	RG MIDCO SE-1 2020-09-15 0801
SE	MIDCO	667711	5487625	2020	1	2020-09-15	08:01	Arsenic (As)	6.28	mg/kg	ALS	RG MIDCO SE-1 2020-09-15 0801
SE	MIDCO	667711	5487625	2020	1	2020-09-15	08:01	Barium (Ba)	134	mg/kg	ALS	RG MIDCO SE-1 2020-09-15 0801
SE .	MIDCO	667711	5487625	2020	1	2020-09-15	08:01	Beryllium (Be)	0.74	mg/kg	ALS	RG MIDCO SE-1 2020-09-15 0801
SE SE	MIDCO	667711	5487625	2020	1 1	2020-09-15	08:01	Bismuth (Bi)	<0.20	mg/kg	ALS	RG MIDCO SE-1 2020-09-15 0801
SE SE	MIDCO	667711	5487625	2020	1	2020-09-15	08:01	Boron (B)	14.3	mg/kg	ALS	RG MIDCO SE-1 2020-09-15 0801
SE SE	MIDCO	667711	5487625	2020	1	2020-09-15	08:01	Cadmium (Cd)	1.39	mg/kg	ALS	RG MIDCO SE-1 2020-09-15 0801
SE SE	MIDCO	667711	5487625	2020	1	2020-09-15	08:01	Calcium (Ca)	71300	mg/kg	ALS	RG MIDCO SE-1 2020-09-15 0801
SE SE	MIDCO	667711	5487625	2020	1 1	2020-09-15	08:01	Chromium (Cr)	13.9	mg/kg	ALS	RG MIDCO SE-1 2020-09-15 0801
SE SE	MIDCO	667711	5487625	2020	1	2020-09-15	08:01	Cobalt (Co)	71.5		ALS	RG MIDCO SE-1 2020-09-15 0801
SE SE	MIDCO	667711	5487625	2020	1	2020-09-15	08:01	Copper (Cu)	14.2	mg/kg	ALS	RG MIDCO SE-1 2020-09-15 0801
SE SE	MIDCO	667711	5487625		1 1	2020-09-15	08:01	,	17500	mg/kg	ALS	RG MIDCO SE-1 2020-09-15 0801
				2020	1 1			Iron (Fe)		mg/kg		
SE SE	MIDCO	667711	5487625	2020	1 1	2020-09-15	08:01	Lead (Pb)	9.49	mg/kg	ALS	RG_MIDCO_SE-1_2020-09-15_0801
	MIDCO	667711	5487625	2020	1 1	2020-09-15	08:01	Lithium (Li)	17.4	mg/kg	ALS	RG_MIDCO_SE-1_2020-09-15_0801
E	MIDCO	667711	5487625	2020	1	2020-09-15	08:01	Magnesium (Mg)	6480	mg/kg	ALS	RG_MIDCO_SE-1_2020-09-15_0801
E	MIDCO	667711	5487625	2020	1 1	2020-09-15	08:01	Manganese (Mn)	904	mg/kg	ALS	RG_MIDCO_SE-1_2020-09-15_0801
E	MIDCO	667711	5487625	2020	1 1	2020-09-15	08:01	Molybdenum (Mo)	1.78	mg/kg	ALS	RG_MIDCO_SE-1_2020-09-15_0801
E .	MIDCO	667711	5487625	2020	1	2020-09-15	08:01	Nickel (Ni)	113	mg/kg	ALS	RG_MIDCO_SE-1_2020-09-15_0801
SE .	MIDCO	667711	5487625	2020	1	2020-09-15	08:01	Phosphorus (P)	1040	mg/kg	ALS	RG_MIDCO_SE-1_2020-09-15_0801
SE	MIDCO	667711	5487625	2020	1	2020-09-15	08:01	Potassium (K)	2440	mg/kg	ALS	RG_MIDCO_SE-1_2020-09-15_0801
SE	MIDCO	667711	5487625	2020	1	2020-09-15	08:01	Selenium (Se)	1.89	mg/kg	ALS	RG_MIDCO_SE-1_2020-09-15_0801
SE	MIDCO	667711	5487625	2020	1	2020-09-15	08:01	Silver (Ag)	<0.10	mg/kg	ALS	RG_MIDCO_SE-1_2020-09-15_0801
SE	MIDCO	667711	5487625	2020	1	2020-09-15	08:01	Sodium (Na)	206	mg/kg	ALS	RG_MIDCO_SE-1_2020-09-15_0801
SE	MIDCO	667711	5487625	2020	1	2020-09-15	08:01	Strontium (Sr)	123	mg/kg	ALS	RG_MIDCO_SE-1_2020-09-15_0801
SE .	MIDCO	667711	5487625	2020	1	2020-09-15	08:01	Sulfur (S)	1400	mg/kg	ALS	RG_MIDCO_SE-1_2020-09-15_0801
SE	MIDCO	667711	5487625	2020	1	2020-09-15	08:01	Thallium (TI)	0.322	mg/kg	ALS	RG_MIDCO_SE-1_2020-09-15_0801
SE	MIDCO	667711	5487625	2020	1	2020-09-15	08:01	Tin (Sn)	<2.0	mg/kg	ALS	RG_MIDCO_SE-1_2020-09-15_0801
SE	MIDCO	667711	5487625	2020	1	2020-09-15	08:01	Titanium (Ti)	22.3	mg/kg	ALS	RG_MIDCO_SE-1_2020-09-15_0801
SE	MIDCO	667711	5487625	2020	1	2020-09-15	08:01	Tungsten (W)	<0.50	mg/kg	ALS	RG_MIDCO_SE-1_2020-09-15_0801
SE	MIDCO	667711	5487625	2020	1	2020-09-15	08:01	Uranium (U)	0.797	mg/kg	ALS	RG_MIDCO_SE-1_2020-09-15_0801
SE	MIDCO	667711	5487625	2020	1	2020-09-15	08:01	Vanadium (V)	23.7	mg/kg	ALS	RG_MIDCO_SE-1_2020-09-15_0801
SE.	MIDCO	667711	5487625	2020	1	2020-09-15	08:01	Zinc (Zn)	157	mg/kg	ALS	RG_MIDCO_SE-1_2020-09-15_0801
SE.	MIDCO	667711	5487625	2020	1	2020-09-15	08:01	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_MIDCO_SE-1_2020-09-15_0801
SE	MIDCO	667711	5487625	2020	1	2020-09-15	08:01	pH (1:2 soil:water)	7.96	рН	ALS	RG_MIDCO_SE-1_2020-09-15_0801
SE	MIDCO	667711	5487625	2020	1	2020-09-15	08:01	Total Organic Carbon	3.5	%	ALS	RG_MIDCO_SE-1_2020-09-15_0801
E	MIDCO	667711	5487625	2020	2	2020-09-15	08:05	Moisture	79.5	%	ALS	RG_MIDCO_SE-2_2020-09-15_0805
SE	MIDCO	667711	5487625	2020	2	2020-09-15	08:05	Acenaphthene	< 0.030	mg/kg	ALS	RG_MIDCO_SE-2_2020-09-15_0805
SE	MIDCO	667711	5487625	2020	2	2020-09-15	08:05	Acenaphthylene	<0.011	mg/kg	ALS	RG MIDCO SE-2 2020-09-15 0805
E E	MIDCO	667711	5487625	2020	2	2020-09-15	08:05	Anthracene	<0.0088	mg/kg	ALS	RG MIDCO SE-2 2020-09-15 0805
E E	MIDCO	667711	5487625	2020	2	2020-09-15	08:05	Acridine	<0.040	mg/kg	ALS	RG MIDCO SE-2 2020-09-15 0805
E	MIDCO	667711	5487625	2020	2	2020-09-15	08:05	Benz(a)anthracene	0.028	mg/kg	ALS	RG MIDCO SE-2 2020-09-15 0805
									V.V-V	Ġ,		

WSP Canada Inc. Page 149 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

уре	STATION	CA AMILIA	ı (UTMs) ^(a)	V	Dauliant	Data	Time	- A walled	Dec. II	Line		Laboratory Information
	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MIDCO	667711	5487625	2020	2	2020-09-15	08:05	Benzo(b&j)fluoranthene	0.086	mg/kg	ALS	RG MIDCO SE-2 2020-09-15 0805
SE	MIDCO	667711	5487625	2020	2	2020-09-15	08:05	Benzo(e)pyrene	0.099	mg/kg	ALS	RG MIDCO SE-2 2020-09-15 0805
SE	MIDCO	667711	5487625	2020	2	2020-09-15	08:05	Benzo(g_h_i)perylene	0.046	mg/kg	ALS	RG MIDCO SE-2 2020-09-15 0805
SE	MIDCO	667711	5487625	2020	2	2020-09-15	08:05	Benzo(k)fluoranthene	<0.022	mg/kg	ALS	RG MIDCO SE-2 2020-09-15 0805
SE	MIDCO	667711	5487625	2020	2	2020-09-15	08:05	Chrysene	0.145	mg/kg	ALS	RG MIDCO SE-2 2020-09-15 0805
SE	MIDCO	667711	5487625	2020	2	2020-09-15	08:05	Dibenz(a h)anthracene	<0.022	mg/kg	ALS	RG MIDCO SE-2 2020-09-15 0805
SE	MIDCO	667711	5487625	2020	2	2020-09-15	08:05	Fluoranthene	0.023	mg/kg	ALS	RG MIDCO SE-2 2020-09-15 0805
SE SE	MIDCO	667711	5487625	2020	2	2020-09-15	08:05	Fluorene	0.069	mg/kg	ALS	RG MIDCO SE-2 2020-09-15 0805
SE SE	MIDCO	667711	5487625	2020	2	2020-09-15	08:05	Indeno(1,2,3-c,d)pyrene	<0.022	mg/kg	ALS	RG MIDCO SE-2 2020-09-15 0805
SE	MIDCO	667711	5487625	2020	2	2020-09-15	08:05	2-Methylnaphthalene	0.649	mg/kg	ALS	RG MIDCO SE-2 2020-09-15 0805
SE	MIDCO	667711	5487625	2020	2	2020-09-15	08:05	Naphthalene	0.238	mg/kg	ALS	RG MIDCO SE-2 2020-09-15 0805
SE SE	MIDCO	667711	5487625	2020	2	2020-09-15	08:05	Perylene	<0.022	mg/kg	ALS	RG MIDCO SE-2 2020-09-15 0805
SE SE	MIDCO	667711	5487625	2020	2	2020-09-15	08:05	Phenanthrene	0.384	mg/kg	ALS	RG MIDCO SE-2 2020-09-15 0805
SE SE	MIDCO	667711	5487625	2020	2	2020-09-15	08:05	Pyrene	0.045	mg/kg	ALS	RG MIDCO SE-2 2020-09-15 0805
SE SE	MIDCO	667711	5487625	2020	2	2020-09-15	08:05	1-Methylnaphthalene	0.400	mg/kg	ALS	RG MIDCO SE-2 2020-09-15 0805
SE SE	MIDCO	667711	5487625	2020	2	2020-09-15	08:05	Quinoline	<0.022	mg/kg	ALS	RG MIDCO SE-2 2020-09-15 0805
SE SE	MIDCO	667711	5487625	2020	2	2020-09-15	08:05	IACR (CCME)	0.85	-	ALS	RG MIDCO SE-2 2020-09-15 0805
SE .	MIDCO	667711	5487625	2020	2	2020-09-15	08:05	B(a)P Total Potency Equivalent	0.037	mg/kg	ALS	RG MIDCO SE-2 2020-09-15 0805
E E	MIDCO	667711	5487625	2020	2	2020-09-15	08:05	Benzo(b+j+k)fluoranthene	0.086	mg/kg	ALS	RG MIDCO SE-2 2020-09-15 0805
E	MIDCO	667711	5487625	2020	2	2020-09-15	08:05	IACR:Coarse	<0.050	-	ALS	RG MIDCO SE-2 2020-09-15 0805
E	MIDCO	667711	5487625	2020	2	2020-09-15	08:05	IACR:Fine	0.058	_	ALS	RG MIDCO SE-2 2020-09-15 0805
E	MIDCO	667711	5487625	2020	2	2020-09-15	08:05	d8-Naphthalene	106.2	%	ALS	RG MIDCO SE-2 2020-09-15 0805
E E	MIDCO	667711	5487625	2020	2	2020-09-15	08:05	d10-Acenaphthene	107.4	%	ALS	RG MIDCO SE-2 2020-09-15 0805
E E	MIDCO	667711	5487625	2020	2	2020-09-15	08:05	d10-Phenanthrene	109.3	%	ALS	RG MIDCO SE-2 2020-09-15 0805
E E	MIDCO	667711	5487625	2020	2	2020-09-15	08:05	d12-Chrysene	118.1	%	ALS	RG MIDCO SE-2 2020-09-15 0805
SE SE	MIDCO	667711	5487625	2020	2	2020-09-15	08:05	% Gravel (>2 mm)	<1.0	%	ALS	RG MIDCO SE-2 2020-09-15 0805
SE SE	MIDCO	667711	5487625	2020	2	2020-09-15	08:05	% Sand (2.00 mm - 1.00 mm)	1.7	%	ALS	RG MIDCO SE-2 2020-09-15 0805
SE SE	MIDCO	667711	5487625	2020	2	2020-09-15	08:05	% Sand (1.00 mm - 0.50 mm)	6.5	%	ALS	RG MIDCO SE-2 2020-09-15 0805
SE SE	MIDCO	667711	5487625	2020	2	2020-09-15	08:05	% Sand (0.50 mm - 0.25 mm)	4.4	%	ALS	RG MIDCO SE-2 2020-09-15 0805
SE SE	MIDCO	667711	5487625	2020	2	2020-09-15	08:05	% Sand (0.25 mm - 0.125 mm)	5.9	%	ALS	RG MIDCO SE-2 2020-09-15 0805
SE SE	MIDCO	667711	5487625	2020	_	2020-09-15	08:05	% Sand (0.125 mm - 0.063 mm)	9.5	%	ALS	RG MIDCO SE-2 2020-09-15 0805
SE SE	MIDCO	667711	5487625	2020		2020-09-15	08:05	% Silt (0.063 mm - 0.0312 mm)	29.3	%	ALS	RG MIDCO SE-2 2020-09-15 0805
SE SE	MIDCO	667711	5487625	2020		2020-09-15	08:05	% Silt (0.031 mm - 0.004 mm)	36.4	%	ALS	RG MIDCO SE-2 2020-09-15 0805
SE SE	MIDCO	667711	5487625	2020	2	2020-09-15	08:05	% Clay (<4 µm)	6.3	%	ALS	RG MIDCO SE-2 2020-09-15 0805
SE SE	MIDCO	667711	5487625	2020	2	2020-09-15	08:05	Texture	Silt loam	-	ALS	RG MIDCO SE-2 2020-09-15 0805
SE SE	MIDCO	667711	5487625	2020	2	2020-09-15	08:05	Mercury (Hg)	0.0285	mg/kg	ALS	RG MIDCO SE-2 2020-09-15 0805
SE SE	MIDCO	667711	5487625	2020	2	2020-09-15	08:05	Aluminum (Al)	9710	mg/kg	ALS	RG MIDCO SE-2 2020-09-15 0805
SE SE	MIDCO	667711	5487625	2020	2	2020-09-15	08:05	Antimony (Sb)	0.31	mg/kg	ALS	RG MIDCO SE-2 2020-09-15 0805
E E	MIDCO	667711	5487625	2020	2	2020-09-15	08:05	Arsenic (As)	4.98	mg/kg	ALS	RG MIDCO SE-2 2020-09-15 0805
E E	MIDCO	667711	5487625	2020	2	2020-09-15	08:05	Barium (Ba)	147	mg/kg	ALS	RG MIDCO SE-2 2020-09-15 0805
E E	MIDCO	667711	5487625	2020	2	2020-09-15	08:05	Beryllium (Be)	0.60	mg/kg	ALS	RG MIDCO SE-2 2020-09-15 0805
SE SE	MIDCO	667711	5487625	2020	2	2020-09-15	08:05	Bismuth (Bi)	<0.20	mg/kg	ALS	RG MIDCO SE-2 2020-09-15 0805
E E	MIDCO	667711	5487625	2020	2	2020-09-15	08:05	Boron (B)	14.9	mg/kg	ALS	RG MIDCO SE-2 2020-09-15 0805
	MIDCO	667711	5487625	2020	2	2020-09-15	08:05	Cadmium (Cd)	1.96	mg/kg	ALS	RG MIDCO SE-2 2020-09-15 0805
:=	MIDCO				2	2020-09-15	08:05	Calcium (Ca)	96800	mg/kg	ALS	RG MIDCO SE-2 2020-09-15 0805
	MIDCO	I 667711	5/12 /6'7h									
SE SE	MIDCO MIDCO	667711 667711	5487625 5487625	2020 2020	2	2020-09-15	08:05	Chromium (Cr)	13.1	mg/kg	ALS	RG MIDCO SE-2 2020-09-15 0805

WSP Canada Inc. Page 150 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Table I-1	: Sediment Chem	istry Data Col	lected from the	CMm LAEMP	Sampling Sta	ations, 2012 to	2022					
Туре	Station	Location	າ (UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
Type	Station	Easting	Northing	i cai	Replicate	Date	Time	Analyte	Nesuit	Ollit	Lab	Sample ID
SE	MIDCO	667711	5487625	2020	2	2020-09-15	08:05	Copper (Cu)	12.5	mg/kg	ALS	RG_MIDCO_SE-2_2020-09-15_0805
SE	MIDCO	667711	5487625	2020	2	2020-09-15	08:05	Iron (Fe)	13800	mg/kg	ALS	RG_MIDCO_SE-2_2020-09-15_0805
SE	MIDCO	667711	5487625	2020	2	2020-09-15	08:05	Lead (Pb)	7.80	mg/kg	ALS	RG_MIDCO_SE-2_2020-09-15_0805
SE	MIDCO	667711	5487625	2020	2	2020-09-15	08:05	Lithium (Li)	13.9	mg/kg	ALS	RG_MIDCO_SE-2_2020-09-15_0805
SE	MIDCO	667711	5487625	2020	2	2020-09-15	08:05	Magnesium (Mg)	6830	mg/kg	ALS	RG_MIDCO_SE-2_2020-09-15_0805
SE	MIDCO	667711	5487625	2020	2	2020-09-15	08:05	Manganese (Mn)	664	mg/kg	ALS	RG_MIDCO_SE-2_2020-09-15_0805
SE	MIDCO	667711	5487625	2020	2	2020-09-15	08:05	Molybdenum (Mo)	1.65	mg/kg	ALS	RG_MIDCO_SE-2_2020-09-15_0805
SE	MIDCO	667711	5487625	2020	2	2020-09-15	08:05	Nickel (Ni)	128	mg/kg	ALS	RG_MIDCO_SE-2_2020-09-15_0805
SE	MIDCO	667711	5487625	2020	2	2020-09-15	08:05	Phosphorus (P)	965	mg/kg	ALS	RG_MIDCO_SE-2_2020-09-15_0805
SE	MIDCO	667711	5487625	2020	2	2020-09-15	08:05	Potassium (K)	2280	mg/kg	ALS	RG_MIDCO_SE-2_2020-09-15_0805
SE	MIDCO	667711	5487625	2020	2	2020-09-15	08:05	Selenium (Se)	2.80	mg/kg	ALS	RG_MIDCO_SE-2_2020-09-15_0805
SE	MIDCO	667711	5487625	2020	2	2020-09-15	08:05	Silver (Ag)	<0.10	mg/kg	ALS	RG_MIDCO_SE-2_2020-09-15_0805
SE	MIDCO	667711	5487625	2020	2	2020-09-15	08:05	Sodium (Na)	270	mg/kg	ALS	RG_MIDCO_SE-2_2020-09-15_0805
SE	MIDCO	667711	5487625	2020	2	2020-09-15	08:05	Strontium (Sr)	163	mg/kg	ALS	RG_MIDCO_SE-2_2020-09-15_0805
SE	MIDCO	667711	5487625	2020	2	2020-09-15	08:05	Sulfur (S)	1800	mg/kg	ALS	RG_MIDCO_SE-2_2020-09-15_0805
SE	MIDCO	667711	5487625	2020	2	2020-09-15	08:05	Thallium (TI)	0.311	mg/kg	ALS	RG_MIDCO_SE-2_2020-09-15_0805
SE	MIDCO	667711	5487625	2020	2	2020-09-15	08:05	Tin (Sn)	<2.0	mg/kg	ALS	RG_MIDCO_SE-2_2020-09-15_0805
SE	MIDCO	667711	5487625	2020	2	2020-09-15	08:05	Titanium (Ti)	26.2	mg/kg	ALS	RG_MIDCO_SE-2_2020-09-15_0805
SE	MIDCO	667711	5487625	2020	2	2020-09-15	08:05	Tungsten (W)	<0.50	mg/kg	ALS	RG_MIDCO_SE-2_2020-09-15_0805
SE	MIDCO	667711	5487625	2020	2	2020-09-15	08:05	Uranium (U)	0.850	mg/kg	ALS	RG_MIDCO_SE-2_2020-09-15_0805
SE	MIDCO	667711	5487625	2020	2	2020-09-15	08:05	Vanadium (V)	22.5	mg/kg	ALS	RG_MIDCO_SE-2_2020-09-15_0805
SE	MIDCO	667711	5487625	2020	2	2020-09-15	08:05	Zinc (Zn)	200	mg/kg	ALS	RG_MIDCO_SE-2_2020-09-15_0805
SE	MIDCO	667711	5487625	2020	2	2020-09-15	08:05	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_MIDCO_SE-2_2020-09-15_0805
SE	MIDCO	667711	5487625	2020	2	2020-09-15	08:05	pH (1:2 soil:water)	7.98	рН	ALS	RG_MIDCO_SE-2_2020-09-15_0805
SE	MIDCO	667711	5487625	2020	2	2020-09-15	08:05	Total Organic Carbon	4.7	%	ALS	RG_MIDCO_SE-2_2020-09-15_0805
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	Moisture	77.4	%	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	Acenaphthene	<0.011	mg/kg	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	Acenaphthylene	<0.011	mg/kg	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	Anthracene	<0.022	mg/kg	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	Acridine	<0.030	mg/kg	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	Benz(a)anthracene	<0.022	mg/kg	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	Benzo(a)pyrene	<0.022	mg/kg	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	Benzo(b&j)fluoranthene	0.051	mg/kg	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	Benzo(e)pyrene	0.059	mg/kg	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	Benzo(g_h_i)perylene	0.027	mg/kg	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	Benzo(k)fluoranthene	<0.022	mg/kg	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	Chrysene	0.090	mg/kg	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	Dibenz(a_h)anthracene	<0.022	mg/kg	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	Fluoranthene	<0.022	mg/kg	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	Fluorene	0.037	mg/kg	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	Indeno(1,2,3-c,d)pyrene	<0.022	mg/kg	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	2-Methylnaphthalene	0.368	mg/kg	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	Naphthalene	0.147	mg/kg	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	Perylene	<0.022	mg/kg	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	Phenanthrene	0.230	mg/kg	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	Pyrene	0.027	mg/kg	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	1-Methylnaphthalene	0.230	mg/kg	ALS	RG_MIDCO_SE-3_2020-09-15_0825

WSP Canada Inc. Page 151 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	Station		(UTMs) ^(a)		Replicate			Analyte	- Popult	Unit		Laboratory Information
Type	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	Quinoline	<0.022	mg/kg	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	IACR (CCME)	0.55	-	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	B(a)P Total Potency Equivalent	0.032	mg/kg	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	Benzo(b+j+k)fluoranthene	0.051	mg/kg	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	IACR:Coarse	<0.050	-	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	IACR:Fine	<0.050	-	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	d8-Naphthalene	103.3	%	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	d10-Acenaphthene	107.4	%	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	d10-Phenanthrene	106.3	%	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	d12-Chrysene	114.4	%	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	% Gravel (>2 mm)	<1.0	%	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	% Sand (2.00 mm - 1.00 mm)	1.4	%	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	% Sand (1.00 mm - 0.50 mm)	13.7	%	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	% Sand (0.50 mm - 0.25 mm)	22.1	%	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	% Sand (0.25 mm - 0.125 mm)	18.0	%	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	% Sand (0.125 mm - 0.063 mm)	10.2	%	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	% Silt (0.063 mm - 0.0312 mm)	13.5	%	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	% Silt (0.031 mm - 0.004 mm)	16.8	%	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	% Clay (<4 μm)	4.3	%	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	Texture	Sandy loam	•	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	Mercury (Hg)	0.0262	mg/kg	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	Aluminum (Al)	12800	mg/kg	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	Antimony (Sb)	0.37	mg/kg	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	Arsenic (As)	6.56	mg/kg	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	Barium (Ba)	148	mg/kg	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	Beryllium (Be)	0.78	mg/kg	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	Bismuth (Bi)	<0.20	mg/kg	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	Boron (B)	17.0	mg/kg	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	Cadmium (Cd)	1.58	mg/kg	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	Calcium (Ca)	80300	mg/kg	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	Chromium (Cr)	16.4	mg/kg	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	Cobalt (Co)	79.0	mg/kg	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	Copper (Cu)	15.9	mg/kg	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	Iron (Fe)	17700	mg/kg	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	Lead (Pb)	10.2	mg/kg	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	Lithium (Li)	18.2	mg/kg	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	Magnesium (Mg)	7440	mg/kg	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	Manganese (Mn)	652	mg/kg	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	Molybdenum (Mo)	1.84	mg/kg	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	Nickel (Ni)	127	mg/kg	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	Phosphorus (P)	1160	mg/kg	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	Potassium (K)	2900	mg/kg	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	Selenium (Se)	2.15	mg/kg	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	Silver (Ag)	<0.10	mg/kg	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	Sodium (Na)	210	mg/kg	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	Strontium (Sr)	140	mg/kg	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	Sulfur (S)	1500	mg/kg	ALS	RG_MIDCO_SE-3_2020-09-15_0825

WSP Canada Inc. Page 152 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	Station		ı (UTMs) ^(a)	Year	Replicate		Time	Apolyto	Recult	Unit		Laboratory Information
Type	Station	Easting	Northing	rear	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	Thallium (TI)	0.369	mg/kg	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	Tin (Sn)	<2.0	mg/kg	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	Titanium (Ti)	20.6	mg/kg	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	Tungsten (W)	<0.50	mg/kg	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	Uranium (U)	0.944	mg/kg	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	Vanadium (V)	27.5	mg/kg	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	Zinc (Zn)	173	mg/kg	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	pH (1:2 soil:water)	8.09	рН	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	3	2020-09-15	08:25	Total Organic Carbon	4.33	%	ALS	RG_MIDCO_SE-3_2020-09-15_0825
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	Moisture	78.3	%	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	Acenaphthene	<0.020	mg/kg	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	Acenaphthylene	<0.013	mg/kg	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	Anthracene	<0.010	mg/kg	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	Acridine	< 0.055	mg/kg	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	Benz(a)anthracene	< 0.035	mg/kg	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	Benzo(a)pyrene	<0.025	mg/kg	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	Benzo(b&j)fluoranthene	0.048	mg/kg	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	Benzo(e)pyrene	0.056	mg/kg	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	Benzo(g_h_i)perylene	0.034	mg/kg	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	Benzo(k)fluoranthene	<0.025	mg/kg	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	Chrysene	0.081	mg/kg	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	Dibenz(a_h)anthracene	<0.020	mg/kg	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	Fluoranthene	< 0.035	mg/kg	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	Fluorene	0.037	mg/kg	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	Indeno(1,2,3-c,d)pyrene	<0.025	mg/kg	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	2-Methylnaphthalene	0.410	mg/kg	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	Naphthalene	0.154	mg/kg	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	Perylene	<0.025	mg/kg	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	Phenanthrene	0.242	mg/kg	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	Pyrene	0.031	mg/kg	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	1-Methylnaphthalene	0.251	mg/kg	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	Quinoline	<0.025	mg/kg	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	IACR (CCME)	0.56	-	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	B(a)P Total Potency Equivalent	0.033	mg/kg	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	Benzo(b+j+k)fluoranthene	0.048	mg/kg	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	IACR:Coarse	<0.050	-	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	IACR:Fine	<0.050	-	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	d8-Naphthalene	119.6	%	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	d10-Acenaphthene	120.0	%	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	d10-Phenanthrene	116.7	%	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	d12-Chrysene	125.2	%	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	% Gravel (>2 mm)	<1.0	%	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	% Sand (2.00 mm - 1.00 mm)	<1.0	%	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	% Sand (1.00 mm - 0.50 mm)	1.5	%	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	% Sand (0.50 mm - 0.25 mm)	5.2	%	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	% Sand (0.25 mm - 0.125 mm)	13.4	%	ALS	RG_MIDCO_SE-4_2020-09-15_0840

WSP Canada Inc. Page 153 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	Station		າ (UTMs) ^(a)					Analyte	Populé	Unit		Laboratory Information
Туре	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Ullit	Lab	Sample ID
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	% Sand (0.125 mm - 0.063 mm)	14.7	%	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	% Silt (0.063 mm - 0.0312 mm)	28.0	%	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	% Silt (0.031 mm - 0.004 mm)	30.9	%	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	% Clay (<4 μm)	5.8	%	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	Texture	Silt loam	-	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	Mercury (Hg)	0.0256	mg/kg	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	Aluminum (Al)	9880	mg/kg	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	Antimony (Sb)	0.29	mg/kg	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	Arsenic (As)	5.31	mg/kg	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	Barium (Ba)	148	mg/kg	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	Beryllium (Be)	0.61	mg/kg	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	Bismuth (Bi)	<0.20	mg/kg	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	Boron (B)	15.8	mg/kg	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	Cadmium (Cd)	1.75	mg/kg	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	Calcium (Ca)	86300	mg/kg	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	Chromium (Cr)	13.3	mg/kg	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	Cobalt (Co)	111	mg/kg	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	Copper (Cu)	12.7	mg/kg	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	Iron (Fe)	13600	mg/kg	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	Lead (Pb)	7.65	mg/kg	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	Lithium (Li)	13.3	mg/kg	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	Magnesium (Mg)	6770	mg/kg	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	Manganese (Mn)	788	mg/kg	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	Molybdenum (Mo)	1.54	mg/kg	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	Nickel (Ni)	148	mg/kg	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	Phosphorus (P)	962	mg/kg	ALS	RG MIDCO SE-4 2020-09-15 0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	Potassium (K)	2480	mg/kg	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	Selenium (Se)	2.92	mg/kg	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	Silver (Ag)	<0.10	mg/kg	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	Sodium (Na)	249	mg/kg	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	Strontium (Sr)	141	mg/kg	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	Sulfur (S)	1800	mg/kg	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	Thallium (TI)	0.317	mg/kg	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	Tin (Sn)	<2.0	mg/kg	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	Titanium (Ti)	18.2	mg/kg	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	Tungsten (W)	<0.50	mg/kg	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	Uranium (U)	0.899	mg/kg	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	Vanadium (V)	22.6	mg/kg	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	Zinc (Zn)	204	mg/kg	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	pH (1:2 soil:water)	8.00	pН	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	4	2020-09-15	08:40	Total Organic Carbon	4.8	%	ALS	RG_MIDCO_SE-4_2020-09-15_0840
SE	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	Moisture	58.3	%	ALS	RG_MIDCO_SE-5_2020-09-15_1118
SE	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	Acenaphthene	<0.010	mg/kg	ALS	RG_MIDCO_SE-5_2020-09-15_1118
SE	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	Acenaphthylene	<0.0050	mg/kg	ALS	RG_MIDCO_SE-5_2020-09-15_1118
SE	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	Anthracene	<0.0040	mg/kg	ALS	RG_MIDCO_SE-5_2020-09-15_1118
	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	Acridine	<0.015	mg/kg	ALS	RG MIDCO SE-5 2020-09-15 1118

WSP Canada Inc. Page 154 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

VPO	Station	Location	(UTMs) ^(a)	Year	Poplicate	Date	Time	Analyta	Popult	Unit		Laboratory Information
уре	Station	Easting	Northing	rear	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	Benz(a)anthracene	<0.010	mg/kg	ALS	RG MIDCO SE-5 2020-09-15 1118
SE	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	Benzo(a)pyrene	<0.010	mg/kg	ALS	RG MIDCO SE-5 2020-09-15 1118
SE	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	Benzo(b&j)fluoranthene	0.032	mg/kg	ALS	RG MIDCO SE-5 2020-09-15 1118
SE	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	Benzo(e)pyrene	0.039	mg/kg	ALS	RG MIDCO SE-5 2020-09-15 1118
SE	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	Benzo(g_h_i)perylene	0.018	mg/kg	ALS	RG_MIDCO_SE-5_2020-09-15_1118
SE	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	Benzo(k)fluoranthene	<0.010	mg/kg	ALS	RG MIDCO SE-5 2020-09-15 1118
SE	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	Chrysene	0.061	mg/kg	ALS	RG MIDCO SE-5 2020-09-15 1118
SE.	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	Dibenz(a h)anthracene	<0.0060	mg/kg	ALS	RG MIDCO SE-5 2020-09-15 1118
SE	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	Fluoranthene	0.011	mg/kg	ALS	RG_MIDCO_SE-5_2020-09-15_1118
SE	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	Fluorene	0.024	mg/kg	ALS	RG MIDCO SE-5 2020-09-15 1118
E SE	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	Indeno(1,2,3-c,d)pyrene	<0.010	mg/kg	ALS	RG MIDCO SE-5 2020-09-15 1118
E SE	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	2-Methylnaphthalene	0.248	mg/kg	ALS	RG MIDCO SE-5 2020-09-15 1118
SE	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	Naphthalene	0.096	mg/kg	ALS	RG MIDCO SE-5 2020-09-15 1118
E	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	Perylene	0.012	mg/kg	ALS	RG MIDCO SE-5 2020-09-15 1118
E	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	Phenanthrene	0.161	mg/kg	ALS	RG MIDCO SE-5 2020-09-15 1118
E	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	Pyrene	0.019	mg/kg	ALS	RG MIDCO SE-5 2020-09-15 1118
E	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	1-Methylnaphthalene	0.157	mg/kg	ALS	RG MIDCO SE-5 2020-09-15 1118
E	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	Quinoline	<0.050	mg/kg	ALS	RG MIDCO SE-5 2020-09-15 1118
E	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	IACR (CCME)	0.31	-	ALS	RG MIDCO SE-5 2020-09-15 1118
_	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	B(a)P Total Potency Equivalent	<0.020	mg/kg	ALS	RG MIDCO SE-5 2020-09-15 1118
<u> </u>	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	Benzo(b+j+k)fluoranthene	0.032	-	ALS	RG MIDCO SE-5 2020-09-15 1118
<u>-</u>	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	IACR:Coarse	<0.050	mg/kg	ALS	RG_MIDCO_SE-5_2020-09-15_1118
<u>-</u> E	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	IACR:Coarse	<0.050	-	ALS	RG MIDCO_SE-5_2020-09-15_1116
	MIDCO	667711	5487625					d8-Naphthalene		- %	ALS	
				2020	5	2020-09-15	11:18	•	111.7			RG_MIDCO_SE-5_2020-09-15_1118
<u>E</u>	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	d10-Acenaphthene	114.1	%	ALS	RG_MIDCO_SE-5_2020-09-15_1118
E	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	d10-Phenanthrene	112.3	%	ALS	RG_MIDCO_SE-5_2020-09-15_1118
E	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	d12-Chrysene	119.0	%	ALS	RG_MIDCO_SE-5_2020-09-15_1118
E	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	% Gravel (>2 mm)	<1.0	%	ALS	RG_MIDCO_SE-5_2020-09-15_1118
<u>E</u>	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	% Sand (2.00 mm - 1.00 mm)	2.6	%	ALS	RG_MIDCO_SE-5_2020-09-15_1118
<u>E</u>	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	% Sand (1.00 mm - 0.50 mm)	8.0	%	ALS	RG_MIDCO_SE-5_2020-09-15_1118
E	MIDCO	667711	5487625	2020		2020-09-15	11:18	% Sand (0.50 mm - 0.25 mm)	11.0	%	ALS	RG_MIDCO_SE-5_2020-09-15_1118
E	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	% Sand (0.25 mm - 0.125 mm)	10.4	%	ALS	RG_MIDCO_SE-5_2020-09-15_1118
E	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	% Sand (0.125 mm - 0.063 mm)	16.3	%	ALS	RG_MIDCO_SE-5_2020-09-15_1118
E	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	% Silt (0.063 mm - 0.0312 mm)	22.3	%	ALS	RG_MIDCO_SE-5_2020-09-15_1118
E	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	% Silt (0.031 mm - 0.004 mm)	24.2	%	ALS	RG_MIDCO_SE-5_2020-09-15_1118
E	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	% Clay (<4 μm)	5.1	%	ALS	RG_MIDCO_SE-5_2020-09-15_1118
E	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	Texture	Sandy loam	-	ALS	RG_MIDCO_SE-5_2020-09-15_1118
E	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	Mercury (Hg)	0.0254	mg/kg	ALS	RG_MIDCO_SE-5_2020-09-15_1118
Ξ	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	Aluminum (Al)	15100	mg/kg	ALS	RG_MIDCO_SE-5_2020-09-15_1118
E	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	Antimony (Sb)	0.37	mg/kg	ALS	RG_MIDCO_SE-5_2020-09-15_1118
Ε	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	Arsenic (As)	7.52	mg/kg	ALS	RG_MIDCO_SE-5_2020-09-15_1118
Ε	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	Barium (Ba)	141	mg/kg	ALS	RG_MIDCO_SE-5_2020-09-15_1118
Ε	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	Beryllium (Be)	0.80	mg/kg	ALS	RG_MIDCO_SE-5_2020-09-15_1118
Ε	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	Bismuth (Bi)	<0.20	mg/kg	ALS	RG_MIDCO_SE-5_2020-09-15_1118
E	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	Boron (B)	16.6	mg/kg	ALS	RG_MIDCO_SE-5_2020-09-15_1118
E	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	Cadmium (Cd)	1.65	mg/kg	ALS	RG_MIDCO_SE-5_2020-09-15_1118
E	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	Calcium (Ca)	38400	mg/kg	ALS	RG MIDCO SE-5 2020-09-15 1118

WSP Canada Inc. Page 155 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

[vna	Station	Location Example 1	(UTMs) ^(a)	Vaer	Donlingto	Data	Time	Anglyta	Popult	Unit		Laboratory Information
Гуре	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	Chromium (Cr)	19.2	mg/kg	ALS	RG MIDCO SE-5 2020-09-15 1118
SE	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	Cobalt (Co)	40.1	mg/kg	ALS	RG MIDCO SE-5 2020-09-15 1118
SE	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	Copper (Cu)	18.2	mg/kg	ALS	RG MIDCO SE-5 2020-09-15 1118
SE	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	Iron (Fe)	19600	mg/kg	ALS	RG MIDCO SE-5 2020-09-15 1118
SE	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	Lead (Pb)	10.5	mg/kg	ALS	RG_MIDCO_SE-5_2020-09-15_1118
SE	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	Lithium (Li)	18.6	mg/kg	ALS	RG MIDCO SE-5 2020-09-15 1118
SE	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	Magnesium (Mg)	7690	mg/kg	ALS	RG MIDCO SE-5 2020-09-15 1118
SE	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	Manganese (Mn)	685	mg/kg	ALS	RG MIDCO SE-5 2020-09-15 1118
SE	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	Molybdenum (Mo)	2.09	mg/kg	ALS	RG_MIDCO_SE-5_2020-09-15_1118
SE	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	Nickel (Ni)	92.2	mg/kg	ALS	RG MIDCO SE-5 2020-09-15 1118
SE	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	Phosphorus (P)	1150	mg/kg	ALS	RG MIDCO SE-5 2020-09-15 1118
SE	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	Potassium (K)	3500	mg/kg	ALS	RG_MIDCO_SE-5_2020-09-15_1118
SE	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	Selenium (Se)	1.73	mg/kg	ALS	RG MIDCO SE-5 2020-09-15 1118
SE	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	Silver (Ag)	<0.10	mg/kg	ALS	RG MIDCO SE-5 2020-09-15 1118
SE	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	Sodium (Na)	162	mg/kg	ALS	RG MIDCO SE-5 2020-09-15 1118
SE	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	Strontium (Sr)	76.1	mg/kg	ALS	RG_MIDCO_SE-5_2020-09-15_1118
SE	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	Sulfur (S)	<1000	mg/kg	ALS	RG MIDCO SE-5 2020-09-15 1118
SE	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	Thallium (TI)	0.369	mg/kg	ALS	RG_MIDCO_SE-5_2020-09-15_1118
SE	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	Tin (Sn)	<2.0	mg/kg	ALS	RG MIDCO SE-5 2020-09-15 1118
SE	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	Titanium (Ti)	16.5	mg/kg	ALS	RG MIDCO SE-5 2020-09-15 1118
SE	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	Tungsten (W)	<0.50	mg/kg	ALS	RG MIDCO SE-5 2020-09-15 1118
SE	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	Uranium (U)	0.747	mg/kg	ALS	RG MIDCO SE-5 2020-09-15 1118
SE	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	Vanadium (V)	31.7	mg/kg	ALS	RG_MIDCO_SE-5_2020-09-15_1118
SE	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	Zinc (Zn)	185	mg/kg	ALS	RG MIDCO SE-5 2020-09-15 1118
SE	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	Zirconium (Zr)	<1.0	mg/kg	ALS	RG MIDCO SE-5 2020-09-15 1118
SE	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	pH (1:2 soil:water)	8.07	pH	ALS	RG MIDCO SE-5 2020-09-15 1118
SE	MIDCO	667711	5487625	2020	5	2020-09-15	11:18	Total Organic Carbon	3.47	%	ALS	RG MIDCO SE-5 2020-09-15 1118
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	Moisture	78.8	%	ALS	RG RIVER SE-2 2020-09-15 0805
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	Acenaphthene	<0.010	mg/kg	ALS	RG RIVER SE-2 2020-09-15 0805
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	Acenaphthylene	<0.010	mg/kg	ALS	RG RIVER SE-2 2020-09-15 0805
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	Anthracene	<0.0080	mg/kg	ALS	RG RIVER SE-2 2020-09-15 0805
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	Acridine	<0.020	mg/kg	ALS	RG RIVER SE-2 2020-09-15 0805
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	Benz(a)anthracene	<0.020	mg/kg	ALS	RG RIVER SE-2 2020-09-15 0805
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	Benzo(a)pyrene	<0.020	mg/kg	ALS	RG RIVER SE-2 2020-09-15 0805
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	Benzo(b&j)fluoranthene	0.045	mg/kg	ALS	RG RIVER SE-2 2020-09-15 0805
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	Benzo(e)pyrene	0.052	mg/kg	ALS	RG RIVER SE-2 2020-09-15 0805
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	Benzo(g h i)perylene	0.022	mg/kg	ALS	RG RIVER SE-2 2020-09-15 0805
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	Benzo(k)fluoranthene	<0.020	mg/kg	ALS	RG RIVER SE-2 2020-09-15 0805
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	Chrysene	0.073	mg/kg	ALS	RG RIVER SE-2 2020-09-15 0805
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	Dibenz(a h)anthracene	<0.010	mg/kg	ALS	RG RIVER SE-2 2020-09-15 0805
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	Fluoranthene	<0.020	mg/kg	ALS	RG RIVER SE-2 2020-09-15 0805
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	Fluorene	0.032	mg/kg	ALS	RG RIVER SE-2 2020-09-15 0805
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	Indeno(1,2,3-c,d)pyrene	<0.020	mg/kg	ALS	RG RIVER SE-2 2020-09-15 0805
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	2-Methylnaphthalene	0.348	mg/kg	ALS	RG RIVER SE-2 2020-09-15 0805
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	Naphthalene	0.132	mg/kg	ALS	RG RIVER SE-2 2020-09-15 0805
	WILDOO-DOE	007711	J70102J	2020				•				
SE SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	Perylene	<0.020	mg/kg	ALS	RG RIVER SE-2 2020-09-15 0805

WSP Canada Inc. Page 156 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	Station		(UTMs) ^(a)	Year	Replicate		Time	Analyte	Result	Unit		Laboratory Information
Type	Station	Easting	Northing	rear	Replicate	Date	rime	Analyte	Result	Unit	Lab	Sample ID
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	Pyrene	0.024	mg/kg	ALS	RG_RIVER_SE-2_2020-09-15_0805
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	1-Methylnaphthalene	0.216	mg/kg	ALS	RG_RIVER_SE-2_2020-09-15_0805
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	Quinoline	<0.020	mg/kg	ALS	RG_RIVER_SE-2_2020-09-15_0805
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	IACR (CCME)	0.47	-	ALS	RG_RIVER_SE-2_2020-09-15_0805
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	B(a)P Total Potency Equivalent	0.023	mg/kg	ALS	RG_RIVER_SE-2_2020-09-15_0805
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	Benzo(b+j+k)fluoranthene	0.045	mg/kg	ALS	RG_RIVER_SE-2_2020-09-15_0805
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	IACR:Coarse	<0.050	-	ALS	RG_RIVER_SE-2_2020-09-15_0805
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	IACR:Fine	<0.050	-	ALS	RG_RIVER_SE-2_2020-09-15_0805
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	d8-Naphthalene	116.3	%	ALS	RG_RIVER_SE-2_2020-09-15_0805
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	d10-Acenaphthene	116.3	%	ALS	RG_RIVER_SE-2_2020-09-15_0805
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	d10-Phenanthrene	114.5	%	ALS	RG_RIVER_SE-2_2020-09-15_0805
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	d12-Chrysene	124.7	%	ALS	RG_RIVER_SE-2_2020-09-15_0805
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	% Gravel (>2 mm)	<1.0	%	ALS	RG_RIVER_SE-2_2020-09-15_0805
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	% Sand (2.00 mm - 1.00 mm)	3.0	%	ALS	RG_RIVER_SE-2_2020-09-15_0805
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	% Sand (1.00 mm - 0.50 mm)	6.8	%	ALS	RG_RIVER_SE-2_2020-09-15_0805
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	% Sand (0.50 mm - 0.25 mm)	4.4	%	ALS	RG_RIVER_SE-2_2020-09-15_0805
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	% Sand (0.25 mm - 0.125 mm)	5.7	%	ALS	RG_RIVER_SE-2_2020-09-15_0805
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	% Sand (0.125 mm - 0.063 mm)	9.1	%	ALS	RG_RIVER_SE-2_2020-09-15_0805
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	% Silt (0.063 mm - 0.0312 mm)	30.1	%	ALS	RG_RIVER_SE-2_2020-09-15_0805
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	% Silt (0.031 mm - 0.004 mm)	35.5	%	ALS	RG_RIVER_SE-2_2020-09-15_0805
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	% Clay (<4 μm)	5.4	%	ALS	RG RIVER SE-2 2020-09-15 0805
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	Texture	Silt loam	-	ALS	RG_RIVER_SE-2_2020-09-15_0805
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	Mercury (Hg)	0.0250	mg/kg	ALS	RG_RIVER_SE-2_2020-09-15_0805
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	Aluminum (Al)	11600	mg/kg	ALS	RG RIVER SE-2 2020-09-15 0805
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	Antimony (Sb)	0.24	mg/kg	ALS	RG RIVER SE-2 2020-09-15 0805
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	Arsenic (As)	5.95	mg/kg	ALS	RG RIVER SE-2 2020-09-15 0805
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	Barium (Ba)	163	mg/kg	ALS	RG_RIVER_SE-2_2020-09-15_0805
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	Beryllium (Be)	0.72	mg/kg	ALS	RG_RIVER_SE-2_2020-09-15_0805
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	Bismuth (Bi)	<0.20	mg/kg	ALS	RG_RIVER_SE-2_2020-09-15_0805
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	Boron (B)	17.1	mg/kg	ALS	RG_RIVER_SE-2_2020-09-15_0805
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	Cadmium (Cd)	2.08	mg/kg	ALS	RG_RIVER_SE-2_2020-09-15_0805
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	Calcium (Ca)	96400	mg/kg	ALS	RG_RIVER_SE-2_2020-09-15_0805
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	Chromium (Cr)	15.5	mg/kg	ALS	RG_RIVER_SE-2_2020-09-15_0805
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	Cobalt (Co)	80.4	mg/kg	ALS	RG_RIVER_SE-2_2020-09-15_0805
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	Copper (Cu)	13.5	mg/kg	ALS	RG_RIVER_SE-2_2020-09-15_0805
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	Iron (Fe)	14700	mg/kg	ALS	RG_RIVER_SE-2_2020-09-15_0805
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	Lead (Pb)	8.17	mg/kg	ALS	RG_RIVER_SE-2_2020-09-15_0805
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	Lithium (Li)	15.2	mg/kg	ALS	RG_RIVER_SE-2_2020-09-15_0805
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	Magnesium (Mg)	7530	mg/kg	ALS	RG_RIVER_SE-2_2020-09-15_0805
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	Manganese (Mn)	775	mg/kg	ALS	RG_RIVER_SE-2_2020-09-15_0805
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	Molybdenum (Mo)	1.45	mg/kg	ALS	RG_RIVER_SE-2_2020-09-15_0805
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	Nickel (Ni)	140	mg/kg	ALS	RG_RIVER_SE-2_2020-09-15_0805
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	Phosphorus (P)	958	mg/kg	ALS	RG_RIVER_SE-2_2020-09-15_0805
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	Potassium (K)	2940	mg/kg	ALS	RG_RIVER_SE-2_2020-09-15_0805
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	Selenium (Se)	2.87	mg/kg	ALS	RG_RIVER_SE-2_2020-09-15_0805
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	Silver (Ag)	<0.10	mg/kg	ALS	RG_RIVER_SE-2_2020-09-15_0805
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	Sodium (Na)	254	mg/kg	ALS	RG RIVER SE-2 2020-09-15 0805

WSP Canada Inc. Page 157 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Type	Station	Location	ı (UTMs) ^(a)	Year	Poplicate	Data	Time	Analyta	Popult	Unit		Laboratory Information
Гуре	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	Strontium (Sr)	158	mg/kg	ALS	RG RIVER SE-2 2020-09-15 0805
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	Sulfur (S)	2000	mg/kg	ALS	RG RIVER SE-2 2020-09-15 0805
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	Thallium (TI)	0.330	mg/kg	ALS	RG_RIVER_SE-2_2020-09-15_0805
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	Tin (Sn)	<2.0	mg/kg	ALS	RG RIVER SE-2 2020-09-15 0805
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	Titanium (Ti)	16.2	mg/kg	ALS	RG_RIVER_SE-2_2020-09-15_0805
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	Tungsten (W)	<0.50	mg/kg	ALS	RG RIVER SE-2 2020-09-15 0805
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	Uranium (U)	0.868	mg/kg	ALS	RG RIVER SE-2 2020-09-15 0805
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	Vanadium (V)	25.4	mg/kg	ALS	RG RIVER SE-2 2020-09-15 0805
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	Zinc (Zn)	215	mg/kg	ALS	RG RIVER SE-2 2020-09-15 0805
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	Zirconium (Zr)	<1.0	mg/kg	ALS	RG RIVER SE-2 2020-09-15 0805
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	pH (1:2 soil:water)	8.15	рН	ALS	RG RIVER SE-2 2020-09-15 0805
SE	MIDCO-DUP	667711	5487625	2020	2	2020-09-15	08:05	Total Organic Carbon	4.8	%	ALS	RG RIVER SE-2 2020-09-15 0805
SE	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	Moisture	52.9	%	ALS	RG RIVER SE-5 2020-09-15 1118
SE	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	Acenaphthene	<0.010	mg/kg	ALS	RG_RIVER_SE-5_2020-09-15_1118
SE	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	Acenaphthylene	<0.0050	mg/kg	ALS	RG RIVER SE-5 2020-09-15 1118
SE	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	Anthracene	<0.0040	mg/kg	ALS	RG RIVER SE-5 2020-09-15 1118
SE	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	Acridine	<0.020	mg/kg	ALS	RG RIVER SE-5 2020-09-15 1118
SE	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	Benz(a)anthracene	<0.020	mg/kg	ALS	RG RIVER SE-5 2020-09-15 1118
SE	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	Benzo(a)pyrene	<0.010	mg/kg	ALS	RG RIVER SE-5 2020-09-15 1118
SE	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	Benzo(b&j)fluoranthene	0.042	mg/kg	ALS	RG_RIVER_SE-5_2020-09-15_1118
SE	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	Benzo(e)pyrene	0.047	mg/kg	ALS	RG RIVER SE-5 2020-09-15 1118
SE	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	Benzo(g_h_i)perylene	0.019	mg/kg	ALS	RG RIVER SE-5 2020-09-15 1118
SE	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	Benzo(k)fluoranthene	<0.010	mg/kg	ALS	RG RIVER SE-5 2020-09-15 1118
SE	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	Chrysene	0.077	mg/kg	ALS	RG_RIVER_SE-5_2020-09-15_1118
SE	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	Dibenz(a h)anthracene	<0.0050	mg/kg	ALS	RG RIVER SE-5 2020-09-15 1118
SE	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	Fluoranthene	0.016	mg/kg	ALS	RG RIVER SE-5 2020-09-15 1118
SE	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	Fluorene	0.022	mg/kg	ALS	RG RIVER SE-5 2020-09-15 1118
SE	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	Indeno(1,2,3-c,d)pyrene	<0.010	mg/kg	ALS	RG RIVER SE-5 2020-09-15 1118
SE	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	2-Methylnaphthalene	0.261	mg/kg	ALS	RG RIVER SE-5 2020-09-15 1118
SE	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	Naphthalene	0.099	mg/kg	ALS	RG RIVER SE-5 2020-09-15 1118
	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	Perylene	0.099			RG RIVER SE-5 2020-09-15 1118
SE SE	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	Phenanthrene	0.019	mg/kg mg/kg	ALS ALS	RG RIVER SE-5 2020-09-15 1118
SE	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	Pyrene	0.023	mg/kg	ALS	RG RIVER SE-5 2020-09-15 1118
SE	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	1-Methylnaphthalene	0.023		ALS	RG RIVER SE-5 2020-09-15 1118
SE	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	Quinoline	<0.050	mg/kg	ALS	RG_RIVER_SE-5_2020-09-15_1118
SE	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	IACR (CCME)	0.39	mg/kg	ALS	RG RIVER SE-5 2020-09-15 1118
SE	MIDCO-DUP	667711			5	2020-09-15		B(a)P Total Potency Equivalent		- ma/ka		RG RIVER SE-5 2020-09-15 1118
	MIDCO-DUP		5487625	2020 2020	5		11:18		<0.020	mg/kg	ALS	
SE	MIDCO-DUP	667711	5487625		5	2020-09-15	11:18	Benzo(b+j+k)fluoranthene	0.042	mg/kg	ALS	RG_RIVER_SE-5_2020-09-15_1118
SE		667711 667711	5487625 5487625	2020 2020	5	2020-09-15	11:18	IACR:Coarse IACR:Fine	<0.050	-	ALS	RG_RIVER_SE-5_2020-09-15_1118
SE	MIDCO-DUP				5	2020-09-15	11:18		<0.050	0/	ALS	RG_RIVER_SE-5_2020-09-15_1118
SE	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	d8-Naphthalene	114.0	%	ALS	RG_RIVER_SE-5_2020-09-15_1118
SE	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	d10-Acenaphthene	113.7	%	ALS	RG_RIVER_SE-5_2020-09-15_1118
SE	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	d10-Phenanthrene	113.2	%	ALS	RG_RIVER_SE-5_2020-09-15_1118
SE	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	d12-Chrysene	124.1	%	ALS	RG_RIVER_SE-5_2020-09-15_1118
SE	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	% Gravel (>2 mm)	<1.0	%	ALS	RG_RIVER_SE-5_2020-09-15_1118
SE	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	% Sand (2.00 mm - 1.00 mm)	3.1	%	ALS	RG_RIVER_SE-5_2020-09-15_1118
SE	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	% Sand (1.00 mm - 0.50 mm)	7.1	%	ALS	RG_RIVER_SE-5_2020-09-15_1118

WSP Canada Inc. Page 158 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	1: Sediment Chem		(UTMs) ^(a)									Laboratory Information
Type	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	% Sand (0.50 mm - 0.25 mm)	10.8	%	ALS	RG RIVER SE-5 2020-09-15 1118
SE	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	% Sand (0.25 mm - 0.125 mm)	10.5	%	ALS	RG RIVER SE-5 2020-09-15 1118
SE	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	% Sand (0.125 mm - 0.063 mm)	15.0	%	ALS	RG RIVER SE-5 2020-09-15 1118
SE	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	% Silt (0.063 mm - 0.0312 mm)	23.4	%	ALS	RG RIVER SE-5 2020-09-15 1118
SE	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	% Silt (0.031 mm - 0.004 mm)	25.6	%	ALS	RG RIVER SE-5 2020-09-15 1118
SE	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	% Clay (<4 μm)	4.4	%	ALS	RG RIVER SE-5 2020-09-15 1118
SE	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	Texture	Sandy loam	-	ALS	RG RIVER SE-5 2020-09-15 1118
SE	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	Mercury (Hg)	0.0271	mg/kg	ALS	RG RIVER SE-5 2020-09-15 1118
SE	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	Aluminum (Al)	14400	mg/kg	ALS	RG RIVER SE-5 2020-09-15 1118
SE	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	Antimony (Sb)	0.39	mg/kg	ALS	RG_RIVER_SE-5_2020-09-15_1118
SE	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	Arsenic (As)	7.29	mg/kg	ALS	RG_RIVER_SE-5_2020-09-15_1118
SE	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	Barium (Ba)	145	mg/kg	ALS	RG RIVER SE-5 2020-09-15 1118
SE	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	Beryllium (Be)	0.84	mg/kg	ALS	RG RIVER SE-5 2020-09-15 1118
SE	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	Bismuth (Bi)	<0.20	mg/kg	ALS	RG RIVER SE-5 2020-09-15 1118
SE	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	Boron (B)	16.5	mg/kg	ALS	RG_RIVER_SE-5_2020-09-15_1118
SE	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	Cadmium (Cd)	1.65	mg/kg	ALS	RG_RIVER_SE-5_2020-09-15_1118
SE	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	Calcium (Ca)	40400	mg/kg	ALS	RG_RIVER_SE-5_2020-09-15_1118
SE	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	Chromium (Cr)	17.9	mg/kg	ALS	RG RIVER SE-5 2020-09-15 1118
SE	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	Cobalt (Co)	39.0	mg/kg	ALS	RG_RIVER_SE-5_2020-09-15_1118
SE	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	Copper (Cu)	17.5	mg/kg	ALS	RG_RIVER_SE-5_2020-09-15_1118
SE	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	Iron (Fe)	20900	mg/kg	ALS	RG_RIVER_SE-5_2020-09-15_1118
SE	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	Lead (Pb)	11.1	mg/kg	ALS	RG_RIVER_SE-5_2020-09-15_1118
SE	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	Lithium (Li)	19.6	mg/kg	ALS	RG_RIVER_SE-5_2020-09-15_1118
SE	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	Magnesium (Mg)	7950	mg/kg	ALS	RG RIVER SE-5_2020-09-15_1118
SE	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	Manganese (Mn)	666	mg/kg	ALS	RG_RIVER_SE-5_2020-09-15_1118
SE	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	Molybdenum (Mo)	2.15	mg/kg	ALS	RG_RIVER_SE-5_2020-09-15_1118
SE	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	Nickel (Ni)	88.7	mg/kg	ALS	RG_RIVER_SE-5_2020-09-15_1118
SE	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	Phosphorus (P)	1250	mg/kg	ALS	RG_RIVER_SE-5_2020-09-15_1118
SE	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	Potassium (K)	3170	mg/kg	ALS	RG_RIVER_SE-5_2020-09-15_1118
SE	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	Selenium (Se)	1.75	mg/kg	ALS	RG_RIVER_SE-5_2020-09-15_1118
SE	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	Silver (Ag)	<0.10	mg/kg	ALS	RG_RIVER_SE-5_2020-09-15_1118
SE	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	Sodium (Na)	153	mg/kg	ALS	RG_RIVER_SE-5_2020-09-15_1118
SE	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	Strontium (Sr)	83.3	mg/kg	ALS	RG_RIVER_SE-5_2020-09-15_1118
SE	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	Sulfur (S)	<1000	mg/kg	ALS	RG_RIVER_SE-5_2020-09-15_1118
SE	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	Thallium (TI)	0.392	mg/kg	ALS	RG_RIVER_SE-5_2020-09-15_1118
SE	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	Tin (Sn)	<2.0	mg/kg	ALS	RG_RIVER_SE-5_2020-09-15_1118
SE	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	Titanium (Ti)	22.8	mg/kg	ALS	RG_RIVER_SE-5_2020-09-15_1118
SE	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	Tungsten (W)	<0.50	mg/kg	ALS	RG_RIVER_SE-5_2020-09-15_1118
SE	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	Uranium (U)	0.800	mg/kg	ALS	RG_RIVER_SE-5_2020-09-15_1118
SE	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	Vanadium (V)	30.5	mg/kg	ALS	RG_RIVER_SE-5_2020-09-15_1118
SE	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	Zinc (Zn)	184	mg/kg	ALS	RG_RIVER_SE-5_2020-09-15_1118
SE	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_RIVER_SE-5_2020-09-15_1118
SE	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	pH (1:2 soil:water)	8.05	рН	ALS	RG_RIVER_SE-5_2020-09-15_1118
SE	MIDCO-DUP	667711	5487625	2020	5	2020-09-15	11:18	Total Organic Carbon	3.67	%	ALS	RG_RIVER_SE-5_2020-09-15_1118
SE	MIDAG	665258	5489417	2020	1	2020-09-15	17:14	Moisture	85.5	%	ALS	RG_MIDAG_SE-1_2020-09-15_1714
SE	MIDAG	665258	5489417	2020	1	2020-09-15	17:14	Acenaphthene	<0.018	mg/kg	ALS	RG_MIDAG_SE-1_2020-09-15_1714
SE	MIDAG	665258	5489417	2020	1	2020-09-15	17:14	Acenaphthylene	<0.018	mg/kg	ALS	RG_MIDAG_SE-1_2020-09-15_1714

WSP Canada Inc. Page 159 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

abit i-	1: Sediment Chen			CIVIIII LACIVIP	Jamping Stat	10115, 2012 10						
Туре	Station		(UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
	MIDAG	Easting	Northing	0000	4	2000 00 45	47.44	And the second	10.044		Lab	Sample ID
SE	MIDAG	665258	5489417	2020	+	2020-09-15	17:14	Anthracene	<0.014	mg/kg	ALS	RG_MIDAG_SE-1_2020-09-15_1714
SE	MIDAG	665258	5489417	2020		2020-09-15	17:14	Acridine	<0.035	mg/kg	ALS	RG_MIDAG_SE-1_2020-09-15_1714
SE	MIDAG	665258	5489417	2020	+	2020-09-15	17:14	Benz(a)anthracene	<0.035	mg/kg	ALS	RG_MIDAG_SE-1_2020-09-15_1714
SE	MIDAG	665258	5489417	2020	+	2020-09-15	17:14	Benzo(a)pyrene	<0.035	mg/kg	ALS	RG_MIDAG_SE-1_2020-09-15_1714
SE	MIDAG	665258	5489417	2020		2020-09-15	17:14	Benzo(b&j)fluoranthene	0.046	mg/kg	ALS	RG_MIDAG_SE-1_2020-09-15_1714
SE	MIDAG	665258	5489417	2020		2020-09-15	17:14	Benzo(e)pyrene	0.048	mg/kg	ALS	RG_MIDAG_SE-1_2020-09-15_1714
SE	MIDAG	665258	5489417	2020		2020-09-15	17:14	Benzo(g_h_i)perylene	<0.035	mg/kg	ALS	RG_MIDAG_SE-1_2020-09-15_1714
SE	MIDAG	665258	5489417	2020	+	2020-09-15	17:14	Benzo(k)fluoranthene	<0.035	mg/kg	ALS	RG_MIDAG_SE-1_2020-09-15_1714
SE	MIDAG	665258	5489417	2020		2020-09-15	17:14	Chrysene	<0.090	mg/kg	ALS	RG_MIDAG_SE-1_2020-09-15_1714
SE	MIDAG	665258	5489417	2020	+	2020-09-15	17:14	Dibenz(a_h)anthracene	<0.035	mg/kg	ALS	RG_MIDAG_SE-1_2020-09-15_1714
SE	MIDAG	665258	5489417	2020	+	2020-09-15	17:14	Fluoranthene	0.037	mg/kg	ALS	RG_MIDAG_SE-1_2020-09-15_1714
SE	MIDAG	665258	5489417	2020		2020-09-15	17:14	Fluorene	<0.035	mg/kg	ALS	RG_MIDAG_SE-1_2020-09-15_1714
SE	MIDAG	665258	5489417	2020	+	2020-09-15	17:14	Indeno(1,2,3-c,d)pyrene	<0.035	mg/kg	ALS	RG_MIDAG_SE-1_2020-09-15_1714
SE	MIDAG	665258	5489417	2020	+	2020-09-15	17:14	2-Methylnaphthalene	0.176	mg/kg	ALS	RG_MIDAG_SE-1_2020-09-15_1714
SE	MIDAG	665258	5489417	2020	+	2020-09-15	17:14	Naphthalene	0.074	mg/kg	ALS	RG_MIDAG_SE-1_2020-09-15_1714
SE	MIDAG	665258	5489417	2020	+	2020-09-15	17:14	Perylene	<0.035	mg/kg	ALS	RG_MIDAG_SE-1_2020-09-15_1714
SE	MIDAG	665258	5489417	2020	+	2020-09-15	17:14	Phenanthrene	0.177	mg/kg	ALS	RG_MIDAG_SE-1_2020-09-15_1714
SE	MIDAG	665258	5489417	2020		2020-09-15	17:14	Pyrene	0.038	mg/kg	ALS	RG_MIDAG_SE-1_2020-09-15_1714
SE	MIDAG	665258	5489417	2020	1 2	2020-09-15	17:14	1-Methylnaphthalene	0.118	mg/kg	ALS	RG_MIDAG_SE-1_2020-09-15_1714
SE	MIDAG	665258	5489417	2020	1 2	2020-09-15	17:14	Quinoline	<0.035	mg/kg	ALS	RG_MIDAG_SE-1_2020-09-15_1714
SE	MIDAG	665258	5489417	2020	1 2	2020-09-15	17:14	IACR (CCME)	0.60	-	ALS	RG_MIDAG_SE-1_2020-09-15_1714
SE	MIDAG	665258	5489417	2020	1 2	2020-09-15	17:14	B(a)P Total Potency Equivalent	0.045	mg/kg	ALS	RG_MIDAG_SE-1_2020-09-15_1714
SE	MIDAG	665258	5489417	2020	1 2	2020-09-15	17:14	Benzo(b+j+k)fluoranthene	<0.055	mg/kg	ALS	RG_MIDAG_SE-1_2020-09-15_1714
SE	MIDAG	665258	5489417	2020	1 2	2020-09-15	17:14	IACR:Coarse	<0.050	-	ALS	RG_MIDAG_SE-1_2020-09-15_1714
SE	MIDAG	665258	5489417	2020	1 2	2020-09-15	17:14	IACR:Fine	0.053	-	ALS	RG_MIDAG_SE-1_2020-09-15_1714
SE	MIDAG	665258	5489417	2020	1 2	2020-09-15	17:14	d8-Naphthalene	117.7	%	ALS	RG_MIDAG_SE-1_2020-09-15_1714
SE	MIDAG	665258	5489417	2020	1 2	2020-09-15	17:14	d10-Acenaphthene	117.7	%	ALS	RG_MIDAG_SE-1_2020-09-15_1714
SE	MIDAG	665258	5489417	2020	1 2	2020-09-15	17:14	d10-Phenanthrene	116.9	%	ALS	RG_MIDAG_SE-1_2020-09-15_1714
SE	MIDAG	665258	5489417	2020	1 2	2020-09-15	17:14	d12-Chrysene	127.3	%	ALS	RG_MIDAG_SE-1_2020-09-15_1714
SE	MIDAG	665258	5489417	2020	1 2	2020-09-15	17:14	% Gravel (>2 mm)	9.8	%	ALS	RG_MIDAG_SE-1_2020-09-15_1714
SE	MIDAG	665258	5489417	2020	1 2	2020-09-15	17:14	% Sand (2.00 mm - 1.00 mm)	<1.0	%	ALS	RG_MIDAG_SE-1_2020-09-15_1714
SE	MIDAG	665258	5489417	2020	1 2	2020-09-15	17:14	% Sand (1.00 mm - 0.50 mm)	1.5	%	ALS	RG_MIDAG_SE-1_2020-09-15_1714
SE	MIDAG	665258	5489417	2020	1 2	2020-09-15	17:14	% Sand (0.50 mm - 0.25 mm)	2.4	%	ALS	RG_MIDAG_SE-1_2020-09-15_1714
SE	MIDAG	665258	5489417	2020	1 2	2020-09-15	17:14	% Sand (0.25 mm - 0.125 mm)	3.3	%	ALS	RG_MIDAG_SE-1_2020-09-15_1714
SE	MIDAG	665258	5489417	2020	1 2	2020-09-15	17:14	% Sand (0.125 mm - 0.063 mm)	5.2	%	ALS	RG_MIDAG_SE-1_2020-09-15_1714
SE	MIDAG	665258	5489417	2020	1 2	2020-09-15	17:14	% Silt (0.063 mm - 0.0312 mm)	31.8	%	ALS	RG_MIDAG_SE-1_2020-09-15_1714
SE	MIDAG	665258	5489417	2020	1 2	2020-09-15	17:14	% Silt (0.031 mm - 0.004 mm)	37.4	%	ALS	RG_MIDAG_SE-1_2020-09-15_1714
SE	MIDAG	665258	5489417	2020	1 2	2020-09-15	17:14	% Clay (<4 μm)	8.2	%	ALS	RG_MIDAG_SE-1_2020-09-15_1714
SE	MIDAG	665258	5489417	2020	1 2	2020-09-15	17:14	Texture	Silt loam	-	ALS	RG_MIDAG_SE-1_2020-09-15_1714
SE	MIDAG	665258	5489417	2020	1 2	2020-09-15	17:14	Mercury (Hg)	0.0367	mg/kg	ALS	RG_MIDAG_SE-1_2020-09-15_1714
SE	MIDAG	665258	5489417	2020	1 2	2020-09-15	17:14	Aluminum (Al)	9420	mg/kg	ALS	RG_MIDAG_SE-1_2020-09-15_1714
SE	MIDAG	665258	5489417	2020		2020-09-15	17:14	Antimony (Sb)	0.34	mg/kg	ALS	RG_MIDAG_SE-1_2020-09-15_1714
SE	MIDAG	665258	5489417	2020	+	2020-09-15	17:14	Arsenic (As)	5.50	mg/kg	ALS	RG MIDAG SE-1 2020-09-15 1714
SE	MIDAG	665258	5489417	2020	+	2020-09-15	17:14	Barium (Ba)	158	mg/kg	ALS	RG MIDAG SE-1 2020-09-15 1714
SE	MIDAG	665258	5489417	2020		2020-09-15	17:14	Beryllium (Be)	0.62	mg/kg	ALS	RG MIDAG SE-1 2020-09-15 1714
SE	MIDAG	665258	5489417	2020	+	2020-09-15	17:14	Bismuth (Bi)	<0.20	mg/kg	ALS	RG MIDAG SE-1 2020-09-15 1714
SE	MIDAG	665258	5489417	2020	+	2020-09-15	17:14	Boron (B)	13.9	mg/kg		RG MIDAG SE-1 2020-09-15 1714

WSP Canada Inc. Page 160 of 337

Sediment Screening

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Table I-1	: Sediment Chem	nistry Data Col	lected from the	CMm LAEMP S	Sampling Sta	ations, 2012 to	2022					
Туре	Station	Location	າ (UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
Type	Station	Easting	Northing	i cai	Replicate	Date	Tille	Allalyte	Nesuit	Offic	Lab	Sample ID
SE	MIDAG	665258	5489417	2020	1	2020-09-15	17:14	Cadmium (Cd)	1.25	mg/kg	ALS	RG_MIDAG_SE-1_2020-09-15_1714
SE	MIDAG	665258	5489417	2020	1	2020-09-15	17:14	Calcium (Ca)	91000	mg/kg	ALS	RG_MIDAG_SE-1_2020-09-15_1714
SE	MIDAG	665258	5489417	2020	1	2020-09-15	17:14	Chromium (Cr)	16.6	mg/kg	ALS	RG_MIDAG_SE-1_2020-09-15_1714
SE	MIDAG	665258	5489417	2020	1	2020-09-15	17:14	Cobalt (Co)	38.5	mg/kg	ALS	RG_MIDAG_SE-1_2020-09-15_1714
SE	MIDAG	665258	5489417	2020	1	2020-09-15	17:14	Copper (Cu)	12.0	mg/kg	ALS	RG_MIDAG_SE-1_2020-09-15_1714
SE	MIDAG	665258	5489417	2020	1	2020-09-15	17:14	Iron (Fe)	12400	mg/kg	ALS	RG_MIDAG_SE-1_2020-09-15_1714
SE	MIDAG	665258	5489417	2020	1	2020-09-15	17:14	Lead (Pb)	7.77	mg/kg	ALS	RG_MIDAG_SE-1_2020-09-15_1714
SE	MIDAG	665258	5489417	2020	1	2020-09-15	17:14	Lithium (Li)	11.7	mg/kg	ALS	RG_MIDAG_SE-1_2020-09-15_1714
SE	MIDAG	665258	5489417	2020	1	2020-09-15	17:14	Magnesium (Mg)	9190	mg/kg	ALS	RG_MIDAG_SE-1_2020-09-15_1714
SE	MIDAG	665258	5489417	2020	1	2020-09-15	17:14	Manganese (Mn)	412	mg/kg	ALS	RG_MIDAG_SE-1_2020-09-15_1714
SE	MIDAG	665258	5489417	2020	1	2020-09-15	17:14	Molybdenum (Mo)	1.34	mg/kg	ALS	RG_MIDAG_SE-1_2020-09-15_1714
SE	MIDAG	665258	5489417	2020	1	2020-09-15	17:14	Nickel (Ni)	77.0	mg/kg	ALS	RG_MIDAG_SE-1_2020-09-15_1714
SE	MIDAG	665258	5489417	2020	1	2020-09-15	17:14	Phosphorus (P)	994	mg/kg	ALS	RG_MIDAG_SE-1_2020-09-15_1714
SE	MIDAG	665258	5489417	2020	1	2020-09-15	17:14	Potassium (K)	2450	mg/kg	ALS	RG_MIDAG_SE-1_2020-09-15_1714
SE	MIDAG	665258	5489417	2020	1	2020-09-15	17:14	Selenium (Se)	4.65	mg/kg	ALS	RG_MIDAG_SE-1_2020-09-15_1714
SE	MIDAG	665258	5489417	2020	1	2020-09-15	17:14	Silver (Ag)	0.13	mg/kg	ALS	RG_MIDAG_SE-1_2020-09-15_1714
SE	MIDAG	665258	5489417	2020	1	2020-09-15	17:14	Sodium (Na)	199	mg/kg	ALS	RG_MIDAG_SE-1_2020-09-15_1714
SE	MIDAG	665258	5489417	2020	1	2020-09-15	17:14	Strontium (Sr)	133	mg/kg	ALS	RG_MIDAG_SE-1_2020-09-15_1714
SE	MIDAG	665258	5489417	2020	1	2020-09-15	17:14	Sulfur (S)	1500	mg/kg	ALS	RG_MIDAG_SE-1_2020-09-15_1714
SE	MIDAG	665258	5489417	2020	1	2020-09-15	17:14	Thallium (TI)	0.403	mg/kg	ALS	RG_MIDAG_SE-1_2020-09-15_1714
SE	MIDAG	665258	5489417	2020	1	2020-09-15	17:14	Tin (Sn)	<2.0	mg/kg	ALS	RG_MIDAG_SE-1_2020-09-15_1714
SE	MIDAG	665258	5489417	2020	1	2020-09-15	17:14	Titanium (Ti)	16.0	mg/kg	ALS	RG_MIDAG_SE-1_2020-09-15_1714
SE	MIDAG	665258	5489417	2020	1	2020-09-15	17:14	Tungsten (W)	<0.50	mg/kg	ALS	RG_MIDAG_SE-1_2020-09-15_1714
SE	MIDAG	665258	5489417	2020	1	2020-09-15	17:14	Uranium (U)	0.857	mg/kg	ALS	RG_MIDAG_SE-1_2020-09-15_1714
SE	MIDAG	665258	5489417	2020	1	2020-09-15	17:14	Vanadium (V)	25.8	mg/kg	ALS	RG_MIDAG_SE-1_2020-09-15_1714
SE	MIDAG	665258	5489417	2020	1	2020-09-15	17:14	Zinc (Zn)	117	mg/kg	ALS	RG_MIDAG_SE-1_2020-09-15_1714
SE	MIDAG	665258	5489417	2020	1	2020-09-15	17:14	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_MIDAG_SE-1_2020-09-15_1714
SE	MIDAG	665258	5489417	2020	1	2020-09-15	17:14	pH (1:2 soil:water)	7.80	рН	ALS	RG_MIDAG_SE-1_2020-09-15_1714
SE	MIDAG	665258	5489417	2020	1	2020-09-15	17:14	Total Organic Carbon	8.45	%	ALS	RG_MIDAG_SE-1_2020-09-15_1714
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	Moisture	77.2	%	ALS	RG_MIDAG_SE-2_2020-09-15_1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	Acenaphthene	<0.020	mg/kg	ALS	RG_MIDAG_SE-2_2020-09-15_1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	Acenaphthylene	<0.010	mg/kg	ALS	RG_MIDAG_SE-2_2020-09-15_1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	Anthracene	<0.0080	mg/kg	ALS	RG_MIDAG_SE-2_2020-09-15_1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	Acridine	<0.020	mg/kg	ALS	RG_MIDAG_SE-2_2020-09-15_1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	Benz(a)anthracene	<0.020	mg/kg	ALS	RG_MIDAG_SE-2_2020-09-15_1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	Benzo(a)pyrene	<0.020	mg/kg	ALS	RG_MIDAG_SE-2_2020-09-15_1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	Benzo(b&j)fluoranthene	0.068	mg/kg	ALS	RG_MIDAG_SE-2_2020-09-15_1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	Benzo(e)pyrene	0.069	mg/kg	ALS	RG_MIDAG_SE-2_2020-09-15_1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	Benzo(g_h_i)perylene	0.026	mg/kg	ALS	RG_MIDAG_SE-2_2020-09-15_1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	Benzo(k)fluoranthene	<0.020	mg/kg	ALS	RG_MIDAG_SE-2_2020-09-15_1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	Chrysene	0.112	mg/kg	ALS	RG_MIDAG_SE-2_2020-09-15_1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	Dibenz(a_h)anthracene	<0.010	mg/kg	ALS	RG_MIDAG_SE-2_2020-09-15_1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	Fluoranthene	0.040	mg/kg	ALS	RG_MIDAG_SE-2_2020-09-15_1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	Fluorene	0.037	mg/kg	ALS	RG_MIDAG_SE-2_2020-09-15_1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	Indeno(1,2,3-c,d)pyrene	<0.020	mg/kg	ALS	RG_MIDAG_SE-2_2020-09-15_1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	2-Methylnaphthalene	0.325	mg/kg	ALS	RG_MIDAG_SE-2_2020-09-15_1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	Naphthalene	0.135	mg/kg	ALS	RG_MIDAG_SE-2_2020-09-15_1723

WSP Canada Inc. Page 161 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

able I-	1: Sediment Chen			CMM LAEMP	Sampling St	ations, 2012 to	2022					
Туре	Station		ı (UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
		Easting	Northing					·			Lab	Sample ID
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	Perylene	<0.020	mg/kg	ALS	RG_MIDAG_SE-2_2020-09-15_1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	Phenanthrene	0.282	mg/kg	ALS	RG_MIDAG_SE-2_2020-09-15_1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	Pyrene	0.042	mg/kg	ALS	RG_MIDAG_SE-2_2020-09-15_1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	1-Methylnaphthalene	0.216	mg/kg	ALS	RG_MIDAG_SE-2_2020-09-15_1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	Quinoline	<0.020	mg/kg	ALS	RG_MIDAG_SE-2_2020-09-15_1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	IACR (CCME)	0.62	-	ALS	RG_MIDAG_SE-2_2020-09-15_1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	B(a)P Total Potency Equivalent	0.026	mg/kg	ALS	RG_MIDAG_SE-2_2020-09-15_1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	Benzo(b+j+k)fluoranthene	0.068	mg/kg	ALS	RG_MIDAG_SE-2_2020-09-15_1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	IACR:Coarse	<0.050	-	ALS	RG_MIDAG_SE-2_2020-09-15_1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	IACR:Fine	<0.050	-	ALS	RG_MIDAG_SE-2_2020-09-15_1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	d8-Naphthalene	112.5	%	ALS	RG_MIDAG_SE-2_2020-09-15_1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	d10-Acenaphthene	113.8	%	ALS	RG_MIDAG_SE-2_2020-09-15_1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	d10-Phenanthrene	113.1	%	ALS	RG_MIDAG_SE-2_2020-09-15_1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	d12-Chrysene	122.4	%	ALS	RG_MIDAG_SE-2_2020-09-15_1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	% Gravel (>2 mm)	<1.0	%	ALS	RG_MIDAG_SE-2_2020-09-15_1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	% Sand (2.00 mm - 1.00 mm)	1.7	%	ALS	RG_MIDAG_SE-2_2020-09-15_1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	% Sand (1.00 mm - 0.50 mm)	6.7	%	ALS	RG_MIDAG_SE-2_2020-09-15_1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	% Sand (0.50 mm - 0.25 mm)	8.5	%	ALS	RG_MIDAG_SE-2_2020-09-15_1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	% Sand (0.25 mm - 0.125 mm)	9.0	%	ALS	RG_MIDAG_SE-2_2020-09-15_1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	% Sand (0.125 mm - 0.063 mm)	8.7	%	ALS	RG MIDAG SE-2 2020-09-15 1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	% Silt (0.063 mm - 0.0312 mm)	27.8	%	ALS	RG MIDAG SE-2 2020-09-15 1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	% Silt (0.031 mm - 0.004 mm)	31.5	%	ALS	RG MIDAG SE-2 2020-09-15 1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	% Clay (<4 μm)	5.3	%	ALS	RG_MIDAG_SE-2_2020-09-15_1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	Texture	Silt loam	-	ALS	RG MIDAG SE-2 2020-09-15 1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	Mercury (Hg)	0.0331	mg/kg	ALS	RG MIDAG SE-2 2020-09-15 1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	Aluminum (Al)	10200	mg/kg	ALS	RG MIDAG SE-2 2020-09-15 1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	Antimony (Sb)	0.36	mg/kg	ALS	RG MIDAG SE-2 2020-09-15 1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	Arsenic (As)	6.27	mg/kg	ALS	RG MIDAG SE-2 2020-09-15 1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	Barium (Ba)	143	mg/kg	ALS	RG MIDAG SE-2 2020-09-15 1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	Beryllium (Be)	0.73	mg/kg	ALS	RG MIDAG SE-2 2020-09-15 1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	Bismuth (Bi)	<0.20	mg/kg		RG MIDAG SE-2 2020-09-15 1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	Boron (B)	14.9	mg/kg	ALS	RG MIDAG SE-2 2020-09-15 1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	Cadmium (Cd)	1.13	mg/kg	ALS	RG MIDAG SE-2 2020-09-15 1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	Calcium (Ca)	72900	mg/kg	ALS	RG MIDAG SE-2 2020-09-15 1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	Chromium (Cr)	16.5	mg/kg	ALS	RG MIDAG SE-2 2020-09-15 1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	Cobalt (Co)	38.8	mg/kg	ALS	RG MIDAG SE-2 2020-09-15 1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	Copper (Cu)	12.7	mg/kg	ALS	RG MIDAG SE-2 2020-09-15 1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	Iron (Fe)	14100	1 - 1 - 1 - 1	ALS	RG MIDAG SE-2 2020-09-15 1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	Lead (Pb)	8.90	mg/kg mg/kg	ALS	RG MIDAG SE-2 2020-09-15 1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	Lithium (Li)	13.6	1 - 1 - 1 - 1	ALS	RG MIDAG SE-2 2020-09-15 1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23		9430	mg/kg	ALS	RG MIDAG SE-2 2020-09-15 1723
SE			+		+			Magnesium (Mg)	.	mg/kg		
	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	Manganese (Mn)	445	mg/kg	ALS	RG_MIDAG_SE-2_2020-09-15_1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	Molybdenum (Mo)	1.53	mg/kg	ALS	RG_MIDAG_SE-2_2020-09-15_1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	Nickel (Ni)	74.9	mg/kg	ALS	RG_MIDAG_SE-2_2020-09-15_1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	Phosphorus (P)	998	mg/kg	ALS	RG_MIDAG_SE-2_2020-09-15_1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	Potassium (K)	2610	mg/kg	ALS	RG_MIDAG_SE-2_2020-09-15_1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	Selenium (Se)	3.26	mg/kg	ALS	RG_MIDAG_SE-2_2020-09-15_1723

WSP Canada Inc. Page 162 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

T	Ctation	Location	ı (UTMs) ^(a)	Vasu	Dankasta	Dete	Time	Avaluta	Beauti	11:::4		Laboratory Information
Type	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	Silver (Ag)	0.13	mg/kg	ALS	RG MIDAG SE-2 2020-09-15 1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	Sodium (Na)	185	mg/kg	ALS	RG_MIDAG_SE-2_2020-09-15_1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	Strontium (Sr)	115	mg/kg	ALS	RG MIDAG SE-2 2020-09-15 1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	Sulfur (S)	1000	mg/kg	ALS	RG MIDAG SE-2 2020-09-15 1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	Thallium (TI)	0.421	mg/kg	ALS	RG_MIDAG_SE-2_2020-09-15_1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	Tin (Sn)	<2.0	mg/kg	ALS	RG MIDAG SE-2 2020-09-15 1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	Titanium (Ti)	18.7	mg/kg	ALS	RG MIDAG SE-2 2020-09-15 1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	Tungsten (W)	<0.50	mg/kg	ALS	RG MIDAG SE-2 2020-09-15 1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	Uranium (U)	0.842	mg/kg	ALS	RG MIDAG SE-2 2020-09-15 1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	Vanadium (V)	27.3	mg/kg	ALS	RG MIDAG SE-2 2020-09-15 1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	Zinc (Zn)	126	mg/kg	ALS	RG MIDAG SE-2 2020-09-15 1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	Zirconium (Zr)	<1.0	mg/kg	ALS	RG MIDAG SE-2 2020-09-15 1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	pH (1:2 soil:water)	7.90	pH	ALS	RG MIDAG SE-2 2020-09-15 1723
SE	MIDAG	665258	5489417	2020	2	2020-09-15	17:23	Total Organic Carbon	5.97	%	ALS	RG MIDAG SE-2 2020-09-15 1723
SE	MIULE	660503	5493048	2020	1	2020-09-16	11:45	Moisture	56.5	%	ALS	RG MIULE SE-1 2020-09-16 1145
SE	MIULE	660503	5493048	2020	1	2020-09-16	11:45	Acenaphthene	<0.0050	mg/kg	ALS	RG MIULE SE-1 2020-09-16 1145
SE	MIULE	660503	5493048	2020	1	2020-09-16	11:45	Acenaphthylene	<0.0050	mg/kg	ALS	RG_MIULE_SE-1_2020-09-16_1145
SE	MIULE	660503	5493048	2020	1	2020-09-10	11:45	Anthracene	<0.0030		ALS	RG MIULE SE-1 2020-09-16 1145
SE SE	MIULE				1 1			Aridine		mg/kg		
		660503	5493048	2020	1 1	2020-09-16	11:45		<0.010	mg/kg	ALS	RG_MIULE_SE-1_2020-09-16_1145
SE_	MIULE	660503	5493048	2020	1 1	2020-09-16	11:45	Benz(a)anthracene	<0.010	mg/kg	ALS	RG_MIULE_SE-1_2020-09-16_1145
SE	MIULE	660503	5493048	2020	1	2020-09-16	11:45	Benzo(a)pyrene	<0.010	mg/kg	ALS	RG_MIULE_SE-1_2020-09-16_1145
SE	MIULE	660503	5493048	2020	1	2020-09-16	11:45	Benzo(b&j)fluoranthene	0.031	mg/kg	ALS	RG_MIULE_SE-1_2020-09-16_1145
SE	MIULE	660503	5493048	2020	1 1	2020-09-16	11:45	Benzo(e)pyrene	0.032	mg/kg	ALS	RG_MIULE_SE-1_2020-09-16_1145
SE_	MIULE	660503	5493048	2020	1 1	2020-09-16	11:45	Benzo(g_h_i)perylene	0.011	mg/kg	ALS	RG_MIULE_SE-1_2020-09-16_1145
SE	MIULE	660503	5493048	2020	1 1	2020-09-16	11:45	Benzo(k)fluoranthene	<0.010	mg/kg	ALS	RG_MIULE_SE-1_2020-09-16_1145
SE	MIULE	660503	5493048	2020	1	2020-09-16	11:45	Chrysene	0.060	mg/kg	ALS	RG_MIULE_SE-1_2020-09-16_1145
SE	MIULE	660503	5493048	2020	1	2020-09-16	11:45	Dibenz(a_h)anthracene	<0.0050	mg/kg	ALS	RG_MIULE_SE-1_2020-09-16_1145
SE	MIULE	660503	5493048	2020	1	2020-09-16	11:45	Fluoranthene	0.017	mg/kg	ALS	RG_MIULE_SE-1_2020-09-16_1145
SE	MIULE	660503	5493048	2020	1	2020-09-16	11:45	Fluorene	<0.020	mg/kg	ALS	RG_MIULE_SE-1_2020-09-16_1145
SE	MIULE	660503	5493048	2020	1	2020-09-16	11:45	Indeno(1,2,3-c,d)pyrene	<0.010	mg/kg	ALS	RG_MIULE_SE-1_2020-09-16_1145
SE	MIULE	660503	5493048	2020	1	2020-09-16	11:45	2-Methylnaphthalene	0.132	mg/kg	ALS	RG_MIULE_SE-1_2020-09-16_1145
SE	MIULE	660503	5493048	2020	1	2020-09-16	11:45	Naphthalene	0.061	mg/kg	ALS	RG_MIULE_SE-1_2020-09-16_1145
SE	MIULE	660503	5493048	2020	1	2020-09-16	11:45	Perylene	<0.010	mg/kg	ALS	RG_MIULE_SE-1_2020-09-16_1145
SE	MIULE	660503	5493048	2020	1	2020-09-16	11:45	Phenanthrene	0.136	mg/kg	ALS	RG_MIULE_SE-1_2020-09-16_1145
SE	MIULE	660503	5493048	2020	1	2020-09-16	11:45	Pyrene	0.021	mg/kg	ALS	RG_MIULE_SE-1_2020-09-16_1145
SE	MIULE	660503	5493048	2020	1	2020-09-16	11:45	1-Methylnaphthalene	0.086	mg/kg	ALS	RG_MIULE_SE-1_2020-09-16_1145
SE	MIULE	660503	5493048	2020	1	2020-09-16	11:45	Quinoline	< 0.050	mg/kg	ALS	RG_MIULE_SE-1_2020-09-16_1145
SE	MIULE	660503	5493048	2020	1	2020-09-16	11:45	IACR (CCME)	0.30	-	ALS	RG_MIULE_SE-1_2020-09-16_1145
SE	MIULE	660503	5493048	2020	1	2020-09-16	11:45	B(a)P Total Potency Equivalent	<0.020	mg/kg	ALS	RG_MIULE_SE-1_2020-09-16_1145
SE	MIULE	660503	5493048	2020	1	2020-09-16	11:45	Benzo(b+j+k)fluoranthene	0.031	mg/kg	ALS	RG_MIULE_SE-1_2020-09-16_1145
SE	MIULE	660503	5493048	2020	1	2020-09-16	11:45	IACR:Coarse	<0.050	-	ALS	RG_MIULE_SE-1_2020-09-16_1145
SE	MIULE	660503	5493048	2020	1	2020-09-16	11:45	IACR:Fine	<0.050	-	ALS	RG_MIULE_SE-1_2020-09-16_1145
SE	MIULE	660503	5493048	2020	1	2020-09-16	11:45	d8-Naphthalene	108.8	%	ALS	RG MIULE SE-1 2020-09-16 1145
SE	MIULE	660503	5493048	2020	1	2020-09-16	11:45	d10-Acenaphthene	110.1	%	ALS	RG MIULE SE-1 2020-09-16 1145
SE	MIULE	660503	5493048	2020	1	2020-09-16	11:45	d10-Phenanthrene	111.1	%	ALS	RG MIULE SE-1 2020-09-16 1145
SE	MIULE	660503	5493048	2020	1	2020-09-16	11:45	d12-Chrysene	121.1	%	ALS	RG MIULE SE-1 2020-09-16 1145
SE	MIULE	660503	5493048	2020	1	2020-09-16	11:45	% Gravel (>2 mm)	<1.0	%	ALS	RG MIULE SE-1 2020-09-16 1145

WSP Canada Inc. Page 163 of 337

Sediment Screening

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	Ctation	Location	ı (UTMs) ^(a)	Voca	Doubleste	Doto	Time	Avaluta	Door!!	Linit		Laboratory Information
/pe	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
E	MIULE	660503	5493048	2020	1	2020-09-16	11:45	% Sand (2.00 mm - 1.00 mm)	<1.0	%	ALS	RG MIULE SE-1 2020-09-16 1145
Е	MIULE	660503	5493048	2020	1	2020-09-16	11:45	% Sand (1.00 mm - 0.50 mm)	<1.0	%	ALS	RG MIULE SE-1 2020-09-16 1145
E	MIULE	660503	5493048	2020	1	2020-09-16	11:45	% Sand (0.50 mm - 0.25 mm)	8.6	%	ALS	RG MIULE SE-1 2020-09-16 1145
E	MIULE	660503	5493048	2020	1	2020-09-16	11:45	% Sand (0.25 mm - 0.125 mm)	18.2	%	ALS	RG MIULE SE-1 2020-09-16 1145
E	MIULE	660503	5493048	2020	1	2020-09-16	11:45	% Sand (0.125 mm - 0.063 mm)	18.3	%	ALS	RG_MIULE_SE-1_2020-09-16_1145
E	MIULE	660503	5493048	2020	1	2020-09-16	11:45	% Silt (0.063 mm - 0.0312 mm)	23.5	%	ALS	RG MIULE SE-1 2020-09-16 1145
E E	MIULE	660503	5493048	2020	1	2020-09-16	11:45	% Silt (0.031 mm - 0.004 mm)	25.5	%	ALS	RG MIULE SE-1 2020-09-16 1145
E	MIULE	660503	5493048	2020	1	2020-09-16	11:45	% Clay (<4 μm)	4.5	%	ALS	RG MIULE SE-1 2020-09-16 1145
E	MIULE	660503	5493048	2020	1	2020-09-16	11:45	Texture	Sandy loam	-	ALS	RG MIULE SE-1 2020-09-16 1145
- -	MIULE	660503	5493048	2020	1	2020-09-16	11:45	Mercury (Hg)	0.0352	mg/kg	ALS	RG MIULE SE-1 2020-09-16 1145
=	MIULE	660503	5493048	2020	1	2020-09-16	11:45	Aluminum (AI)	9910	mg/kg	ALS	RG MIULE SE-1 2020-09-16 1145
=	MIULE	660503	5493048	2020	1	2020-09-16	11:45	Antimony (Sb)	0.58	mg/kg	ALS	RG MIULE SE-1 2020-09-16 1145
=	MIULE	660503	5493048	2020	1	2020-09-16	11:45	Arsenic (As)	6.05	mg/kg	ALS	RG MIULE SE-1 2020-09-16 1145
	MIULE	660503	5493048	2020	1	2020-09-16	11:45	Barium (Ba)	210	mg/kg	ALS	RG_MIULE_SE-1_2020-09-16_1145
	MIULE	660503	5493048	2020	1	2020-09-16	11:45	Beryllium (Be)	0.67		ALS	RG MIULE SE-1 2020-09-16 1145
- =	MIULE	660503	5493048	2020	1	2020-09-16	11:45	Bismuth (Bi)	<0.20	mg/kg	ALS	RG MIULE SE-1 2020-09-16 1145
<u>- </u>	MIULE	660503	5493048		1 1	2020-09-16	11:45	, ,	11.9	mg/kg	ALS	RG MIULE SE-1 2020-09-16 1145
				2020	1 1			Boron (B)		mg/kg		
<u> </u>	MIULE	660503	5493048	2020	1 1	2020-09-16	11:45	Cadmium (Cd)	1.13	mg/kg	ALS	RG_MIULE_SE-1_2020-09-16_1145
	MIULE	660503	5493048	2020	1 1	2020-09-16	11:45	Calcium (Ca)	41900	mg/kg	ALS	RG_MIULE_SE-1_2020-09-16_1145
_	MIULE	660503	5493048	2020	1	2020-09-16	11:45	Chromium (Cr)	15.7	mg/kg	ALS	RG_MIULE_SE-1_2020-09-16_1145
	MIULE	660503	5493048	2020	1	2020-09-16	11:45	Cobalt (Co)	11.7	mg/kg	ALS	RG_MIULE_SE-1_2020-09-16_1145
	MIULE	660503	5493048	2020	1	2020-09-16	11:45	Copper (Cu)	12.6	mg/kg	ALS	RG_MIULE_SE-1_2020-09-16_1145
	MIULE	660503	5493048	2020	1	2020-09-16	11:45	Iron (Fe)	14800	mg/kg	ALS	RG_MIULE_SE-1_2020-09-16_1145
	MIULE	660503	5493048	2020	1 1	2020-09-16	11:45	Lead (Pb)	8.48	mg/kg	ALS	RG_MIULE_SE-1_2020-09-16_1145
	MIULE	660503	5493048	2020	1	2020-09-16	11:45	Lithium (Li)	12.7	mg/kg	ALS	RG_MIULE_SE-1_2020-09-16_1145
	MIULE	660503	5493048	2020	1	2020-09-16	11:45	Magnesium (Mg)	9350	mg/kg	ALS	RG_MIULE_SE-1_2020-09-16_1145
Ξ	MIULE	660503	5493048	2020	1	2020-09-16	11:45	Manganese (Mn)	202	mg/kg	ALS	RG_MIULE_SE-1_2020-09-16_1145
	MIULE	660503	5493048	2020	1	2020-09-16	11:45	Molybdenum (Mo)	1.43	mg/kg	ALS	RG_MIULE_SE-1_2020-09-16_1145
=	MIULE	660503	5493048	2020	1	2020-09-16	11:45	Nickel (Ni)	34.8	mg/kg	ALS	RG_MIULE_SE-1_2020-09-16_1145
	MIULE	660503	5493048	2020	1	2020-09-16	11:45	Phosphorus (P)	1080	mg/kg	ALS	RG_MIULE_SE-1_2020-09-16_1145
Ξ	MIULE	660503	5493048	2020	1	2020-09-16	11:45	Potassium (K)	2460	mg/kg	ALS	RG_MIULE_SE-1_2020-09-16_1145
Ξ	MIULE	660503	5493048	2020	1	2020-09-16	11:45	Selenium (Se)	2.02	mg/kg	ALS	RG_MIULE_SE-1_2020-09-16_1145
	MIULE	660503	5493048	2020	1	2020-09-16	11:45	Silver (Ag)	0.12	mg/kg	ALS	RG_MIULE_SE-1_2020-09-16_1145
	MIULE	660503	5493048	2020	1	2020-09-16	11:45	Sodium (Na)	100	mg/kg	ALS	RG_MIULE_SE-1_2020-09-16_1145
	MIULE	660503	5493048	2020	1	2020-09-16	11:45	Strontium (Sr)	73.9	mg/kg	ALS	RG_MIULE_SE-1_2020-09-16_1145
<u> </u>	MIULE	660503	5493048	2020	1	2020-09-16	11:45	Sulfur (S)	<1000	mg/kg	ALS	RG_MIULE_SE-1_2020-09-16_1145
Ξ	MIULE	660503	5493048	2020	1	2020-09-16	11:45	Thallium (TI)	0.400	mg/kg	ALS	RG_MIULE_SE-1_2020-09-16_1145
Ξ [MIULE	660503	5493048	2020	1	2020-09-16	11:45	Tin (Sn)	<2.0	mg/kg	ALS	RG_MIULE_SE-1_2020-09-16_1145
Ξ [MIULE	660503	5493048	2020	1	2020-09-16	11:45	Titanium (Ti)	29.6	mg/kg	ALS	RG_MIULE_SE-1_2020-09-16_1145
	MIULE	660503	5493048	2020	1	2020-09-16	11:45	Tungsten (W)	<0.50	mg/kg	ALS	RG MIULE SE-1 2020-09-16 1145
:	MIULE	660503	5493048	2020	1	2020-09-16	11:45	Uranium (U)	0.724	mg/kg	ALS	RG_MIULE_SE-1_2020-09-16_1145
=	MIULE	660503	5493048	2020	1	2020-09-16	11:45	Vanadium (V)	32.2	mg/kg	ALS	RG MIULE SE-1 2020-09-16 1145
=	MIULE	660503	5493048	2020	1	2020-09-16	11:45	Zinc (Zn)	110	mg/kg	ALS	RG MIULE SE-1 2020-09-16 1145
	MIULE	660503	5493048	2020	1	2020-09-16	11:45	Zirconium (Zr)	<1.0	mg/kg	ALS	RG MIULE SE-1 2020-09-16 1145
	MIULE	660503	5493048	2020	1	2020-09-16	11:45	pH (1:2 soil:water)	8.14	pH	ALS	RG MIULE SE-1 2020-09-16 1145
				2020	1	2020-09-16	11:45	Total Organic Carbon	2.89	%	ALS	RG MIULE SE-1 2020-09-16 1145
Ξ [MIULE	660503	5493048	2020		ZUZU-U9- 10	4:)	Froiai Organic Garbon	/ 0.5	//	H (A) (3	1KG MIDLE SE-1 /0/0-09-10 1140

WSP Canada Inc. Page 164 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	Station	Location	(UTMs) ^(a)	Veer	Donlinete	Data	Times	Analyte	Docult	Unit		Laboratory Information
ype	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MIULE	660503	5493048	2020	2	2020-09-16	12:05	Acenaphthene	<0.010	mg/kg	ALS	RG MIULE SE-2 2020-09-16 1205
SE	MIULE	660503	5493048	2020	2	2020-09-16	12:05	Acenaphthylene	< 0.0050	mg/kg	ALS	RG MIULE SE-2 2020-09-16 1205
SE	MIULE	660503	5493048	2020	2	2020-09-16	12:05	Anthracene	<0.0040	mg/kg	ALS	RG MIULE SE-2 2020-09-16 1205
SE	MIULE	660503	5493048	2020	2	2020-09-16	12:05	Acridine	<0.020	mg/kg	ALS	RG MIULE SE-2 2020-09-16 1205
SE	MIULE	660503	5493048	2020	2	2020-09-16	12:05	Benz(a)anthracene	<0.010	mg/kg	ALS	RG_MIULE_SE-2_2020-09-16_1205
SE	MIULE	660503	5493048	2020	2	2020-09-16	12:05	Benzo(a)pyrene	<0.010	mg/kg	ALS	RG MIULE SE-2 2020-09-16 1205
SE.	MIULE	660503	5493048	2020	2	2020-09-16	12:05	Benzo(b&j)fluoranthene	0.046	mg/kg	ALS	RG MIULE SE-2 2020-09-16 1205
ŝΕ	MIULE	660503	5493048	2020	2	2020-09-16	12:05	Benzo(e)pyrene	0.048	mg/kg	ALS	RG MIULE SE-2 2020-09-16 1205
SΕ	MIULE	660503	5493048	2020	2	2020-09-16	12:05	Benzo(g_h_i)perylene	0.017	mg/kg	ALS	RG_MIULE_SE-2_2020-09-16_1205
E SE	MIULE	660503	5493048	2020	2	2020-09-16	12:05	Benzo(k)fluoranthene	<0.010	mg/kg	ALS	RG MIULE SE-2 2020-09-16 1205
E	MIULE	660503	5493048	2020	2	2020-09-16	12:05	Chrysene	0.083	mg/kg	ALS	RG MIULE SE-2 2020-09-16 1205
E E	MIULE	660503	5493048	2020	2	2020-09-16	12:05	Dibenz(a h)anthracene	<0.0060	mg/kg	ALS	RG MIULE SE-2 2020-09-16 1205
SE	MIULE	660503	5493048	2020	2	2020-09-16	12:05	Fluoranthene	0.027	mg/kg	ALS	RG MIULE SE-2 2020-09-16 1205
E	MIULE	660503	5493048	2020	2	2020-09-16	12:05	Fluorene	0.020	mg/kg	ALS	RG MIULE SE-2 2020-09-16 1205
E	MIULE	660503	5493048	2020	2	2020-09-16	12:05	Indeno(1,2,3-c,d)pyrene	<0.010	mg/kg	ALS	RG MIULE SE-2 2020-09-16 1205
E	MIULE	660503	5493048	2020	2	2020-09-16	12:05	2-Methylnaphthalene	0.185	mg/kg	ALS	RG MIULE SE-2 2020-09-16 1205
E	MIULE	660503	5493048	2020	2	2020-09-16	12:05	Naphthalene	0.082	mg/kg	ALS	RG MIULE SE-2 2020-09-16 1205
E E	MIULE	660503	5493048	2020	2	2020-09-16	12:05	Perylene	<0.010	mg/kg	ALS	RG MIULE SE-2 2020-09-16 1205
E	MIULE	660503	5493048	2020	2	2020-09-16	12:05	Phenanthrene	0.180	mg/kg	ALS	RG MIULE SE-2 2020-09-16 1205
_	MIULE	660503	5493048	2020	2	2020-09-16	12:05	Pyrene	0.028	mg/kg	ALS	RG MIULE SE-2 2020-09-16 1205
_	MIULE	660503	5493048	2020	2	2020-09-10	12:05	1-Methylnaphthalene	0.120		ALS	RG MIULE SE-2 2020-09-16 1205
	MIULE	660503	5493048	2020	2	2020-09-10	12:05	Quinoline	<0.050	mg/kg	ALS	RG MIULE SE-2 2020-09-16 1205
<u>-</u> E	MIULE	660503	5493048	2020	2	2020-09-16	12:05	IACR (CCME)	0.40	mg/kg	ALS	RG MIULE SE-2 2020-09-16 1205
	MIULE							B(a)P Total Potency Equivalent	<0.020	- "///	ALS	
<u>E</u>		660503	5493048	2020	2	2020-09-16	12:05	<u> </u>		mg/kg		RG_MIULE_SE-2_2020-09-16_1205
<u>E</u>	MIULE MIULE	660503	5493048 5493048	2020	2	2020-09-16	12:05	Benzo(b+j+k)fluoranthene IACR:Coarse	0.046	mg/kg	ALS	RG_MIULE_SE-2_2020-09-16_1205
E E		660503		2020	2	2020-09-16	12:05		<0.050	-	ALS	RG_MIULE_SE-2_2020-09-16_1205
	MIULE	660503	5493048	2020	+	2020-09-16	12:05	IACR:Fine	<0.050	- 0/	ALS	RG_MIULE_SE-2_2020-09-16_1205
E	MIULE	660503	5493048	2020	2	2020-09-16	12:05	d8-Naphthalene	103.9	%	ALS	RG_MIULE_SE-2_2020-09-16_1205
E	MIULE	660503	5493048	2020	2	2020-09-16	12:05	d10-Acenaphthene	107.0	%	ALS	RG_MIULE_SE-2_2020-09-16_1205
E	MIULE	660503	5493048	2020	2	2020-09-16	12:05	d10-Phenanthrene	105.9	%	ALS	RG_MIULE_SE-2_2020-09-16_1205
<u>E</u>	MIULE	660503	5493048	2020	2	2020-09-16	12:05	d12-Chrysene	114.5	%	ALS	RG_MIULE_SE-2_2020-09-16_1205
E	MIULE	660503	5493048	2020	2	2020-09-16	12:05	% Gravel (>2 mm)	<1.0	%	ALS	RG_MIULE_SE-2_2020-09-16_1205
<u>E</u>	MIULE	660503	5493048	2020	2	2020-09-16	12:05	% Sand (2.00 mm - 1.00 mm)	<1.0	%	ALS	RG_MIULE_SE-2_2020-09-16_1205
E	MIULE	660503	5493048	2020	2	2020-09-16	12:05	% Sand (1.00 mm - 0.50 mm)	1.8	%	ALS	RG_MIULE_SE-2_2020-09-16_1205
<u>E</u>	MIULE	660503	5493048	2020	2	2020-09-16	12:05	% Sand (0.50 mm - 0.25 mm)	2.9	%	ALS	RG_MIULE_SE-2_2020-09-16_1205
E	MIULE	660503	5493048	2020	2	2020-09-16	12:05	% Sand (0.25 mm - 0.125 mm)	10.8	%	ALS	RG_MIULE_SE-2_2020-09-16_1205
E	MIULE	660503	5493048	2020	2	2020-09-16	12:05	% Sand (0.125 mm - 0.063 mm)	20.1	%	ALS	RG_MIULE_SE-2_2020-09-16_1205
E	MIULE	660503	5493048	2020	2	2020-09-16	12:05	% Silt (0.063 mm - 0.0312 mm)	27.7	%	ALS	RG_MIULE_SE-2_2020-09-16_1205
E	MIULE	660503	5493048	2020	2	2020-09-16	12:05	% Silt (0.031 mm - 0.004 mm)	30.4	%	ALS	RG_MIULE_SE-2_2020-09-16_1205
E	MIULE	660503	5493048	2020	2	2020-09-16	12:05	% Clay (<4 μm)	5.4	%	ALS	RG_MIULE_SE-2_2020-09-16_1205
E	MIULE	660503	5493048	2020	2	2020-09-16	12:05	Texture	Silt loam	-	ALS	RG_MIULE_SE-2_2020-09-16_1205
E	MIULE	660503	5493048	2020	2	2020-09-16	12:05	Mercury (Hg)	0.0409	mg/kg	ALS	RG_MIULE_SE-2_2020-09-16_1205
E	MIULE	660503	5493048	2020	2	2020-09-16	12:05	Aluminum (Al)	10500	mg/kg	ALS	RG_MIULE_SE-2_2020-09-16_1205
Ε	MIULE	660503	5493048	2020	2	2020-09-16	12:05	Antimony (Sb)	0.67	mg/kg	ALS	RG_MIULE_SE-2_2020-09-16_1205
Ε	MIULE	660503	5493048	2020	2	2020-09-16	12:05	Arsenic (As)	8.51	mg/kg	ALS	RG_MIULE_SE-2_2020-09-16_1205
E	MIULE	660503	5493048	2020	2	2020-09-16	12:05	Barium (Ba)	249	mg/kg	ALS	RG_MIULE_SE-2_2020-09-16_1205
E	MIULE	660503	5493048	2020	2	2020-09-16	12:05	Beryllium (Be)	0.76	mg/kg	ALS	RG MIULE SE-2 2020-09-16 1205

WSP Canada Inc. Page 165 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Table I-1	: Sediment Chem	istry Data Col	lected from the	CMm LAEMP S	Sampling Sta	ations, 2012 to	2022					
Туре	Station	Location	ı (UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
Type	Station	Easting	Northing	i cai	Replicate	Date	Tille	Allalyte	Nesuit	Offic	Lab	Sample ID
SE	MIULE	660503	5493048	2020	2	2020-09-16	12:05	Bismuth (Bi)	<0.20	mg/kg	ALS	RG_MIULE_SE-2_2020-09-16_1205
SE	MIULE	660503	5493048	2020	2	2020-09-16	12:05	Boron (B)	11.2	mg/kg	ALS	RG_MIULE_SE-2_2020-09-16_1205
SE	MIULE	660503	5493048	2020	2	2020-09-16	12:05	Cadmium (Cd)	1.32	mg/kg	ALS	RG_MIULE_SE-2_2020-09-16_1205
SE	MIULE	660503	5493048	2020	2	2020-09-16	12:05	Calcium (Ca)	44200	mg/kg	ALS	RG_MIULE_SE-2_2020-09-16_1205
SE	MIULE	660503	5493048	2020	2	2020-09-16	12:05	Chromium (Cr)	16.7	mg/kg	ALS	RG_MIULE_SE-2_2020-09-16_1205
SE	MIULE	660503	5493048	2020	2	2020-09-16	12:05	Cobalt (Co)	13.7	mg/kg	ALS	RG_MIULE_SE-2_2020-09-16_1205
SE	MIULE	660503	5493048	2020	2	2020-09-16	12:05	Copper (Cu)	16.1	mg/kg	ALS	RG_MIULE_SE-2_2020-09-16_1205
SE	MIULE	660503	5493048	2020	2	2020-09-16	12:05	Iron (Fe)	18000	mg/kg	ALS	RG_MIULE_SE-2_2020-09-16_1205
SE	MIULE	660503	5493048	2020	2	2020-09-16	12:05	Lead (Pb)	10.3	mg/kg	ALS	RG_MIULE_SE-2_2020-09-16_1205
SE	MIULE	660503	5493048	2020	2	2020-09-16	12:05	Lithium (Li)	14.5	mg/kg	ALS	RG_MIULE_SE-2_2020-09-16_1205
SE	MIULE	660503	5493048	2020	2	2020-09-16	12:05	Magnesium (Mg)	11000	mg/kg	ALS	RG_MIULE_SE-2_2020-09-16_1205
SE	MIULE	660503	5493048	2020	2	2020-09-16	12:05	Manganese (Mn)	306	mg/kg	ALS	RG_MIULE_SE-2_2020-09-16_1205
SE	MIULE	660503	5493048	2020	2	2020-09-16	12:05	Molybdenum (Mo)	1.83	mg/kg	ALS	RG_MIULE_SE-2_2020-09-16_1205
SE	MIULE	660503	5493048	2020	2	2020-09-16	12:05	Nickel (Ni)	40.7	mg/kg	ALS	RG_MIULE_SE-2_2020-09-16_1205
SE	MIULE	660503	5493048	2020	2	2020-09-16	12:05	Phosphorus (P)	1210	mg/kg	ALS	RG_MIULE_SE-2_2020-09-16_1205
SE	MIULE	660503	5493048	2020	2	2020-09-16	12:05	Potassium (K)	2390	mg/kg	ALS	RG_MIULE_SE-2_2020-09-16_1205
SE	MIULE	660503	5493048	2020	2	2020-09-16	12:05	Selenium (Se)	1.27	mg/kg	ALS	RG_MIULE_SE-2_2020-09-16_1205
SE	MIULE	660503	5493048	2020	2	2020-09-16	12:05	Silver (Ag)	0.17	mg/kg	ALS	RG_MIULE_SE-2_2020-09-16_1205
SE	MIULE	660503	5493048	2020	2	2020-09-16	12:05	Sodium (Na)	103	mg/kg	ALS	RG_MIULE_SE-2_2020-09-16_1205
SE	MIULE	660503	5493048	2020	2	2020-09-16	12:05	Strontium (Sr)	73.6	mg/kg	ALS	RG_MIULE_SE-2_2020-09-16_1205
SE	MIULE	660503	5493048	2020	2	2020-09-16	12:05	Sulfur (S)	<1000	mg/kg	ALS	RG_MIULE_SE-2_2020-09-16_1205
SE	MIULE	660503	5493048	2020	2	2020-09-16	12:05	Thallium (TI)	0.497	mg/kg	ALS	RG_MIULE_SE-2_2020-09-16_1205
SE	MIULE	660503	5493048	2020	2	2020-09-16	12:05	Tin (Sn)	<2.0	mg/kg	ALS	RG_MIULE_SE-2_2020-09-16_1205
SE	MIULE	660503	5493048	2020	2	2020-09-16	12:05	Titanium (Ti)	31.8	mg/kg	ALS	RG_MIULE_SE-2_2020-09-16_1205
SE	MIULE	660503	5493048	2020	2	2020-09-16	12:05	Tungsten (W)	<0.50	mg/kg	ALS	RG_MIULE_SE-2_2020-09-16_1205
SE	MIULE	660503	5493048	2020	2	2020-09-16	12:05	Uranium (U)	0.785	mg/kg	ALS	RG_MIULE_SE-2_2020-09-16_1205
SE	MIULE	660503	5493048	2020	2	2020-09-16	12:05	Vanadium (V)	34.2	mg/kg	ALS	RG_MIULE_SE-2_2020-09-16_1205
SE	MIULE	660503	5493048	2020	2	2020-09-16	12:05	Zinc (Zn)	129	mg/kg	ALS	RG_MIULE_SE-2_2020-09-16_1205
SE	MIULE	660503	5493048	2020	2	2020-09-16	12:05	Zirconium (Zr)	1.1	mg/kg	ALS	RG_MIULE_SE-2_2020-09-16_1205
SE	MIULE	660503	5493048	2020	2	2020-09-16	12:05	pH (1:2 soil:water)	8.09	pН	ALS	RG_MIULE_SE-2_2020-09-16_1205
SE	MIULE	660503	5493048	2020	2	2020-09-16	12:05	Total Organic Carbon	3.42	%	ALS	RG_MIULE_SE-2_2020-09-16_1205
SE	MIULE	660503	5493048	2020	3	2020-09-16	14:57	Moisture	73.8	%	ALS	RG_MIULE_SE-3_2020-09-16_1457
SE	MIULE	660503	5493048	2020	3	2020-09-16	14:57	Acenaphthene	<0.010	mg/kg	ALS	RG_MIULE_SE-3_2020-09-16_1457
SE	MIULE	660503	5493048	2020	3	2020-09-16	14:57	Acenaphthylene	<0.010	mg/kg	ALS	RG_MIULE_SE-3_2020-09-16_1457
SE	MIULE	660503	5493048	2020	3	2020-09-16	14:57	Anthracene	<0.0080	mg/kg	ALS	RG_MIULE_SE-3_2020-09-16_1457
SE	MIULE	660503	5493048	2020	3	2020-09-16	14:57	Acridine	<0.020	mg/kg	ALS	RG_MIULE_SE-3_2020-09-16_1457
SE	MIULE	660503	5493048	2020	3	2020-09-16	14:57	Benz(a)anthracene	<0.020	mg/kg	ALS	RG_MIULE_SE-3_2020-09-16_1457
SE	MIULE	660503	5493048	2020	3	2020-09-16	14:57	Benzo(a)pyrene	<0.020	mg/kg	ALS	RG_MIULE_SE-3_2020-09-16_1457
SE	MIULE	660503	5493048	2020	3	2020-09-16	14:57	Benzo(b&j)fluoranthene	0.038	mg/kg	ALS	RG_MIULE_SE-3_2020-09-16_1457
SE	MIULE	660503	5493048	2020	3	2020-09-16	14:57	Benzo(e)pyrene	0.041	mg/kg	ALS	RG_MIULE_SE-3_2020-09-16_1457
SE	MIULE	660503	5493048	2020	3	2020-09-16	14:57	Benzo(g_h_i)perylene	<0.020	mg/kg	ALS	RG_MIULE_SE-3_2020-09-16_1457
SE	MIULE	660503	5493048	2020	3	2020-09-16	14:57	Benzo(k)fluoranthene	<0.020	mg/kg	ALS	RG_MIULE_SE-3_2020-09-16_1457
SE	MIULE	660503	5493048	2020	3	2020-09-16	14:57	Chrysene	0.069	mg/kg	ALS	RG_MIULE_SE-3_2020-09-16_1457
SE	MIULE	660503	5493048	2020	3	2020-09-16	14:57	Dibenz(a_h)anthracene	<0.010	mg/kg	ALS	RG_MIULE_SE-3_2020-09-16_1457
SE	MIULE	660503	5493048	2020	3	2020-09-16	14:57	Fluoranthene	0.023	mg/kg	ALS	RG_MIULE_SE-3_2020-09-16_1457
SE	MIULE	660503	5493048	2020	3	2020-09-16	14:57	Fluorene	<0.020	mg/kg	ALS	RG_MIULE_SE-3_2020-09-16_1457
SE	MIULE	660503	5493048	2020	3	2020-09-16	14:57	Indeno(1,2,3-c,d)pyrene	<0.020	mg/kg	ALS	RG_MIULE_SE-3_2020-09-16_1457

WSP Canada Inc. Page 166 of 337

Sediment Screening

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Type	Station	Location	ı (UTMs) ^(a)	Veer	Poplieste	Data	Time	Analyta	Beault	Hoit		Laboratory Information
Туре	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MIULE	660503	5493048	2020	3	2020-09-16	14:57	2-Methylnaphthalene	0.207	mg/kg	ALS	RG_MIULE_SE-3_2020-09-16_1457
SE	MIULE	660503	5493048	2020	3	2020-09-16	14:57	Naphthalene	0.091	mg/kg	ALS	RG MIULE SE-3 2020-09-16 1457
SE	MIULE	660503	5493048	2020	3	2020-09-16	14:57	Perylene	<0.020	mg/kg	ALS	RG MIULE SE-3 2020-09-16 1457
SE	MIULE	660503	5493048	2020	3	2020-09-16	14:57	Phenanthrene	0.186	mg/kg	ALS	RG MIULE SE-3 2020-09-16 1457
SE	MIULE	660503	5493048	2020	3	2020-09-16	14:57	Pyrene	0.025	mg/kg	ALS	RG MIULE SE-3 2020-09-16 1457
SE	MIULE	660503	5493048	2020	3	2020-09-16	14:57	1-Methylnaphthalene	0.140	mg/kg	ALS	RG MIULE SE-3 2020-09-16 1457
SE	MIULE	660503	5493048	2020	3	2020-09-16	14:57	Quinoline	<0.020	mg/kg	ALS	RG MIULE SE-3 2020-09-16 1457
SE	MIULE	660503	5493048	2020	3	2020-09-16	14:57	IACR (CCME)	0.42	-	ALS	RG MIULE SE-3 2020-09-16 1457
SE	MIULE	660503	5493048	2020	3	2020-09-16	14:57	B(a)P Total Potency Equivalent	0.023	mg/kg	ALS	RG MIULE SE-3 2020-09-16 1457
SE	MIULE	660503	5493048	2020	3	2020-09-16	14:57	Benzo(b+j+k)fluoranthene	0.038	mg/kg	ALS	RG MIULE SE-3 2020-09-16 1457
SE	MIULE	660503	5493048	2020	3	2020-09-16	14:57	IACR:Coarse	<0.050	-	ALS	RG MIULE SE-3 2020-09-16 1457
SE	MIULE	660503	5493048	2020	3	2020-09-16	14:57	IACR:Fine	<0.050	_	ALS	RG MIULE SE-3 2020-09-16 1457
SE	MIULE	660503	5493048	2020	3	2020-09-16	14:57	d8-Naphthalene	113.1	%	ALS	RG MIULE SE-3 2020-09-16 1457
SE	MIULE	660503	5493048	2020	3	2020-09-16	14:57	d10-Acenaphthene	112.8	%	ALS	RG MIULE SE-3 2020-09-16 1457
SE	MIULE	660503	5493048	2020	3	2020-09-16	14:57	d10-Phenanthrene	111.7	%	ALS	RG MIULE SE-3 2020-09-16 1457
SE	MIULE	660503	5493048	2020	3	2020-09-16	14:57	d12-Chrysene	122.6	%	ALS	RG MIULE SE-3 2020-09-16 1457
SE	MIULE	660503	5493048	2020	3	2020-09-16	14:57	% Gravel (>2 mm)	<1.0	%	ALS	RG MIULE SE-3 2020-09-16 1457
SE	MIULE	660503	5493048	2020	3	2020-09-16	14:57	% Sand (2.00 mm - 1.00 mm)	<1.0	%	ALS	RG MIULE SE-3 2020-09-16 1457
SE	MIULE	660503	5493048	2020	3	2020-09-10	14:57	% Sand (2.00 mm - 1.00 mm)	2.7	%	ALS	RG MIULE SE-3 2020-09-16 1457
SE	MIULE	660503	5493048	2020	3	2020-09-10	14:57	% Sand (0.50 mm - 0.25 mm)	12.4	%	ALS	RG MIULE SE-3 2020-09-16 1457
SE	MIULE	660503	5493048	2020	3	2020-09-10	14:57	% Sand (0.35 mm - 0.125 mm)	24.4	%	ALS	RG MIULE SE-3 2020-09-16 1457
SE	MIULE	660503	5493048	2020	3	2020-09-10	14:57	% Sand (0.25 mm - 0.125 mm)	18.1	%	ALS	RG_MIULE_SE-3_2020-09-16_1457
SE	MIULE	660503	5493048	2020	3	2020-09-10	14:57	% Salt (0.123 mm - 0.003 mm)	20.0	%	ALS	RG MIULE SE-3 2020-09-16 1457
SE					3			,		%		
SE	MIULE	660503	5493048 5493048	2020	3	2020-09-16	14:57	% Silt (0.031 mm - 0.004 mm)	18.8 3.2	% %	ALS ALS	RG_MIULE_SE-3_2020-09-16_1457
SE	MIULE	660503		2020	-	2020-09-16	14:57	% Clay (<4 μm)		%		RG_MIULE_SE-3_2020-09-16_1457
	MIULE	660503	5493048	2020	3	2020-09-16	14:57	Texture	Sandy loam		ALS	RG_MIULE_SE-3_2020-09-16_1457
SE	MIULE	660503	5493048	2020	3	2020-09-16	14:57	Mercury (Hg)	0.0316	mg/kg	ALS	RG_MIULE_SE-3_2020-09-16_1457
SE	MIULE	660503	5493048	2020	3	2020-09-16	14:57	Aluminum (Al)	9290	mg/kg	ALS	RG_MIULE_SE-3_2020-09-16_1457
SE	MIULE	660503	5493048	2020	3	2020-09-16	14:57	Antimony (Sb)	0.35	mg/kg	ALS	RG_MIULE_SE-3_2020-09-16_1457
SE	MIULE	660503	5493048	2020	3	2020-09-16	14:57	Arsenic (As)	6.47	mg/kg	ALS	RG_MIULE_SE-3_2020-09-16_1457
SE	MIULE	660503	5493048	2020	_	2020-09-16	14:57	Barium (Ba)	206	mg/kg	ALS	RG_MIULE_SE-3_2020-09-16_1457
SE	MIULE	660503	5493048	2020	3	2020-09-16	14:57	Beryllium (Be)	0.65	mg/kg	ALS	RG_MIULE_SE-3_2020-09-16_1457
SE	MIULE	660503	5493048	2020	3	2020-09-16	14:57	Bismuth (Bi)	<0.20	mg/kg	ALS	RG_MIULE_SE-3_2020-09-16_1457
SE	MIULE	660503	5493048	2020	3	2020-09-16	14:57	Boron (B)	11.0	mg/kg	ALS	RG_MIULE_SE-3_2020-09-16_1457
SE	MIULE	660503	5493048	2020	3	2020-09-16	14:57	Cadmium (Cd)	0.994	mg/kg	ALS	RG_MIULE_SE-3_2020-09-16_1457
SE	MIULE	660503	5493048	2020	3	2020-09-16	14:57	Calcium (Ca)	53700	mg/kg	ALS	RG_MIULE_SE-3_2020-09-16_1457
SE	MIULE	660503	5493048	2020	3	2020-09-16	14:57	Chromium (Cr)	14.5	mg/kg	ALS	RG_MIULE_SE-3_2020-09-16_1457
SE	MIULE	660503	5493048	2020	3	2020-09-16	14:57	Cobalt (Co)	12.9	mg/kg	ALS	RG_MIULE_SE-3_2020-09-16_1457
SE	MIULE	660503	5493048	2020	3	2020-09-16	14:57	Copper (Cu)	11.7	mg/kg	ALS	RG_MIULE_SE-3_2020-09-16_1457
SE	MIULE	660503	5493048	2020	3	2020-09-16	14:57	Iron (Fe)	14300	mg/kg	ALS	RG_MIULE_SE-3_2020-09-16_1457
SE	MIULE	660503	5493048	2020	3	2020-09-16	14:57	Lead (Pb)	7.92	mg/kg	ALS	RG_MIULE_SE-3_2020-09-16_1457
SE	MIULE	660503	5493048	2020	3	2020-09-16	14:57	Lithium (Li)	11.7	mg/kg	ALS	RG_MIULE_SE-3_2020-09-16_1457
SE	MIULE	660503	5493048	2020	3	2020-09-16	14:57	Magnesium (Mg)	8310	mg/kg	ALS	RG_MIULE_SE-3_2020-09-16_1457
SE	MIULE	660503	5493048	2020	3	2020-09-16	14:57	Manganese (Mn)	290	mg/kg	ALS	RG_MIULE_SE-3_2020-09-16_1457
SE	MIULE	660503	5493048	2020	3	2020-09-16	14:57	Molybdenum (Mo)	1.46	mg/kg	ALS	RG_MIULE_SE-3_2020-09-16_1457
SE	MIULE	660503	5493048	2020	3	2020-09-16	14:57	Nickel (Ni)	35.6	mg/kg	ALS	RG_MIULE_SE-3_2020-09-16_1457
SE	MIULE	660503	5493048	2020	3	2020-09-16	14:57	Phosphorus (P)	1060	mg/kg	ALS	RG MIULE SE-3 2020-09-16 1457

WSP Canada Inc. Page 167 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	Station		(UTMs) ^(a)	Year	Replicate		Time	Anglyto	Booult	Unit		Laboratory Information
Type	Station	Easting	Northing	rear	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MIULE	660503	5493048	2020	3	2020-09-16	14:57	Potassium (K)	2400	mg/kg	ALS	RG_MIULE_SE-3_2020-09-16_1457
SE	MIULE	660503	5493048	2020	3	2020-09-16	14:57	Selenium (Se)	1.92	mg/kg	ALS	RG_MIULE_SE-3_2020-09-16_1457
SE	MIULE	660503	5493048	2020	3	2020-09-16	14:57	Silver (Ag)	0.12	mg/kg	ALS	RG_MIULE_SE-3_2020-09-16_1457
SE	MIULE	660503	5493048	2020	3	2020-09-16	14:57	Sodium (Na)	121	mg/kg	ALS	RG_MIULE_SE-3_2020-09-16_1457
SE	MIULE	660503	5493048	2020	3	2020-09-16	14:57	Strontium (Sr)	86.7	mg/kg	ALS	RG_MIULE_SE-3_2020-09-16_1457
SE	MIULE	660503	5493048	2020	3	2020-09-16	14:57	Sulfur (S)	<1000	mg/kg	ALS	RG_MIULE_SE-3_2020-09-16_1457
SE	MIULE	660503	5493048	2020	3	2020-09-16	14:57	Thallium (TI)	0.352	mg/kg	ALS	RG_MIULE_SE-3_2020-09-16_1457
SE	MIULE	660503	5493048	2020	3	2020-09-16	14:57	Tin (Sn)	<2.0	mg/kg	ALS	RG_MIULE_SE-3_2020-09-16_1457
SE	MIULE	660503	5493048	2020	3	2020-09-16	14:57	Titanium (Ti)	13.3	mg/kg	ALS	RG_MIULE_SE-3_2020-09-16_1457
SE	MIULE	660503	5493048	2020	3	2020-09-16	14:57	Tungsten (W)	<0.50	mg/kg	ALS	RG_MIULE_SE-3_2020-09-16_1457
SE	MIULE	660503	5493048	2020	3	2020-09-16	14:57	Uranium (U)	0.765	mg/kg	ALS	RG_MIULE_SE-3_2020-09-16_1457
SE	MIULE	660503	5493048	2020	3	2020-09-16	14:57	Vanadium (V)	30.7	mg/kg	ALS	RG_MIULE_SE-3_2020-09-16_1457
SE	MIULE	660503	5493048	2020	3	2020-09-16	14:57	Zinc (Zn)	100	mg/kg	ALS	RG_MIULE_SE-3_2020-09-16_1457
SE	MIULE	660503	5493048	2020	3	2020-09-16	14:57	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_MIULE_SE-3_2020-09-16_1457
SE	MIULE	660503	5493048	2020	3	2020-09-16	14:57	pH (1:2 soil:water)	7.87	рН	ALS	RG_MIULE_SE-3_2020-09-16_1457
SE	MIULE	660503	5493048	2020	3	2020-09-16	14:57	Total Organic Carbon	6.95	%	ALS	RG_MIULE_SE-3_2020-09-16_1457
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	Moisture	73.9	%	ALS	RG_MIDAG_SE-3_2020-09-16_0805
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	Acenaphthene	<0.012	mg/kg	ALS	RG_MIDAG_SE-3_2020-09-16_0805
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	Acenaphthylene	<0.010	mg/kg	ALS	RG_MIDAG_SE-3_2020-09-16_0805
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	Anthracene	<0.0080	mg/kg	ALS	RG_MIDAG_SE-3_2020-09-16_0805
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	Acridine	<0.020	mg/kg	ALS	RG_MIDAG_SE-3_2020-09-16_0805
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	Benz(a)anthracene	<0.020	mg/kg	ALS	RG_MIDAG_SE-3_2020-09-16_0805
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	Benzo(a)pyrene	<0.020	mg/kg	ALS	RG_MIDAG_SE-3_2020-09-16_0805
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	Benzo(b&j)fluoranthene	0.084	mg/kg	ALS	RG_MIDAG_SE-3_2020-09-16_0805
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	Benzo(e)pyrene	0.082	mg/kg	ALS	RG_MIDAG_SE-3_2020-09-16_0805
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	Benzo(g_h_i)perylene	0.028	mg/kg	ALS	RG_MIDAG_SE-3_2020-09-16_0805
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	Benzo(k)fluoranthene	<0.020	mg/kg	ALS	RG_MIDAG_SE-3_2020-09-16_0805
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	Chrysene	0.133	mg/kg	ALS	RG_MIDAG_SE-3_2020-09-16_0805
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	Dibenz(a_h)anthracene	<0.010	mg/kg	ALS	RG_MIDAG_SE-3_2020-09-16_0805
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	Fluoranthene	0.044	mg/kg	ALS	RG_MIDAG_SE-3_2020-09-16_0805
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	Fluorene	0.032	mg/kg	ALS	RG_MIDAG_SE-3_2020-09-16_0805
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	Indeno(1,2,3-c,d)pyrene	<0.020	mg/kg	ALS	RG_MIDAG_SE-3_2020-09-16_0805
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	2-Methylnaphthalene	0.328	mg/kg	ALS	RG_MIDAG_SE-3_2020-09-16_0805
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	Naphthalene	0.144	mg/kg	ALS	RG_MIDAG_SE-3_2020-09-16_0805
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	Perylene	<0.020	mg/kg	ALS	RG_MIDAG_SE-3_2020-09-16_0805
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	Phenanthrene	0.262	mg/kg	ALS	RG_MIDAG_SE-3_2020-09-16_0805
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	Pyrene	0.050	mg/kg	ALS	RG_MIDAG_SE-3_2020-09-16_0805
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	1-Methylnaphthalene	0.224	mg/kg	ALS	RG_MIDAG_SE-3_2020-09-16_0805
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	Quinoline	<0.020	mg/kg	ALS	RG_MIDAG_SE-3_2020-09-16_0805
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	IACR (CCME)	0.74	-	ALS	RG_MIDAG_SE-3_2020-09-16_0805
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	B(a)P Total Potency Equivalent	0.028	mg/kg	ALS	RG_MIDAG_SE-3_2020-09-16_0805
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	Benzo(b+j+k)fluoranthene	0.084	mg/kg	ALS	RG_MIDAG_SE-3_2020-09-16_0805
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	IACR:Coarse	<0.050	-	ALS	RG_MIDAG_SE-3_2020-09-16_0805
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	IACR:Fine	0.052	-	ALS	RG_MIDAG_SE-3_2020-09-16_0805
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	d8-Naphthalene	112.3	%	ALS	RG_MIDAG_SE-3_2020-09-16_0805
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	d10-Acenaphthene	113.0	%	ALS	RG_MIDAG_SE-3_2020-09-16_0805
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	d10-Phenanthrene	114.6	%	ALS	RG_MIDAG_SE-3_2020-09-16_0805

WSP Canada Inc. Page 168 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

able I-	i. Sealinent Chen		ected from the	CIVIIII LAEIVIP	Sampling St	1	2022					
Туре	Station		(UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
		Easting	Northing					· ·			Lab	Sample ID
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	d12-Chrysene	124.2	%	ALS	RG_MIDAG_SE-3_2020-09-16_0805
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	% Gravel (>2 mm)	<1.0	%	ALS	RG_MIDAG_SE-3_2020-09-16_0805
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	% Sand (2.00 mm - 1.00 mm)	<1.0	%	ALS	RG_MIDAG_SE-3_2020-09-16_0805
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	% Sand (1.00 mm - 0.50 mm)	6.3	%	ALS	RG_MIDAG_SE-3_2020-09-16_0805
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	% Sand (0.50 mm - 0.25 mm)	13.5	%	ALS	RG_MIDAG_SE-3_2020-09-16_0805
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	% Sand (0.25 mm - 0.125 mm)	11.5	%	ALS	RG_MIDAG_SE-3_2020-09-16_0805
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	% Sand (0.125 mm - 0.063 mm)	9.5	%	ALS	RG_MIDAG_SE-3_2020-09-16_0805
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	% Silt (0.063 mm - 0.0312 mm)	22.2	%	ALS	RG_MIDAG_SE-3_2020-09-16_0805
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	% Silt (0.031 mm - 0.004 mm)	27.8	%	ALS	RG_MIDAG_SE-3_2020-09-16_0805
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	% Clay (<4 μm)	8.5	%	ALS	RG_MIDAG_SE-3_2020-09-16_0805
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	Texture	Silt loam	-	ALS	RG_MIDAG_SE-3_2020-09-16_0805
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	Mercury (Hg)	0.0431	mg/kg	ALS	RG_MIDAG_SE-3_2020-09-16_0805
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	Aluminum (AI)	11200	mg/kg	ALS	RG_MIDAG_SE-3_2020-09-16_0805
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	Antimony (Sb)	<0.10	mg/kg	ALS	RG_MIDAG_SE-3_2020-09-16_0805
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	Arsenic (As)	6.76	mg/kg	ALS	RG_MIDAG_SE-3_2020-09-16_0805
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	Barium (Ba)	163	mg/kg	ALS	RG_MIDAG_SE-3_2020-09-16_0805
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	Beryllium (Be)	0.80	mg/kg	ALS	RG_MIDAG_SE-3_2020-09-16_0805
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	Bismuth (Bi)	<0.20	mg/kg	ALS	RG_MIDAG_SE-3_2020-09-16_0805
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	Boron (B)	9.2	mg/kg	ALS	RG_MIDAG_SE-3_2020-09-16_0805
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	Cadmium (Cd)	1.26	mg/kg	ALS	RG MIDAG SE-3 2020-09-16 0805
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	Calcium (Ca)	55300	mg/kg	ALS	RG MIDAG SE-3 2020-09-16 0805
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	Chromium (Cr)	16.5	mg/kg	ALS	RG MIDAG SE-3 2020-09-16 0805
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	Cobalt (Co)	23.3	mg/kg	ALS	RG MIDAG SE-3_2020-09-16_0805
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	Copper (Cu)	15.3	mg/kg	ALS	RG MIDAG SE-3 2020-09-16 0805
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	Iron (Fe)	17000	mg/kg	ALS	RG MIDAG SE-3 2020-09-16 0805
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	Lead (Pb)	9.63	mg/kg	ALS	RG_MIDAG_SE-3_2020-09-16_0805
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	Lithium (Li)	13.8	mg/kg	ALS	RG MIDAG SE-3 2020-09-16 0805
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	Magnesium (Mg)	9480	mg/kg	ALS	RG MIDAG SE-3 2020-09-16 0805
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	Manganese (Mn)	406	mg/kg	ALS	RG MIDAG SE-3 2020-09-16 0805
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	Molybdenum (Mo)	1.14	mg/kg	ALS	RG MIDAG SE-3 2020-09-16 0805
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	Nickel (Ni)	58.9	mg/kg	ALS	RG MIDAG SE-3 2020-09-16 0805
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	Phosphorus (P)	1010	mg/kg	ALS	RG MIDAG SE-3 2020-09-16 0805
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	Potassium (K)	2770	mg/kg	ALS	RG MIDAG SE-3 2020-09-16 0805
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	Selenium (Se)	5.69	mg/kg	ALS	RG MIDAG SE-3 2020-09-16 0805
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	Silver (Ag)	0.14	mg/kg	ALS	RG MIDAG SE-3 2020-09-16 0805
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	Sodium (Na)	120	mg/kg	ALS	RG MIDAG SE-3 2020-09-16 0805
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	Strontium (Sr)	86.8	mg/kg	ALS	RG MIDAG SE-3 2020-09-16 0805
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	Sulfur (S)	1400	mg/kg	ALS	RG MIDAG SE-3 2020-09-16 0805
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	Thallium (TI)	0.434	mg/kg	ALS	RG MIDAG SE-3 2020-09-16 0805
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	Tin (Sn)	<2.0	mg/kg	ALS	RG MIDAG SE-3 2020-09-16 0805
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	Titanium (Ti)	7.4	mg/kg	ALS	RG MIDAG SE-3 2020-09-16 0805
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	Tungsten (W)	<0.50	mg/kg	ALS	RG MIDAG SE-3 2020-09-16 0805
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	Uranium (U)	0.810	mg/kg	ALS	RG MIDAG SE-3 2020-09-16 0805
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	Vanadium (V)	28.7	mg/kg	ALS	RG MIDAG SE-3 2020-09-16 0805
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	Zinc (Zn)	130	mg/kg	ALS	RG MIDAG SE-3 2020-09-16 0805
SE	MIDAG	665258	5489417	2020	3	2020-09-10	08:05	Zirconium (Zr)	<1.0	mg/kg	ALS	RG MIDAG SE-3 2020-09-16 0805
	MINITO	000200	U7U3711	2020		12020-03-10	00.00		· 1.0	mg/Ng		1170 MIDAO OF-0 2020-09-10 0000

WSP Canada Inc. Page 169 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Tvpe	Station	Location	ı (UTMs) ^(a)	Year	Replicate	Date	Time	Apolyto	Result	Unit		Laboratory Information
ype	Station	Easting	Northing	rear	Replicate	Date	rime	Analyte	Result	Unit	Lab	Sample ID
SE	MIDAG	665258	5489417	2020	3	2020-09-16	08:05	Total Organic Carbon	6.29	%	ALS	RG_MIDAG_SE-3_2020-09-16_0805
SE	MIDAG	665258	5489417	2020	4	2020-09-16	09:22	Moisture	76.6	%	ALS	RG MIDAG SE-4 2020-09-16 0922
SE	MIDAG	665258	5489417	2020	4	2020-09-16	09:22	Acenaphthene	< 0.030	mg/kg	ALS	RG MIDAG SE-4 2020-09-16 0922
SE	MIDAG	665258	5489417	2020	4	2020-09-16	09:22	Acenaphthylene	<0.010	mg/kg	ALS	RG MIDAG SE-4 2020-09-16 0922
SE	MIDAG	665258	5489417	2020	4	2020-09-16	09:22	Anthracene	<0.0080	mg/kg	ALS	RG_MIDAG_SE-4_2020-09-16_0922
SE	MIDAG	665258	5489417	2020	4	2020-09-16	09:22	Acridine	<0.021	mg/kg	ALS	RG MIDAG SE-4 2020-09-16 0922
SE	MIDAG	665258	5489417	2020	4	2020-09-16	09:22	Benz(a)anthracene	<0.040	mg/kg	ALS	RG MIDAG SE-4 2020-09-16 0922
SE	MIDAG	665258	5489417	2020	4	2020-09-16	09:22	Benzo(a)pyrene	<0.020	mg/kg	ALS	RG MIDAG SE-4 2020-09-16 0922
SE	MIDAG	665258	5489417	2020	4	2020-09-16	09:22	Benzo(b&j)fluoranthene	0.083	mg/kg	ALS	RG MIDAG SE-4 2020-09-16 0922
SE.	MIDAG	665258	5489417	2020	4	2020-09-16	09:22	Benzo(e)pyrene	0.081	mg/kg	ALS	RG MIDAG SE-4 2020-09-16 0922
SE	MIDAG	665258	5489417	2020	4	2020-09-16	09:22	Benzo(g_h_i)perylene	0.030	mg/kg	ALS	RG MIDAG SE-4 2020-09-16 0922
SE	MIDAG	665258	5489417	2020	4	2020-09-16	09:22	Benzo(k)fluoranthene	<0.020	mg/kg	ALS	RG MIDAG SE-4 2020-09-16 0922
SE	MIDAG	665258	5489417	2020	4	2020-09-16	09:22	Chrysene	0.148	mg/kg	ALS	RG MIDAG SE-4 2020-09-16 0922
SE	MIDAG	665258	5489417	2020	4	2020-09-16	09:22	Dibenz(a h)anthracene	<0.010	mg/kg	ALS	RG_MIDAG_SE-4_2020-09-16_0922
SE	MIDAG	665258	5489417	2020	4	2020-09-16	09:22	Fluoranthene	0.119	mg/kg	ALS	RG MIDAG SE-4 2020-09-16 0922
SE	MIDAG	665258	5489417	2020	4	2020-09-16	09:22	Fluorene	0.048	mg/kg	ALS	RG MIDAG SE-4 2020-09-16 0922
SE	MIDAG	665258	5489417	2020	4	2020-09-16	09:22	Indeno(1,2,3-c,d)pyrene	<0.020	mg/kg	ALS	RG MIDAG SE-4 2020-09-16 0922
SE	MIDAG	665258	5489417	2020	4	2020-09-16	09:22	2-Methylnaphthalene	0.360	mg/kg	ALS	RG MIDAG SE-4 2020-09-16 0922
SE SE	MIDAG	665258	5489417	2020	4	2020-09-16	09:22	Naphthalene	0.157	mg/kg	ALS	RG MIDAG SE-4 2020-09-16 0922
SE SE	MIDAG	665258	5489417	2020	4	2020-09-16	09:22	Perylene	<0.020	mg/kg	ALS	RG MIDAG SE-4 2020-09-16 0922
E	MIDAG	665258	5489417	2020	4	2020-09-16	09:22	Phenanthrene	0.382	mg/kg	ALS	RG MIDAG SE-4 2020-09-16 0922
E	MIDAG	665258	5489417	2020	4	2020-09-16	09:22	Pyrene	0.101	mg/kg	ALS	RG_MIDAG_SE-4_2020-09-16_0922
SE SE	MIDAG	665258	5489417	2020	4	2020-09-16	09:22	1-Methylnaphthalene	0.239	mg/kg	ALS	RG MIDAG SE-4 2020-09-16 0922
SE SE	MIDAG	665258	5489417	2020	4	2020-09-16	09:22	Quinoline	<0.020	mg/kg	ALS	RG MIDAG SE-4 2020-09-16 0922
SE	MIDAG	665258	5489417	2020	4	2020-09-16	09.22	IACR (CCME)	0.020	mg/kg	ALS	RG MIDAG SE-4 2020-09-16 0922
SE	MIDAG	665258	5489417	2020	4	2020-09-16	09.22	B(a)P Total Potency Equivalent	0.029	mg/kg	ALS	RG MIDAG SE-4 2020-09-16 0922
SE	MIDAG	665258	5489417	2020	4	2020-09-16	09.22	Benzo(b+j+k)fluoranthene	0.029		ALS	RG_MIDAG_SE-4_2020-09-16_0922
SE	MIDAG	665258	5489417	2020	4	2020-09-16	09.22	IACR:Coarse	<0.050	mg/kg	ALS	RG MIDAG SE-4 2020-09-16 0922
SE					4	4		IACR:Fine		-		
SE SE	MIDAG	665258	5489417	2020	4	2020-09-16	09:22		0.053	- 0/	ALS	RG_MIDAG_SE-4_2020-09-16_0922
	MIDAG	665258	5489417	2020	4	2020-09-16	09:22	d8-Naphthalene	109.8	%	ALS	RG_MIDAG_SE-4_2020-09-16_0922
SE	MIDAG	665258	5489417	2020	4	2020-09-16	09:22	d10-Acenaphthene	110.2	%	ALS	RG_MIDAG_SE-4_2020-09-16_0922
SE SE	MIDAG	665258	5489417	2020	4	2020-09-16	09:22	d10-Phenanthrene	111.0	%	ALS	RG_MIDAG_SE-4_2020-09-16_0922
SE SE	MIDAG	665258	5489417	2020	4	2020-09-16	09:22	d12-Chrysene	122.7	%	ALS	RG_MIDAG_SE-4_2020-09-16_0922
SE SE	MIDAG	665258	5489417	2020	4	2020-09-16	09:22	% Gravel (>2 mm)	<1.0	%	ALS	RG_MIDAG_SE-4_2020-09-16_0922
SE SE	MIDAG	665258	5489417	2020	4	2020-09-16	09:22	% Sand (2.00 mm - 1.00 mm)	1.4	%	ALS	RG_MIDAG_SE-4_2020-09-16_0922
SE .	MIDAG	665258	5489417	2020	4	2020-09-16	09:22	% Sand (1.00 mm - 0.50 mm)	12.0	%	ALS	RG_MIDAG_SE-4_2020-09-16_0922
SE	MIDAG	665258	5489417	2020	4	2020-09-16	09:22	% Sand (0.50 mm - 0.25 mm)	14.7	%	ALS	RG_MIDAG_SE-4_2020-09-16_0922
SE .	MIDAG	665258	5489417	2020	4	2020-09-16	09:22	% Sand (0.25 mm - 0.125 mm)	11.3	%	ALS	RG_MIDAG_SE-4_2020-09-16_0922
SE .	MIDAG	665258	5489417	2020	4	2020-09-16	09:22	% Sand (0.125 mm - 0.063 mm)	9.0	%	ALS	RG_MIDAG_SE-4_2020-09-16_0922
SE .	MIDAG	665258	5489417	2020	4	2020-09-16	09:22	% Silt (0.063 mm - 0.0312 mm)	21.6	%	ALS	RG_MIDAG_SE-4_2020-09-16_0922
SE	MIDAG	665258	5489417	2020	4	2020-09-16	09:22	% Silt (0.031 mm - 0.004 mm)	24.5	%	ALS	RG_MIDAG_SE-4_2020-09-16_0922
SE	MIDAG	665258	5489417	2020	4	2020-09-16	09:22	% Clay (<4 μm)	5.2	%	ALS	RG_MIDAG_SE-4_2020-09-16_0922
SE	MIDAG	665258	5489417	2020	4	2020-09-16	09:22	Texture	Sandy loam	-	ALS	RG_MIDAG_SE-4_2020-09-16_0922
SE	MIDAG	665258	5489417	2020	4	2020-09-16	09:22	Mercury (Hg)	0.0335	mg/kg	ALS	RG_MIDAG_SE-4_2020-09-16_0922
SE.	MIDAG	665258	5489417	2020	4	2020-09-16	09:22	Aluminum (AI)	11000	mg/kg	ALS	RG_MIDAG_SE-4_2020-09-16_0922
SE	MIDAG	665258	5489417	2020	4	2020-09-16	09:22	Antimony (Sb)	0.16	mg/kg	ALS	RG_MIDAG_SE-4_2020-09-16_0922
SE	MIDAG	665258	5489417	2020	4	2020-09-16	09:22	Arsenic (As)	6.89	mg/kg	ALS	RG_MIDAG_SE-4_2020-09-16_0922

WSP Canada Inc. Page 170 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

abie i-	I: Sediment Chen			CIVIIII LAEIVIP	Sampling St	.ations, 2012 to	2022					
Туре	Station		(UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
	MIDAG	Easting	Northing	2000		0000 00 40	20.00	· ·	400	//	Lab	Sample ID
SE	MIDAG	665258	5489417	2020	4	2020-09-16	09:22	Barium (Ba)	126	mg/kg	ALS	RG_MIDAG_SE-4_2020-09-16_0922
SE	MIDAG	665258	5489417	2020	4	2020-09-16	09:22	Beryllium (Be)	0.75	mg/kg	ALS	RG_MIDAG_SE-4_2020-09-16_0922
SE	MIDAG	665258	5489417	2020	4	2020-09-16	09:22	Bismuth (Bi)	<0.20	mg/kg	ALS	RG_MIDAG_SE-4_2020-09-16_0922
SE	MIDAG	665258	5489417	2020	4	2020-09-16	09:22	Boron (B)	12.0	mg/kg	ALS	RG_MIDAG_SE-4_2020-09-16_0922
SE	MIDAG	665258	5489417	2020	4	2020-09-16	09:22	Cadmium (Cd)	1.04	mg/kg	ALS	RG_MIDAG_SE-4_2020-09-16_0922
SE	MIDAG	665258	5489417	2020	4	2020-09-16	09:22	Calcium (Ca)	63400	mg/kg	ALS	RG_MIDAG_SE-4_2020-09-16_0922
SE	MIDAG	665258	5489417	2020	4	2020-09-16	09:22	Chromium (Cr)	16.0	mg/kg	ALS	RG_MIDAG_SE-4_2020-09-16_0922
SE	MIDAG	665258	5489417	2020	4	2020-09-16	09:22	Cobalt (Co)	30.4	mg/kg	ALS	RG_MIDAG_SE-4_2020-09-16_0922
SE	MIDAG	665258	5489417	2020	4	2020-09-16	09:22	Copper (Cu)	13.3	mg/kg	ALS	RG_MIDAG_SE-4_2020-09-16_0922
SE	MIDAG	665258	5489417	2020	4	2020-09-16	09:22	Iron (Fe)	15600	mg/kg	ALS	RG_MIDAG_SE-4_2020-09-16_0922
SE	MIDAG	665258	5489417	2020	4	2020-09-16	09:22	Lead (Pb)	8.60	mg/kg	ALS	RG_MIDAG_SE-4_2020-09-16_0922
SE	MIDAG	665258	5489417	2020	4	2020-09-16	09:22	Lithium (Li)	14.9	mg/kg	ALS	RG_MIDAG_SE-4_2020-09-16_0922
SE	MIDAG	665258	5489417	2020	4	2020-09-16	09:22	Magnesium (Mg)	9490	mg/kg	ALS	RG_MIDAG_SE-4_2020-09-16_0922
SE	MIDAG	665258	5489417	2020	4	2020-09-16	09:22	Manganese (Mn)	327	mg/kg	ALS	RG_MIDAG_SE-4_2020-09-16_0922
SE	MIDAG	665258	5489417	2020	4	2020-09-16	09:22	Molybdenum (Mo)	1.17	mg/kg	ALS	RG_MIDAG_SE-4_2020-09-16_0922
SE	MIDAG	665258	5489417	2020	4	2020-09-16	09:22	Nickel (Ni)	70.8	mg/kg	ALS	RG_MIDAG_SE-4_2020-09-16_0922
SE	MIDAG	665258	5489417	2020	4	2020-09-16	09:22	Phosphorus (P)	1050	mg/kg	ALS	RG_MIDAG_SE-4_2020-09-16_0922
SE	MIDAG	665258	5489417	2020	4	2020-09-16	09:22	Potassium (K)	2740	mg/kg	ALS	RG_MIDAG_SE-4_2020-09-16_0922
SE	MIDAG	665258	5489417	2020	4	2020-09-16	09:22	Selenium (Se)	2.45	mg/kg	ALS	RG_MIDAG_SE-4_2020-09-16_0922
SE	MIDAG	665258	5489417	2020	4	2020-09-16	09:22	Silver (Ag)	0.12	mg/kg	ALS	RG_MIDAG_SE-4_2020-09-16_0922
SE	MIDAG	665258	5489417	2020	4	2020-09-16	09:22	Sodium (Na)	140	mg/kg	ALS	RG_MIDAG_SE-4_2020-09-16_0922
SE	MIDAG	665258	5489417	2020	4	2020-09-16	09:22	Strontium (Sr)	96.2	mg/kg	ALS	RG_MIDAG_SE-4_2020-09-16_0922
SE	MIDAG	665258	5489417	2020	4	2020-09-16	09:22	Sulfur (S)	<1000	mg/kg	ALS	RG_MIDAG_SE-4_2020-09-16_0922
SE	MIDAG	665258	5489417	2020	4	2020-09-16	09:22	Thallium (TI)	0.432	mg/kg	ALS	RG_MIDAG_SE-4_2020-09-16_0922
SE	MIDAG	665258	5489417	2020	4	2020-09-16	09:22	Tin (Sn)	<2.0	mg/kg	ALS	RG_MIDAG_SE-4_2020-09-16_0922
SE	MIDAG	665258	5489417	2020	4	2020-09-16	09:22	Titanium (Ti)	8.0	mg/kg	ALS	RG_MIDAG_SE-4_2020-09-16_0922
SE	MIDAG	665258	5489417	2020	4	2020-09-16	09:22	Tungsten (W)	<0.50	mg/kg	ALS	RG_MIDAG_SE-4_2020-09-16_0922
SE	MIDAG	665258	5489417	2020	4	2020-09-16	09:22	Uranium (U)	0.806	mg/kg	ALS	RG_MIDAG_SE-4_2020-09-16_0922
SE	MIDAG	665258	5489417	2020	4	2020-09-16	09:22	Vanadium (V)	27.0	mg/kg	ALS	RG_MIDAG_SE-4_2020-09-16_0922
SE	MIDAG	665258	5489417	2020	4	2020-09-16	09:22	Zinc (Zn)	118	mg/kg	ALS	RG_MIDAG_SE-4_2020-09-16_0922
SE	MIDAG	665258	5489417	2020	4	2020-09-16	09:22	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_MIDAG_SE-4_2020-09-16_0922
SE	MIDAG	665258	5489417	2020	4	2020-09-16	09:22	pH (1:2 soil:water)	7.95	рН	ALS	RG_MIDAG_SE-4_2020-09-16_0922
SE	MIDAG	665258	5489417	2020	4	2020-09-16	09:22	Total Organic Carbon	6.11	%	ALS	RG_MIDAG_SE-4_2020-09-16_0922
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	Moisture	75.3	%	ALS	RG_MIDAG_SE-5_2020-09-16_0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	Acenaphthene	<0.010	mg/kg	ALS	RG_MIDAG_SE-5_2020-09-16_0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	Acenaphthylene	<0.010	mg/kg	ALS	RG_MIDAG_SE-5_2020-09-16_0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	Anthracene	<0.0080	mg/kg	ALS	RG_MIDAG_SE-5_2020-09-16_0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	Acridine	<0.020	mg/kg	ALS	RG MIDAG SE-5 2020-09-16 0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	Benz(a)anthracene	<0.020	mg/kg	ALS	RG MIDAG SE-5 2020-09-16 0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	Benzo(a)pyrene	<0.020	mg/kg	ALS	RG MIDAG SE-5 2020-09-16 0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	Benzo(b&j)fluoranthene	0.059	mg/kg	ALS	RG MIDAG SE-5 2020-09-16 0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	Benzo(e)pyrene	0.065	mg/kg	ALS	RG MIDAG SE-5 2020-09-16 0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	Benzo(g h i)perylene	0.026	mg/kg	ALS	RG MIDAG SE-5 2020-09-16 0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	Benzo(k)fluoranthene	<0.020	mg/kg	ALS	RG MIDAG SE-5 2020-09-16 0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	Chrysene	0.095	mg/kg	ALS	RG MIDAG SE-5 2020-09-16 0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	Dibenz(a h)anthracene	<0.010	mg/kg	ALS	RG MIDAG SE-5 2020-09-16 0932
	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	Fluoranthene	0.032	mg/kg		RG MIDAG SE-5 2020-09-16 0932

WSP Canada Inc. Page 171 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Table I-1	: Sediment Chem	-		CMm LAEMP S	Sampling Sta	ations, 2012 to	2022					
Туре	Station	Location	າ (UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
Туре	Station	Easting	Northing	i cai	Replicate	Date	Tille	Analyte	Nesuit	Oilit	Lab	Sample ID
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	Fluorene	<0.020	mg/kg	ALS	RG_MIDAG_SE-5_2020-09-16_0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	Indeno(1,2,3-c,d)pyrene	<0.020	mg/kg	ALS	RG_MIDAG_SE-5_2020-09-16_0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	2-Methylnaphthalene	0.288	mg/kg	ALS	RG_MIDAG_SE-5_2020-09-16_0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	Naphthalene	0.122	mg/kg	ALS	RG_MIDAG_SE-5_2020-09-16_0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	Perylene	<0.020	mg/kg	ALS	RG_MIDAG_SE-5_2020-09-16_0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	Phenanthrene	0.230	mg/kg	ALS	RG_MIDAG_SE-5_2020-09-16_0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	Pyrene	0.031	mg/kg	ALS	RG_MIDAG_SE-5_2020-09-16_0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	1-Methylnaphthalene	0.191	mg/kg	ALS	RG_MIDAG_SE-5_2020-09-16_0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	Quinoline	<0.020	mg/kg	ALS	RG_MIDAG_SE-5_2020-09-16_0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	IACR (CCME)	0.56	-	ALS	RG_MIDAG_SE-5_2020-09-16_0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	B(a)P Total Potency Equivalent	0.025	mg/kg	ALS	RG_MIDAG_SE-5_2020-09-16_0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	Benzo(b+j+k)fluoranthene	0.059	mg/kg	ALS	RG_MIDAG_SE-5_2020-09-16_0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	IACR:Coarse	<0.050	-	ALS	RG_MIDAG_SE-5_2020-09-16_0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	IACR:Fine	<0.050	-	ALS	RG_MIDAG_SE-5_2020-09-16_0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	d8-Naphthalene	108.4	%	ALS	RG_MIDAG_SE-5_2020-09-16_0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	d10-Acenaphthene	111.5	%	ALS	RG_MIDAG_SE-5_2020-09-16_0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	d10-Phenanthrene	111.6	%	ALS	RG_MIDAG_SE-5_2020-09-16_0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	d12-Chrysene	120.3	%	ALS	RG_MIDAG_SE-5_2020-09-16_0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	% Gravel (>2 mm)	<1.0	%	ALS	RG_MIDAG_SE-5_2020-09-16_0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	% Sand (2.00 mm - 1.00 mm)	<1.0	%	ALS	RG_MIDAG_SE-5_2020-09-16_0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	% Sand (1.00 mm - 0.50 mm)	2.2	%	ALS	RG_MIDAG_SE-5_2020-09-16_0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	% Sand (0.50 mm - 0.25 mm)	6.5	%	ALS	RG_MIDAG_SE-5_2020-09-16_0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	% Sand (0.25 mm - 0.125 mm)	11.3	%	ALS	RG_MIDAG_SE-5_2020-09-16_0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	% Sand (0.125 mm - 0.063 mm)	12.3	%	ALS	RG_MIDAG_SE-5_2020-09-16_0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	% Silt (0.063 mm - 0.0312 mm)	28.7	%	ALS	RG_MIDAG_SE-5_2020-09-16_0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	% Silt (0.031 mm - 0.004 mm)	32.0	%	ALS	RG_MIDAG_SE-5_2020-09-16_0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	% Clay (<4 μm)	5.5	%	ALS	RG_MIDAG_SE-5_2020-09-16_0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	Texture	Silt loam	-	ALS	RG_MIDAG_SE-5_2020-09-16_0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	Mercury (Hg)	0.457	mg/kg	ALS	RG_MIDAG_SE-5_2020-09-16_0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	Aluminum (AI)	10300	mg/kg	ALS	RG_MIDAG_SE-5_2020-09-16_0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	Antimony (Sb)	0.28	mg/kg	ALS	RG_MIDAG_SE-5_2020-09-16_0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	Arsenic (As)	6.11	mg/kg	ALS	RG_MIDAG_SE-5_2020-09-16_0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	Barium (Ba)	135	mg/kg	ALS	RG_MIDAG_SE-5_2020-09-16_0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	Beryllium (Be)	0.71	mg/kg	ALS	RG_MIDAG_SE-5_2020-09-16_0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	Bismuth (Bi)	<0.20	mg/kg	ALS	RG_MIDAG_SE-5_2020-09-16_0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	Boron (B)	13.2	mg/kg	ALS	RG_MIDAG_SE-5_2020-09-16_0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	Cadmium (Cd)	1.13	mg/kg	ALS	RG_MIDAG_SE-5_2020-09-16_0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	Calcium (Ca)	65200	mg/kg	ALS	RG_MIDAG_SE-5_2020-09-16_0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	Chromium (Cr)	15.8	mg/kg	ALS	RG_MIDAG_SE-5_2020-09-16_0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	Cobalt (Co)	33.5	mg/kg	ALS	RG_MIDAG_SE-5_2020-09-16_0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	Copper (Cu)	12.2	mg/kg	ALS	RG_MIDAG_SE-5_2020-09-16_0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	Iron (Fe)	13600	mg/kg	ALS	RG_MIDAG_SE-5_2020-09-16_0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	Lead (Pb)	7.89	mg/kg	ALS	RG_MIDAG_SE-5_2020-09-16_0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	Lithium (Li)	13.5	mg/kg	ALS	RG_MIDAG_SE-5_2020-09-16_0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	Magnesium (Mg)	10800	mg/kg	ALS	RG_MIDAG_SE-5_2020-09-16_0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	Manganese (Mn)	350	mg/kg	ALS	RG_MIDAG_SE-5_2020-09-16_0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	Molybdenum (Mo)	1.34	mg/kg	ALS	RG_MIDAG_SE-5_2020-09-16_0932

WSP Canada Inc. Page 172 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Table I-	1: Sediment Chem	istry Data Coll	lected from the	CMm LAEMP S	Sampling Sta	ations, 2012 to	2022					
Туре	Station	Location	ı (UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
Туре	Station	Easting	Northing	i cai	Replicate	Date	Tillie	Allalyte	Result	Oilit	Lab	Sample ID
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	Nickel (Ni)	74.1	mg/kg	ALS	RG_MIDAG_SE-5_2020-09-16_0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	Phosphorus (P)	1010	mg/kg	ALS	RG_MIDAG_SE-5_2020-09-16_0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	Potassium (K)	2560	mg/kg	ALS	RG_MIDAG_SE-5_2020-09-16_0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	Selenium (Se)	3.19	mg/kg	ALS	RG_MIDAG_SE-5_2020-09-16_0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	Silver (Ag)	0.12	mg/kg	ALS	RG_MIDAG_SE-5_2020-09-16_0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	Sodium (Na)	186	mg/kg	ALS	RG_MIDAG_SE-5_2020-09-16_0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	Strontium (Sr)	99.5	mg/kg	ALS	RG_MIDAG_SE-5_2020-09-16_0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	Sulfur (S)	<1000	mg/kg	ALS	RG_MIDAG_SE-5_2020-09-16_0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	Thallium (TI)	0.443	mg/kg	ALS	RG_MIDAG_SE-5_2020-09-16_0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	Tin (Sn)	<2.0	mg/kg	ALS	RG_MIDAG_SE-5_2020-09-16_0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	Titanium (Ti)	14.4	mg/kg	ALS	RG_MIDAG_SE-5_2020-09-16_0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	Tungsten (W)	<0.50	mg/kg	ALS	RG_MIDAG_SE-5_2020-09-16_0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	Uranium (U)	0.812	mg/kg	ALS	RG_MIDAG_SE-5_2020-09-16_0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	Vanadium (V)	26.8	mg/kg	ALS	RG_MIDAG_SE-5_2020-09-16_0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	Zinc (Zn)	128	mg/kg	ALS	RG_MIDAG_SE-5_2020-09-16_0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_MIDAG_SE-5_2020-09-16_0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	pH (1:2 soil:water)	7.97	рН	ALS	RG_MIDAG_SE-5_2020-09-16_0932
SE	MIDAG	665258	5489417	2020	5	2020-09-16	09:32	Total Organic Carbon	5.84	%	ALS	RG_MIDAG_SE-5_2020-09-16_0932
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	Moisture	40.0	%	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	Acenaphthene	<0.0050	mg/kg	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	Acenaphthylene	<0.0050	mg/kg	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	Anthracene	<0.0040	mg/kg	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	Acridine	<0.010	mg/kg	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	Benz(a)anthracene	<0.010	mg/kg	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	Benzo(a)pyrene	<0.010	mg/kg	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	Benzo(b&j)fluoranthene	0.041	mg/kg	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	Benzo(e)pyrene	0.043	mg/kg	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	Benzo(g_h_i)perylene	0.016	mg/kg	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	Benzo(k)fluoranthene	<0.010	mg/kg	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	Chrysene	0.076	mg/kg	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	Dibenz(a_h)anthracene	<0.0050	mg/kg	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	Fluoranthene	0.023	mg/kg	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	Fluorene	0.019	mg/kg	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	Indeno(1,2,3-c,d)pyrene	<0.010	mg/kg	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	2-Methylnaphthalene	0.190	mg/kg	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	Naphthalene	0.086	mg/kg	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	Perylene	<0.010	mg/kg	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	Phenanthrene	0.175	mg/kg	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	Pyrene	0.025	mg/kg	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	1-Methylnaphthalene	0.125	mg/kg	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	Quinoline	<0.050	mg/kg	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	IACR (CCME)	0.37	-	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	B(a)P Total Potency Equivalent	<0.020	mg/kg	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	Benzo(b+j+k)fluoranthene	0.041	mg/kg	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	IACR:Coarse	<0.050	-	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	IACR:Fine	<0.050	-	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	d8-Naphthalene	105.3	%	ALS	RG_RIVER_SE-2_2020-09-16_1208

WSP Canada Inc. Page 173 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Table I-	1: Sediment Chem			CMm LAEMP	Sampling St	ations, 2012 to	2022					
Туре	Station		(UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
1,750	Otation	Easting	Northing	. 54.	rtophodio	Bato		7 mary to	rtoouit	O	Lab	Sample ID
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	d10-Acenaphthene	106.2	%	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	d10-Phenanthrene	107.6	%	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	d12-Chrysene	116.5	%	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	% Gravel (>2 mm)	<1.0	%	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	% Sand (2.00 mm - 1.00 mm)	<1.0	%	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	% Sand (1.00 mm - 0.50 mm)	<1.0	%	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	% Sand (0.50 mm - 0.25 mm)	<1.0	%	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	% Sand (0.25 mm - 0.125 mm)	12.0	%	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	% Sand (0.125 mm - 0.063 mm)	22.6	%	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	% Silt (0.063 mm - 0.0312 mm)	26.0	%	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	% Silt (0.031 mm - 0.004 mm)	31.3	%	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	% Clay (<4 μm)	7.4	%	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	Texture	Silt loam	-	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	Mercury (Hg)	0.0433	mg/kg	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	Aluminum (AI)	10000	mg/kg	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	Antimony (Sb)	0.59	mg/kg	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	Arsenic (As)	7.59	mg/kg	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	Barium (Ba)	224	mg/kg	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	Beryllium (Be)	0.69	mg/kg	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	Bismuth (Bi)	<0.20	mg/kg	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	Boron (B)	11.7	mg/kg	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	Cadmium (Cd)	1.23	mg/kg	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	Calcium (Ca)	42500	mg/kg	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	Chromium (Cr)	15.4	mg/kg	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	Cobalt (Co)	12.3	mg/kg	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	Copper (Cu)	14.4	mg/kg	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	Iron (Fe)	16100	mg/kg	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	Lead (Pb)	9.12	mg/kg	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	Lithium (Li)	13.1	mg/kg	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	Magnesium (Mg)	10200	mg/kg	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	Manganese (Mn)	264	mg/kg	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	Molybdenum (Mo)	1.63	mg/kg	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	Nickel (Ni)	36.4	mg/kg	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	Phosphorus (P)	1070	mg/kg	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	Potassium (K)	2370	mg/kg	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	Selenium (Se)	1.24	mg/kg	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	Silver (Ag)	0.15	mg/kg	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	Sodium (Na)	99	mg/kg	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	Strontium (Sr)	69.9	mg/kg	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	Sulfur (S)	<1000	mg/kg	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	Thallium (TI)	0.447	mg/kg	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	Tin (Sn)	<2.0	mg/kg	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	Titanium (Ti)	28.4	mg/kg	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	Tungsten (W)	<0.50	mg/kg	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	Uranium (U)	0.682	mg/kg	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	Vanadium (V)	32.3	mg/kg	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE	MIULE-DUP	660503	5493048	2020	2	2020-09-16	12:08	Zinc (Zn)	113	mg/kg	ALS	RG_RIVER_SE-2_2020-09-16_1208

WSP Canada Inc. Page 174 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

SE SE SE SE SE SE SE SE SE SE SE SE SE S	MIULE-DUP MIULE-DUP MIULE-DUP LE1 LE1 LE1 LE1 LE1 LE1 LE1 LE1 LE1 LE1	Easting 660503 660503 660503 659632 659632 659632 659632 659632 659632 659632 659632 659632	Northing 5493048 5493048 5493048 5494112 5494112 5494112 5494112 5494112 5494112 5494112 5494112 5494112	Year 2020 2020 2020 2020 2020 2020 2020 2	2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2020-09-16 2020-09-16 2020-09-16 2020-09-17 2020-09-17 2020-09-17 2020-09-17	12:08 12:08 12:08 12:08 14:20 14:20 14:20	Analyte Zirconium (Zr) pH (1:2 soil:water) Total Organic Carbon Moisture Acenaphthene	Result <1.0 8.12 3.34 43.4 ***20.0050	Unit mg/kg pH %	Lab ALS ALS ALS	Laboratory Information Sample ID RG_RIVER_SE-2_2020-09-16_1208 RG_RIVER_SE-2_2020-09-16_1208 RG_RIVER_SE-2_2020-09-16_1208
SE SE SE SE SE SE SE SE	MIULE-DUP MIULE-DUP LE1 LE1 LE1 LE1 LE1 LE1 LE1 LE1 LE1 LE1	660503 660503 660503 659632 659632 659632 659632 659632 659632 659632	5493048 5493048 5493048 5494112 5494112 5494112 5494112 5494112 5494112	2020 2020 2020 2020 2020 2020 2020 202		2020-09-16 2020-09-16 2020-09-17 2020-09-17 2020-09-17 2020-09-17	12:08 12:08 14:20 14:20	Zirconium (Zr) pH (1:2 soil:water) Total Organic Carbon Moisture	8.12 3.34 43.4	pH %	ALS ALS	RG_RIVER_SE-2_2020-09-16_1208 RG_RIVER_SE-2_2020-09-16_1208 RG_RIVER_SE-2_2020-09-16_1208
SE SE SE SE SE SE SE SE SE SE SE SE SE S	MIULE-DUP MIULE-DUP LE1 LE1 LE1 LE1 LE1 LE1 LE1 LE1 LE1 LE1	660503 660503 659632 659632 659632 659632 659632 659632 659632	5493048 5493048 5494112 5494112 5494112 5494112 5494112 5494112	2020 2020 2020 2020 2020 2020 2020 202		2020-09-16 2020-09-16 2020-09-17 2020-09-17 2020-09-17 2020-09-17	12:08 12:08 14:20 14:20	pH (1:2 soil:water) Total Organic Carbon Moisture	8.12 3.34 43.4	pH %	ALS ALS	RG_RIVER_SE-2_2020-09-16_1208 RG_RIVER_SE-2_2020-09-16_1208
SE SE SE SE SE SE SE SE SE SE SE SE SE S	MIULE-DUP LE1 LE1 LE1 LE1 LE1 LE1 LE1 LE1 LE1 LE1	660503 659632 659632 659632 659632 659632 659632 659632	5493048 5494112 5494112 5494112 5494112 5494112 5494112 5494112	2020 2020 2020 2020 2020 2020 2020 202		2020-09-16 2020-09-17 2020-09-17 2020-09-17 2020-09-17	12:08 14:20 14:20	Total Organic Carbon Moisture	3.34 43.4	%	ALS	RG_RIVER_SE-2_2020-09-16_1208
SE SE SE SE SE SE SE SE SE SE SE SE SE S	LE1 LE1 LE1 LE1 LE1 LE1 LE1 LE1 LE1	659632 659632 659632 659632 659632 659632 659632	5494112 5494112 5494112 5494112 5494112 5494112 5494112	2020 2020 2020 2020 2020 2020 2020	1 1 1 1 1	2020-09-17 2020-09-17 2020-09-17 2020-09-17	14:20 14:20	Moisture	43.4			
SE SE SE SE SE SE SE SE SE SE SE SE SE S	LE1 LE1 LE1 LE1 LE1 LE1 LE1 LE1	659632 659632 659632 659632 659632 659632	5494112 5494112 5494112 5494112 5494112 5494112	2020 2020 2020 2020 2020 2020	1 1 1 1 1	2020-09-17 2020-09-17 2020-09-17	14:20			%	ALS	
SE SE SE SE SE SE SE SE SE SE	LE1 LE1 LE1 LE1 LE1 LE1 LE1 LE1	659632 659632 659632 659632 659632	5494112 5494112 5494112 5494112 5494112	2020 2020 2020 2020	1 1 1 1	2020-09-17 2020-09-17		Acenaphthene			• •	RG_LE1_SE-1_2020-09-17_1420
SE SE SE SE SE SE SE SE SE SE	LE1 LE1 LE1 LE1 LE1 LE1	659632 659632 659632 659632 659632	5494112 5494112 5494112 5494112	2020 2020 2020	1 1 1	2020-09-17	14:20		<0.0050	mg/kg	ALS	RG_LE1_SE-1_2020-09-17_1420
SE SE SE SE SE SE SE SE SE	LE1 LE1 LE1 LE1 LE1	659632 659632 659632	5494112 5494112 5494112	2020 2020	1			Acenaphthylene	<0.0050	mg/kg	ALS	RG_LE1_SE-1_2020-09-17_1420
SE SE SE SE SE SE SE SE	LE1 LE1 LE1 LE1	659632 659632 659632	5494112 5494112	2020	1	•	14:20	Anthracene	<0.0040	mg/kg	ALS	RG_LE1_SE-1_2020-09-17_1420
SE SE SE SE SE SE SE	LE1 LE1 LE1	659632 659632	5494112			2020-09-17	14:20	Acridine	<0.010	mg/kg	ALS	RG_LE1_SE-1_2020-09-17_1420
SE SE SE SE SE SE	LE1 LE1	659632		2020	1 1	2020-09-17	14:20	Benz(a)anthracene	0.018	mg/kg	ALS	RG_LE1_SE-1_2020-09-17_1420
SE SE SE SE	LE1		5494112	2020	1	2020-09-17	14:20	Benzo(a)pyrene	<0.010	mg/kg	ALS	RG_LE1_SE-1_2020-09-17_1420
SE SE SE SE		659632		2020	1	2020-09-17	14:20	Benzo(b&j)fluoranthene	0.025	mg/kg	ALS	RG_LE1_SE-1_2020-09-17_1420
SE SE	LE1		5494112	2020	1	2020-09-17	14:20	Benzo(e)pyrene	0.028	mg/kg	ALS	RG_LE1_SE-1_2020-09-17_1420
SE SE		659632	5494112	2020	1	2020-09-17	14:20	Benzo(g_h_i)perylene	0.013	mg/kg	ALS	RG_LE1_SE-1_2020-09-17_1420
SE	LE1	659632	5494112	2020	1	2020-09-17	14:20	Benzo(k)fluoranthene	<0.010	mg/kg	ALS	RG_LE1_SE-1_2020-09-17_1420
	LE1	659632	5494112	2020	1	2020-09-17	14:20	Chrysene	0.059	mg/kg	ALS	RG_LE1_SE-1_2020-09-17_1420
_	LE1	659632	5494112	2020	1	2020-09-17	14:20	Dibenz(a_h)anthracene	<0.0050	mg/kg	ALS	RG_LE1_SE-1_2020-09-17_1420
SE	LE1	659632	5494112	2020	1	2020-09-17	14:20	Fluoranthene	0.019	mg/kg	ALS	RG_LE1_SE-1_2020-09-17_1420
SE	LE1	659632	5494112	2020	1	2020-09-17	14:20	Fluorene	<0.010	mg/kg	ALS	RG_LE1_SE-1_2020-09-17_1420
SE	LE1	659632	5494112	2020	1	2020-09-17	14:20	Indeno(1,2,3-c,d)pyrene	<0.010	mg/kg	ALS	RG_LE1_SE-1_2020-09-17_1420
SE	LE1	659632	5494112	2020	1	2020-09-17	14:20	2-Methylnaphthalene	0.060	mg/kg	ALS	RG_LE1_SE-1_2020-09-17_1420
SE	LE1	659632	5494112	2020	1	2020-09-17	14:20	Naphthalene	0.033	mg/kg	ALS	RG_LE1_SE-1_2020-09-17_1420
SE	LE1	659632	5494112	2020	1	2020-09-17	14:20	Perylene	<0.010	mg/kg	ALS	RG_LE1_SE-1_2020-09-17_1420
SE	LE1	659632	5494112	2020	1	2020-09-17	14:20	Phenanthrene	0.143	mg/kg	ALS	RG_LE1_SE-1_2020-09-17_1420
SE	LE1	659632	5494112	2020	1	2020-09-17	14:20	Pyrene	0.025	mg/kg	ALS	RG_LE1_SE-1_2020-09-17_1420
SE	LE1	659632	5494112	2020	1	2020-09-17	14:20	1-Methylnaphthalene	0.060	mg/kg	ALS	RG_LE1_SE-1_2020-09-17_1420
SE	LE1	659632	5494112	2020	1	2020-09-17	14:20	Quinoline	< 0.050	mg/kg	ALS	RG LE1 SE-1 2020-09-17 1420
SE	LE1	659632	5494112	2020	1	2020-09-17	14:20	IACR (CCME)	0.30	-	ALS	RG LE1 SE-1 2020-09-17 1420
SE	LE1	659632	5494112	2020	1	2020-09-17	14:20	B(a)P Total Potency Equivalent	<0.020	mg/kg	ALS	RG LE1 SE-1 2020-09-17 1420
SE	LE1	659632	5494112	2020	1	2020-09-17	14:20	Benzo(b+j+k)fluoranthene	0.025	mg/kg	ALS	RG LE1 SE-1 2020-09-17 1420
SE	LE1	659632	5494112	2020	1	2020-09-17	14:20	IACR:Coarse	<0.050	-	ALS	RG LE1 SE-1 2020-09-17 1420
SE	LE1	659632	5494112	2020	1	2020-09-17	14:20	IACR:Fine	<0.050	-	ALS	RG LE1 SE-1 2020-09-17 1420
SE	LE1	659632	5494112	2020	1	2020-09-17	14:20	d8-Naphthalene	110.3	%	ALS	RG LE1 SE-1 2020-09-17 1420
SE	LE1	659632	5494112	2020	1	2020-09-17	14:20	d10-Acenaphthene	113.7	%	ALS	RG LE1 SE-1 2020-09-17 1420
SE	LE1	659632	5494112	2020	1	2020-09-17	14:20	d10-Phenanthrene	112.4	%	ALS	RG LE1 SE-1 2020-09-17 1420
SE	LE1	659632	5494112	2020	1	2020-09-17	14:20	d12-Chrysene	123.2	%	ALS	RG LE1 SE-1 2020-09-17 1420
SE	LE1	659632	5494112	2020	1	2020-09-17	14:20	% Gravel (>2 mm)	<1.0	%	ALS	RG_LE1_SE-1_2020-09-17_1420
SE	LE1	659632	5494112	2020	1	2020-09-17	14:20	% Sand (2.00 mm - 1.00 mm)	<1.0	%	ALS	RG LE1 SE-1 2020-09-17 1420
SE	LE1	659632	5494112	2020	1	2020-09-17	14:20	% Sand (1.00 mm - 0.50 mm)	1.1	%	ALS	RG LE1 SE-1 2020-09-17 1420
SE	LE1	659632	5494112	2020	1	2020-09-17	14:20	% Sand (0.50 mm - 0.25 mm)	6.5	%	ALS	RG LE1 SE-1 2020-09-17 1420
SE	LE1	659632	5494112	2020	1	2020-09-17	14:20	% Sand (0.25 mm - 0.125 mm)	23.9	%	ALS	RG LE1 SE-1 2020-09-17 1420
SE SE	LE1	659632	5494112	2020	1	2020-09-17	14:20	% Sand (0.125 mm - 0.063 mm)	27.8	%	ALS	RG LE1 SE-1 2020-09-17 1420
SE SE	LE1	659632	5494112	2020	1	2020-09-17	14:20	% Salt (0.123 mm - 0.0312 mm)	18.2	%	ALS	RG_LE1_SE-1_2020-09-17_1420
SE SE	LE1	659632	5494112	2020	1	2020-09-17	14:20	% Silt (0.003 mm - 0.004 mm)	16.6	%	ALS	RG LE1 SE-1 2020-09-17 1420
SE	LE1	659632	5494112	2020	1	2020-09-17		· · · · · · · · · · · · · · · · · · ·		%	ALS	
SE SE					1 1		14:20	% Clay (<4 μm)	5.2	70		RG_LE1_SE-1_2020-09-17_1420
	LE1	659632	5494112	2020	1 1	2020-09-17	14:20	Texture	Sandy loam	- no er/l	ALS	RG_LE1_SE-1_2020-09-17_1420
SE SE	LE1 LE1	659632 659632	5494112 5494112	2020 2020	1 1	2020-09-17 2020-09-17	14:20 14:20	Mercury (Hg) Aluminum (Al)	0.0654 9410	mg/kg mg/kg	ALS ALS	RG_LE1_SE-1_2020-09-17_1420 RG_LE1_SE-1_2020-09-17_1420

WSP Canada Inc. Page 175 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

able I-	l: Sediment Chem			CIVILII LALIVIF	Jamping St	1						
Гуре	Station		(UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
	1.54	Easting	Northing	2222	,	0000 00 47	4.4.00	· ·	4.00	"	Lab	Sample ID
SE	LE1	659632	5494112	2020	1 1	2020-09-17	14:20	Antimony (Sb)	1.09	mg/kg	ALS	RG_LE1_SE-1_2020-09-17_1420
SE	LE1	659632	5494112	2020	1 1	2020-09-17	14:20	Arsenic (As)	5.30	mg/kg	ALS	RG_LE1_SE-1_2020-09-17_1420
SE	LE1	659632	5494112	2020	1 1	2020-09-17	14:20	Barium (Ba)	302	mg/kg	ALS	RG_LE1_SE-1_2020-09-17_1420
SE	LE1	659632	5494112	2020	1	2020-09-17	14:20	Beryllium (Be)	0.59	mg/kg	ALS	RG_LE1_SE-1_2020-09-17_1420
SE	LE1	659632	5494112	2020	1	2020-09-17	14:20	Bismuth (Bi)	<0.20	mg/kg	ALS	RG_LE1_SE-1_2020-09-17_1420
SE	LE1	659632	5494112	2020	1	2020-09-17	14:20	Boron (B)	<5.0	mg/kg	ALS	RG_LE1_SE-1_2020-09-17_1420
SE	LE1	659632	5494112	2020	1	2020-09-17	14:20	Cadmium (Cd)	1.61	mg/kg	ALS	RG_LE1_SE-1_2020-09-17_1420
SE	LE1	659632	5494112	2020	1	2020-09-17	14:20	Calcium (Ca)	5380	mg/kg	ALS	RG_LE1_SE-1_2020-09-17_1420
SE	LE1	659632	5494112	2020	1	2020-09-17	14:20	Chromium (Cr)	17.5	mg/kg	ALS	RG_LE1_SE-1_2020-09-17_1420
SE	LE1	659632	5494112	2020	1	2020-09-17	14:20	Cobalt (Co)	5.55	mg/kg	ALS	RG_LE1_SE-1_2020-09-17_1420
SE	LE1	659632	5494112	2020	1	2020-09-17	14:20	Copper (Cu)	15.4	mg/kg	ALS	RG_LE1_SE-1_2020-09-17_1420
SE	LE1	659632	5494112	2020	1	2020-09-17	14:20	Iron (Fe)	14500	mg/kg	ALS	RG_LE1_SE-1_2020-09-17_1420
SE	LE1	659632	5494112	2020	1	2020-09-17	14:20	Lead (Pb)	8.48	mg/kg	ALS	RG_LE1_SE-1_2020-09-17_1420
SE	LE1	659632	5494112	2020	1	2020-09-17	14:20	Lithium (Li)	9.8	mg/kg	ALS	RG_LE1_SE-1_2020-09-17_1420
SE	LE1	659632	5494112	2020	1	2020-09-17	14:20	Magnesium (Mg)	2550	mg/kg	ALS	RG_LE1_SE-1_2020-09-17_1420
SE	LE1	659632	5494112	2020	1	2020-09-17	14:20	Manganese (Mn)	228	mg/kg	ALS	RG_LE1_SE-1_2020-09-17_1420
SE	LE1	659632	5494112	2020	1	2020-09-17	14:20	Molybdenum (Mo)	1.32	mg/kg	ALS	RG_LE1_SE-1_2020-09-17_1420
SE	LE1	659632	5494112	2020	1	2020-09-17	14:20	Nickel (Ni)	23.9	mg/kg	ALS	RG_LE1_SE-1_2020-09-17_1420
SE	LE1	659632	5494112	2020	1	2020-09-17	14:20	Phosphorus (P)	1170	mg/kg	ALS	RG_LE1_SE-1_2020-09-17_1420
SE	LE1	659632	5494112	2020	1	2020-09-17	14:20	Potassium (K)	1680	mg/kg	ALS	RG_LE1_SE-1_2020-09-17_1420
SE	LE1	659632	5494112	2020	1	2020-09-17	14:20	Selenium (Se)	0.76	mg/kg	ALS	RG_LE1_SE-1_2020-09-17_1420
SE	LE1	659632	5494112	2020	1	2020-09-17	14:20	Silver (Ag)	0.25	mg/kg	ALS	RG_LE1_SE-1_2020-09-17_1420
SE	LE1	659632	5494112	2020	1	2020-09-17	14:20	Sodium (Na)	<50	mg/kg	ALS	RG_LE1_SE-1_2020-09-17_1420
SE	LE1	659632	5494112	2020	1	2020-09-17	14:20	Strontium (Sr)	39.7	mg/kg	ALS	RG_LE1_SE-1_2020-09-17_1420
SE	LE1	659632	5494112	2020	1	2020-09-17	14:20	Sulfur (S)	<1000	mg/kg	ALS	RG_LE1_SE-1_2020-09-17_1420
SE	LE1	659632	5494112	2020	1	2020-09-17	14:20	Thallium (TI)	0.233	mg/kg	ALS	RG LE1 SE-1 2020-09-17 1420
SE	LE1	659632	5494112	2020	1	2020-09-17	14:20	Tin (Sn)	<2.0	mg/kg	ALS	RG_LE1_SE-1_2020-09-17_1420
SE	LE1	659632	5494112	2020	1	2020-09-17	14:20	Titanium (Ti)	68.0	mg/kg	ALS	RG LE1 SE-1 2020-09-17 1420
SE	LE1	659632	5494112	2020	1	2020-09-17	14:20	Tungsten (W)	<0.50	mg/kg	ALS	RG_LE1_SE-1_2020-09-17_1420
SE	LE1	659632	5494112	2020	1	2020-09-17	14:20	Uranium (U)	1.20	mg/kg	ALS	RG LE1 SE-1 2020-09-17 1420
SE	LE1	659632	5494112	2020	1	2020-09-17	14:20	Vanadium (V)	52.2	mg/kg	ALS	RG_LE1_SE-1_2020-09-17_1420
SE	LE1	659632	5494112	2020	1	2020-09-17	14:20	Zinc (Zn)	103	mg/kg	ALS	RG LE1 SE-1 2020-09-17 1420
SE	LE1	659632	5494112	2020	1	2020-09-17	14:20	Zirconium (Zr)	<1.0	mg/kg	ALS	RG LE1 SE-1 2020-09-17 1420
SE	LE1	659632	5494112	2020	1	2020-09-17	14:20	pH (1:2 soil:water)	7.66	pН	ALS	RG_LE1_SE-1_2020-09-17_1420
SE	LE1	659632	5494112	2020	1	2020-09-17	14:20	Total Organic Carbon	2.89	%	ALS	RG LE1 SE-1 2020-09-17 1420
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	Moisture	42.5	%	ALS	RG_LE1_SE-2_2020-09-17_1540
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	Acenaphthene	<0.0050	mg/kg	ALS	RG LE1 SE-2 2020-09-17 1540
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	Acenaphthylene	<0.0050	mg/kg	ALS	RG LE1 SE-2 2020-09-17 1540
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	Anthracene	<0.0040	mg/kg	ALS	RG LE1 SE-2 2020-09-17 1540
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	Acridine	<0.015	mg/kg	ALS	RG LE1 SE-2 2020-09-17 1540
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	Benz(a)anthracene	0.024	mg/kg	ALS	RG LE1 SE-2 2020-09-17 1540
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	Benzo(a)pyrene	<0.010	mg/kg	ALS	RG LE1 SE-2 2020-09-17 1540
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	Benzo(b&j)fluoranthene	0.031	mg/kg	ALS	RG LE1 SE-2 2020-09-17 1540
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	Benzo(e)pyrene	0.033	mg/kg	ALS	RG_LE1_SE-2_2020-09-17_1540
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	Benzo(g_h_i)perylene	0.033	mg/kg	ALS	RG LE1 SE-2 2020-09-17 1540
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	Benzo(k)fluoranthene	<0.010	mg/kg	ALS	RG LE1 SE-2 2020-09-17 1540
	ᄕᄄᆝ	003002	049411Z	ZUZU		14U2U-U3-1 <i>1</i>	13.40	IDENZU(K)NUUNANUNENE	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	mg/kg	ALO	ING LET SE-2 2020-09-1/ 1340

WSP Canada Inc. Page 176 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

			ected from the	OWIIII EALWII	Janiping St	dilons, 2012 to						
Туре	Station		(UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
		Easting	Northing		,			•			Lab	Sample ID
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	Dibenz(a_h)anthracene	<0.0060	mg/kg	ALS	RG_LE1_SE-2_2020-09-17_1540
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	Fluoranthene	0.022	mg/kg	ALS	RG_LE1_SE-2_2020-09-17_1540
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	Fluorene	<0.010	mg/kg	ALS	RG_LE1_SE-2_2020-09-17_1540
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	Indeno(1,2,3-c,d)pyrene	<0.010	mg/kg	ALS	RG_LE1_SE-2_2020-09-17_1540
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	2-Methylnaphthalene	0.088	mg/kg	ALS	RG_LE1_SE-2_2020-09-17_1540
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	Naphthalene	0.039	mg/kg	ALS	RG_LE1_SE-2_2020-09-17_1540
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	Perylene	<0.010	mg/kg	ALS	RG_LE1_SE-2_2020-09-17_1540
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	Phenanthrene	0.201	mg/kg	ALS	RG_LE1_SE-2_2020-09-17_1540
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	Pyrene	0.033	mg/kg	ALS	RG_LE1_SE-2_2020-09-17_1540
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	1-Methylnaphthalene	0.096	mg/kg	ALS	RG_LE1_SE-2_2020-09-17_1540
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	Quinoline	<0.050	mg/kg	ALS	RG_LE1_SE-2_2020-09-17_1540
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	IACR (CCME)	0.37	-	ALS	RG_LE1_SE-2_2020-09-17_1540
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	B(a)P Total Potency Equivalent	<0.020	mg/kg	ALS	RG_LE1_SE-2_2020-09-17_1540
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	Benzo(b+j+k)fluoranthene	0.031	mg/kg	ALS	RG_LE1_SE-2_2020-09-17_1540
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	IACR:Coarse	< 0.050	-	ALS	RG_LE1_SE-2_2020-09-17_1540
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	IACR:Fine	<0.050	-	ALS	RG_LE1_SE-2_2020-09-17_1540
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	d8-Naphthalene	109.6	%	ALS	RG_LE1_SE-2_2020-09-17_1540
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	d10-Acenaphthene	111.8	%	ALS	RG_LE1_SE-2_2020-09-17_1540
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	d10-Phenanthrene	113.4	%	ALS	RG_LE1_SE-2_2020-09-17_1540
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	d12-Chrysene	120.2	%	ALS	RG_LE1_SE-2_2020-09-17_1540
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	% Gravel (>2 mm)	<1.0	%	ALS	RG LE1 SE-2 2020-09-17 1540
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	% Sand (2.00 mm - 1.00 mm)	<1.0	%	ALS	RG LE1 SE-2 2020-09-17 1540
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	% Sand (1.00 mm - 0.50 mm)	2.1	%	ALS	RG_LE1_SE-2_2020-09-17_1540
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	% Sand (0.50 mm - 0.25 mm)	9.3	%	ALS	RG LE1 SE-2 2020-09-17 1540
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	% Sand (0.25 mm - 0.125 mm)	31.4	%	ALS	RG_LE1_SE-2_2020-09-17_1540
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	% Sand (0.125 mm - 0.063 mm)	23.8	%	ALS	RG LE1 SE-2 2020-09-17 1540
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	% Silt (0.063 mm - 0.0312 mm)	14.6	%	ALS	RG LE1 SE-2 2020-09-17 1540
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	% Silt (0.031 mm - 0.004 mm)	14.1	%	ALS	RG LE1 SE-2 2020-09-17 1540
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	% Clay (<4 μm)	4.5	%	ALS	RG LE1 SE-2 2020-09-17 1540
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	Texture	Sandy loam	-	ALS	RG LE1 SE-2 2020-09-17 1540
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	Mercury (Hg)	0.0723	mg/kg		RG LE1 SE-2 2020-09-17 1540
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	Aluminum (Al)	9650	mg/kg	ALS	RG LE1 SE-2 2020-09-17 1540
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	Antimony (Sb)	1.14	mg/kg	ALS	RG LE1 SE-2 2020-09-17 1540
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	Arsenic (As)	5.60	mg/kg	ALS	RG LE1 SE-2 2020-09-17 1540
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	Barium (Ba)	313	mg/kg	ALS	RG LE1 SE-2 2020-09-17 1540
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	Beryllium (Be)	0.66	mg/kg	ALS	RG LE1 SE-2 2020-09-17 1540
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	Bismuth (Bi)	<0.20	mg/kg	ALS	RG LE1 SE-2 2020-09-17 1540
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	Boron (B)	<5.0	mg/kg	ALS	RG LE1 SE-2 2020-09-17 1540
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	Cadmium (Cd)	2.03	mg/kg	ALS	RG LE1 SE-2 2020-09-17 1540
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	Calcium (Ca)	5170	mg/kg	ALS	RG LE1 SE-2 2020-09-17 1540
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	Chromium (Cr)	18.5	mg/kg	ALS	RG LE1 SE-2 2020-09-17 1540
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	Cobalt (Co)	5.99	mg/kg	ALS	RG LE1_SE-2_2020-09-17_1540
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	Copper (Cu)	17.6	mg/kg	ALS	RG LE1 SE-2 2020-09-17 1540
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	Iron (Fe)	14400	mg/kg	ALS	RG_LE1_SE-2_2020-09-17_1540
	LE1	659632	5494112	2020	2	2020-09-17	15:40	Lead (Pb)	9.12		ALS	RG LE1 SE-2 2020-09-17 1540
o= ٦	1 – 1	U0903Z	049411Z	ZUZU	4	ZUZU-U9-17	15.40	Irean (Ln)	9.1Z	mg/kg	ALO	NG_LE1_SE-Z_ZUZU-U9-1/_154U
SE SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	Lithium (Li)	10.6	mg/kg	ALS	RG LE1 SE-2 2020-09-17 1540

WSP Canada Inc. Page 177 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

able I-	1: Sediment Chem			CMM LAEMP	Sampling St	ations, 2012 to	2022					
Туре	Station		(UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
		Easting	Northing		110,000			· ·			Lab	Sample ID
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	Manganese (Mn)	251	mg/kg	ALS	RG_LE1_SE-2_2020-09-17_1540
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	Molybdenum (Mo)	1.28	mg/kg	ALS	RG_LE1_SE-2_2020-09-17_1540
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	Nickel (Ni)	25.9	mg/kg	ALS	RG_LE1_SE-2_2020-09-17_1540
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	Phosphorus (P)	1090	mg/kg	ALS	RG_LE1_SE-2_2020-09-17_1540
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	Potassium (K)	1720	mg/kg	ALS	RG_LE1_SE-2_2020-09-17_1540
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	Selenium (Se)	1.01	mg/kg	ALS	RG_LE1_SE-2_2020-09-17_1540
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	Silver (Ag)	0.31	mg/kg	ALS	RG_LE1_SE-2_2020-09-17_1540
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	Sodium (Na)	<50	mg/kg	ALS	RG_LE1_SE-2_2020-09-17_1540
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	Strontium (Sr)	43.7	mg/kg	ALS	RG_LE1_SE-2_2020-09-17_1540
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	Sulfur (S)	<1000	mg/kg	ALS	RG_LE1_SE-2_2020-09-17_1540
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	Thallium (TI)	0.243	mg/kg	ALS	RG_LE1_SE-2_2020-09-17_1540
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	Tin (Sn)	<2.0	mg/kg	ALS	RG_LE1_SE-2_2020-09-17_1540
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	Titanium (Ti)	56.8	mg/kg	ALS	RG_LE1_SE-2_2020-09-17_1540
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	Tungsten (W)	<0.50	mg/kg	ALS	RG_LE1_SE-2_2020-09-17_1540
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	Uranium (U)	1.34	mg/kg	ALS	RG_LE1_SE-2_2020-09-17_1540
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	Vanadium (V)	54.2	mg/kg	ALS	RG_LE1_SE-2_2020-09-17_1540
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	Zinc (Zn)	107	mg/kg	ALS	RG_LE1_SE-2_2020-09-17_1540
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	Zirconium (Zr)	<1.0	mg/kg	ALS	RG LE1 SE-2 2020-09-17 1540
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	pH (1:2 soil:water)	7.40	pН	ALS	RG_LE1_SE-2_2020-09-17_1540
SE	LE1	659632	5494112	2020	2	2020-09-17	15:40	Total Organic Carbon	5.79	%	ALS	RG_LE1_SE-2_2020-09-17_1540
SE	LE1	659632	5494112	2020	3	2020-09-17	15:50	Moisture	35.4	%	ALS	RG LE1 SE-3 2020-09-17 1550
SE	LE1	659632	5494112	2020	3	2020-09-17	15:50	Acenaphthene	<0.0050	mg/kg	ALS	RG LE1 SE-3 2020-09-17 1550
SE	LE1	659632	5494112	2020	3	2020-09-17	15:50	Acenaphthylene	<0.0050	mg/kg	ALS	RG_LE1_SE-3_2020-09-17_1550
SE	LE1	659632	5494112	2020	3	2020-09-17	15:50	Anthracene	<0.0040	mg/kg	ALS	RG LE1 SE-3 2020-09-17 1550
SE	LE1	659632	5494112	2020	3	2020-09-17	15:50	Acridine	<0.010	mg/kg	ALS	RG_LE1_SE-3_2020-09-17_1550
SE	LE1	659632	5494112	2020	3	2020-09-17	15:50	Benz(a)anthracene	<0.015	mg/kg	ALS	RG LE1 SE-3 2020-09-17 1550
SE	LE1	659632	5494112	2020	3	2020-09-17	15:50	Benzo(a)pyrene	<0.010	mg/kg	ALS	RG LE1 SE-3 2020-09-17 1550
SE	LE1	659632	5494112	2020	3	2020-09-17	15:50	Benzo(b&j)fluoranthene	0.019	mg/kg	ALS	RG LE1 SE-3 2020-09-17 1550
SE	LE1	659632	5494112	2020	3	2020-09-17	15:50	Benzo(e)pyrene	0.022	mg/kg	ALS	RG LE1 SE-3 2020-09-17 1550
SE	LE1	659632	5494112	2020	3	2020-09-17	15:50	Benzo(g_h_i)perylene	0.011	mg/kg	ALS	RG LE1 SE-3 2020-09-17 1550
SE	LE1	659632	5494112	2020	3	2020-09-17	15:50	Benzo(k)fluoranthene	<0.010	mg/kg		RG LE1 SE-3 2020-09-17 1550
SE	LE1	659632	5494112	2020	3	2020-09-17	15:50	Chrysene	0.043	mg/kg	ALS	RG LE1 SE-3 2020-09-17 1550
SE	LE1	659632	5494112	2020	3	2020-09-17	15:50	Dibenz(a h)anthracene	<0.0050	mg/kg	ALS	RG LE1 SE-3 2020-09-17 1550
SE	LE1	659632	5494112	2020	3	2020-09-17	15:50	Fluoranthene	0.010	mg/kg	ALS	RG LE1 SE-3 2020-09-17 1550
SE	LE1	659632	5494112	2020	3	2020-09-17	15:50	Fluorene	<0.010	mg/kg	ALS	RG LE1 SE-3 2020-09-17 1550
SE	LE1	659632	5494112	2020	3	2020-09-17	15:50	Indeno(1,2,3-c,d)pyrene	<0.010	mg/kg	ALS	RG_LE1_SE-3_2020-09-17_1550
SE	LE1	659632	5494112	2020	3	2020-09-17	15:50	2-Methylnaphthalene	0.037	mg/kg	ALS	RG LE1 SE-3 2020-09-17 1550
SE	LE1	659632	5494112	2020	3	2020-09-17	15:50	Naphthalene	0.037	mg/kg	ALS	RG LE1 SE-3 2020-09-17 1550
SE	LE1	659632	5494112	2020	3	2020-09-17	15:50	Perylene	<0.017	mg/kg	ALS	RG LE1 SE-3 2020-09-17 1550
SE	LE1	659632	5494112	2020	3	2020-09-17	15:50	Phenanthrene	0.096	mg/kg	ALS	RG LE1 SE-3 2020-09-17 1550
SE	LE1	659632	5494112	2020	3	2020-09-17	15:50	Pyrene	0.090	mg/kg	ALS	RG LE1 SE-3 2020-09-17 1550
SE SE	LE1	659632	5494112	2020	3	2020-09-17	15:50	1-Methylnaphthalene	<0.050		ALS	RG_LE1_SE-3_2020-09-17_1550
SE SE	LE1	659632	5494112	2020	3	2020-09-17		Quinoline	<0.050	mg/kg		RG LE1 SE-3 2020-09-17 1550
							15:50			mg/kg	ALS	
SE	LE1	659632	5494112	2020	3	2020-09-17	15:50	IACR (CCME)	0.22	- mar/les	ALS	RG_LE1_SE-3_2020-09-17_1550
SE	LE1	659632	5494112	2020	3	2020-09-17	15:50	B(a)P Total Potency Equivalent	<0.020	mg/kg	ALS	RG_LE1_SE-3_2020-09-17_1550
SE	LE1	659632	5494112	2020	3	2020-09-17	15:50	Benzo(b+j+k)fluoranthene	0.019	mg/kg	ALS	RG_LE1_SE-3_2020-09-17_1550
SE	LE1	659632	5494112	2020	3	2020-09-17	15:50	IACR:Coarse	<0.050	-	ALS	RG_LE1_SE-3_2020-09-17_1550

WSP Canada Inc. Page 178 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

[vpa	Station	Location	(UTMs) ^(a)	Vaar	Poplicate	Data	Time	Analysta	Pagult	Unit		Laboratory Information
уре	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	LE1	659632	5494112	2020	3	2020-09-17	15:50	IACR:Fine	<0.050	-	ALS	RG LE1 SE-3 2020-09-17 1550
SE	LE1	659632	5494112	2020	3	2020-09-17	15:50	d8-Naphthalene	105.7	%	ALS	RG LE1 SE-3 2020-09-17 1550
SE	LE1	659632	5494112	2020	3	2020-09-17	15:50	d10-Acenaphthene	108.7	%	ALS	RG LE1 SE-3 2020-09-17 1550
SE	LE1	659632	5494112	2020	3	2020-09-17	15:50	d10-Phenanthrene	106.8	%	ALS	RG LE1 SE-3 2020-09-17 1550
SE	LE1	659632	5494112	2020	3	2020-09-17	15:50	d12-Chrysene	115.6	%	ALS	RG LE1 SE-3 2020-09-17 1550
SE	LE1	659632	5494112	2020	3	2020-09-17	15:50	% Gravel (>2 mm)	<1.0	%	ALS	RG LE1 SE-3 2020-09-17 1550
SE	LE1	659632	5494112	2020	3	2020-09-17	15:50	% Sand (2.00 mm - 1.00 mm)	<1.0	%	ALS	RG LE1 SE-3 2020-09-17 1550
SE	LE1	659632	5494112	2020	3	2020-09-17	15:50	% Sand (1.00 mm - 0.50 mm)	<1.0	%	ALS	RG LE1 SE-3 2020-09-17 1550
SE	LE1	659632	5494112	2020	3	2020-09-17	15:50	% Sand (0.50 mm - 0.25 mm)	9.8	%	ALS	RG LE1 SE-3 2020-09-17 1550
SE	LE1	659632	5494112	2020	3	2020-09-17	15:50	% Sand (0.25 mm - 0.125 mm)	24.8	%	ALS	RG LE1 SE-3 2020-09-17 1550
SE	LE1	659632	5494112	2020	3	2020-09-17	15:50	% Sand (0.125 mm - 0.063 mm)	28.3	%	ALS	RG_LE1_SE-3_2020-09-17_1550
SE	LE1	659632	5494112	2020	3	2020-09-17	15:50	% Silt (0.063 mm - 0.0312 mm)	17.4	%	ALS	RG LE1 SE-3 2020-09-17 1550
SE	LE1	659632	5494112	2020	3	2020-09-17	15:50	% Silt (0.031 mm - 0.004 mm)	14.5	%	ALS	RG LE1 SE-3 2020-09-17 1550
SE	LE1	659632	5494112	2020	3	2020-09-17	15:50	% Clay (<4 μm)	4.0	%	ALS	RG_LE1_SE-3_2020-09-17_1550
SE	LE1	659632	5494112	2020	3	2020-09-17	15:50	Texture	Sandy loam	_	ALS	RG LE1 SE-3 2020-09-17 1550
SE	LE1	659632	5494112	2020	3	2020-09-17	15:50	Mercury (Hg)	0.0515	mg/kg	ALS	RG_LE1_SE-3_2020-09-17_1550
SE	LE1	659632	5494112	2020	3	2020-09-17	15:50	Aluminum (Al)	10600	mg/kg	ALS	RG_LE1_SE-3_2020-09-17_1550
SE	LE1	659632	5494112	2020	3	2020-09-17	15:50	Antimony (Sb)	1.16	mg/kg	ALS	RG LE1 SE-3 2020-09-17 1550
SE	LE1	659632	5494112	2020	3	2020-09-17	15:50	Arsenic (As)	5.97	mg/kg	ALS	RG LE1 SE-3 2020-09-17 1550
SE	LE1	659632	5494112	2020	3	2020-09-17	15:50	Barium (Ba)	303	mg/kg	ALS	RG LE1 SE-3 2020-09-17 1550
SE	LE1	659632	5494112	2020	3	2020-09-17	15:50	Beryllium (Be)	0.62	mg/kg	ALS	RG LE1 SE-3 2020-09-17 1550
SE	LE1	659632	5494112	2020	3	2020-09-17	15:50	Bismuth (Bi)	<0.20	mg/kg	ALS	RG_LE1_SE-3_2020-09-17_1550
SE	LE1	659632	5494112	2020	3	2020-09-17	15:50	Boron (B)	5.3	mg/kg	ALS	RG LE1 SE-3 2020-09-17 1550
SE	LE1	659632	5494112	2020	3	2020-09-17	15:50	Cadmium (Cd)	1.54	mg/kg	ALS	RG LE1 SE-3 2020-09-17 1550
SE	LE1	659632	5494112	2020	3	2020-09-17	15:50	Calcium (Ca)	4940	mg/kg	ALS	RG LE1 SE-3 2020-09-17 1550
SE	LE1	659632	5494112	2020	3	2020-09-17	15:50	Chromium (Cr)	19.3	mg/kg	ALS	RG LE1 SE-3 2020-09-17 1550
SE	LE1	659632	5494112	2020	3	2020-09-17	15:50	Cobalt (Co)	6.14	mg/kg	ALS	RG LE1 SE-3 2020-09-17 1550
SE	LE1	659632	5494112	2020	3	2020-09-17	15:50	Copper (Cu)	15.1	mg/kg	ALS	RG LE1 SE-3 2020-09-17 1550
SE	LE1	659632	5494112	2020	3	2020-09-17	15:50	Iron (Fe)	15300	mg/kg	ALS	RG LE1 SE-3 2020-09-17 1550
SE	LE1	659632	5494112	2020	3	2020-09-17	15:50	Lead (Pb)	8.77	mg/kg	ALS	RG LE1 SE-3 2020-09-17 1550
SE	LE1	659632	5494112	2020	3	2020-09-17	15:50	Lithium (Li)	10.8	mg/kg	ALS	RG_LE1_SE-3_2020-09-17_1550
SE	LE1	659632	5494112	2020	3	2020-09-17	15:50	Magnesium (Mg)	2510	mg/kg	ALS	RG LE1 SE-3 2020-09-17 1550
SE	LE1	659632	5494112	2020	3	2020-09-17	15:50	Manganese (Mn)	273	mg/kg	ALS	RG LE1 SE-3 2020-09-17 1550
SE	LE1	659632	5494112	2020	3	2020-09-17	15:50	Molybdenum (Mo)	1.47	mg/kg	ALS	RG LE1 SE-3 2020-09-17 1550
SE	LE1	659632	5494112	2020	3	2020-09-17	15:50	Nickel (Ni)	25.7	mg/kg	ALS	RG LE1 SE-3 2020-09-17 1550
SE	LE1	659632	5494112	2020	3	2020-09-17	15:50	Phosphorus (P)	1290	mg/kg	ALS	RG LE1 SE-3 2020-09-17 1550
SE	LE1	659632	5494112	2020	3	2020-09-17	15:50	Potassium (K)	1950	mg/kg	ALS	RG_LE1_SE-3_2020-09-17_1550
SE	LE1	659632	5494112	2020	3	2020-09-17	15:50	Selenium (Se)	0.60	mg/kg	ALS	RG LE1 SE-3 2020-09-17 1550
SE	LE1	659632	5494112	2020	3	2020-09-17	15:50	Silver (Ag)	0.21	mg/kg	ALS	RG LE1 SE-3 2020-09-17 1550
SE SE	LE1	659632	5494112	2020	3	2020-09-17	15:50	Sodium (Na)	<50	mg/kg	ALS	RG LE1 SE-3 2020-09-17 1550
E E	LE1	659632	5494112	2020	3	2020-09-17	15:50	Strontium (Sr)	41.4	mg/kg	ALS	RG LE1_SE-3_2020-09-17_1550
E E	LE1	659632	5494112	2020	3	2020-09-17	15:50	Sulfur (S)	<1000	mg/kg	ALS	RG LE1 SE-3 2020-09-17 1550
SE	LE1	659632	5494112	2020	3	2020-09-17	15:50	Thallium (TI)	0.242	mg/kg	ALS	RG LE1 SE-3 2020-09-17 1550
SE SE	LE1	659632	5494112	2020	3	2020-09-17	15:50	Tin (Sn)	<2.0	mg/kg	ALS	RG LE1 SE-3 2020-09-17 1550
SE	LE1	659632	5494112	2020	3	2020-09-17	15:50	Titanium (Ti)	67.2	mg/kg	ALS	RG LE1 SE-3 2020-09-17 1550
_				2020	3	2020-09-17	15:50	Tungsten (W)	<0.50	mg/kg	ALS	RG LE1 SE-3 2020-09-17 1550
SE	LE1	659632	5494112	ZUZU		12020-09-17	1:0.:00	TTUTUSIETT(VV)	\((1.30)		ALG	ING LET 3E-3 2020-03-17 13:00

WSP Canada Inc. Page 179 of 337

.....

Table I-1	: Sediment Chem	istry Data Col	lected from the	CMm LAEMP	Sampling Sta	ations, 2012 to	2022					
Tyrna	Station	Location	ı (UTMs) ^(a)	Voor	Donlingto	Doto	Time	Analyta	Booult	Unit		Laboratory Information
Type	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	LE1	659632	5494112	2020	3	2020-09-17	15:50	Vanadium (V)	58.8	mg/kg	ALS	RG_LE1_SE-3_2020-09-17_1550
SE	LE1	659632	5494112	2020	3	2020-09-17	15:50	Zinc (Zn)	109	mg/kg	ALS	RG_LE1_SE-3_2020-09-17_1550
SE	LE1	659632	5494112	2020	3	2020-09-17	15:50	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_LE1_SE-3_2020-09-17_1550
SE	LE1	659632	5494112	2020	3	2020-09-17	15:50	pH (1:2 soil:water)	7.91	рН	ALS	RG_LE1_SE-3_2020-09-17_1550
SE	LE1	659632	5494112	2020	3	2020-09-17	15:50	Total Organic Carbon	1.59	%	ALS	RG_LE1_SE-3_2020-09-17_1550
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	Moisture	63.5	%	ALS	RG MIULE SE-4 2020-09-17 0815
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	Acenaphthene	<0.011	mg/kg	ALS	RG MIULE SE-4 2020-09-17 0815
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	Acenaphthylene	<0.0050	mg/kg	ALS	RG MIULE SE-4 2020-09-17 0815
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	Anthracene	<0.0040	mg/kg	ALS	RG MIULE SE-4 2020-09-17 0815
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	Acridine	0.010	mg/kg	ALS	RG MIULE SE-4 2020-09-17 0815
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	Benz(a)anthracene	0.014	mg/kg	ALS	RG MIULE SE-4 2020-09-17 0815
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	Benzo(a)pyrene	<0.010	mg/kg	ALS	RG MIULE SE-4 2020-09-17 0815
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	Benzo(b&j)fluoranthene	0.054	mg/kg	ALS	RG MIULE SE-4 2020-09-17 0815
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	Benzo(e)pyrene	0.053	mg/kg	ALS	RG MIULE SE-4 2020-09-17 0815
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	Benzo(g_h_i)perylene	0.018	mg/kg	ALS	RG_MIULE_SE-4_2020-09-17_0815
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	Benzo(k)fluoranthene	<0.010	mg/kg	ALS	RG_MIULE_SE-4_2020-09-17_0815
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	Chrysene	0.094	mg/kg	ALS	RG MIULE SE-4 2020-09-17 0815
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	Dibenz(a h)anthracene	<0.0070	mg/kg	ALS	RG_MIULE_SE-4_2020-09-17_0815
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	Fluoranthene	0.035	mg/kg	ALS	RG MIULE SE-4 2020-09-17 0815
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	Fluorene	0.024	mg/kg	ALS	RG MIULE SE-4 2020-09-17 0815
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	Indeno(1,2,3-c,d)pyrene	<0.010	mg/kg	ALS	RG MIULE SE-4 2020-09-17 0815
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	2-Methylnaphthalene	0.224	mg/kg	ALS	RG MIULE SE-4 2020-09-17 0815
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	Naphthalene	0.101	mg/kg	ALS	RG_MIULE_SE-4_2020-09-17_0815
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	Perylene	0.012	mg/kg	ALS	RG MIULE SE-4 2020-09-17 0815
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	Phenanthrene	0.226	mg/kg	ALS	RG MIULE SE-4 2020-09-17 0815
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	Pyrene	0.034	mg/kg	ALS	RG_MIULE_SE-4_2020-09-17_0815
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	1-Methylnaphthalene	0.147	mg/kg	ALS	RG MIULE SE-4 2020-09-17 0815
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	Quinoline	<0.050	mg/kg	ALS	RG MIULE SE-4 2020-09-17 0815
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	IACR (CCME)	0.49	-	ALS	RG MIULE SE-4 2020-09-17 0815
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	B(a)P Total Potency Equivalent	<0.020	mg/kg	ALS	RG MIULE SE-4 2020-09-17 0815
SE	MIULE	660503	5493048	2020	1	2020-09-17	08:15	Benzo(b+j+k)fluoranthene	0.054	mg/kg		RG MIULE SE-4 2020-09-17 0815
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	IACR:Coarse	<0.050	mg/kg	ALS	RG MIULE SE-4 2020-09-17 0815
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	IACR:Fine	<0.050		ALS	RG MIULE SE-4 2020-09-17 0815
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	d8-Naphthalene	109.0	%	ALS	RG MIULE SE-4 2020-09-17 0815
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	d10-Acenaphthene	109.0	%	ALS	RG MIULE SE-4 2020-09-17 0815
SE	MIULE		5493048		4	2020-09-17		'				RG_MIULE_SE-4_2020-09-17_0815
SE		660503 660503	_	2020	4	2020-09-17	08:15	d10-Phenanthrene	109.6	%	ALS	
SE	MIULE		5493048	2020	4		08:15	d12-Chrysene	117.1	%	ALS	RG_MIULE_SE-4_2020-09-17_0815
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	% Gravel (>2 mm)	<1.0	%	ALS	RG_MIULE_SE-4_2020-09-17_0815
	MIULE	660503	5493048	2020	4	2020-09-17	08:15	% Sand (2.00 mm - 1.00 mm)	<1.0	%	ALS	RG_MIULE_SE-4_2020-09-17_0815
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	% Sand (1.00 mm - 0.50 mm)	1.2	%	ALS	RG_MIULE_SE-4_2020-09-17_0815
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	% Sand (0.50 mm - 0.25 mm)	4.8	%	ALS	RG_MIULE_SE-4_2020-09-17_0815
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	% Sand (0.25 mm - 0.125 mm)	9.9	%	ALS	RG_MIULE_SE-4_2020-09-17_0815
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	% Sand (0.125 mm - 0.063 mm)	16.1	%	ALS	RG_MIULE_SE-4_2020-09-17_0815
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	% Silt (0.063 mm - 0.0312 mm)	29.9	%	ALS	RG_MIULE_SE-4_2020-09-17_0815
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	% Silt (0.031 mm - 0.004 mm)	32.9	%	ALS	RG_MIULE_SE-4_2020-09-17_0815
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	% Clay (<4 μm)	5.1	%	ALS	RG_MIULE_SE-4_2020-09-17_0815
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	Texture	Silt loam	-	ALS	RG_MIULE_SE-4_2020-09-17_0815

WSP Canada Inc. Page 180 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Type	Station	Location	ı (UTMs) ^(a)	Year	Poplicate	Data	Time	Apolyto	Popult	Unit		Laboratory Information
уре	Station	Easting	Northing	rear	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	Mercury (Hg)	0.0441	mg/kg	ALS	RG MIULE SE-4 2020-09-17 0815
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	Aluminum (Al)	11500	mg/kg	ALS	RG MIULE SE-4 2020-09-17 0815
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	Antimony (Sb)	0.33	mg/kg	ALS	RG_MIULE_SE-4_2020-09-17_0815
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	Arsenic (As)	6.47	mg/kg	ALS	RG MIULE SE-4 2020-09-17 0815
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	Barium (Ba)	218	mg/kg	ALS	RG MIULE SE-4 2020-09-17 0815
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	Beryllium (Be)	0.78	mg/kg	ALS	RG MIULE SE-4 2020-09-17 0815
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	Bismuth (Bi)	<0.20	mg/kg	ALS	RG MIULE SE-4 2020-09-17 0815
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	Boron (B)	13.2	mg/kg	ALS	RG MIULE SE-4 2020-09-17 0815
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	Cadmium (Cd)	1.29	mg/kg	ALS	RG MIULE SE-4 2020-09-17 0815
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	Calcium (Ca)	46300	mg/kg	ALS	RG MIULE SE-4 2020-09-17 0815
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	Chromium (Cr)	17.6	mg/kg	ALS	RG MIULE SE-4 2020-09-17 0815
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	Cobalt (Co)	14.2	mg/kg	ALS	RG MIULE SE-4 2020-09-17 0815
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	Copper (Cu)	14.5	mg/kg	ALS	RG MIULE SE-4 2020-09-17 0815
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	Iron (Fe)	16000	mg/kg	ALS	RG MIULE SE-4 2020-09-17 0815
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	Lead (Pb)	9.45	mg/kg	ALS	RG MIULE SE-4 2020-09-17 0815
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	Lithium (Li)	14.4	mg/kg	ALS	RG MIULE SE-4 2020-09-17 0815
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	Magnesium (Mg)	9610	mg/kg	ALS	RG MIULE SE-4 2020-09-17 0815
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	Manganese (Mn)	229	mg/kg	ALS	RG MIULE SE-4 2020-09-17 0815
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	Molybdenum (Mo)	1.42	mg/kg	ALS	RG MIULE SE-4 2020-09-17 0815
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	Nickel (Ni)	44.6	mg/kg	ALS	RG MIULE SE-4 2020-09-17 0815
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	Phosphorus (P)	1160	mg/kg	ALS	RG MIULE SE-4 2020-09-17 0815
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	Potassium (K)	2880	mg/kg	ALS	RG_MIULE_SE-4_2020-09-17_0815
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	Selenium (Se)	1.94	mg/kg	ALS	RG MIULE SE-4 2020-09-17 0815
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	Silver (Ag)	0.16	mg/kg	ALS	RG_MIULE_SE-4_2020-09-17_0815
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	Sodium (Na)	125	mg/kg	ALS	RG MIULE SE-4 2020-09-17 0815
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	Strontium (Sr)	80.2	mg/kg	ALS	RG MIULE SE-4 2020-09-17 0815
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	Sulfur (S)	<1000	mg/kg	ALS	RG MIULE SE-4 2020-09-17 0815
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	Thallium (TI)	0.457	mg/kg	ALS	RG MIULE SE-4 2020-09-17 0815
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	Tin (Sn)	<2.0	mg/kg	ALS	RG MIULE SE-4 2020-09-17 0815
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	Titanium (Ti)	13.3	mg/kg	ALS	RG MIULE SE-4 2020-09-17 0815
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	Tungsten (W)	<0.50	mg/kg	ALS	RG MIULE SE-4 2020-09-17 0815
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	Uranium (U)	0.807	mg/kg	ALS	RG MIULE SE-4 2020-09-17 0815
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	Vanadium (V)	34.7	mg/kg	ALS	RG MIULE SE-4 2020-09-17 0815
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	Zinc (Zn)	124	mg/kg	ALS	RG MIULE SE-4 2020-09-17 0815
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_MIULE_SE-4_2020-09-17_0815
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	pH (1:2 soil:water)	8.09	pH	ALS	RG_MIULE_SE-4_2020-09-17_0815
SE	MIULE	660503	5493048	2020	4	2020-09-17	08:15	Total Organic Carbon	4.41	%	ALS	RG MIULE SE-4 2020-09-17 0815
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	Moisture	78.6	%	ALS	RG MIULE SE-5 2020-09-17 0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	Acenaphthene	<0.010	mg/kg	ALS	RG MIULE SE-5 2020-09-17 0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	Acenaphthylene	<0.010	mg/kg	ALS	RG MIULE SE-5 2020-09-17 0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	Anthracene	<0.0080	mg/kg	ALS	RG MIULE SE-5 2020-09-17 0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	Acridine	<0.020	mg/kg	ALS	RG MIULE SE-5 2020-09-17 0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	Benz(a)anthracene	<0.020	mg/kg	ALS	RG MIULE SE-5 2020-09-17 0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	Benzo(a)pyrene	<0.020	mg/kg	ALS	RG MIULE SE-5 2020-09-17 0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	Benzo(b&j)fluoranthene	0.040	mg/kg	ALS	RG MIULE SE-5 2020-09-17 0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	Benzo(e)pyrene	0.044	mg/kg	ALS	RG MIULE SE-5 2020-09-17 0840
SE		660503			5							RG MIULE SE-5 2020-09-17 0840
=	MIULE	660503	5493048	2020	5	2020-09-17	08:40	Benzo(g_h_i)perylene	<0.020	mg/kg	ALS	_ KG_MIULE_SE-5_2020-09-17_084

WSP Canada Inc. Page 181 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Table I-	1: Sediment Chem			CMm LAEMP	Sampling St	ations, 2012 to	2022					
Туре	Station	Location	(UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
Турс	Otation	Easting	Northing	i cai	replicate	Date	Tillio	Allalyte	Result	Oilit	Lab	Sample ID
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	Benzo(k)fluoranthene	<0.020	mg/kg	ALS	RG_MIULE_SE-5_2020-09-17_0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	Chrysene	0.076	mg/kg	ALS	RG_MIULE_SE-5_2020-09-17_0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	Dibenz(a_h)anthracene	<0.010	mg/kg	ALS	RG_MIULE_SE-5_2020-09-17_0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	Fluoranthene	0.036	mg/kg	ALS	RG_MIULE_SE-5_2020-09-17_0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	Fluorene	0.026	mg/kg	ALS	RG_MIULE_SE-5_2020-09-17_0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	Indeno(1,2,3-c,d)pyrene	<0.020	mg/kg	ALS	RG_MIULE_SE-5_2020-09-17_0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	2-Methylnaphthalene	0.211	mg/kg	ALS	RG_MIULE_SE-5_2020-09-17_0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	Naphthalene	0.109	mg/kg	ALS	RG_MIULE_SE-5_2020-09-17_0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	Perylene	<0.020	mg/kg	ALS	RG_MIULE_SE-5_2020-09-17_0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	Phenanthrene	0.197	mg/kg	ALS	RG_MIULE_SE-5_2020-09-17_0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	Pyrene	0.039	mg/kg	ALS	RG_MIULE_SE-5_2020-09-17_0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	1-Methylnaphthalene	0.139	mg/kg	ALS	RG_MIULE_SE-5_2020-09-17_0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	Quinoline	<0.020	mg/kg	ALS	RG_MIULE_SE-5_2020-09-17_0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	IACR (CCME)	0.43	-	ALS	RG_MIULE_SE-5_2020-09-17_0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	B(a)P Total Potency Equivalent	0.023	mg/kg	ALS	RG_MIULE_SE-5_2020-09-17_0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	Benzo(b+j+k)fluoranthene	0.040	mg/kg	ALS	RG_MIULE_SE-5_2020-09-17_0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	IACR:Coarse	<0.050	-	ALS	RG_MIULE_SE-5_2020-09-17_0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	IACR:Fine	<0.050	-	ALS	RG_MIULE_SE-5_2020-09-17_0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	d8-Naphthalene	108.8	%	ALS	RG_MIULE_SE-5_2020-09-17_0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	d10-Acenaphthene	110.2	%	ALS	RG_MIULE_SE-5_2020-09-17_0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	d10-Phenanthrene	111.8	%	ALS	RG_MIULE_SE-5_2020-09-17_0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	d12-Chrysene	120.6	%	ALS	RG_MIULE_SE-5_2020-09-17_0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	% Gravel (>2 mm)	<1.0	%	ALS	RG_MIULE_SE-5_2020-09-17_0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	% Sand (2.00 mm - 1.00 mm)	<1.0	%	ALS	RG_MIULE_SE-5_2020-09-17_0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	% Sand (1.00 mm - 0.50 mm)	2.5	%	ALS	RG_MIULE_SE-5_2020-09-17_0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	% Sand (0.50 mm - 0.25 mm)	7.1	%	ALS	RG_MIULE_SE-5_2020-09-17_0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	% Sand (0.25 mm - 0.125 mm)	11.5	%	ALS	RG_MIULE_SE-5_2020-09-17_0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	% Sand (0.125 mm - 0.063 mm)	19.7	%	ALS	RG_MIULE_SE-5_2020-09-17_0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	% Silt (0.063 mm - 0.0312 mm)	27.1	%	ALS	RG_MIULE_SE-5_2020-09-17_0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	% Silt (0.031 mm - 0.004 mm)	26.0	%	ALS	RG_MIULE_SE-5_2020-09-17_0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	% Clay (<4 μm)	5.8	%	ALS	RG_MIULE_SE-5_2020-09-17_0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	Texture	Silt loam	-	ALS	RG_MIULE_SE-5_2020-09-17_0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	Mercury (Hg)	0.0288	mg/kg	ALS	RG_MIULE_SE-5_2020-09-17_0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	Aluminum (AI)	7430	mg/kg	ALS	RG_MIULE_SE-5_2020-09-17_0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	Antimony (Sb)	0.26	mg/kg	ALS	RG_MIULE_SE-5_2020-09-17_0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	Arsenic (As)	4.79	mg/kg	ALS	RG_MIULE_SE-5_2020-09-17_0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	Barium (Ba)	203	mg/kg	ALS	RG_MIULE_SE-5_2020-09-17_0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	Beryllium (Be)	0.52	mg/kg	ALS	RG_MIULE_SE-5_2020-09-17_0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	Bismuth (Bi)	<0.20	mg/kg	ALS	RG_MIULE_SE-5_2020-09-17_0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	Boron (B)	10.4	mg/kg	ALS	RG_MIULE_SE-5_2020-09-17_0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	Cadmium (Cd)	0.974	mg/kg	ALS	RG_MIULE_SE-5_2020-09-17_0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	Calcium (Ca)	84100	mg/kg	ALS	RG_MIULE_SE-5_2020-09-17_0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	Chromium (Cr)	11.7	mg/kg	ALS	RG_MIULE_SE-5_2020-09-17_0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	Cobalt (Co)	14.0	mg/kg	ALS	RG_MIULE_SE-5_2020-09-17_0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	Copper (Cu)	9.43	mg/kg	ALS	RG_MIULE_SE-5_2020-09-17_0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	Iron (Fe)	11400	mg/kg	ALS	RG_MIULE_SE-5_2020-09-17_0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	Lead (Pb)	6.18	mg/kg	ALS	RG_MIULE_SE-5_2020-09-17_0840

WSP Canada Inc. Page 182 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Table I-	1: Sediment Chem			CMm LAEMP	Sampling St	ations, 2012 to	2022					
Туре	Station	Location	ı (UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
Type	Station	Easting	Northing	i eai	Replicate	Date	Tille	Allalyte	Result	Oilit	Lab	Sample ID
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	Lithium (Li)	9.2	mg/kg	ALS	RG_MIULE_SE-5_2020-09-17_0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	Magnesium (Mg)	7660	mg/kg	ALS	RG_MIULE_SE-5_2020-09-17_0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	Manganese (Mn)	248	mg/kg	ALS	RG_MIULE_SE-5_2020-09-17_0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	Molybdenum (Mo)	1.06	mg/kg	ALS	RG_MIULE_SE-5_2020-09-17_0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	Nickel (Ni)	40.0	mg/kg	ALS	RG_MIULE_SE-5_2020-09-17_0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	Phosphorus (P)	912	mg/kg	ALS	RG_MIULE_SE-5_2020-09-17_0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	Potassium (K)	1900	mg/kg	ALS	RG_MIULE_SE-5_2020-09-17_0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	Selenium (Se)	2.81	mg/kg	ALS	RG_MIULE_SE-5_2020-09-17_0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	Silver (Ag)	0.10	mg/kg	ALS	RG_MIULE_SE-5_2020-09-17_0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	Sodium (Na)	167	mg/kg	ALS	RG_MIULE_SE-5_2020-09-17_0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	Strontium (Sr)	116	mg/kg	ALS	RG_MIULE_SE-5_2020-09-17_0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	Sulfur (S)	1300	mg/kg	ALS	RG_MIULE_SE-5_2020-09-17_0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	Thallium (TI)	0.283	mg/kg	ALS	RG_MIULE_SE-5_2020-09-17_0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	Tin (Sn)	<2.0	mg/kg	ALS	RG_MIULE_SE-5_2020-09-17_0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	Titanium (Ti)	12.2	mg/kg	ALS	RG_MIULE_SE-5_2020-09-17_0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	Tungsten (W)	<0.50	mg/kg	ALS	RG_MIULE_SE-5_2020-09-17_0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	Uranium (U)	0.766	mg/kg	ALS	RG_MIULE_SE-5_2020-09-17_0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	Vanadium (V)	24.0	mg/kg	ALS	RG_MIULE_SE-5_2020-09-17_0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	Zinc (Zn)	88.9	mg/kg	ALS	RG_MIULE_SE-5_2020-09-17_0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_MIULE_SE-5_2020-09-17_0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	pH (1:2 soil:water)	7.67	рН	ALS	RG_MIULE_SE-5_2020-09-17_0840
SE	MIULE	660503	5493048	2020	5	2020-09-17	08:40	Total Organic Carbon	8.09	%	ALS	RG_MIULE_SE-5_2020-09-17_0840
SE	MIDAG_S2	665770	5488854	2020	1	2020-09-17	08:40	Moisture	78.7	%	ALS	RG_MIDAG_S2_SE-1_2020-09-17_0840
SE	MIDAG_S2	665770	5488854	2020	1	2020-09-17	08:40	Acenaphthene	<0.016	mg/kg	ALS	RG_MIDAG_S2_SE-1_2020-09-17_0840
SE	MIDAG_S2	665770	5488854	2020	1	2020-09-17	08:40	Acenaphthylene	<0.010	mg/kg	ALS	RG_MIDAG_S2_SE-1_2020-09-17_0840
SE	MIDAG_S2	665770	5488854	2020	1	2020-09-17	08:40	Anthracene	<0.0080	mg/kg	ALS	RG_MIDAG_S2_SE-1_2020-09-17_0840
SE	MIDAG_S2	665770	5488854	2020	1	2020-09-17	08:40	Acridine	<0.025	mg/kg	ALS	RG_MIDAG_S2_SE-1_2020-09-17_0840
SE	MIDAG_S2	665770	5488854	2020	1	2020-09-17	08:40	Benz(a)anthracene	<0.020	mg/kg	ALS	RG_MIDAG_S2_SE-1_2020-09-17_0840
SE	MIDAG_S2	665770	5488854	2020	1	2020-09-17	08:40	Benzo(a)pyrene	<0.020	mg/kg	ALS	RG_MIDAG_S2_SE-1_2020-09-17_0840
SE	MIDAG_S2	665770	5488854	2020	1	2020-09-17	08:40	Benzo(b&j)fluoranthene	0.077	mg/kg	ALS	RG_MIDAG_S2_SE-1_2020-09-17_0840
SE	MIDAG_S2	665770	5488854	2020	1	2020-09-17	08:40	Benzo(e)pyrene	0.079	mg/kg	ALS	RG_MIDAG_S2_SE-1_2020-09-17_0840
SE	MIDAG_S2	665770	5488854	2020	1	2020-09-17	08:40	Benzo(g_h_i)perylene	0.031	mg/kg	ALS	RG_MIDAG_S2_SE-1_2020-09-17_0840
SE	MIDAG_S2	665770	5488854	2020	1	2020-09-17	08:40	Benzo(k)fluoranthene	<0.020	mg/kg	ALS	RG_MIDAG_S2_SE-1_2020-09-17_0840
SE	MIDAG_S2	665770	5488854	2020	1	2020-09-17	08:40	Chrysene	0.135	mg/kg	ALS	RG_MIDAG_S2_SE-1_2020-09-17_0840
SE	MIDAG_S2	665770	5488854	2020	1	2020-09-17	08:40	Dibenz(a_h)anthracene	<0.010	mg/kg	ALS	RG_MIDAG_S2_SE-1_2020-09-17_0840
SE	MIDAG_S2	665770	5488854	2020	1	2020-09-17	08:40	Fluoranthene	0.036	mg/kg	ALS	RG_MIDAG_S2_SE-1_2020-09-17_0840
SE	MIDAG_S2	665770	5488854	2020	1	2020-09-17	08:40	Fluorene	0.048	mg/kg	ALS	RG_MIDAG_S2_SE-1_2020-09-17_0840
SE	MIDAG_S2	665770	5488854	2020	1	2020-09-17	08:40	Indeno(1,2,3-c,d)pyrene	<0.020	mg/kg	ALS	RG_MIDAG_S2_SE-1_2020-09-17_0840
SE	MIDAG_S2	665770	5488854	2020	1	2020-09-17	08:40	2-Methylnaphthalene	0.414	mg/kg	ALS	RG_MIDAG_S2_SE-1_2020-09-17_0840
SE	MIDAG_S2	665770	5488854	2020	1	2020-09-17	08:40	Naphthalene	0.174	mg/kg	ALS	RG_MIDAG_S2_SE-1_2020-09-17_0840
SE	MIDAG_S2	665770	5488854	2020	1	2020-09-17	08:40	Perylene	<0.020	mg/kg	ALS	RG_MIDAG_S2_SE-1_2020-09-17_0840
SE	MIDAG_S2	665770	5488854	2020	1	2020-09-17	08:40	Phenanthrene	0.334	mg/kg	ALS	RG_MIDAG_S2_SE-1_2020-09-17_0840
SE	MIDAG_S2	665770	5488854	2020	1	2020-09-17	08:40	Pyrene	0.046	mg/kg	ALS	RG_MIDAG_S2_SE-1_2020-09-17_0840
SE	MIDAG_S2	665770	5488854	2020	1	2020-09-17	08:40	1-Methylnaphthalene	0.276	mg/kg	ALS	RG_MIDAG_S2_SE-1_2020-09-17_0840
SE	MIDAG_S2	665770	5488854	2020	1	2020-09-17	08:40	Quinoline	<0.020	mg/kg	ALS	RG_MIDAG_S2_SE-1_2020-09-17_0840
SE	MIDAG_S2	665770	5488854	2020	1	2020-09-17	08:40	IACR (CCME)	0.70	-	ALS	RG_MIDAG_S2_SE-1_2020-09-17_0840
SE	MIDAG S2	665770	5488854	2020	1	2020-09-17	08:40	B(a)P Total Potency Equivalent	0.027	mg/kg	ALS	RG MIDAG S2 SE-1 2020-09-17 0840

WSP Canada Inc. Page 183 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Type	Station	Location	ı (UTMs) ^(a)	Vacr	Donlingto	Doto	Tipe	Analyta	Docult -	Unit		Laboratory Information
Туре	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MIDAG S2	665770	5488854	2020	1	2020-09-17	08:40	Benzo(b+j+k)fluoranthene	0.077	mg/kg	ALS	RG MIDAG S2 SE-1 2020-09-17 0840
SE	MIDAG S2	665770	5488854	2020		2020-09-17	08:40	IACR:Coarse	<0.050	-	ALS	RG MIDAG S2 SE-1 2020-09-17 0840
SE	MIDAG S2	665770	5488854	2020		2020-09-17	08:40	IACR:Fine	<0.050	-	ALS	RG MIDAG S2 SE-1 2020-09-17 0840
SE	MIDAG S2	665770	5488854	2020		2020-09-17	08:40	d8-Naphthalene	107.7	%	ALS	RG MIDAG S2 SE-1 2020-09-17 0840
SE	MIDAG S2	665770	5488854	2020		2020-09-17	08:40	d10-Acenaphthene	108.9	%	ALS	RG MIDAG S2 SE-1 2020-09-17 0840
SE	MIDAG S2	665770	5488854	2020		2020-09-17	08:40	d10-Phenanthrene	110.3	%	ALS	RG MIDAG S2 SE-1 2020-09-17 0840
SE	MIDAG S2	665770	5488854	2020		2020-09-17	08:40	d12-Chrysene	119.1	%	ALS	RG MIDAG S2 SE-1 2020-09-17 0840
SE	MIDAG S2	665770	5488854	2020	-	2020-09-17	08:40	% Gravel (>2 mm)	<1.0	%	ALS	RG MIDAG S2 SE-1 2020-09-17 0840
SE	MIDAG S2	665770	5488854	2020		2020-09-17	08:40	% Sand (2.00 mm - 1.00 mm)	<1.0	%	ALS	RG MIDAG S2 SE-1 2020-09-17 0840
SE	MIDAG S2	665770	5488854	2020		2020-09-17	08:40	% Sand (1.00 mm - 0.50 mm)	<1.0	%	ALS	RG MIDAG S2 SE-1 2020-09-17 0840
SE	MIDAG S2	665770	5488854	2020		2020-09-17	08:40	% Sand (0.50 mm - 0.25 mm)	1.3	%	ALS	RG MIDAG S2 SE-1 2020-09-17 0840
SE	MIDAG S2	665770	5488854	2020		2020-09-17	08:40	% Sand (0.25 mm - 0.125 mm)	4.9	%	ALS	RG MIDAG S2 SE-1 2020-09-17 0840
SE	MIDAG S2	665770	5488854	2020		2020-09-17	08:40	% Sand (0.125 mm - 0.063 mm)	8.6	%	ALS	RG MIDAG S2 SE-1 2020-09-17 0840
SE	MIDAG S2	665770	5488854	2020		2020-09-17	08:40	% Silt (0.063 mm - 0.0312 mm)	36.1	%	ALS	RG MIDAG S2 SE-1 2020-09-17 0840
SE	MIDAG S2	665770	5488854	2020		2020-09-17	08:40	% Silt (0.031 mm - 0.004 mm)	40.8	%	ALS	RG MIDAG S2 SE-1 2020-09-17 0840
SE	MIDAG S2	665770	5488854	2020		2020-09-17	08:40	% Clay (<4 μm)	7.1	%	ALS	RG MIDAG S2 SE-1 2020-09-17 0840
SE	MIDAG S2	665770	5488854	2020		2020-09-17	08:40	Texture	Silt loam	-	ALS	RG MIDAG S2 SE-1 2020-09-17 0840
SE	MIDAG S2	665770	5488854	2020		2020-09-17	08:40	Mercury (Hg)	0.0432	mg/kg	ALS	RG MIDAG S2 SE-1 2020-09-17 0840
SE	MIDAG S2	665770	5488854	2020	1	2020-09-17	08:40	Aluminum (AI)	10200	mg/kg	ALS	RG MIDAG S2 SE-1 2020-09-17 0840
SE	MIDAG S2	665770	5488854	2020	1	2020-09-17	08:40	Antimony (Sb)	0.23	mg/kg	ALS	RG MIDAG S2 SE-1 2020-09-17 084
SE	MIDAG S2	665770	5488854	2020		2020-09-17	08:40	Arsenic (As)	6.26	mg/kg	ALS	RG MIDAG S2 SE-1 2020-09-17 084
SE	MIDAG S2	665770	5488854	2020		2020-09-17	08:40	Barium (Ba)	151	mg/kg	ALS	RG MIDAG S2 SE-1 2020-09-17 0840
SE	MIDAG S2	665770	5488854	2020		2020-09-17	08:40	Beryllium (Be)	0.65	mg/kg	ALS	RG MIDAG S2 SE-1 2020-09-17 0840
SE	MIDAG S2	665770	5488854	2020		2020-09-17	08:40	Bismuth (Bi)	<0.20	mg/kg	ALS	RG MIDAG S2 SE-1 2020-09-17 0840
SE	MIDAG S2	665770	5488854	2020		2020-09-17	08:40	Boron (B)	12.8	mg/kg	ALS	RG MIDAG S2 SE-1 2020-09-17 0840
SE	MIDAG S2	665770	5488854	2020		2020-09-17	08:40	Cadmium (Cd)	1.14	mg/kg	ALS	RG MIDAG S2 SE-1 2020-09-17 0840
SE	MIDAG S2	665770	5488854	2020	1	2020-09-17	08:40	Calcium (Ca)	74400	mg/kg	ALS	RG_MIDAG_S2_SE-1_2020-09-17_0840
SE	MIDAG S2	665770	5488854	2020	1	2020-09-17	08:40	Chromium (Cr)	16.1	mg/kg	ALS	RG MIDAG S2 SE-1 2020-09-17 0840
SE	MIDAG S2	665770	5488854	2020		2020-09-17	08:40	Cobalt (Co)	50.1	mg/kg	ALS	RG MIDAG S2 SE-1 2020-09-17 0840
SE	MIDAG S2	665770	5488854	2020		2020-09-17	08:40	Copper (Cu)	12.8	mg/kg	ALS	RG MIDAG S2 SE-1 2020-09-17 0840
SE	MIDAG S2	665770	5488854	2020		2020-09-17	08:40	Iron (Fe)	13400	mg/kg	ALS	RG MIDAG S2 SE-1 2020-09-17 0840
SE	MIDAG S2	665770	5488854	2020		2020-09-17	08:40	Lead (Pb)	7.92	mg/kg	ALS	RG MIDAG S2 SE-1 2020-09-17 0840
SE	MIDAG S2	665770	5488854	2020		2020-09-17	08:40	Lithium (Li)	12.9	mg/kg	ALS	RG MIDAG S2 SE-1 2020-09-17 0840
SE	MIDAG S2	665770	5488854	2020		2020-09-17	08:40	Magnesium (Mg)	10600	mg/kg	ALS	RG MIDAG S2 SE-1 2020-09-17 0840
SE	MIDAG S2	665770	5488854	2020		2020-09-17	08:40	Manganese (Mn)	486	mg/kg	ALS	RG MIDAG S2 SE-1 2020-09-17 0840
SE	MIDAG S2	665770	5488854	2020		2020-09-17	08:40	Molybdenum (Mo)	1.29	mg/kg	ALS	RG MIDAG S2 SE-1 2020-09-17 084
SE	MIDAG S2	665770	5488854	2020	-	2020-09-17	08:40	Nickel (Ni)	87.2	mg/kg	ALS	RG MIDAG S2 SE-1 2020-09-17 0840
SE	MIDAG S2	665770	5488854	2020		2020-09-17	08:40	Phosphorus (P)	989	mg/kg	ALS	RG MIDAG S2 SE-1 2020-09-17 0840
SE	MIDAG S2	665770	5488854	2020		2020-09-17	08:40	Potassium (K)	2500	mg/kg	ALS	RG MIDAG S2 SE-1 2020-09-17 0840
SE	MIDAG_62	665770	5488854	2020		2020-09-17	08:40	Selenium (Se)	3.20	mg/kg	ALS	RG MIDAG S2 SE-1 2020-09-17 0840
SE	MIDAG_62	665770	5488854	2020		2020-09-17	08:40	Silver (Ag)	0.13	mg/kg	ALS	RG MIDAG S2 SE-1 2020-09-17 0840
SE	MIDAG_S2	665770	5488854	2020		2020-09-17	08:40	Sodium (Na)	188	mg/kg	ALS	RG MIDAG S2 SE-1 2020-09-17 0840
SE	MIDAG_62	665770	5488854	2020		2020-09-17	08:40	Strontium (Sr)	113	mg/kg	ALS	RG MIDAG S2 SE-1 2020-09-17 0840
SE	MIDAG_S2	665770	5488854	2020		2020-09-17	08:40	Sulfur (S)	1100	mg/kg	ALS	RG MIDAG S2 SE-1 2020-09-17 0840
SE	MIDAG_S2	665770	5488854	2020		2020-09-17	08:40	Thallium (TI)	0.451	mg/kg	ALS	RG MIDAG S2 SE-1 2020-09-17 0840
SE SE	MIDAG_S2	665770	5488854	2020		2020-09-17	08:40	Tin (Sn)	<2.0	mg/kg	ALS	RG MIDAG S2 SE-1 2020-09-17 0840
SE SE	MIDAG_S2	665770	5488854	2020		2020-09-17	08:40	` '	12.5		ALS	RG MIDAG S2 SE-1 2020-09-17 0840
_	IVIIDAG_82	000770	5400054	2020	1 1	ZUZU-U9-17	1 00.40	Titanium (Ti)	12.5	mg/kg	ALO	NG_ V DAG_32_3E-1_2020-09-17_084

WSP Canada Inc. Page 184 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Туре	Station		(UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
Type	Station	Easting	Northing	i eai	Replicate	Date	Tille	Allalyte	Result	Ollit	Lab	Sample ID
SE	MIDAG_S2	665770	5488854	2020	1	2020-09-17	08:40	Tungsten (W)	<0.50	mg/kg	ALS	RG_MIDAG_S2_SE-1_2020-09-17_0840
SE	MIDAG_S2	665770	5488854	2020	1	2020-09-17	08:40	Uranium (U)	0.923	mg/kg	ALS	RG_MIDAG_S2_SE-1_2020-09-17_0840
SE	MIDAG_S2	665770	5488854	2020	1	2020-09-17	08:40	Vanadium (V)	26.8	mg/kg	ALS	RG_MIDAG_S2_SE-1_2020-09-17_0840
SE	MIDAG_S2	665770	5488854	2020	1	2020-09-17	08:40	Zinc (Zn)	123	mg/kg	ALS	RG_MIDAG_S2_SE-1_2020-09-17_0840
SE	MIDAG_S2	665770	5488854	2020	1	2020-09-17	08:40	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_MIDAG_S2_SE-1_2020-09-17_0840
SE	MIDAG_S2	665770	5488854	2020	1	2020-09-17	08:40	pH (1:2 soil:water)	7.90	рН	ALS	RG_MIDAG_S2_SE-1_2020-09-17_0840
SE	MIDAG_S2	665770	5488854	2020	1	2020-09-17	08:40	Total Organic Carbon	7.94	%	ALS	RG_MIDAG_S2_SE-1_2020-09-17_0840
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	Moisture	77.4	%	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	Acenaphthene	<0.020	mg/kg	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	Acenaphthylene	<0.010	mg/kg	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	Anthracene	<0.0080	mg/kg	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	Acridine	<0.022	mg/kg	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	Benz(a)anthracene	0.022	mg/kg	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	Benzo(a)pyrene	<0.020	mg/kg	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	Benzo(b&j)fluoranthene	0.068	mg/kg	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	Benzo(e)pyrene	0.073	mg/kg	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	Benzo(g_h_i)perylene	0.025	mg/kg	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	Benzo(k)fluoranthene	<0.020	mg/kg	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	Chrysene	0.112	mg/kg	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	Dibenz(a_h)anthracene	<0.010	mg/kg	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	Fluoranthene	0.031	mg/kg	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	Fluorene	0.028	mg/kg	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	Indeno(1,2,3-c,d)pyrene	<0.020	mg/kg	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	2-Methylnaphthalene	0.336	mg/kg	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	Naphthalene	0.150	mg/kg	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	Perylene	<0.020	mg/kg	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	Phenanthrene	0.273	mg/kg	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	Pyrene	0.041	mg/kg	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	1-Methylnaphthalene	0.224	mg/kg	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	Quinoline	<0.020	mg/kg	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	IACR (CCME)	0.66	-	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	B(a)P Total Potency Equivalent	0.027	mg/kg	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	Benzo(b+j+k)fluoranthene	0.068	mg/kg	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	IACR:Coarse	<0.050	-	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	IACR:Fine	<0.050	-	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	d8-Naphthalene	108.6	%	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	d10-Acenaphthene	110.4	%	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	d10-Phenanthrene	111.5	%	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	d12-Chrysene	120.8	%	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	% Gravel (>2 mm)	<1.0	%	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	% Sand (2.00 mm - 1.00 mm)	<1.0	%	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	% Sand (1.00 mm - 0.50 mm)	<1.0	%	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	% Sand (0.50 mm - 0.25 mm)	2.0	%	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	% Sand (0.25 mm - 0.125 mm)	4.5	%	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	% Sand (0.125 mm - 0.063 mm)	7.4	%	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	% Silt (0.063 mm - 0.0312 mm)	35.9	%	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	% Silt (0.031 mm - 0.004 mm)	40.7	%	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233

WSP Canada Inc. Page 185 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Table I-	1: Sediment Chem			CMm LAEMP	Sampling St	ations, 2012 to	2022		_	_		
Туре	Station	Location	ı (UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
		Easting	Northing		Replicate		111110	Allalyte			Lab	Sample ID
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	% Clay (<4 μm)	7.2	%	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	Texture	Silt loam	-	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	Mercury (Hg)	0.0472	mg/kg	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	Aluminum (Al)	10400	mg/kg	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	Antimony (Sb)	0.34	mg/kg	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	Arsenic (As)	5.86	mg/kg	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	Barium (Ba)	141	mg/kg	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	Beryllium (Be)	0.64	mg/kg	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	Bismuth (Bi)	<0.20	mg/kg	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	Boron (B)	14.6	mg/kg	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	Cadmium (Cd)	1.04	mg/kg	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	Calcium (Ca)	77600	mg/kg	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	Chromium (Cr)	16.1	mg/kg	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	Cobalt (Co)	40.0	mg/kg	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	Copper (Cu)	12.7	mg/kg	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	Iron (Fe)	12800	mg/kg	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	Lead (Pb)	7.35	mg/kg	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	Lithium (Li)	12.2	mg/kg	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	Magnesium (Mg)	10200	mg/kg	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	Manganese (Mn)	392	mg/kg	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	Molybdenum (Mo)	1.28	mg/kg	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	Nickel (Ni)	75.4	mg/kg	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	Phosphorus (P)	1090	mg/kg	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	Potassium (K)	2640	mg/kg	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	Selenium (Se)	3.15	mg/kg	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	Silver (Ag)	0.14	mg/kg	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	Sodium (Na)	191	mg/kg	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	Strontium (Sr)	120	mg/kg	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	Sulfur (S)	1000	mg/kg	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	Thallium (TI)	0.414	mg/kg	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	Tin (Sn)	<2.0	mg/kg		RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	Titanium (Ti)	23.7	mg/kg	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	Tungsten (W)	<0.50	mg/kg	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	Uranium (U)	0.837	mg/kg	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	Vanadium (V)	27.4	mg/kg	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	Zinc (Zn)	118	mg/kg	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	pH (1:2 soil:water)	7.72	pН	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	2	2020-09-17	12:33	Total Organic Carbon	7.06	%	ALS	RG_MIDAG_S2_SE-2_2020-09-17_1233
SE	MIDAG_S2	665770	5488854	2020	3	2020-09-17	13:14	Moisture	74.6	%	ALS	RG_MIDAG_S2_SE-3_2020-09-17_1341
SE	MIDAG_S2	665770	5488854	2020	3	2020-09-17	13:14	Acenaphthene	<0.015	mg/kg	ALS	RG_MIDAG_S2_SE-3_2020-09-17_1341
SE	MIDAG_S2	665770	5488854	2020	3	2020-09-17	13:14	Acenaphthylene	<0.010	mg/kg	ALS	RG_MIDAG_S2_SE-3_2020-09-17_1341
SE	MIDAG_S2	665770	5488854	2020	3	2020-09-17	13:14	Anthracene	<0.0080	mg/kg	ALS	RG_MIDAG_S2_SE-3_2020-09-17_1341
SE	MIDAG_S2	665770	5488854	2020	3	2020-09-17	13:14	Acridine	<0.026	mg/kg	ALS	RG_MIDAG_S2_SE-3_2020-09-17_1341
SE	MIDAG_S2	665770	5488854	2020	3	2020-09-17	13:14	Benz(a)anthracene	0.030	mg/kg	ALS	RG_MIDAG_S2_SE-3_2020-09-17_1341
SE	MIDAG_S2	665770	5488854	2020	3	2020-09-17	13:14	Benzo(a)pyrene	<0.020	mg/kg	ALS	RG_MIDAG_S2_SE-3_2020-09-17_1341
SE	MIDAG_S2	665770	5488854	2020	3	2020-09-17	13:14	Benzo(b&j)fluoranthene	0.078	mg/kg	ALS	RG_MIDAG_S2_SE-3_2020-09-17_1341

WSP Canada Inc. Page 186 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	1: Sediment Chem		(UTMs) ^(a)									Laboratory Information
Type	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MIDAG S2	665770	5488854	2020	3	2020-09-17	13:14	Benzo(e)pyrene	0.073	mg/kg	ALS	RG MIDAG S2 SE-3 2020-09-17_1341
SE	MIDAG S2	665770	5488854	2020	3	2020-09-17	13:14	Benzo(g_h_i)perylene	0.031	mg/kg	ALS	RG MIDAG S2 SE-3 2020-09-17_1341
SE	MIDAG S2	665770	5488854	2020	3	2020-09-17	13:14	Benzo(k)fluoranthene	<0.020	mg/kg	ALS	RG MIDAG S2 SE-3 2020-09-17 1341
SE	MIDAG S2	665770	5488854	2020	3	2020-09-17	13:14	Chrysene	0.123	mg/kg	ALS	RG MIDAG S2 SE-3 2020-09-17 1341
SE	MIDAG S2	665770	5488854	2020	3	2020-09-17	13:14	Dibenz(a h)anthracene	<0.010	mg/kg	ALS	RG MIDAG S2 SE-3 2020-09-17_1341
SE	MIDAG S2	665770	5488854	2020	3	2020-09-17	13:14	Fluoranthene	0.054	mg/kg	ALS	RG MIDAG S2 SE-3 2020-09-17_1341
SE	MIDAG S2	665770	5488854	2020	3	2020-09-17	13:14	Fluorene	0.036	mg/kg	ALS	RG MIDAG S2 SE-3 2020-09-17 1341
SE	MIDAG S2	665770	5488854	2020	3	2020-09-17	13:14	Indeno(1,2,3-c,d)pyrene	<0.020	mg/kg	ALS	RG MIDAG S2 SE-3 2020-09-17 1341
SE	MIDAG S2	665770	5488854	2020	3	2020-09-17	13:14	2-Methylnaphthalene	0.363	mg/kg	ALS	RG MIDAG S2 SE-3 2020-09-17 1341
SE	MIDAG S2	665770	5488854	2020	3	2020-09-17	13:14	Naphthalene	0.141	mg/kg	ALS	RG MIDAG S2 SE-3 2020-09-17 1341
SE	MIDAG S2	665770	5488854	2020	3	2020-09-17	13:14	Perylene	<0.020	mg/kg	ALS	RG MIDAG S2 SE-3 2020-09-17 1341
SE	MIDAG S2	665770	5488854	2020	3	2020-09-17	13:14	Phenanthrene	0.268	mg/kg	ALS	RG MIDAG S2 SE-3 2020-09-17 1341
SE	MIDAG S2	665770	5488854	2020	3	2020-09-17	13:14	Pyrene	0.049	mg/kg	ALS	RG MIDAG S2 SE-3 2020-09-17 1341
SE	MIDAG S2	665770	5488854	2020	3	2020-09-17	13:14	1-Methylnaphthalene	0.236	mg/kg	ALS	RG MIDAG S2 SE-3 2020-09-17 1341
SE	MIDAG S2	665770	5488854	2020	3	2020-09-17	13:14	Quinoline	<0.020	mg/kg	ALS	RG MIDAG S2 SE-3 2020-09-17_1341
SE	MIDAG S2	665770	5488854	2020	3	2020-09-17	13:14	IACR (CCME)	0.76	-	ALS	RG MIDAG S2 SE-3 2020-09-17 1341
SE	MIDAG S2	665770	5488854	2020	3	2020-09-17	13:14	B(a)P Total Potency Equivalent	0.029	mg/kg	ALS	RG MIDAG S2 SE-3 2020-09-17 1341
SE	MIDAG_S2	665770	5488854	2020	3	2020-09-17	13:14	Benzo(b+j+k)fluoranthene	0.078	mg/kg	ALS	RG MIDAG S2 SE-3 2020-09-17 1341
SE	MIDAG_62 MIDAG S2	665770	5488854	2020	3	2020-09-17	13:14	IACR:Coarse	<0.050	- 1119/119	ALS	RG MIDAG S2 SE-3 2020-09-17 1341
SE	MIDAG_62 MIDAG S2	665770	5488854	2020	3	2020-09-17	13:14	IACR:Fine	0.052	_	ALS	RG MIDAG S2 SE-3 2020-09-17 1341
SE	MIDAG_62 MIDAG S2	665770	5488854	2020	3	2020-09-17	13:14	d8-Naphthalene	104.5	%	ALS	RG MIDAG S2 SE-3 2020-09-17_1341
SE	MIDAG_62 MIDAG S2	665770	5488854	2020	3	2020-09-17	13:14	d10-Acenaphthene	108.1	%	ALS	RG MIDAG S2 SE-3 2020-09-17 1341
SE	MIDAG_62 MIDAG S2	665770	5488854	2020	3	2020-09-17	13:14	d10-Phenanthrene	109.4	%	ALS	RG MIDAG S2 SE-3 2020-09-17 1341
SE	MIDAG_62 MIDAG S2	665770	5488854	2020	3	2020-09-17	13:14	d12-Chrysene	118.0	%	ALS	RG MIDAG S2 SE-3 2020-09-17 1341
SE	MIDAG_62 MIDAG_82	665770	5488854	2020	3	2020-09-17	13:14	% Gravel (>2 mm)	<1.0	%	ALS	RG MIDAG S2 SE-3 2020-09-17_1341
SE	MIDAG_62 MIDAG S2	665770	5488854	2020	3	2020-09-17	13:14	% Sand (2.00 mm - 1.00 mm)	<1.0	%	ALS	RG MIDAG S2 SE-3 2020-09-17_1341
SE	MIDAG_62 MIDAG S2	665770	5488854	2020	3	2020-09-17	13:14	% Sand (1.00 mm - 0.50 mm)	2.2	%	ALS	RG MIDAG S2 SE-3 2020-09-17 1341
SE	MIDAG_62 MIDAG S2	665770	5488854	2020	3	2020-09-17	13:14	% Sand (0.50 mm - 0.25 mm)	5.8	%	ALS	RG MIDAG S2 SE-3 2020-09-17 1341
SE	MIDAG S2	665770	5488854	2020	3	2020-09-17	13:14	% Sand (0.25 mm - 0.125 mm)	11.2	%	ALS	RG MIDAG S2 SE-3 2020-09-17_1341
SE	MIDAG S2	665770	5488854	2020	3	2020-09-17	13:14	% Sand (0.125 mm - 0.063 mm)	10.4	%	ALS	RG MIDAG S2 SE-3 2020-09-17 1341
SE	MIDAG_S2	665770	5488854	2020	3	2020-09-17	13:14	% Silt (0.063 mm - 0.0312 mm)	29.6	%	ALS	RG_MIDAG_S2_SE-3_2020-09-17_1341
SE	MIDAG S2	665770	5488854	2020	3	2020-09-17	13:14	% Silt (0.031 mm - 0.004 mm)	33.8	%	ALS	RG MIDAG S2 SE-3 2020-09-17 1341
SE	MIDAG S2	665770	5488854	2020	3	2020-09-17	13:14	% Clay (<4 μm)	6.2	%	ALS	RG MIDAG S2 SE-3 2020-09-17 1341
SE	MIDAG S2	665770	5488854	2020	3	2020-09-17	13:14	Texture	Silt loam	-	ALS	RG MIDAG S2 SE-3 2020-09-17 1341
SE	MIDAG S2	665770	5488854	2020	3	2020-09-17	13:14	Mercury (Hg)	0.0412	mg/kg	ALS	RG MIDAG S2 SE-3 2020-09-17 1341
SE	MIDAG S2	665770	5488854	2020	3	2020-09-17	13:14	Aluminum (Al)	9620	mg/kg	ALS	RG MIDAG S2 SE-3 2020-09-17 1341
SE	MIDAG S2	665770	5488854	2020	3	2020-09-17	13:14	Antimony (Sb)	0.43	mg/kg	ALS	RG MIDAG S2 SE-3 2020-09-17 1341
SE	MIDAG S2	665770	5488854	2020	3	2020-09-17	13:14	Arsenic (As)	6.99	mg/kg	ALS	RG MIDAG S2 SE-3 2020-09-17 1341
SE	MIDAG_62 MIDAG_82	665770	5488854	2020	3	2020-09-17	13:14	Barium (Ba)	141	mg/kg	ALS	RG MIDAG S2 SE-3 2020-09-17 1341
SE	MIDAG_62 MIDAG S2	665770	5488854	2020	3	2020-09-17	13:14	Beryllium (Be)	0.73	mg/kg	ALS	RG MIDAG S2 SE-3 2020-09-17 1341
SE	MIDAG_62 MIDAG S2	665770	5488854	2020	3	2020-09-17	13:14	Bismuth (Bi)	<0.20	mg/kg	ALS	RG MIDAG S2 SE-3 2020-09-17 1341
SE	MIDAG S2	665770	5488854	2020	3	2020-09-17	13:14	Boron (B)	12.2	mg/kg	ALS	RG MIDAG S2 SE-3 2020-09-17 1341
SE	MIDAG_62	665770	5488854	2020	3	2020-09-17	13:14	Cadmium (Cd)	1.21	mg/kg	ALS	RG MIDAG S2 SE-3 2020-09-17 1341
SE	MIDAG_62 MIDAG_82	665770	5488854	2020	3	2020-09-17	13:14	Calcium (Ca)	48900	mg/kg	ALS	RG MIDAG S2 SE-3 2020-09-17 1341
SE	MIDAG_S2	665770	5488854	2020	3	2020-09-17	13:14	Chromium (Cr)	15.2	mg/kg	ALS	RG MIDAG S2 SE-3 2020-09-17 1341
SE	MIDAG_S2	665770	5488854	2020	3	2020-09-17	13:14	Cobalt (Co)	34.7	mg/kg	ALS	RG MIDAG S2 SE-3 2020-09-17 1341
SE	MIDAG_32	665770	5488854	2020	3	2020-09-17	13:14	Copper (Cu)	15.1	mg/kg	ALS	RG MIDAG S2 SE-3 2020-09-17 1341
٥L	WIDAU_02	000110	07000J 1	2020		2020-03°11	10.14	Tookhoi (Ori)	10.1	mg/Ng	ALO	\tag{\tag{\tag{\tag{\tag{\tag{\tag{

WSP Canada Inc. Page 187 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

MIDAG S2 665770 6468654 2020 3 2020-9-77 1314 10nn (Fe) 15100 mg/kg ALS RG MIDAG S2 52-2020-9-0-77 17-14 10nn (Fe) 15100 mg/kg ALS RG MIDAG S2 52-2020-9-0-77 17-14 10nn (Fe) 10.077 mg/kg ALS RG MIDAG S2 52-2020-9-0-77 17-14 10nn (Fe) 10.077 mg/kg ALS RG MIDAG S2 52-2020-9-0-77 17-14 10nn (Fe) 10.077 mg/kg ALS RG MIDAG S2 52-2020-9-0-77 17-14 10nn (Fe) 10.077 mg/kg ALS RG MIDAG S2 52-2020-9-0-77 17-14 10nn (Fe) 10.077 mg/kg ALS RG MIDAG S2 52-2020-9-0-77 17-14 10nn (Fe) 10nn (Type	Station	Location	ı (UTMs) ^(a)	Voor	Poplieste	Date	Time	Analyta	Pocult -	Unit		Laboratory Information
MDAG, S2 686770 5488864 2020 3 2020-09-17 1314 Limum (L) 14.0 mgkg ALS RG MDAG, S2 S6-3 2020-09-17 MDAG, S2 886770 5488864 2020 3 2020-09-17 1314 Limum (L) 14.0 mgkg ALS RG MDAG, S2 S6-3 2020-09-17 1314 Marginesium (Mg) 9450 mgkg ALS RG MDAG, S2 S6-3 2020-09-17 1314 Marginesium (Mg) 9450 mgkg ALS RG MDAG, S2 S6-3 2020-09-17 1314 Marginesium (Mg) 9450 mgkg ALS RG MDAG, S2 S6-3 2020-09-17 1314 Marginesium (Mg) 9450 mgkg ALS RG MDAG, S2 S6-3 2020-09-17 1314 Marginesium (Mg) 9450 mgkg ALS RG MDAG, S2 S6-3 2020-09-17 1314 Mg, Mg, Mg, Mg, Mg, Mg, Mg, Mg, Mg, Mg,	Гуре	Station			Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	
MDAG, S2 686770 5488864 2020 3 2020-09-17 1314 Limum (L) 14.0 mgkg ALS RG MDAG, S2 S6-3 2020-09-17 MDAG, S2 886770 5488864 2020 3 2020-09-17 1314 Limum (L) 14.0 mgkg ALS RG MDAG, S2 S6-3 2020-09-17 1314 Marginesium (Mg) 9450 mgkg ALS RG MDAG, S2 S6-3 2020-09-17 1314 Marginesium (Mg) 9450 mgkg ALS RG MDAG, S2 S6-3 2020-09-17 1314 Marginesium (Mg) 9450 mgkg ALS RG MDAG, S2 S6-3 2020-09-17 1314 Marginesium (Mg) 9450 mgkg ALS RG MDAG, S2 S6-3 2020-09-17 1314 Marginesium (Mg) 9450 mgkg ALS RG MDAG, S2 S6-3 2020-09-17 1314 Mg, Mg, Mg, Mg, Mg, Mg, Mg, Mg, Mg, Mg,	SE	MIDAG S2	665770	5488854	2020	3	2020-09-17	13:14	Iron (Fe)	15100	mg/kg	ALS	RG MIDAG S2 SE-3 2020-09-17 1341
MIDAG S2 685770 548894 7070 3 2020-09-17 13-14 Margenera (Mp) 9455 mg/kg ALS RG MIDAG S2 RS-3 2020-09-17 MIDAG S2 885770 548894 7070 3 2020-09-17 13-14 Margenera (Mp) 9455 mg/kg ALS RG MIDAG S2 RS-3 2020-09-17 MIDAG S2 685770 548894 7070 3 2020-09-17 13-14 Margenera (Mp) 482 mg/kg ALS RG MIDAG S2 RS-3 2020-09-17 MIDAG S2 685770 548894 7070 3 7020-09-17 13-14 Margenera (Mp) 482 mg/kg ALS RG MIDAG S2 RS-3 2020-09-17 MIDAG S2 685770 548894 7070 3 7020-09-17 13-14 Margenera (Mp) 482 mg/kg ALS RG MIDAG S2 RS-3 2020-09-17 MIDAG S2 685770 548894 7070 3 7020-09-17 13-14 Margenera (Mp) 482 mg/kg ALS RG MIDAG S2 RS-3 2020-09-17 MIDAG S2 685770 548894 7070 3 7020-09-17 13-14 Margenera (Mp) 7 7 7 7 7 7 7 7 7	SE	_	665770	5488854		3		13:14		9.07		ALS	RG MIDAG S2 SE-3 2020-09-17 1341
MINAG. S2 665770 5488854 2020 3 2000-05-17 13-14 Magnestum (Mg) 9450 mg/kg ALS RG, MIDAG. S2 82-3 2000-05-17 MIDAG. S2 665770 5488864 2020 3 2020-05-17 13-14 Magnestum (Mg) 1.62 mg/kg ALS RG, MIDAG. S2 82-3 2020-05-17 MIDAG. S2 665770 5488864 2020 3 2020-05-17 13-14 Nicela (Ng) 64.2 mg/kg ALS RG, MIDAG. S2 82-3 2020-05-17 MIDAG. S2 665770 5488864 2020 3 2020-05-17 13-14 Nicela (Ng) 1.070 mg/kg ALS RG, MIDAG. S2 83-2 2020-05-17 MIDAG. S2 665770 5488864 2020 3 2020-05-17 13-14 Nicela (Ng) 1.070 mg/kg ALS RG, MIDAG. S2 83-2 2020-05-17 MIDAG. S2 665770 5488864 2020 3 2020-05-17 13-14 Nicela (Ng) 1.070 mg/kg ALS RG, MIDAG. S2 83-3 2020-05-17 MIDAG. S2 665770 5488864 2020 3 2020-05-17 13-14 Nicela (Ng) 1.070 MIDAG. S2 665770 5488864 2020 3 2020-05-17 13-14 Nicela (Ng) 1.070 MIDAG. S2 665770 5488864 2020 3 2020-05-17 13-14 Nicela (Ng) 1.070 MIDAG. S2 665770 5488864 2020 3 2020-05-17 13-14 Nicela (Ng) 1.070 MIDAG. S2 665770 5488864 2020 3 2020-05-17 13-14 Nicela (Ng) 1.070 MIDAG. S2 665770 5488864 2020 3 2020-05-17 13-14 Nicela (Ng) 1.070 MIDAG. S2 665770 5488864 2020 3 2020-05-17 13-14 Nicela (Ng) 1.070 MIDAG. S2 665770 5488864 2020 3 2020-05-17 13-14 Nicela (Ng) 1.070 MIDAG. S2 665770 5488864 2020 3 2020-05-17 13-14 Nicela (Ng) 1.070 MIDAG. S2 665770 5488864 2020 3 2020-05-17 13-14 Nicela (Ng) 1.070 MIDAG. S2 665770 5488864 2020 3 2020-05-17 13-14 Nicela (Ng) 1.070 MIDAG. S2 665770 5488864 2020 3 2020-05-17 13-14 Nicela (Ng) 1.070 MIDAG. S2 665770 5488864 2020 3 2020-05-17 13-14 Nicela (Ng) 1.070 MIDAG. S2 665770 5488864 2020 3 2020-05-17 13-14 Nicela (Ng) 1.070 MIDAG. S2 665770 5488864 2020 3	SE	_	665770	5488854	2020	3		13:14	,	14.0		ALS	RG_MIDAG_S2_SE-3_2020-09-17_1341
MINAG S2 688770 5488854 2000 3 20010-917 13:14 Mongamene (Mn) 182 mg/kg ALS RG MIDAG S2 R5-3 2000-917 13:14 Molecule (Ns) 18:14 RG MIDAG S2 R5-3 2000-917 13:14 Molecule (Ns) 18:14 RG MIDAG S2 R5-3 2000-917 13:14 RG MIDAG S2 R5-3 2000-917 RG MG MG S2 R5-3 2000-917 RG MG S	SE	MIDAG S2	665770	5488854	2020	3	2020-09-17	13:14	, ,	9450		ALS	RG MIDAG S2 SE-3 2020-09-17 1341
MIDAG S2 695770 548854 2020 3 2020-98-17 13-14 Nolybernam (Mo) 1.02 mg/kg ALS RG , MIDAG S2, RE-3, 2020-98-17 MIDAG S2 695770 548854 2020 3 2020-98-17 13-14 Nolybernam (Mo) 1.02 mg/kg ALS RG , MIDAG S2, RE-3, 2020-98-17 MIDAG S2 685770 548854 2020 3 2020-98-17 13-14 Prosphorate (P) 1070 mg/kg ALS RG , MIDAG S2, RE-3, 2020-98-17 MIDAG S2 685770 5488564 2020 3 2020-98-17 13-14 Selentum (Re) 2.64 mg/kg ALS RG , MIDAG S2, RE-3, 2020-98-17 MIDAG S2 685770 5488564 2020 3 2020-98-17 13-14 Selentum (Re) 13-19 mg/kg ALS RG , MIDAG S2, RE-3, 2020-98-17 MIDAG S2 685770 6488564 2020 3 2020-98-17 13-14 Selentum (Re) 13-19 mg/kg ALS RG , MIDAG S2, RE-3, 2020-98-17 MIDAG S2 685770 6488564 2020 3 2020-98-17 13-14 Selentum (Re) 13-19 mg/kg ALS RG , MIDAG S2, RE-3, 2020-98-17 MIDAG S2 685770 6488564 2020 3 2020-98-17 13-14 Selentum (Re) 13-19 mg/kg ALS RG , MIDAG S2, RE-3, 2020-98-17 MIDAG S2 685770 5488564 2020 3 2020-98-17 13-14 Trailium (Ti) 40-09 mg/kg ALS RG , MIDAG S2, RE-3, 2020-98-17 MIDAG S2 685770 5488564 2020 3 2020-98-17 13-14 Trailium (Ti) 40-09 mg/kg ALS RG , MIDAG S2, RE-3, 2020-98-17 MIDAG S2 685770 5488564 2020 3 2020-98-17 13-14 Trailium (Ti) 40-09 mg/kg ALS RG , MIDAG S2, RE-3, 2020-98-17 MIDAG S2 685770 5488564 2020 3 2020-98-17 13-14 Trailium (Ti) 22-3 mg/kg ALS RG , MIDAG S2, RE-3, 2020-98-17 MIDAG S2 685770 5488564 2020 3 2020-98-17 13-14 Trailium (Ti) 22-3 mg/kg ALS RG , MIDAG S2, RE-3, 2020-98-17 MIDAG S2 685770 5488564 2020 3 2020-98-17 13-14 Trailium (Ti) 22-3 mg/kg ALS RG , MIDAG S2, RE-3, 2020-98-17 MIDAG S2 685770 5488564 2020 3 2020-98-17 13-14 Trailium (Ti) 8897 mg/kg ALS RG , MIDAG S2, RE-3, 2020-98-17 MIDAG S2 685770 5488564 2020 3	SE	MIDAG S2	665770	5488854	2020	3	2020-09-17	13:14	` ```	482		ALS	RG_MIDAG_S2_SE-3_2020-09-17_1341
MINAG S2 695770 5488954 2020 3 2020-89-17 13-14 Notice (N) 94-2 mg/kg ALS RG, MIDAG S2, SE-3, 2020-99-17 MIDAG S2 695770 5488954 2020 3 2020-89-17 13-14 Potassium (K) 2160 mg/kg ALS RG, MIDAG S2, SE-3, 2020-99-17 MIDAG S2 695770 5488954 2020 3 2020-89-17 13-14 Sheritum (S6) 2 84 mg/kg ALS RG, MIDAG S2, SE-3, 2020-99-17 MIDAG S2 695770 5488954 2020 3 2020-99-17 13-14 Sheritum (S6) 2 84 mg/kg ALS RG, MIDAG S2, SE-3, 2020-99-17 MIDAG S2 695770 5488954 2020 3 2020-99-17 13-14 Sheritum (S6) 13-9 mg/kg ALS RG, MIDAG S2, SE-3, 2020-99-17 MIDAG S2 695770 5488954 2020 3 2020-99-17 13-14 Sheritum (S6) 13-9 mg/kg ALS RG, MIDAG S2, SE-3, 2020-99-17 MIDAG S2 695770 5488954 2020 3 2020-99-17 13-14 Sheritum (S6) 14-1 mg/kg ALS RG, MIDAG S2, SE-3, 2020-99-17 MIDAG S2 695770 5488954 2020 3 2020-99-17 13-14 Sheritum (S6) 14-1 mg/kg ALS RG, MIDAG S2, SE-3, 2020-99-17 MIDAG S2 695770 5488954 2020 3 2020-99-17 13-14 Thalleum (Ti) 0.400 mg/kg ALS RG, MIDAG S2, SE-3, 2020-99-17 MIDAG S2 695770 5488954 2020 3 2020-99-17 13-14 Thalleum (Ti) 0.400 mg/kg ALS RG, MIDAG S2, SE-3, 2020-99-17 MIDAG S2 695770 5488954 2020 3 2020-99-17 13-14 Thalleum (Ti) 0.400 mg/kg ALS RG, MIDAG S2, SE-3, 2020-99-17 MIDAG S2 695770 5488954 2020 3 2020-99-17 13-14 Thalleum (Ti) 0.400 mg/kg ALS RG, MIDAG S2, SE-3, 2020-99-17 MIDAG S2 695770 5488954 2020 3 2020-99-17 13-14 Thalleum (Ti) 0.997 mg/kg ALS RG, MIDAG S2, SE-3, 2020-99-17 MIDAG S2 695770 5488954 2020 3 2020-99-17 13-14 Thalleum (Ti) 0.997 mg/kg ALS RG, MIDAG S2, SE-3, 2020-99-17 MIDAG S2 695770 5488954 2020 3 2020-99-17 13-14 Thalleum (Ti) 0.997 mg/kg ALS RG, MIDAG S2, SE-3, 2020-99-17 MIDAG S2 695770 5488954 2020 3 2020-99-17 13-14	SE	MIDAG S2	665770	5488854	2020	3	2020-09-17	13:14		1.62		ALS	RG MIDAG S2 SE-3 2020-09-17 1341
MIDAG S2	SE	MIDAG S2	665770	5488854	2020	3	2020-09-17	13:14	Nickel (Ni)	64.2		ALS	RG MIDAG S2 SE-3 2020-09-17 1341
MIDAG S2	SE	MIDAG S2	665770	5488854	2020	3	2020-09-17	13:14	Phosphorus (P)	1070		ALS	RG_MIDAG_S2_SE-3_2020-09-17_1341
MIDAG S2 665770	SE	MIDAG_S2	665770	5488854	2020	3	2020-09-17	13:14	· · · · · · · · · · · · · · · · · · ·	2160		ALS	RG_MIDAG_S2_SE-3_2020-09-17_1341
MIDAG SZ 665770	SE	MIDAG S2	665770	5488854	2020	3	2020-09-17	13:14	. ,	2.64		ALS	RG MIDAG S2 SE-3 2020-09-17 1341
MDAG S2 665770	SE	MIDAG_S2	665770	5488854	2020	3	2020-09-17	13:14	Silver (Ag)	0.14	mg/kg	ALS	RG_MIDAG_S2_SE-3_2020-09-17_1341
MDAG \$2 665770	SE	MIDAG S2	665770	5488854	2020	3	2020-09-17	13:14	Sodium (Na)	139	mg/kg	ALS	RG MIDAG S2 SE-3 2020-09-17 1341
MIDAG S2	SE	MIDAG S2	665770	5488854	2020	3	2020-09-17	13:14	Strontium (Sr)	81.4		ALS	RG_MIDAG_S2_SE-3_2020-09-17_1341
MIDAG S2 665770	SE	MIDAG S2	665770	5488854	2020	3	2020-09-17	13:14	Sulfur (S)	<1000		ALS	RG_MIDAG_S2_SE-3_2020-09-17_1341
MIDAG S2 665770	SE	MIDAG_S2	665770	5488854	2020	3	2020-09-17	13:14	Thallium (TI)	0.490	mg/kg	ALS	RG MIDAG S2 SE-3 2020-09-17 1341
MIDAG S2 665770 5488854 2020 3 2020-09-17 13:14 Titanium (T) 23.3 mg/kg ALS RG MIDAG S2 SE-3 2020-09-17 MIDAG S2 665770 5488854 2020 3 2020-09-17 13:14 Titanium (U) 0.897 mg/kg ALS RG MIDAG S2 SE-3 2020-09-17 MIDAG S2 665770 5488854 2020 3 2020-09-17 13:14 Vanadium (V) 26.0 mg/kg ALS RG MIDAG S2 SE-3 2020-09-17 MIDAG S2 665770 5488854 2020 3 2020-09-17 13:14 Vanadium (V) 26.0 mg/kg ALS RG MIDAG S2 SE-3 2020-09-17 MIDAG S2 665770 5488854 2020 3 2020-09-17 13:14 Zirconium (Zir) 41.0 mg/kg ALS RG MIDAG S2 SE-3 2020-09-17 MIDAG S2 665770 5488854 2020 3 2020-09-17 13:14 Zirconium (Zir) 41.0 mg/kg ALS RG MIDAG S2 SE-3 2020-09-17 MIDAG S2 665770 5488854 2020 3 2020-09-17 13:14 Zirconium (Zir) 41.0 mg/kg ALS RG MIDAG S2 SE-3 2020-09-17 MIDAG S2 665770 5488854 2020 3 2020-09-17 13:14 Zirconium (Zir) 41.0 mg/kg ALS RG MIDAG S2 SE-3 2020-09-17 MIDAG S2 665770 5488854 2020 4 2020-09-17 14:57 Moltus (Zirconium (Zirconi	SE	MIDAG_S2	665770	5488854	2020	3	2020-09-17	13:14	, ,	<2.0		ALS	RG_MIDAG_S2_SE-3_2020-09-17_1341
MIDAG 52 665770	SE	MIDAG_S2	665770	5488854	2020	3	2020-09-17	13:14	Titanium (Ti)	23.3		ALS	RG MIDAG S2 SE-3 2020-09-17 1341
MIDAG \$2 665770 \$488854 2020 3 2020-09-17 13:14 Uranium (U) 20.0 mg/kg ALS RG MIDAG \$2 \$5.2 2020-09-17 MIDAG \$2 665770 \$488854 2020 3 2020-09-17 13:14 Zinc (Zn) 128 mg/kg ALS RG MIDAG \$2 \$5.2 \$2.200-09-17 MIDAG \$2 665770 \$488854 2020 3 2020-09-17 13:14 Zinc (Zn) 128 mg/kg ALS RG MIDAG \$2 \$5.2 \$2.200-09-17 MIDAG \$2 665770 \$488854 2020 3 2020-09-17 13:14 Zinc (introduced by the control of the control	SE	MIDAG S2	665770	5488854	2020	3	2020-09-17	13:14	Tungsten (W)	<0.50	mg/kg	ALS	RG MIDAG S2 SE-3 2020-09-17 1341
MIDAG \$2 665770	SE	MIDAG S2	665770	5488854	2020	3	2020-09-17	13:14	• , ,	0.897		ALS	RG_MIDAG_S2_SE-3_2020-09-17_1341
MIDAG_S2 665770	SE	MIDAG_S2	665770	5488854	2020	3	2020-09-17	13:14	Vanadium (V)	26.0	mg/kg	ALS	RG_MIDAG_S2_SE-3_2020-09-17_134
MIDAG_S2 665770	SE	MIDAG S2	665770	5488854	2020	3	2020-09-17	13:14	Zinc (Zn)	128		ALS	RG_MIDAG_S2_SE-3_2020-09-17_134
MIDAG \$2	SE	MIDAG_S2	665770	5488854	2020	3	2020-09-17	13:14	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_MIDAG_S2_SE-3_2020-09-17_1341
MIDAG S2	SE	MIDAG_S2	665770	5488854	2020	3	2020-09-17	13:14	pH (1:2 soil:water)	7.90		ALS	RG_MIDAG_S2_SE-3_2020-09-17_1341
MIDAG S2 665770 548854 2020 4 2020-09-17 14:57 Acenaphthylene <0.017 mg/kg ALS RG MIDAG S2 SE-4 2020-09-17 MIDAG S2 665770 5488854 2020 4 2020-09-17 14:57 Acenaphthylene <0.010 mg/kg ALS RG MIDAG S2 SE-4 2020-09-17 MIDAG S2 665770 548854 2020 4 2020-09-17 14:57 Acenaphthylene <0.0080 mg/kg ALS RG MIDAG S2 SE-4 2020-09-17 MIDAG S2 665770 548854 2020 4 2020-09-17 14:57 Acridine <0.035 mg/kg ALS RG MIDAG S2 SE-4 2020-09-17 MIDAG S2 665770 548854 2020 4 2020-09-17 14:57 Benz(a)pyrene <0.028 mg/kg ALS RG MIDAG S2 SE-4 2020-09-17 MIDAG S2 665770 548854 2020 4 2020-09-17 14:57 Benz(a)pyrene <0.020 mg/kg ALS RG MIDAG S2 SE-4 2020-09-17 MIDAG S2 665770 548854 2020 4 2020-09-17 14:57 Benz(a)pyrene <0.020 mg/kg ALS RG MIDAG S2 SE-4 2020-09-17 MIDAG S2 665770 548854 2020 4 2020-09-17 14:57 Benz(a)pyrene 0.101 mg/kg ALS RG MIDAG S2 SE-4 2020-09-17 MIDAG S2 665770 548854 2020 4 2020-09-17 14:57 Benz(a)pyrene 0.103 mg/kg ALS RG MIDAG S2 SE-4 2020-09-17 MIDAG S2 665770 548854 2020 4 2020-09-17 14:57 Benz(a)pyrene 0.103 mg/kg ALS RG MIDAG S2 SE-4 2020-09-17 MIDAG S2 665770 548854 2020 4 2020-09-17 14:57 Benz(a)pyrene 0.168 mg/kg ALS RG MIDAG S2 SE-4 2020-09-17 MIDAG S2 665770 548854 2020 4 2020-09-17 14:57 Benz(a)pyrene 0.168 mg/kg ALS RG MIDAG S2 SE-4 2020-09-17 MIDAG S2 665770 548854 2020 4 2020-09-17 14:57 Dibenz(a h)anthracene 0.168 mg/kg ALS RG MIDAG S2 SE-4 2020-09-17 MIDAG S2 665770 548854 2020 4 2020-09-17 14:57 Dibenz(a h)anthracene 0.048 mg/kg ALS RG MIDAG S2 SE-4 2020-09-17 MIDAG S2 665770 548854 2020 4 2020-09-17 14:57 Dibenz(a h)anthracene 0.048 mg/kg ALS RG MIDAG S2 SE	SE	MIDAG_S2	665770	5488854	2020	3	2020-09-17	13:14		8.83	%	ALS	RG MIDAG S2 SE-3 2020-09-17 1341
MIDAG S2 665770	SE	MIDAG_S2	665770	5488854	2020	4	2020-09-17	14:57	Moisture	74.3	%	ALS	RG_MIDAG_S2_SE-4_2020-09-17_1457
MIDAG_S2 665770 5488854 2020 4 2020-09-17 14:57 Anthracene <0.0080 mg/kg ALS RG MIDAG_S2 SE-4_2020-09-17 MIDAG_S2 665770 5488854 2020 4 2020-09-17 14:57 Acridine <0.035 mg/kg ALS RG MIDAG_S2 SE-4_2020-09-17 MIDAG_S2 665770 5488854 2020 4 2020-09-17 14:57 Benzo(a)pyrene <0.028 mg/kg ALS RG MIDAG_S2 SE-4_2020-09-17 MIDAG_S2 665770 5488854 2020 4 2020-09-17 14:57 Benzo(a)pyrene <0.020 mg/kg ALS RG MIDAG_S2 SE-4_2020-09-17 MIDAG_S2 665770 5488854 2020 4 2020-09-17 14:57 Benzo(b)B/Illoranthene 0.101 mg/kg ALS RG MIDAG_S2 SE-4_2020-09-17 MIDAG_S2 665770 5488854 2020 4 2020-09-17 14:57 Benzo(b)B/Illoranthene 0.101 mg/kg ALS RG MIDAG_S2 SE-4_2020-09-17 MIDAG_S2 665770 5488854 2020 4 2020-09-17 14:57 Benzo(b)B/Illoranthene 0.036 mg/kg ALS RG MIDAG_S2 SE-4_2020-09-17 MIDAG_S2 665770 5488854 2020 4 2020-09-17 14:57 Benzo(b)B/Illoranthene 0.036 mg/kg ALS RG MIDAG_S2 SE-4_2020-09-17 MIDAG_S2 665770 5488854 2020 4 2020-09-17 14:57 Benzo(b)B/Illoranthene 0.036 mg/kg ALS RG MIDAG_S2 SE-4_2020-09-17 MIDAG_S2 665770 5488854 2020 4 2020-09-17 14:57 Benzo(b)B/Illoranthene 0.020 mg/kg ALS RG MIDAG_S2 SE-4_2020-09-17 MIDAG_S2 665770 5488854 2020 4 2020-09-17 14:57 Dibenz(a h)anthracene 0.048 mg/kg ALS RG MIDAG_S2 SE-4_2020-09-17 MIDAG_S2 665770 5488854 2020 4 2020-09-17 14:57 Dibenz(a h)anthracene 0.048 mg/kg ALS RG MIDAG_S2 SE-4_2020-09-17 MIDAG_S2 665770 5488854 2020 4 2020-09-17 14:57 Fluoranthene 0.048 mg/kg ALS RG MIDAG_S2 SE-4_2020-09-17 MIDAG_S2 665770 5488854 2020 4 2020-09-17 14:57 Fluoranthene 0.048 mg/kg ALS RG MIDAG_S2 SE-4_2020-09-17 MIDAG_S2 665770 5488854 2020 4 2020-09-17 14:57 Preplene 0.046 mg/kg ALS RG MIDAG_S2 SE-4_2020-09-17 MI	SE	MIDAG_S2	665770	5488854	2020	4	2020-09-17	14:57	Acenaphthene	<0.017	mg/kg	ALS	RG_MIDAG_S2_SE-4_2020-09-17_1457
MIDAG S2 665770 5488854 2020 4 2020-09-17 14:57 Acridine	SE	MIDAG_S2	665770	5488854	2020	4	2020-09-17	14:57	Acenaphthylene	<0.010	mg/kg	ALS	RG_MIDAG_S2_SE-4_2020-09-17_1457
MIDAG_S2 665770 5488854 2020 4 2020-09-17 14:57 Benza(a)anthracene 0.028 mg/kg ALS RG_MIDAG_S2_SE-4_2020-09-17 MIDAG_S2 665770 5488854 2020 4 2020-09-17 14:57 Benzo(a)pyrene 0.020 mg/kg ALS RG_MIDAG_S2_SE-4_2020-09-17 MIDAG_S2 665770 5488854 2020 4 2020-09-17 14:57 Benzo(b)jfluoranthene 0.101 mg/kg ALS RG_MIDAG_S2_SE-4_2020-09-17 MIDAG_S2 665770 5488854 2020 4 2020-09-17 14:57 Benzo(b)jfluoranthene 0.103 mg/kg ALS RG_MIDAG_S2_SE-4_2020-09-17 MIDAG_S2 665770 5488854 2020 4 2020-09-17 14:57 Benzo(b)jfluoranthene 0.036 mg/kg ALS RG_MIDAG_S2_SE-4_2020-09-17 MIDAG_S2 665770 5488854 2020 4 2020-09-17 14:57 Benzo(b)jfluoranthene 0.036 mg/kg ALS RG_MIDAG_S2_SE-4_2020-09-17 MIDAG_S2 665770 5488854 2020 4 2020-09-17 14:57 Benzo(b)jfluoranthene 0.020 mg/kg ALS RG_MIDAG_S2_SE-4_2020-09-17 MIDAG_S2 665770 5488854 2020 4 2020-09-17 14:57 Chrysene 0.168 mg/kg ALS RG_MIDAG_S2_SE-4_2020-09-17 MIDAG_S2 665770 5488854 2020 4 2020-09-17 14:57 Dibenz(a h)anthracene 0.048 mg/kg ALS RG_MIDAG_S2_SE-4_2020-09-17 MIDAG_S2 665770 5488854 2020 4 2020-09-17 14:57 Fluoranthene 0.048 mg/kg ALS RG_MIDAG_S2_SE-4_2020-09-17 MIDAG_S2 665770 5488854 2020 4 2020-09-17 14:57 Fluoranthene 0.048 mg/kg ALS RG_MIDAG_S2_SE-4_2020-09-17 MIDAG_S2 665770 5488854 2020 4 2020-09-17 14:57 Indenot_1/2,3-c,d)pyrene 0.040 mg/kg ALS RG_MIDAG_S2_SE-4_2020-09-17 MIDAG_S2 665770 5488854 2020 4 2020-09-17 14:57 Midenot_1/2,3-c,d)pyrene 0.040 mg/kg ALS RG_MIDAG_S2_SE-4_2020-09-17 MIDAG_S2 665770 5488854 2020 4 2020-09-17 14:57 Midenot_1/2,3-c,d)pyrene 0.056 mg/kg ALS RG_MIDAG_S2_SE-4_2020-09-17 MIDAG_S2 665770 5488854 2020 4 2020-09-17 14:57 Midenot_1/2,3-c,d)pyrene 0.056 mg/kg ALS RG_MIDAG_S2_SE-4_2020-09-17 MID	SE	MIDAG_S2	665770	5488854	2020	4	2020-09-17	14:57	Anthracene	<0.0080	mg/kg	ALS	RG_MIDAG_S2_SE-4_2020-09-17_1457
MIDAG_S2 665770 5488854 2020 4 2020-09-17 14:57 Benzo(a)pyrene	SE	MIDAG_S2	665770	5488854	2020	4	2020-09-17	14:57	Acridine	<0.035	mg/kg	ALS	RG_MIDAG_S2_SE-4_2020-09-17_1457
MIDAG S2 665770 548854 2020 4 2020-09-17 14:57 Benzo(b&))fluoranthene 0.101 mg/kg ALS RG MIDAG S2 SE-4 2020-09-17 MIDAG S2 665770 548854 2020 4 2020-09-17 14:57 Benzo(e)pyrene 0.103 mg/kg ALS RG MIDAG S2 SE-4 2020-09-17 MIDAG S2 665770 548854 2020 4 2020-09-17 14:57 Benzo(g h i)perylene 0.036 mg/kg ALS RG MIDAG S2 SE-4 2020-09-17 MIDAG S2 665770 548854 2020 4 2020-09-17 14:57 Benzo(g h i)perylene 0.036 mg/kg ALS RG MIDAG S2 SE-4 2020-09-17 MIDAG S2 665770 548854 2020 4 2020-09-17 14:57 Chrysene 0.168 mg/kg ALS RG MIDAG S2 SE-4 2020-09-17 MIDAG S2 665770 548854 2020 4 2020-09-17 14:57 Dibenz(a h)anthracene 0.048 mg/kg ALS RG MIDAG S2 SE-4 2020-09-17 MIDAG S2 665770 548854 2020 4 2020-09-17 14:57 Fluoranthene 0.048 mg/kg ALS RG MIDAG S2 SE-4 2020-09-17 MIDAG S2 665770 548854 2020 4 2020-09-17 14:57 Fluoranthene 0.048 mg/kg ALS RG MIDAG S2 SE-4 2020-09-17 MIDAG S2 665770 548854 2020 4 2020-09-17 14:57 Fluoranthene 0.0467 mg/kg ALS RG MIDAG S2 SE-4 2020-09-17 MIDAG S2 665770 548854 2020 4 2020-09-17 14:57 Indeno(1,2,3-c,d)pyrene 0.0467 mg/kg ALS RG MIDAG S2 SE-4 2020-09-17 MIDAG S2 665770 548854 2020 4 2020-09-17 14:57 Naphthalene 0.194 mg/kg ALS RG MIDAG S2 SE-4 2020-09-17 MIDAG S2 665770 548854 2020 4 2020-09-17 14:57 Perylene 0.020 mg/kg ALS RG MIDAG S2 SE-4 2020-09-17 MIDAG S2 665770 548854 2020 4 2020-09-17 14:57 Perylene 0.056 mg/kg ALS RG MIDAG S2 SE-4 2020-09-17 MIDAG S2 665770 548854 2020 4 2020-09-17 14:57 Perylene 0.056 mg/kg ALS RG MIDAG S2 SE-4 2020-09-17 MIDAG S2 665770 548854 2020 4 2020-09-17 14:57 Perylene 0.056 mg/kg ALS RG MIDAG S2 SE-4 2020-09-17 MIDAG	SE	MIDAG_S2	665770	5488854	2020	4	2020-09-17	14:57	Benz(a)anthracene	0.028	mg/kg	ALS	RG_MIDAG_S2_SE-4_2020-09-17_1457
MIDAG S2 665770 5488854 2020 4 2020-09-17 14:57 Benzo(e)pyrene 0.103 mg/kg ALS RG_MIDAG_S2_SE-4_2020-09-17 MIDAG_S2 665770 5488854 2020 4 2020-09-17 14:57 Benzo(g_h_i)perylene 0.036 mg/kg ALS RG_MIDAG_S2_SE-4_2020-09-17 MIDAG_S2 665770 5488854 2020 4 2020-09-17 14:57 Benzo(g/h_i)perylene 0.048 mg/kg ALS RG_MIDAG_S2_SE-4_2020-09-17 MIDAG_S2 665770 5488854 2020 4 2020-09-17 14:57 Chrysene 0.168 mg/kg ALS RG_MIDAG_S2_SE-4_2020-09-17 MIDAG_S2 665770 5488854 2020 4 2020-09-17 14:57 Dibenz(a_h)anthracene <0.015	SE	MIDAG_S2	665770	5488854	2020	4	2020-09-17	14:57	Benzo(a)pyrene	<0.020	mg/kg	ALS	RG_MIDAG_S2_SE-4_2020-09-17_1457
MIDAG_S2 665770 548854 2020 4 2020-09-17 14:57 Benzo(g_h_i)perylene 0.036 mg/kg ALS RG_MIDAG_S2_SE-4_2020-09-17 MIDAG_S2 665770 548854 2020 4 2020-09-17 14:57 Benzo(k)fluoranthene <0.020 mg/kg ALS RG_MIDAG_S2_SE-4_2020-09-17 MIDAG_S2 665770 548854 2020 4 2020-09-17 14:57 Chrysene 0.168 mg/kg ALS RG_MIDAG_S2_SE-4_2020-09-17 MIDAG_S2 665770 548854 2020 4 2020-09-17 14:57 Dibenz(a_h)anthracene <0.015 mg/kg ALS RG_MIDAG_S2_SE-4_2020-09-17 MIDAG_S2 665770 548854 2020 4 2020-09-17 14:57 Fluoranthene 0.048 mg/kg ALS RG_MIDAG_S2_SE-4_2020-09-17 MIDAG_S2 665770 548854 2020 4 2020-09-17 14:57 Fluorene <0.042 mg/kg ALS RG_MIDAG_S2_SE-4_2020-09-17 MIDAG_S2 665770 548854 2020 4 2020-09-17 14:57 Fluorene <0.042 mg/kg ALS RG_MIDAG_S2_SE-4_2020-09-17 MIDAG_S2 665770 548854 2020 4 2020-09-17 14:57 Indeno(1,2,3-c,d)pyrene <0.020 mg/kg ALS RG_MIDAG_S2_SE-4_2020-09-17 MIDAG_S2 665770 548854 2020 4 2020-09-17 14:57 Indeno(1,2,3-c,d)pyrene <0.020 mg/kg ALS RG_MIDAG_S2_SE-4_2020-09-17 MIDAG_S2 665770 548854 2020 4 2020-09-17 14:57 Naphthalene 0.467 mg/kg ALS RG_MIDAG_S2_SE-4_2020-09-17 MIDAG_S2 665770 548854 2020 4 2020-09-17 14:57 Naphthalene 0.194 mg/kg ALS RG_MIDAG_S2_SE-4_2020-09-17 MIDAG_S2 665770 548854 2020 4 2020-09-17 14:57 Perylene <0.020 mg/kg ALS RG_MIDAG_S2_SE-4_2020-09-17 MIDAG_S2 665770 548854 2020 4 2020-09-17 14:57 Perylene <0.020 mg/kg ALS RG_MIDAG_S2_SE-4_2020-09-17 MIDAG_S2 665770 548854 2020 4 2020-09-17 14:57 Perylene <0.020 mg/kg ALS RG_MIDAG_S2_SE-4_2020-09-17 MIDAG_S2 665770 548854 2020 4 2020-09-17 14:57 Perylene <0.056 mg/kg ALS RG_MIDAG_S2_SE-4_2020-09-17 MIDAG_S2 665770 548854 2020 4 2020-09-17 14:57 Perylene <0.056 mg/kg ALS RG	SE	MIDAG_S2	665770	5488854	2020	4	2020-09-17	14:57	Benzo(b&j)fluoranthene	0.101	mg/kg	ALS	RG_MIDAG_S2_SE-4_2020-09-17_1457
MIDAG_S2 665770 5488854 2020 4 2020-09-17 14:57 Benzo(k)fluoranthene <0.020 mg/kg ALS RG_MIDAG_S2_SE-4_2020-09-17 MIDAG_S2 665770 5488854 2020 4 2020-09-17 14:57 Chrysene 0.168 mg/kg ALS RG_MIDAG_S2_SE-4_2020-09-17 MIDAG_S2 665770 5488854 2020 4 2020-09-17 14:57 Dibenz(a_h)anthracene 0.015 mg/kg ALS RG_MIDAG_S2_SE-4_2020-09-17 MIDAG_S2 665770 5488854 2020 4 2020-09-17 14:57 Fluoranthene 0.048 mg/kg ALS RG_MIDAG_S2_SE-4_2020-09-17 MIDAG_S2 665770 5488854 2020 4 2020-09-17 14:57 Fluoranthene -0.048 mg/kg ALS RG_MIDAG_S2_SE-4_2020-09-17 MIDAG_S2 665770 5488854 2020 4 2020-09-17 14:57 Fluorene -0.042 mg/kg ALS RG_MIDAG_S2_SE-4_2020-09-17 MIDAG_S2 665770	SE	MIDAG_S2	665770	5488854	2020	4	2020-09-17	14:57	Benzo(e)pyrene	0.103	mg/kg	ALS	RG_MIDAG_S2_SE-4_2020-09-17_1457
MIDAG S2 665770 5488854 2020 4 2020-09-17 14:57 Chrysene 0.168 mg/kg ALS RG_MIDAG_S2_SE-4_2020-09-17 MIDAG_S2 665770 5488854 2020 4 2020-09-17 14:57 Dibenz(a_h)anthracene <0.015	SE	MIDAG_S2	665770	5488854	2020	4	2020-09-17	14:57	Benzo(g_h_i)perylene	0.036	mg/kg	ALS	RG_MIDAG_S2_SE-4_2020-09-17_1457
MIDAG S2 665770 548854 2020 4 2020-09-17 14:57 Dibenz(a_h)anthracene <0.015 mg/kg ALS RG_MIDAG_S2_SE-4_2020-09-17 MIDAG_S2 665770 5488854 2020 4 2020-09-17 14:57 Fluoranthene 0.048 mg/kg ALS RG_MIDAG_S2_SE-4_2020-09-17 MIDAG_S2 665770 5488854 2020 4 2020-09-17 14:57 Fluorene <0.042	SE	MIDAG_S2	665770	5488854	2020	4	2020-09-17	14:57	Benzo(k)fluoranthene	<0.020	mg/kg	ALS	RG_MIDAG_S2_SE-4_2020-09-17_1457
MIDAG S2 665770 5488854 2020 4 2020-09-17 14:57 Fluoranthene 0.048 mg/kg ALS RG_MIDAG_S2_SE-4_2020-09-17 MIDAG_S2 665770 5488854 2020 4 2020-09-17 14:57 Fluorene <0.042	SE	MIDAG_S2	665770	5488854	2020	4	2020-09-17	14:57	Chrysene	0.168	mg/kg	ALS	RG_MIDAG_S2_SE-4_2020-09-17_145
MIDAG S2 665770 5488854 2020 4 2020-09-17 14:57 Fluorene <0.042 mg/kg ALS RG MIDAG S2 SE-4 2020-09-17 MIDAG S2 665770 5488854 2020 4 2020-09-17 14:57 Indeno(1,2,3-c,d)pyrene <0.020	SE	MIDAG_S2	665770	5488854	2020	4	2020-09-17	14:57	Dibenz(a_h)anthracene	<0.015	mg/kg	ALS	RG_MIDAG_S2_SE-4_2020-09-17_1457
MIDAG_S2 665770 548854 2020 4 2020-09-17 14:57 Indeno(1,2,3-c,d)pyrene <0.020 mg/kg ALS RG_MIDAG_S2_SE-4_2020-09-17 MIDAG_S2 665770 548854 2020 4 2020-09-17 14:57 Naphthalene 0.467 mg/kg ALS RG_MIDAG_S2_SE-4_2020-09-17 MIDAG_S2 665770 5488654 2020 4 2020-09-17 14:57 Naphthalene 0.194 mg/kg ALS RG_MIDAG_S2_SE-4_2020-09-17 MIDAG_S2 665770 5488654 2020 4 2020-09-17 14:57 Perylene <0.020	SE	MIDAG_S2	665770	5488854	2020	4	2020-09-17	14:57	Fluoranthene	0.048	mg/kg	ALS	RG_MIDAG_S2_SE-4_2020-09-17_1457
MIDAG_S2 665770 5488854 2020 4 2020-09-17 14:57 2-Methylnaphthalene 0.467 mg/kg ALS RG_MIDAG_S2_SE-4_2020-09-17 MIDAG_S2 665770 548854 2020 4 2020-09-17 14:57 Naphthalene 0.194 mg/kg ALS RG_MIDAG_S2_SE-4_2020-09-17 MIDAG_S2 665770 548854 2020 4 2020-09-17 14:57 Perylene <0.020	SE	MIDAG_S2	665770	5488854	2020	4	2020-09-17	14:57	Fluorene	<0.042	mg/kg	ALS	RG_MIDAG_S2_SE-4_2020-09-17_1457
MIDAG_S2 665770 5488854 2020 4 2020-09-17 14:57 Naphthalene 0.194 mg/kg ALS RG_MIDAG_S2_SE-4_2020-09-17 MIDAG_S2 665770 5488854 2020 4 2020-09-17 14:57 Perylene <0.020	SE	MIDAG_S2	665770	5488854	2020	4	2020-09-17	14:57	Indeno(1,2,3-c,d)pyrene	<0.020	mg/kg	ALS	RG_MIDAG_S2_SE-4_2020-09-17_1457
MIDAG_S2 665770 5488854 2020 4 2020-09-17 14:57 Perylene <0.020 mg/kg ALS RG_MIDAG_S2_SE-4_2020-09-17 MIDAG_S2 665770 5488854 2020 4 2020-09-17 14:57 Phenanthrene 0.401 mg/kg ALS RG_MIDAG_S2_SE-4_2020-09-17 MIDAG_S2 665770 5488854 2020 4 2020-09-17 14:57 Pyrene 0.056 mg/kg ALS RG_MIDAG_S2_SE-4_2020-09-17 MIDAG_S2 665770 5488854 2020 4 2020-09-17 14:57 1-Methylnaphthalene 0.310 mg/kg ALS RG_MIDAG_S2_SE-4_2020-09-17	SE	MIDAG_S2	665770	5488854	2020	4	2020-09-17	14:57	2-Methylnaphthalene	0.467	mg/kg	ALS	RG_MIDAG_S2_SE-4_2020-09-17_1457
MIDAG_S2 665770 5488854 2020 4 2020-09-17 14:57 Phenanthrene 0.401 mg/kg ALS RG_MIDAG_S2_SE-4_2020-09-17 MIDAG_S2 665770 5488854 2020 4 2020-09-17 14:57 Pyrene 0.056 mg/kg ALS RG_MIDAG_S2_SE-4_2020-09-17 MIDAG_S2 665770 5488854 2020 4 2020-09-17 14:57 1-Methylnaphthalene 0.310 mg/kg ALS RG_MIDAG_S2_SE-4_2020-09-17	SE	MIDAG_S2	665770	5488854	2020	4	2020-09-17	14:57	Naphthalene	0.194	mg/kg	ALS	RG_MIDAG_S2_SE-4_2020-09-17_1457
MIDAG_S2 665770 5488854 2020 4 2020-09-17 14:57 Phenanthrene 0.401 mg/kg ALS RG_MIDAG_S2_SE-4_2020-09-17 MIDAG_S2 665770 5488854 2020 4 2020-09-17 14:57 Pyrene 0.056 mg/kg ALS RG_MIDAG_S2_SE-4_2020-09-17 MIDAG_S2 665770 5488854 2020 4 2020-09-17 14:57 1-Methylnaphthalene 0.310 mg/kg ALS RG_MIDAG_S2_SE-4_2020-09-17	SE	MIDAG_S2	665770	5488854	2020	4	2020-09-17	14:57	Perylene	<0.020	mg/kg	ALS	RG_MIDAG_S2_SE-4_2020-09-17_1457
MIDAG_S2 665770 5488854 2020 4 2020-09-17 14:57 Pyrene 0.056 mg/kg ALS RG_MIDAG_S2_SE-4_2020-09-17 MIDAG_S2 665770 5488854 2020 4 2020-09-17 14:57 1-Methylnaphthalene 0.310 mg/kg ALS RG_MIDAG_S2_SE-4_2020-09-17	SE	MIDAG_S2	665770	5488854	2020	4	2020-09-17	14:57	Phenanthrene	0.401	 	ALS	RG_MIDAG_S2_SE-4_2020-09-17_1457
	SE	MIDAG_S2	665770	5488854	2020	4	2020-09-17	14:57	Pyrene	0.056	mg/kg	ALS	RG_MIDAG_S2_SE-4_2020-09-17_1457
	SE	MIDAG_S2	665770	5488854	2020	4	2020-09-17	14:57	1-Methylnaphthalene	0.310	 	ALS	RG_MIDAG_S2_SE-4_2020-09-17_1457
	SE	MIDAG_S2	665770	5488854	2020	4	2020-09-17	14:57	Quinoline	<0.020	mg/kg	ALS	RG_MIDAG_S2_SE-4_2020-09-17_1457

WSP Canada Inc. Page 188 of 337

Sediment Screening

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

T	Otation.	Location	າ (UTMs) ^(a)	V	Dankart	Dete	T:	Analytic	Description	114		Laboratory Information
Туре	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MIDAG S2	665770	5488854	2020	4	2020-09-17	14:57	IACR (CCME)	0.92	-	ALS	RG MIDAG S2 SE-4 2020-09-17 1457
SE	MIDAG S2	665770	5488854	2020	4	2020-09-17	14:57	B(a)P Total Potency Equivalent	0.034	mg/kg	ALS	RG MIDAG S2 SE-4 2020-09-17 1457
SE	MIDAG S2	665770	5488854	2020	4	2020-09-17	14:57	Benzo(b+j+k)fluoranthene	0.101	mg/kg	ALS	RG MIDAG S2 SE-4 2020-09-17 1457
SE	MIDAG S2	665770	5488854	2020	4	2020-09-17	14:57	IACR:Coarse	<0.050	-	ALS	RG MIDAG S2 SE-4 2020-09-17 1457
SE	MIDAG S2	665770	5488854	2020	4	2020-09-17	14:57	IACR:Fine	0.061	-	ALS	RG MIDAG S2 SE-4 2020-09-17 1457
SE	MIDAG S2	665770	5488854	2020	4	2020-09-17	14:57	d8-Naphthalene	112.3	%	ALS	RG MIDAG S2 SE-4 2020-09-17 1457
SE	MIDAG S2	665770	5488854	2020	4	2020-09-17	14:57	d10-Acenaphthene	119.5	%	ALS	RG MIDAG S2 SE-4 2020-09-17 1457
SE	MIDAG S2	665770	5488854	2020	4	2020-09-17	14:57	d10-Phenanthrene	119.8	%	ALS	RG MIDAG S2 SE-4 2020-09-17 1457
SE	MIDAG S2	665770	5488854	2020	4	2020-09-17	14:57	d12-Chrysene	120.1	%	ALS	RG MIDAG S2 SE-4 2020-09-17 1457
SE	MIDAG S2	665770	5488854	2020	4	2020-09-17	14:57	% Gravel (>2 mm)	1.1	%	ALS	RG MIDAG S2 SE-4 2020-09-17 1457
SE	MIDAG S2	665770	5488854	2020	4	2020-09-17	14:57	% Sand (2.00 mm - 1.00 mm)	1.7	%	ALS	RG MIDAG S2 SE-4 2020-09-17 1457
SE	MIDAG S2	665770	5488854	2020	4	2020-09-17	14:57	% Sand (1.00 mm - 0.50 mm)	4.0	%	ALS	RG MIDAG S2 SE-4 2020-09-17 1457
SE	MIDAG S2	665770	5488854	2020	4	2020-09-17	14:57	% Sand (0.50 mm - 0.25 mm)	4.6	%	ALS	RG MIDAG S2 SE-4 2020-09-17 1457
SE	MIDAG S2	665770	5488854	2020	4	2020-09-17	14:57	% Sand (0.25 mm - 0.125 mm)	5.2	%	ALS	RG MIDAG S2 SE-4 2020-09-17 1457
SE	MIDAG S2	665770	5488854	2020	4	2020-09-17	14:57	% Sand (0.125 mm - 0.063 mm)	8.1	%	ALS	RG MIDAG S2 SE-4 2020-09-17 1457
SE	MIDAG S2	665770	5488854	2020	4	2020-09-17	14:57	% Silt (0.063 mm - 0.0312 mm)	32.9	%	ALS	RG MIDAG S2 SE-4 2020-09-17 1457
SE	MIDAG S2	665770	5488854	2020	4	2020-09-17	14:57	% Silt (0.031 mm - 0.004 mm)	37.1	%	ALS	RG MIDAG S2 SE-4 2020-09-17 1457
SE	MIDAG S2	665770	5488854	2020	4	2020-09-17	14:57	% Clay (<4 μm)	5.3	%	ALS	RG MIDAG S2 SE-4 2020-09-17 1457
SE	MIDAG S2	665770	5488854	2020	4	2020-09-17	14:57	Texture	Silt loam	-	ALS	RG MIDAG S2 SE-4 2020-09-17 1457
SE	MIDAG S2	665770	5488854	2020	4	2020-09-17	14:57	Mercury (Hg)	0.0458	mg/kg	ALS	RG MIDAG S2 SE-4 2020-09-17 1457
SE	MIDAG S2	665770	5488854	2020	4	2020-09-17	14:57	Aluminum (Al)	8770	mg/kg	ALS	RG MIDAG S2 SE-4 2020-09-17 1457
SE	MIDAG S2	665770	5488854	2020	4	2020-09-17	14:57	Antimony (Sb)	0.44	mg/kg	ALS	RG MIDAG S2 SE-4 2020-09-17 1457
SE	MIDAG S2	665770	5488854	2020	4	2020-09-17	14:57	Arsenic (As)	6.31	mg/kg	ALS	RG MIDAG S2 SE-4 2020-09-17 1457
SE	MIDAG S2	665770	5488854	2020	4	2020-09-17	14:57	Barium (Ba)	138	mg/kg	ALS	RG MIDAG S2 SE-4 2020-09-17 1457
SE	MIDAG S2	665770	5488854	2020	4	2020-09-17	14:57	Beryllium (Be)	0.71	mg/kg	ALS	RG MIDAG S2 SE-4 2020-09-17 1457
SE	MIDAG S2	665770	5488854	2020	4	2020-09-17	14:57	Bismuth (Bi)	<0.20	mg/kg	ALS	RG MIDAG S2 SE-4 2020-09-17 1457
SE	MIDAG S2	665770	5488854	2020	4	2020-09-17	14:57	Boron (B)	12.3	mg/kg	ALS	RG MIDAG S2 SE-4 2020-09-17 1457
SE	MIDAG S2	665770	5488854	2020	4	2020-09-17	14:57	Cadmium (Cd)	1.23	mg/kg	ALS	RG MIDAG S2 SE-4 2020-09-17 1457
SE	MIDAG S2	665770	5488854	2020	4	2020-09-17	14:57	Calcium (Ca)	62500	mg/kg	ALS	RG MIDAG S2 SE-4 2020-09-17 1457
SE	MIDAG S2	665770	5488854	2020	4	2020-09-17	14:57	Chromium (Cr)	14.3	mg/kg	ALS	RG MIDAG S2 SE-4 2020-09-17 1457
SE	MIDAG S2	665770	5488854	2020	4	2020-09-17	14:57	Cobalt (Co)	45.0	mg/kg	ALS	RG MIDAG S2 SE-4 2020-09-17 1457
SE	MIDAG S2	665770	5488854	2020	4	2020-09-17	14:57	Copper (Cu)	14.3	mg/kg	ALS	RG MIDAG S2 SE-4 2020-09-17 1457
SE	MIDAG S2	665770	5488854	2020	4	2020-09-17	14:57	Iron (Fe)	13400	mg/kg	ALS	RG MIDAG S2 SE-4 2020-09-17 1457
SE	MIDAG S2	665770	5488854	2020	4	2020-09-17	14:57	Lead (Pb)	8.39	mg/kg	ALS	RG MIDAG S2 SE-4 2020-09-17 1457
SE	MIDAG S2	665770	5488854	2020	4	2020-09-17	14:57	Lithium (Li)	12.5	mg/kg	ALS	RG MIDAG S2 SE-4 2020-09-17 1457
SE	MIDAG S2	665770	5488854	2020	4	2020-09-17	14:57	Magnesium (Mg)	10500	mg/kg	ALS	RG MIDAG S2 SE-4 2020-09-17 1457
SE	MIDAG S2	665770	5488854	2020	4	2020-09-17	14:57	Manganese (Mn)	477	mg/kg	ALS	RG MIDAG S2 SE-4 2020-09-17 1457
SE	MIDAG S2	665770	5488854	2020	4	2020-09-17	14:57	Molybdenum (Mo)	1.42	mg/kg	ALS	RG MIDAG S2 SE-4 2020-09-17 1457
SE	MIDAG S2	665770	5488854	2020	4	2020-09-17	14:57	Nickel (Ni)	86.3	mg/kg	ALS	RG MIDAG S2 SE-4 2020-09-17 1457
SE	MIDAG S2	665770	5488854	2020	4	2020-09-17	14:57	Phosphorus (P)	1100	mg/kg	ALS	RG MIDAG S2 SE-4 2020-09-17 1457
SE	MIDAG_52	665770	5488854	2020	4	2020-09-17	14:57	Potassium (K)	1960	mg/kg	ALS	RG MIDAG S2 SE-4 2020-09-17 1457
SE	MIDAG_52	665770	5488854	2020	4	2020-09-17	14:57	Selenium (Se)	2.62	mg/kg	ALS	RG MIDAG S2 SE-4 2020-09-17 1457
SE	MIDAG_52	665770	5488854	2020	<u>т</u>	2020-09-17	14:57	Silver (Ag)	0.16	mg/kg	ALS	RG MIDAG S2 SE-4 2020-09-17 1457
SE	MIDAG_S2	665770	5488854	2020	т Д	2020-09-17	14:57	Sodium (Na)	159	mg/kg	ALS	RG MIDAG S2 SE-4 2020-09-17 1457
SE	MIDAG_S2 MIDAG S2	665770	5488854	2020	1	2020-09-17	14:57	Strontium (Sr)	99.8	mg/kg	ALS	RG MIDAG S2 SE-4 2020-09-17 1457
SE	MIDAG_S2 MIDAG S2	665770	5488854	2020	1	2020-09-17	14:57	Sulfur (S)	<1000	mg/kg	ALS	RG MIDAG S2 SE-4 2020-09-17 1457
SE	MIDAG_S2 MIDAG S2	665770	5488854	2020	1	2020-09-17	14.57	. ,	0.476		ALS	RG MIDAG S2 SE-4 2020-09-17 1457
JE	WIIDAG_82	003770	5400054	2020	4	ZUZU-U9-11	14.37	Thallium (TI)	0.476	mg/kg	ALO	NG_WIDAG_32_3E-4_2020-09-11_1451

WSP Canada Inc. Page 189 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	1: Sediment Chem		(UTMs) ^(a)									Laboratory Information
Type	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MIDAG S2	665770	5488854	2020	4	2020-09-17	14:57	Tin (Sn)	<2.0	mg/kg	ALS	RG MIDAG S2 SE-4 2020-09-17 1457
SE	MIDAG S2	665770	5488854	2020	4	2020-09-17	14:57	Titanium (Ti)	23.5	mg/kg	ALS	RG MIDAG S2 SE-4 2020-09-17 1457
SE	MIDAG S2	665770	5488854	2020	4	2020-09-17	14:57	Tungsten (W)	<0.50	mg/kg	ALS	RG MIDAG S2 SE-4 2020-09-17 1457
SE	MIDAG S2	665770	5488854	2020	4	2020-09-17	14:57	Uranium (U)	0.926	mg/kg	ALS	RG MIDAG S2 SE-4 2020-09-17 1457
SE	MIDAG_82	665770	5488854	2020	4	2020-09-17	14:57	Vanadium (V)	23.9	mg/kg	ALS	RG MIDAG S2 SE-4 2020-09-17 1457
SE	MIDAG_82	665770	5488854	2020	1	2020-09-17	14:57	Zinc (Zn)	117	mg/kg	ALS	RG MIDAG S2 SE-4 2020-09-17 1457
SE	MIDAG_82	665770	5488854	2020	4	2020-09-17	14:57	Zirconium (Zr)	<1.0	mg/kg	ALS	RG MIDAG S2 SE-4 2020-09-17 1457
SE	MIDAG_82	665770	5488854	2020	4	2020-09-17	14:57	pH (1:2 soil:water)	8.00	pH	ALS	RG MIDAG S2 SE-4 2020-09-17 1457
SE	MIDAG S2	665770	5488854	2020	4	2020-09-17	14:57	Total Organic Carbon	8.53	%	ALS	RG MIDAG S2 SE-4 2020-09-17 1457
SE	MIDAG S2	665770	5488854	2020	5	2020-09-17	15:14	Moisture	75.7	%	ALS	RG MIDAG S2 SE-5 2020-09-17 1514
SE	MIDAG_82	665770	5488854	2020	5	2020-09-17	15:14	Acenaphthene	<0.018	mg/kg	ALS	RG MIDAG S2 SE-5 2020-09-17 1514
SE	MIDAG_82	665770	5488854	2020	5	2020-09-17	15:14	Acenaphthylene	<0.010	mg/kg	ALS	RG MIDAG S2 SE-5 2020-09-17 1514
SE	MIDAG_S2	665770	5488854	2020	5	2020-09-17	15:14	Anthracene	<0.0080	mg/kg	ALS	RG MIDAG S2 SE-5 2020-09-17 1514
SE	MIDAG_S2	665770	5488854	2020	5	2020-09-17	15:14	Acridine	<0.030	mg/kg	ALS	RG MIDAG S2 SE-5 2020-09-17 1514
SE	MIDAG_S2	665770	5488854	2020	5	2020-09-17	15:14	Benz(a)anthracene	0.025	mg/kg	ALS	RG MIDAG S2 SE-5 2020-09-17 1514
SE	MIDAG_32	665770	5488854	2020	5	2020-09-17	15:14	Benzo(a)pyrene	<0.023	mg/kg	ALS	RG MIDAG S2 SE-5 2020-09-17 1514
SE	MIDAG_32	665770	5488854	2020	5	2020-09-17	15:14	Benzo(b&j)fluoranthene	0.100	mg/kg	ALS	RG MIDAG S2 SE-5 2020-09-17 1514
SE	MIDAG_S2	665770	5488854	2020	5	2020-09-17	15:14	` 27	0.100		ALS	RG MIDAG S2 SE-5 2020-09-17 1514
SE		665770	5488854	2020	5		15.14	Benzo(e)pyrene	0.039	mg/kg	ALS	RG MIDAG S2 SE-5 2020-09-17 1514
	MIDAG_S2					2020-09-17		Benzo(g_h_i)perylene		mg/kg		
SE SE	MIDAG_S2	665770	5488854	2020	5	2020-09-17	15:14	Benzo(k)fluoranthene	<0.020	mg/kg	ALS ALS	RG_MIDAG_S2_SE-5_2020-09-17_1514
SE	MIDAG_S2	665770	5488854	2020	5	2020-09-17	15:14	Chrysene	0.177	mg/kg		RG_MIDAG_S2_SE-5_2020-09-17_1514
	MIDAG_S2	665770	5488854	2020	<u> </u>	2020-09-17	15:14	Dibenz(a_h)anthracene	<0.011	mg/kg	ALS	RG_MIDAG_S2_SE-5_2020-09-17_1514
SE	MIDAG_S2	665770	5488854	2020	5	2020-09-17	15:14	Fluoranthene	0.041	mg/kg	ALS	RG_MIDAG_S2_SE-5_2020-09-17_1514
SE	MIDAG_S2	665770	5488854	2020	5	2020-09-17	15:14	Fluorene	0.044	mg/kg	ALS	RG_MIDAG_S2_SE-5_2020-09-17_1514
SE	MIDAG_S2	665770	5488854	2020	5	2020-09-17	15:14	Indeno(1,2,3-c,d)pyrene	<0.020	mg/kg	ALS	RG_MIDAG_S2_SE-5_2020-09-17_1514
SE	MIDAG_S2	665770	5488854	2020	5	2020-09-17	15:14	2-Methylnaphthalene	0.454	mg/kg	ALS	RG_MIDAG_S2_SE-5_2020-09-17_1514
SE	MIDAG_S2	665770	5488854	2020	5	2020-09-17	15:14	Naphthalene	0.194	mg/kg	ALS	RG_MIDAG_S2_SE-5_2020-09-17_1514
SE	MIDAG_S2	665770	5488854	2020	5	2020-09-17	15:14	Perylene	<0.021	mg/kg	ALS	RG_MIDAG_S2_SE-5_2020-09-17_1514
SE	MIDAG_S2	665770	5488854	2020	5	2020-09-17	15:14	Phenanthrene	0.391	mg/kg	ALS	RG_MIDAG_S2_SE-5_2020-09-17_1514
SE	MIDAG_S2	665770	5488854	2020	5	2020-09-17	15:14	Pyrene	0.051	mg/kg	ALS	RG_MIDAG_S2_SE-5_2020-09-17_1514
SE	MIDAG_S2	665770	5488854	2020	5	2020-09-17	15:14	1-Methylnaphthalene	0.303	mg/kg	ALS	RG_MIDAG_S2_SE-5_2020-09-17_1514
SE	MIDAG_S2	665770	5488854	2020	5	2020-09-17	15:14	Quinoline	<0.020	mg/kg	ALS	RG_MIDAG_S2_SE-5_2020-09-17_1514
SE	MIDAG_S2	665770	5488854	2020	5	2020-09-17	15:14	IACR (CCME)	0.91	- ,	ALS	RG_MIDAG_S2_SE-5_2020-09-17_1514
SE	MIDAG_S2	665770	5488854	2020	5	2020-09-17	15:14	B(a)P Total Potency Equivalent	0.032	mg/kg	ALS	RG_MIDAG_S2_SE-5_2020-09-17_1514
SE	MIDAG_S2	665770	5488854	2020	5	2020-09-17	15:14	Benzo(b+j+k)fluoranthene	0.100	mg/kg	ALS	RG_MIDAG_S2_SE-5_2020-09-17_1514
SE	MIDAG_S2	665770	5488854	2020	5	2020-09-17	15:14	IACR:Coarse	<0.050	-	ALS	RG_MIDAG_S2_SE-5_2020-09-17_1514
SE	MIDAG_S2	665770	5488854	2020	5	2020-09-17	15:14	IACR:Fine	0.061	-	ALS	RG_MIDAG_S2_SE-5_2020-09-17_1514
SE	MIDAG_S2	665770	5488854	2020	5	2020-09-17	15:14	d8-Naphthalene	112.9	%	ALS	RG_MIDAG_S2_SE-5_2020-09-17_1514
SE	MIDAG_S2	665770	5488854	2020	5	2020-09-17	15:14	d10-Acenaphthene	118.0	%	ALS	RG_MIDAG_S2_SE-5_2020-09-17_1514
SE	MIDAG_S2	665770	5488854	2020	5	2020-09-17	15:14	d10-Phenanthrene	120.8	%	ALS	RG_MIDAG_S2_SE-5_2020-09-17_1514
SE	MIDAG_S2	665770	5488854	2020	5	2020-09-17	15:14	d12-Chrysene	120.6	%	ALS	RG_MIDAG_S2_SE-5_2020-09-17_1514
SE	MIDAG_S2	665770	5488854	2020	5	2020-09-17	15:14	% Gravel (>2 mm)	<1.0	%	ALS	RG_MIDAG_S2_SE-5_2020-09-17_1514
SE	MIDAG_S2	665770	5488854	2020	5	2020-09-17	15:14	% Sand (2.00 mm - 1.00 mm)	1.2	%	ALS	RG_MIDAG_S2_SE-5_2020-09-17_1514
SE	MIDAG_S2	665770	5488854	2020	5	2020-09-17	15:14	% Sand (1.00 mm - 0.50 mm)	7.6	%	ALS	RG_MIDAG_S2_SE-5_2020-09-17_1514
SE	MIDAG_S2	665770	5488854	2020	5	2020-09-17	15:14	% Sand (0.50 mm - 0.25 mm)	11.2	%	ALS	RG_MIDAG_S2_SE-5_2020-09-17_1514
SE	MIDAG_S2	665770	5488854	2020	5	2020-09-17	15:14	% Sand (0.25 mm - 0.125 mm)	10.1	%	ALS	RG_MIDAG_S2_SE-5_2020-09-17_1514
SE	MIDAG_S2	665770	5488854	2020	5	2020-09-17	15:14	% Sand (0.125 mm - 0.063 mm)	10.0	%	ALS	RG_MIDAG_S2_SE-5_2020-09-17_1514

WSP Canada Inc. Page 190 of 337

Sediment Screening

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

T	Otation.	Location	า (UTMs) ^(a)	V	Dankart	Dete	T:	Amalata	D	1114		Laboratory Information
Туре	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MIDAG S2	665770	5488854	2020	5	2020-09-17	15:14	% Silt (0.063 mm - 0.0312 mm)	24.6	%	ALS	RG MIDAG S2 SE-5 2020-09-17 1514
SE	MIDAG S2	665770	5488854	2020	5	2020-09-17	15:14	% Silt (0.031 mm - 0.004 mm)	29.0	%	ALS	RG MIDAG S2 SE-5 2020-09-17 1514
SE	MIDAG S2	665770	5488854	2020	5	2020-09-17	15:14	% Clay (<4 μm)	5.9	%	ALS	RG MIDAG S2 SE-5 2020-09-17 1514
SE	MIDAG S2	665770	5488854	2020	5	2020-09-17	15:14	Texture	Silt loam	-	ALS	RG MIDAG S2 SE-5 2020-09-17 1514
SE	MIDAG S2	665770	5488854	2020	5	2020-09-17	15:14	Mercury (Hg)	0.0367	mg/kg	ALS	RG MIDAG S2 SE-5 2020-09-17 1514
SE	MIDAG S2	665770	5488854	2020	5	2020-09-17	15:14	Aluminum (Al)	10800	mg/kg	ALS	RG MIDAG S2 SE-5 2020-09-17 1514
SE	MIDAG S2	665770	5488854	2020	5	2020-09-17	15:14	Antimony (Sb)	0.42	mg/kg	ALS	RG MIDAG S2 SE-5 2020-09-17 1514
SE	MIDAG S2	665770	5488854	2020	5	2020-09-17	15:14	Arsenic (As)	6.94	mg/kg	ALS	RG MIDAG S2 SE-5 2020-09-17 1514
SE	MIDAG S2	665770	5488854	2020	5	2020-09-17	15:14	Barium (Ba)	137	mg/kg	ALS	RG MIDAG S2 SE-5 2020-09-17 1514
SE	MIDAG S2	665770	5488854	2020	5	2020-09-17	15:14	Beryllium (Be)	0.72	mg/kg	ALS	RG MIDAG S2 SE-5 2020-09-17 1514
SE	MIDAG S2	665770	5488854	2020	5	2020-09-17	15:14	Bismuth (Bi)	<0.20	mg/kg	ALS	RG MIDAG S2 SE-5 2020-09-17 1514
SE	MIDAG S2	665770	5488854	2020	5	2020-09-17	15:14	Boron (B)	13.3	mg/kg	ALS	RG MIDAG S2 SE-5 2020-09-17 1514
SE	MIDAG S2	665770	5488854	2020	5	2020-09-17	15:14	Cadmium (Cd)	1.22	mg/kg	ALS	RG MIDAG S2 SE-5 2020-09-17 1514
SE	MIDAG S2	665770	5488854	2020	5	2020-09-17	15:14	Calcium (Ca)	50700	mg/kg	ALS	RG MIDAG S2 SE-5 2020-09-17 1514
SE	MIDAG S2	665770	5488854	2020	5	2020-09-17	15:14	Chromium (Cr)	16.5	mg/kg	ALS	RG MIDAG S2 SE-5 2020-09-17 1514
SE	MIDAG S2	665770	5488854	2020	5	2020-09-17	15:14	Cobalt (Co)	38.0	mg/kg	ALS	RG MIDAG S2 SE-5 2020-09-17 1514
SE	MIDAG S2	665770	5488854	2020	5	2020-09-17	15:14	Copper (Cu)	14.8	mg/kg	ALS	RG MIDAG S2 SE-5 2020-09-17 1514
SE	MIDAG S2	665770	5488854	2020	5	2020-09-17	15:14	Iron (Fe)	15200	mg/kg	ALS	RG MIDAG S2 SE-5 2020-09-17 1514
SE	MIDAG S2	665770	5488854	2020	5	2020-09-17	15:14	Lead (Pb)	8.87	mg/kg	ALS	RG MIDAG S2 SE-5 2020-09-17 1514
SE	MIDAG S2	665770	5488854	2020	5	2020-09-17	15:14	Lithium (Li)	14.1	mg/kg	ALS	RG MIDAG S2 SE-5 2020-09-17 1514
SE	MIDAG S2	665770	5488854	2020	5	2020-09-17	15:14	Magnesium (Mg)	9770	mg/kg	ALS	RG MIDAG S2 SE-5 2020-09-17 1514
SE	MIDAG S2	665770	5488854	2020	5	2020-09-17	15:14	Manganese (Mn)	511	mg/kg	ALS	RG MIDAG S2 SE-5 2020-09-17 1514
SE	MIDAG S2	665770	5488854	2020	5	2020-09-17	15:14	Molybdenum (Mo)	1.59	mg/kg	ALS	RG MIDAG S2 SE-5 2020-09-17_1514
SE	MIDAG S2	665770	5488854	2020	5	2020-09-17	15:14	Nickel (Ni)	65.3	mg/kg	ALS	RG MIDAG S2 SE-5 2020-09-17_1514
SE	MIDAG S2	665770	5488854	2020	5	2020-09-17	15:14	Phosphorus (P)	1080	mg/kg	ALS	RG MIDAG S2 SE-5 2020-09-17_1514
SE	MIDAG S2	665770	5488854	2020	5	2020-09-17	15:14	Potassium (K)	2590	mg/kg	ALS	RG MIDAG S2 SE-5 2020-09-17 1514
SE	MIDAG S2	665770	5488854	2020	5	2020-09-17	15:14	Selenium (Se)	2.83	mg/kg	ALS	RG MIDAG S2 SE-5 2020-09-17_1514
SE	MIDAG S2	665770	5488854	2020	5	2020-09-17	15:14	Silver (Ag)	0.13	mg/kg	ALS	RG MIDAG S2 SE-5 2020-09-17_1514
SE	MIDAG S2	665770	5488854	2020	5	2020-09-17	15:14	Sodium (Na)	148	mg/kg	ALS	RG MIDAG S2 SE-5 2020-09-17 1514
SE	MIDAG S2	665770	5488854	2020	5	2020-09-17	15:14	Strontium (Sr)	86.3	mg/kg	ALS	RG MIDAG S2 SE-5 2020-09-17 1514
SE	MIDAG S2	665770	5488854	2020	5	2020-09-17	15:14	Sulfur (S)	<1000	mg/kg	ALS	RG MIDAG S2 SE-5 2020-09-17 1514
SE	MIDAG S2	665770	5488854	2020	5	2020-09-17	15:14	Thallium (TI)	0.501	mg/kg	ALS	RG MIDAG S2 SE-5 2020-09-17 1514
SE	MIDAG S2	665770	5488854	2020	5	2020-09-17	15:14	Tin (Sn)	<2.0	mg/kg	ALS	RG MIDAG S2 SE-5 2020-09-17 1514
SE	MIDAG S2	665770	5488854	2020	5	2020-09-17	15:14	Titanium (Ti)	20.3	mg/kg	ALS	RG MIDAG S2 SE-5 2020-09-17 1514
SE	MIDAG_52	665770	5488854	2020	5	2020-09-17	15:14	Tungsten (W)	<0.50	mg/kg	ALS	RG MIDAG S2 SE-5 2020-09-17 1514
SE	MIDAG S2	665770	5488854	2020	5	2020-09-17	15:14	Uranium (U)	0.830	mg/kg	ALS	RG MIDAG S2 SE-5 2020-09-17 1514
SE	MIDAG S2	665770	5488854	2020	5	2020-09-17	15:14	Vanadium (V)	28.2	mg/kg	ALS	RG MIDAG S2 SE-5 2020-09-17 1514
SE	MIDAG_52	665770	5488854	2020	5	2020-09-17	15:14	Zinc (Zn)	129	mg/kg	ALS	RG MIDAG S2 SE-5 2020-09-17 1514
SE	MIDAG_52	665770	5488854	2020	5	2020-09-17	15:14	Zirconium (Zr)	<1.0	mg/kg	ALS	RG MIDAG S2 SE-5 2020-09-17 1514
SE	MIDAG_52	665770	5488854	2020	5	2020-09-17	15:14	pH (1:2 soil:water)	7.74	pH	ALS	RG MIDAG S2 SE-5 2020-09-17 1514
SE	MIDAG_S2	665770	5488854	2020	5	2020-09-17	15:14	Total Organic Carbon	7.33	%	ALS	RG MIDAG S2 SE-5 2020-09-17 1514
SE	MIDAG_S2	666290	5488507	2020	1	2020-09-17	08:50	Moisture	64.6	%	ALS	RG MIDAG-S1 SE-1 2020-09-18 0850
SE	MIDAG-S1	666290	5488507	2020	1	2020-09-18	08:50	Acenaphthene	<0.030	mg/kg	ALS	RG_MIDAG-S1_SE-1_2020-09-18_0850
SE SE	MIDAG-S1	666290	5488507	2020	1 1	2020-09-18	08:50	Acenaphthylene	<0.030	mg/kg	ALS	RG_MIDAG-S1_SE-1_2020-09-18_0850
SE	MIDAG-S1	666290	5488507	2020	1 1	2020-09-18	08:50	Anthracene	0.0070	1 - 1 - 1	ALS	RG MIDAG-S1 SE-1 2020-09-18 0850
SE SE	MIDAG-S1	666290	5488507	2020	1 1	2020-09-18	08:50	Acridine	<0.014	mg/kg	ALS	RG MIDAG-S1_SE-1_2020-09-16_0850
SE SE	MIDAG-S1	666290	5488507		1 1	2020-09-18	08:50		0.030	mg/kg	ALS	
SE	INIDAG-91	000290	5400507	2020		ZUZU-U9- 10	00.00	Benz(a)anthracene	0.030	mg/kg	ALO	RG_MIDAG-S1_SE-1_2020-09-18_0850

WSP Canada Inc. Page 191 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Table I-	I: Sediment Chem			CMm LAEMP	Sampling Stat	tions, 2012 to	2022					
Туре	Station		(UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
		Easting	Northing					7 mary to	rtocait	O	Lab	Sample ID
SE	MIDAG-S1	666290	5488507	2020	+	2020-09-18	08:50	Benzo(a)pyrene	0.016	mg/kg	ALS	RG_MIDAG-S1_SE-1_2020-09-18_0850
SE	MIDAG-S1	666290	5488507	2020	1 2	2020-09-18	08:50	Benzo(b&j)fluoranthene	0.134	mg/kg	ALS	RG_MIDAG-S1_SE-1_2020-09-18_0850
SE	MIDAG-S1	666290	5488507	2020	1 2	2020-09-18	08:50	Benzo(e)pyrene	0.122	mg/kg	ALS	RG_MIDAG-S1_SE-1_2020-09-18_0850
SE	MIDAG-S1	666290	5488507	2020	1 2	2020-09-18	08:50	Benzo(g_h_i)perylene	0.042	mg/kg	ALS	RG_MIDAG-S1_SE-1_2020-09-18_0850
SE	MIDAG-S1	666290	5488507	2020	1 2	2020-09-18	08:50	Benzo(k)fluoranthene	<0.014	mg/kg	ALS	RG_MIDAG-S1_SE-1_2020-09-18_0850
SE	MIDAG-S1	666290	5488507	2020	1 2	2020-09-18	08:50	Chrysene	<0.20	mg/kg	ALS	RG_MIDAG-S1_SE-1_2020-09-18_0850
SE	MIDAG-S1	666290	5488507	2020	1 2	2020-09-18	08:50	Dibenz(a_h)anthracene	0.0116	mg/kg	ALS	RG_MIDAG-S1_SE-1_2020-09-18_0850
SE	MIDAG-S1	666290	5488507	2020	1 2	2020-09-18	08:50	Fluoranthene	0.057	mg/kg	ALS	RG_MIDAG-S1_SE-1_2020-09-18_0850
SE	MIDAG-S1	666290	5488507	2020	1 2	2020-09-18	08:50	Fluorene	0.049	mg/kg	ALS	RG_MIDAG-S1_SE-1_2020-09-18_0850
SE	MIDAG-S1	666290	5488507	2020	1 2	2020-09-18	08:50	Indeno(1,2,3-c,d)pyrene	<0.014	mg/kg	ALS	RG_MIDAG-S1_SE-1_2020-09-18_0850
SE	MIDAG-S1	666290	5488507	2020	1 2	2020-09-18	08:50	2-Methylnaphthalene	0.574	mg/kg	ALS	RG_MIDAG-S1_SE-1_2020-09-18_0850
SE	MIDAG-S1	666290	5488507	2020	1 2	2020-09-18	08:50	Naphthalene	0.240	mg/kg	ALS	RG_MIDAG-S1_SE-1_2020-09-18_0850
SE	MIDAG-S1	666290	5488507	2020	1 2	2020-09-18	08:50	Perylene	0.017	mg/kg	ALS	RG_MIDAG-S1_SE-1_2020-09-18_0850
SE	MIDAG-S1	666290	5488507	2020	1 2	2020-09-18	08:50	Phenanthrene	0.553	mg/kg	ALS	RG_MIDAG-S1_SE-1_2020-09-18_0850
SE	MIDAG-S1	666290	5488507	2020	1 2	2020-09-18	08:50	Pyrene	0.069	mg/kg	ALS	RG_MIDAG-S1_SE-1_2020-09-18_0850
SE	MIDAG-S1	666290	5488507	2020	1 2	2020-09-18	08:50	1-Methylnaphthalene	0.405	mg/kg	ALS	RG_MIDAG-S1_SE-1_2020-09-18_0850
SE	MIDAG-S1	666290	5488507	2020	1 2	2020-09-18	08:50	Quinoline	<0.014	mg/kg	ALS	RG_MIDAG-S1_SE-1_2020-09-18_0850
SE	MIDAG-S1	666290	5488507	2020	1 2	2020-09-18	08:50	IACR (CCME)	1.12	-	ALS	RG_MIDAG-S1_SE-1_2020-09-18_0850
SE	MIDAG-S1	666290	5488507	2020	1 2	2020-09-18	08:50	B(a)P Total Potency Equivalent	0.046	mg/kg	ALS	RG_MIDAG-S1_SE-1_2020-09-18_0850
SE	MIDAG-S1	666290	5488507	2020	1 2	2020-09-18	08:50	Benzo(b+j+k)fluoranthene	0.134	mg/kg	ALS	RG_MIDAG-S1_SE-1_2020-09-18_0850
SE	MIDAG-S1	666290	5488507	2020	1 2	2020-09-18	08:50	IACR:Coarse	<0.050	-	ALS	RG_MIDAG-S1_SE-1_2020-09-18_0850
SE	MIDAG-S1	666290	5488507	2020	1 2	2020-09-18	08:50	IACR:Fine	0.068	-	ALS	RG_MIDAG-S1_SE-1_2020-09-18_0850
SE	MIDAG-S1	666290	5488507	2020	1 2	2020-09-18	08:50	d8-Naphthalene	96.3	%	ALS	RG_MIDAG-S1_SE-1_2020-09-18_0850
SE	MIDAG-S1	666290	5488507	2020	1 2	2020-09-18	08:50	d10-Acenaphthene	95.8	%	ALS	RG_MIDAG-S1_SE-1_2020-09-18_0850
SE	MIDAG-S1	666290	5488507	2020	1 2	2020-09-18	08:50	d10-Phenanthrene	96.6	%	ALS	RG_MIDAG-S1_SE-1_2020-09-18_0850
SE	MIDAG-S1	666290	5488507	2020	1 2	2020-09-18	08:50	d12-Chrysene	104.2	%	ALS	RG_MIDAG-S1_SE-1_2020-09-18_0850
SE	MIDAG-S1	666290	5488507	2020	1 2	2020-09-18	08:50	% Gravel (>2 mm)	2.3	%	ALS	RG_MIDAG-S1_SE-1_2020-09-18_0850
SE	MIDAG-S1	666290	5488507	2020	1 2	2020-09-18	08:50	% Sand (2.00 mm - 1.00 mm)	4.0	%	ALS	RG_MIDAG-S1_SE-1_2020-09-18_0850
SE	MIDAG-S1	666290	5488507	2020	1 2	2020-09-18	08:50	% Sand (1.00 mm - 0.50 mm)	4.9	%	ALS	RG_MIDAG-S1_SE-1_2020-09-18_0850
SE	MIDAG-S1	666290	5488507	2020	1 2	2020-09-18	08:50	% Sand (0.50 mm - 0.25 mm)	11.8	%	ALS	RG_MIDAG-S1_SE-1_2020-09-18_0850
SE	MIDAG-S1	666290	5488507	2020	1 2	2020-09-18	08:50	% Sand (0.25 mm - 0.125 mm)	12.1	%	ALS	RG_MIDAG-S1_SE-1_2020-09-18_0850
SE	MIDAG-S1	666290	5488507	2020	1 2	2020-09-18	08:50	% Sand (0.125 mm - 0.063 mm)	11.5	%	ALS	RG_MIDAG-S1_SE-1_2020-09-18_0850
SE	MIDAG-S1	666290	5488507	2020	1 2	2020-09-18	08:50	% Silt (0.063 mm - 0.0312 mm)	23.1	%	ALS	RG_MIDAG-S1_SE-1_2020-09-18_0850
SE	MIDAG-S1	666290	5488507	2020	1 2	2020-09-18	08:50	% Silt (0.031 mm - 0.004 mm)	26.3	%	ALS	RG_MIDAG-S1_SE-1_2020-09-18_0850
SE	MIDAG-S1	666290	5488507	2020	1 2	2020-09-18	08:50	% Clay (<4 μm)	4.1	%	ALS	RG_MIDAG-S1_SE-1_2020-09-18_0850
SE	MIDAG-S1	666290	5488507	2020	1 2	2020-09-18	08:50	Texture	Silt loam	-	ALS	RG_MIDAG-S1_SE-1_2020-09-18_0850
SE	MIDAG-S1	666290	5488507	2020	1 2	2020-09-18	08:50	Mercury (Hg)	0.0473	mg/kg	ALS	RG_MIDAG-S1_SE-1_2020-09-18_0850
SE	MIDAG-S1	666290	5488507	2020	1 2	2020-09-18	08:50	Aluminum (Al)	9780	mg/kg	ALS	RG_MIDAG-S1_SE-1_2020-09-18_0850
SE	MIDAG-S1	666290	5488507	2020	+	2020-09-18	08:50	Antimony (Sb)	0.51	mg/kg		RG_MIDAG-S1_SE-1_2020-09-18_0850
SE	MIDAG-S1	666290	5488507	2020	1 2	2020-09-18	08:50	Arsenic (As)	7.96	mg/kg	ALS	RG_MIDAG-S1_SE-1_2020-09-18_0850
SE	MIDAG-S1	666290	5488507	2020		2020-09-18	08:50	Barium (Ba)	115	mg/kg	ALS	RG_MIDAG-S1_SE-1_2020-09-18_0850
SE	MIDAG-S1	666290	5488507	2020	1 2	2020-09-18	08:50	Beryllium (Be)	0.79	mg/kg	ALS	RG_MIDAG-S1_SE-1_2020-09-18_0850
SE	MIDAG-S1	666290	5488507	2020	+	2020-09-18	08:50	Bismuth (Bi)	<0.20	mg/kg	ALS	RG_MIDAG-S1_SE-1_2020-09-18_0850
SE	MIDAG-S1	666290	5488507	2020	-	2020-09-18	08:50	Boron (B)	12.8	mg/kg	ALS	RG_MIDAG-S1_SE-1_2020-09-18_0850
SE	MIDAG-S1	666290	5488507	2020		2020-09-18	08:50	Cadmium (Cd)	1.23	mg/kg	ALS	RG_MIDAG-S1_SE-1_2020-09-18_0850
SE	MIDAG-S1	666290	5488507	2020	+	2020-09-18	08:50	Calcium (Ca)	54300	mg/kg	ALS	RG_MIDAG-S1_SE-1_2020-09-18_0850
SE	MIDAG-S1	666290	5488507	2020	+	2020-09-18	08:50	Chromium (Cr)	17.0	mg/kg	ALS	RG MIDAG-S1 SE-1 2020-09-18 0850

WSP Canada Inc. Page 192 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Type	Station	Location	(UTMs) ^(a)	Vaar	Donlingto	Dete	Time	Analyta	Popult	Heit		Laboratory Information
Type	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MIDAG-S1	666290	5488507	2020	1	2020-09-18	08:50	Cobalt (Co)	45.7	mg/kg	ALS	RG MIDAG-S1 SE-1 2020-09-18 0850
SE	MIDAG-S1	666290	5488507	2020	1	2020-09-18	08:50	Copper (Cu)	16.5	mg/kg	ALS	RG MIDAG-S1 SE-1 2020-09-18 0850
SE	MIDAG-S1	666290	5488507	2020	1	2020-09-18	08:50	Iron (Fe)	14400	mg/kg	ALS	RG MIDAG-S1 SE-1 2020-09-18 0850
SE	MIDAG-S1	666290	5488507	2020	1	2020-09-18	08:50	Lead (Pb)	9.55	mg/kg	ALS	RG MIDAG-S1 SE-1 2020-09-18 0850
SE	MIDAG-S1	666290	5488507	2020	1	2020-09-18	08:50	Lithium (Li)	13.4	mg/kg	ALS	RG MIDAG-S1 SE-1 2020-09-18 0850
SE	MIDAG-S1	666290	5488507	2020	1	2020-09-18	08:50	Magnesium (Mg)	12100	mg/kg	ALS	RG MIDAG-S1 SE-1 2020-09-18 0850
SE	MIDAG-S1	666290	5488507	2020	1	2020-09-18	08:50	Manganese (Mn)	483	mg/kg	ALS	RG MIDAG-S1 SE-1 2020-09-18 0850
SE	MIDAG-S1	666290	5488507	2020	1	2020-09-18	08:50	Molybdenum (Mo)	1.56	mg/kg	ALS	RG MIDAG-S1 SE-1 2020-09-18 0850
SE	MIDAG-S1	666290	5488507	2020	1	2020-09-18	08:50	Nickel (Ni)	111	mg/kg	ALS	RG MIDAG-S1 SE-1 2020-09-18 0850
SE	MIDAG-S1	666290	5488507	2020	1	2020-09-18	08:50	Phosphorus (P)	1170	mg/kg	ALS	RG MIDAG-S1 SE-1 2020-09-18 0850
SE	MIDAG-S1	666290	5488507	2020	1 1	2020-09-18	08:50	Potassium (K)	2090	mg/kg	ALS	RG MIDAG-S1 SE-1 2020-09-18 0850
SE	MIDAG-S1	666290	5488507	2020	1 1	2020-09-18	08:50	Selenium (Se)	2.12	mg/kg	ALS	RG MIDAG-S1 SE-1 2020-09-18 0850
SE	MIDAG-S1	666290	5488507	2020	1 1	2020-09-18	08:50	Silver (Ag)	0.19	mg/kg	ALS	RG MIDAG-S1 SE-1 2020-09-18 0850
SE	MIDAG-S1	666290	5488507	2020	1	2020-09-18	08:50	Sodium (Na)	196	mg/kg	ALS	RG MIDAG-S1 SE-1 2020-09-18 0850
SE	MIDAG-S1	666290	5488507	2020	1	2020-09-18	08:50	Strontium (Sr)	87.8	mg/kg	ALS	RG MIDAG-S1_SE-1_2020-09-18_0850
SE	MIDAG-S1	666290	5488507	2020	1	2020-09-18	08:50	Sulfur (S)	1100	mg/kg	ALS	RG MIDAG-S1 SE-1 2020-09-18 0850
SE	MIDAG-S1	666290	5488507	2020	1	2020-09-18	08:50	Thallium (TI)	0.556	mg/kg	ALS	RG MIDAG-S1 SE-1 2020-09-18 0850
SE	MIDAG-S1	666290	5488507	2020	1	2020-09-18	08:50	Tin (Sn)			ALS	RG MIDAG-S1 SE-1 2020-09-18 0850
SE	MIDAG-S1	666290	5488507	2020	1 1				<2.0 26.5	mg/kg	ALS	
					1 1	2020-09-18	08:50	Titanium (Ti)		mg/kg		RG_MIDAG-S1_SE-1_2020-09-18_0850
SE	MIDAG-S1	666290	5488507	2020	1 1	2020-09-18	08:50	Tungsten (W)	<0.50	mg/kg	ALS	RG_MIDAG-S1_SE-1_2020-09-18_0850
SE	MIDAG-S1	666290	5488507	2020	1 1	2020-09-18	08:50	Uranium (U)	0.979	mg/kg	ALS	RG_MIDAG-S1_SE-1_2020-09-18_0850
SE	MIDAG-S1	666290	5488507	2020	1	2020-09-18	08:50	Vanadium (V)	28.0	mg/kg	ALS	RG_MIDAG-S1_SE-1_2020-09-18_0850
SE	MIDAG-S1	666290	5488507	2020	1	2020-09-18	08:50	Zinc (Zn)	129	mg/kg	ALS	RG_MIDAG-S1_SE-1_2020-09-18_0850
SE	MIDAG-S1	666290	5488507	2020	1 1	2020-09-18	08:50	Zirconium (Zr)	1.1	mg/kg	ALS	RG_MIDAG-S1_SE-1_2020-09-18_0850
SE	MIDAG-S1	666290	5488507	2020	1 1	2020-09-18	08:50	pH (1:2 soil:water)	7.32	pН	ALS	RG_MIDAG-S1_SE-1_2020-09-18_0850
SE	MIDAG-S1	666290	5488507	2020	1 1	2020-09-18	08:50	Total Organic Carbon	8.73	%	ALS	RG_MIDAG-S1_SE-1_2020-09-18_0850
SE	MIDAG-S1	666290	5488507	2020	2	2020-09-18	09:15	Moisture	66.9	%	ALS	RG_MIDAG-S1_SE-2_2020-09-18_0915
SE	MIDAG-S1	666290	5488507	2020	2	2020-09-18	09:15	Acenaphthene	<0.020	mg/kg	ALS	RG_MIDAG-S1_SE-2_2020-09-18_0915
SE	MIDAG-S1	666290	5488507	2020	2	2020-09-18	09:15	Acenaphthylene	<0.0070	mg/kg	ALS	RG_MIDAG-S1_SE-2_2020-09-18_0915
SE	MIDAG-S1	666290	5488507	2020	2	2020-09-18	09:15	Anthracene	<0.0056	mg/kg	ALS	RG_MIDAG-S1_SE-2_2020-09-18_0915
SE	MIDAG-S1	666290	5488507	2020	2	2020-09-18	09:15	Acridine	<0.014	mg/kg	ALS	RG_MIDAG-S1_SE-2_2020-09-18_0915
SE	MIDAG-S1	666290	5488507	2020	2	2020-09-18	09:15	Benz(a)anthracene	0.030	mg/kg	ALS	RG_MIDAG-S1_SE-2_2020-09-18_0915
SE	MIDAG-S1	666290	5488507	2020	2	2020-09-18	09:15	Benzo(a)pyrene	0.015	mg/kg	ALS	RG_MIDAG-S1_SE-2_2020-09-18_0915
SE	MIDAG-S1	666290	5488507	2020	2	2020-09-18	09:15	Benzo(b&j)fluoranthene	0.088	mg/kg	ALS	RG_MIDAG-S1_SE-2_2020-09-18_0915
SE	MIDAG-S1	666290	5488507	2020	2	2020-09-18	09:15	Benzo(e)pyrene	0.087	mg/kg	ALS	RG_MIDAG-S1_SE-2_2020-09-18_0915
SE	MIDAG-S1	666290	5488507	2020	2	2020-09-18	09:15	Benzo(g_h_i)perylene	0.031	mg/kg	ALS	RG_MIDAG-S1_SE-2_2020-09-18_0915
SE	MIDAG-S1	666290	5488507	2020	2	2020-09-18	09:15	Benzo(k)fluoranthene	0.016	mg/kg	ALS	RG_MIDAG-S1_SE-2_2020-09-18_0915
SE	MIDAG-S1	666290	5488507	2020	2	2020-09-18	09:15	Chrysene	0.153	mg/kg	ALS	RG_MIDAG-S1_SE-2_2020-09-18_0915
SE	MIDAG-S1	666290	5488507	2020	2	2020-09-18	09:15	Dibenz(a_h)anthracene	0.0087	mg/kg	ALS	RG_MIDAG-S1_SE-2_2020-09-18_0915
SE	MIDAG-S1	666290	5488507	2020	2	2020-09-18	09:15	Fluoranthene	0.043	mg/kg	ALS	RG_MIDAG-S1_SE-2_2020-09-18_0915
SE	MIDAG-S1	666290	5488507	2020	2	2020-09-18	09:15	Fluorene	0.039	mg/kg	ALS	RG_MIDAG-S1_SE-2_2020-09-18_0915
SE	MIDAG-S1	666290	5488507	2020	2	2020-09-18	09:15	Indeno(1,2,3-c,d)pyrene	<0.014	mg/kg	ALS	RG_MIDAG-S1_SE-2_2020-09-18_0915
SE	MIDAG-S1	666290	5488507	2020	2	2020-09-18	09:15	2-Methylnaphthalene	0.424	mg/kg	ALS	RG_MIDAG-S1_SE-2_2020-09-18_0915
SE	MIDAG-S1	666290	5488507	2020	2	2020-09-18	09:15	Naphthalene	0.193	mg/kg	ALS	RG_MIDAG-S1_SE-2_2020-09-18_0915
			5488507	2020	2	2020-09-18	09:15	Perylene	0.015	mg/kg	ALS	RG MIDAG-S1 SE-2 2020-09-18 0915
	MIDAG-S1	666290	3400307	2020		2020-03-10	03.13	li ci licite	0.013	HIG/KG	ALS	ING MIDAG-31 3E-2 2020-09-10 0913
SE SE	MIDAG-S1 MIDAG-S1	666290	5488507	2020	2	2020-09-18	09:15	Phenanthrene	0.352	mg/kg	ALS	RG MIDAG-S1 SE-2 2020-09-18 0915

WSP Canada Inc. Page 193 of 337

Sediment Screening

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	Otation -	Location	າ (UTMs) ^(a)	V	Danificat	Dot	T :	Amalata	Beerle	11-4		Laboratory Information
ype	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MIDAG-S1	666290	5488507	2020	2	2020-09-18	09:15	1-Methylnaphthalene	0.278	mg/kg	ALS	RG MIDAG-S1 SE-2 2020-09-18 0915
SE	MIDAG-S1	666290	5488507	2020	2	2020-09-18	09:15	Quinoline	<0.014	mg/kg	ALS	RG MIDAG-S1 SE-2 2020-09-18 0915
SE	MIDAG-S1	666290	5488507	2020	2	2020-09-18	09:15	IACR (CCME)	0.90	-	ALS	RG MIDAG-S1 SE-2 2020-09-18 0915
SE	MIDAG-S1	666290	5488507	2020	2	2020-09-18	09:15	B(a)P Total Potency Equivalent	0.040	mg/kg	ALS	RG MIDAG-S1 SE-2 2020-09-18 0915
SE	MIDAG-S1	666290	5488507	2020	2	2020-09-18	09:15	Benzo(b+j+k)fluoranthene	0.104	mg/kg	ALS	RG MIDAG-S1 SE-2 2020-09-18 0915
SE	MIDAG-S1	666290	5488507	2020	2	2020-09-18	09:15	IACR:Coarse	<0.050	-	ALS	RG MIDAG-S1 SE-2 2020-09-18 0915
SE	MIDAG-S1	666290	5488507	2020	2	2020-09-18	09:15	IACR:Fine	0.067		ALS	RG MIDAG-S1 SE-2 2020-09-18 0915
SE	MIDAG-S1	666290	5488507	2020	2	2020-09-18	09:15	d8-Naphthalene	93.7	%	ALS	RG MIDAG-S1 SE-2 2020-09-18 0915
SE	MIDAG-S1	666290	5488507	2020	2	2020-09-18	09:15	d10-Acenaphthene	91.0	%	ALS	RG MIDAG-S1 SE-2 2020-09-18 0915
SE	MIDAG-S1	666290	5488507	2020	2	2020-09-18	09:15	d10-Phenanthrene	94.2	%	ALS	RG MIDAG-S1 SE-2 2020-09-18 0915
SE	MIDAG-S1	666290	5488507	2020	2	2020-09-18	09:15	d12-Chrysene	99.2	%	ALS	RG MIDAG-S1 SE-2 2020-09-18 0915
SE	MIDAG-S1	666290	5488507	2020	2	2020-09-18	09:15	% Gravel (>2 mm)	<1.0	%	ALS	RG MIDAG-S1 SE-2 2020-09-18 0915
SE	MIDAG-S1	666290	5488507	2020	2	2020-09-18	09:15	% Sand (2.00 mm - 1.00 mm)	2.1	%	ALS	RG MIDAG-S1 SE-2 2020-09-18 0915
SE	MIDAG-S1	666290	5488507	2020	2	2020-09-18	09.15	% Sand (2.00 mm - 1.00 mm)	5.5	%	ALS	RG MIDAG-S1 SE-2 2020-09-16 0915
SE	MIDAG-S1	666290	5488507	2020	2	2020-09-18	09.15	% Sand (1.00 mm - 0.30 mm)	16.7	%	ALS	RG MIDAG-S1 SE-2 2020-09-16 0915
SE	MIDAG-S1	666290	5488507		2	2020-09-18	09.15	· · · · · · · · · · · · · · · · · · ·	14.6	%	ALS	RG MIDAG-S1 SE-2 2020-09-18 0915
SE SE	MIDAG-S1	666290	5488507	2020	2	2020-09-18	09.15	% Sand (0.25 mm - 0.125 mm)	9.7	%	ALS	RG MIDAG-S1_SE-2_2020-09-16_0915
SE SE		ļ		2020	2			% Sand (0.125 mm - 0.063 mm)				
SE	MIDAG-S1	666290	5488507	2020	_	2020-09-18	09:15	% Silt (0.063 mm - 0.0312 mm)	21.4	%	ALS	RG_MIDAG-S1_SE-2_2020-09-18_0915
	MIDAG-S1	666290	5488507	2020	2	2020-09-18	09:15	% Silt (0.031 mm - 0.004 mm)	25.4	%	ALS	RG_MIDAG-S1_SE-2_2020-09-18_0915
SE SE	MIDAG-S1	666290	5488507	2020	2	2020-09-18	09:15	% Clay (<4 μm)	4.4	%	ALS	RG_MIDAG-S1_SE-2_2020-09-18_0918
SE SE	MIDAG-S1	666290	5488507	2020	2	2020-09-18	09:15	Texture	Sandy loam	-	ALS	RG_MIDAG-S1_SE-2_2020-09-18_0915
SE	MIDAG-S1	666290	5488507	2020	2	2020-09-18	09:15	Mercury (Hg)	0.0452	mg/kg	ALS	RG_MIDAG-S1_SE-2_2020-09-18_0915
SE	MIDAG-S1	666290	5488507	2020	2	2020-09-18	09:15	Aluminum (Al)	12300	mg/kg	ALS	RG_MIDAG-S1_SE-2_2020-09-18_0915
SE	MIDAG-S1	666290	5488507	2020	2	2020-09-18	09:15	Antimony (Sb)	0.41	mg/kg	ALS	RG_MIDAG-S1_SE-2_2020-09-18_0915
SE	MIDAG-S1	666290	5488507	2020	2	2020-09-18	09:15	Arsenic (As)	8.19	mg/kg	ALS	RG_MIDAG-S1_SE-2_2020-09-18_0915
SE	MIDAG-S1	666290	5488507	2020	2	2020-09-18	09:15	Barium (Ba)	142	mg/kg	ALS	RG_MIDAG-S1_SE-2_2020-09-18_0915
SE	MIDAG-S1	666290	5488507	2020	2	2020-09-18	09:15	Beryllium (Be)	0.87	mg/kg	ALS	RG_MIDAG-S1_SE-2_2020-09-18_0915
SE	MIDAG-S1	666290	5488507	2020	2	2020-09-18	09:15	Bismuth (Bi)	<0.20	mg/kg	ALS	RG_MIDAG-S1_SE-2_2020-09-18_0915
SE	MIDAG-S1	666290	5488507	2020	2	2020-09-18	09:15	Boron (B)	16.8	mg/kg	ALS	RG_MIDAG-S1_SE-2_2020-09-18_0915
SE	MIDAG-S1	666290	5488507	2020	2	2020-09-18	09:15	Cadmium (Cd)	1.34	mg/kg	ALS	RG_MIDAG-S1_SE-2_2020-09-18_0915
SE	MIDAG-S1	666290	5488507	2020		2020-09-18	09:15	Calcium (Ca)	55900	mg/kg	ALS	RG_MIDAG-S1_SE-2_2020-09-18_0915
SE	MIDAG-S1	666290	5488507	2020		2020-09-18	09:15	Chromium (Cr)	18.1	mg/kg	ALS	RG_MIDAG-S1_SE-2_2020-09-18_0915
SE	MIDAG-S1	666290	5488507	2020	2	2020-09-18	09:15	Cobalt (Co)	41.4	mg/kg	ALS	RG_MIDAG-S1_SE-2_2020-09-18_0915
SE	MIDAG-S1	666290	5488507	2020	2	2020-09-18	09:15	Copper (Cu)	15.7	mg/kg	ALS	RG_MIDAG-S1_SE-2_2020-09-18_0915
SE	MIDAG-S1	666290	5488507	2020	2	2020-09-18	09:15	Iron (Fe)	15700	mg/kg	ALS	RG_MIDAG-S1_SE-2_2020-09-18_0915
SE	MIDAG-S1	666290	5488507	2020	2	2020-09-18	09:15	Lead (Pb)	9.49	mg/kg	ALS	RG_MIDAG-S1_SE-2_2020-09-18_091
SE	MIDAG-S1	666290	5488507	2020	2	2020-09-18	09:15	Lithium (Li)	16.4	mg/kg	ALS	RG_MIDAG-S1_SE-2_2020-09-18_0918
SE	MIDAG-S1	666290	5488507	2020	2	2020-09-18	09:15	Magnesium (Mg)	11000	mg/kg	ALS	RG_MIDAG-S1_SE-2_2020-09-18_0915
SE	MIDAG-S1	666290	5488507	2020	2	2020-09-18	09:15	Manganese (Mn)	694	mg/kg	ALS	RG_MIDAG-S1_SE-2_2020-09-18_0915
SE	MIDAG-S1	666290	5488507	2020	2	2020-09-18	09:15	Molybdenum (Mo)	1.66	mg/kg	ALS	RG_MIDAG-S1_SE-2_2020-09-18_0915
SE	MIDAG-S1	666290	5488507	2020	2	2020-09-18	09:15	Nickel (Ni)	83.3	mg/kg	ALS	RG_MIDAG-S1_SE-2_2020-09-18_0915
SE	MIDAG-S1	666290	5488507	2020	2	2020-09-18	09:15	Phosphorus (P)	1270	mg/kg	ALS	RG_MIDAG-S1_SE-2_2020-09-18_0915
SE	MIDAG-S1	666290	5488507	2020	2	2020-09-18	09:15	Potassium (K)	2810	mg/kg	ALS	RG_MIDAG-S1_SE-2_2020-09-18_091
SE	MIDAG-S1	666290	5488507	2020	2	2020-09-18	09:15	Selenium (Se)	2.26	mg/kg	ALS	RG_MIDAG-S1_SE-2_2020-09-18_091
SE	MIDAG-S1	666290	5488507	2020	2	2020-09-18	09:15	Silver (Ag)	0.16	mg/kg	ALS	RG MIDAG-S1 SE-2 2020-09-18 0915
SE	MIDAG-S1	666290	5488507	2020	2	2020-09-18	09:15	Sodium (Na)	165	mg/kg	ALS	RG MIDAG-S1 SE-2 2020-09-18 0915
SE	MIDAG-S1	666290	5488507	2020		2020-09-18	09:15	Strontium (Sr)	85.9	mg/kg	ALS	RG MIDAG-S1 SE-2 2020-09-18 0915

WSP Canada Inc. Page 194 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Tura	Ctotion	Location	ı (UTMs) ^(a)	Vasi	Donlingto	Dete	Time	Analysis	Dogult	Heit		Laboratory Information
Туре	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MIDAG-S1	666290	5488507	2020	2	2020-09-18	09:15	Sulfur (S)	<1000	mg/kg	ALS	RG MIDAG-S1 SE-2 2020-09-18 0915
SE	MIDAG-S1	666290	5488507	2020	2	2020-09-18	09:15	Thallium (TI)	0.596	mg/kg	ALS	RG MIDAG-S1 SE-2 2020-09-18 0915
SE	MIDAG-S1	666290	5488507	2020	2	2020-09-18	09:15	Tin (Sn)	<2.0	mg/kg	ALS	RG MIDAG-S1 SE-2 2020-09-18 0915
SE	MIDAG-S1	666290	5488507	2020	2	2020-09-18	09:15	Titanium (Ti)	16.9	mg/kg	ALS	RG MIDAG-S1 SE-2 2020-09-18 0915
SE	MIDAG-S1	666290	5488507	2020	2	2020-09-18	09:15	Tungsten (W)	<0.50	mg/kg	ALS	RG MIDAG-S1 SE-2 2020-09-18 0915
SE	MIDAG-S1	666290	5488507	2020	2	2020-09-18	09:15	Uranium (U)	1.12	mg/kg	ALS	RG MIDAG-S1 SE-2 2020-09-18 0915
SE	MIDAG-S1	666290	5488507	2020	2	2020-09-18	09:15	Vanadium (V)	30.8	mg/kg	ALS	RG MIDAG-S1 SE-2 2020-09-18 0915
SE	MIDAG-S1	666290	5488507	2020	2	2020-09-18	09:15	Zinc (Zn)	133	mg/kg	ALS	RG MIDAG-S1 SE-2 2020-09-18 0915
SE	MIDAG-S1	666290	5488507	2020	2	2020-09-18	09:15	Zirconium (Zr)	<1.0	mg/kg	ALS	RG MIDAG-S1 SE-2 2020-09-18 0915
SE	MIDAG-S1	666290	5488507	2020	2	2020-09-18	09:15	pH (1:2 soil:water)	7.23	рН	ALS	RG MIDAG-S1 SE-2 2020-09-18 0915
SE	MIDAG-S1	666290	5488507	2020	2	2020-09-18	09:15	Total Organic Carbon	8.44	%	ALS	RG MIDAG-S1 SE-2 2020-09-18 0915
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09:35	Moisture	65.9	%	ALS	RG MIDAG-S1 SE-3 2020-09-18 0935
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09:35	Acenaphthene	<0.020	mg/kg	ALS	RG MIDAG-S1 SE-3 2020-09-18 0935
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09:35	Acenaphthylene	<0.0070	mg/kg	ALS	RG MIDAG-S1 SE-3 2020-09-18 0935
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09:35	Anthracene	<0.0056	mg/kg	ALS	RG MIDAG-S1 SE-3 2020-09-18 0935
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09:35	Acridine	<0.040	mg/kg	ALS	RG MIDAG-S1 SE-3 2020-09-18 0935
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09:35	Benz(a)anthracene	<0.050	mg/kg	ALS	RG MIDAG-S1 SE-3 2020-09-18 0935
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09:35	Benzo(a)pyrene	0.018	mg/kg	ALS	RG MIDAG-S1 SE-3 2020-09-18 0935
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09:35	Benzo(b&j)fluoranthene	0.113	mg/kg	ALS	RG MIDAG-S1 SE-3 2020-09-18 0935
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09:35	Benzo(e)pyrene	0.111	mg/kg	ALS	RG MIDAG-S1 SE-3 2020-09-18 0935
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09:35	Benzo(g_h_i)perylene	0.039	mg/kg	ALS	RG MIDAG-S1 SE-3 2020-09-18 0935
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09:35	Benzo(k)fluoranthene	0.015	mg/kg	ALS	RG MIDAG-S1 SE-3 2020-09-18 0935
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09:35	Chrysene	<0.19	mg/kg	ALS	RG MIDAG-S1 SE-3 2020-09-18 0935
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09:35	Dibenz(a h)anthracene	0.0164	mg/kg	ALS	RG MIDAG-S1 SE-3 2020-09-18 0935
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09:35	Fluoranthene	0.049	mg/kg	ALS	RG MIDAG-S1 SE-3 2020-09-18 0935
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09:35	Fluorene	0.031	mg/kg	ALS	RG MIDAG-S1 SE-3 2020-09-18 0935
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09:35	Indeno(1,2,3-c,d)pyrene	0.020	mg/kg	ALS	RG MIDAG-S1 SE-3 2020-09-18 0935
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09:35	2-Methylnaphthalene	0.506	mg/kg	ALS	RG MIDAG-S1 SE-3 2020-09-18 0935
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09:35	Naphthalene	0.245	mg/kg	ALS	RG MIDAG-S1 SE-3 2020-09-18 0935
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09:35	Perylene	0.015	mg/kg	ALS	RG MIDAG-S1 SE-3 2020-09-18 0935
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09:35	Phenanthrene	0.477	mg/kg	ALS	RG MIDAG-S1 SE-3 2020-09-18 0935
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09:35	Pyrene	0.063	mg/kg	ALS	RG MIDAG-S1 SE-3 2020-09-18 0935
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09:35	1-Methylnaphthalene	0.346	mg/kg	ALS	RG MIDAG-S1 SE-3 2020-09-18 0935
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09:35	Quinoline	<0.014	mg/kg	ALS	RG MIDAG-S1 SE-3 2020-09-18 0935
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09:35	IACR (CCME)	1.05	-	ALS	RG MIDAG-S1 SE-3 2020-09-18 0935
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09:35	B(a)P Total Potency Equivalent	0.053	mg/kg	ALS	RG MIDAG-S1 SE-3 2020-09-18 0935
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09:35	Benzo(b+j+k)fluoranthene	0.128	mg/kg	ALS	RG MIDAG-S1 SE-3 2020-09-18 0935
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09:35	IACR:Coarse	<0.050	-	ALS	RG MIDAG-S1 SE-3 2020-09-18 0935
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09:35	IACR:Fine	0.074	_	ALS	RG MIDAG-S1 SE-3 2020-09-18 0935
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09:35	d8-Naphthalene	96.8	%	ALS	RG MIDAG-S1 SE-3 2020-09-18 0935
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09:35	d10-Acenaphthene	95.0	%	ALS	RG MIDAG-S1 SE-3 2020-09-18 0935
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09:35	d10-Phenanthrene	96.6	%	ALS	RG MIDAG-S1 SE-3 2020-09-18 0935
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09:35	d12-Chrysene	104.8	%	ALS	RG MIDAG-S1 SE-3 2020-09-18 0935
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09:35	% Gravel (>2 mm)	<1.0	%	ALS	RG MIDAG-S1 SE-3 2020-09-18 0935
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09.35	% Sand (2.00 mm - 1.00 mm)	2.4	%	ALS	RG MIDAG-S1 SE-3 2020-09-18 0935
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09.35	% Sand (2.00 mm - 1.00 mm)	6.0	%	ALS	RG MIDAG-S1 SE-3 2020-09-18 0935
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09.35	% Sand (1.00 mm - 0.50 mm)	9.6	%	ALS	RG MIDAG-S1 SE-3 2020-09-18 0935
_	INIDAG-91	000290	5400507	ZUZU	S	ZUZU-U9-18	U9.30	70 Sanu (0.50 mm - 0.25 mm)	9.0	70	ALO	NG WILD NG - 3 SE - 3 ZUZU-U9- 18 U9

WSP Canada Inc. Page 195 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

T	Otation	Location	າ (UTMs) ^(a)	V	Dankast	Dot	T:	Amalata	Beerli	114		Laboratory Information
Type	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09:35	% Sand (0.25 mm - 0.125 mm)	13.1	%	ALS	RG MIDAG-S1 SE-3 2020-09-18 0935
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09:35	% Sand (0.125 mm - 0.063 mm)	13.9	%	ALS	RG MIDAG-S1 SE-3 2020-09-18 0935
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09:35	% Silt (0.063 mm - 0.0312 mm)	22.5	%	ALS	RG MIDAG-S1 SE-3 2020-09-18 0935
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09:35	% Silt (0.031 mm - 0.004 mm)	27.0	%	ALS	RG MIDAG-S1 SE-3 2020-09-18 0935
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09:35	% Clay (<4 μm)	5.1	%	ALS	RG MIDAG-S1 SE-3 2020-09-18 0935
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09:35	Texture	Sandy loam	-	ALS	RG MIDAG-S1 SE-3 2020-09-18 0935
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09:35	Mercury (Hg)	0.0475	mg/kg	ALS	RG MIDAG-S1 SE-3 2020-09-18 0935
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09:35	Aluminum (Al)	12600	mg/kg	ALS	RG MIDAG-S1 SE-3 2020-09-18 0935
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09:35	Antimony (Sb)	0.37	mg/kg	ALS	RG MIDAG-S1 SE-3 2020-09-18 0935
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09:35	Arsenic (As)	7.77	mg/kg	ALS	RG MIDAG-S1 SE-3 2020-09-18 0935
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09:35	Barium (Ba)	151		ALS	RG MIDAG-S1 SE-3 2020-09-18 0935
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09.35		0.89	mg/kg	ALS	RG MIDAG-S1 SE-3 2020-09-18 0935
SE					ŭ			Beryllium (Be)		mg/kg	ALS	
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09:35	Bismuth (Bi)	<0.20	mg/kg		RG_MIDAG-S1_SE-3_2020-09-18_0935
	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09:35	Boron (B)	14.7	mg/kg	ALS	RG_MIDAG-S1_SE-3_2020-09-18_0935
SE	MIDAG-S1	666290	5488507	2020	<u> </u>	2020-09-18	09:35	Cadmium (Cd)	1.21	mg/kg	ALS	RG_MIDAG-S1_SE-3_2020-09-18_0935
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09:35	Calcium (Ca)	37100	mg/kg	ALS	RG_MIDAG-S1_SE-3_2020-09-18_0935
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09:35	Chromium (Cr)	18.5	mg/kg	ALS	RG_MIDAG-S1_SE-3_2020-09-18_0935
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09:35	Cobalt (Co)	32.9	mg/kg	ALS	RG_MIDAG-S1_SE-3_2020-09-18_0935
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09:35	Copper (Cu)	16.5	mg/kg	ALS	RG_MIDAG-S1_SE-3_2020-09-18_0935
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09:35	Iron (Fe)	15500	mg/kg	ALS	RG_MIDAG-S1_SE-3_2020-09-18_0935
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09:35	Lead (Pb)	9.76	mg/kg	ALS	RG_MIDAG-S1_SE-3_2020-09-18_0935
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09:35	Lithium (Li)	16.1	mg/kg	ALS	RG_MIDAG-S1_SE-3_2020-09-18_0935
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09:35	Magnesium (Mg)	10400	mg/kg	ALS	RG_MIDAG-S1_SE-3_2020-09-18_0935
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09:35	Manganese (Mn)	496	mg/kg	ALS	RG_MIDAG-S1_SE-3_2020-09-18_0935
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09:35	Molybdenum (Mo)	1.54	mg/kg	ALS	RG_MIDAG-S1_SE-3_2020-09-18_0935
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09:35	Nickel (Ni)	76.0	mg/kg	ALS	RG_MIDAG-S1_SE-3_2020-09-18_0935
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09:35	Phosphorus (P)	1110	mg/kg	ALS	RG_MIDAG-S1_SE-3_2020-09-18_0935
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09:35	Potassium (K)	2830	mg/kg	ALS	RG_MIDAG-S1_SE-3_2020-09-18_0935
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09:35	Selenium (Se)	2.03	mg/kg	ALS	RG_MIDAG-S1_SE-3_2020-09-18_0935
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09:35	Silver (Ag)	0.17	mg/kg	ALS	RG_MIDAG-S1_SE-3_2020-09-18_0935
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09:35	Sodium (Na)	159	mg/kg	ALS	RG_MIDAG-S1_SE-3_2020-09-18_0935
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09:35	Strontium (Sr)	69.5	mg/kg	ALS	RG_MIDAG-S1_SE-3_2020-09-18_0935
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09:35	Sulfur (S)	<1000	mg/kg	ALS	RG_MIDAG-S1_SE-3_2020-09-18_0935
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09:35	Thallium (TI)	0.526	mg/kg	ALS	RG_MIDAG-S1_SE-3_2020-09-18_0935
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09:35	Tin (Sn)	<2.0	mg/kg	ALS	RG_MIDAG-S1_SE-3_2020-09-18_0935
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09:35	Titanium (Ti)	14.1	mg/kg	ALS	RG_MIDAG-S1_SE-3_2020-09-18_0935
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09:35	Tungsten (W)	<0.50	mg/kg	ALS	RG MIDAG-S1 SE-3 2020-09-18 0935
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09:35	Uranium (U)	1.00	mg/kg	ALS	RG MIDAG-S1 SE-3 2020-09-18 0935
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09:35	Vanadium (V)	31.6	mg/kg	ALS	RG MIDAG-S1 SE-3 2020-09-18 0935
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09:35	Zinc (Zn)	127	mg/kg	ALS	RG MIDAG-S1 SE-3 2020-09-18 0935
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09:35	Zirconium (Zr)	<1.0	mg/kg	ALS	RG MIDAG-S1 SE-3 2020-09-18 0935
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09:35	pH (1:2 soil:water)	7.39	pH	ALS	RG MIDAG-S1 SE-3 2020-09-18 0935
SE	MIDAG-S1	666290	5488507	2020	3	2020-09-18	09:35	Total Organic Carbon	8.87	%	ALS	RG MIDAG-S1 SE-3 2020-09-18 0935
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	Moisture	65.9	%	ALS	RG MIDAG-S1 SE-4 2020-09-18 1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	Acenaphthene	<0.020	mg/kg	ALS	RG MIDAG-S1 SE-4 2020-09-18 1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	Acenaphthylene	<0.020	mg/kg	ALS	RG MIDAG-S1 SE-4 2020-09-18 1040
SE	MIDAG-S1	666290	5488507	2020	1	2020-09-18	10:40	Anthracene	<0.0030		ALS	RG MIDAG-S1 SE-4 2020-09-18 1040
o⊑	INIDAG-91	000290	5400507	2020	4	ZUZU-US- 10	10.40		\0.0040	mg/kg	ALO	\G_ V DAG-3 _3E-4_2020-09-10_1040

WSP Canada Inc. Page 196 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Table I-	1: Sediment Chem			CMm LAEMP	Sampling St	ations, 2012 to	2022					
Туре	Station		(UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
		Easting	Northing		replicate		Time	Analyto	resure	Oilit	Lab	Sample ID
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	Acridine	<0.020	mg/kg	ALS	RG_MIDAG-S1_SE-4_2020-09-18_1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	Benz(a)anthracene	0.019	mg/kg	ALS	RG_MIDAG-S1_SE-4_2020-09-18_1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	Benzo(a)pyrene	0.011	mg/kg	ALS	RG_MIDAG-S1_SE-4_2020-09-18_1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	Benzo(b&j)fluoranthene	0.080	mg/kg	ALS	RG_MIDAG-S1_SE-4_2020-09-18_1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	Benzo(e)pyrene	0.085	mg/kg	ALS	RG_MIDAG-S1_SE-4_2020-09-18_1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	Benzo(g_h_i)perylene	0.029	mg/kg	ALS	RG_MIDAG-S1_SE-4_2020-09-18_1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	Benzo(k)fluoranthene	<0.010	mg/kg	ALS	RG_MIDAG-S1_SE-4_2020-09-18_1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	Chrysene	<0.14	mg/kg	ALS	RG_MIDAG-S1_SE-4_2020-09-18_1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	Dibenz(a_h)anthracene	0.0096	mg/kg	ALS	RG_MIDAG-S1_SE-4_2020-09-18_1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	Fluoranthene	0.033	mg/kg	ALS	RG_MIDAG-S1_SE-4_2020-09-18_1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	Fluorene	0.032	mg/kg	ALS	RG_MIDAG-S1_SE-4_2020-09-18_1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	Indeno(1,2,3-c,d)pyrene	0.011	mg/kg	ALS	RG_MIDAG-S1_SE-4_2020-09-18_1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	2-Methylnaphthalene	0.489	mg/kg	ALS	RG_MIDAG-S1_SE-4_2020-09-18_1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	Naphthalene	0.222	mg/kg	ALS	RG_MIDAG-S1_SE-4_2020-09-18_1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	Perylene	0.014	mg/kg	ALS	RG_MIDAG-S1_SE-4_2020-09-18_1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	Phenanthrene	0.353	mg/kg	ALS	RG_MIDAG-S1_SE-4_2020-09-18_1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	Pyrene	0.042	mg/kg	ALS	RG_MIDAG-S1_SE-4_2020-09-18_1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	1-Methylnaphthalene	0.314	mg/kg	ALS	RG_MIDAG-S1_SE-4_2020-09-18_1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	Quinoline	<0.050	mg/kg	ALS	RG_MIDAG-S1_SE-4_2020-09-18_1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	IACR (CCME)	0.70	-	ALS	RG_MIDAG-S1_SE-4_2020-09-18_1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	B(a)P Total Potency Equivalent	0.033	mg/kg	ALS	RG_MIDAG-S1_SE-4_2020-09-18_1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	Benzo(b+j+k)fluoranthene	0.080	mg/kg	ALS	RG_MIDAG-S1_SE-4_2020-09-18_1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	IACR:Coarse	<0.050	-	ALS	RG_MIDAG-S1_SE-4_2020-09-18_1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	IACR:Fine	<0.050	-	ALS	RG_MIDAG-S1_SE-4_2020-09-18_1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	d8-Naphthalene	100.7	%	ALS	RG_MIDAG-S1_SE-4_2020-09-18_1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	d10-Acenaphthene	96.8	%	ALS	RG_MIDAG-S1_SE-4_2020-09-18_1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	d10-Phenanthrene	101.6	%	ALS	RG_MIDAG-S1_SE-4_2020-09-18_1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	d12-Chrysene	110.6	%	ALS	RG_MIDAG-S1_SE-4_2020-09-18_1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	% Gravel (>2 mm)	1.1	%	ALS	RG_MIDAG-S1_SE-4_2020-09-18_1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	% Sand (2.00 mm - 1.00 mm)	3.3	%	ALS	RG_MIDAG-S1_SE-4_2020-09-18_1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	% Sand (1.00 mm - 0.50 mm)	6.9	%	ALS	RG_MIDAG-S1_SE-4_2020-09-18_1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	% Sand (0.50 mm - 0.25 mm)	12.6	%	ALS	RG_MIDAG-S1_SE-4_2020-09-18_1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	% Sand (0.25 mm - 0.125 mm)	13.8	%	ALS	RG_MIDAG-S1_SE-4_2020-09-18_1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	% Sand (0.125 mm - 0.063 mm)	12.0	%	ALS	RG_MIDAG-S1_SE-4_2020-09-18_1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	% Silt (0.063 mm - 0.0312 mm)	21.8	%	ALS	RG_MIDAG-S1_SE-4_2020-09-18_1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	% Silt (0.031 mm - 0.004 mm)	24.7	%	ALS	RG_MIDAG-S1_SE-4_2020-09-18_1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	% Clay (<4 μm)	3.7	%	ALS	RG MIDAG-S1 SE-4 2020-09-18 1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	Texture	Sandy loam	-	ALS	RG MIDAG-S1 SE-4 2020-09-18 1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	Mercury (Hg)	0.0473	mg/kg	ALS	RG_MIDAG-S1_SE-4_2020-09-18_1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	Aluminum (Al)	13200	mg/kg	ALS	RG_MIDAG-S1_SE-4_2020-09-18_1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	Antimony (Sb)	0.29	mg/kg	ALS	RG_MIDAG-S1_SE-4_2020-09-18_1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	Arsenic (As)	8.36	mg/kg	ALS	RG_MIDAG-S1_SE-4_2020-09-18_1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	Barium (Ba)	131	mg/kg	ALS	RG_MIDAG-S1_SE-4_2020-09-18_1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	Beryllium (Be)	0.86	mg/kg	ALS	RG_MIDAG-S1_SE-4_2020-09-18_1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	Bismuth (Bi)	<0.20	mg/kg	ALS	RG_MIDAG-S1_SE-4_2020-09-18_1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	Boron (B)	13.9	mg/kg	ALS	RG_MIDAG-S1_SE-4_2020-09-18_1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	Cadmium (Cd)	1.29	mg/kg	ALS	RG MIDAG-S1 SE-4 2020-09-18 1040

WSP Canada Inc. Page 197 of 337

Sediment Screening

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Table I-1	I: Sediment Chem	nistry Data Col	lected from the	CMm LAEMP S	Sampling Sta	ations, 2012 to	2022					
Туре	Station	Location	າ (UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
Type	Station	Easting	Northing	i cai	Replicate	Date	Time	Analyte	Nesuit	Offic	Lab	Sample ID
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	Calcium (Ca)	52400	mg/kg	ALS	RG_MIDAG-S1_SE-4_2020-09-18_1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	Chromium (Cr)	19.9	mg/kg	ALS	RG_MIDAG-S1_SE-4_2020-09-18_1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	Cobalt (Co)	34.5	mg/kg	ALS	RG_MIDAG-S1_SE-4_2020-09-18_1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	Copper (Cu)	16.8	mg/kg	ALS	RG_MIDAG-S1_SE-4_2020-09-18_1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	Iron (Fe)	15800	mg/kg	ALS	RG_MIDAG-S1_SE-4_2020-09-18_1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	Lead (Pb)	9.69	mg/kg	ALS	RG_MIDAG-S1_SE-4_2020-09-18_1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	Lithium (Li)	15.8	mg/kg	ALS	RG_MIDAG-S1_SE-4_2020-09-18_1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	Magnesium (Mg)	12900	mg/kg	ALS	RG_MIDAG-S1_SE-4_2020-09-18_1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	Manganese (Mn)	693	mg/kg	ALS	RG_MIDAG-S1_SE-4_2020-09-18_1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	Molybdenum (Mo)	1.60	mg/kg	ALS	RG_MIDAG-S1_SE-4_2020-09-18_1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	Nickel (Ni)	88.7	mg/kg	ALS	RG_MIDAG-S1_SE-4_2020-09-18_1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	Phosphorus (P)	1270	mg/kg	ALS	RG_MIDAG-S1_SE-4_2020-09-18_1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	Potassium (K)	3010	mg/kg	ALS	RG_MIDAG-S1_SE-4_2020-09-18_1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	Selenium (Se)	2.13	mg/kg	ALS	RG_MIDAG-S1_SE-4_2020-09-18_1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	Silver (Ag)	0.16	mg/kg	ALS	RG_MIDAG-S1_SE-4_2020-09-18_1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	Sodium (Na)	188	mg/kg	ALS	RG_MIDAG-S1_SE-4_2020-09-18_1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	Strontium (Sr)	87.0	mg/kg	ALS	RG_MIDAG-S1_SE-4_2020-09-18_1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	Sulfur (S)	<1000	mg/kg	ALS	RG_MIDAG-S1_SE-4_2020-09-18_1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	Thallium (TI)	0.560	mg/kg	ALS	RG_MIDAG-S1_SE-4_2020-09-18_1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	Tin (Sn)	<2.0	mg/kg	ALS	RG_MIDAG-S1_SE-4_2020-09-18_1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	Titanium (Ti)	12.3	mg/kg	ALS	RG_MIDAG-S1_SE-4_2020-09-18_1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	Tungsten (W)	<0.50	mg/kg	ALS	RG_MIDAG-S1_SE-4_2020-09-18_1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	Uranium (U)	0.982	mg/kg	ALS	RG_MIDAG-S1_SE-4_2020-09-18_1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	Vanadium (V)	33.3	mg/kg	ALS	RG_MIDAG-S1_SE-4_2020-09-18_1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	Zinc (Zn)	140	mg/kg	ALS	RG_MIDAG-S1_SE-4_2020-09-18_1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_MIDAG-S1_SE-4_2020-09-18_1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	pH (1:2 soil:water)	7.45	pН	ALS	RG_MIDAG-S1_SE-4_2020-09-18_1040
SE	MIDAG-S1	666290	5488507	2020	4	2020-09-18	10:40	Total Organic Carbon	8.22	%	ALS	RG_MIDAG-S1_SE-4_2020-09-18_1040
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	Moisture	52.1	%	ALS	RG_MIDAG-S1_SE-5_2020-09-18_1020
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	Acenaphthene	<0.020	mg/kg	ALS	RG_MIDAG-S1_SE-5_2020-09-18_1020
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	Acenaphthylene	<0.0050	mg/kg	ALS	RG_MIDAG-S1_SE-5_2020-09-18_1020
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	Anthracene	<0.0040	mg/kg	ALS	RG_MIDAG-S1_SE-5_2020-09-18_1020
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	Acridine	<0.010	mg/kg	ALS	RG_MIDAG-S1_SE-5_2020-09-18_1020
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	Benz(a)anthracene	0.017	mg/kg	ALS	RG_MIDAG-S1_SE-5_2020-09-18_1020
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	Benzo(a)pyrene	<0.010	mg/kg	ALS	RG_MIDAG-S1_SE-5_2020-09-18_1020
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	Benzo(b&j)fluoranthene	0.070	mg/kg	ALS	RG_MIDAG-S1_SE-5_2020-09-18_1020
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	Benzo(e)pyrene	0.077	mg/kg	ALS	RG_MIDAG-S1_SE-5_2020-09-18_1020
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	Benzo(g_h_i)perylene	0.026	mg/kg	ALS	RG_MIDAG-S1_SE-5_2020-09-18_1020
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	Benzo(k)fluoranthene	<0.010	mg/kg	ALS	RG_MIDAG-S1_SE-5_2020-09-18_1020
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	Chrysene	0.119	mg/kg	ALS	RG_MIDAG-S1_SE-5_2020-09-18_1020
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	Dibenz(a_h)anthracene	0.0080	mg/kg	ALS	RG_MIDAG-S1_SE-5_2020-09-18_1020
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	Fluoranthene	0.029	mg/kg	ALS	RG_MIDAG-S1_SE-5_2020-09-18_1020
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	Fluorene	0.027	mg/kg	ALS	RG_MIDAG-S1_SE-5_2020-09-18_1020
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	Indeno(1,2,3-c,d)pyrene	<0.010	mg/kg	ALS	RG_MIDAG-S1_SE-5_2020-09-18_1020
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	2-Methylnaphthalene	0.341	mg/kg	ALS	RG_MIDAG-S1_SE-5_2020-09-18_1020
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	Naphthalene	0.152	mg/kg	ALS	RG_MIDAG-S1_SE-5_2020-09-18_1020
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	Perylene	0.013	mg/kg	ALS	RG_MIDAG-S1_SE-5_2020-09-18_1020

WSP Canada Inc. Page 198 of 337

Sediment Screening

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

T	Otation	Location	า (UTMs) ^(a)	Vacu	Donlington	Data	Time	Amalada	Beerli	LL ₀ 24		Laboratory Information
Туре	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	Phenanthrene	0.310	mg/kg	ALS	RG MIDAG-S1 SE-5 2020-09-18 1020
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	Pyrene	0.037	mg/kg	ALS	RG MIDAG-S1 SE-5 2020-09-18 1020
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	1-Methylnaphthalene	0.230	mg/kg	ALS	RG MIDAG-S1 SE-5 2020-09-18 1020
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	Quinoline	<0.050	mg/kg	ALS	RG MIDAG-S1 SE-5 2020-09-18 1020
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	IACR (CCME)	0.63	-	ALS	RG MIDAG-S1 SE-5 2020-09-18 1020
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	B(a)P Total Potency Equivalent	0.024	mg/kg	ALS	RG MIDAG-S1 SE-5 2020-09-18 1020
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	Benzo(b+j+k)fluoranthene	0.070	mg/kg	ALS	RG MIDAG-S1 SE-5 2020-09-18 1020
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	IACR:Coarse	<0.050	ilig/kg	ALS	RG MIDAG-S1 SE-5 2020-09-18 1020
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	IACR:Fine	<0.050	-	ALS	RG MIDAG-S1 SE-5 2020-09-18 1020
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	d8-Naphthalene	93.7	%	ALS	RG MIDAG-S1_SE-5_2020-09-18_1020
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18		·				
SE							10:20	d10-Acenaphthene	93.6	%	ALS	RG_MIDAG-S1_SE-5_2020-09-18_1020
	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	d10-Phenanthrene	96.8	%	ALS	RG_MIDAG-S1_SE-5_2020-09-18_1020
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	d12-Chrysene	100.4	%	ALS	RG_MIDAG-S1_SE-5_2020-09-18_1020
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	% Gravel (>2 mm)	<1.0	%	ALS	RG_MIDAG-S1_SE-5_2020-09-18_1020
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	% Sand (2.00 mm - 1.00 mm)	<1.0	%	ALS	RG_MIDAG-S1_SE-5_2020-09-18_1020
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	% Sand (1.00 mm - 0.50 mm)	<1.0	%	ALS	RG_MIDAG-S1_SE-5_2020-09-18_1020
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	% Sand (0.50 mm - 0.25 mm)	4.6	%	ALS	RG_MIDAG-S1_SE-5_2020-09-18_1020
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	% Sand (0.25 mm - 0.125 mm)	15.4	%	ALS	RG_MIDAG-S1_SE-5_2020-09-18_1020
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	% Sand (0.125 mm - 0.063 mm)	18.8	%	ALS	RG_MIDAG-S1_SE-5_2020-09-18_1020
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	% Silt (0.063 mm - 0.0312 mm)	25.8	%	ALS	RG_MIDAG-S1_SE-5_2020-09-18_1020
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	% Silt (0.031 mm - 0.004 mm)	29.3	%	ALS	RG_MIDAG-S1_SE-5_2020-09-18_1020
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	% Clay (<4 μm)	4.8	%	ALS	RG_MIDAG-S1_SE-5_2020-09-18_1020
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	Texture	Silt loam	-	ALS	RG_MIDAG-S1_SE-5_2020-09-18_1020
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	Mercury (Hg)	0.0366	mg/kg	ALS	RG_MIDAG-S1_SE-5_2020-09-18_1020
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	Aluminum (Al)	11900	mg/kg	ALS	RG_MIDAG-S1_SE-5_2020-09-18_1020
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	Antimony (Sb)	0.35	mg/kg	ALS	RG_MIDAG-S1_SE-5_2020-09-18_1020
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	Arsenic (As)	8.47	mg/kg	ALS	RG_MIDAG-S1_SE-5_2020-09-18_1020
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	Barium (Ba)	149	mg/kg	ALS	RG_MIDAG-S1_SE-5_2020-09-18_1020
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	Beryllium (Be)	0.76	mg/kg	ALS	RG_MIDAG-S1_SE-5_2020-09-18_1020
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	Bismuth (Bi)	<0.20	mg/kg	ALS	RG_MIDAG-S1_SE-5_2020-09-18_1020
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	Boron (B)	13.8	mg/kg	ALS	RG_MIDAG-S1_SE-5_2020-09-18_1020
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	Cadmium (Cd)	0.889	mg/kg	ALS	RG_MIDAG-S1_SE-5_2020-09-18_1020
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	Calcium (Ca)	45300	mg/kg	ALS	RG_MIDAG-S1_SE-5_2020-09-18_1020
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	Chromium (Cr)	17.5	mg/kg	ALS	RG_MIDAG-S1_SE-5_2020-09-18_1020
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	Cobalt (Co)	12.3	mg/kg	ALS	RG_MIDAG-S1_SE-5_2020-09-18_1020
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	Copper (Cu)	13.7	mg/kg	ALS	RG MIDAG-S1 SE-5 2020-09-18 1020
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	Iron (Fe)	15400	mg/kg	ALS	RG MIDAG-S1 SE-5 2020-09-18 1020
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	Lead (Pb)	8.89	mg/kg	ALS	RG MIDAG-S1 SE-5 2020-09-18 1020
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	Lithium (Li)	14.6	mg/kg	ALS	RG MIDAG-S1 SE-5 2020-09-18 1020
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	Magnesium (Mg)	12200	mg/kg	ALS	RG MIDAG-S1 SE-5 2020-09-18 1020
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	Manganese (Mn)	867	mg/kg	ALS	RG MIDAG-S1 SE-5 2020-09-18 1020
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	Molybdenum (Mo)	1.72	mg/kg	ALS	RG MIDAG-S1 SE-5 2020-09-18 1020
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	Nickel (Ni)	33.2	mg/kg	ALS	RG MIDAG-S1 SE-5 2020-09-18 1020
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	Phosphorus (P)	1170	mg/kg	ALS	RG MIDAG-S1 SE-5 2020-09-18 1020
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	Potassium (K)	2820	mg/kg	ALS	RG MIDAG-S1 SE-5 2020-09-18 1020
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	Selenium (Se)	1.72		ALS	RG MIDAG-S1 SE-5 2020-09-18 1020
SE	MIDAG-S1	666290	5488507		5		10:20	, ,	0.12	mg/kg	ALS	
o⊏	MIDAG-21	000290	J488JU/	2020	່ວ	2020-09-18	10:20	Silver (Ag)	J U. 12	mg/kg	ALS	RG_MIDAG-S1_SE-5_2020-09-18_1020

WSP Canada Inc. Page 199 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Table I-	1: Sediment Chem			CMm LAEMP	Sampling St	ations, 2012 to	2022					
Туре	Station		(UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
		Easting	Northing		replicate		Time	Analyto	rtesuit	Onic	Lab	Sample ID
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	Sodium (Na)	152	mg/kg	ALS	RG_MIDAG-S1_SE-5_2020-09-18_1020
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	Strontium (Sr)	70.0	mg/kg	ALS	RG_MIDAG-S1_SE-5_2020-09-18_1020
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	Sulfur (S)	<1000	mg/kg	ALS	RG_MIDAG-S1_SE-5_2020-09-18_1020
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	Thallium (TI)	0.453	mg/kg	ALS	RG_MIDAG-S1_SE-5_2020-09-18_1020
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	Tin (Sn)	<2.0	mg/kg	ALS	RG_MIDAG-S1_SE-5_2020-09-18_1020
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	Titanium (Ti)	15.4	mg/kg	ALS	RG_MIDAG-S1_SE-5_2020-09-18_1020
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	Tungsten (W)	<0.50	mg/kg	ALS	RG_MIDAG-S1_SE-5_2020-09-18_1020
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	Uranium (U)	0.901	mg/kg	ALS	RG_MIDAG-S1_SE-5_2020-09-18_1020
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	Vanadium (V)	31.0	mg/kg	ALS	RG_MIDAG-S1_SE-5_2020-09-18_1020
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	Zinc (Zn)	106	mg/kg	ALS	RG_MIDAG-S1_SE-5_2020-09-18_1020
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_MIDAG-S1_SE-5_2020-09-18_1020
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	pH (1:2 soil:water)	7.65	рН	ALS	RG_MIDAG-S1_SE-5_2020-09-18_1020
SE	MIDAG-S1	666290	5488507	2020	5	2020-09-18	10:20	Total Organic Carbon	4.95	%	ALS	RG_MIDAG-S1_SE-5_2020-09-18_1020
SE	CM_MC2	667249	5488144	2020	1	2020-09-18	14:08	Moisture	76.1	%	ALS	CM_MC2_SE-1_2020-09-18_1408
SE	CM_MC2	667249	5488144	2020	1	2020-09-18	14:08	Acenaphthene	<0.010	mg/kg	ALS	CM_MC2_SE-1_2020-09-18_1408
SE	CM_MC2	667249	5488144	2020	1	2020-09-18	14:08	Acenaphthylene	<0.010	mg/kg	ALS	CM_MC2_SE-1_2020-09-18_1408
SE	CM_MC2	667249	5488144	2020	1	2020-09-18	14:08	Anthracene	<0.0080	mg/kg	ALS	CM_MC2_SE-1_2020-09-18_1408
SE	CM_MC2	667249	5488144	2020	1	2020-09-18	14:08	Acridine	<0.020	mg/kg	ALS	CM_MC2_SE-1_2020-09-18_1408
SE	CM_MC2	667249	5488144	2020	1	2020-09-18	14:08	Benz(a)anthracene	<0.020	mg/kg	ALS	CM_MC2_SE-1_2020-09-18_1408
SE	CM_MC2	667249	5488144	2020	1	2020-09-18	14:08	Benzo(a)pyrene	<0.020	mg/kg	ALS	CM_MC2_SE-1_2020-09-18_1408
SE	CM_MC2	667249	5488144	2020	1	2020-09-18	14:08	Benzo(b&j)fluoranthene	0.037	mg/kg	ALS	CM_MC2_SE-1_2020-09-18_1408
SE	CM_MC2	667249	5488144	2020	1	2020-09-18	14:08	Benzo(e)pyrene	0.048	mg/kg	ALS	CM_MC2_SE-1_2020-09-18_1408
SE	CM_MC2	667249	5488144	2020	1	2020-09-18	14:08	Benzo(g_h_i)perylene	0.020	mg/kg	ALS	CM_MC2_SE-1_2020-09-18_1408
SE	CM_MC2	667249	5488144	2020	1	2020-09-18	14:08	Benzo(k)fluoranthene	<0.020	mg/kg	ALS	CM_MC2_SE-1_2020-09-18_1408
SE	CM_MC2	667249	5488144	2020	1	2020-09-18	14:08	Chrysene	0.060	mg/kg	ALS	CM_MC2_SE-1_2020-09-18_1408
SE	CM_MC2	667249	5488144	2020	1	2020-09-18	14:08	Dibenz(a_h)anthracene	<0.010	mg/kg	ALS	CM MC2 SE-1_2020-09-18_1408
SE	CM_MC2	667249	5488144	2020	1	2020-09-18	14:08	Fluoranthene	<0.020	mg/kg	ALS	CM_MC2_SE-1_2020-09-18_1408
SE	CM_MC2	667249	5488144	2020	1	2020-09-18	14:08	Fluorene	0.027	mg/kg	ALS	CM_MC2_SE-1_2020-09-18_1408
SE	CM_MC2	667249	5488144	2020	1	2020-09-18	14:08	Indeno(1,2,3-c,d)pyrene	<0.020	mg/kg	ALS	CM_MC2_SE-1_2020-09-18_1408
SE	CM_MC2	667249	5488144	2020	1	2020-09-18	14:08	2-Methylnaphthalene	0.277	mg/kg	ALS	CM_MC2_SE-1_2020-09-18_1408
SE	CM_MC2	667249	5488144	2020	1	2020-09-18	14:08	Naphthalene	0.104	mg/kg	ALS	CM_MC2_SE-1_2020-09-18_1408
SE	CM_MC2	667249	5488144	2020	1	2020-09-18	14:08	Perylene	<0.020	mg/kg	ALS	CM_MC2_SE-1_2020-09-18_1408
SE	CM_MC2	667249	5488144	2020	1	2020-09-18	14:08	Phenanthrene	0.160	mg/kg	ALS	CM_MC2_SE-1_2020-09-18_1408
SE	CM_MC2	667249	5488144	2020	1	2020-09-18	14:08	Pyrene	0.023	mg/kg	ALS	CM_MC2_SE-1_2020-09-18_1408
SE	CM_MC2	667249	5488144	2020	1	2020-09-18	14:08	1-Methylnaphthalene	0.173	mg/kg	ALS	CM_MC2_SE-1_2020-09-18_1408
SE	CM_MC2	667249	5488144	2020	1	2020-09-18	14:08	Quinoline	<0.020	mg/kg	ALS	CM_MC2_SE-1_2020-09-18_1408
SE	CM_MC2	667249	5488144	2020	1	2020-09-18	14:08	IACR (CCME)	0.41	-	ALS	CM MC2 SE-1 2020-09-18 1408
SE	CM_MC2	667249	5488144	2020	1	2020-09-18	14:08	B(a)P Total Potency Equivalent	0.023	mg/kg	ALS	CM MC2 SE-1 2020-09-18 1408
SE	CM_MC2	667249	5488144	2020	1	2020-09-18	14:08	Benzo(b+j+k)fluoranthene	0.037	mg/kg	ALS	CM MC2 SE-1 2020-09-18 1408
SE	CM_MC2	667249	5488144	2020	1	2020-09-18	14:08	IACR:Coarse	<0.050	-	ALS	CM_MC2_SE-1_2020-09-18_1408
SE	CM_MC2	667249	5488144	2020	1	2020-09-18	14:08	IACR:Fine	<0.050	-	ALS	CM_MC2_SE-1_2020-09-18_1408
SE	CM_MC2	667249	5488144	2020	1	2020-09-18	14:08	d8-Naphthalene	100.1	%	ALS	CM_MC2_SE-1_2020-09-18_1408
SE	CM_MC2	667249	5488144	2020	1	2020-09-18	14:08	d10-Acenaphthene	102.3	%	ALS	CM_MC2_SE-1_2020-09-18_1408
SE	CM_MC2	667249	5488144	2020	1	2020-09-18	14:08	d10-Phenanthrene	105.6	%	ALS	CM_MC2_SE-1_2020-09-18_1408
SE	CM MC2	667249	5488144	2020	1	2020-09-18	14:08	d12-Chrysene	117.3	%	ALS	CM MC2 SE-1 2020-09-18 1408
SE	CM_MC2	667249	5488144	2020	1	2020-09-18	14:08	% Gravel (>2 mm)	2.1	%	ALS	CM_MC2_SE-1_2020-09-18_1408
SE	CM_MC2	667249	5488144	2020	1	2020-09-18	14:08	% Sand (2.00 mm - 1.00 mm)	1.9	%	ALS	CM MC2 SE-1 2020-09-18 1408

WSP Canada Inc. Page 200 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	Ctotion	Location	ı (UTMs) ^(a)	V ₂ =	Danlington	Dot-	 :	Aughte	- Donald	Lloit -		Laboratory Information
/pe	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
Е	CM MC2	667249	5488144	2020	1	2020-09-18	14:08	% Sand (1.00 mm - 0.50 mm)	6.8	%	ALS	CM MC2 SE-1 2020-09-18 1408
E	CM MC2	667249	5488144	2020	1	2020-09-18	14:08	% Sand (0.50 mm - 0.25 mm)	12.1	%	ALS	CM MC2 SE-1_2020-09-18_1408
E	CM MC2	667249	5488144	2020	1	2020-09-18	14:08	% Sand (0.25 mm - 0.125 mm)	13.5	%	ALS	CM MC2 SE-1 2020-09-18 1408
E	CM MC2	667249	5488144	2020	1	2020-09-18	14:08	% Sand (0.125 mm - 0.063 mm)	10.1	%	ALS	CM MC2 SE-1 2020-09-18 1408
E	CM MC2	667249	5488144	2020	1 1	2020-09-18	14:08	% Silt (0.063 mm - 0.0312 mm)	23.7	%	ALS	CM MC2 SE-1_2020-09-18_1408
E T	CM MC2	667249	5488144	2020	1	2020-09-18	14:08	% Silt (0.031 mm - 0.004 mm)	26.2	%	ALS	CM MC2 SE-1 2020-09-18 1408
E	CM MC2	667249	5488144	2020	1 1	2020-09-18	14:08	% Clay (<4 µm)	3.5	%	ALS	CM MC2 SE-1 2020-09-18 1408
=	CM MC2	667249	5488144	2020	1 1	2020-09-18	14:08	Texture	Silt loam	-	ALS	CM MC2 SE-1 2020-09-18 1408
=	CM MC2	667249	5488144	2020	1 1	2020-09-18	14:08	Mercury (Hg)	0.0116	mg/kg	ALS	CM_MC2_SE-1_2020-09-18_1408
=	CM MC2	667249	5488144	2020	1	2020-09-18	14:08	Aluminum (Al)	5110	mg/kg	ALS	CM MC2 SE-1 2020-09-18 1408
=	CM MC2	667249	5488144	2020	1	2020-09-18	14:08	Antimony (Sb)	0.18	mg/kg	ALS	CM MC2 SE-1 2020-09-18 1408
= +	CM MC2	667249	5488144	2020	1	2020-09-18	14:08	Arsenic (As)	2.62	mg/kg	ALS	CM MC2 SE-1 2020-09-18 1408
=	CM_MC2	667249	5488144	2020	1	2020-09-18	14:08	Barium (Ba)	150	mg/kg	ALS	CM MC2 SE-1 2020-09-18 1408
	CM MC2	667249	5488144	2020	1 1	2020-09-18	14:08	Beryllium (Be)	0.30	mg/kg	ALS	CM MC2 SE-1 2020-09-18 1408
	CM MC2	667249	5488144	2020	1	2020-09-18	14:08	Bismuth (Bi)	<0.20		ALS	CM MC2 SE-1 2020-09-18 1408
	CM MC2	667249	5488144	2020	1	2020-09-18	14:08	Boron (B)	10.6	mg/kg	ALS	CM MC2 SE-1 2020-09-18 1408
=	CM MC2	667249	5488144	2020	1 1	2020-09-18	14:08	. ,	1.33	mg/kg	ALS	CM MC2 SE-1 2020-09-18 1408
	-				1 1			Cadmium (Cd)		mg/kg		
<u> </u>	CM_MC2	667249	5488144	2020	1 1	2020-09-18	14:08	Calcium (Ca)	210000	mg/kg	ALS	CM_MC2_SE-1_2020-09-18_1408
	CM_MC2	667249	5488144	2020	1 1	2020-09-18	14:08	Chromium (Cr)	7.15	mg/kg	ALS	CM_MC2_SE-1_2020-09-18_1408
	CM_MC2	667249	5488144	2020	1 1	2020-09-18	14:08	Cobalt (Co)	82.3	mg/kg	ALS	CM_MC2_SE-1_2020-09-18_1408
	CM_MC2	667249	5488144	2020	1	2020-09-18	14:08	Copper (Cu)	5.64	mg/kg	ALS	CM_MC2_SE-1_2020-09-18_1408
=	CM_MC2	667249	5488144	2020	1 1	2020-09-18	14:08	Iron (Fe)	6240	mg/kg	ALS	CM_MC2_SE-1_2020-09-18_1408
E	CM_MC2	667249	5488144	2020	1	2020-09-18	14:08	Lead (Pb)	3.58	mg/kg	ALS	CM_MC2_SE-1_2020-09-18_1408
E	CM_MC2	667249	5488144	2020	1	2020-09-18	14:08	Lithium (Li)	6.4	mg/kg	ALS	CM_MC2_SE-1_2020-09-18_1408
E	CM_MC2	667249	5488144	2020	1	2020-09-18	14:08	Magnesium (Mg)	6150	mg/kg	ALS	CM_MC2_SE-1_2020-09-18_1408
E	CM_MC2	667249	5488144	2020	1	2020-09-18	14:08	Manganese (Mn)	581	mg/kg	ALS	CM_MC2_SE-1_2020-09-18_1408
E	CM_MC2	667249	5488144	2020	1 1	2020-09-18	14:08	Molybdenum (Mo)	0.68	mg/kg	ALS	CM_MC2_SE-1_2020-09-18_1408
Е	CM_MC2	667249	5488144	2020	1	2020-09-18	14:08	Nickel (Ni)	123	mg/kg	ALS	CM_MC2_SE-1_2020-09-18_1408
E	CM_MC2	667249	5488144	2020	1	2020-09-18	14:08	Phosphorus (P)	585	mg/kg	ALS	CM_MC2_SE-1_2020-09-18_1408
E	CM_MC2	667249	5488144	2020	1	2020-09-18	14:08	Potassium (K)	1520	mg/kg	ALS	CM_MC2_SE-1_2020-09-18_1408
E	CM_MC2	667249	5488144	2020	1	2020-09-18	14:08	Selenium (Se)	1.81	mg/kg	ALS	CM_MC2_SE-1_2020-09-18_1408
E	CM_MC2	667249	5488144	2020	1	2020-09-18	14:08	Silver (Ag)	<0.10	mg/kg	ALS	CM_MC2_SE-1_2020-09-18_1408
E	CM_MC2	667249	5488144	2020	1	2020-09-18	14:08	Sodium (Na)	380	mg/kg	ALS	CM_MC2_SE-1_2020-09-18_1408
E	CM_MC2	667249	5488144	2020	1	2020-09-18	14:08	Strontium (Sr)	336	mg/kg	ALS	CM_MC2_SE-1_2020-09-18_1408
E	CM_MC2	667249	5488144	2020	1	2020-09-18	14:08	Sulfur (S)	3800	mg/kg	ALS	CM_MC2_SE-1_2020-09-18_1408
E	CM_MC2	667249	5488144	2020	1	2020-09-18	14:08	Thallium (TI)	0.154	mg/kg	ALS	CM_MC2_SE-1_2020-09-18_1408
E	CM_MC2	667249	5488144	2020	1	2020-09-18	14:08	Tin (Sn)	<2.0	mg/kg	ALS	CM_MC2_SE-1_2020-09-18_1408
E	CM_MC2	667249	5488144	2020	1	2020-09-18	14:08	Titanium (Ti)	16.2	mg/kg	ALS	CM_MC2_SE-1_2020-09-18_1408
E	CM_MC2	667249	5488144	2020	1	2020-09-18	14:08	Tungsten (W)	<0.50	mg/kg	ALS	CM_MC2_SE-1_2020-09-18_1408
E	CM_MC2	667249	5488144	2020	1	2020-09-18	14:08	Uranium (U)	1.47	mg/kg	ALS	CM_MC2_SE-1_2020-09-18_1408
Ε	CM_MC2	667249	5488144	2020	1	2020-09-18	14:08	Vanadium (V)	12.4	mg/kg	ALS	CM_MC2_SE-1_2020-09-18_1408
E	CM_MC2	667249	5488144	2020	1	2020-09-18	14:08	Zinc (Zn)	113	mg/kg	ALS	CM_MC2_SE-1_2020-09-18_1408
E	CM MC2	667249	5488144	2020	1	2020-09-18	14:08	Zirconium (Zr)	<1.0	mg/kg	ALS	CM_MC2_SE-1_2020-09-18_1408
E	CM MC2	667249	5488144	2020	1	2020-09-18	14:08	pH (1:2 soil:water)	6.96	pН	ALS	CM MC2 SE-1 2020-09-18 1408
	CM MC2	667249	5488144	2020	1	2020-09-18	14:08	Total Organic Carbon	4.6	%	ALS	CM MC2 SE-1 2020-09-18 1408
	—		5488144	2020	2	2020-09-18	14:35	Moisture	73.4	%	ALS	CM MC2 SE-2 2020-09-18 1435
Ε	CM MC2	667249	1 3400144 1	2020		12020-03-10	[T.UU	IIVIOISIUI G	10.7	/0		101VI 1VIOZ 0E-Z 2020-03-10 1400

WSP Canada Inc. Page 201 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Type	Station	Location	(UTMs) ^(a)	Year	Poplicate	Data	Time	Analyte	Popult	Unit		Laboratory Information
ype	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
E	CM_MC2	667249	5488144	2020	2	2020-09-18	14:35	Acenaphthylene	<0.010	mg/kg	ALS	CM MC2 SE-2 2020-09-18 1435
E	CM_MC2	667249	5488144	2020	2	2020-09-18	14:35	Anthracene	0.0081	mg/kg	ALS	CM MC2 SE-2 2020-09-18 1435
Ε	CM_MC2	667249	5488144	2020	2	2020-09-18	14:35	Acridine	<0.020	mg/kg	ALS	CM_MC2_SE-2_2020-09-18_1435
E	CM_MC2	667249	5488144	2020	2	2020-09-18	14:35	Benz(a)anthracene	<0.020	mg/kg	ALS	CM_MC2_SE-2_2020-09-18_1435
SE.	CM_MC2	667249	5488144	2020	2	2020-09-18	14:35	Benzo(a)pyrene	<0.020	mg/kg	ALS	CM_MC2_SE-2_2020-09-18_1435
SE	CM_MC2	667249	5488144	2020	2	2020-09-18	14:35	Benzo(b&j)fluoranthene	0.035	mg/kg	ALS	CM MC2 SE-2 2020-09-18 1435
SE	CM_MC2	667249	5488144	2020	2	2020-09-18	14:35	Benzo(e)pyrene	<0.020	mg/kg	ALS	CM MC2 SE-2 2020-09-18 1435
SE	CM_MC2	667249	5488144	2020	2	2020-09-18	14:35	Benzo(g_h_i)perylene	<0.020	mg/kg	ALS	CM_MC2_SE-2_2020-09-18_1435
SE	CM_MC2	667249	5488144	2020	2	2020-09-18	14:35	Benzo(k)fluoranthene	<0.020	mg/kg	ALS	CM_MC2_SE-2_2020-09-18_1435
SE	CM_MC2	667249	5488144	2020	2	2020-09-18	14:35	Chrysene	0.063	mg/kg	ALS	CM_MC2_SE-2_2020-09-18_1435
SE	CM_MC2	667249	5488144	2020	2	2020-09-18	14:35	Dibenz(a_h)anthracene	<0.010	mg/kg	ALS	CM_MC2_SE-2_2020-09-18_1435
SE	CM_MC2	667249	5488144	2020	2	2020-09-18	14:35	Fluoranthene	<0.020	mg/kg	ALS	CM MC2 SE-2 2020-09-18 1435
SE	CM_MC2	667249	5488144	2020	2	2020-09-18	14:35	Fluorene	<0.030	mg/kg	ALS	CM_MC2_SE-2_2020-09-18_1435
SE	CM_MC2	667249	5488144	2020	2	2020-09-18	14:35	Indeno(1,2,3-c,d)pyrene	<0.020	mg/kg	ALS	CM_MC2_SE-2_2020-09-18_1435
SE	CM_MC2	667249	5488144	2020	2	2020-09-18	14:35	2-Methylnaphthalene	0.253	mg/kg	ALS	CM_MC2_SE-2_2020-09-18_1435
SE	CM_MC2	667249	5488144	2020	2	2020-09-18	14:35	Naphthalene	0.098	mg/kg	ALS	CM_MC2_SE-2_2020-09-18_1435
SE	CM_MC2	667249	5488144	2020	2	2020-09-18	14:35	Perylene	<0.020	mg/kg	ALS	CM_MC2_SE-2_2020-09-18_1435
SE	CM_MC2	667249	5488144	2020	2	2020-09-18	14:35	Phenanthrene	0.151	mg/kg	ALS	CM_MC2_SE-2_2020-09-18_1435
SE	CM_MC2	667249	5488144	2020	2	2020-09-18	14:35	Pyrene	<0.020	mg/kg	ALS	CM_MC2_SE-2_2020-09-18_1435
SE	CM_MC2	667249	5488144	2020	2	2020-09-18	14:35	1-Methylnaphthalene	0.150	mg/kg	ALS	CM_MC2_SE-2_2020-09-18_1435
SE	CM_MC2	667249	5488144	2020	2	2020-09-18	14:35	Quinoline	<0.020	mg/kg	ALS	CM_MC2_SE-2_2020-09-18_1435
SE	CM_MC2	667249	5488144	2020	2	2020-09-18	14:35	IACR (CCME)	0.40	-	ALS	CM_MC2_SE-2_2020-09-18_1435
SE	CM_MC2	667249	5488144	2020	2	2020-09-18	14:35	B(a)P Total Potency Equivalent	0.022	mg/kg	ALS	CM_MC2_SE-2_2020-09-18_1435
SE	CM_MC2	667249	5488144	2020	2	2020-09-18	14:35	Benzo(b+j+k)fluoranthene	0.035	mg/kg	ALS	CM MC2 SE-2 2020-09-18 1435
SE	CM_MC2	667249	5488144	2020	2	2020-09-18	14:35	IACR:Coarse	<0.050	-	ALS	CM_MC2_SE-2_2020-09-18_1435
SE	CM_MC2	667249	5488144	2020	2	2020-09-18	14:35	IACR:Fine	<0.050	-	ALS	CM_MC2_SE-2_2020-09-18_1435
SE	CM_MC2	667249	5488144	2020	2	2020-09-18	14:35	d8-Naphthalene	95.9	%	ALS	CM_MC2_SE-2_2020-09-18_1435
SE	CM_MC2	667249	5488144	2020	2	2020-09-18	14:35	d10-Acenaphthene	97.6	%	ALS	CM_MC2_SE-2_2020-09-18_1435
SE	CM_MC2	667249	5488144	2020	2	2020-09-18	14:35	d10-Phenanthrene	100.4	%	ALS	CM_MC2_SE-2_2020-09-18_1435
SE	CM_MC2	667249	5488144	2020	2	2020-09-18	14:35	d12-Chrysene	109.9	%	ALS	CM_MC2_SE-2_2020-09-18_1435
SE	CM_MC2	667249	5488144	2020	2	2020-09-18	14:35	% Gravel (>2 mm)	<1.0	%	ALS	CM_MC2_SE-2_2020-09-18_1435
SE	CM_MC2	667249	5488144	2020	2	2020-09-18	14:35	% Sand (2.00 mm - 1.00 mm)	5.8	%	ALS	CM_MC2_SE-2_2020-09-18_1435
SE	CM_MC2	667249	5488144	2020	2	2020-09-18	14:35	% Sand (1.00 mm - 0.50 mm)	8.7	%	ALS	CM_MC2_SE-2_2020-09-18_1435
SE	CM_MC2	667249	5488144	2020	2	2020-09-18	14:35	% Sand (0.50 mm - 0.25 mm)	11.4	%	ALS	CM_MC2_SE-2_2020-09-18_1435
SE	CM_MC2	667249	5488144	2020	2	2020-09-18	14:35	% Sand (0.25 mm - 0.125 mm)	11.7	%	ALS	CM_MC2_SE-2_2020-09-18_1435
SE	CM_MC2	667249	5488144	2020	2	2020-09-18	14:35	% Sand (0.125 mm - 0.063 mm)	10.7	%	ALS	CM_MC2_SE-2_2020-09-18_1435
SE	CM_MC2	667249	5488144	2020	2	2020-09-18	14:35	% Silt (0.063 mm - 0.0312 mm)	22.8	%	ALS	CM_MC2_SE-2_2020-09-18_1435
SE	CM_MC2	667249	5488144	2020	2	2020-09-18	14:35	% Silt (0.031 mm - 0.004 mm)	25.1	%	ALS	CM_MC2_SE-2_2020-09-18_1435
SE	CM_MC2	667249	5488144	2020	2	2020-09-18	14:35	% Clay (<4 μm)	3.1	%	ALS	CM_MC2_SE-2_2020-09-18_1435
SE	CM_MC2	667249	5488144	2020	2	2020-09-18	14:35	Texture	Sandy loam	-	ALS	CM_MC2_SE-2_2020-09-18_1435
SE	CM_MC2	667249	5488144	2020	2	2020-09-18	14:35	Mercury (Hg)	0.0122	mg/kg	ALS	CM_MC2_SE-2_2020-09-18_1435
SE	CM_MC2	667249	5488144	2020	2	2020-09-18	14:35	Aluminum (Al)	7470	mg/kg	ALS	CM_MC2_SE-2_2020-09-18_1435
SE	CM_MC2	667249	5488144	2020	2	2020-09-18	14:35	Antimony (Sb)	0.24	mg/kg	ALS	CM_MC2_SE-2_2020-09-18_1435
SE	CM_MC2	667249	5488144	2020	2	2020-09-18	14:35	Arsenic (As)	3.77	mg/kg	ALS	CM_MC2_SE-2_2020-09-18_1435
SE	CM_MC2	667249	5488144	2020	2	2020-09-18	14:35	Barium (Ba)	163	mg/kg	ALS	CM_MC2_SE-2_2020-09-18_1435
SE	CM_MC2	667249	5488144	2020	2	2020-09-18	14:35	Beryllium (Be)	0.46	mg/kg	ALS	CM_MC2_SE-2_2020-09-18_1435
SE	CM MC2	667249	5488144	2020	2	2020-09-18	14:35	Bismuth (Bi)	<0.20	mg/kg	ALS	CM MC2 SE-2 2020-09-18 1435

WSP Canada Inc. Page 202 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

vne	Station	Location	(UTMs) ^(a)	Year	Poplicate	Data	Time	Analyta	Popult	Unit		Laboratory Information
ype	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE.	CM MC2	667249	5488144	2020	2	2020-09-18	14:35	Boron (B)	12.8	mg/kg	ALS	CM MC2 SE-2 2020-09-18 1435
E	CM_MC2	667249	5488144	2020	2	2020-09-18	14:35	Cadmium (Cd)	1.45	mg/kg	ALS	CM_MC2_SE-2_2020-09-18_1435
E	CM MC2	667249	5488144	2020	2	2020-09-18	14:35	Calcium (Ca)	202000	mg/kg	ALS	CM_MC2_SE-2_2020-09-18_1435
SE.	CM MC2	667249	5488144	2020	2	2020-09-18	14:35	Chromium (Cr)	9.70	mg/kg	ALS	CM MC2 SE-2 2020-09-18 1435
SE	CM MC2	667249	5488144	2020	2	2020-09-18	14:35	Cobalt (Co)	86.4	mg/kg	ALS	CM_MC2_SE-2_2020-09-18_1435
SE.	CM MC2	667249	5488144	2020	2	2020-09-18	14:35	Copper (Cu)	8.04	mg/kg	ALS	CM MC2 SE-2 2020-09-18 1435
SE.	CM MC2	667249	5488144	2020	2	2020-09-18	14:35	Iron (Fe)	9270	mg/kg	ALS	CM MC2 SE-2 2020-09-18 1435
SE	CM MC2	667249	5488144	2020	2	2020-09-18	14:35	Lead (Pb)	4.82	mg/kg	ALS	CM_MC2_SE-2_2020-09-18_1435
SE	CM_MC2	667249	5488144	2020	2	2020-09-18	14:35	Lithium (Ĺi)	9.9	mg/kg	ALS	CM_MC2_SE-2_2020-09-18_1435
SE	CM MC2	667249	5488144	2020	2	2020-09-18	14:35	Magnesium (Mg)	7150	mg/kg	ALS	CM MC2 SE-2 2020-09-18 1435
SE	CM_MC2	667249	5488144	2020	2	2020-09-18	14:35	Manganese (Mn)	595	mg/kg	ALS	CM_MC2_SE-2_2020-09-18_1435
SE	CM MC2	667249	5488144	2020	2	2020-09-18	14:35	Molybdenum (Mo)	0.93	mg/kg	ALS	CM MC2 SE-2 2020-09-18 1435
SE	CM MC2	667249	5488144	2020	2	2020-09-18	14:35	Nickel (Ni)	133	mg/kg	ALS	CM MC2 SE-2 2020-09-18 1435
SE	CM MC2	667249	5488144	2020	2	2020-09-18	14:35	Phosphorus (P)	727	mg/kg	ALS	CM_MC2_SE-2_2020-09-18_1435
SE	CM MC2	667249	5488144	2020	2	2020-09-18	14:35	Potassium (K)	2050	mg/kg	ALS	CM MC2 SE-2 2020-09-18 1435
SE	CM MC2	667249	5488144	2020	2	2020-09-18	14:35	Selenium (Se)	2.15	mg/kg	ALS	CM_MC2_SE-2_2020-09-18_1435
SE	CM MC2	667249	5488144	2020	2	2020-09-18	14:35	Silver (Ag)	<0.10	mg/kg	ALS	CM_MC2_SE-2_2020-09-18_1435
SE	CM MC2	667249	5488144	2020	2	2020-09-18	14:35	Sodium (Na)	370	mg/kg	ALS	CM MC2 SE-2 2020-09-18 1435
SE	CM MC2	667249	5488144	2020	2	2020-09-18	14:35	Strontium (Sr)	291	mg/kg	ALS	CM_MC2_SE-2_2020-09-18_1435
SE	CM MC2	667249	5488144	2020	2	2020-09-18	14:35	Sulfur (S)	3600	mg/kg	ALS	CM MC2 SE-2 2020-09-18 1435
SE	CM MC2	667249	5488144	2020	2	2020-09-18	14:35	Thallium (TI)	0.207	mg/kg	ALS	CM MC2 SE-2 2020-09-18 1435
SE	CM_MC2	667249	5488144	2020	2	2020-09-18	14:35	Tin (Sn)	<2.0	mg/kg	ALS	CM_MC2_SE-2_2020-09-18_1435
SE	CM MC2	667249	5488144	2020	2	2020-09-18	14:35	Titanium (Ti)	17.0	mg/kg	ALS	CM MC2 SE-2 2020-09-18 1435
SE	CM MC2	667249	5488144	2020	2	2020-09-18	14:35	Tungsten (W)	<0.50	mg/kg	ALS	CM_MC2_SE-2_2020-09-18_1435
SE	CM MC2	667249	5488144	2020	2	2020-09-18	14:35	Uranium (U)	1.21	mg/kg	ALS	CM MC2 SE-2 2020-09-18 1435
SE	CM MC2	667249	5488144	2020	2	2020-09-18	14:35	Vanadium (V)	16.8	mg/kg	ALS	CM MC2 SE-2 2020-09-18 1435
SE	CM MC2	667249	5488144	2020	2	2020-09-18	14:35	Zinc (Zn)	132	mg/kg	ALS	CM_MC2_SE-2_2020-09-18_1435
SE	CM MC2	667249	5488144	2020	2	2020-09-18	14:35	Zirconium (Zr)	<1.0	mg/kg	ALS	CM_MC2_SE-2_2020-09-18_1435
SE	CM MC2	667249	5488144	2020	2	2020-09-18	14:35	pH (1:2 soil:water)	7.05	pН	ALS	CM MC2 SE-2 2020-09-18 1435
SE	CM MC2	667249	5488144	2020	2	2020-09-18	14:35	Total Organic Carbon	3.9	%	ALS	CM MC2 SE-2 2020-09-18 1435
SE	CM MC2	667249	5488144	2020	3	2020-09-18	14:50	Moisture	64.4	%	ALS	CM MC2 SE-3 2020-09-18 1450
SE	CM MC2	667249	5488144	2020	3	2020-09-18	14:50	Acenaphthene	0.0069	mg/kg	ALS	CM MC2 SE-3 2020-09-18 1450
SE	CM MC2	667249	5488144	2020	3	2020-09-18	14:50	Acenaphthylene	< 0.0065	mg/kg	ALS	CM MC2 SE-3 2020-09-18 1450
SE	CM MC2	667249	5488144	2020	3	2020-09-18	14:50	Anthracene	<0.0052	mg/kg	ALS	CM MC2 SE-3 2020-09-18 1450
SE	CM MC2	667249	5488144	2020	3	2020-09-18	14:50	Acridine	<0.013	mg/kg	ALS	CM_MC2_SE-3_2020-09-18_1450
SE	CM MC2	667249	5488144	2020	3	2020-09-18	14:50	Benz(a)anthracene	<0.013	mg/kg	ALS	CM MC2 SE-3 2020-09-18 1450
SE	CM_MC2	667249	5488144	2020	3	2020-09-18	14:50	Benzo(a)pyrene	<0.013	mg/kg	ALS	CM_MC2_SE-3_2020-09-18_1450
SE	CM_MC2	667249	5488144	2020	3	2020-09-18	14:50	Benzo(b&j)fluoranthene	0.038	mg/kg	ALS	CM_MC2_SE-3_2020-09-18_1450
SE	CM_MC2	667249	5488144	2020	3	2020-09-18	14:50	Benzo(e)pyrene	0.045	mg/kg	ALS	CM_MC2_SE-3_2020-09-18_1450
SE	CM_MC2	667249	5488144	2020	3	2020-09-18	14:50	Benzo(g_h_i)perylene	0.016	mg/kg	ALS	CM_MC2_SE-3_2020-09-18_1450
SE	CM_MC2	667249	5488144	2020	3	2020-09-18	14:50	Benzo(k)fluoranthene	<0.013	mg/kg	ALS	CM_MC2_SE-3_2020-09-18_1450
SE	CM MC2	667249	5488144	2020	3	2020-09-18	14:50	Chrysene	<0.070	mg/kg	ALS	CM MC2 SE-3 2020-09-18 1450
SE	CM MC2	667249	5488144	2020	3	2020-09-18	14:50	Dibenz(a h)anthracene	<0.0065	mg/kg	ALS	CM MC2 SE-3 2020-09-18 1450
SE	CM MC2	667249	5488144	2020	3	2020-09-18	14:50	Fluoranthene	<0.013	mg/kg	ALS	CM MC2 SE-3 2020-09-18 1450
SE	CM MC2	667249	5488144	2020	3	2020-09-18	14:50	Fluorene	0.023	mg/kg	ALS	CM MC2 SE-3 2020-09-18 1450
J∟			t		+							
SE	CM MC2	667249	5488144	2020	3	2020-09-18	14:50	Indeno(1,2,3-c,d)pyrene	<0.013	mg/kg	ALS	CM MC2 SE-3 2020-09-18 1450

WSP Canada Inc. Page 203 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Type	Station	Location	(UTMs) ^(a)	Year	Poplieste	Date	Time	Analyta	Popult	Unit		Laboratory Information
ype	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE.	CM_MC2	667249	5488144	2020	3	2020-09-18	14:50	Naphthalene	0.141	mg/kg	ALS	CM_MC2_SE-3_2020-09-18_1450
Ē	CM_MC2	667249	5488144	2020	3	2020-09-18	14:50	Perylene	< 0.013	mg/kg	ALS	CM_MC2_SE-3_2020-09-18_1450
E	CM MC2	667249	5488144	2020	3	2020-09-18	14:50	Phenanthrene	0.182	mg/kg	ALS	CM_MC2_SE-3_2020-09-18_1450
SE.	CM MC2	667249	5488144	2020	3	2020-09-18	14:50	Pyrene	0.022	mg/kg	ALS	CM MC2 SE-3 2020-09-18 1450
SE	CM MC2	667249	5488144	2020	3	2020-09-18	14:50	1-Methylnaphthalene	0.177	mg/kg	ALS	CM MC2 SE-3 2020-09-18 1450
SE	CM MC2	667249	5488144	2020	3	2020-09-18	14:50	Quinoline	<0.013	mg/kg	ALS	CM MC2 SE-3 2020-09-18 1450
SE.	CM MC2	667249	5488144	2020	3	2020-09-18	14:50	IACR (CCME)	0.35	-	ALS	CM MC2 SE-3 2020-09-18 1450
SE	CM MC2	667249	5488144	2020	3	2020-09-18	14:50	B(a)P Total Potency Equivalent	<0.020	mg/kg	ALS	CM_MC2_SE-3_2020-09-18_1450
SE	CM_MC2	667249	5488144	2020	3	2020-09-18	14:50	Benzo(b+j+k)fluoranthene	0.038	mg/kg	ALS	CM_MC2_SE-3_2020-09-18_1450
SE	CM MC2	667249	5488144	2020	3	2020-09-18	14:50	IACR:Coarse	<0.050	-	ALS	CM MC2 SE-3 2020-09-18 1450
SE	CM_MC2	667249	5488144	2020	3	2020-09-18	14:50	IACR:Fine	<0.050	-	ALS	CM_MC2_SE-3_2020-09-18_1450
SE	CM MC2	667249	5488144	2020	3	2020-09-18	14:50	d8-Naphthalene	90.4	%	ALS	CM MC2 SE-3 2020-09-18 1450
SE	CM MC2	667249	5488144	2020	3	2020-09-18	14:50	d10-Acenaphthene	94.1	%	ALS	CM MC2 SE-3 2020-09-18 1450
SE	CM MC2	667249	5488144	2020	3	2020-09-18	14:50	d10-Phenanthrene	93.4	%	ALS	CM MC2 SE-3 2020-09-18 1450
SE	CM_MC2	667249	5488144	2020	3	2020-09-18	14:50	d12-Chrysene	107.4	%	ALS	CM MC2 SE-3 2020-09-18 1450
SE	CM_MC2	667249	5488144	2020	3	2020-09-18	14:50	% Gravel (>2 mm)	1.2	%	ALS	CM_MC2_SE-3_2020-09-18_1450
SE	CM_MC2	667249	5488144	2020	3	2020-09-18	14:50	% Sand (2.00 mm - 1.00 mm)	1.6	%	ALS	CM_MC2_SE-3_2020-09-18_1450
SE	CM MC2	667249	5488144	2020	3	2020-09-18	14:50	% Sand (1.00 mm - 0.50 mm)	3.8	%	ALS	CM MC2 SE-3 2020-09-18 1450
SE	CM MC2	667249	5488144	2020	3	2020-09-18	14:50	% Sand (0.50 mm - 0.25 mm)	18.8	%	ALS	CM_MC2_SE-3_2020-09-18_1450
SE	CM_MC2	667249	5488144	2020	3	2020-09-18	14:50	% Sand (0.25 mm - 0.125 mm)	20.3	%	ALS	CM_MC2_SE-3_2020-09-18_1450
SE	CM MC2	667249	5488144	2020	3	2020-09-18	14:50	% Sand (0.125 mm - 0.063 mm)	10.5	%	ALS	CM MC2 SE-3 2020-09-18 1450
SE	CM_MC2	667249	5488144	2020	3	2020-09-18	14:50	% Silt (0.063 mm - 0.0312 mm)	19.6	%	ALS	CM_MC2_SE-3_2020-09-18_1450
SE	CM_MC2	667249	5488144	2020	3	2020-09-18	14:50	% Silt (0.031 mm - 0.004 mm)	21.3	%	ALS	CM_MC2_SE-3_2020-09-18_1450
SE	CM_MC2	667249	5488144	2020	3	2020-09-18	14:50	% Clay (<4 μm)	3.0	%	ALS	CM_MC2_SE-3_2020-09-18_1450
SE	CM_MC2	667249	5488144	2020	3	2020-09-18	14:50	Texture	Sandy loam	-	ALS	CM_MC2_SE-3_2020-09-18_1450
SE	CM_MC2	667249	5488144	2020	3	2020-09-18	14:50	Mercury (Hg)	0.0174	mg/kg	ALS	CM_MC2_SE-3_2020-09-18_1450
SE	CM_MC2	667249	5488144	2020	3	2020-09-18	14:50	Aluminum (Al)	9360	mg/kg	ALS	CM_MC2_SE-3_2020-09-18_1450
SE	CM_MC2	667249	5488144	2020	3	2020-09-18	14:50	Antimony (Sb)	0.30	mg/kg	ALS	CM_MC2_SE-3_2020-09-18_1450
SE	CM_MC2	667249	5488144	2020	3	2020-09-18	14:50	Arsenic (As)	5.14	mg/kg	ALS	CM_MC2_SE-3_2020-09-18_1450
SE	CM_MC2	667249	5488144	2020	3	2020-09-18	14:50	Barium (Ba)	156	mg/kg	ALS	CM_MC2_SE-3_2020-09-18_1450
SE	CM_MC2	667249	5488144	2020	3	2020-09-18	14:50	Beryllium (Be)	0.59	mg/kg	ALS	CM_MC2_SE-3_2020-09-18_1450
SE	CM_MC2	667249	5488144	2020	3	2020-09-18	14:50	Bismuth (Bi)	<0.20	mg/kg	ALS	CM_MC2_SE-3_2020-09-18_1450
SE	CM_MC2	667249	5488144	2020	3	2020-09-18	14:50	Boron (B)	13.1	mg/kg	ALS	CM_MC2_SE-3_2020-09-18_1450
SE	CM_MC2	667249	5488144	2020	3	2020-09-18	14:50	Cadmium (Cd)	1.34	mg/kg	ALS	CM_MC2_SE-3_2020-09-18_1450
SE	CM_MC2	667249	5488144	2020	3	2020-09-18	14:50	Calcium (Ca)	140000	mg/kg	ALS	CM_MC2_SE-3_2020-09-18_1450
SE	CM_MC2	667249	5488144	2020	3	2020-09-18	14:50	Chromium (Cr)	12.4	mg/kg	ALS	CM_MC2_SE-3_2020-09-18_1450
SE	CM_MC2	667249	5488144	2020	3	2020-09-18	14:50	Cobalt (Co)	70.8	mg/kg	ALS	CM_MC2_SE-3_2020-09-18_1450
SE	CM_MC2	667249	5488144	2020	3	2020-09-18	14:50	Copper (Cu)	10.6	mg/kg	ALS	CM_MC2_SE-3_2020-09-18_1450
SE	CM_MC2	667249	5488144	2020	3	2020-09-18	14:50	Iron (Fe)	12900	mg/kg	ALS	CM_MC2_SE-3_2020-09-18_1450
SE	CM_MC2	667249	5488144	2020	3	2020-09-18	14:50	Lead (Pb)	7.17	mg/kg	ALS	CM_MC2_SE-3_2020-09-18_1450
SE	CM_MC2	667249	5488144	2020	3	2020-09-18	14:50	Lithium (Li)	12.7	mg/kg	ALS	CM_MC2_SE-3_2020-09-18_1450
SE	CM_MC2	667249	5488144	2020	3	2020-09-18	14:50	Magnesium (Mg)	6870	mg/kg	ALS	CM_MC2_SE-3_2020-09-18_1450
SE	CM_MC2	667249	5488144	2020	3	2020-09-18	14:50	Manganese (Mn)	603	mg/kg	ALS	CM_MC2_SE-3_2020-09-18_1450
SE	CM_MC2	667249	5488144	2020	3	2020-09-18	14:50	Molybdenum (Mo)	1.41	mg/kg	ALS	CM_MC2_SE-3_2020-09-18_1450
SE	CM_MC2	667249	5488144	2020	3	2020-09-18	14:50	Nickel (Ni)	106	mg/kg	ALS	CM_MC2_SE-3_2020-09-18_1450
S⊏			1		1							
SE	CM_MC2	667249	5488144	2020	3	2020-09-18	14:50	Phosphorus (P)	978	mg/kg	ALS	CM_MC2_SE-3_2020-09-18_1450

WSP Canada Inc. Page 204 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Table I-1	: Sediment Chem			CMm LAEMP	Sampling Sta	ations, 2012 to	2022					
Туре	Station	Location	ı (UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
Type	Station	Easting	Northing	i eai	Replicate	Date	Tille	Analyte	Result	Offic	Lab	Sample ID
SE	CM_MC2	667249	5488144	2020	3	2020-09-18	14:50	Selenium (Se)	1.64	mg/kg	ALS	CM_MC2_SE-3_2020-09-18_1450
SE	CM_MC2	667249	5488144	2020	3	2020-09-18	14:50	Silver (Ag)	<0.10	mg/kg	ALS	CM_MC2_SE-3_2020-09-18_1450
SE	CM_MC2	667249	5488144	2020	3	2020-09-18	14:50	Sodium (Na)	285	mg/kg	ALS	CM_MC2_SE-3_2020-09-18_1450
SE	CM_MC2	667249	5488144	2020	3	2020-09-18	14:50	Strontium (Sr)	213	mg/kg	ALS	CM_MC2_SE-3_2020-09-18_1450
SE	CM_MC2	667249	5488144	2020	3	2020-09-18	14:50	Sulfur (S)	2600	mg/kg	ALS	CM_MC2_SE-3_2020-09-18_1450
SE	CM_MC2	667249	5488144	2020	3	2020-09-18	14:50	Thallium (TI)	0.270	mg/kg	ALS	CM_MC2_SE-3_2020-09-18_1450
SE	CM_MC2	667249	5488144	2020	3	2020-09-18	14:50	Tin (Sn)	<2.0	mg/kg	ALS	CM_MC2_SE-3_2020-09-18_1450
SE	CM_MC2	667249	5488144	2020	3	2020-09-18	14:50	Titanium (Ti)	19.1	mg/kg	ALS	CM_MC2_SE-3_2020-09-18_1450
SE	CM_MC2	667249	5488144	2020	3	2020-09-18	14:50	Tungsten (W)	<0.50	mg/kg	ALS	CM_MC2_SE-3_2020-09-18_1450
SE	CM_MC2	667249	5488144	2020	3	2020-09-18	14:50	Uranium (U)	1.14	mg/kg	ALS	CM_MC2_SE-3_2020-09-18_1450
SE	CM_MC2	667249	5488144	2020	3	2020-09-18	14:50	Vanadium (V)	21.9	mg/kg	ALS	CM_MC2_SE-3_2020-09-18_1450
SE	CM_MC2	667249	5488144	2020	3	2020-09-18	14:50	Zinc (Zn)	129	mg/kg	ALS	CM_MC2_SE-3_2020-09-18_1450
SE	CM_MC2	667249	5488144	2020	3	2020-09-18	14:50	Zirconium (Zr)	<1.0	mg/kg	ALS	CM_MC2_SE-3_2020-09-18_1450
SE	CM_MC2	667249	5488144	2020	3	2020-09-18	14:50	pH (1:2 soil:water)	7.09	pН	ALS	CM_MC2_SE-3_2020-09-18_1450
SE	CM_MC2	667249	5488144	2020	3	2020-09-18	14:50	Total Organic Carbon	4.0	%	ALS	CM_MC2_SE-3_2020-09-18_1450
SE	CM_MC2	667249	5488144	2020	4	2020-09-18	14:58	Moisture	75.3	%	ALS	CM_MC2_SE-4_2020-09-18_1458
SE	CM_MC2	667249	5488144	2020	4	2020-09-18	14:58	Acenaphthene	<0.010	mg/kg	ALS	CM_MC2_SE-4_2020-09-18_1458
SE	CM_MC2	667249	5488144	2020	4	2020-09-18	14:58	Acenaphthylene	<0.010	mg/kg	ALS	CM_MC2_SE-4_2020-09-18_1458
SE	CM_MC2	667249	5488144	2020	4	2020-09-18	14:58	Anthracene	<0.0080	mg/kg	ALS	CM_MC2_SE-4_2020-09-18_1458
SE	CM_MC2	667249	5488144	2020	4	2020-09-18	14:58	Acridine	<0.020	mg/kg	ALS	CM_MC2_SE-4_2020-09-18_1458
SE	CM_MC2	667249	5488144	2020	4	2020-09-18	14:58	Benz(a)anthracene	<0.020	mg/kg	ALS	CM_MC2_SE-4_2020-09-18_1458
SE	CM_MC2	667249	5488144	2020	4	2020-09-18	14:58	Benzo(a)pyrene	<0.020	mg/kg	ALS	CM_MC2_SE-4_2020-09-18_1458
SE	CM_MC2	667249	5488144	2020	4	2020-09-18	14:58	Benzo(b&j)fluoranthene	0.028	mg/kg	ALS	CM_MC2_SE-4_2020-09-18_1458
SE	CM_MC2	667249	5488144	2020	4	2020-09-18	14:58	Benzo(e)pyrene	0.040	mg/kg	ALS	CM_MC2_SE-4_2020-09-18_1458
SE	CM_MC2	667249	5488144	2020	4	2020-09-18	14:58	Benzo(g_h_i)perylene	<0.020	mg/kg	ALS	CM_MC2_SE-4_2020-09-18_1458
SE	CM_MC2	667249	5488144	2020	4	2020-09-18	14:58	Benzo(k)fluoranthene	<0.020	mg/kg	ALS	CM_MC2_SE-4_2020-09-18_1458
SE	CM_MC2	667249	5488144	2020	4	2020-09-18	14:58	Chrysene	0.054	mg/kg	ALS	CM_MC2_SE-4_2020-09-18_1458
SE	CM_MC2	667249	5488144	2020	4	2020-09-18	14:58	Dibenz(a_h)anthracene	<0.010	mg/kg	ALS	CM_MC2_SE-4_2020-09-18_1458
SE	CM_MC2	667249	5488144	2020	4	2020-09-18	14:58	Fluoranthene	<0.020	mg/kg	ALS	CM_MC2_SE-4_2020-09-18_1458
SE	CM_MC2	667249	5488144	2020	4	2020-09-18	14:58	Fluorene	0.033	mg/kg	ALS	CM_MC2_SE-4_2020-09-18_1458
SE	CM_MC2	667249	5488144	2020	4	2020-09-18	14:58	Indeno(1,2,3-c,d)pyrene	<0.020	mg/kg	ALS	CM_MC2_SE-4_2020-09-18_1458
SE	CM_MC2	667249	5488144	2020	4	2020-09-18	14:58	2-Methylnaphthalene	0.285	mg/kg	ALS	CM_MC2_SE-4_2020-09-18_1458
SE	CM_MC2	667249	5488144	2020	4	2020-09-18	14:58	Naphthalene	0.112	mg/kg	ALS	CM_MC2_SE-4_2020-09-18_1458
SE	CM_MC2	667249	5488144	2020	4	2020-09-18	14:58	Perylene	<0.020	mg/kg	ALS	CM_MC2_SE-4_2020-09-18_1458
SE	CM_MC2	667249	5488144	2020	4	2020-09-18	14:58	Phenanthrene	0.158	mg/kg	ALS	CM_MC2_SE-4_2020-09-18_1458
SE	CM_MC2	667249	5488144	2020	4	2020-09-18	14:58	Pyrene	<0.020	mg/kg	ALS	CM_MC2_SE-4_2020-09-18_1458
SE	CM_MC2	667249	5488144	2020	4	2020-09-18	14:58	1-Methylnaphthalene	0.171	mg/kg	ALS	CM_MC2_SE-4_2020-09-18_1458
SE	CM_MC2	667249	5488144	2020	4	2020-09-18	14:58	Quinoline	<0.020	mg/kg	ALS	CM_MC2_SE-4_2020-09-18_1458
SE	CM_MC2	667249	5488144	2020	4	2020-09-18	14:58	IACR (CCME)	0.34	-	ALS	CM_MC2_SE-4_2020-09-18_1458
SE	CM_MC2	667249	5488144	2020	4	2020-09-18	14:58	B(a)P Total Potency Equivalent	0.021	mg/kg	ALS	CM_MC2_SE-4_2020-09-18_1458
SE	CM_MC2	667249	5488144	2020	4	2020-09-18	14:58	Benzo(b+j+k)fluoranthene	<0.028	mg/kg	ALS	CM_MC2_SE-4_2020-09-18_1458
SE	CM_MC2	667249	5488144	2020	4	2020-09-18	14:58	IACR:Coarse	<0.050	-	ALS	CM_MC2_SE-4_2020-09-18_1458
SE	CM_MC2	667249	5488144	2020	4	2020-09-18	14:58	IACR:Fine	<0.050	-	ALS	CM_MC2_SE-4_2020-09-18_1458
SE	CM_MC2	667249	5488144	2020	4	2020-09-18	14:58	d8-Naphthalene	92.3	%	ALS	CM_MC2_SE-4_2020-09-18_1458
SE	CM_MC2	667249	5488144	2020	4	2020-09-18	14:58	d10-Acenaphthene	93.6	%	ALS	CM_MC2_SE-4_2020-09-18_1458
SE	CM_MC2	667249	5488144	2020	4	2020-09-18	14:58	d10-Phenanthrene	92.9	%	ALS	CM_MC2_SE-4_2020-09-18_1458
SE	CM_MC2	667249	5488144	2020	4	2020-09-18	14:58	d12-Chrysene	104.5	%	ALS	CM_MC2_SE-4_2020-09-18_1458

WSP Canada Inc. Page 205 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	01 41	Location	(UTMs) ^(a)									Laboratory Information
Type	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	CM MC2	667249	5488144	2020	4	2020-09-18	14:58	% Gravel (>2 mm)	1.1	%	ALS	CM MC2 SE-4 2020-09-18 1458
SE	CM MC2	667249	5488144	2020	4	2020-09-18	14:58	% Sand (2.00 mm - 1.00 mm)	3.5	%	ALS	CM_MC2_SE-4_2020-09-18_1458
SE	CM MC2	667249	5488144	2020	4	2020-09-18	14:58	% Sand (1.00 mm - 0.50 mm)	6.2	%	ALS	CM MC2 SE-4 2020-09-18 1458
SE	CM MC2	667249	5488144	2020	4	2020-09-18	14:58	% Sand (0.50 mm - 0.25 mm)	7.1	%	ALS	CM MC2 SE-4 2020-09-18 1458
SE	CM MC2	667249	5488144	2020	4	2020-09-18	14:58	% Sand (0.25 mm - 0.125 mm)	11.7	%	ALS	CM_MC2_SE-4_2020-09-18_1458
SE	CM MC2	667249	5488144	2020	4	2020-09-18	14:58	% Sand (0.125 mm - 0.063 mm)	10.6	%	ALS	CM MC2 SE-4 2020-09-18 1458
SE	CM MC2	667249	5488144	2020	4	2020-09-18	14:58	% Silt (0.063 mm - 0.0312 mm)	27.5	%	ALS	CM MC2 SE-4 2020-09-18 1458
SE	CM MC2	667249	5488144	2020	4	2020-09-18	14:58	% Silt (0.031 mm - 0.004 mm)	29.0	%	ALS	CM MC2 SE-4 2020-09-18 1458
SE	CM MC2	667249	5488144	2020	4	2020-09-18	14:58	% Clay (<4 μm)	3.3	%	ALS	CM MC2 SE-4 2020-09-18 1458
SE	CM MC2	667249	5488144	2020	4	2020-09-18	14:58	Texture	Silt loam	-	ALS	CM MC2 SE-4 2020-09-18 1458
SE	CM MC2	667249	5488144	2020	4	2020-09-18	14:58	Mercury (Hg)	0.0142	mg/kg	ALS	CM MC2 SE-4 2020-09-18 1458
SE	CM MC2	667249	5488144	2020	4	2020-09-18	14:58	Aluminum (Al)	6270	mg/kg	ALS	CM MC2 SE-4 2020-09-18 1458
SE	CM MC2	667249	5488144	2020	4	2020-09-18	14:58	Antimony (Sb)	0.20	mg/kg	ALS	CM MC2 SE-4 2020-09-18 1458
SE	CM MC2	667249	5488144	2020	4	2020-09-18	14:58	Arsenic (As)	3.13	mg/kg	ALS	CM MC2 SE-4 2020-09-18 1458
SE	CM MC2	667249	5488144	2020	4	2020-09-18	14:58	Barium (Ba)	153	mg/kg	ALS	CM MC2 SE-4 2020-09-18 1458
SE	CM MC2	667249	5488144	2020	4	2020-09-18	14:58	Beryllium (Be)	0.39	mg/kg	ALS	CM MC2 SE-4 2020-09-18 1458
SE	CM MC2	667249	5488144	2020	4	2020-09-18	14:58	Bismuth (Bi)	<0.20	mg/kg	ALS	CM MC2 SE-4 2020-09-18 1458
SE	CM MC2	667249	5488144	2020	4	2020-09-18	14:58	Boron (B)	11.9	mg/kg	ALS	CM MC2 SE-4 2020-09-18 1458
SE	CM MC2	667249	5488144	2020	4	2020-09-18	14:58	Cadmium (Cd)	1.42	mg/kg	ALS	CM MC2 SE-4 2020-09-18 1458
SE	CM MC2	667249	5488144	2020	4	2020-09-18	14:58	Calcium (Ca)	204000	mg/kg	ALS	CM MC2 SE-4 2020-09-18 1458
SE	CM MC2	667249	5488144	2020	4	2020-09-18	14:58	Chromium (Cr)	8.09	mg/kg	ALS	CM MC2 SE-4 2020-09-18 1458
SE	CM MC2	667249	5488144	2020	4	2020-09-18	14:58	Cobalt (Co)	94.0	mg/kg	ALS	CM MC2 SE-4 2020-09-18 1458
SE	CM MC2	667249	5488144	2020	4	2020-09-18	14:58	Copper (Cu)	7.20	mg/kg	ALS	CM MC2 SE-4 2020-09-18 1458
SE	CM MC2	667249	5488144	2020	4	2020-09-18	14:58	Iron (Fe)	8400	mg/kg	ALS	CM MC2 SE-4 2020-09-18 1458
SE	CM MC2	667249	5488144	2020	4	2020-09-18	14:58	Lead (Pb)	4.24	mg/kg	ALS	CM MC2 SE-4 2020-09-18 1458
SE	CM MC2	667249	5488144	2020	4	2020-09-18	14:58	Lithium (Li)	8.6	mg/kg	ALS	CM MC2 SE-4 2020-09-18 1458
SE	CM MC2	667249	5488144	2020	4	2020-09-18	14:58	Magnesium (Mg)	6450	mg/kg	ALS	CM MC2 SE-4 2020-09-18 1458
SE	CM MC2	667249	5488144	2020	4	2020-09-18	14:58	Manganese (Mn)	752	mg/kg	ALS	CM MC2 SE-4 2020-09-18 1458
SE	CM MC2	667249	5488144	2020	4	2020-09-18	14:58	Molybdenum (Mo)	0.79	mg/kg	ALS	CM MC2 SE-4 2020-09-18 1458
SE	CM MC2	667249	5488144	2020	4	2020-09-18	14:58	Nickel (Ni)	136	mg/kg	ALS	CM MC2 SE-4 2020-09-18 1458
SE	CM MC2	667249	5488144	2020	4	2020-09-18	14:58	Phosphorus (P)	570	mg/kg	ALS	CM_MC2_SE-4_2020-09-18_1458
SE	CM MC2	667249	5488144	2020	4	2020-09-18	14:58	Potassium (K)	1720	mg/kg	ALS	CM MC2 SE-4 2020-09-18 1458
SE	CM MC2	667249	5488144	2020	4	2020-09-18	14:58	Selenium (Se)	2.11	mg/kg	ALS	CM MC2 SE-4 2020-09-18 1458
SE	CM MC2	667249	5488144	2020	4	2020-09-18	14:58	Silver (Ag)	<0.10	mg/kg	ALS	CM MC2 SE-4 2020-09-18 1458
SE	CM MC2	667249	5488144	2020	4	2020-09-18	14:58	Sodium (Na)	360	mg/kg	ALS	CM MC2 SE-4 2020-09-18 1458
SE	CM MC2	667249	5488144	2020	4	2020-09-18	14:58	Strontium (Sr)	286	mg/kg	ALS	CM MC2 SE-4 2020-09-18 1458
SE	CM MC2	667249	5488144	2020	4	2020-09-18	14:58	Sulfur (S)	3700	mg/kg	ALS	CM MC2 SE-4 2020-09-18 1458
SE	CM MC2	667249	5488144	2020	4	2020-09-18	14:58	Thallium (TI)	0.190	mg/kg	ALS	CM MC2 SE-4 2020-09-18 1458
SE	CM MC2	667249	5488144	2020	4	2020-09-18	14:58	Tin (Sn)	<2.0	mg/kg	ALS	CM MC2 SE-4 2020-09-18 1458
SE	CM MC2	667249	5488144	2020	1	2020-09-18	14:58	Titanium (Ti)	15.3	mg/kg	ALS	CM MC2 SE-4 2020-09-18 1458
SE	CM MC2	667249	5488144	2020	4	2020-09-18	14:58	Tungsten (W)	<0.50	mg/kg	ALS	CM MC2 SE-4 2020-09-18 1458
SE	CM_MC2	667249	5488144	2020	4	2020-09-18	14:58	Uranium (U)	1.12	mg/kg	ALS	CM MC2 SE-4 2020-09-18 1458
SE	CM_MC2	667249	5488144	2020	1	2020-09-18	14:58	Vanadium (V)	13.5	mg/kg	ALS	CM MC2 SE-4 2020-09-18 1458
SE	CM_MC2	667249	5488144	2020	1	2020-09-18	14:58	Zinc (Zn)	128	1 - 1 - 1 - 1	ALS	CM_MC2_SE-4_2020-09-18_1458
SE	CM_MC2	667249	5488144	2020	1	2020-09-18	14:58	Zirconium (Zr)	<1.0	mg/kg	ALS	CM MC2 SE-4 2020-09-18 1458
SE	CM_MC2	667249	5488144	2020	4	2020-09-18	14:58	pH (1:2 soil:water)	7.04	mg/kg		CM MC2 SE-4 2020-09-18 1458
OE.	CIVI_IVIC2	007249	J400 144	2020	4	2020-09-18	14.08	Total Organic Carbon	7.04	pH %	ALS	CM_MC2_SE-4_2020-09-18_1458 CM_MC2_SE-4_2020-09-18_1458

WSP Canada Inc. Page 206 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

.,	Ctation.	Location	າ (UTMs) ^(a)	Voc	Donlington	Dete	T:	Analysis	DocuM.	LL ₀ .4		Laboratory Information
ype	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
E	CM MC2	667249	5488144	2020	5	2020-09-18	15:10	Moisture	72.4	%	ALS	CM MC2 SE-5 2020-09-18 1510
E	CM MC2	667249	5488144	2020	5	2020-09-18	15:10	Acenaphthene	<0.0080	mg/kg	ALS	CM MC2 SE-5 2020-09-18 1510
E	CM MC2	667249	5488144	2020	5	2020-09-18	15:10	Acenaphthylene	<0.0080	mg/kg	ALS	CM MC2 SE-5 2020-09-18 1510
E	CM MC2	667249	5488144	2020	5	2020-09-18	15:10	Anthracene	0.0074	mg/kg	ALS	CM MC2 SE-5 2020-09-18 1510
E	CM MC2	667249	5488144	2020	5	2020-09-18	15:10	Acridine	<0.016	mg/kg	ALS	CM MC2 SE-5 2020-09-18 1510
E	CM MC2	667249	5488144	2020	5	2020-09-18	15:10	Benz(a)anthracene	<0.016	mg/kg	ALS	CM MC2 SE-5 2020-09-18 1510
E	CM MC2	667249	5488144	2020	5	2020-09-18	15:10	Benzo(a)pyrene	<0.016	mg/kg	ALS	CM MC2 SE-5 2020-09-18 1510
E	CM MC2	667249	5488144	2020	5	2020-09-18	15:10	Benzo(b&j)fluoranthene	0.029	mg/kg	ALS	CM MC2 SE-5 2020-09-18 1510
E	CM MC2	667249	5488144	2020	5	2020-09-18	15:10	Benzo(e)pyrene	<0.016	mg/kg	ALS	CM MC2 SE-5 2020-09-18 1510
E	CM MC2	667249	5488144	2020	5	2020-09-18	15:10	Benzo(g_h_i)perylene	0.017	mg/kg	ALS	CM MC2 SE-5 2020-09-18 1510
E	CM MC2	667249	5488144	2020	5	2020-09-18	15:10	Benzo(k)fluoranthene	<0.016	mg/kg	ALS	CM MC2 SE-5 2020-09-18 1510
E	CM MC2	667249	5488144	2020	5	2020-09-18	15:10	Chrysene	<0.060	mg/kg	ALS	CM MC2 SE-5 2020-09-18 1510
E	CM_MC2	667249	5488144	2020	5	2020-09-18	15:10	Dibenz(a_h)anthracene	<0.000	mg/kg	ALS	CM MC2 SE-5 2020-09-18 1510
E I	CM_MC2	667249	5488144	2020	5	2020-09-18	15:10	Fluoranthene	<0.0080		ALS	CM MC2 SE-5 2020-09-18 1510
E I	CM_MC2	667249	5488144	2020	5	2020-09-18	15:10		0.020	mg/kg		CM MC2 SE-5 2020-09-18 1510
E E	_				<u> </u>			Fluorene		mg/kg	ALS	
	CM_MC2	667249	5488144	2020	5	2020-09-18	15:10	Indeno(1,2,3-c,d)pyrene	<0.016	mg/kg	ALS	CM_MC2_SE-5_2020-09-18_1510
E	CM_MC2	667249	5488144	2020	5	2020-09-18	15:10	2-Methylnaphthalene	0.277	mg/kg	ALS	CM_MC2_SE-5_2020-09-18_1510
E	CM_MC2	667249	5488144	2020	5	2020-09-18	15:10	Naphthalene	0.109	mg/kg	ALS	CM_MC2_SE-5_2020-09-18_1510
E	CM_MC2	667249	5488144	2020	5	2020-09-18	15:10	Perylene	<0.016	mg/kg	ALS	CM_MC2_SE-5_2020-09-18_1510
Ε	CM_MC2	667249	5488144	2020	5	2020-09-18	15:10	Phenanthrene	0.158	mg/kg	ALS	CM_MC2_SE-5_2020-09-18_1510
E	CM_MC2	667249	5488144	2020	5	2020-09-18	15:10	Pyrene	0.021	mg/kg	ALS	CM_MC2_SE-5_2020-09-18_1510
E	CM_MC2	667249	5488144	2020	5	2020-09-18	15:10	1-Methylnaphthalene	0.171	mg/kg	ALS	CM_MC2_SE-5_2020-09-18_1510
E	CM_MC2	667249	5488144	2020	5	2020-09-18	15:10	Quinoline	<0.016	mg/kg	ALS	CM_MC2_SE-5_2020-09-18_1510
E	CM_MC2	667249	5488144	2020	5	2020-09-18	15:10	IACR (CCME)	0.31	-	ALS	CM_MC2_SE-5_2020-09-18_1510
E	CM_MC2	667249	5488144	2020	5	2020-09-18	15:10	B(a)P Total Potency Equivalent	<0.020	mg/kg	ALS	CM_MC2_SE-5_2020-09-18_1510
E	CM_MC2	667249	5488144	2020	5	2020-09-18	15:10	Benzo(b+j+k)fluoranthene	0.029	mg/kg	ALS	CM_MC2_SE-5_2020-09-18_1510
Ε	CM_MC2	667249	5488144	2020	5	2020-09-18	15:10	IACR:Coarse	<0.050	-	ALS	CM_MC2_SE-5_2020-09-18_1510
E	CM_MC2	667249	5488144	2020	5	2020-09-18	15:10	IACR:Fine	<0.050	-	ALS	CM_MC2_SE-5_2020-09-18_1510
E	CM_MC2	667249	5488144	2020	5	2020-09-18	15:10	d8-Naphthalene	98.1	%	ALS	CM_MC2_SE-5_2020-09-18_1510
Ε	CM_MC2	667249	5488144	2020	5	2020-09-18	15:10	d10-Acenaphthene	98.6	%	ALS	CM_MC2_SE-5_2020-09-18_1510
Е	CM_MC2	667249	5488144	2020	5	2020-09-18	15:10	d10-Phenanthrene	97.7	%	ALS	CM_MC2_SE-5_2020-09-18_1510
E	CM_MC2	667249	5488144	2020	5	2020-09-18	15:10	d12-Chrysene	114.3	%	ALS	CM_MC2_SE-5_2020-09-18_1510
E	CM_MC2	667249	5488144	2020	5	2020-09-18	15:10	% Gravel (>2 mm)	<1.0	%	ALS	CM_MC2_SE-5_2020-09-18_1510
Е	CM_MC2	667249	5488144	2020	5	2020-09-18	15:10	% Sand (2.00 mm - 1.00 mm)	<1.0	%	ALS	CM_MC2_SE-5_2020-09-18_1510
E	CM_MC2	667249	5488144	2020	5	2020-09-18	15:10	% Sand (1.00 mm - 0.50 mm)	2.3	%	ALS	CM_MC2_SE-5_2020-09-18_1510
E	CM_MC2	667249	5488144	2020	5	2020-09-18	15:10	% Sand (0.50 mm - 0.25 mm)	8.5	%	ALS	CM_MC2_SE-5_2020-09-18_1510
Е	CM_MC2	667249	5488144	2020	5	2020-09-18	15:10	% Sand (0.25 mm - 0.125 mm)	13.6	%	ALS	CM_MC2_SE-5_2020-09-18_1510
Е	CM_MC2	667249	5488144	2020	5	2020-09-18	15:10	% Sand (0.125 mm - 0.063 mm)	13.7	%	ALS	CM_MC2_SE-5_2020-09-18_1510
E	CM_MC2	667249	5488144	2020	5	2020-09-18	15:10	% Silt (0.063 mm - 0.0312 mm)	28.3	%	ALS	CM_MC2_SE-5_2020-09-18_1510
Е	CM MC2	667249	5488144	2020	5	2020-09-18	15:10	% Silt (0.031 mm - 0.004 mm)	29.3	%	ALS	CM MC2 SE-5 2020-09-18 1510
E	CM MC2	667249	5488144	2020	5	2020-09-18	15:10	% Clay (<4 μm)	3.4	%	ALS	CM MC2 SE-5 2020-09-18 1510
E	CM MC2	667249	5488144	2020	5	2020-09-18	15:10	Texture	Silt loam	-	ALS	CM MC2 SE-5 2020-09-18 1510
E	CM MC2	667249	5488144	2020	5	2020-09-18	15:10	Mercury (Hg)	0.0145	mg/kg	ALS	CM_MC2_SE-5_2020-09-18_1510
E	CM MC2	667249	5488144	2020	5	2020-09-18	15:10	Aluminum (Al)	6800	mg/kg	ALS	CM MC2 SE-5 2020-09-18 1510
E	CM MC2	667249	5488144	2020	5	2020-09-18	15:10	Antimony (Sb)	0.19	mg/kg	ALS	CM MC2 SE-5 2020-09-18 1510
E	CM MC2	667249	5488144	2020	5	2020-09-18	15:10	Arsenic (As)	3.03	mg/kg	ALS	CM MC2 SE-5 2020-09-18 1510
E	CM_MC2	667249	5488144	2020		2020-09-18	15:10	Barium (Ba)	153		ALS	CM MC2 SE-5 2020-09-18 1510
	CIVI_IVIC2	007249	5400 144	2020	ິນ	ZUZU-U3-10	15.10	טמוווווון (שמ)	100	mg/kg	ALO	U

WSP Canada Inc. Page 207 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

SE	Station		(UTMs) ^(a)	V A2r	Ranlicata	Date	Time	Analyte	Result	Unit		Laboratory Information
SE		Easting	Northing	Year	Replicate	Date	Tille	Analyte	Result	Offic	Lab	Sample ID
	CM_MC2	667249	5488144	2020	5	2020-09-18	15:10	Beryllium (Be)	0.38	mg/kg	ALS	CM_MC2_SE-5_2020-09-18_1510
SE	CM_MC2	667249	5488144	2020	5	2020-09-18	15:10	Bismuth (Bi)	<0.20	mg/kg	ALS	CM_MC2_SE-5_2020-09-18_1510
SE	CM_MC2	667249	5488144	2020	5	2020-09-18	15:10	Boron (B)	12.7	mg/kg	ALS	CM_MC2_SE-5_2020-09-18_1510
SE	CM_MC2	667249	5488144	2020	5	2020-09-18	15:10	Cadmium (Cd)	1.54	mg/kg	ALS	CM_MC2_SE-5_2020-09-18_1510
SE	CM_MC2	667249	5488144	2020	5	2020-09-18	15:10	Calcium (Ca)	209000	mg/kg	ALS	CM_MC2_SE-5_2020-09-18_1510
SE	CM_MC2	667249	5488144	2020	5	2020-09-18	15:10	Chromium (Cr)	9.33	mg/kg	ALS	CM MC2 SE-5 2020-09-18 1510
SE	CM_MC2	667249	5488144	2020	5	2020-09-18	15:10	Cobalt (Co)	88.8	mg/kg	ALS	CM_MC2_SE-5_2020-09-18_1510
SE	CM_MC2	667249	5488144	2020	5	2020-09-18	15:10	Copper (Cu)	6.77	mg/kg	ALS	CM_MC2_SE-5_2020-09-18_1510
SE	CM_MC2	667249	5488144	2020	5	2020-09-18	15:10	Iron (Fe)	7440	mg/kg	ALS	CM_MC2_SE-5_2020-09-18_1510
SE	CM_MC2	667249	5488144	2020	5	2020-09-18	15:10	Lead (Pb)	3.93	mg/kg	ALS	CM_MC2_SE-5_2020-09-18_1510
SE	CM_MC2	667249	5488144	2020	5	2020-09-18	15:10	Lithium (Li)	8.2	mg/kg	ALS	CM_MC2_SE-5_2020-09-18_1510
SE	CM MC2	667249	5488144	2020	5	2020-09-18	15:10	Magnesium (Mg)	6710	mg/kg	ALS	CM MC2 SE-5 2020-09-18 1510
SE	CM MC2	667249	5488144	2020	5	2020-09-18	15:10	Manganese (Mn)	595	mg/kg	ALS	CM MC2 SE-5 2020-09-18 1510
SE	CM MC2	667249	5488144	2020	5	2020-09-18	15:10	Molybdenum (Mo)	0.84	mg/kg	ALS	CM MC2 SE-5 2020-09-18 1510
SE	CM MC2	667249	5488144	2020	5	2020-09-18	15:10	Nickel (Ni)	130	mg/kg	ALS	CM MC2 SE-5 2020-09-18 1510
SE	CM MC2	667249	5488144	2020	5	2020-09-18	15:10	Phosphorus (P)	633	mg/kg	ALS	CM MC2 SE-5 2020-09-18 1510
SE	CM MC2	667249	5488144	2020	5	2020-09-18	15:10	Potassium (K)	1970	mg/kg	ALS	CM MC2 SE-5 2020-09-18 1510
SE	CM MC2	667249	5488144	2020	5	2020-09-18	15:10	Selenium (Se)	2.29	mg/kg	ALS	CM MC2 SE-5 2020-09-18 1510
SE	CM MC2	667249	5488144	2020	5	2020-09-18	15:10	Silver (Ag)	<0.10	mg/kg	ALS	CM MC2 SE-5 2020-09-18 1510
SE	CM MC2	667249	5488144	2020	5	2020-09-18	15:10	Sodium (Na)	329	mg/kg	ALS	CM MC2 SE-5 2020-09-18 1510
SE	CM MC2	667249	5488144	2020	5	2020-09-18	15:10	Strontium (Sr)	285	mg/kg	ALS	CM MC2 SE-5 2020-09-18 1510
SE	CM MC2	667249	5488144	2020	5	2020-09-18	15:10	Sulfur (S)	3800	mg/kg	ALS	CM MC2 SE-5 2020-09-18 1510
SE	CM MC2	667249	5488144	2020	5	2020-09-18	15:10	Thallium (TI)	0.188	mg/kg	ALS	CM MC2 SE-5 2020-09-18 1510
SE	CM MC2	667249	5488144	2020	5	2020-09-18	15:10	Tin (Sn)	<2.0	mg/kg	ALS	CM MC2 SE-5 2020-09-18 1510
SE	CM MC2	667249	5488144	2020	5	2020-09-18	15:10	Titanium (Ti)	15.2	mg/kg	ALS	CM MC2 SE-5 2020-09-18 1510
SE	CM MC2	667249	5488144	2020	5	2020-09-18	15:10	Tungsten (W)	<0.50	mg/kg	ALS	CM MC2 SE-5 2020-09-18 1510
SE	CM MC2	667249	5488144	2020	5	2020-09-18	15:10	Uranium (U)	1.20	mg/kg	ALS	CM MC2 SE-5 2020-09-18 1510
SE	CM MC2	667249	5488144	2020	5	2020-09-18	15:10	Vanadium (V)	15.6	mg/kg	ALS	CM MC2 SE-5 2020-09-18 1510
SE	CM MC2	667249	5488144	2020	5	2020-09-18	15:10	Zinc (Zn)	133	mg/kg	ALS	CM MC2 SE-5 2020-09-18 1510
SE	CM MC2	667249	5488144	2020	5	2020-09-18	15:10	Zirconium (Zr)	<1.0	mg/kg	ALS	CM MC2 SE-5 2020-09-18 1510
SE	CM_MC2	667249	5488144	2020		2020-09-18	15:10	pH (1:2 soil:water)	7.02	pH		CM_MC2_SE-5_2020-09-18_1510
SE	CM MC2	667249	5488144	2020	5	2020-09-18	15:10	Total Organic Carbon	4.3	%	ALS	CM MC2 SE-5 2020-09-18 1510
SE	MI5	659387	5496818	2020	1	2020-09-19	11:25	Moisture	81.7	%	ALS	RG MI5 SE-1 2020-09-19 1125
SE	MI5	659387	5496818	2020	1 1	2020-09-19	11:25	Acenaphthene	<0.013	mg/kg	ALS	RG MI5 SE-1 2020-09-19 1125
SE	MI5	659387	5496818	2020	1	2020-09-19	11:25	Acenaphthylene	<0.013	mg/kg	ALS	RG MI5 SE-1 2020-09-19 1125
SE	MI5	659387	5496818	2020	1 1	2020-09-19	11:25	Anthracene	0.018	mg/kg	ALS	RG MI5 SE-1 2020-09-19 1125
SE	MI5	659387	5496818	2020	1 1	2020-09-19	11:25	Acridine	<0.025	mg/kg	ALS	RG MI5 SE-1 2020-09-19 1125
SE	MI5	659387	5496818	2020	1 1	2020-09-19	11:25	Benz(a)anthracene	0.029	mg/kg	ALS	RG MI5 SE-1 2020-09-19 1125
SE	MI5	659387	5496818	2020	1 1	2020-09-19	11:25	Benzo(a)pyrene	<0.029	mg/kg	ALS	RG MI5 SE-1 2020-09-19 1125
SE	MI5	659387	5496818	2020	1 1	2020-09-19	11:25	Benzo(b&j)fluoranthene	<0.025		ALS	RG MI5 SE-1 2020-09-19 1125
SE	MI5	659387	5496818	2020	1 1	2020-09-19	11:25	, , , ,	<0.025	mg/kg	ALS	RG MI5 SE-1 2020-09-19 1125
SE	MI5	659387	5496818	2020	1 1	2020-09-19	11:25	Benzo(e)pyrene Benzo(g h i)perylene	<0.025	mg/kg	ALS	RG MI5 SE-1 2020-09-19_1125
SE					1 1			102 277		mg/kg		
	MI5	659387	5496818	2020	1 4	2020-09-19	11:25	Benzo(k)fluoranthene	<0.025	mg/kg	ALS	RG_MI5_SE-1_2020-09-19_1125
SE	MI5	659387	5496818	2020	1 4	2020-09-19	11:25	Chrysene	0.042	mg/kg	ALS	RG_MI5_SE-1_2020-09-19_1125
SE	MI5	659387	5496818	2020	1 4	2020-09-19	11:25	Dibenz(a_h)anthracene	<0.013	mg/kg	ALS	RG_MI5_SE-1_2020-09-19_1125
SE	MI5 MI5	659387 659387	5496818 5496818	2020 2020	1 1	2020-09-19 2020-09-19	11:25 11:25	Fluoranthene Fluorene	0.049 <0.025	mg/kg mg/kg	ALS ALS	RG_MI5_SE-1_2020-09-19_1125 RG_MI5_SE-1_2020-09-19_1125

WSP Canada Inc. Page 208 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	Ctotion	Location	າ (UTMs) ^(a)	Vasii	Danliasta	Dete	Times	Analyte	Doord	Heit		Laboratory Information
/pe	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
Е	MI5	659387	5496818	2020	1	2020-09-19	11:25	Indeno(1,2,3-c,d)pyrene	<0.025	mg/kg	ALS	RG MI5 SE-1 2020-09-19 1125
E	MI5	659387	5496818	2020	1	2020-09-19	11:25	2-Methylnaphthalene	0.065	mg/kg	ALS	RG MI5 SE-1 2020-09-19 1125
E	MI5	659387	5496818	2020	1	2020-09-19	11:25	Naphthalene	0.042	mg/kg	ALS	RG MI5 SE-1 2020-09-19 1125
E	MI5	659387	5496818	2020	1	2020-09-19	11:25	Perylene	<0.025	mg/kg	ALS	RG MI5 SE-1 2020-09-19 1125
E E	MI5	659387	5496818	2020	1 1	2020-09-19	11:25	Phenanthrene	0.110	mg/kg	ALS	RG MI5 SE-1 2020-09-19 1125
E	MI5	659387	5496818	2020	1	2020-09-19	11:25	Pyrene	0.044	mg/kg	ALS	RG MI5 SE-1 2020-09-19 1125
E	MI5	659387	5496818	2020	1	2020-09-19	11:25	1-Methylnaphthalene	0.057	mg/kg	ALS	RG MI5 SE-1 2020-09-19 1125
E E	MI5	659387	5496818	2020	1	2020-09-19	11:25	Quinoline	<0.025	mg/kg	ALS	RG MI5 SE-1 2020-09-19 1125
SE SE	MI5	659387	5496818	2020	1	2020-09-19	11:25	IACR (CCME)	0.33	-	ALS	RG MI5 SE-1 2020-09-19 1125
SE	MI5	659387	5496818	2020	1 1	2020-09-19	11:25	B(a)P Total Potency Equivalent	0.026	mg/kg	ALS	RG MI5 SE-1 2020-09-19 1125
SE	MI5	659387	5496818	2020	1 1	2020-09-19	11:25	Benzo(b+j+k)fluoranthene	<0.035	mg/kg	ALS	RG MI5 SE-1 2020-09-19 1125
SE	MI5	659387	5496818	2020	1	2020-09-19	11:25	IACR:Coarse	<0.050	-	ALS	RG MI5 SE-1 2020-09-19 1125
SE	MI5	659387	5496818	2020	1	2020-09-19	11:25	IACR:Fine	<0.050	_	ALS	RG MI5 SE-1 2020-09-19 1125
E E	MI5	659387	5496818	2020	1	2020-09-19	11:25	d8-Naphthalene	93.5	%	ALS	RG MI5 SE-1 2020-09-19 1125
SE	MI5	659387	5496818	2020	1	2020-09-19	11:25	d10-Acenaphthene	97.0	%	ALS	RG MI5 SE-1 2020-09-19 1125
SE SE	MI5	659387	5496818	2020	1	2020-09-19	11:25	d10-Phenanthrene	100.0	%	ALS	RG MI5 SE-1 2020-09-19 1125
SE SE	MI5	659387	5496818	2020	1	2020-09-19	11:25	d12-Chrysene	95.1	%	ALS	RG MI5 SE-1 2020-09-19 1125
SE	MI5	659387	5496818	2020	1	2020-09-19	11:25	% Gravel (>2 mm)	1.1	%	ALS	RG MI5 SE-1 2020-09-19 1125
SE SE	MI5	659387	5496818	2020	1	2020-09-19	11:25	% Sand (2.00 mm - 1.00 mm)	3.8	%	ALS	RG MI5 SE-1 2020-09-19 1125
SE SE	MI5	659387	5496818	2020	1	2020-09-19	11:25	% Sand (1.00 mm - 0.50 mm)	22.9	%	ALS	RG MI5 SE-1 2020-09-19 1125
E	MI5	659387	5496818	2020	1	2020-09-19	11:25	% Sand (0.50 mm - 0.25 mm)	26.3	%	ALS	RG MI5 SE-1 2020-09-19 1125
SE SE	MI5	659387	5496818	2020	1	2020-09-19	11:25	% Sand (0.25 mm - 0.125 mm)	9.6	%	ALS	RG MI5 SE-1 2020-09-19 1125
SE	MI5	659387	5496818	2020	1	2020-09-19	11:25	% Sand (0.125 mm - 0.063 mm)	5.0	%	ALS	RG MI5 SE-1 2020-09-19 1125
SE	MI5	659387	5496818	2020	1	2020-09-19	11:25	% Silt (0.063 mm - 0.0312 mm)	12.3	%	ALS	RG MI5 SE-1 2020-09-19 1125
SE	MI5	659387	5496818	2020	1	2020-09-19	11:25	% Silt (0.003 mm - 0.004 mm)	13.6	%	ALS	RG MI5 SE-1 2020-09-19 1125
SE	MI5	659387	5496818	2020	1	2020-09-19	11:25	% Clay (<4 μm)	5.5	%	ALS	RG MI5 SE-1 2020-09-19 1125
SE	MI5	659387	5496818	2020	1	2020-09-19	11:25	Texture	Sandy loam	-	ALS	RG MI5 SE-1 2020-09-19 1125
SE	MI5	659387	5496818	2020	1	2020-09-19	11:25	pH (1:9)	6.85	pН	ALS	RG MI5 SE-1 2020-09-19 1125
SE	MI5	659387	5496818	2020	1	2020-09-19	11:25	Mercury (Hg)	0.0242	mg/kg	ALS	RG MI5 SE-1 2020-09-19 1125
SE	MI5	659387	5496818	2020	1	2020-09-19	11:25	Aluminum (Al)	6020	mg/kg	ALS	RG MI5 SE-1 2020-09-19 1125
SE	MI5	659387	5496818	2020	1	2020-09-19	11:25	Antimony (Sb)	0.63	mg/kg	ALS	RG MI5 SE-1 2020-09-19 1125
SE	MI5	659387	5496818	2020	1	2020-09-19	11:25	Arsenic (As)	5.66	mg/kg	ALS	RG MI5 SE-1 2020-09-19 1125
SE	MI5	659387	5496818	2020	1	2020-09-19	11:25	Barium (Ba)	216	mg/kg	ALS	RG MI5 SE-1 2020-09-19 1125
SE	MI5	659387	5496818	2020	1	2020-09-19	11:25	Beryllium (Be)	0.46	mg/kg	ALS	RG MI5 SE-1 2020-09-19 1125
SE SE	MI5	659387	5496818	2020	1	2020-09-19	11:25	Bismuth (Bi)	<0.20	mg/kg	ALS	RG MI5 SE-1 2020-09-19 1125
SE .	MI5	659387	5496818	2020	1	2020-09-19	11:25	Boron (B)	7.9	mg/kg	ALS	RG MI5 SE-1 2020-09-19 1125
SE	MI5	659387	5496818	2020	1	2020-09-19	11:25	Cadmium (Cd)	1.22		ALS	RG MI5 SE-1 2020-09-19 1125
SE	MI5	659387	5496818	2020	1	2020-09-19	11:25	Calcium (Ca)	75600	mg/kg mg/kg	ALS	RG MI5 SE-1 2020-09-19 1125
SE	MI5	659387	5496818	2020	1	2020-09-19	11:25	Chromium (Cr)	12.9	mg/kg	ALS	RG MI5 SE-1 2020-09-19 1125
SE	MI5	659387	5496818	2020	1	2020-09-19	11:25	Cobalt (Co)	5.67		ALS	RG MI5 SE-1 2020-09-19 1125
SE	MI5	659387	5496818	2020	1	2020-09-19	11:25	Copper (Cu)	9.93	mg/kg	ALS	RG MI5 SE-1 2020-09-19 1125
SE	MI5	659387	5496818	2020	1	2020-09-19	11:25		11100	mg/kg	<u> </u>	RG MI5 SE-1 2020-09-19_1125
SE	MI5				1 1			Iron (Fe) Lead (Pb)		mg/kg	ALS	
		659387	5496818	2020	1 1	2020-09-19	11:25		5.61	mg/kg	ALS	RG_MI5_SE-1_2020-09-19_1125
SE SE	MI5	659387	5496818	2020	1 1	2020-09-19	11:25	Lithium (Li)	6.6	mg/kg	ALS	RG_MI5_SE-1_2020-09-19_1125
	MI5	659387	5496818	2020	1 1	2020-09-19	11:25	Magnesium (Mg)	4970	mg/kg	ALS	RG_MI5_SE-1_2020-09-19_1125
SE	MI5	659387	5496818	2020	1 1	2020-09-19	11:25	Manganese (Mn)	200	mg/kg	ALS	RG_MI5_SE-1_2020-09-19_1125
SE	MI5	659387	5496818	2020	1	2020-09-19	11:25	Molybdenum (Mo)	1.15	mg/kg	ALS	RG_MI5_SE-1_2020-09-19_1125

WSP Canada Inc. Page 209 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

abic i-	1. Ocalinent Onen		ected from the	CIVILII LALIMP		2012 10						l also and to make the second second
Гуре	Station		(UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
		Easting	Northing								Lab	Sample ID
SE	MI5	659387	5496818	2020	1 1	2020-09-19	11:25	Nickel (Ni)	26.9	mg/kg	ALS	RG_MI5_SE-1_2020-09-19_1125
SE	MI5	659387	5496818	2020	1	2020-09-19	11:25	Phosphorus (P)	1250	mg/kg	ALS	RG_MI5_SE-1_2020-09-19_1125
SE	MI5	659387	5496818	2020	1 1	2020-09-19	11:25	Potassium (K)	1570	mg/kg	ALS	RG_MI5_SE-1_2020-09-19_1125
SE	MI5	659387	5496818	2020	1 1	2020-09-19	11:25	Selenium (Se)	2.59	mg/kg	ALS	RG_MI5_SE-1_2020-09-19_1125
SE	MI5	659387	5496818	2020	1 1	2020-09-19	11:25	Silver (Ag)	0.11	mg/kg	ALS	RG_MI5_SE-1_2020-09-19_1125
SE	MI5	659387	5496818	2020	1	2020-09-19	11:25	Sodium (Na)	182	mg/kg	ALS	RG_MI5_SE-1_2020-09-19_1125
SE	MI5	659387	5496818	2020	1	2020-09-19	11:25	Strontium (Sr)	114	mg/kg	ALS	RG_MI5_SE-1_2020-09-19_1125
SE	MI5	659387	5496818	2020	1	2020-09-19	11:25	Sulfur (S)	1500	mg/kg	ALS	RG_MI5_SE-1_2020-09-19_1125
SE	MI5	659387	5496818	2020	1	2020-09-19	11:25	Thallium (TI)	0.172	mg/kg	ALS	RG_MI5_SE-1_2020-09-19_1125
SE	MI5	659387	5496818	2020	1	2020-09-19	11:25	Tin (Sn)	<2.0	mg/kg	ALS	RG_MI5_SE-1_2020-09-19_1125
SE	MI5	659387	5496818	2020	1	2020-09-19	11:25	Titanium (Ti)	34.1	mg/kg	ALS	RG_MI5_SE-1_2020-09-19_1125
SE	MI5	659387	5496818	2020	1	2020-09-19	11:25	Tungsten (W)	<0.50	mg/kg	ALS	RG_MI5_SE-1_2020-09-19_1125
SE	MI5	659387	5496818	2020	1	2020-09-19	11:25	Uranium (U)	0.967	mg/kg	ALS	RG_MI5_SE-1_2020-09-19_1125
SE	MI5	659387	5496818	2020	1	2020-09-19	11:25	Vanadium (V)	31.4	mg/kg	ALS	RG_MI5_SE-1_2020-09-19_1125
SE	MI5	659387	5496818	2020	1	2020-09-19	11:25	Zinc (Zn)	78.0	mg/kg	ALS	RG_MI5_SE-1_2020-09-19_1125
SE	MI5	659387	5496818	2020	1	2020-09-19	11:25	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_MI5_SE-1_2020-09-19_1125
SE	MI5	659387	5496818	2020	1	2020-09-19	11:25	Total Organic Carbon	7.61	%	ALS	RG_MI5_SE-1_2020-09-19_1125
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	Moisture	63.9	%	ALS	RG_MI5_SE-3_2020-09-19_1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	Acenaphthene	0.0067	mg/kg	ALS	RG_MI5_SE-3_2020-09-19_1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	Acenaphthylene	<0.0065	mg/kg	ALS	RG_MI5_SE-3_2020-09-19_1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	Anthracene	<0.0052	mg/kg	ALS	RG_MI5_SE-3_2020-09-19_1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	Acridine	0.014	mg/kg	ALS	RG_MI5_SE-3_2020-09-19_1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	Benz(a)anthracene	0.023	mg/kg	ALS	RG_MI5_SE-3_2020-09-19_1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	Benzo(a)pyrene	<0.013	mg/kg	ALS	RG_MI5_SE-3_2020-09-19_1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	Benzo(b&j)fluoranthene	0.033	mg/kg	ALS	RG_MI5_SE-3_2020-09-19_1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	Benzo(e)pyrene	0.037	mg/kg	ALS	RG MI5 SE-3 2020-09-19 1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	Benzo(g_h_i)perylene	0.014	mg/kg	ALS	RG_MI5_SE-3_2020-09-19_1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	Benzo(k)fluoranthene	<0.013	mg/kg	ALS	RG MI5 SE-3 2020-09-19 1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	Chrysene	0.070	mg/kg	ALS	RG_MI5_SE-3_2020-09-19_1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	Dibenz(a_h)anthracene	<0.0065	mg/kg	ALS	RG_MI5_SE-3_2020-09-19_1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	Fluoranthene	0.035	mg/kg	ALS	RG_MI5_SE-3_2020-09-19_1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	Fluorene	0.019	mg/kg	ALS	RG MI5 SE-3 2020-09-19 1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	Indeno(1,2,3-c,d)pyrene	<0.013	mg/kg	ALS	RG_MI5_SE-3_2020-09-19_1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	2-Methylnaphthalene	0.208	mg/kg	ALS	RG_MI5_SE-3_2020-09-19_1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	Naphthalene	0.106	mg/kg	ALS	RG_MI5_SE-3_2020-09-19_1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	Perylene	<0.013	mg/kg	ALS	RG_MI5_SE-3_2020-09-19_1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	Phenanthrene	0.256	mg/kg	ALS	RG_MI5_SE-3_2020-09-19_1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	Pyrene	0.035	mg/kg	ALS	RG MI5 SE-3 2020-09-19 1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	1-Methylnaphthalene	0.162	mg/kg	ALS	RG_MI5_SE-3_2020-09-19_1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	Quinoline	<0.013	mg/kg	ALS	RG MI5 SE-3 2020-09-19 1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	IACR (CCME)	0.39	-	ALS	RG MI5 SE-3 2020-09-19 1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	B(a)P Total Potency Equivalent	<0.020	mg/kg	ALS	RG MI5 SE-3 2020-09-19 1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	Benzo(b+j+k)fluoranthene	0.033	mg/kg	ALS	RG MI5 SE-3 2020-09-19 1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	IACR:Coarse	<0.050	-	ALS	RG MI5 SE-3 2020-09-19 1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	IACR:Fine	<0.050	_	ALS	RG MI5 SE-3 2020-09-19 1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	d8-Naphthalene	98.6	%	ALS	RG MI5 SE-3 2020-09-19 1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	d10-Acenaphthene	101.6	%		RG MI5 SE-3 2020-09-19 1140

WSP Canada Inc. Page 210 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Type	Station	Location	າ (UTMs) ^(a)	Veer	Poplicate	Dete	Time	Analuta	Dogult	Unit		Laboratory Information
Type	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	d10-Phenanthrene	108.7	%	ALS	RG_MI5_SE-3_2020-09-19_1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	d12-Chrysene	101.5	%	ALS	RG_MI5_SE-3_2020-09-19_1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	% Gravel (>2 mm)	3.6	%	ALS	RG_MI5_SE-3_2020-09-19_1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	% Sand (2.00 mm - 1.00 mm)	<1.0	%	ALS	RG_MI5_SE-3_2020-09-19_1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	% Sand (1.00 mm - 0.50 mm)	4.6	%	ALS	RG_MI5_SE-3_2020-09-19_1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	% Sand (0.50 mm - 0.25 mm)	20.0	%	ALS	RG_MI5_SE-3_2020-09-19_1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	% Sand (0.25 mm - 0.125 mm)	18.4	%	ALS	RG_MI5_SE-3_2020-09-19_1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	% Sand (0.125 mm - 0.063 mm)	12.0	%	ALS	RG_MI5_SE-3_2020-09-19_1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	% Silt (0.063 mm - 0.0312 mm)	18.6	%	ALS	RG_MI5_SE-3_2020-09-19_1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	% Silt (0.031 mm - 0.004 mm)	18.9	%	ALS	RG_MI5_SE-3_2020-09-19_1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	% Clay (<4 μm)	3.1	%	ALS	RG_MI5_SE-3_2020-09-19_1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	Texture	Sandy loam	-	ALS	RG MI5 SE-3 2020-09-19 1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	pH (1:9)	7.18	pН	ALS	RG MI5 SE-3 2020-09-19 1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	Mercury (Hg)	0.0366	mg/kg	ALS	RG_MI5_SE-3_2020-09-19_1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	Aluminum (Al)	8670	mg/kg	ALS	RG_MI5_SE-3_2020-09-19_1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	Antimony (Sb)	0.61	mg/kg	ALS	RG_MI5_SE-3_2020-09-19_1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	Arsenic (As)	5.90	mg/kg	ALS	RG MI5 SE-3 2020-09-19 1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	Barium (Ba)	250	mg/kg	ALS	RG MI5 SE-3 2020-09-19 1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	Beryllium (Be)	0.56	mg/kg	ALS	RG MI5 SE-3 2020-09-19 1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	Bismuth (Bi)	<0.20	mg/kg	ALS	RG MI5 SE-3 2020-09-19 1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	Boron (B)	8.6	mg/kg	ALS	RG_MI5_SE-3_2020-09-19_1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	Cadmium (Cd)	1.20	mg/kg	ALS	RG MI5 SE-3 2020-09-19 1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	Calcium (Ca)	52800	mg/kg	ALS	RG MI5 SE-3 2020-09-19 1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	Chromium (Cr)	15.2	mg/kg	ALS	RG MI5 SE-3 2020-09-19 1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	Cobalt (Co)	8.41	mg/kg	ALS	RG MI5 SE-3 2020-09-19 1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	Copper (Cu)	11.7	mg/kg	ALS	RG MI5 SE-3 2020-09-19 1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	Iron (Fe)	13700	mg/kg	ALS	RG MI5 SE-3 2020-09-19 1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	Lead (Pb)	7.51	mg/kg	ALS	RG MI5 SE-3 2020-09-19 1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	Lithium (Li)	8.9	mg/kg	ALS	RG MI5 SE-3 2020-09-19 1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	Magnesium (Mg)	5190	mg/kg	ALS	RG MI5 SE-3 2020-09-19 1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	Manganese (Mn)	252	mg/kg	ALS	RG_MI5_SE-3_2020-09-19_1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	Molybdenum (Mo)	1.42	mg/kg	ALS	RG MI5 SE-3 2020-09-19 1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	Nickel (Ni)	33.7	mg/kg	ALS	RG MI5 SE-3 2020-09-19 1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	Phosphorus (P)	1220	mg/kg	ALS	RG MI5 SE-3 2020-09-19 1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	Potassium (K)	1940	mg/kg	ALS	RG MI5 SE-3 2020-09-19 1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	Selenium (Se)	1.63	mg/kg	ALS	RG MI5 SE-3 2020-09-19 1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	Silver (Ag)	0.15	mg/kg	ALS	RG MI5 SE-3 2020-09-19 1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	Sodium (Na)	126	mg/kg	ALS	RG MI5 SE-3 2020-09-19 1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	Strontium (Sr)	104	mg/kg	ALS	RG MI5 SE-3 2020-09-19 1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	Sulfur (S)	<1000	mg/kg	ALS	RG MI5 SE-3 2020-09-19 1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	Thallium (TI)	0.237	mg/kg	ALS	RG MI5 SE-3 2020-09-19 1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	Tin (Sn)	<2.0	mg/kg	ALS	RG MI5 SE-3 2020-09-19 1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	Titanium (Ti)	30.3	mg/kg	ALS	RG MI5 SE-3 2020-09-19 1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	Tungsten (W)	<0.50	mg/kg	ALS	RG MI5 SE-3 2020-09-19 1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	Uranium (U)	0.964	mg/kg	ALS	RG MI5 SE-3 2020-09-19 1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	Vanadium (V)	41.2	mg/kg	ALS	RG MI5 SE-3 2020-09-19 1140
∪	MI5	659387	5496818	2020	3	2020-09-19	11:40	Zinc (Zn)	97.4	mg/kg		RG MI5 SE-3 2020-09-19 1140

WSP Canada Inc. Page 211 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Table I-1	1: Sediment Chem	nistry Data Col	lected from the	CMm LAEMP S	Sampling Sta	ations, 2012 to	2022					
Туре	Station	Location	າ (UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
Type	Station	Easting	Northing	i cai	Replicate	Date	Time	Analyte	Nesuit	Oilit	Lab	Sample ID
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_MI5_SE-3_2020-09-19_1140
SE	MI5	659387	5496818	2020	3	2020-09-19	11:40	Total Organic Carbon	4.76	%	ALS	RG_MI5_SE-3_2020-09-19_1140
SE	MI5	659387	5496818	2020	4	2020-09-19	11:55	Moisture	85.8	%	ALS	RG_MI5_SE-4_2020-09-19_1155
SE	MI5	659387	5496818	2020	4	2020-09-19	11:55	Acenaphthene	<0.013	mg/kg	ALS	RG_MI5_SE-4_2020-09-19_1155
SE	MI5	659387	5496818	2020	4	2020-09-19	11:55	Acenaphthylene	<0.013	mg/kg	ALS	RG_MI5_SE-4_2020-09-19_1155
SE	MI5	659387	5496818	2020	4	2020-09-19	11:55	Anthracene	0.015	mg/kg	ALS	RG_MI5_SE-4_2020-09-19_1155
SE	MI5	659387	5496818	2020	4	2020-09-19	11:55	Acridine	<0.025	mg/kg	ALS	RG_MI5_SE-4_2020-09-19_1155
SE	MI5	659387	5496818	2020	4	2020-09-19	11:55	Benz(a)anthracene	<0.025	mg/kg	ALS	RG_MI5_SE-4_2020-09-19_1155
SE	MI5	659387	5496818	2020	4	2020-09-19	11:55	Benzo(a)pyrene	<0.025	mg/kg	ALS	RG_MI5_SE-4_2020-09-19_1155
SE	MI5	659387	5496818	2020	4	2020-09-19	11:55	Benzo(b&j)fluoranthene	0.031	mg/kg	ALS	RG_MI5_SE-4_2020-09-19_1155
SE	MI5	659387	5496818	2020	4	2020-09-19	11:55	Benzo(e)pyrene	0.033	mg/kg	ALS	RG_MI5_SE-4_2020-09-19_1155
SE	MI5	659387	5496818	2020	4	2020-09-19	11:55	Benzo(g_h_i)perylene	< 0.025	mg/kg	ALS	RG MI5 SE-4 2020-09-19 1155
SE	MI5	659387	5496818	2020	4	2020-09-19	11:55	Benzo(k)fluoranthene	<0.025	mg/kg	ALS	RG MI5 SE-4 2020-09-19 1155
SE	MI5	659387	5496818	2020	4	2020-09-19	11:55	Chrysene	<0.050	mg/kg	ALS	RG MI5 SE-4 2020-09-19 1155
SE	MI5	659387	5496818	2020	4	2020-09-19	11:55	Dibenz(a_h)anthracene	< 0.013	mg/kg	ALS	RG MI5 SE-4 2020-09-19 1155
SE	MI5	659387	5496818	2020	4	2020-09-19	11:55	Fluoranthene	<0.025	mg/kg	ALS	RG MI5 SE-4 2020-09-19 1155
SE	MI5	659387	5496818	2020	4	2020-09-19	11:55	Fluorene	<0.025	mg/kg	ALS	RG_MI5_SE-4_2020-09-19_1155
SE	MI5	659387	5496818	2020	4	2020-09-19	11:55	Indeno(1,2,3-c,d)pyrene	<0.025	mg/kg	ALS	RG MI5 SE-4 2020-09-19 1155
SE	MI5	659387	5496818	2020	4	2020-09-19	11:55	2-Methylnaphthalene	0.122	mg/kg	ALS	RG MI5 SE-4 2020-09-19 1155
SE	MI5	659387	5496818	2020	4	2020-09-19	11:55	Naphthalene	0.064	mg/kg	ALS	RG MI5 SE-4 2020-09-19 1155
SE	MI5	659387	5496818	2020	4	2020-09-19	11:55	Perylene	<0.025	mg/kg	ALS	RG MI5 SE-4 2020-09-19 1155
SE	MI5	659387	5496818	2020	4	2020-09-19	11:55	Phenanthrene	0.146	mg/kg	ALS	RG MI5 SE-4 2020-09-19 1155
SE	MI5	659387	5496818	2020	4	2020-09-19	11:55	Pyrene	0.027	mg/kg	ALS	RG MI5 SE-4 2020-09-19 1155
SE	MI5	659387	5496818	2020	4	2020-09-19	11:55	1-Methylnaphthalene	0.081	mg/kg	ALS	RG MI5 SE-4 2020-09-19 1155
SE	MI5	659387	5496818	2020	4	2020-09-19	11:55	Quinoline	<0.025	mg/kg	ALS	RG MI5 SE-4 2020-09-19 1155
SE	MI5	659387	5496818	2020	4	2020-09-19	11:55	IACR (CCME)	0.39	-	ALS	RG MI5 SE-4 2020-09-19 1155
SE	MI5	659387	5496818	2020	4	2020-09-19	11:55	B(a)P Total Potency Equivalent	0.026	mg/kg	ALS	RG MI5 SE-4 2020-09-19 1155
SE	MI5	659387	5496818	2020	4	2020-09-19	11:55	Benzo(b+j+k)fluoranthene	<0.035	mg/kg	ALS	RG MI5 SE-4 2020-09-19 1155
SE	MI5	659387	5496818	2020	1	2020-09-19	11:55	IACR:Coarse	<0.050	ilig/kg	ALS	RG MI5 SE-4 2020-09-19 1155
SE	MI5	659387	5496818	2020	1	2020-09-19	11:55	IACR:Fine	<0.050	_	ALS	RG MI5 SE-4 2020-09-19 1155
SE	MI5	659387	5496818	2020	4	2020-09-19	11:55	d8-Naphthalene	96.8	%		RG_MI5_SE-4_2020-09-19_1155
SE	MI5	659387	5496818	2020	4	2020-09-19	11:55	d10-Acenaphthene	100.0	%	ALS	RG MI5 SE-4 2020-09-19 1155
SE	MI5	659387	5496818	2020	4	2020-09-19	11:55	d10-Phenanthrene	105.7	%	ALS	RG MI5 SE-4 2020-09-19 1155
SE	MI5	659387	5496818	2020	4	2020-09-19	11:55	d12-Chrysene	103.7	%	ALS	RG MI5 SE-4 2020-09-19 1155
SE	MI5	659387	5496818	2020	4	2020-09-19	11:55	% Gravel (>2 mm)	3.2	%	ALS	RG MI5 SE-4 2020-09-19 1155
SE					4			,	1.2	%		
SE	MI5 MI5	659387 659387	5496818	2020	4	2020-09-19	11:55	% Sand (2.00 mm - 1.00 mm)			ALS	RG_MI5_SE-4_2020-09-19_1155
SE			5496818	2020	4	2020-09-19	11:55	% Sand (1.00 mm - 0.50 mm)	<1.0	%	ALS	RG_MI5_SE-4_2020-09-19_1155
	MI5	659387	5496818	2020	4	2020-09-19	11:55	% Sand (0.50 mm - 0.25 mm)	2.0	%	ALS	RG_MI5_SE-4_2020-09-19_1155
SE	MI5	659387	5496818	2020	4	2020-09-19	11:55	% Sand (0.25 mm - 0.125 mm)	5.6	%	ALS	RG_MI5_SE-4_2020-09-19_1155
SE	MI5	659387	5496818	2020	4	2020-09-19	11:55	% Sand (0.125 mm - 0.063 mm)	6.8	%		RG_MI5_SE-4_2020-09-19_1155
SE	MI5	659387	5496818	2020	4	2020-09-19	11:55	% Silt (0.063 mm - 0.0312 mm)	36.6	%	ALS	RG_MI5_SE-4_2020-09-19_1155
SE	MI5	659387	5496818	2020	4	2020-09-19	11:55	% Silt (0.031 mm - 0.004 mm)	37.9	%	ALS	RG_MI5_SE-4_2020-09-19_1155
SE	MI5	659387	5496818	2020	4	2020-09-19	11:55	% Clay (<4 μm)	6.0	%	ALS	RG_MI5_SE-4_2020-09-19_1155
SE	MI5	659387	5496818	2020	4	2020-09-19	11:55	Texture	Silt loam	-	ALS	RG_MI5_SE-4_2020-09-19_1155
SE	MI5	659387	5496818	2020	4	2020-09-19	11:55	pH (1:9)	6.88	pН	ALS	RG_MI5_SE-4_2020-09-19_1155
SE	MI5	659387	5496818	2020	4	2020-09-19	11:55	Mercury (Hg)	0.0343	mg/kg	ALS	RG_MI5_SE-4_2020-09-19_1155
SE	MI5	659387	5496818	2020	4	2020-09-19	11:55	Aluminum (AI)	6780	mg/kg	ALS	RG_MI5_SE-4_2020-09-19_1155

WSP Canada Inc. Page 212 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

able I-	1. Sealinent Onen		ected from the	CIVIIII LAEIVIP	Sampling St	ations, 2012 to	2022					
Туре	Station		(UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
		Easting	Northing					· ·	2.12	"	Lab	Sample ID
SE	MI5	659387	5496818	2020	4	2020-09-19	11:55	Antimony (Sb)	0.48	mg/kg	ALS	RG_MI5_SE-4_2020-09-19_1155
SE	MI5	659387	5496818	2020	4	2020-09-19	11:55	Arsenic (As)	3.93	mg/kg	ALS	RG_MI5_SE-4_2020-09-19_1155
SE	MI5	659387	5496818	2020	4	2020-09-19	11:55	Barium (Ba)	300	mg/kg	ALS	RG_MI5_SE-4_2020-09-19_1155
SE	MI5	659387	5496818	2020	4	2020-09-19	11:55	Beryllium (Be)	0.41	mg/kg	ALS	RG_MI5_SE-4_2020-09-19_1155
SE	MI5	659387	5496818	2020	4	2020-09-19	11:55	Bismuth (Bi)	<0.20	mg/kg	ALS	RG_MI5_SE-4_2020-09-19_1155
SE	MI5	659387	5496818	2020	4	2020-09-19	11:55	Boron (B)	10.8	mg/kg	ALS	RG_MI5_SE-4_2020-09-19_1155
SE	MI5	659387	5496818	2020	4	2020-09-19	11:55	Cadmium (Cd)	1.45	mg/kg	ALS	RG_MI5_SE-4_2020-09-19_1155
SE	MI5	659387	5496818	2020	4	2020-09-19	11:55	Calcium (Ca)	99300	mg/kg	ALS	RG_MI5_SE-4_2020-09-19_1155
SE	MI5	659387	5496818	2020	4	2020-09-19	11:55	Chromium (Cr)	12.5	mg/kg	ALS	RG_MI5_SE-4_2020-09-19_1155
SE	MI5	659387	5496818	2020	4	2020-09-19	11:55	Cobalt (Co)	11.7	mg/kg	ALS	RG_MI5_SE-4_2020-09-19_1155
SE	MI5	659387	5496818	2020	4	2020-09-19	11:55	Copper (Cu)	9.76	mg/kg	ALS	RG_MI5_SE-4_2020-09-19_1155
SE	MI5	659387	5496818	2020	4	2020-09-19	11:55	Iron (Fe)	9270	mg/kg	ALS	RG_MI5_SE-4_2020-09-19_1155
SE	MI5	659387	5496818	2020	4	2020-09-19	11:55	Lead (Pb)	5.71	mg/kg	ALS	RG_MI5_SE-4_2020-09-19_1155
SE	MI5	659387	5496818	2020	4	2020-09-19	11:55	Lithium (Li)	6.7	mg/kg	ALS	RG_MI5_SE-4_2020-09-19_1155
SE	MI5	659387	5496818	2020	4	2020-09-19	11:55	Magnesium (Mg)	5000	mg/kg	ALS	RG_MI5_SE-4_2020-09-19_1155
SE	MI5	659387	5496818	2020	4	2020-09-19	11:55	Manganese (Mn)	254	mg/kg	ALS	RG_MI5_SE-4_2020-09-19_1155
SE	MI5	659387	5496818	2020	4	2020-09-19	11:55	Molybdenum (Mo)	0.87	mg/kg	ALS	RG_MI5_SE-4_2020-09-19_1155
SE	MI5	659387	5496818	2020	4	2020-09-19	11:55	Nickel (Ni)	39.6	mg/kg	ALS	RG_MI5_SE-4_2020-09-19_1155
SE	MI5	659387	5496818	2020	4	2020-09-19	11:55	Phosphorus (P)	1140	mg/kg	ALS	RG_MI5_SE-4_2020-09-19_1155
SE	MI5	659387	5496818	2020	4	2020-09-19	11:55	Potassium (K)	1590	mg/kg	ALS	RG_MI5_SE-4_2020-09-19_1155
SE	MI5	659387	5496818	2020	4	2020-09-19	11:55	Selenium (Se)	4.48	mg/kg	ALS	RG_MI5_SE-4_2020-09-19_1155
SE	MI5	659387	5496818	2020	4	2020-09-19	11:55	Silver (Ag)	0.17	mg/kg	ALS	RG_MI5_SE-4_2020-09-19_1155
SE	MI5	659387	5496818	2020	4	2020-09-19	11:55	Sodium (Na)	259	mg/kg	ALS	RG_MI5_SE-4_2020-09-19_1155
SE	MI5	659387	5496818	2020	4	2020-09-19	11:55	Strontium (Sr)	146	mg/kg	ALS	RG_MI5_SE-4_2020-09-19_1155
SE	MI5	659387	5496818	2020	4	2020-09-19	11:55	Sulfur (S)	2100	mg/kg	ALS	RG_MI5_SE-4_2020-09-19_1155
SE	MI5	659387	5496818	2020	4	2020-09-19	11:55	Thallium (TI)	0.189	mg/kg	ALS	RG_MI5_SE-4_2020-09-19_1155
SE	MI5	659387	5496818	2020	4	2020-09-19	11:55	Tin (Sn)	<2.0	mg/kg	ALS	RG_MI5_SE-4_2020-09-19_1155
SE	MI5	659387	5496818	2020	4	2020-09-19	11:55	Titanium (Ti)	36.1	mg/kg	ALS	RG MI5 SE-4 2020-09-19 1155
SE	MI5	659387	5496818	2020	4	2020-09-19	11:55	Tungsten (W)	<0.50	mg/kg	ALS	RG_MI5_SE-4_2020-09-19_1155
SE	MI5	659387	5496818	2020	4	2020-09-19	11:55	Uranium (U)	0.957	mg/kg	ALS	RG_MI5_SE-4_2020-09-19_1155
SE	MI5	659387	5496818	2020	4	2020-09-19	11:55	Vanadium (V)	26.1	mg/kg	ALS	RG MI5 SE-4 2020-09-19 1155
SE	MI5	659387	5496818	2020	4	2020-09-19	11:55	Zinc (Zn)	80.8	mg/kg	ALS	RG MI5 SE-4 2020-09-19 1155
SE	MI5	659387	5496818	2020	4	2020-09-19	11:55	Zirconium (Zr)	<1.0	mg/kg	ALS	RG MI5 SE-4 2020-09-19 1155
SE	MI5	659387	5496818	2020	4	2020-09-19	11:55	Total Organic Carbon	10.1	%	ALS	RG MI5 SE-4 2020-09-19 1155
SE	MI5	659387	5496818	2020	5	2020-09-19	12:15	Moisture	86.3	%	ALS	RG MI5 SE-5 2020-09-19 1215
SE	MI5	659387	5496818	2020	5	2020-09-19	12:15	Acenaphthene	<0.016	mg/kg	ALS	RG MI5 SE-5 2020-09-19 1215
SE	MI5	659387	5496818	2020	5	2020-09-19	12:15	Acenaphthylene	<0.015	mg/kg	ALS	RG MI5 SE-5 2020-09-19 1215
SE	MI5	659387	5496818	2020	5	2020-09-19	12:15	Anthracene	<0.025	mg/kg	ALS	RG MI5 SE-5 2020-09-19 1215
SE	MI5	659387	5496818	2020	5	2020-09-19	12:15	Acridine	<0.025	mg/kg	ALS	RG MI5 SE-5 2020-09-19 1215
SE	MI5	659387	5496818	2020	5	2020-09-19	12:15	Benz(a)anthracene	<0.025	mg/kg	ALS	RG MI5 SE-5 2020-09-19 1215
SE	MI5	659387	5496818	2020	5	2020-09-19	12:15	Benzo(a)pyrene	<0.025	mg/kg	ALS	RG MI5 SE-5 2020-09-19 1215
SE	MI5	659387	5496818	2020	5	2020-09-19	12:15	Benzo(b&j)fluoranthene	0.030	mg/kg	ALS	RG MI5 SE-5 2020-09-19 1215
SE	MI5	659387	5496818	2020	5	2020-09-19	12:15	Benzo(e)pyrene	0.036	mg/kg	ALS	RG MI5 SE-5 2020-09-19 1215
SE	MI5	659387	5496818	2020	5	2020-09-19	12:15	Benzo(g_h_i)perylene	<0.025	mg/kg	ALS	RG MI5 SE-5 2020-09-19 1215
SE	MI5	659387	5496818	2020	5	2020-09-19	12:15	Benzo(k)fluoranthene	<0.025	mg/kg	ALS	RG MI5 SE-5 2020-09-19 1215
SE	MI5	659387	5496818	2020	5	2020-09-19	12:15	Chrysene	0.069	mg/kg	ALS	RG MI5 SE-5 2020-09-19 1215
o_	IVIIO	000001	0700010	2020	J	2020-00-10	12.10	Omyoono	0.009	mg/kg		RG MI5 SE-5 2020-09-19 1215

WSP Canada Inc. Page 213 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	Ctation	Location	ı (UTMs) ^(a)	Voor	Doubleste	Data		Analuta	_ Dooult	Llusia —		Laboratory Information
ype	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE .	MI5	659387	5496818	2020	5	2020-09-19	12:15	Fluoranthene	0.039	mg/kg	ALS	RG MI5 SE-5 2020-09-19 1215
E	MI5	659387	5496818	2020	5	2020-09-19	12:15	Fluorene	0.028	mg/kg	ALS	RG MI5 SE-5 2020-09-19 1215
E	MI5	659387	5496818	2020	5	2020-09-19	12:15	Indeno(1,2,3-c,d)pyrene	<0.025	mg/kg	ALS	RG MI5 SE-5 2020-09-19 1215
E	MI5	659387	5496818	2020	5	2020-09-19	12:15	2-Methylnaphthalene	0.142	mg/kg	ALS	RG MI5 SE-5 2020-09-19 1215
E E	MI5	659387	5496818	2020	5	2020-09-19	12:15	Naphthalene	0.079	mg/kg	ALS	RG MI5 SE-5 2020-09-19 1215
SE SE	MI5	659387	5496818	2020	5	2020-09-19	12:15	Perylene	<0.025	mg/kg	ALS	RG MI5 SE-5 2020-09-19 1215
SE SE	MI5	659387	5496818	2020	5	2020-09-19	12:15	Phenanthrene	0.174	mg/kg	ALS	RG MI5 SE-5 2020-09-19 1215
SE SE	MI5	659387	5496818	2020	5	2020-09-19	12:15	Pyrene	0.035	mg/kg	ALS	RG MI5 SE-5 2020-09-19 1215
SE SE	MI5	659387	5496818	2020	5	2020-09-19	12:15	1-Methylnaphthalene	0.103	mg/kg	ALS	RG MI5 SE-5 2020-09-19 1215
SE SE	MI5	659387	5496818	2020	5	2020-09-19	12:15	Quinoline	<0.025	mg/kg	ALS	RG MI5 SE-5 2020-09-19 1215
SE SE	MI5	659387	5496818	2020	5	2020-09-19	12:15	IACR (CCME)	0.41	ilig/kg	ALS	RG MI5 SE-5 2020-09-19 1215
SE SE	MI5	659387	5496818	2020	5	2020-09-19	12:15	B(a)P Total Potency Equivalent	0.028	mg/kg	ALS	RG MI5 SE-5 2020-09-19 1215
E E	MI5	659387	5496818	2020	5	2020-09-19	12:15	Benzo(b+j+k)fluoranthene	<0.035		ALS	RG MI5 SE-5 2020-09-19 1215
E E	MI5	659387	5496818	2020	5	2020-09-19	12:15	IACR:Coarse	<0.050	mg/kg	ALS	RG MI5 SE-5 2020-09-19 1215
SE	MI5	659387	5496818	2020	5	2020-09-19	12:15	IACR:Coarse	<0.050	-		RG MI5 SE-5 2020-09-19 1215
SE SE	MI5	659387	5496818		5		12:15		101.1	- %	ALS ALS	
				2020		2020-09-19		d8-Naphthalene				RG_MI5_SE-5_2020-09-19_1215
SE	MI5	659387	5496818	2020	5	2020-09-19	12:15	d10-Acenaphthene	106.6	%	ALS	RG_MI5_SE-5_2020-09-19_1215
SE .	MI5	659387	5496818	2020	5	2020-09-19	12:15	d10-Phenanthrene	111.6	%	ALS	RG_MI5_SE-5_2020-09-19_1215
E	MI5	659387	5496818	2020	5	2020-09-19	12:15	d12-Chrysene	109.3	%	ALS	RG_MI5_SE-5_2020-09-19_1215
E	MI5	659387	5496818	2020	5	2020-09-19	12:15	% Gravel (>2 mm)	<1.0	%	ALS	RG_MI5_SE-5_2020-09-19_1215
E	MI5	659387	5496818	2020	5	2020-09-19	12:15	% Sand (2.00 mm - 1.00 mm)	1.5	%	ALS	RG_MI5_SE-5_2020-09-19_1215
E	MI5	659387	5496818	2020	5	2020-09-19	12:15	% Sand (1.00 mm - 0.50 mm)	1.3	%	ALS	RG_MI5_SE-5_2020-09-19_1215
E	MI5	659387	5496818	2020	5	2020-09-19	12:15	% Sand (0.50 mm - 0.25 mm)	1.4	%	ALS	RG_MI5_SE-5_2020-09-19_1215
SE	MI5	659387	5496818	2020	5	2020-09-19	12:15	% Sand (0.25 mm - 0.125 mm)	3.7	%	ALS	RG_MI5_SE-5_2020-09-19_1215
SE	MI5	659387	5496818	2020	5	2020-09-19	12:15	% Sand (0.125 mm - 0.063 mm)	6.7	%	ALS	RG_MI5_SE-5_2020-09-19_1215
SE	MI5	659387	5496818	2020	5	2020-09-19	12:15	% Silt (0.063 mm - 0.0312 mm)	38.4	%	ALS	RG_MI5_SE-5_2020-09-19_1215
SE	MI5	659387	5496818	2020	5	2020-09-19	12:15	% Silt (0.031 mm - 0.004 mm)	39.8	%	ALS	RG_MI5_SE-5_2020-09-19_1215
SE	MI5	659387	5496818	2020	5	2020-09-19	12:15	% Clay (<4 μm)	6.8	%	ALS	RG_MI5_SE-5_2020-09-19_1215
SE	MI5	659387	5496818	2020	5	2020-09-19	12:15	Texture	Silt loam	-	ALS	RG_MI5_SE-5_2020-09-19_1215
SE .	MI5	659387	5496818	2020	5	2020-09-19	12:15	pH (1:9)	6.75	pН	ALS	RG_MI5_SE-5_2020-09-19_1215
SE	MI5	659387	5496818	2020	5	2020-09-19	12:15	Mercury (Hg)	0.0380	mg/kg	ALS	RG_MI5_SE-5_2020-09-19_1215
SE	MI5	659387	5496818	2020	5	2020-09-19	12:15	Aluminum (Al)	7430	mg/kg	ALS	RG_MI5_SE-5_2020-09-19_1215
SE	MI5	659387	5496818	2020	5	2020-09-19	12:15	Antimony (Sb)	0.54	mg/kg	ALS	RG_MI5_SE-5_2020-09-19_1215
SE	MI5	659387	5496818	2020	5	2020-09-19	12:15	Arsenic (As)	4.08	mg/kg	ALS	RG_MI5_SE-5_2020-09-19_1215
SE	MI5	659387	5496818	2020	5	2020-09-19	12:15	Barium (Ba)	254	mg/kg	ALS	RG_MI5_SE-5_2020-09-19_1215
SE	MI5	659387	5496818	2020	5	2020-09-19	12:15	Beryllium (Be)	0.47	mg/kg	ALS	RG_MI5_SE-5_2020-09-19_1215
SE	MI5	659387	5496818	2020	5	2020-09-19	12:15	Bismuth (Bi)	<0.20	mg/kg	ALS	RG_MI5_SE-5_2020-09-19_1215
SE	MI5	659387	5496818	2020	5	2020-09-19	12:15	Boron (B)	11.6	mg/kg	ALS	RG_MI5_SE-5_2020-09-19_1215
SE .	MI5	659387	5496818	2020	5	2020-09-19	12:15	Cadmium (Cd)	1.71	mg/kg	ALS	RG_MI5_SE-5_2020-09-19_1215
E	MI5	659387	5496818	2020	5	2020-09-19	12:15	Calcium (Ca)	84900	mg/kg	ALS	RG_MI5_SE-5_2020-09-19_1215
E	MI5	659387	5496818	2020	5	2020-09-19	12:15	Chromium (Cr)	13.8	mg/kg	ALS	RG_MI5_SE-5_2020-09-19_1215
E	MI5	659387	5496818	2020	5	2020-09-19	12:15	Cobalt (Co)	6.43	mg/kg	ALS	RG MI5 SE-5 2020-09-19 1215
E	MI5	659387	5496818	2020	5	2020-09-19	12:15	Copper (Cu)	11.3	mg/kg	ALS	RG MI5 SE-5 2020-09-19 1215
SE SE	MI5	659387	5496818	2020	5	2020-09-19	12:15	Iron (Fe)	10100	mg/kg	ALS	RG MI5 SE-5 2020-09-19 1215
E E	MI5	659387	5496818	2020	5	2020-09-19	12:15	Lead (Pb)	6.18	mg/kg	ALS	RG MI5 SE-5 2020-09-19 1215
E	MI5	659387	5496818	2020	5	2020-09-19	12:15	Lithium (Li)	7.8	mg/kg	ALS	RG MI5 SE-5 2020-09-19 1215
י םכ												

WSP Canada Inc. Page 214 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Type	Station	Location	(UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	- Popult -	Unit		Laboratory Information
Type	Station	Easting	Northing	rear	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MI5	659387	5496818	2020	5	2020-09-19	12:15	Manganese (Mn)	134	mg/kg	ALS	RG_MI5_SE-5_2020-09-19_1215
SE	MI5	659387	5496818	2020	5	2020-09-19	12:15	Molybdenum (Mo)	0.94	mg/kg	ALS	RG_MI5_SE-5_2020-09-19_1215
SE	MI5	659387	5496818	2020	5	2020-09-19	12:15	Nickel (Ni)	37.0	mg/kg	ALS	RG_MI5_SE-5_2020-09-19_1215
SE	MI5	659387	5496818	2020	5	2020-09-19	12:15	Phosphorus (P)	1360	mg/kg	ALS	RG_MI5_SE-5_2020-09-19_1215
SE	MI5	659387	5496818	2020	5	2020-09-19	12:15	Potassium (K)	1820	mg/kg	ALS	RG_MI5_SE-5_2020-09-19_1215
SE	MI5	659387	5496818	2020	5	2020-09-19	12:15	Selenium (Se)	4.79	mg/kg	ALS	RG_MI5_SE-5_2020-09-19_1215
SE	MI5	659387	5496818	2020	5	2020-09-19	12:15	Silver (Ag)	0.17	mg/kg	ALS	RG_MI5_SE-5_2020-09-19_1215
SE	MI5	659387	5496818	2020	5	2020-09-19	12:15	Sodium (Na)	283	mg/kg	ALS	RG_MI5_SE-5_2020-09-19_1215
SE	MI5	659387	5496818	2020	5	2020-09-19	12:15	Strontium (Sr)	122	mg/kg	ALS	RG_MI5_SE-5_2020-09-19_1215
SE	MI5	659387	5496818	2020	5	2020-09-19	12:15	Sulfur (S)	2400	mg/kg	ALS	RG_MI5_SE-5_2020-09-19_1215
SE	MI5	659387	5496818	2020	5	2020-09-19	12:15	Thallium (TI)	0.270	mg/kg	ALS	RG_MI5_SE-5_2020-09-19_1215
SE	MI5	659387	5496818	2020	5	2020-09-19	12:15	Tin (Sn)	<2.0	mg/kg	ALS	RG_MI5_SE-5_2020-09-19_1215
SE	MI5	659387	5496818	2020	5	2020-09-19	12:15	Titanium (Ti)	36.0	mg/kg	ALS	RG_MI5_SE-5_2020-09-19_1215
SE	MI5	659387	5496818	2020	5	2020-09-19	12:15	Tungsten (W)	<0.50	mg/kg	ALS	RG_MI5_SE-5_2020-09-19_1215
SE	MI5	659387	5496818	2020	5	2020-09-19	12:15	Uranium (U)	1.02	mg/kg	ALS	RG_MI5_SE-5_2020-09-19_1215
SE	MI5	659387	5496818	2020	5	2020-09-19	12:15	Vanadium (V)	31.1	mg/kg	ALS	RG_MI5_SE-5_2020-09-19_1215
SE	MI5	659387	5496818	2020	5	2020-09-19	12:15	Zinc (Zn)	97.4	mg/kg	ALS	RG_MI5_SE-5_2020-09-19_1215
SE	MI5	659387	5496818	2020	5	2020-09-19	12:15	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_MI5_SE-5_2020-09-19_1215
SE	MI5	659387	5496818	2020	5	2020-09-19	12:15	Total Organic Carbon	9.00	%	ALS	RG_MI5_SE-5_2020-09-19_1215
SE	MI5	659387	5496818	2020	2	2020-09-17	17:00	Moisture	67.4	%	ALS	RG_MI5_SE-2_2020-09-17_1700
SE	MI5	659387	5496818	2020	2	2020-09-17	17:00	Acenaphthene	< 0.0075	mg/kg	ALS	RG_MI5_SE-2_2020-09-17_1700
SE	MI5	659387	5496818	2020	2	2020-09-17	17:00	Acenaphthylene	< 0.0075	mg/kg	ALS	RG_MI5_SE-2_2020-09-17_1700
SE	MI5	659387	5496818	2020	2	2020-09-17	17:00	Anthracene	<0.0060	mg/kg	ALS	RG_MI5_SE-2_2020-09-17_1700
SE	MI5	659387	5496818	2020	2	2020-09-17	17:00	Acridine	<0.015	mg/kg	ALS	RG_MI5_SE-2_2020-09-17_1700
SE	MI5	659387	5496818	2020	2	2020-09-17	17:00	Benz(a)anthracene	0.017	mg/kg	ALS	RG_MI5_SE-2_2020-09-17_1700
SE	MI5	659387	5496818	2020	2	2020-09-17	17:00	Benzo(a)pyrene	<0.015	mg/kg	ALS	RG_MI5_SE-2_2020-09-17_1700
SE	MI5	659387	5496818	2020	2	2020-09-17	17:00	Benzo(b&j)fluoranthene	0.032	mg/kg	ALS	RG_MI5_SE-2_2020-09-17_1700
SE	MI5	659387	5496818	2020	2	2020-09-17	17:00	Benzo(e)pyrene	0.034	mg/kg	ALS	RG_MI5_SE-2_2020-09-17_1700
SE	MI5	659387	5496818	2020	2	2020-09-17	17:00	Benzo(g_h_i)perylene	<0.015	mg/kg	ALS	RG_MI5_SE-2_2020-09-17_1700
SE	MI5	659387	5496818	2020	2	2020-09-17	17:00	Benzo(k)fluoranthene	<0.015	mg/kg	ALS	RG_MI5_SE-2_2020-09-17_1700
SE	MI5	659387	5496818	2020	2	2020-09-17	17:00	Chrysene	<0.060	mg/kg	ALS	RG_MI5_SE-2_2020-09-17_1700
SE	MI5	659387	5496818	2020	2	2020-09-17	17:00	Dibenz(a_h)anthracene	< 0.0075	mg/kg	ALS	RG_MI5_SE-2_2020-09-17_1700
SE	MI5	659387	5496818	2020	2	2020-09-17	17:00	Fluoranthene	0.025	mg/kg	ALS	RG_MI5_SE-2_2020-09-17_1700
SE	MI5	659387	5496818	2020	2	2020-09-17	17:00	Fluorene	<0.015	mg/kg	ALS	RG_MI5_SE-2_2020-09-17_1700
SE	MI5	659387	5496818	2020	2	2020-09-17	17:00	Indeno(1,2,3-c,d)pyrene	<0.015	mg/kg	ALS	RG_MI5_SE-2_2020-09-17_1700
SE	MI5	659387	5496818	2020	2	2020-09-17	17:00	2-Methylnaphthalene	0.121	mg/kg	ALS	RG_MI5_SE-2_2020-09-17_1700
SE	MI5	659387	5496818	2020	2	2020-09-17	17:00	Naphthalene	0.062	mg/kg	ALS	RG_MI5_SE-2_2020-09-17_1700
SE	MI5	659387	5496818	2020	2	2020-09-17	17:00	Perylene	<0.015	mg/kg	ALS	RG_MI5_SE-2_2020-09-17_1700
SE	MI5	659387	5496818	2020	2	2020-09-17	17:00	Phenanthrene	0.157	mg/kg	ALS	RG_MI5_SE-2_2020-09-17_1700
SE	MI5	659387	5496818	2020	2	2020-09-17	17:00	Pyrene	0.028	mg/kg	ALS	RG_MI5_SE-2_2020-09-17_1700
SE	MI5	659387	5496818	2020	2	2020-09-17	17:00	1-Methylnaphthalene	0.089	mg/kg	ALS	RG_MI5_SE-2_2020-09-17_1700
SE	MI5	659387	5496818	2020	2	2020-09-17	17:00	Quinoline	<0.015	mg/kg	ALS	RG_MI5_SE-2_2020-09-17_1700
SE	MI5	659387	5496818	2020	2	2020-09-17	17:00	IACR (CCME)	0.36	-	ALS	RG_MI5_SE-2_2020-09-17_1700
SE	MI5	659387	5496818	2020	2	2020-09-17	17:00	B(a)P Total Potency Equivalent	<0.020	mg/kg	ALS	RG_MI5_SE-2_2020-09-17_1700
SE	MI5	659387	5496818	2020	2	2020-09-17	17:00	Benzo(b+j+k)fluoranthene	0.032	mg/kg	ALS	RG_MI5_SE-2_2020-09-17_1700
SE	MI5	659387	5496818	2020	2	2020-09-17	17:00	IACR:Coarse	<0.050	-	ALS	RG_MI5_SE-2_2020-09-17_1700
SE	MI5	659387	5496818	2020	2	2020-09-17	17:00	IACR:Fine	< 0.050	-	ALS	RG_MI5_SE-2_2020-09-17_1700

WSP Canada Inc. Page 215 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

\/no	Station	Location	(UTMs) ^(a)	Year	Replicate	Date	Time	Analyta	Result	Unit		Laboratory Information
ype	Station	Easting	Northing	rear	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MI5	659387	5496818	2020	2	2020-09-17	17:00	d8-Naphthalene	90.4	%	ALS	RG MI5 SE-2 2020-09-17 1700
SE.	MI5	659387	5496818	2020	2	2020-09-17	17:00	d10-Acenaphthene	94.9	%	ALS	RG_MI5_SE-2_2020-09-17_1700
SE.	MI5	659387	5496818	2020	2	2020-09-17	17:00	d10-Phenanthrene	101.0	%	ALS	RG MI5 SE-2 2020-09-17 1700
SE	MI5	659387	5496818	2020	2	2020-09-17	17:00	d12-Chrysene	98.3	%	ALS	RG MI5 SE-2 2020-09-17 1700
SE	MI5	659387	5496818	2020	2	2020-09-17	17:00	% Gravel (>2 mm)	2.1	%	ALS	RG_MI5_SE-2_2020-09-17_1700
SE	MI5	659387	5496818	2020	2	2020-09-17	17:00	% Sand (2.00 mm - 1.00 mm)	<1.0	%	ALS	RG MI5 SE-2 2020-09-17 1700
SE	MI5	659387	5496818	2020	2	2020-09-17	17:00	% Sand (1.00 mm - 0.50 mm)	6.5	%	ALS	RG MI5 SE-2 2020-09-17 1700
SE	MI5	659387	5496818	2020	2	2020-09-17	17:00	% Sand (0.50 mm - 0.25 mm)	30.2	%	ALS	RG MI5 SE-2 2020-09-17 1700
SE	MI5	659387	5496818	2020	2	2020-09-17	17:00	% Sand (0.25 mm - 0.125 mm)	23.4	%	ALS	RG MI5 SE-2 2020-09-17 1700
SE	MI5	659387	5496818	2020	2	2020-09-17	17:00	% Sand (0.125 mm - 0.063 mm)	10.8	%	ALS	RG MI5 SE-2 2020-09-17 1700
SE	MI5	659387	5496818	2020		2020-09-17	17:00	% Silt (0.063 mm - 0.0312 mm)	12.3	%	ALS	RG MI5 SE-2 2020-09-17 1700
SE	MI5	659387	5496818	2020	2	2020-09-17	17:00	% Silt (0.031 mm - 0.004 mm)	12.5	%	ALS	RG MI5 SE-2 2020-09-17 1700
SE	MI5	659387	5496818	2020	2	2020-09-17	17:00	% Clay (<4 μm)	1.9	%	ALS	RG MI5 SE-2 2020-09-17 1700
SE	MI5	659387	5496818	2020	2	2020-09-17	17:00	Texture	Loamy sand	-	ALS	RG MI5 SE-2 2020-09-17 1700
SE	MI5	659387	5496818	2020	2	2020-09-17	17:00	pH (1:9)	7.29	pН	ALS	RG_MI5_SE-2_2020-09-17_1700
SE	MI5	659387	5496818	2020	2	2020-09-17	17:00	Mercury (Hg)	0.0397	mg/kg	ALS	RG_MI5_SE-2_2020-09-17_1700
SE	MI5	659387	5496818	2020	2	2020-09-17	17:00	Aluminum (Al)	8970	mg/kg	ALS	RG_MI5_SE-2_2020-09-17_1700
SE	MI5	659387	5496818	2020	2	2020-09-17	17:00	Antimony (Sb)	0.80	mg/kg	ALS	RG MI5 SE-2 2020-09-17 1700
SE	MI5	659387	5496818	2020	2	2020-09-17	17:00	Arsenic (As)	5.66	mg/kg	ALS	RG MI5 SE-2 2020-09-17 1700
SE	MI5	659387	5496818	2020	2	2020-09-17	17:00	Barium (Ba)	232	mg/kg	ALS	RG MI5 SE-2 2020-09-17 1700
SE	MI5	659387	5496818	2020	2	2020-09-17	17:00	Beryllium (Be)	0.58	mg/kg	ALS	RG MI5 SE-2 2020-09-17 1700
SE	MI5	659387	5496818	2020	2	2020-09-17	17:00	Bismuth (Bi)	<0.20	mg/kg	ALS	RG_MI5_SE-2_2020-09-17_1700
SE	MI5	659387	5496818	2020	2	2020-09-17	17:00	Boron (B)	8.3	mg/kg	ALS	RG MI5 SE-2 2020-09-17 1700
SE	MI5	659387	5496818	2020	2	2020-09-17	17:00	Cadmium (Cd)	1.31	mg/kg	ALS	RG_MI5_SE-2_2020-09-17_1700
SE	MI5	659387	5496818	2020	2	2020-09-17	17:00	Calcium (Ca)	37200	mg/kg	ALS	RG MI5 SE-2 2020-09-17 1700
SE	MI5	659387	5496818	2020	2	2020-09-17	17:00	Chromium (Cr)	15.6	mg/kg	ALS	RG MI5 SE-2 2020-09-17 1700
SE	MI5	659387	5496818	2020	2	2020-09-17	17:00	Cobalt (Co)	8.90	mg/kg	ALS	RG MI5 SE-2 2020-09-17 1700
SE	MI5	659387	5496818	2020	2	2020-09-17	17:00	Copper (Cu)	12.6	mg/kg	ALS	RG MI5 SE-2 2020-09-17 1700
SE	MI5	659387	5496818	2020	2	2020-09-17	17:00	Iron (Fe)	13800	mg/kg	ALS	RG MI5 SE-2 2020-09-17 1700
SE	MI5	659387	5496818	2020	2	2020-09-17	17:00	Lead (Pb)	8.12	mg/kg	ALS	RG MI5 SE-2 2020-09-17 1700
SE	MI5	659387	5496818	2020	2	2020-09-17	17:00	Lithium (Li)	9.4	mg/kg	ALS	RG_MI5_SE-2_2020-09-17_1700
SE	MI5	659387	5496818	2020		2020-09-17	17:00	Magnesium (Mg)	5950	mg/kg	ALS	RG MI5 SE-2 2020-09-17 1700
SE	MI5	659387	5496818	2020	2	2020-09-17	17:00	Manganese (Mn)	169	mg/kg	ALS	RG MI5 SE-2 2020-09-17 1700
SE	MI5	659387	5496818	2020		2020-09-17	17:00	Molybdenum (Mo)	1.19	mg/kg	ALS	RG MI5 SE-2 2020-09-17 1700
SE	MI5	659387	5496818	2020	2	2020-09-17	17:00	Nickel (Ni)	36.0	mg/kg	ALS	RG MI5 SE-2 2020-09-17 1700
SE	MI5	659387	5496818	2020	2	2020-09-17	17:00	Phosphorus (P)	1280	mg/kg	ALS	RG MI5 SE-2 2020-09-17 1700
SE	MI5	659387	5496818	2020		2020-09-17	17:00	Potassium (K)	1860	mg/kg	ALS	RG_MI5_SE-2_2020-09-17_1700
SE	MI5	659387	5496818	2020		2020-09-17	17:00	Selenium (Se)	2.03	mg/kg	ALS	RG_MI5_SE-2_2020-09-17_1700
SE	MI5	659387	5496818	2020		2020-09-17	17:00	Silver (Ag)	0.17	mg/kg	ALS	RG_MI5_SE-2_2020-09-17_1700
SE	MI5	659387	5496818	2020		2020-09-17	17:00	Sodium (Na)	119	mg/kg	ALS	RG_MI5_SE-2_2020-09-17_1700
SE	MI5	659387	5496818	2020		2020-09-17	17:00	Strontium (Sr)	70.1	mg/kg	ALS	RG_MI5_SE-2_2020-09-17_1700
SE	MI5	659387	5496818	2020	2	2020-09-17	17:00	Sulfur (S)	<1000	mg/kg	ALS	RG MI5 SE-2 2020-09-17 1700
SE.	MI5	659387	5496818	2020	2	2020-09-17	17:00	Thallium (TI)	0.279	mg/kg	ALS	RG MI5 SE-2 2020-09-17 1700
SE	MI5	659387	5496818	2020	2	2020-09-17	17:00	Tin (Sn)	<2.0	mg/kg	ALS	RG MI5 SE-2 2020-09-17 1700
SE	MI5	659387	5496818	2020	2	2020-09-17	17:00	Titanium (Ti)	44.3	mg/kg	ALS	RG MI5 SE-2 2020-09-17 1700
						2020-09-17	17:00	Tungsten (W)	<0.50	mg/kg	ALS	RG MI5 SE-2 2020-09-17 1700
SE	MI5	659387	5496818	2020	2	12020-03-17	17.00	Trungsten (W)	~ 0.50	IIIU/KU	ALS	ING MIS SE-2 2020-09-11 1700

WSP Canada Inc. Page 216 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	Ctation	Location	າ (UTMs) ^(a)	Vaar	Donlingto	Data	Time	Analyta	Doould	Lloit		Laboratory Information
ype	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE.	MI5	659387	5496818	2020	2	2020-09-17	17:00	Vanadium (V)	41.6	mg/kg	ALS	RG MI5 SE-2 2020-09-17 1700
E E	MI5	659387	5496818	2020	2	2020-09-17	17:00	Zinc (Zn)	106	mg/kg	ALS	RG MI5 SE-2 2020-09-17 1700
E E	MI5	659387	5496818	2020	2	2020-09-17	17:00	Zirconium (Zr)	<1.0	mg/kg	ALS	RG MI5 SE-2 2020-09-17 1700
SE	MI5	659387	5496818	2020	2	2020-09-17	17:00	Total Organic Carbon	2.53	%	ALS	RG MI5 SE-2 2020-09-17 1700
SE SE	MI5	659530	5496485	2021	1	2021-09-16	10:45	Moisture	36	%	ALS	RG MI5 SE-1 2021-09-16 1045
SE SE	MI5	659530	5496485	2021	1	2021-09-16	10:45	pH (1:2 soil:water)	8.3	pH	ALS	RG MI5 SE-1 2021-09-16 1045
SE	MI5	659530	5496485	2021	1	2021-09-16	10:45	% Gravel (>2 mm)	9.4	%	ALS	RG MI5 SE-1 2021-09-16 1045
SE SE	MI5	659530	5496485	2021	1	2021-09-16	10:45	% Sand (2.00 mm - 1.00 mm)	11	%	ALS	RG MI5 SE-1 2021-09-16 1045
SE	MI5	659530	5496485	2021	1	2021-09-16	10:45	% Sand (2.00 mm - 0.50 mm)	17	%	ALS	RG MI5 SE-1 2021-09-16 1045
SE	MI5	659530	5496485	2021	1	2021-09-16	10:45	% Sand (0.50 mm - 0.25 mm)	28	%	ALS	RG MI5 SE-1 2021-09-16 1045
E	MI5	659530	5496485	2021	1	2021-09-16	10:45	% Sand (0.35 mm - 0.125 mm)	16	%	ALS	RG MI5 SE-1 2021-09-16 1045
E E	MI5	659530	5496485	2021	1	2021-09-16	10:45	% Sand (0.125 mm - 0.163 mm)	6.5	%	ALS	RG MI5 SE-1 2021-09-16 1045
E E	MI5	659530	5496485	2021	1	2021-09-16	10:45	% Silt (0.063 mm - 0.0312 mm)	5.0	%	ALS	RG MI5 SE-1 2021-09-16 1045
SE	MI5	659530	5496485	2021	1	2021-09-16	10:45	% Silt (0.003 mm - 0.004 mm)	5.5	%	ALS	RG MI5 SE-1 2021-09-16 1045
SE	MI5	659530	5496485	2021	1	2021-09-16	10:45		1.6	%	ALS	RG MI5 SE-1 2021-09-16 1045
SE SE	MI5				1		10:45	% Clay (<4 μm) Texture		70	ALS	
	MI5	659530	5496485	2021	1	2021-09-16			Sand	- 0/		RG_MI5_SE-1_2021-09-16_1045 RG_MI5_SE-1_2021-09-16_1045
SE		659530	5496485	2021	1	2021-09-16	10:45	Total Organic Carbon	2.5	%	ALS	
SE SE	MI5	659530	5496485	2021	1	2021-09-16	10:45	Aluminum (Al)	6,000	mg/kg	ALS	RG_MI5_SE-1_2021-09-16_1045
E	MI5	659530	5496485	2021	1	2021-09-16	10:45	Antimony (Sb)	1.0	mg/kg	ALS	RG_MI5_SE-1_2021-09-16_1045
E	MI5	659530	5496485	2021	1	2021-09-16	10:45	Arsenic (As)	7.5	mg/kg	ALS	RG_MI5_SE-1_2021-09-16_1045
E	MI5	659530	5496485	2021	1	2021-09-16	10:45	Barium (Ba)	172	mg/kg	ALS	RG_MI5_SE-1_2021-09-16_1045
E	MI5	659530	5496485	2021	1	2021-09-16	10:45	Beryllium (Be)	0.54	mg/kg	ALS	RG_MI5_SE-1_2021-09-16_1045
E	MI5	659530	5496485	2021	1	2021-09-16	10:45	Bismuth (Bi)	<0.20	mg/kg	ALS	RG_MI5_SE-1_2021-09-16_1045
Ē	MI5	659530	5496485	2021	1	2021-09-16	10:45	Boron (B)	<5.0	mg/kg	ALS	RG_MI5_SE-1_2021-09-16_1045
SE	MI5	659530	5496485	2021	1	2021-09-16	10:45	Cadmium (Cd)	1.2	mg/kg	ALS	RG_MI5_SE-1_2021-09-16_1045
SE.	MI5	659530	5496485	2021	1	2021-09-16	10:45	Calcium (Ca)	27,400	mg/kg	ALS	RG_MI5_SE-1_2021-09-16_1045
SE.	MI5	659530	5496485	2021	1	2021-09-16	10:45	Chromium (Cr)	11	mg/kg	ALS	RG_MI5_SE-1_2021-09-16_1045
E	MI5	659530	5496485	2021	1	2021-09-16	10:45	Cobalt (Co)	7.4	mg/kg	ALS	RG_MI5_SE-1_2021-09-16_1045
SE.	MI5	659530	5496485	2021	1	2021-09-16	10:45	Copper (Cu)	13	mg/kg	ALS	RG_MI5_SE-1_2021-09-16_1045
E	MI5	659530	5496485	2021	1	2021-09-16	10:45	Iron (Fe)	16,600	mg/kg	ALS	RG_MI5_SE-1_2021-09-16_1045
SE.	MI5	659530	5496485	2021	1	2021-09-16	10:45	Lead (Pb)	8.3	mg/kg	ALS	RG_MI5_SE-1_2021-09-16_1045
SE .	MI5	659530	5496485	2021	1	2021-09-16	10:45	Lithium (Li)	7.7	mg/kg	ALS	RG_MI5_SE-1_2021-09-16_1045
SE .	MI5	659530	5496485	2021	1	2021-09-16	10:45	Magnesium (Mg)	4,180	mg/kg	ALS	RG_MI5_SE-1_2021-09-16_1045
ŝΕ	MI5	659530	5496485	2021	1	2021-09-16	10:45	Manganese (Mn)	308	mg/kg	ALS	RG_MI5_SE-1_2021-09-16_1045
βE	MI5	659530	5496485	2021	1	2021-09-16	10:45	Mercury (Hg)	0.04	mg/kg	ALS	RG_MI5_SE-1_2021-09-16_1045
SE.	MI5	659530	5496485	2021	1	2021-09-16	10:45	Molybdenum (Mo)	1.6	mg/kg	ALS	RG_MI5_SE-1_2021-09-16_1045
SE.	MI5	659530	5496485	2021	1	2021-09-16	10:45	Nickel (Ni)	29	mg/kg	ALS	RG_MI5_SE-1_2021-09-16_1045
E	MI5	659530	5496485	2021	1	2021-09-16	10:45	Phosphorus (P)	1,200	mg/kg	ALS	RG_MI5_SE-1_2021-09-16_1045
E	MI5	659530	5496485	2021	1	2021-09-16	10:45	Potassium (K)	1,100	mg/kg	ALS	RG_MI5_SE-1_2021-09-16_1045
E	MI5	659530	5496485	2021	1	2021-09-16	10:45	Selenium (Se)	0.83	mg/kg	ALS	RG MI5 SE-1 2021-09-16 1045
E	MI5	659530	5496485	2021	1	2021-09-16	10:45	Silver (Ag)	0.14	mg/kg	ALS	RG MI5 SE-1 2021-09-16 1045
E	MI5	659530	5496485	2021	1	2021-09-16	10:45	Sodium (Na)	62	mg/kg	ALS	RG MI5 SE-1 2021-09-16 1045
E E	MI5	659530	5496485	2021	1	2021-09-16	10:45	Strontium (Sr)	58	mg/kg	ALS	RG MI5 SE-1 2021-09-16 1045
E	MI5	659530	5496485	2021	1	2021-09-16	10:45	Sulfur (S)	<1000	mg/kg	ALS	RG MI5 SE-1 2021-09-16 1045
E	MI5	659530	5496485	2021	1	2021-09-16	10:45	Thallium (TI)	0.24	mg/kg	ALS	RG MI5 SE-1 2021-09-16 1045
E	MI5	659530	5496485	2021	1	2021-09-16	10:45	Tin (Sn)	<2.0	mg/kg	ALS	RG MI5 SE-1 2021-09-16 1045
E E	MI5	659530	5496485	2021	1	2021-09-16	10:45	Titanium (Ti)	20			RG MI5 SE-1 2021-09-16 1045
/ 二	RIIO	009000	5490405	2U2 I	l	2021-08-10	10.43	[ritariiuiii (ri)	20	mg/kg	ALO	NG_WID_SE-1_ZUZ 1-09-10_1045

WSP Canada Inc. Page 217 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	1: Sediment Chem		(UTMs) ^(a)									Laboratory Information
Type	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MI5	659530	5496485	2021	1	2021-09-16	10:45	Tungsten (W)	<0.50	mg/kg	ALS	RG MI5 SE-1 2021-09-16 1045
SE	MI5	659530	5496485	2021	1	2021-09-16	10:45	Uranium (U)	0.93	mg/kg	ALS	RG MI5 SE-1 2021-09-16 1045
SE	MI5	659530	5496485	2021	1	2021-09-16	10:45	Vanadium (V)	36	mg/kg	ALS	RG MI5 SE-1 2021-09-16 1045
SE	MI5	659530	5496485	2021	1	2021-09-16	10:45	Zinc (Zn)	98	mg/kg	ALS	RG MI5 SE-1 2021-09-16 1045
SE	MI5	659530	5496485	2021	1	2021-09-16	10:45	Zirconium (Zr)	<1.0	mg/kg	ALS	RG MI5 SE-1 2021-09-16 1045
SE	MI5	659530	5496485	2021	1	2021-09-16	10:45	Acenaphthene	<0.0050	mg/kg	ALS	RG MI5 SE-1 2021-09-16 1045
SE	MI5	659530	5496485	2021	1	2021-09-16	10:45	Acenaphthylene	<0.0050	mg/kg	ALS	RG MI5 SE-1 2021-09-16 1045
SE	MI5	659530	5496485	2021	1	2021-09-16	10:45	Acridine	<0.010	mg/kg	ALS	RG MI5 SE-1 2021-09-16 1045
SE	MI5	659530	5496485	2021	1	2021-09-16	10:45	Anthracene	<0.0040	mg/kg	ALS	RG MI5 SE-1 2021-09-16 1045
SE	MI5	659530	5496485	2021	1	2021-09-16	10:45	Benz(a)anthracene	<0.010	mg/kg	ALS	RG_MI5_SE-1_2021-09-16_1045
SE	MI5	659530	5496485	2021	1	2021-09-16	10:45	Benzo(a)pyrene	<0.010	mg/kg	ALS	RG MI5 SE-1 2021-09-16 1045
SE	MI5	659530	5496485	2021	1	2021-09-16	10:45	Benzo(b&j)fluoranthene	0.013	mg/kg	ALS	RG MI5 SE-1 2021-09-16 1045
SE	MI5	659530	5496485	2021	1	2021-09-16	10:45	Benzo(b+j+k)fluoranthene	<0.015	mg/kg	ALS	RG MI5 SE-1 2021-09-16 1045
SE	MI5	659530	5496485	2021	_	2021-09-16	10:45	Benzo(e)pyrene	0.018	mg/kg	ALS	RG MI5 SE-1 2021-09-16 1045
SE	MI5	659530	5496485	2021		2021-09-16	10:45	Benzo(g h i)perylene	<0.010	mg/kg	ALS	RG MI5 SE-1 2021-09-16 1045
SE	MI5	659530	5496485	2021	1	2021-09-16	10:45	Benzo(k)fluoranthene	<0.010	mg/kg	ALS	RG MI5 SE-1 2021-09-16 1045
SE	MI5	659530	5496485	2021	1	2021-09-16	10:45	Chrysene	0.036	mg/kg	ALS	RG MI5 SE-1 2021-09-16 1045
SE	MI5	659530	5496485	2021	1	2021-09-16	10:45	Dibenz(a h)anthracene	<0.0050	mg/kg	ALS	RG MI5 SE-1 2021-09-16 1045
SE	MI5	659530	5496485	2021	1	2021-09-16	10:45	Fluoranthene	<0.020	mg/kg	ALS	RG MI5 SE-1 2021-09-16 1045
SE	MI5	659530	5496485	2021	1	2021-09-16	10:45	Fluorene	<0.010	mg/kg	ALS	RG MI5 SE-1 2021-09-16 1045
SE	MI5	659530	5496485	2021	1	2021-09-16	10:45	Indeno(1,2,3-c,d)pyrene	<0.010	mg/kg	ALS	RG_MI5_SE-1_2021-09-16_1045
SE	MI5	659530	5496485	2021	1	2021-09-16	10:45	1-Methylnaphthalene	0.07	mg/kg	ALS	RG MI5 SE-1 2021-09-16 1045
SE	MI5	659530	5496485	2021	1	2021-09-16	10:45	2-Methylnaphthalene	0.086	mg/kg	ALS	RG MI5 SE-1 2021-09-16 1045
SE	MI5	659530	5496485	2021	1	2021-09-16	10:45	Naphthalene	0.039	mg/kg	ALS	RG MI5 SE-1 2021-09-16 1045
SE	MI5	659530	5496485	2021	1	2021-09-16	10:45	Perylene	<0.010	mg/kg	ALS	RG MI5 SE-1 2021-09-16 1045
SE	MI5	659530	5496485	2021	1	2021-09-16	10:45	Phenanthrene	0.11	mg/kg	ALS	RG MI5 SE-1 2021-09-16 1045
SE	MI5	659530	5496485	2021	1	2021-09-16	10:45	Pyrene	<0.020	mg/kg	ALS	RG MI5 SE-1 2021-09-16 1045
SE	MI5	659530	5496485	2021	1	2021-09-16	10:45	Quinoline	<0.050	mg/kg	ALS	RG_MI5_SE-1_2021-09-16_1045
SE	MI5	659530	5496485	2021	1	2021-09-16	10:45	d10-Acenaphthene	83	%	ALS	RG_MI5_SE-1_2021-09-16_1045
SE	MI5	659530	5496485	2021	1	2021-09-16	10:45	d12-Chrysene	96	%	ALS	RG_MI5_SE-1_2021-09-16_1045
SE	MI5	659530	5496485	2021	1	2021-09-16	10:45	d8-Naphthalene	83	%	ALS	RG_MI5_SE-1_2021-09-16_1045
SE	MI5	659530	5496485	2021	1	2021-09-16	10:45	d10-Phenanthrene	91	%	ALS	RG_MI5_SE-1_2021-09-16_1045
SE	MI5	659530	5496485	2021	1	2021-09-16	10:45	IACR:Coarse	<0.050	-	ALS	RG_MI5_SE-1_2021-09-16_1045
SE	MI5	659530	5496485	2021	1	2021-09-16	10:45	IACR:Fine	<0.050	-	ALS	RG_MI5_SE-1_2021-09-16_1045
SE	MI5	659530	5496485	2021	1	2021-09-16	10:45	B(a)P Total Potency Equivalent	<0.020	mg/kg	ALS	RG_MI5_SE-1_2021-09-16_1045
SE	MI5	659530	5496485	2021	1	2021-09-16	10:45	IACR (CCME)	0.17	-	ALS	RG_MI5_SE-1_2021-09-16_1045
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	Moisture	45	%	ALS	RG_MI5_SE-2_2021-09-16_0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	pH (1:2 soil:water)	8.4	рН	ALS	RG_MI5_SE-2_2021-09-16_0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	% Gravel (>2 mm)	2.4	%	ALS	RG_MI5_SE-2_2021-09-16_0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	% Sand (2.00 mm - 1.00 mm)	<1.0	%	ALS	RG_MI5_SE-2_2021-09-16_0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	% Sand (1.00 mm - 0.50 mm)	2.1	%	ALS	RG_MI5_SE-2_2021-09-16_0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	% Sand (0.50 mm - 0.25 mm)	20	%	ALS	RG_MI5_SE-2_2021-09-16_0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	% Sand (0.25 mm - 0.125 mm)	37	%	ALS	RG_MI5_SE-2_2021-09-16_0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	% Sand (0.125 mm - 0.063 mm)	19	%	ALS	RG_MI5_SE-2_2021-09-16_0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	% Silt (0.063 mm - 0.0312 mm)	9.3	%	ALS	RG_MI5_SE-2_2021-09-16_0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	% Silt (0.031 mm - 0.004 mm)	6.9	%	ALS	RG_MI5_SE-2_2021-09-16_0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	% Clay (<4 μm)	1.9	%	ALS	RG_MI5_SE-2_2021-09-16_0920

WSP Canada Inc. Page 218 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

יו שוטוג	1: Sediment Chem			SWIIII LALIVII		1						l ab anatam dufamos t'an
Гуре	Station		(UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
		Easting	Northing					· ·			Lab	Sample ID
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	Texture	Loamy sand	-	ALS	RG_MI5_SE-2_2021-09-16_0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	Total Organic Carbon	1.4	%	ALS	RG_MI5_SE-2_2021-09-16_0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	Aluminum (Al)	6,670	mg/kg	ALS	RG_MI5_SE-2_2021-09-16_0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	Antimony (Sb)	1.1	mg/kg	ALS	RG_MI5_SE-2_2021-09-16_0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	Arsenic (As)	6.8	mg/kg	ALS	RG_MI5_SE-2_2021-09-16_0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	Barium (Ba)	208	mg/kg	ALS	RG_MI5_SE-2_2021-09-16_0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	Beryllium (Be)	0.59	mg/kg	ALS	RG_MI5_SE-2_2021-09-16_0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	Bismuth (Bi)	<0.20	mg/kg	ALS	RG_MI5_SE-2_2021-09-16_0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	Boron (B)	<5.0	mg/kg	ALS	RG_MI5_SE-2_2021-09-16_0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	Cadmium (Cd)	1.1	mg/kg	ALS	RG_MI5_SE-2_2021-09-16_0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	Calcium (Ca)	21,800	mg/kg	ALS	RG_MI5_SE-2_2021-09-16_0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	Chromium (Cr)	12	mg/kg	ALS	RG_MI5_SE-2_2021-09-16_0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	Cobalt (Co)	6.6	mg/kg	ALS	RG_MI5_SE-2_2021-09-16_0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	Copper (Cu)	12	mg/kg	ALS	RG_MI5_SE-2_2021-09-16_0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	Iron (Fe)	15,400	mg/kg	ALS	RG_MI5_SE-2_2021-09-16_0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	Lead (Pb)	8.2	mg/kg	ALS	RG_MI5_SE-2_2021-09-16_0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	Lithium (Li)	8.3	mg/kg	ALS	RG_MI5_SE-2_2021-09-16_0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	Magnesium (Mg)	4,440	mg/kg	ALS	RG_MI5_SE-2_2021-09-16_0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	Manganese (Mn)	236	mg/kg	ALS	RG_MI5_SE-2_2021-09-16_0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	Mercury (Hg)	0.042	mg/kg	ALS	RG_MI5_SE-2_2021-09-16_0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	Molybdenum (Mo)	1.4	mg/kg	ALS	RG MI5 SE-2 2021-09-16 0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	Nickel (Ni)	27	mg/kg	ALS	RG MI5 SE-2 2021-09-16 0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	Phosphorus (P)	1,270	mg/kg	ALS	RG MI5 SE-2 2021-09-16 0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	Potassium (K)	1,220	mg/kg	ALS	RG MI5 SE-2 2021-09-16 0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	Selenium (Se)	0.73	mg/kg	ALS	RG MI5 SE-2 2021-09-16 0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	Silver (Ag)	0.15	mg/kg	ALS	RG MI5 SE-2 2021-09-16 0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	Sodium (Na)	68	mg/kg	ALS	RG MI5 SE-2 2021-09-16 0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	Strontium (Sr)	53	mg/kg	ALS	RG MI5 SE-2 2021-09-16 0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	Sulfur (S)	<1000	mg/kg	ALS	RG MI5 SE-2 2021-09-16 0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	Thallium (TI)	0.22	mg/kg	ALS	RG MI5 SE-2 2021-09-16 0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	Tin (Sn)	<2.0	mg/kg	ALS	RG MI5 SE-2 2021-09-16 0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	Titanium (Ti)	26	mg/kg	ALS	RG MI5 SE-2 2021-09-16 0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	Tungsten (W)	<0.50	mg/kg	ALS	RG MI5 SE-2 2021-09-16 0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	Uranium (U)	0.92	mg/kg	ALS	RG MI5 SE-2 2021-09-16 0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	Vanadium (V)	38	mg/kg	ALS	RG MI5 SE-2 2021-09-16 0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	Zinc (Zn)	90	mg/kg	ALS	RG MI5 SE-2 2021-09-16 0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	Zirconium (Zr)	<1.0	mg/kg	ALS	RG MI5 SE-2 2021-09-16 0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	Acenaphthene	<0.0050	mg/kg	ALS	RG MI5 SE-2 2021-09-16 0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	Acenaphthylene	<0.0050	mg/kg	ALS	RG MI5 SE-2 2021-09-16 0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	Acridine	<0.010	mg/kg	ALS	RG MI5 SE-2 2021-09-16 0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	Anthracene	<0.0040	mg/kg	ALS	RG MI5 SE-2 2021-09-16 0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	Benz(a)anthracene	<0.010	mg/kg	ALS	RG MI5 SE-2 2021-09-16 0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	Benzo(a)pyrene	<0.010	mg/kg	ALS	RG MI5 SE-2 2021-09-16 0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09.20	Benzo(b&j)fluoranthene	0.018	mg/kg	ALS	RG MI5 SE-2 2021-09-16 0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09.20	Benzo(b+j+k)fluoranthene	0.018		ALS	RG MI5 SE-2 2021-09-16 0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.018	mg/kg	ALS	RG MI5 SE-2 2021-09-16 0920
OE .	CIIVI	009490	5490505	202 I	1 4	12021-09-10	U9.20	Benzo(e)pyrene	0.023	mg/kg	ALO	NG_WID_GE-Z_ZUZ 1-U9-10_U9ZU

WSP Canada Inc. Page 219 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Type -	Station	Location	(UTMs) ^(a)	Year	Poplicate	Data	Time	Analyta	Popult	Unit		Laboratory Information
ype	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	Benzo(k)fluoranthene	<0.010	mg/kg	ALS	RG MI5 SE-2 2021-09-16 0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	Chrysene	0.043	mg/kg	ALS	RG MI5 SE-2 2021-09-16 0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	Dibenz(a h)anthracene	<0.0050	mg/kg	ALS	RG_MI5_SE-2_2021-09-16_0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	Fluoranthene	<0.020	mg/kg	ALS	RG MI5 SE-2 2021-09-16 0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	Fluorene	<0.010	mg/kg	ALS	RG_MI5_SE-2_2021-09-16_0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	Indeno(1,2,3-c,d)pyrene	<0.010	mg/kg	ALS	RG MI5 SE-2 2021-09-16 0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	1-Methylnaphthalene	0.058	mg/kg	ALS	RG MI5 SE-2 2021-09-16 0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	2-Methylnaphthalene	0.07	mg/kg	ALS	RG MI5 SE-2 2021-09-16 0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	Naphthalene	0.03	mg/kg	ALS	RG MI5 SE-2 2021-09-16 0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	Perylene	<0.010	mg/kg	ALS	RG MI5 SE-2 2021-09-16 0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	Phenanthrene	0.1	mg/kg	ALS	RG_MI5_SE-2_2021-09-16_0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	Pyrene	<0.020	mg/kg	ALS	RG MI5 SE-2 2021-09-16 0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	Quinoline	<0.050	mg/kg	ALS	RG MI5 SE-2 2021-09-16 0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	d10-Acenaphthene	82	%	ALS	RG MI5 SE-2 2021-09-16 0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	d12-Chrysene	98	%	ALS	RG MI5 SE-2 2021-09-16 0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	d8-Naphthalene	83	%	ALS	RG_MI5_SE-2_2021-09-16_0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	d10-Phenanthrene	94	%	ALS	RG_MI5_SE-2_2021-09-16_0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	IACR:Coarse	< 0.050	_	ALS	RG MI5 SE-2 2021-09-16 0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	IACR:Fine	<0.050	_	ALS	RG_MI5_SE-2_2021-09-16_0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	B(a)P Total Potency Equivalent	<0.020	mg/kg	ALS	RG MI5 SE-2 2021-09-16 0920
SE	MI5	659493	5496565	2021	2	2021-09-16	09:20	IACR (CCME)	0.2	-	ALS	RG MI5 SE-2 2021-09-16 0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	Moisture	53	%	ALS	RG MI5 SE-3 2021-09-16 0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	pH (1:2 soil:water)	8.0	рН	ALS	RG MI5 SE-3 2021-09-16 0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	% Gravel (>2 mm)	5.8	%	ALS	RG MI5 SE-3 2021-09-16 0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	% Sand (2.00 mm - 1.00 mm)	1.6	%	ALS	RG MI5 SE-3 2021-09-16 0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	% Sand (1.00 mm - 0.50 mm)	3.7	%	ALS	RG MI5 SE-3 2021-09-16 0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	% Sand (0.50 mm - 0.25 mm)	17	%	ALS	RG MI5 SE-3 2021-09-16 0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	% Sand (0.25 mm - 0.125 mm)	30	%	ALS	RG MI5 SE-3 2021-09-16 0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	% Sand (0.125 mm - 0.063 mm)	20	%	ALS	RG MI5 SE-3 2021-09-16 0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	% Silt (0.063 mm - 0.0312 mm)	10	%	ALS	RG MI5 SE-3 2021-09-16 0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	% Silt (0.031 mm - 0.004 mm)	9.1	%	ALS	RG_MI5_SE-3_2021-09-16_0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	% Clay (<4 μm)	2.9	%	ALS	RG MI5 SE-3 2021-09-16 0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	Texture	Loamy sand	_	ALS	RG MI5 SE-3 2021-09-16 0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	Total Organic Carbon	1.7	%	ALS	RG MI5 SE-3 2021-09-16 0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	Aluminum (AI)	7,690	mg/kg	ALS	RG MI5 SE-3 2021-09-16 0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	Antimony (Sb)	0.99	mg/kg	ALS	RG MI5 SE-3 2021-09-16 0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	Arsenic (As)	6.3	mg/kg	ALS	RG MI5 SE-3 2021-09-16 0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	Barium (Ba)	204	mg/kg	ALS	RG MI5 SE-3 2021-09-16 0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	Beryllium (Be)	0.62	mg/kg	ALS	RG MI5 SE-3 2021-09-16 0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	Bismuth (Bi)	<0.20	mg/kg	ALS	RG MI5 SE-3 2021-09-16 0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	Boron (B)	<5.0	mg/kg	ALS	RG MI5 SE-3 2021-09-16 0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	Cadmium (Cd)	1.2	mg/kg	ALS	RG MI5 SE-3 2021-09-16 0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	Calcium (Ca)	25,900	mg/kg	ALS	RG MI5 SE-3 2021-09-16 0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	Chromium (Cr)	14	mg/kg	ALS	RG MI5 SE-3 2021-09-16 0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	Cobalt (Co)	7.2	mg/kg	ALS	RG MI5 SE-3 2021-09-16 0920
	MI5	659493	5496565	2021	3	2021-09-16	09:20	Copper (Cu)	13	mg/kg	ALS	RG MI5 SE-3 2021-09-16 0920
SE	IVIIO	000-00										

WSP Canada Inc. Page 220 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Type -	Station	Location	ı (UTMs) ^(a)	Year	Poplicate	Date	Time	Analyto	Popult	Unit		Laboratory Information
уре	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	Lead (Pb)	8.2	mg/kg	ALS	RG MI5 SE-3 2021-09-16 0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	Lithium (Li)	9.0	mg/kg	ALS	RG MI5 SE-3 2021-09-16 0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	Magnesium (Mg)	4,500	mg/kg	ALS	RG MI5 SE-3 2021-09-16 0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	Manganese (Mn)	202	mg/kg	ALS	RG MI5 SE-3 2021-09-16 0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	Mercury (Hg)	0.047	mg/kg	ALS	RG_MI5_SE-3_2021-09-16_0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	Molybdenum (Mo)	1.4	mg/kg	ALS	RG MI5 SE-3 2021-09-16 0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	Nickel (Ni)	27	mg/kg	ALS	RG MI5 SE-3 2021-09-16 0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	Phosphorus (P)	1,100	mg/kg	ALS	RG_MI5_SE-3_2021-09-16_0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	Potassium (K)	1,480	mg/kg	ALS	RG_MI5_SE-3_2021-09-16_0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	Selenium (Se)	0.89	mg/kg	ALS	RG MI5 SE-3 2021-09-16 0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	Silver (Ag)	0.16	mg/kg	ALS	RG_MI5_SE-3_2021-09-16_0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	Sodium (Na)	74	mg/kg	ALS	RG MI5 SE-3 2021-09-16 0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	Strontium (Sr)	68	mg/kg	ALS	RG MI5 SE-3 2021-09-16 0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	Sulfur (S)	<1000	mg/kg	ALS	RG MI5 SE-3 2021-09-16 0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	Thallium (TI)	0.24	mg/kg	ALS	RG MI5 SE-3 2021-09-16 0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	Tin (Sn)	<2.0	mg/kg	ALS	RG_MI5_SE-3_2021-09-16_0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	Titanium (Ti)	32	mg/kg	ALS	RG_MI5_SE-3_2021-09-16_0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	Tungsten (W)	<0.50	mg/kg	ALS	RG MI5 SE-3 2021-09-16 0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	Uranium (U)	0.95	mg/kg	ALS	RG_MI5_SE-3_2021-09-16_0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	Vanadium (V)	40	mg/kg	ALS	RG MI5 SE-3 2021-09-16 0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	Zinc (Zn)	96	mg/kg	ALS	RG MI5 SE-3 2021-09-16 0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_MI5_SE-3_2021-09-16_0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	Acenaphthene	0.0052	mg/kg	ALS	RG MI5 SE-3 2021-09-16 0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	Acenaphthylene	<0.0050	mg/kg	ALS	RG MI5 SE-3 2021-09-16 0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	Acridine	<0.010	mg/kg	ALS	RG MI5 SE-3 2021-09-16 0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	Anthracene	<0.0040	mg/kg	ALS	RG MI5 SE-3 2021-09-16 0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	Benz(a)anthracene	0.011	mg/kg	ALS	RG_MI5_SE-3_2021-09-16_0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	Benzo(a)pyrene	<0.010	mg/kg	ALS	RG MI5 SE-3 2021-09-16 0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	Benzo(b&j)fluoranthene	0.018	mg/kg	ALS	RG MI5 SE-3 2021-09-16 0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	Benzo(b+j+k)fluoranthene	0.018	mg/kg	ALS	RG MI5 SE-3 2021-09-16 0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	Benzo(e)pyrene	0.022	mg/kg	ALS	RG_MI5_SE-3_2021-09-16_0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	Benzo(g_h_i)perylene	<0.010	mg/kg	ALS	RG MI5 SE-3 2021-09-16 0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	Benzo(k)fluoranthene	<0.010	mg/kg	ALS	RG MI5 SE-3 2021-09-16 0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	Chrysene	0.041	mg/kg	ALS	RG MI5 SE-3 2021-09-16 0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	Dibenz(a_h)anthracene	<0.0050	mg/kg	ALS	RG MI5 SE-3 2021-09-16 0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	Fluoranthene	<0.020	mg/kg	ALS	RG_MI5_SE-3_2021-09-16_0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	Fluorene	<0.010	mg/kg	ALS	RG_MI5_SE-3_2021-09-16_0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	Indeno(1,2,3-c,d)pyrene	<0.010	mg/kg	ALS	RG_MI5_SE-3_2021-09-16_0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	1-Methylnaphthalene	0.08	mg/kg	ALS	RG_MI5_SE-3_2021-09-16_0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	2-Methylnaphthalene	0.09	mg/kg	ALS	RG_MI5_SE-3_2021-09-16_0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	Naphthalene	0.042	mg/kg	ALS	RG_MI5_SE-3_2021-09-16_0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	Perylene	<0.010	mg/kg	ALS	RG_MI5_SE-3_2021-09-16_0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	Phenanthrene	0.12	mg/kg	ALS	RG_MI5_SE-3_2021-09-16_0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	Pyrene	<0.030	mg/kg	ALS	RG_MI5_SE-3_2021-09-16_0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	Quinoline	<0.050	mg/kg	ALS	RG_MI5_SE-3_2021-09-16_0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	d10-Acenaphthene	78	%	ALS	RG_MI5_SE-3_2021-09-16_0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	d12-Chrysene	94	%	ALS	RG MI5 SE-3 2021-09-16 0920

WSP Canada Inc. Page 221 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Typo	Station	Location	ı (UTMs) ^(a)	Voar	Poplicate	Date	Time	Analyto	Pocult	Unit		Laboratory Information
Туре	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Onit	Lab	Sample ID
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	d8-Naphthalene	78	%	ALS	RG_MI5_SE-3_2021-09-16_0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	d10-Phenanthrene	92	%	ALS	RG_MI5_SE-3_2021-09-16_0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	IACR:Coarse	<0.050	-	ALS	RG_MI5_SE-3_2021-09-16_0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	IACR:Fine	<0.050	-	ALS	RG_MI5_SE-3_2021-09-16_0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	B(a)P Total Potency Equivalent	<0.020	mg/kg	ALS	RG_MI5_SE-3_2021-09-16_0920
SE	MI5	659493	5496565	2021	3	2021-09-16	09:20	IACR (CCME)	0.22	-	ALS	RG_MI5_SE-3_2021-09-16_0920
SE	LE1	659583	5494063	2021	1	2021-09-14	11:00	Moisture	45	%	ALS	RG_LE1_SE-1_2021-09-14_1100
SE	LE1	659583	5494063	2021	1	2021-09-14	11:00	pH (1:2 soil:water)	7.8	рН	ALS	RG_LE1_SE-1_2021-09-14_1100
SE	LE1	659583	5494063	2021	1	2021-09-14	11:00	% Gravel (>2 mm)	3.3	%	ALS	RG_LE1_SE-1_2021-09-14_1100
SE	LE1	659583	5494063	2021	1	2021-09-14	11:00	% Sand (2.00 mm - 1.00 mm)	1.6	%	ALS	RG_LE1_SE-1_2021-09-14_1100
SE	LE1	659583	5494063	2021	1	2021-09-14	11:00	% Sand (1.00 mm - 0.50 mm)	15	%	ALS	RG_LE1_SE-1_2021-09-14_1100
SE	LE1	659583	5494063	2021	1	2021-09-14	11:00	% Sand (0.50 mm - 0.25 mm)	27	%	ALS	RG LE1_SE-1_2021-09-14_1100
SE	LE1	659583	5494063	2021	1	2021-09-14	11:00	% Sand (0.25 mm - 0.125 mm)	16	%	ALS	RG LE1 SE-1 2021-09-14 1100
SE	LE1	659583	5494063	2021	1	2021-09-14	11:00	% Sand (0.125 mm - 0.063 mm)	10	%	ALS	RG_LE1_SE-1_2021-09-14_1100
SE	LE1	659583	5494063	2021	1	2021-09-14	11:00	% Silt (0.063 mm - 0.0312 mm)	10	%	ALS	RG LE1 SE-1 2021-09-14 1100
SE	LE1	659583	5494063	2021	1	2021-09-14	11:00	% Silt (0.031 mm - 0.004 mm)	13	%	ALS	RG LE1 SE-1 2021-09-14 1100
SE	LE1	659583	5494063	2021	1	2021-09-14	11:00	% Clay (<4 μm)	4.2	%	ALS	RG LE1 SE-1 2021-09-14 1100
SE	LE1	659583	5494063	2021	1	2021-09-14	11:00	Texture	Loamy sand	-	ALS	RG LE1 SE-1 2021-09-14 1100
SE	LE1	659583	5494063	2021	1	2021-09-14	11:00	Total Organic Carbon	2.7	%	ALS	RG LE1 SE-1 2021-09-14 1100
SE	LE1	659583	5494063	2021	1	2021-09-14	11:00	Aluminum (Al)	10,000	mg/kg	ALS	RG LE1 SE-1 2021-09-14 1100
SE	LE1	659583	5494063	2021	1	2021-09-14	11:00	Antimony (Sb)	1.3	mg/kg	ALS	RG_LE1_SE-1_2021-09-14_1100
SE	LE1	659583	5494063	2021	1	2021-09-14	11:00	Arsenic (As)	6.5	mg/kg	ALS	RG LE1 SE-1 2021-09-14 1100
SE	LE1	659583	5494063	2021	1	2021-09-14	11:00	Barium (Ba)	326	mg/kg	ALS	RG LE1 SE-1 2021-09-14 1100
SE	LE1	659583	5494063	2021	1	2021-09-14	11:00	Beryllium (Be)	0.75	mg/kg	ALS	RG LE1 SE-1 2021-09-14 1100
SE	LE1	659583	5494063	2021	1	2021-09-14	11:00	Bismuth (Bi)	<0.20	mg/kg	ALS	RG LE1 SE-1 2021-09-14 1100
SE	LE1	659583	5494063	2021	1	2021-09-14	11:00	Boron (B)	<5.0	mg/kg	ALS	RG LE1 SE-1 2021-09-14 1100
SE	LE1	659583	5494063	2021	1	2021-09-14	11:00	Cadmium (Cd)	2.1	mg/kg	ALS	RG LE1 SE-1 2021-09-14 1100
SE	LE1	659583	5494063	2021	1	2021-09-14	11:00	Calcium (Ca)	6,230	mg/kg	ALS	RG LE1 SE-1 2021-09-14 1100
SE	LE1	659583	5494063	2021	1	2021-09-14	11:00	Chromium (Cr)	18	mg/kg	ALS	RG LE1 SE-1 2021-09-14 1100
SE	LE1	659583	5494063	2021	1	2021-09-14	11:00	Cobalt (Co)	6.7	mg/kg	ALS	RG LE1 SE-1 2021-09-14 1100
SE	LE1	659583	5494063	2021	1	2021-09-14	11:00	Copper (Cu)	17	mg/kg		RG LE1 SE-1 2021-09-14 1100
SE	LE1	659583	5494063	2021	1	2021-09-14	11:00	Iron (Fe)	16,000	mg/kg	ALS	RG LE1 SE-1 2021-09-14 1100
SE	LE1	659583	5494063	2021	1	2021-09-14	11:00	Lead (Pb)	9.8	mg/kg	ALS	RG LE1 SE-1 2021-09-14 1100
SE	LE1	659583	5494063	2021	1	2021-09-14	11:00	Lithium (Li)	11	mg/kg	ALS	RG LE1 SE-1 2021-09-14 1100
SE	LE1	659583	5494063	2021	1	2021-09-14	11:00	Magnesium (Mg)	2,450	mg/kg	ALS	RG LE1 SE-1 2021-09-14 1100
SE	LE1	659583	5494063	2021	1	2021-09-14	11:00	Manganese (Mn)	322	mg/kg	ALS	RG LE1 SE-1 2021-09-14 1100
SE	LE1	659583	5494063	2021	1	2021-09-14	11:00	Mercury (Hg)	0.067	mg/kg	ALS	RG LE1 SE-1 2021-09-14 1100
SE	LE1	659583	5494063	2021	1	2021-09-14	11:00	Molybdenum (Mo)	1.8	mg/kg	ALS	RG LE1 SE-1 2021-09-14 1100
SE	LE1	659583	5494063	2021	1	2021-09-14	11:00	Nickel (Ni)	28	mg/kg	ALS	RG LE1 SE-1 2021-09-14 1100
SE	LE1	659583	5494063	2021	1	2021-09-14	11:00	Phosphorus (P)	1,450	mg/kg	ALS	RG LE1 SE-1 2021-09-14 1100
SE	LE1	659583	5494063	2021	1	2021-09-14	11:00	Potassium (K)	1,850	mg/kg	ALS	RG LE1 SE-1 2021-09-14 1100
SE	LE1	659583	5494063	2021	1	2021-09-14	11:00	Selenium (Se)	0.93	mg/kg	ALS	RG LE1 SE-1 2021-09-14 1100
SE	LE1	659583	5494063	2021	1	2021-09-14	11:00	Silver (Ag)	0.24	mg/kg	ALS	RG LE1 SE-1 2021-09-14 1100
	LE1	659583	5494063	2021	1	2021-09-14	11:00	Sodium (Na)	<50	mg/kg	ALS	RG LE1 SE-1 2021-09-14 1100
SE			5494063	2021	1	2021-09-14	11:00	Strontium (Sr)	44	mg/kg	ALS	RG LE1 SE-1 2021-09-14 1100
SE SF	 1	h huhx x				・ム・スム・コーン・ジェーラ		ISAN SHOULING I SAN I		11114/1514		
SE SE	LE1 LE1	659583 659583	5494063	2021	1	2021-09-14	11:00	Sulfur (S)	<1000	mg/kg	ALS	RG LE1 SE-1 2021-09-14 1100

WSP Canada Inc. Page 222 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Type	Station	Location	(UTMs) ^(a)	Voor	Poplicate	Date	Time	Analyte	Popult	Unit		Laboratory Information
Гуре	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	LE1	659583	5494063	2021	1	2021-09-14	11:00	Tin (Sn)	<2.0	mg/kg	ALS	RG LE1 SE-1 2021-09-14 1100
SE	LE1	659583	5494063	2021		2021-09-14	11:00	Titanium (Ti)	33	mg/kg	ALS	RG LE1 SE-1 2021-09-14 1100
SE	LE1	659583	5494063	2021	1	2021-09-14	11:00	Tungsten (W)	<0.50	mg/kg	ALS	RG LE1 SE-1 2021-09-14 1100
SE	LE1	659583	5494063	2021	1	2021-09-14	11:00	Uranium (U)	1.6	mg/kg	ALS	RG LE1 SE-1 2021-09-14 1100
SE	LE1	659583	5494063	2021	1	2021-09-14	11:00	Vanadium (V)	57	mg/kg	ALS	RG LE1 SE-1 2021-09-14 1100
SE	LE1	659583	5494063	2021	1	2021-09-14	11:00	Zinc (Zn)	114	mg/kg	ALS	RG LE1 SE-1 2021-09-14 1100
SE	LE1	659583	5494063	2021		2021-09-14	11:00	Zirconium (Zr)	<1.0	mg/kg	ALS	RG LE1 SE-1 2021-09-14 1100
SE	LE1	659583	5494063	2021		2021-09-14	11:00	Acenaphthene	0.005	mg/kg	ALS	RG LE1 SE-1 2021-09-14 1100
SE	LE1	659583	5494063	2021	-	2021-09-14	11:00	Acenaphthylene	<0.0050	mg/kg	ALS	RG LE1 SE-1 2021-09-14 1100
SE	LE1	659583	5494063	2021		2021-09-14	11:00	Acridine	<0.010	mg/kg	ALS	RG LE1 SE-1 2021-09-14 1100
SE	LE1	659583	5494063	2021		2021-09-14	11:00	Anthracene	<0.0040	mg/kg	ALS	RG_LE1_SE-1_2021-09-14_1100
SE	LE1	659583	5494063	2021		2021-09-14	11:00	Benz(a)anthracene	0.012	mg/kg	ALS	RG LE1 SE-1 2021-09-14 1100
SE	LE1	659583	5494063	2021		2021-09-14	11:00	Benzo(a)pyrene	<0.010	mg/kg	ALS	RG LE1 SE-1 2021-09-14 1100
SE	LE1	659583	5494063	2021	-	2021-09-14	11:00	Benzo(b&j)fluoranthene	0.015	mg/kg	ALS	RG LE1 SE-1 2021-09-14 1100
SE	LE1	659583	5494063	2021	-	2021-09-14	11:00	Benzo(b+j+k)fluoranthene	<0.015	mg/kg	ALS	RG LE1 SE-1 2021-09-14 1100
SE	LE1	659583	5494063	2021		2021-09-14	11:00	Benzo(e)pyrene	0.019	mg/kg	ALS	RG LE1 SE-1 2021-09-14 1100
SE	LE1	659583	5494063	2021		2021-09-14	11:00	Benzo(g_h_i)perylene	<0.010	mg/kg	ALS	RG_LE1_SE-1_2021-09-14_1100
SE	LE1	659583	5494063	2021	1	2021-09-14	11:00	Benzo(k)fluoranthene	<0.010	mg/kg	ALS	RG LE1 SE-1 2021-09-14 1100
SE	LE1	659583	5494063	2021	1	2021-09-14	11:00	Chrysene	0.025	mg/kg	ALS	RG_LE1_SE-1_2021-09-14_1100
SE	LE1	659583	5494063	2021	1	2021-09-14	11:00	Dibenz(a h)anthracene	<0.0050	mg/kg	ALS	RG LE1 SE-1 2021-09-14 1100
SE	LE1	659583	5494063	2021		2021-09-14	11:00	Fluoranthene	<0.010	mg/kg	ALS	RG LE1 SE-1 2021-09-14 1100
SE	LE1	659583	5494063	2021		2021-09-14	11:00	Fluorene	<0.010	mg/kg	ALS	RG LE1 SE-1 2021-09-14 1100
SE	LE1	659583	5494063	2021		2021-09-14	11:00	Indeno(1,2,3-c,d)pyrene	<0.010	mg/kg	ALS	RG LE1 SE-1 2021-09-14 1100
SE	LE1	659583	5494063	2021	1	2021-09-14	11:00	1-Methylnaphthalene	0.06	mg/kg	ALS	RG LE1 SE-1 2021-09-14 1100
SE	LE1	659583	5494063	2021	1	2021-09-14	11:00	2-Methylnaphthalene	0.052	mg/kg	ALS	RG LE1 SE-1 2021-09-14 1100
SE	LE1	659583	5494063	2021	1	2021-09-14	11:00	Naphthalene	0.023	mg/kg	ALS	RG LE1 SE-1 2021-09-14 1100
SE	LE1	659583	5494063	2021	1	2021-09-14	11:00	Perylene	<0.010	mg/kg	ALS	RG_LE1_SE-1_2021-09-14_1100
SE	LE1	659583	5494063	2021	1	2021-09-14	11:00	Phenanthrene	0.12	mg/kg	ALS	RG_LE1_SE-1_2021-09-14_1100
SE	LE1	659583	5494063	2021	1	2021-09-14	11:00	Pyrene	<0.020	mg/kg	ALS	RG LE1 SE-1 2021-09-14 1100
SE	LE1	659583	5494063	2021		2021-09-14	11:00	Quinoline	<0.050	mg/kg	ALS	RG LE1 SE-1 2021-09-14 1100
SE	LE1	659583	5494063	2021		2021-09-14	11:00	d10-Acenaphthene	81	%	ALS	RG_LE1_SE-1_2021-09-14_1100
SE	LE1	659583	5494063	2021	-	2021-09-14	11:00	d12-Chrysene	97	%	ALS	RG LE1 SE-1 2021-09-14 1100
SE	LE1	659583	5494063	2021	-	2021-09-14	11:00	d8-Naphthalene	82	%	ALS	RG LE1 SE-1 2021-09-14 1100
SE	LE1	659583	5494063	2021	-	2021-09-14	11:00	d10-Phenanthrene	94	%	ALS	RG LE1 SE-1 2021-09-14 1100
SE	LE1	659583	5494063	2021		2021-09-14	11:00	IACR:Coarse	< 0.050	-	ALS	RG LE1 SE-1 2021-09-14 1100
SE	LE1	659583	5494063	2021	1	2021-09-14	11:00	IACR:Fine	< 0.050	-	ALS	RG LE1 SE-1 2021-09-14 1100
SE	LE1	659583	5494063	2021	1	2021-09-14	11:00	B(a)P Total Potency Equivalent	<0.020	mg/kg	ALS	RG LE1 SE-1 2021-09-14 1100
SE	LE1	659583	5494063	2021		2021-09-14	11:00	IACR (CCME)	0.2	-	ALS	RG LE1 SE-1 2021-09-14 1100
SE	LE1	659602	5494117	2021	-	2021-09-14	10:00	Moisture	52	%	ALS	RG_LE1_SE-2_2021-09-14_1000
SE	LE1	659602	5494117	2021	-	2021-09-14	10:00	pH (1:2 soil:water)	7.7	рН	ALS	RG_LE1_SE-2_2021-09-14_1000
SE	LE1	659602	5494117	2021		2021-09-14	10:00	% Gravel (>2 mm)	5.2	%	ALS	RG_LE1_SE-2_2021-09-14_1000
SE	LE1	659602	5494117	2021		2021-09-14	10:00	% Sand (2.00 mm - 1.00 mm)	5.5	%	ALS	RG_LE1_SE-2_2021-09-14_1000
SE	LE1	659602	5494117	2021		2021-09-14	10:00	% Sand (1.00 mm - 0.50 mm)	19	%	ALS	RG LE1 SE-2 2021-09-14 1000
SE	LE1	659602	5494117	2021		2021-09-14	10:00	% Sand (0.50 mm - 0.25 mm)	32	%	ALS	RG LE1 SE-2 2021-09-14 1000
SE	LE1	659602	5494117	2021		2021-09-14	10:00	% Sand (0.25 mm - 0.125 mm)	14	%	ALS	RG_LE1_SE-2_2021-09-14_1000
SE	LE1	659602	5494117	2021	-	2021-09-14	10:00	% Sand (0.125 mm - 0.063 mm)	6.3	%	ALS	RG_LE1_SE-2_2021-09-14_1000
								, ,				

WSP Canada Inc. Page 223 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					Tunning or	ations, 2012 to						
Туре	Station		(UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
		Easting	Northing		rtophiouto						Lab	Sample ID
SE	LE1	659602	5494117	2021	2	2021-09-14	10:00	% Silt (0.031 mm - 0.004 mm)	7.7	%	ALS	RG_LE1_SE-2_2021-09-14_1000
SE	LE1	659602	5494117	2021	2	2021-09-14	10:00	% Clay (<4 μm)	4.2	%	ALS	RG_LE1_SE-2_2021-09-14_1000
SE	LE1	659602	5494117	2021	2	2021-09-14	10:00	Texture	Loamy sand	-	ALS	RG_LE1_SE-2_2021-09-14_1000
SE	LE1	659602	5494117	2021	2	2021-09-14	10:00	Total Organic Carbon	1.8	%	ALS	RG_LE1_SE-2_2021-09-14_1000
SE	LE1	659602	5494117	2021	2	2021-09-14	10:00	Aluminum (Al)	8,330	mg/kg	ALS	RG_LE1_SE-2_2021-09-14_1000
SE	LE1	659602	5494117	2021	2	2021-09-14	10:00	Antimony (Sb)	1.3	mg/kg	ALS	RG_LE1_SE-2_2021-09-14_1000
SE	LE1	659602	5494117	2021	2	2021-09-14	10:00	Arsenic (As)	6.6	mg/kg	ALS	RG_LE1_SE-2_2021-09-14_1000
SE	LE1	659602	5494117	2021	2	2021-09-14	10:00	Barium (Ba)	300	mg/kg	ALS	RG_LE1_SE-2_2021-09-14_1000
SE	LE1	659602	5494117	2021	2	2021-09-14	10:00	Beryllium (Be)	0.62	mg/kg	ALS	RG_LE1_SE-2_2021-09-14_1000
SE	LE1	659602	5494117	2021	2	2021-09-14	10:00	Bismuth (Bi)	<0.20	mg/kg	ALS	RG_LE1_SE-2_2021-09-14_1000
SE	LE1	659602	5494117	2021	2	2021-09-14	10:00	Boron (B)	<5.0	mg/kg	ALS	RG_LE1_SE-2_2021-09-14_1000
SE	LE1	659602	5494117	2021	2	2021-09-14	10:00	Cadmium (Cd)	2.0	mg/kg	ALS	RG_LE1_SE-2_2021-09-14_1000
SE	LE1	659602	5494117	2021	2	2021-09-14	10:00	Calcium (Ca)	5,690	mg/kg	ALS	RG_LE1_SE-2_2021-09-14_1000
SE	LE1	659602	5494117	2021	2	2021-09-14	10:00	Chromium (Cr)	16	mg/kg	ALS	RG_LE1_SE-2_2021-09-14_1000
SE	LE1	659602	5494117	2021	2	2021-09-14	10:00	Cobalt (Co)	6.4	mg/kg	ALS	RG_LE1_SE-2_2021-09-14_1000
SE	LE1	659602	5494117	2021	2	2021-09-14	10:00	Copper (Cu)	17	mg/kg	ALS	RG_LE1_SE-2_2021-09-14_1000
SE	LE1	659602	5494117	2021	2	2021-09-14	10:00	Iron (Fe)	16,000	mg/kg	ALS	RG_LE1_SE-2_2021-09-14_1000
SE	LE1	659602	5494117	2021	2	2021-09-14	10:00	Lead (Pb)	9.4	mg/kg	ALS	RG LE1 SE-2 2021-09-14 1000
SE	LE1	659602	5494117	2021	2	2021-09-14	10:00	Lithium (Li)	9.7	mg/kg	ALS	RG LE1 SE-2 2021-09-14 1000
SE	LE1	659602	5494117	2021	2	2021-09-14	10:00	Magnesium (Mg)	2,230	mg/kg	ALS	RG LE1_SE-2_2021-09-14_1000
SE	LE1	659602	5494117	2021	2	2021-09-14	10:00	Manganese (Mn)	296	mg/kg	ALS	RG LE1 SE-2 2021-09-14 1000
SE	LE1	659602	5494117	2021	2	2021-09-14	10:00	Mercury (Hg)	0.058	mg/kg	ALS	RG LE1 SE-2 2021-09-14 1000
SE	LE1	659602	5494117	2021	2	2021-09-14	10:00	Molybdenum (Mo)	1.6	mg/kg	ALS	RG_LE1_SE-2_2021-09-14_1000
SE	LE1	659602	5494117	2021	2	2021-09-14	10:00	Nickel (Ni)	26	mg/kg	ALS	RG LE1 SE-2 2021-09-14 1000
SE	LE1	659602	5494117	2021	2	2021-09-14	10:00	Phosphorus (P)	1,330	mg/kg	ALS	RG_LE1_SE-2_2021-09-14_1000
SE	LE1	659602	5494117	2021	2	2021-09-14	10:00	Potassium (K)	1,450	mg/kg	ALS	RG_LE1_SE-2_2021-09-14_1000
SE	LE1	659602	5494117	2021	2	2021-09-14	10:00	Selenium (Se)	1.0	mg/kg	ALS	RG_LE1_SE-2_2021-09-14_1000
SE	LE1	659602	5494117	2021	2	2021-09-14	10:00	Silver (Ag)	0.28	mg/kg	ALS	RG_LE1_SE-2_2021-09-14_1000
SE	LE1	659602	5494117	2021	2	2021-09-14	10:00	Sodium (Na)	<50	mg/kg	ALS	RG LE1 SE-2 2021-09-14 1000
SE	LE1	659602	5494117	2021	2	2021-09-14	10:00	Strontium (Sr)	41	mg/kg	ALS	RG LE1 SE-2 2021-09-14 1000
SE	LE1	659602	5494117	2021	2	2021-09-14	10:00	Sulfur (S)	<1000	mg/kg	-	RG LE1 SE-2 2021-09-14 1000
SE	LE1	659602	5494117	2021	2	2021-09-14	10:00	Thallium (TI)	0.22	mg/kg	ALS	RG LE1 SE-2 2021-09-14 1000
SE	LE1	659602	5494117	2021	2	2021-09-14	10:00	Tin (Sn)	<2.0	mg/kg	ALS	RG LE1 SE-2 2021-09-14 1000
SE	LE1	659602	5494117	2021	2	2021-09-14	10:00	Titanium (Ti)	28	mg/kg	ALS	RG LE1 SE-2 2021-09-14 1000
SE	LE1	659602	5494117	2021	2	2021-09-14	10:00	Tungsten (W)	<0.50	mg/kg	ALS	RG LE1 SE-2 2021-09-14 1000
SE	LE1	659602	5494117	2021	2	2021-09-14	10:00	Uranium (U)	1.3	mg/kg	ALS	RG LE1 SE-2 2021-09-14 1000
SE	LE1	659602	5494117	2021	2	2021-09-14	10:00	Vanadium (V)	49	mg/kg	ALS	RG LE1 SE-2 2021-09-14 1000
SE	LE1	659602	5494117	2021	2	2021-09-14	10:00	Zinc (Zn)	114	mg/kg	ALS	RG LE1 SE-2 2021-09-14 1000
SE	LE1	659602	5494117	2021	2	2021-09-14	10:00	Zirconium (Zr)	<1.0	mg/kg	ALS	RG LE1 SE-2 2021-09-14 1000
SE	LE1	659602	5494117	2021	2	2021-09-14	10:00	Acenaphthene	<0.0050	mg/kg	ALS	RG LE1 SE-2 2021-09-14 1000
SE	LE1	659602	5494117	2021	2	2021-09-14	10:00	Acenaphthylene	<0.0050	mg/kg	ALS	RG LE1 SE-2 2021-09-14 1000
SE	LE1	659602	5494117	2021	2	2021-09-14	10:00	Acridine	<0.010	mg/kg	ALS	RG_LE1_SE-2_2021-09-14_1000
SE	LE1	659602	5494117	2021	2	2021-09-14	10:00	Anthracene	<0.0040	mg/kg	ALS	RG LE1 SE-2 2021-09-14 1000
SE	LE1	659602	5494117	2021	2	2021-09-14	10:00	Benz(a)anthracene	0.02	mg/kg	ALS	RG_LE1_SE-2_2021-09-14_1000 RG_LE1_SE-2_2021-09-14_1000
	LE1	659602	5494117	2021	2	2021-09-14	10:00	Benzo(a)pyrene	<0.010		ALS	RG LE1 SE-2 2021-09-14 1000
SE	LEI	009002	5484117	ZUZ I			10.00	· · · · · · · · · · · · · · · · · · ·	\0.010	mg/kg	ALO	
SE SE	LE1	659602	5494117	2021	2	2021-09-14	10:00	Benzo(b&j)fluoranthene	0.02	mg/kg	ALS	RG LE1 SE-2 2021-09-14 1000

WSP Canada Inc. Page 224 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Type	Station	Location	າ (UTMs) ^(a)	Voor	Poplieste	Dote	Time	Analyta	Popult	Unit		Laboratory Information
ype	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	LE1	659602	5494117	2021	2	2021-09-14	10:00	Benzo(e)pyrene	0.024	mg/kg	ALS	RG LE1 SE-2 2021-09-14 1000
SE	LE1	659602	5494117	2021	2	2021-09-14	10:00	Benzo(g h i)perylene	<0.010	mg/kg	ALS	RG LE1 SE-2 2021-09-14 1000
SE	LE1	659602	5494117	2021	2	2021-09-14	10:00	Benzo(k)fluoranthene	<0.010	mg/kg	ALS	RG_LE1_SE-2_2021-09-14_1000
SE	LE1	659602	5494117	2021	2	2021-09-14	10:00	Chrysene	0.06	mg/kg	ALS	RG LE1 SE-2 2021-09-14 1000
SE	LE1	659602	5494117	2021	2	2021-09-14	10:00	Dibenz(a h)anthracene	<0.0050	mg/kg	ALS	RG LE1 SE-2 2021-09-14 1000
SE	LE1	659602	5494117	2021	2	2021-09-14	10:00	Fluoranthene	<0.030	mg/kg	ALS	RG LE1 SE-2 2021-09-14 1000
SE	LE1	659602	5494117	2021	2	2021-09-14	10:00	Fluorene	<0.010	mg/kg	ALS	RG LE1 SE-2 2021-09-14 1000
SE	LE1	659602	5494117	2021	2	2021-09-14	10:00	Indeno(1,2,3-c,d)pyrene	<0.010	mg/kg	ALS	RG LE1 SE-2 2021-09-14 1000
SE	LE1	659602	5494117	2021	2	2021-09-14	10:00	1-Methylnaphthalene	0.15	mg/kg	ALS	RG LE1 SE-2 2021-09-14 1000
SE	 LE1	659602	5494117	2021	2	2021-09-14	10:00	2-Methylnaphthalene	0.14	mg/kg	ALS	RG LE1 SE-2 2021-09-14 1000
SE	LE1	659602	5494117	2021	2	2021-09-14	10:00	Naphthalene	0.071	mg/kg	ALS	RG LE1 SE-2 2021-09-14 1000
SE	 LE1	659602	5494117	2021	2	2021-09-14	10:00	Perylene	<0.010	mg/kg	ALS	RG LE1 SE-2 2021-09-14 1000
SE	 LE1	659602	5494117	2021	2	2021-09-14	10:00	Phenanthrene	0.21	mg/kg	ALS	RG LE1 SE-2 2021-09-14 1000
SE	 LE1	659602	5494117	2021	2	2021-09-14	10:00	Pyrene	<0.030	mg/kg	ALS	RG LE1 SE-2 2021-09-14 1000
SE	LE1	659602	5494117	2021	2	2021-09-14	10:00	Quinoline	<0.050	mg/kg	ALS	RG LE1 SE-2 2021-09-14 1000
SE	LE1	659602	5494117	2021	2	2021-09-14	10:00	d10-Acenaphthene	76	%	ALS	RG LE1 SE-2 2021-09-14 1000
SE	LE1	659602	5494117	2021	2	2021-09-14	10:00	d12-Chrysene	92	%	ALS	RG LE1_SE-2_2021-09-14_1000
SE	LE1	659602	5494117	2021	2	2021-09-14	10:00	d8-Naphthalene	79	%	ALS	RG LE1 SE-2 2021-09-14 1000
SE	LE1	659602	5494117	2021	2	2021-09-14	10:00	d10-Phenanthrene	89	%	ALS	RG LE1_SE-2_2021-09-14_1000
SE	LE1	659602	5494117	2021	2	2021-09-14	10:00	IACR:Coarse	<0.050	-	ALS	RG LE1 SE-2 2021-09-14 1000
SE	LE1	659602	5494117	2021	2	2021-09-14	10:00	IACR:Fine	<0.050	_	ALS	RG LE1 SE-2 2021-09-14 1000
SE	LE1	659602	5494117	2021	2	2021-09-14	10:00	B(a)P Total Potency Equivalent	<0.020	mg/kg	ALS	RG_LE1_SE-2_2021-09-14_1000
SE	LE1	659602	5494117	2021	2	2021-09-14	10:00	IACR (CCME)	0.27	-	ALS	RG LE1 SE-2 2021-09-14 1000
SE	LE1	659633	5494111	2021	3	2021-09-14	09:20	Moisture	61	%	ALS	RG LE1 SE-3 2021-09-14 0920
SE	LE1	659633	5494111	2021	3	2021-09-14	09:20	pH (1:2 soil:water)	7.2	pH	ALS	RG LE1 SE-3 2021-09-14 0920
SE	LE1	659633	5494111	2021	3	2021-09-14	09:20	% Gravel (>2 mm)	28	%	ALS	RG LE1 SE-3 2021-09-14 0920
SE	LE1	659633	5494111	2021	3	2021-09-14	09:20	% Sand (2.00 mm - 1.00 mm)	12	%	ALS	RG LE1 SE-3 2021-09-14 0920
SE	LE1	659633	5494111	2021	3	2021-09-14	09:20	% Sand (2.00 mm - 1.00 mm)	8.4	%	ALS	RG LE1 SE-3 2021-09-14 0920
SE	LE1	659633	5494111	2021	3	2021-09-14	09:20	% Sand (1.00 mm - 0.35 mm)	7.4	%	ALS	RG LE1 SE-3 2021-09-14 0920
SE	LE1	659633	5494111	2021	3	2021-09-14	09:20	% Sand (0.35 mm - 0.125 mm)	10	%	ALS	RG LE1 SE-3 2021-09-14 0920
	LE1	659633	5494111	2021	3	2021-09-14	09:20	% Sand (0.25 mm - 0.125 mm)	9.7	%	ALS	RG LE1 SE-3 2021-09-14 0920
SE SE	LE1	659633	5494111	2021	3	2021-09-14	09.20	% Saild (0.123 min - 0.003 min) % Silt (0.063 mm - 0.0312 mm)	9.7	%	ALS	RG LE1 SE-3 2021-09-14 0920
SE	LE1	659633	5494111	2021	3	2021-09-14	09.20	% Silt (0.003 mm - 0.004 mm)	12	%	ALS	RG LE1 SE-3 2021-09-14 0920
SE	LE1	659633	5494111	2021	3	2021-09-14	09:20	% Glay (<4 μm)	3.6	%	ALS	RG LE1 SE-3 2021-09-14 0920
SE	LE1	659633	5494111	2021	3	2021-09-14	09:20	Texture	Sandy loam	-	ALS	RG LE1 SE-3 2021-09-14 0920
SE	LE1	659633	5494111	2021	3	2021-09-14	09:20	Total Organic Carbon	2.6	%	ALS	RG LE1 SE-3 2021-09-14 0920
SE	LE1	659633	5494111	2021	3	2021-09-14	09:20	Aluminum (Al)			ALS	RG LE1 SE-3 2021-09-14 0920
SE	LE1	659633	5494111		3		09.20		9,570	mg/kg		RG LE1 SE-3 2021-09-14 0920
SE				2021	_	2021-09-14		Antimony (Sb)	1.2	mg/kg	ALS	
SE	LE1 LE1	659633 659633	5494111 5494111	2021 2021	3	2021-09-14 2021-09-14	09:20 09:20	Arsenic (As) Barium (Ba)	6.2 348	mg/kg	ALS ALS	RG_LE1_SE-3_2021-09-14_0920 RG_LE1_SE-3_2021-09-14_0920
SE SE	LE1 LE1	659633	_		3			,		mg/kg		
	LE1 LE1	659633	5494111	2021 2021	3	2021-09-14	09:20	Beryllium (Be)	0.72	mg/kg	ALS	RG_LE1_SE-3_2021-09-14_0920
SE			5494111			2021-09-14	09:20	Bismuth (Bi)	<0.20	mg/kg	ALS	RG_LE1_SE-3_2021-09-14_0920
SE	LE1	659633	5494111	2021	3	2021-09-14	09:20	Boron (B)	<5.0	mg/kg	ALS	RG_LE1_SE-3_2021-09-14_0920
SE	LE1	659633	5494111	2021	3	2021-09-14	09:20	Cadmium (Cd)	2.0	mg/kg	ALS	RG_LE1_SE-3_2021-09-14_0920
SE	LE1	659633	5494111	2021	3	2021-09-14	09:20	Calcium (Ca)	6,090	mg/kg	ALS	RG_LE1_SE-3_2021-09-14_0920
SE	LE1	659633	5494111	2021	3	2021-09-14	09:20	Chromium (Cr)	18	mg/kg	ALS	RG_LE1_SE-3_2021-09-14_0920
SE	LE1	659633	5494111	2021	3	2021-09-14	09:20	Cobalt (Co)	6.1	mg/kg	ALS	RG_LE1_SE-3_2021-09-14_0920

WSP Canada Inc. Page 225 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	Station		ı (UTMs) ^(a)	Year	Replicate		Time	Analyte	Result	Unit		Laboratory Information
Type	Station	Easting	Northing	rear	Replicate	Date	Tille	Allalyte	Result	Ullit	Lab	Sample ID
SE	LE1	659633	5494111	2021	3	2021-09-14	09:20	Copper (Cu)	17	mg/kg	ALS	RG_LE1_SE-3_2021-09-14_0920
SE	LE1	659633	5494111	2021	3	2021-09-14	09:20	Iron (Fe)	14,800	mg/kg	ALS	RG_LE1_SE-3_2021-09-14_0920
SE	LE1	659633	5494111	2021	3	2021-09-14	09:20	Lead (Pb)	9.1	mg/kg	ALS	RG_LE1_SE-3_2021-09-14_0920
SE	LE1	659633	5494111	2021	3	2021-09-14	09:20	Lithium (Li)	11	mg/kg	ALS	RG_LE1_SE-3_2021-09-14_0920
SE	LE1	659633	5494111	2021	3	2021-09-14	09:20	Magnesium (Mg)	2,450	mg/kg	ALS	RG_LE1_SE-3_2021-09-14_0920
SE	LE1	659633	5494111	2021	3	2021-09-14	09:20	Manganese (Mn)	297	mg/kg	ALS	RG_LE1_SE-3_2021-09-14_0920
SE	LE1	659633	5494111	2021	3	2021-09-14	09:20	Mercury (Hg)	0.052	mg/kg	ALS	RG_LE1_SE-3_2021-09-14_0920
SE	LE1	659633	5494111	2021	3	2021-09-14	09:20	Molybdenum (Mo)	1.4	mg/kg	ALS	RG_LE1_SE-3_2021-09-14_0920
SE	LE1	659633	5494111	2021	3	2021-09-14	09:20	Nickel (Ni)	26	mg/kg	ALS	RG_LE1_SE-3_2021-09-14_0920
SE	LE1	659633	5494111	2021	3	2021-09-14	09:20	Phosphorus (P)	1,200	mg/kg	ALS	RG_LE1_SE-3_2021-09-14_0920
SE	LE1	659633	5494111	2021	3	2021-09-14	09:20	Potassium (K)	1,720	mg/kg	ALS	RG_LE1_SE-3_2021-09-14_0920
SE	LE1	659633	5494111	2021	3	2021-09-14	09:20	Selenium (Se)	1.1	mg/kg	ALS	RG_LE1_SE-3_2021-09-14_0920
SE	LE1	659633	5494111	2021	3	2021-09-14	09:20	Silver (Ag)	0.31	mg/kg	ALS	RG_LE1_SE-3_2021-09-14_0920
SE	LE1	659633	5494111	2021	3	2021-09-14	09:20	Sodium (Na)	51	mg/kg	ALS	RG_LE1_SE-3_2021-09-14_0920
SE	LE1	659633	5494111	2021	3	2021-09-14	09:20	Strontium (Sr)	42	mg/kg	ALS	RG_LE1_SE-3_2021-09-14_0920
SE	LE1	659633	5494111	2021	3	2021-09-14	09:20	Sulfur (S)	<1000	mg/kg	ALS	RG_LE1_SE-3_2021-09-14_0920
SE	LE1	659633	5494111	2021	3	2021-09-14	09:20	Thallium (TI)	0.23	mg/kg	ALS	RG_LE1_SE-3_2021-09-14_0920
SE	LE1	659633	5494111	2021	3	2021-09-14	09:20	Tin (Sn)	<2.0	mg/kg	ALS	RG_LE1_SE-3_2021-09-14_0920
SE	LE1	659633	5494111	2021	3	2021-09-14	09:20	Titanium (Ti)	37	mg/kg	ALS	RG_LE1_SE-3_2021-09-14_0920
SE	LE1	659633	5494111	2021	3	2021-09-14	09:20	Tungsten (W)	<0.50	mg/kg	ALS	RG_LE1_SE-3_2021-09-14_0920
SE	LE1	659633	5494111	2021	3	2021-09-14	09:20	Uranium (U)	1.3	mg/kg	ALS	RG_LE1_SE-3_2021-09-14_0920
SE	LE1	659633	5494111	2021	3	2021-09-14	09:20	Vanadium (V)	53	mg/kg	ALS	RG_LE1_SE-3_2021-09-14_0920
SE	LE1	659633	5494111	2021	3	2021-09-14	09:20	Zinc (Zn)	110	mg/kg	ALS	RG_LE1_SE-3_2021-09-14_0920
SE	LE1	659633	5494111	2021	3	2021-09-14	09:20	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_LE1_SE-3_2021-09-14_0920
SE	LE1	659633	5494111	2021	3	2021-09-14	09:20	Acenaphthene	< 0.0050	mg/kg	ALS	RG_LE1_SE-3_2021-09-14_0920
SE	LE1	659633	5494111	2021	3	2021-09-14	09:20	Acenaphthylene	< 0.0050	mg/kg	ALS	RG_LE1_SE-3_2021-09-14_0920
SE	LE1	659633	5494111	2021	3	2021-09-14	09:20	Acridine	<0.010	mg/kg	ALS	RG_LE1_SE-3_2021-09-14_0920
SE	LE1	659633	5494111	2021	3	2021-09-14	09:20	Anthracene	0.004	mg/kg	ALS	RG_LE1_SE-3_2021-09-14_0920
SE	LE1	659633	5494111	2021	3	2021-09-14	09:20	Benz(a)anthracene	0.016	mg/kg	ALS	RG_LE1_SE-3_2021-09-14_0920
SE	LE1	659633	5494111	2021	3	2021-09-14	09:20	Benzo(a)pyrene	<0.010	mg/kg	ALS	RG_LE1_SE-3_2021-09-14_0920
SE	LE1	659633	5494111	2021	3	2021-09-14	09:20	Benzo(b&j)fluoranthene	0.022	mg/kg	ALS	RG_LE1_SE-3_2021-09-14_0920
SE	LE1	659633	5494111	2021	3	2021-09-14	09:20	Benzo(b+j+k)fluoranthene	0.022	mg/kg	ALS	RG_LE1_SE-3_2021-09-14_0920
SE	LE1	659633	5494111	2021	3	2021-09-14	09:20	Benzo(e)pyrene	0.02	mg/kg	ALS	RG_LE1_SE-3_2021-09-14_0920
SE	LE1	659633	5494111	2021	3	2021-09-14	09:20	Benzo(g_h_i)perylene	<0.010	mg/kg	ALS	RG_LE1_SE-3_2021-09-14_0920
SE	LE1	659633	5494111	2021	3	2021-09-14	09:20	Benzo(k)fluoranthene	<0.010	mg/kg	ALS	RG_LE1_SE-3_2021-09-14_0920
SE	LE1	659633	5494111	2021	3	2021-09-14	09:20	Chrysene	0.029	mg/kg	ALS	RG_LE1_SE-3_2021-09-14_0920
SE	LE1	659633	5494111	2021	3	2021-09-14	09:20	Dibenz(a_h)anthracene	< 0.0050	mg/kg	ALS	RG_LE1_SE-3_2021-09-14_0920
SE	LE1	659633	5494111	2021	3	2021-09-14	09:20	Fluoranthene	0.014	mg/kg	ALS	RG_LE1_SE-3_2021-09-14_0920
SE	LE1	659633	5494111	2021	3	2021-09-14	09:20	Fluorene	<0.010	mg/kg	ALS	RG_LE1_SE-3_2021-09-14_0920
SE	LE1	659633	5494111	2021	3	2021-09-14	09:20	Indeno(1,2,3-c,d)pyrene	<0.010	mg/kg	ALS	RG_LE1_SE-3_2021-09-14_0920
SE	LE1	659633	5494111	2021	3	2021-09-14	09:20	1-Methylnaphthalene	0.078	mg/kg	ALS	RG_LE1_SE-3_2021-09-14_0920
SE	LE1	659633	5494111	2021	3	2021-09-14	09:20	2-Methylnaphthalene	0.083	mg/kg	ALS	RG_LE1_SE-3_2021-09-14_0920
SE	LE1	659633	5494111	2021	3	2021-09-14	09:20	Naphthalene	0.04	mg/kg	ALS	RG_LE1_SE-3_2021-09-14_0920
SE	LE1	659633	5494111	2021	3	2021-09-14	09:20	Perylene	<0.010	mg/kg	ALS	RG_LE1_SE-3_2021-09-14_0920
SE	LE1	659633	5494111	2021	3	2021-09-14	09:20	Phenanthrene	0.15	mg/kg	ALS	RG_LE1_SE-3_2021-09-14_0920
SE	LE1	659633	5494111	2021	3	2021-09-14	09:20	Pyrene	<0.030	mg/kg	ALS	RG_LE1_SE-3_2021-09-14_0920
SE	LE1	659633	5494111	2021	3	2021-09-14	09:20	Quinoline	< 0.050	mg/kg	ALS	RG LE1 SE-3 2021-09-14 0920

WSP Canada Inc. Page 226 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	Ctation	Location	ı (UTMs) ^(a)	Vaan	Danlingto	Dete	Time	A so a bata	Dooul4	Heit		Laboratory Information
ype	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
Е	LE1	659633	5494111	2021	3	2021-09-14	09:20	d10-Acenaphthene	75	%	ALS	RG LE1 SE-3 2021-09-14 0920
E	LE1	659633	5494111	2021	3	2021-09-14	09:20	d12-Chrysene	92	%	ALS	RG LE1 SE-3 2021-09-14 0920
E	LE1	659633	5494111	2021	3	2021-09-14	09:20	d8-Naphthalene	78	%	ALS	RG LE1 SE-3 2021-09-14 0920
E	LE1	659633	5494111	2021	3	2021-09-14	09:20	d10-Phenanthrene	88	%	ALS	RG LE1 SE-3 2021-09-14 0920
E	LE1	659633	5494111	2021	3	2021-09-14	09:20	IACR:Coarse	<0.050	-	ALS	RG LE1_SE-3_2021-09-14_0920
E	LE1	659633	5494111	2021	3	2021-09-14	09:20	IACR:Fine	<0.050	_	ALS	RG LE1 SE-3 2021-09-14 0920
E	LE1	659633	5494111	2021	3	2021-09-14	09:20	B(a)P Total Potency Equivalent	<0.020	mg/kg	ALS	RG LE1 SE-3 2021-09-14 0920
E I	LE1	659633	5494111	2021	3	2021-09-14	09:20	IACR (CCME)	0.26	-	ALS	RG LE1 SE-3 2021-09-14 0920
E	MIULE	660541	5493015	2021	1	2021-09-14	14:30	Moisture	33	%	ALS	RG MIULE SE-1 2021-09-14 1430
E	MIULE	660541	5493015	2021	1	2021-09-14	14:30	pH (1:2 soil:water)	8.2	pΗ	ALS	RG MIULE SE-1 2021-09-14 1430
E	MIULE	660541	5493015	2021	1	2021-09-14	14:30	% Gravel (>2 mm)	10	%	ALS	RG MIULE SE-1 2021-09-14 1430
E	MIULE	660541	5493015	2021	1	2021-09-14	14:30	% Sand (2.00 mm - 1.00 mm)	8.8	// 0	ALS	RG MIULE SE-1 2021-09-14 1430
E	MIULE	660541	5493015	2021	1	2021-09-14	14:30	% Sand (2.00 mm - 1.00 mm)	19	//	ALS	RG MIULE SE-1 2021-09-14 1430
E	MIULE	660541	5493015	2021	1	2021-09-14	14:30	% Sand (1.00 mm - 0.30 mm)	20	//	ALS	RG_MIULE_SE-1_2021-09-14_1430
E	MIULE	660541	5493015	2021	1	2021-09-14	14:30	% Sand (0.25 mm - 0.125 mm)	17	//	ALS	RG MIULE SE-1 2021-09-14 1430
E	MIULE	660541	5493015	2021	1	2021-09-14	14:30	% Sand (0.25 mm - 0.063 mm)	7.7	//	ALS	RG MIULE SE-1 2021-09-14 1430
 E	MIULE	660541	5493015	2021	1	2021-09-14	14:30	% Silt (0.063 mm - 0.0312 mm)	6.6	%	ALS	RG MIULE SE-1 2021-09-14 1430
E	MIULE	660541	5493015	2021	1	2021-09-14	14:30	% Silt (0.003 mm - 0.004 mm)	8.0	%	ALS	RG MIULE SE-1 2021-09-14 1430
=	MIULE	660541	5493015	2021	1	2021-09-14	14:30	% Siit (0.031 Hilli - 0.004 Hilli) % Clay (<4 μm)	3.0	//	ALS	RG MIULE SE-1 2021-09-14 1430
	MIULE	660541	5493015	2021	1	2021-09-14	14:30	Texture	Loamy sand	/0	ALS	RG MIULE SE-1 2021-09-14 1430
:	MIULE	660541	5493015	2021	1	2021-09-14	14:30	Total Organic Carbon	2.7	%	ALS	RG MIULE SE-1 2021-09-14 1430
:	MIULE	660541	5493015	2021	1	2021-09-14	14:30	Aluminum (Al)	9,090		ALS	RG MIULE SE-1 2021-09-14 1430
= =	MIULE	660541	5493015	2021	1	2021-09-14	14:30	` /	0.8	mg/kg	ALS	RG MIULE SE-1 2021-09-14 1430
	MIULE	660541	5493015	2021	1	2021-09-14	14:30	Antimony (Sb)	9.2	mg/kg	ALS	
					1			Arsenic (As)		mg/kg		RG_MIULE_SE-1_2021-09-14_1430
= =	MIULE	660541	5493015 5493015	2021	1	2021-09-14	14:30	Barium (Ba)	143	mg/kg	ALS	RG_MIULE_SE-1_2021-09-14_1430
_	MIULE	660541		2021	1	2021-09-14	14:30	Beryllium (Be)	0.82	mg/kg	ALS	RG_MIULE_SE-1_2021-09-14_1430
E	MIULE	660541	5493015	2021	1	2021-09-14	14:30	Bismuth (Bi)	<0.20	mg/kg	ALS	RG_MIULE_SE-1_2021-09-14_1430
E E	MIULE	660541	5493015	2021	1	2021-09-14	14:30	Boron (B)	8.9 1.1	mg/kg	ALS	RG_MIULE_SE-1_2021-09-14_1430
E	MIULE	660541	5493015	2021	1	2021-09-14	14:30	Cadmium (Cd)		mg/kg	ALS	RG_MIULE_SE-1_2021-09-14_1430
_	MIULE	660541	5493015	2021	1	2021-09-14	14:30	Calcium (Ca)	37,200	mg/kg	ALS	RG_MIULE_SE-1_2021-09-14_1430
E	MIULE	660541	5493015	2021	1	2021-09-14	14:30	Chromium (Cr)	15	mg/kg	ALS	RG_MIULE_SE-1_2021-09-14_1430
E	MIULE	660541	5493015	2021	1	2021-09-14	14:30	Cobalt (Co)	10	mg/kg	ALS	RG_MIULE_SE-1_2021-09-14_1430
E	MIULE	660541	5493015	2021	1	2021-09-14	14:30	Copper (Cu)	15	mg/kg	ALS	RG_MIULE_SE-1_2021-09-14_1430
E	MIULE	660541	5493015	2021	1	2021-09-14	14:30	Iron (Fe)	19,700	mg/kg	ALS	RG_MIULE_SE-1_2021-09-14_1430
E	MIULE	660541	5493015	2021	1	2021-09-14	14:30	Lead (Pb)	9.8	mg/kg	ALS	RG_MIULE_SE-1_2021-09-14_1430
E	MIULE	660541	5493015	2021	1	2021-09-14	14:30	Lithium (Li)	12	mg/kg	ALS	RG_MIULE_SE-1_2021-09-14_1430
E	MIULE	660541	5493015	2021	1	2021-09-14	14:30	Magnesium (Mg)	5,930	mg/kg	ALS	RG_MIULE_SE-1_2021-09-14_1430
E	MIULE	660541	5493015	2021	1	2021-09-14	14:30	Manganese (Mn)	316	mg/kg	ALS	RG_MIULE_SE-1_2021-09-14_1430
E	MIULE	660541	5493015	2021	1	2021-09-14	14:30	Mercury (Hg)	0.024	mg/kg	ALS	RG_MIULE_SE-1_2021-09-14_1430
E	MIULE	660541	5493015	2021	1	2021-09-14	14:30	Molybdenum (Mo)	2.5	mg/kg	ALS	RG_MIULE_SE-1_2021-09-14_1430
E	MIULE	660541	5493015	2021	1	2021-09-14	14:30	Nickel (Ni)	32	mg/kg	ALS	RG_MIULE_SE-1_2021-09-14_1430
E	MIULE	660541	5493015	2021	1 1	2021-09-14	14:30	Phosphorus (P)	1,270	mg/kg	ALS	RG_MIULE_SE-1_2021-09-14_1430
E	MIULE	660541	5493015	2021	1	2021-09-14	14:30	Potassium (K)	2,200	mg/kg	ALS	RG_MIULE_SE-1_2021-09-14_1430
E	MIULE	660541	5493015	2021	1 1	2021-09-14	14:30	Selenium (Se)	1.3	mg/kg	ALS	RG_MIULE_SE-1_2021-09-14_1430
Ε	MIULE	660541	5493015	2021	1	2021-09-14	14:30	Silver (Ag)	0.15	mg/kg	ALS	RG_MIULE_SE-1_2021-09-14_1430
E	MIULE	660541	5493015	2021	1	2021-09-14	14:30	Sodium (Na)	84	mg/kg	ALS	RG_MIULE_SE-1_2021-09-14_1430
šΕ	MIULE	660541	5493015	2021	1	2021-09-14	14:30	Strontium (Sr)	76	mg/kg	ALS	RG_MIULE_SE-1_2021-09-14_1430

WSP Canada Inc. Page 227 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	1: Sediment Chem		(UTMs) ^(a)									Laboratory Information
Type	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MIULE	660541	5493015	2021	1	2021-09-14	14:30	Sulfur (S)	<1000	mg/kg	ALS	RG_MIULE_SE-1_2021-09-14_1430
SE	MIULE	660541	5493015	2021	1	2021-09-14	14:30	Thallium (TI)	0.35	mg/kg	ALS	RG MIULE SE-1 2021-09-14 1430
SE	MIULE	660541	5493015	2021	1	2021-09-14	14:30	Tin (Sn)	<2.0	mg/kg	ALS	RG MIULE SE-1 2021-09-14 1430
SE	MIULE	660541	5493015	2021	1	2021-09-14	14:30	Titanium (Ti)	16	mg/kg	ALS	RG MIULE SE-1 2021-09-14 1430
SE	MIULE	660541	5493015	2021	1	2021-09-14	14:30	Tungsten (W)	<0.50	mg/kg	ALS	RG MIULE SE-1 2021-09-14 1430
SE	MIULE	660541	5493015	2021	1	2021-09-14	14:30	Uranium (U)	0.84	mg/kg	ALS	RG MIULE SE-1 2021-09-14 1430
SE	MIULE	660541	5493015	2021	1	2021-09-14	14:30	Vanadium (V)	34	mg/kg	ALS	RG MIULE SE-1 2021-09-14 1430
SE	MIULE	660541	5493015	2021	1	2021-09-14	14:30	Zinc (Zn)	108	mg/kg	ALS	RG MIULE SE-1 2021-09-14 1430
SE	MIULE	660541	5493015	2021	1	2021-09-14	14:30	Zirconium (Zr)	<1.0	mg/kg	ALS	RG MIULE SE-1 2021-09-14 1430
SE	MIULE	660541	5493015	2021	1	2021-09-14	14:30	Acenaphthene	<0.0050	mg/kg	ALS	RG MIULE SE-1 2021-09-14 1430
SE	MIULE	660541	5493015	2021	1	2021-09-14	14:30	Acenaphthylene	<0.0050	mg/kg	ALS	RG MIULE SE-1 2021-09-14 1430
SE	MIULE	660541	5493015	2021	1	2021-09-14	14:30	Acridine	<0.010	mg/kg	ALS	RG MIULE SE-1 2021-09-14 1430
SE	MIULE	660541	5493015	2021	1	2021-09-14	14:30	Anthracene	<0.0040	mg/kg	ALS	RG MIULE SE-1 2021-09-14 1430
SE	MIULE	660541	5493015	2021	1	2021-09-14	14:30	Benz(a)anthracene	<0.010	mg/kg	ALS	RG MIULE SE-1 2021-09-14 1430
SE	MIULE	660541	5493015	2021	1	2021-09-14	14:30	Benzo(a)pyrene	<0.010	mg/kg	ALS	RG_MIULE_SE-1_2021-09-14_1430
SE	MIULE	660541	5493015	2021	1	2021-09-14	14:30	Benzo(b&j)fluoranthene	0.012	mg/kg	ALS	RG MIULE SE-1 2021-09-14 1430
SE	MIULE	660541	5493015	2021	1	2021-09-14	14:30	Benzo(b+j+k)fluoranthene	<0.015	mg/kg	ALS	RG MIULE SE-1_2021-09-14_1430
SE	MIULE	660541	5493015	2021	1	2021-09-14	14:30		0.014		ALS	RG MIULE SE-1 2021-09-14 1430
SE					1	2021-09-14		Benzo(e)pyrene		mg/kg	ALS	
	MIULE	660541	5493015	2021	1 1		14:30	Benzo(g_h_i)perylene	<0.010	mg/kg		RG_MIULE_SE-1_2021-09-14_1430
SE	MIULE	660541	5493015	2021	1 1	2021-09-14	14:30	Benzo(k)fluoranthene	<0.010	mg/kg	ALS	RG_MIULE_SE-1_2021-09-14_1430
SE	MIULE	660541	5493015	2021	1	2021-09-14	14:30	Chrysene	0.01	mg/kg	ALS	RG_MIULE_SE-1_2021-09-14_1430
SE	MIULE	660541	5493015	2021	1	2021-09-14	14:30	Dibenz(a_h)anthracene	<0.0050	mg/kg	ALS	RG_MIULE_SE-1_2021-09-14_1430
SE	MIULE	660541	5493015	2021	1	2021-09-14	14:30	Fluoranthene	<0.010	mg/kg	ALS	RG_MIULE_SE-1_2021-09-14_1430
SE	MIULE	660541	5493015	2021	1 1	2021-09-14	14:30	Fluorene	<0.010	mg/kg	ALS	RG_MIULE_SE-1_2021-09-14_1430
SE	MIULE	660541	5493015	2021	1	2021-09-14	14:30	Indeno(1,2,3-c,d)pyrene	<0.010	mg/kg	ALS	RG_MIULE_SE-1_2021-09-14_1430
SE	MIULE	660541	5493015	2021	1	2021-09-14	14:30	1-Methylnaphthalene	<0.050	mg/kg	ALS	RG_MIULE_SE-1_2021-09-14_1430
SE	MIULE	660541	5493015	2021	1	2021-09-14	14:30	2-Methylnaphthalene	0.044	mg/kg	ALS	RG_MIULE_SE-1_2021-09-14_1430
SE	MIULE	660541	5493015	2021	1	2021-09-14	14:30	Naphthalene	0.02	mg/kg	ALS	RG_MIULE_SE-1_2021-09-14_1430
SE	MIULE	660541	5493015	2021	1	2021-09-14	14:30	Perylene	<0.010	mg/kg	ALS	RG_MIULE_SE-1_2021-09-14_1430
SE	MIULE	660541	5493015	2021	1	2021-09-14	14:30	Phenanthrene	0.052	mg/kg	ALS	RG_MIULE_SE-1_2021-09-14_1430
SE	MIULE	660541	5493015	2021	1	2021-09-14	14:30	Pyrene	<0.010	mg/kg	ALS	RG_MIULE_SE-1_2021-09-14_1430
SE	MIULE	660541	5493015	2021	1	2021-09-14	14:30	Quinoline	<0.050	mg/kg	ALS	RG_MIULE_SE-1_2021-09-14_1430
SE	MIULE	660541	5493015	2021	1	2021-09-14	14:30	d10-Acenaphthene	77	%	ALS	RG_MIULE_SE-1_2021-09-14_1430
SE	MIULE	660541	5493015	2021	1 1	2021-09-14	14:30	d12-Chrysene	93	%	ALS	RG_MIULE_SE-1_2021-09-14_1430
SE	MIULE	660541	5493015	2021	1	2021-09-14	14:30	d8-Naphthalene	77	%	ALS	RG_MIULE_SE-1_2021-09-14_1430
SE	MIULE	660541	5493015	2021	1	2021-09-14	14:30	d10-Phenanthrene	88	%	ALS	RG_MIULE_SE-1_2021-09-14_1430
SE	MIULE	660541	5493015	2021	1 1	2021-09-14	14:30	IACR:Coarse	<0.050	-	ALS	RG_MIULE_SE-1_2021-09-14_1430
SE	MIULE	660541	5493015	2021	1	2021-09-14	14:30	IACR:Fine	<0.050	-	ALS	RG_MIULE_SE-1_2021-09-14_1430
SE	MIULE	660541	5493015	2021	1	2021-09-14	14:30	B(a)P Total Potency Equivalent	<0.020	mg/kg	ALS	RG_MIULE_SE-1_2021-09-14_1430
SE	MIULE	660541	5493015	2021	1	2021-09-14	14:30	IACR (CCME)	0.15	-	ALS	RG_MIULE_SE-1_2021-09-14_1430
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	Moisture	76	%	ALS	RG_MIULE_SE-2_2021-09-14_1345
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	pH (1:2 soil:water)	7.5	рН	ALS	RG_MIULE_SE-2_2021-09-14_1345
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	% Gravel (>2 mm)	6.7	%	ALS	RG_MIULE_SE-2_2021-09-14_1345
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	% Sand (2.00 mm - 1.00 mm)	1.9	%	ALS	RG_MIULE_SE-2_2021-09-14_1345
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	% Sand (1.00 mm - 0.50 mm)	4.0	%	ALS	RG_MIULE_SE-2_2021-09-14_1345
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	% Sand (0.50 mm - 0.25 mm)	13	%	ALS	RG_MIULE_SE-2_2021-09-14_1345
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	% Sand (0.25 mm - 0.125 mm)	17	%	ALS	RG_MIULE_SE-2_2021-09-14_1345

WSP Canada Inc. Page 228 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Table I-	1: Sediment Chem			CMm LAEMP	Sampling St	ations, 2012 to	2022					
Туре	Station		ı (UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
	Otation	Easting	Northing	i cai	Replicate		Tillic	Analyte	Result	Oilit	Lab	Sample ID
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	% Sand (0.125 mm - 0.063 mm)	12	%	ALS	RG_MIULE_SE-2_2021-09-14_1345
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	% Silt (0.063 mm - 0.0312 mm)	19	%	ALS	RG_MIULE_SE-2_2021-09-14_1345
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	% Silt (0.031 mm - 0.004 mm)	22	%	ALS	RG_MIULE_SE-2_2021-09-14_1345
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	% Clay (<4 μm)	4.3	%	ALS	RG_MIULE_SE-2_2021-09-14_1345
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	Texture	Sandy loam	-	ALS	RG_MIULE_SE-2_2021-09-14_1345
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	Total Organic Carbon	7.1	%	ALS	RG_MIULE_SE-2_2021-09-14_1345
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	Aluminum (Al)	5,730	mg/kg	ALS	RG_MIULE_SE-2_2021-09-14_1345
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	Antimony (Sb)	0.31	mg/kg	ALS	RG_MIULE_SE-2_2021-09-14_1345
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	Arsenic (As)	5.0	mg/kg	ALS	RG_MIULE_SE-2_2021-09-14_1345
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	Barium (Ba)	162	mg/kg	ALS	RG_MIULE_SE-2_2021-09-14_1345
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	Beryllium (Be)	0.47	mg/kg	ALS	RG_MIULE_SE-2_2021-09-14_1345
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	Bismuth (Bi)	<0.20	mg/kg	ALS	RG_MIULE_SE-2_2021-09-14_1345
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	Boron (B)	7.4	mg/kg	ALS	RG_MIULE_SE-2_2021-09-14_1345
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	Cadmium (Cd)	1.1	mg/kg	ALS	RG MIULE SE-2 2021-09-14 1345
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	Calcium (Ca)	79,900	mg/kg	ALS	RG MIULE SE-2 2021-09-14 1345
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	Chromium (Cr)	9.1	mg/kg	ALS	RG MIULE SE-2 2021-09-14 1345
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	Cobalt (Co)	15	mg/kg	ALS	RG_MIULE_SE-2_2021-09-14_1345
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	Copper (Cu)	12	mg/kg	ALS	RG MIULE SE-2 2021-09-14 1345
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	Iron (Fe)	11,900	mg/kg	ALS	RG_MIULE_SE-2_2021-09-14_1345
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	Lead (Pb)	7.5	mg/kg	ALS	RG_MIULE_SE-2_2021-09-14_1345
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	Lithium (Li)	8.7	mg/kg	ALS	RG MIULE SE-2 2021-09-14 1345
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	Magnesium (Mg)	6,650	mg/kg	ALS	RG MIULE SE-2 2021-09-14 1345
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	Manganese (Mn)	224	mg/kg	ALS	RG_MIULE_SE-2_2021-09-14_1345
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	Mercury (Hg)	0.026	mg/kg	ALS	RG MIULE SE-2 2021-09-14 1345
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	Molybdenum (Mo)	1.0	mg/kg	ALS	RG MIULE SE-2 2021-09-14_1345
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	Nickel (Ni)	44	mg/kg	ALS	RG MIULE SE-2 2021-09-14_1345
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	Phosphorus (P)	978	mg/kg	ALS	RG_MIULE_SE-2_2021-09-14_1345
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	Potassium (K)	1,280	mg/kg	ALS	RG_MIULE_SE-2_2021-09-14_1345
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	Selenium (Se)	2.5	mg/kg	ALS	RG MIULE SE-2 2021-09-14 1345
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	Silver (Ag)	0.12	mg/kg	ALS	RG MIULE SE-2 2021-09-14 1345
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	Sodium (Na)	137	mg/kg		RG_MIULE_SE-2_2021-09-14_1345
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	Strontium (Sr)	109	mg/kg	ALS	RG MIULE SE-2 2021-09-14 1345
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	Sulfur (S)	2,200	mg/kg	ALS	RG MIULE SE-2 2021-09-14 1345
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	Thallium (TI)	0.3	mg/kg	ALS	RG MIULE SE-2 2021-09-14 1345
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	Tin (Sn)	<2.0	mg/kg	ALS	RG MIULE SE-2 2021-09-14 1345
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	Titanium (Ti)	14	mg/kg	ALS	RG MIULE SE-2 2021-09-14 1345
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	Tungsten (W)	<0.50	mg/kg	ALS	RG MIULE SE-2 2021-09-14 1345
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	Uranium (U)	0.86		ALS	RG MIULE SE-2 2021-09-14 1345
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	Vanadium (V)	18	mg/kg mg/kg	ALS	RG MIULE SE-2 2021-09-14 1345
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	Zinc (Zn)	105	mg/kg	ALS	RG MIULE SE-2 2021-09-14 1345
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	Zirconium (Zr)	<1.0	mg/kg	ALS	RG MIULE SE-2 2021-09-14 1345
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	Acenaphthene	<0.020		ALS	RG_MIULE_SE-2_2021-09-14_1345
SE	MIULE	660525	5493017	2021	2			·		mg/kg		RG MIULE SE-2_2021-09-14_1345
						2021-09-14	13:45	Acridina	<0.010	mg/kg	ALS	
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	Actione	<0.030	mg/kg	ALS	RG_MIULE_SE-2_2021-09-14_1345
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	Anthracene	<0.0080	mg/kg	ALS	RG_MIULE_SE-2_2021-09-14_1345
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	Benz(a)anthracene	0.021	mg/kg	ALS	RG_MIULE_SE-2_2021-09-14_1345
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	Benzo(a)pyrene	<0.020	mg/kg	ALS	RG_MIULE_SE-2_2021-09-14_1345

Reference No. 22574542-001-R-Rev0-1000

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Table I-	I: Sediment Chem			CMm LAEMP	Sampling St	ations, 2012 to	2022					
Туре	Station		ı (UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
	Otation	Easting	Northing	i cai	Replicate		111110	*	Result	Oille	Lab	Sample ID
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	Benzo(b&j)fluoranthene	0.044	mg/kg	ALS	RG_MIULE_SE-2_2021-09-14_1345
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	Benzo(b+j+k)fluoranthene	0.044	mg/kg	ALS	RG_MIULE_SE-2_2021-09-14_1345
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	Benzo(e)pyrene	0.055	mg/kg	ALS	RG_MIULE_SE-2_2021-09-14_1345
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	Benzo(g_h_i)perylene	<0.020	mg/kg	ALS	RG_MIULE_SE-2_2021-09-14_1345
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	Benzo(k)fluoranthene	<0.020	mg/kg	ALS	RG_MIULE_SE-2_2021-09-14_1345
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	Chrysene	0.054	mg/kg	ALS	RG_MIULE_SE-2_2021-09-14_1345
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	Dibenz(a_h)anthracene	<0.010	mg/kg	ALS	RG_MIULE_SE-2_2021-09-14_1345
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	Fluoranthene	0.043	mg/kg	ALS	RG_MIULE_SE-2_2021-09-14_1345
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	Fluorene	<0.020	mg/kg	ALS	RG_MIULE_SE-2_2021-09-14_1345
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	Indeno(1,2,3-c,d)pyrene	<0.020	mg/kg	ALS	RG_MIULE_SE-2_2021-09-14_1345
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	1-Methylnaphthalene	0.23	mg/kg	ALS	RG_MIULE_SE-2_2021-09-14_1345
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	2-Methylnaphthalene	0.33	mg/kg	ALS	RG_MIULE_SE-2_2021-09-14_1345
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	Naphthalene	0.16	mg/kg	ALS	RG_MIULE_SE-2_2021-09-14_1345
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	Perylene	<0.020	mg/kg	ALS	RG_MIULE_SE-2_2021-09-14_1345
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	Phenanthrene	0.32	mg/kg	ALS	RG_MIULE_SE-2_2021-09-14_1345
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	Pyrene	0.048	mg/kg	ALS	RG_MIULE_SE-2_2021-09-14_1345
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	Quinoline	<0.020	mg/kg	ALS	RG_MIULE_SE-2_2021-09-14_1345
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	d10-Acenaphthene	91	%	ALS	RG_MIULE_SE-2_2021-09-14_1345
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	d12-Chrysene	109	%	ALS	RG_MIULE_SE-2_2021-09-14_1345
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	d8-Naphthalene	93	%	ALS	RG_MIULE_SE-2_2021-09-14_1345
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	d10-Phenanthrene	105	%	ALS	RG_MIULE_SE-2_2021-09-14_1345
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	IACR:Coarse	<0.050	-	ALS	RG_MIULE_SE-2_2021-09-14_1345
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	IACR:Fine	<0.050	-	ALS	RG_MIULE_SE-2_2021-09-14_1345
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	B(a)P Total Potency Equivalent	0.024	mg/kg	ALS	RG_MIULE_SE-2_2021-09-14_1345
SE	MIULE	660525	5493017	2021	2	2021-09-14	13:45	IACR (CCME)	0.48	-	ALS	RG_MIULE_SE-2_2021-09-14_1345
SE	MIULE	660525	5493017	2021	3	2021-09-14	13:45	Moisture	62	%	ALS	RG_MIULE_SE-3_2021-09-14_1345
SE	MIULE	660525	5493017	2021	3	2021-09-14	13:45	pH (1:2 soil:water)	7.8	рН	ALS	RG_MIULE_SE-3_2021-09-14_1345
SE	MIULE	660525	5493017	2021	3	2021-09-14	13:45	% Gravel (>2 mm)	1.3	%	ALS	RG_MIULE_SE-3_2021-09-14_1345
SE	MIULE	660525	5493017	2021	3	2021-09-14	13:45	% Sand (2.00 mm - 1.00 mm)	<1.0	%	ALS	RG_MIULE_SE-3_2021-09-14_1345
SE	MIULE	660525	5493017	2021	3	2021-09-14	13:45	% Sand (1.00 mm - 0.50 mm)	4.0	%	ALS	RG_MIULE_SE-3_2021-09-14_1345
SE	MIULE	660525	5493017	2021	3	2021-09-14	13:45	% Sand (0.50 mm - 0.25 mm)	17	%	ALS	RG_MIULE_SE-3_2021-09-14_1345
SE	MIULE	660525	5493017	2021	3	2021-09-14	13:45	% Sand (0.25 mm - 0.125 mm)	20	%	ALS	RG_MIULE_SE-3_2021-09-14_1345
SE	MIULE	660525	5493017	2021	3	2021-09-14	13:45	% Sand (0.125 mm - 0.063 mm)	15	%	ALS	RG_MIULE_SE-3_2021-09-14_1345
SE	MIULE	660525	5493017	2021	3	2021-09-14	13:45	% Silt (0.063 mm - 0.0312 mm)	18	%	ALS	RG_MIULE_SE-3_2021-09-14_1345
SE	MIULE	660525	5493017	2021	3	2021-09-14	13:45	% Silt (0.031 mm - 0.004 mm)	21	%	ALS	RG_MIULE_SE-3_2021-09-14_1345
SE	MIULE	660525	5493017	2021	3	2021-09-14	13:45	% Clay (<4 μm)	4.1	%	ALS	RG_MIULE_SE-3_2021-09-14_1345
SE	MIULE	660525	5493017	2021	3	2021-09-14	13:45	Texture	Sandy loam	-	ALS	RG_MIULE_SE-3_2021-09-14_1345
SE	MIULE	660525	5493017	2021	3	2021-09-14	13:45	Total Organic Carbon	3.9	%	ALS	RG_MIULE_SE-3_2021-09-14_1345
SE	MIULE	660525	5493017	2021	3	2021-09-14	13:45	Aluminum (Al)	6,710	mg/kg	ALS	RG_MIULE_SE-3_2021-09-14_1345
SE	MIULE	660525	5493017	2021	3	2021-09-14	13:45	Antimony (Sb)	0.41	mg/kg	ALS	RG_MIULE_SE-3_2021-09-14_1345
SE	MIULE	660525	5493017	2021	3	2021-09-14	13:45	Arsenic (As)	5.8	mg/kg	ALS	RG_MIULE_SE-3_2021-09-14_1345
SE	MIULE	660525	5493017	2021	3	2021-09-14	13:45	Barium (Ba)	153	mg/kg	ALS	RG_MIULE_SE-3_2021-09-14_1345
SE	MIULE	660525	5493017	2021	3	2021-09-14	13:45	Beryllium (Be)	0.55	mg/kg	ALS	RG_MIULE_SE-3_2021-09-14_1345
SE	MIULE	660525	5493017	2021	3	2021-09-14	13:45	Bismuth (Bi)	<0.20	mg/kg	ALS	RG_MIULE_SE-3_2021-09-14_1345
SE	MIULE	660525	5493017	2021	3	2021-09-14	13:45	Boron (B)	7.5	mg/kg	ALS	RG MIULE SE-3 2021-09-14 1345
SE	MIULE	660525	5493017	2021	3	2021-09-14	13:45	Cadmium (Cd)	1.1	mg/kg	ALS	RG_MIULE_SE-3_2021-09-14_1345
SE	MIULE	660525	5493017	2021	3	2021-09-14	13:45	Calcium (Ca)	61,900	mg/kg	ALS	RG MIULE SE-3 2021-09-14 1345

WSP Canada Inc. Page 230 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Table I-1	: Sediment Chem	nistry Data Coll	lected from the	CMm LAEMP S	ampling Sta	ations, 2012 to	2022					
Туре	Station	Location	າ (UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
Type	Station	Easting	Northing	i cai	Replicate	Date	Tille	Allalyte	Nesuit	Offic	Lab	Sample ID
SE	MIULE	660525	5493017	2021	3	2021-09-14	13:45	Chromium (Cr)	10	mg/kg	ALS	RG_MIULE_SE-3_2021-09-14_1345
SE	MIULE	660525	5493017	2021	3	2021-09-14	13:45	Cobalt (Co)	14	mg/kg	ALS	RG_MIULE_SE-3_2021-09-14_1345
SE	MIULE	660525	5493017	2021	3	2021-09-14	13:45	Copper (Cu)	12	mg/kg	ALS	RG_MIULE_SE-3_2021-09-14_1345
SE	MIULE	660525	5493017	2021	3	2021-09-14	13:45	Iron (Fe)	13,800	mg/kg	ALS	RG_MIULE_SE-3_2021-09-14_1345
SE	MIULE	660525	5493017	2021	3	2021-09-14	13:45	Lead (Pb)	8.2	mg/kg	ALS	RG_MIULE_SE-3_2021-09-14_1345
SE	MIULE	660525	5493017	2021	3	2021-09-14	13:45	Lithium (Li)	9.6	mg/kg	ALS	RG_MIULE_SE-3_2021-09-14_1345
SE	MIULE	660525	5493017	2021	3	2021-09-14	13:45	Magnesium (Mg)	6,870	mg/kg	ALS	RG_MIULE_SE-3_2021-09-14_1345
SE	MIULE	660525	5493017	2021	3	2021-09-14	13:45	Manganese (Mn)	188	mg/kg	ALS	RG_MIULE_SE-3_2021-09-14_1345
SE	MIULE	660525	5493017	2021	3	2021-09-14	13:45	Mercury (Hg)	0.026	mg/kg	ALS	RG_MIULE_SE-3_2021-09-14_1345
SE	MIULE	660525	5493017	2021	3	2021-09-14	13:45	Molybdenum (Mo)	1.2	mg/kg	ALS	RG_MIULE_SE-3_2021-09-14_1345
SE	MIULE	660525	5493017	2021	3	2021-09-14	13:45	Nickel (Ni)	40	mg/kg	ALS	RG_MIULE_SE-3_2021-09-14_1345
SE	MIULE	660525	5493017	2021	3	2021-09-14	13:45	Phosphorus (P)	1,090	mg/kg	ALS	RG_MIULE_SE-3_2021-09-14_1345
SE	MIULE	660525	5493017	2021	3	2021-09-14	13:45	Potassium (K)	1,430	mg/kg	ALS	RG_MIULE_SE-3_2021-09-14_1345
SE	MIULE	660525	5493017	2021	3	2021-09-14	13:45	Selenium (Se)	1.9	mg/kg	ALS	RG_MIULE_SE-3_2021-09-14_1345
SE	MIULE	660525	5493017	2021	3	2021-09-14	13:45	Silver (Ag)	0.12	mg/kg	ALS	RG_MIULE_SE-3_2021-09-14_1345
SE	MIULE	660525	5493017	2021	3	2021-09-14	13:45	Sodium (Na)	106	mg/kg	ALS	RG_MIULE_SE-3_2021-09-14_1345
SE	MIULE	660525	5493017	2021	3	2021-09-14	13:45	Strontium (Sr)	88	mg/kg	ALS	RG_MIULE_SE-3_2021-09-14_1345
SE	MIULE	660525	5493017	2021	3	2021-09-14	13:45	Sulfur (S)	1,800	mg/kg	ALS	RG_MIULE_SE-3_2021-09-14_1345
SE	MIULE	660525	5493017	2021	3	2021-09-14	13:45	Thallium (TI)	0.32	mg/kg	ALS	RG_MIULE_SE-3_2021-09-14_1345
SE	MIULE	660525	5493017	2021	3	2021-09-14	13:45	Tin (Sn)	<2.0	mg/kg	ALS	RG_MIULE_SE-3_2021-09-14_1345
SE	MIULE	660525	5493017	2021	3	2021-09-14	13:45	Titanium (Ti)	15	mg/kg	ALS	RG_MIULE_SE-3_2021-09-14_1345
SE	MIULE	660525	5493017	2021	3	2021-09-14	13:45	Tungsten (W)	<0.50	mg/kg	ALS	RG_MIULE_SE-3_2021-09-14_1345
SE	MIULE	660525	5493017	2021	3	2021-09-14	13:45	Uranium (U)	0.82	mg/kg	ALS	RG_MIULE_SE-3_2021-09-14_1345
SE	MIULE	660525	5493017	2021	3	2021-09-14	13:45	Vanadium (V)	21	mg/kg	ALS	RG_MIULE_SE-3_2021-09-14_1345
SE	MIULE	660525	5493017	2021	3	2021-09-14	13:45	Zinc (Zn)	109	mg/kg	ALS	RG_MIULE_SE-3_2021-09-14_1345
SE	MIULE	660525	5493017	2021	3	2021-09-14	13:45	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_MIULE_SE-3_2021-09-14_1345
SE	MIULE	660525	5493017	2021	3	2021-09-14	13:45	Acenaphthene	<0.010	mg/kg	ALS	RG_MIULE_SE-3_2021-09-14_1345
SE	MIULE	660525	5493017	2021	3	2021-09-14	13:45	Acenaphthylene	<0.0050	mg/kg	ALS	RG_MIULE_SE-3_2021-09-14_1345
SE	MIULE	660525	5493017	2021	3	2021-09-14	13:45	Acridine	<0.010	mg/kg	ALS	RG_MIULE_SE-3_2021-09-14_1345
SE	MIULE	660525	5493017	2021	3	2021-09-14	13:45	Anthracene	<0.0040	mg/kg	ALS	RG_MIULE_SE-3_2021-09-14_1345
SE	MIULE	660525	5493017	2021		2021-09-14	13:45	Benz(a)anthracene	0.015	mg/kg	ALS	RG_MIULE_SE-3_2021-09-14_1345
SE	MIULE	660525	5493017	2021	3	2021-09-14	13:45	Benzo(a)pyrene	<0.010	mg/kg	ALS	RG_MIULE_SE-3_2021-09-14_1345
SE	MIULE	660525	5493017	2021	3	2021-09-14	13:45	Benzo(b&j)fluoranthene	0.034	mg/kg	ALS	RG_MIULE_SE-3_2021-09-14_1345
SE	MIULE	660525	5493017	2021	3	2021-09-14	13:45	Benzo(b+j+k)fluoranthene	0.034	mg/kg	ALS	RG_MIULE_SE-3_2021-09-14_1345
SE	MIULE	660525	5493017	2021	3	2021-09-14	13:45	Benzo(e)pyrene	0.039	mg/kg	ALS	RG_MIULE_SE-3_2021-09-14_1345
SE	MIULE	660525	5493017	2021	3	2021-09-14	13:45	Benzo(g_h_i)perylene	0.012	mg/kg	ALS	RG_MIULE_SE-3_2021-09-14_1345
SE	MIULE	660525	5493017	2021	3	2021-09-14	13:45	Benzo(k)fluoranthene	<0.010	mg/kg	ALS	RG_MIULE_SE-3_2021-09-14_1345
SE	MIULE	660525	5493017	2021	3	2021-09-14	13:45	Chrysene	0.024	mg/kg	ALS	RG_MIULE_SE-3_2021-09-14_1345
SE	MIULE	660525	5493017	2021	3	2021-09-14	13:45	Dibenz(a_h)anthracene	<0.0050	mg/kg	ALS	RG_MIULE_SE-3_2021-09-14_1345
SE	MIULE	660525	5493017	2021	3	2021-09-14	13:45	Fluoranthene	0.029	mg/kg	ALS	RG_MIULE_SE-3_2021-09-14_1345
SE	MIULE	660525	5493017	2021	3	2021-09-14	13:45	Fluorene	0.021	mg/kg	ALS	RG_MIULE_SE-3_2021-09-14_1345
SE	MIULE	660525	5493017	2021	3	2021-09-14	13:45	Indeno(1,2,3-c,d)pyrene	<0.010	mg/kg	ALS	RG_MIULE_SE-3_2021-09-14_1345
SE	MIULE	660525	5493017	2021	3	2021-09-14	13:45	1-Methylnaphthalene	0.15	mg/kg	ALS	RG_MIULE_SE-3_2021-09-14_1345
SE	MIULE	660525	5493017	2021	3	2021-09-14	13:45	2-Methylnaphthalene	0.22	mg/kg	ALS	RG_MIULE_SE-3_2021-09-14_1345
SE	MIULE	660525	5493017	2021	3	2021-09-14	13:45	Naphthalene	0.1	mg/kg	ALS	RG_MIULE_SE-3_2021-09-14_1345
SE	MIULE	660525	5493017	2021	3	2021-09-14	13:45	Perylene	<0.010	mg/kg	ALS	RG_MIULE_SE-3_2021-09-14_1345
SE	MIULE	660525	5493017	2021	3	2021-09-14	13:45	Phenanthrene	0.22	mg/kg	ALS	RG_MIULE_SE-3_2021-09-14_1345

WSP Canada Inc. Page 231 of 337

Reference No. 22574542-001-R-Rev0-1000

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Type.	Station	Location	(UTMs) ^(a)	Vaar	Poplicate	Data	Time	Analyta	Popult	Unit		Laboratory Information
уре	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MIULE	660525	5493017	2021	3	2021-09-14	13:45	Pyrene	0.031	mg/kg	ALS	RG MIULE SE-3 2021-09-14 1345
Ε	MIULE	660525	5493017	2021	3	2021-09-14	13:45	Quinoline	<0.050	mg/kg	ALS	RG MIULE SE-3 2021-09-14 1345
SE.	MIULE	660525	5493017	2021	3	2021-09-14	13:45	d10-Acenaphthene	92	%	ALS	RG MIULE SE-3 2021-09-14 1345
E	MIULE	660525	5493017	2021	3	2021-09-14	13:45	d12-Chrysene	110	%	ALS	RG MIULE SE-3 2021-09-14 1345
E	MIULE	660525	5493017	2021	3	2021-09-14	13:45	d8-Naphthalene	95	%	ALS	RG_MIULE_SE-3_2021-09-14_1345
E	MIULE	660525	5493017	2021	3	2021-09-14	13:45	d10-Phenanthrene	104	%	ALS	RG MIULE SE-3 2021-09-14 1345
E	MIULE	660525	5493017	2021	3	2021-09-14	13:45	IACR:Coarse	<0.050	-	ALS	RG MIULE SE-3 2021-09-14 1345
E	MIULE	660525	5493017	2021	3	2021-09-14	13:45	IACR:Fine	<0.050	_	ALS	RG MIULE SE-3 2021-09-14 1345
E	MIULE	660525	5493017	2021	3	2021-09-14	13:45	B(a)P Total Potency Equivalent	<0.020	mg/kg	ALS	RG MIULE SE-3 2021-09-14 1345
 E	MIULE	660525	5493017	2021	3	2021-09-14	13:45	IACR (CCME)	0.33	-	ALS	RG MIULE SE-3 2021-09-14 1345
E	MIULE	660489	5493082	2021	4	2021-09-15	12:50	Moisture	95	%	ALS	RG MIULE SE-4 2021-09-14 1250
<u>=</u> E	MIULE	660489	5493082	2021	4	2021-09-15	12:50	pH (1:2 soil:water)	7.3	pH	ALS	RG MIULE SE-4 2021-09-14 1250
<u>=</u> Е	MIULE	660489	5493082	2021	4	2021-09-15	12:50	% Gravel (>2 mm)	14	<u>%</u>	ALS	RG MIULE SE-4 2021-09-14 1250
<u> </u>	MIULE	660489	5493082	2021	4	2021-09-15	12:50	% Sand (2.00 mm - 1.00 mm)	18	%	ALS	RG MIULE SE-4 2021-09-14 1250
<u>–</u> Е	MIULE	660489	5493082	2021	4	2021-09-15	12:50	% Sand (1.00 mm - 0.50 mm)	23	%	ALS	RG MIULE SE-4 2021-09-14 1250
<u>-</u> E	MIULE	660489	5493082	2021	4	2021-09-15	12:50	% Sand (0.50 mm - 0.25 mm)	13	%	ALS	RG MIULE SE-4 2021-09-14 1250
<u> </u>	MIULE	660489	5493082	2021	4	2021-09-15	12:50	% Sand (0.25 mm - 0.125 mm)	7.3	%	ALS	RG MIULE SE-4 2021-09-14 1250
<u>-</u> E	MIULE	660489	5493082	2021	4	2021-09-15	12:50	% Sand (0.125 mm - 0.063 mm)	4.6	%	ALS	RG MIULE SE-4 2021-09-14 1250
<u>– </u>	MIULE	660489	5493082	2021	4	2021-09-15	12:50	% Silt (0.063 mm - 0.0312 mm)	8.1	%	ALS	RG MIULE SE-4 2021-09-14 1250
<u> </u>	MIULE	660489	5493082	2021	4	2021-09-15	12:50	% Silt (0.031 mm - 0.004 mm)	10	%	ALS	RG MIULE SE-4 2021-09-14 1250
<u></u>	MIULE	660489	5493082	2021	4	2021-09-15	12:50	% Clay (<4 μm)	2.4	%	ALS	RG MIULE SE-4 2021-09-14 1250
<u> </u>	MIULE	660489	5493082	2021	4	2021-09-15	12:50	Texture	Loamy sand	-	ALS	RG MIULE SE-4 2021-09-14 1250
=	MIULE	660489	5493082	2021	4	2021-09-15	12:50	Total Organic Carbon	2.7	%	ALS	RG MIULE SE-4 2021-09-14 1250
<u></u> E	MIULE	660489	5493082	2021	1	2021-09-15	12:50	Aluminum (AI)	4,210	mg/kg	ALS	RG_MIULE_SE-4_2021-09-14_1250
<u>-</u> Е	MIULE	660489	5493082	2021	4	2021-09-15	12:50	Antimony (Sb)	0.31	mg/kg	ALS	RG MIULE SE-4 2021-09-14 1250
<u>-</u> Е	MIULE	660489	5493082	2021	4	2021-09-15	12:50	Arsenic (As)	4.3	mg/kg	ALS	RG MIULE SE-4 2021-09-14 1250
<u></u> E	MIULE	660489	5493082	2021	4	2021-09-15	12:50	Barium (Ba)	165	mg/kg	ALS	RG MIULE SE-4 2021-09-14 1250
<u>-</u> Е	MIULE	660489	5493082	2021	4	2021-09-15	12:50	Beryllium (Be)	0.39	mg/kg	ALS	RG MIULE SE-4 2021-09-14 1250
E	MIULE	660489	5493082	2021	4	2021-09-15	12:50	Bismuth (Bi)	<0.20	mg/kg	ALS	RG MIULE SE-4 2021-09-14 1250
E	MIULE	660489	5493082	2021	7	2021-09-15	12:50	Boron (B)	7.4	mg/kg	ALS	RG MIULE SE-4 2021-09-14 1250
	MIULE	660489	5493082	2021		2021-09-15	12:50	Cadmium (Cd)	1.3	mg/kg	ALS	RG MIULE SE-4 2021-09-14 1250
E E	MIULE	660489	5493082	2021	4	2021-09-15	12:50	Calcium (Ca)	99,100	mg/kg	ALS	RG MIULE SE-4 2021-09-14 1250
E	MIULE	660489	5493082	2021	4	2021-09-15	12:50	Chromium (Cr)	7.1		ALS	RG MIULE SE-4 2021-09-14 1250
) <u>-</u> SE	MIULE	660489	5493082	2021	4	2021-09-15	12:50	Cobalt (Co)	15	mg/kg	ALS	RG MIULE SE-4 2021-09-14 1250
E	MIULE	660489	5493082	2021	4	2021-09-15	12:50	Copper (Cu)	10	mg/kg mg/kg	ALS	RG MIULE SE-4 2021-09-14 1250
<u>-</u> Е	MIULE	660489	5493082	2021	<u> </u>	2021-09-15	12:50	Iron (Fe)	9,110		ALS	RG MIULE SE-4 2021-09-14 1250
<u>-</u> Е		660489	5493082		4	2021-09-15		Lead (Pb)		mg/kg		
	MIULE			2021	4		12:50	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	6.1	mg/kg	ALS	RG_MIULE_SE-4_2021-09-14_1250
<u>Е</u> Е	MIULE MIULE	660489	5493082 5493082	2021	4	2021-09-15	12:50	Lithium (Li)	6.3	mg/kg	ALS ALS	RG_MIULE_SE-4_2021-09-14_1250 RG_MIULE_SE-4_2021-09-14_1250
<u>-</u> E	MIULE	660489 660489	5493082	2021 2021	4	2021-09-15 2021-09-15	12:50 12:50	Magnesium (Mg) Manganese (Mn)	5,680 273	mg/kg	ALS	RG MIULE SE-4_2021-09-14_1250
<u>E</u> E	MIULE	660489	5493082	2021	4	2021-09-15		· · ·	0.029	mg/kg	ALS	RG_MIULE_SE-4_2021-09-14_1250
	MIULE	660489			4		12:50	Mercury (Hg)		mg/kg		
<u>E</u>			5493082	2021	4	2021-09-15	12:50	Molybdenum (Mo)	0.96	mg/kg	ALS	RG_MIULE_SE-4_2021-09-14_1250
<u>E</u>	MIULE	660489	5493082	2021	4	2021-09-15	12:50	Nickel (Ni)	46	mg/kg	ALS	RG_MIULE_SE-4_2021-09-14_1250
<u>E</u>	MIULE	660489	5493082	2021	4	2021-09-15	12:50	Phosphorus (P)	1,000	mg/kg	ALS	RG_MIULE_SE-4_2021-09-14_1250
<u>E</u>	MIULE	660489	5493082	2021	4	2021-09-15	12:50	Potassium (K)	930	mg/kg	ALS	RG_MIULE_SE-4_2021-09-14_1250
<u>Е</u> Е	MIULE	660489	5493082	2021	4	2021-09-15	12:50	Selenium (Se)	3.1	mg/kg	ALS	RG_MIULE_SE-4_2021-09-14_1250
	MIULE	660489	5493082	2021	4	2021-09-15	12:50	Silver (Ag)	0.11	mg/kg	ALS	RG_MIULE_SE-4_2021-09-14_1250

WSP Canada Inc. Page 232 of 337

Reference No. 22574542-001-R-Rev0-1000

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Table I-	1: Sediment Chem			CMm LAEMP	Sampling St	ations, 2012 to	2022					
Туре	Station	Location	(UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
Type	Station	Easting	Northing	i cai	Replicate	Date	Tille	Allaryte	Result	Oilit	Lab	Sample ID
SE	MIULE	660489	5493082	2021	4	2021-09-15	12:50	Sodium (Na)	161	mg/kg	ALS	RG_MIULE_SE-4_2021-09-14_1250
SE	MIULE	660489	5493082	2021	4	2021-09-15	12:50	Strontium (Sr)	130	mg/kg	ALS	RG_MIULE_SE-4_2021-09-14_1250
SE	MIULE	660489	5493082	2021	4	2021-09-15	12:50	Sulfur (S)	2,000	mg/kg	ALS	RG_MIULE_SE-4_2021-09-14_1250
SE	MIULE	660489	5493082	2021	4	2021-09-15	12:50	Thallium (TI)	0.25	mg/kg	ALS	RG_MIULE_SE-4_2021-09-14_1250
SE	MIULE	660489	5493082	2021	4	2021-09-15	12:50	Tin (Sn)	<2.0	mg/kg	ALS	RG_MIULE_SE-4_2021-09-14_1250
SE	MIULE	660489	5493082	2021	4	2021-09-15	12:50	Titanium (Ti)	10	mg/kg	ALS	RG_MIULE_SE-4_2021-09-14_1250
SE	MIULE	660489	5493082	2021	4	2021-09-15	12:50	Tungsten (W)	<0.50	mg/kg	ALS	RG_MIULE_SE-4_2021-09-14_1250
SE	MIULE	660489	5493082	2021	4	2021-09-15	12:50	Uranium (U)	0.75	mg/kg	ALS	RG_MIULE_SE-4_2021-09-14_1250
SE	MIULE	660489	5493082	2021	4	2021-09-15	12:50	Vanadium (V)	14	mg/kg	ALS	RG_MIULE_SE-4_2021-09-14_1250
SE	MIULE	660489	5493082	2021	4	2021-09-15	12:50	Zinc (Zn)	102	mg/kg	ALS	RG_MIULE_SE-4_2021-09-14_1250
SE	MIULE	660489	5493082	2021	4	2021-09-15	12:50	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_MIULE_SE-4_2021-09-14_1250
SE	MIULE	660489	5493082	2021	4	2021-09-15	12:50	Acenaphthene	<0.050	mg/kg	ALS	RG_MIULE_SE-4_2021-09-14_1250
SE	MIULE	660489	5493082	2021	4	2021-09-15	12:50	Acenaphthylene	<0.050	mg/kg	ALS	RG_MIULE_SE-4_2021-09-14_1250
SE	MIULE	660489	5493082	2021	4	2021-09-15	12:50	Acridine	<0.10	mg/kg	ALS	RG_MIULE_SE-4_2021-09-14_1250
SE	MIULE	660489	5493082	2021	4	2021-09-15	12:50	Anthracene	<0.040	mg/kg	ALS	RG_MIULE_SE-4_2021-09-14_1250
SE	MIULE	660489	5493082	2021	4	2021-09-15	12:50	Benz(a)anthracene	<0.10	mg/kg	ALS	RG_MIULE_SE-4_2021-09-14_1250
SE	MIULE	660489	5493082	2021	4	2021-09-15	12:50	Benzo(a)pyrene	<0.10	mg/kg	ALS	RG_MIULE_SE-4_2021-09-14_1250
SE	MIULE	660489	5493082	2021	4	2021-09-15	12:50	Benzo(b&j)fluoranthene	<0.10	mg/kg	ALS	RG_MIULE_SE-4_2021-09-14_1250
SE	MIULE	660489	5493082	2021	4	2021-09-15	12:50	Benzo(b+j+k)fluoranthene	<0.14	mg/kg	ALS	RG_MIULE_SE-4_2021-09-14_1250
SE	MIULE	660489	5493082	2021	4	2021-09-15	12:50	Benzo(e)pyrene	<0.10	mg/kg	ALS	RG_MIULE_SE-4_2021-09-14_1250
SE	MIULE	660489	5493082	2021	4	2021-09-15	12:50	Benzo(g_h_i)perylene	<0.10	mg/kg	ALS	RG_MIULE_SE-4_2021-09-14_1250
SE	MIULE	660489	5493082	2021	4	2021-09-15	12:50	Benzo(k)fluoranthene	<0.10	mg/kg	ALS	RG_MIULE_SE-4_2021-09-14_1250
SE	MIULE	660489	5493082	2021	4	2021-09-15	12:50	Chrysene	<0.10	mg/kg	ALS	RG_MIULE_SE-4_2021-09-14_1250
SE	MIULE	660489	5493082	2021	4	2021-09-15	12:50	Dibenz(a_h)anthracene	<0.050	mg/kg	ALS	RG_MIULE_SE-4_2021-09-14_1250
SE	MIULE	660489	5493082	2021	4	2021-09-15	12:50	Fluoranthene	<0.10	mg/kg	ALS	RG_MIULE_SE-4_2021-09-14_1250
SE	MIULE	660489	5493082	2021	4	2021-09-15	12:50	Fluorene	<0.10	mg/kg	ALS	RG_MIULE_SE-4_2021-09-14_1250
SE	MIULE	660489	5493082	2021	4	2021-09-15	12:50	Indeno(1,2,3-c,d)pyrene	<0.10	mg/kg	ALS	RG_MIULE_SE-4_2021-09-14_1250
SE	MIULE	660489	5493082	2021	4	2021-09-15	12:50	1-Methylnaphthalene	0.15	mg/kg	ALS	RG_MIULE_SE-4_2021-09-14_1250
SE	MIULE	660489	5493082	2021	4	2021-09-15	12:50	2-Methylnaphthalene	0.24	mg/kg	ALS	RG_MIULE_SE-4_2021-09-14_1250
SE	MIULE	660489	5493082	2021	4	2021-09-15	12:50	Naphthalene	<0.10	mg/kg	ALS	RG_MIULE_SE-4_2021-09-14_1250
SE	MIULE	660489	5493082	2021	4	2021-09-15	12:50	Perylene	<0.10	mg/kg	ALS	RG_MIULE_SE-4_2021-09-14_1250
SE	MIULE	660489	5493082	2021	4	2021-09-15	12:50	Phenanthrene	0.27	mg/kg	ALS	RG_MIULE_SE-4_2021-09-14_1250
SE	MIULE	660489	5493082	2021	4	2021-09-15	12:50	Pyrene	<0.10	mg/kg	ALS	RG_MIULE_SE-4_2021-09-14_1250
SE	MIULE	660489	5493082	2021	4	2021-09-15	12:50	Quinoline	<0.10	mg/kg	ALS	RG_MIULE_SE-4_2021-09-14_1250
SE	MIULE	660489	5493082	2021	4	2021-09-15	12:50	d10-Acenaphthene	75	%	ALS	RG_MIULE_SE-4_2021-09-14_1250
SE	MIULE	660489	5493082	2021	4	2021-09-15	12:50	d12-Chrysene	96	%	ALS	RG_MIULE_SE-4_2021-09-14_1250
SE	MIULE	660489	5493082	2021	4	2021-09-15	12:50	d8-Naphthalene	75	%	ALS	RG_MIULE_SE-4_2021-09-14_1250
SE	MIULE	660489	5493082	2021	4	2021-09-15	12:50	d10-Phenanthrene	90	%	ALS	RG_MIULE_SE-4_2021-09-14_1250
SE	MIULE	660489	5493082	2021	4	2021-09-15	12:50	IACR:Coarse	0.062	-	ALS	RG_MIULE_SE-4_2021-09-14_1250
SE	MIULE	660489	5493082	2021	4	2021-09-15	12:50	IACR:Fine	<0.12	-	ALS	RG_MIULE_SE-4_2021-09-14_1250
SE	MIULE	660489	5493082	2021	4	2021-09-15	12:50	B(a)P Total Potency Equivalent	<0.096	mg/kg	ALS	RG_MIULE_SE-4_2021-09-14_1250
SE	MIULE	660489	5493082	2021	4	2021-09-15	12:50	IACR (CCME)	<1.1	-	ALS	RG_MIULE_SE-4_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	Moisture	38	%	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	pH (1:2 soil:water)	8.0	pН	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	% Gravel (>2 mm)	31	%	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	% Sand (2.00 mm - 1.00 mm)	9.7	%	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	% Sand (1.00 mm - 0.50 mm)	14	%	ALS	RG_MIULE_SE-5_2021-09-14_1250

WSP Canada Inc. Page 233 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Table I-	1: Sediment Chem			CMm LAEMP	Sampling St	ations, 2012 to	2022		_	_		
Туре	Station	Location	(UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
Type	Station	Easting	Northing	i cai	Replicate	Date	Tille	Allalyte	Result	Oilit	Lab	Sample ID
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	% Sand (0.50 mm - 0.25 mm)	14	%	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	% Sand (0.25 mm - 0.125 mm)	9.8	%	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	% Sand (0.125 mm - 0.063 mm)	5.7	%	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	% Silt (0.063 mm - 0.0312 mm)	5.8	%	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	% Silt (0.031 mm - 0.004 mm)	7.9	%	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	% Clay (<4 μm)	2.1	%	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	Texture	Loamy sand	-	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	Total Organic Carbon	2.7	%	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	Aluminum (Al)	6,780	mg/kg	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	Antimony (Sb)	0.72	mg/kg	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	Arsenic (As)	7.9	mg/kg	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	Barium (Ba)	147	mg/kg	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	Beryllium (Be)	0.68	mg/kg	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	Bismuth (Bi)	<0.20	mg/kg	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	Boron (B)	6.4	mg/kg	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	Cadmium (Cd)	0.93	mg/kg	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	Calcium (Ca)	50,500	mg/kg	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	Chromium (Cr)	11	mg/kg	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	Cobalt (Co)	11	mg/kg	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	Copper (Cu)	13	mg/kg	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	Iron (Fe)	17,500	mg/kg	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	Lead (Pb)	8.3	mg/kg	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	Lithium (Li)	9.7	mg/kg	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	Magnesium (Mg)	5,580	mg/kg	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	Manganese (Mn)	298	mg/kg	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	Mercury (Hg)	0.039	mg/kg	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	Molybdenum (Mo)	1.7	mg/kg	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	Nickel (Ni)	36	mg/kg	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	Phosphorus (P)	1,220	mg/kg	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	Potassium (K)	1,440	mg/kg	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	Selenium (Se)	1.1	mg/kg	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	Silver (Ag)	0.11	mg/kg	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	Sodium (Na)	89	mg/kg	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	Strontium (Sr)	82	mg/kg	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	Sulfur (S)	<1000	mg/kg	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	Thallium (TI)	0.34	mg/kg	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	Tin (Sn)	<2.0	mg/kg	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	Titanium (Ti)	14	mg/kg	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	Tungsten (W)	<0.50	mg/kg	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	Uranium (Ù)	0.79	mg/kg	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	Vanadium (V)	27	mg/kg	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	Zinc (Zn)	110	mg/kg	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	Acenaphthene	<0.0050	mg/kg	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	Acenaphthylene	<0.0050	mg/kg	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	Acridine	<0.010	mg/kg	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	Anthracene	<0.0040	mg/kg	ALS	RG MIULE SE-5 2021-09-14 1250

WSP Canada Inc. Page 234 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

		non y Data Con	ootoa nom tno	CMm LAEMP S	Jumping Ott	ations, zo iz to	LULL					
Туре	Station	Location	ı (UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
Type	Station	Easting	Northing	i cai	Replicate	Date	Tille	Analyte	Result	Oilit	Lab	Sample ID
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	Benz(a)anthracene	<0.010	mg/kg	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	Benzo(a)pyrene	<0.010	mg/kg	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	Benzo(b&j)fluoranthene	0.013	mg/kg	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	Benzo(b+j+k)fluoranthene	<0.015	mg/kg	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	Benzo(e)pyrene	0.016	mg/kg	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	Benzo(g_h_i)perylene	<0.010	mg/kg	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	Benzo(k)fluoranthene	<0.010	mg/kg	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	Chrysene	<0.010	mg/kg	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	Dibenz(a_h)anthracene	<0.0050	mg/kg	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	Fluoranthene	0.01	mg/kg	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	Fluorene	<0.010	mg/kg	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	Indeno(1,2,3-c,d)pyrene	<0.010	mg/kg	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	1-Methylnaphthalene	0.052	mg/kg	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	2-Methylnaphthalene	0.072	mg/kg	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	Naphthalene	0.032	mg/kg	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	Perylene	<0.010	mg/kg	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	Phenanthrene	0.071	mg/kg	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	Pyrene	0.011	mg/kg	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	Quinoline	<0.050	mg/kg	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	d10-Acenaphthene	75	%	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	d12-Chrysene	89	%	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	d8-Naphthalene	79	%	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	d10-Phenanthrene	85	%	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	IACR:Coarse	<0.050	-	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	IACR:Fine	<0.050	-	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	B(a)P Total Potency Equivalent	<0.020	mg/kg	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIULE	660489	5493082	2021	5	2021-09-15	12:50	IACR (CCME)	0.15	-	ALS	RG_MIULE_SE-5_2021-09-14_1250
SE	MIDCO	667764	5487585	2021	1	2021-09-15	13:30	Moisture	82	%	ALS	RG_MIDCO_SE-1_2021-09-15_1330
SE	MIDCO	667764	5487585	2021	1	2021-09-15	13:30	pH (1:2 soil:water)	8.0	рН	ALS	RG_MIDCO_SE-1_2021-09-15_1330
SE	MIDCO	667764	5487585	2021	1	2021-09-15	13:30	% Gravel (>2 mm)	6.7	%	ALS	RG_MIDCO_SE-1_2021-09-15_1330
SE	MIDCO	667764	5487585	2021	1	2021-09-15	13:30	% Sand (2.00 mm - 1.00 mm)	24	%	ALS	RG_MIDCO_SE-1_2021-09-15_1330
SE	MIDCO	667764	5487585	2021	1	2021-09-15	13:30	% Sand (1.00 mm - 0.50 mm)	20	%	ALS	RG_MIDCO_SE-1_2021-09-15_1330
SE	MIDCO	667764	5487585	2021	1	2021-09-15	13:30	% Sand (0.50 mm - 0.25 mm)	6.5	%	ALS	RG_MIDCO_SE-1_2021-09-15_1330
SE	MIDCO	667764	5487585	2021	1	2021-09-15	13:30	% Sand (0.25 mm - 0.125 mm)	3.7	%	ALS	RG_MIDCO_SE-1_2021-09-15_1330
SE	MIDCO	667764	5487585	2021	1	2021-09-15	13:30	% Sand (0.125 mm - 0.063 mm)	4.7	%	ALS	RG_MIDCO_SE-1_2021-09-15_1330
SE	MIDCO	667764	5487585	2021	1	2021-09-15	13:30	% Silt (0.063 mm - 0.0312 mm)	9.2	%	ALS	RG_MIDCO_SE-1_2021-09-15_1330
SE	MIDCO	667764	5487585	2021	1	2021-09-15	13:30	% Silt (0.031 mm - 0.004 mm)	19	%	ALS	RG_MIDCO_SE-1_2021-09-15_1330
SE	MIDCO	667764	5487585	2021	1	2021-09-15	13:30	% Clay (<4 μm)	6.7	%	ALS	RG_MIDCO_SE-1_2021-09-15_1330
SE	MIDCO	667764	5487585	2021	1	2021-09-15	13:30	Texture	Sandy loam	-	ALS	RG_MIDCO_SE-1_2021-09-15_1330
SE	MIDCO	667764	5487585	2021	1	2021-09-15	13:30	Total Organic Carbon	2.4	%	ALS	RG_MIDCO_SE-1_2021-09-15_1330
SE	MIDCO	667764	5487585	2021	1	2021-09-15	13:30	Aluminum (AI)	6,770	mg/kg	ALS	RG_MIDCO_SE-1_2021-09-15_1330
SE	MIDCO	667764	5487585	2021	1	2021-09-15	13:30	Antimony (Sb)	0.29	mg/kg	ALS	RG_MIDCO_SE-1_2021-09-15_1330
SE	MIDCO	667764	5487585	2021	1	2021-09-15	13:30	Arsenic (As)	5.5	mg/kg	ALS	RG_MIDCO_SE-1_2021-09-15_1330
SE	MIDCO	667764	5487585	2021	1	2021-09-15	13:30	Barium (Ba)	135	mg/kg	ALS	RG_MIDCO_SE-1_2021-09-15_1330
SE	MIDCO	667764	5487585	2021	1	2021-09-15	13:30	Beryllium (Be)	0.49	mg/kg	ALS	RG_MIDCO_SE-1_2021-09-15_1330
SE	MIDCO	667764	5487585	2021	1	2021-09-15	13:30	Bismuth (Bi)	<0.20	mg/kg	ALS	RG_MIDCO_SE-1_2021-09-15_1330
SE	MIDCO	667764	5487585	2021	1	2021-09-15	13:30	Boron (B)	7.0	mg/kg	ALS	RG_MIDCO_SE-1_2021-09-15_1330

WSP Canada Inc. Page 235 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

'vne	Station	Location	(UTMs) ^(a)	Veer	Poplicate	Doto	Time	Analyte	Popult	Unit		Laboratory Information
ype	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MIDCO	667764	5487585	2021	1	2021-09-15	13:30	Cadmium (Cd)	1.3	mg/kg	ALS	RG MIDCO SE-1 2021-09-15 1330
SE.	MIDCO	667764	5487585	2021		2021-09-15	13:30	Calcium (Ca)	84,900	mg/kg	ALS	RG MIDCO SE-1 2021-09-15 1330
SE	MIDCO	667764	5487585	2021		2021-09-15	13:30	Chromium (Cr)	9.4	mg/kg	ALS	RG_MIDCO_SE-1_2021-09-15_1330
SE	MIDCO	667764	5487585	2021		2021-09-15	13:30	Cobalt (Co)	83	mg/kg	ALS	RG MIDCO SE-1 2021-09-15 1330
SE	MIDCO	667764	5487585	2021	1	2021-09-15	13:30	Copper (Cu)	14	mg/kg	ALS	RG_MIDCO_SE-1_2021-09-15_1330
SE	MIDCO	667764	5487585	2021		2021-09-15	13:30	Iron (Fe)	13,900	mg/kg	ALS	RG MIDCO SE-1 2021-09-15 1330
SE.	MIDCO	667764	5487585	2021		2021-09-15	13:30	Lead (Pb)	8.8	mg/kg	ALS	RG_MIDCO_SE-1_2021-09-15_1330
SE	MIDCO	667764	5487585	2021		2021-09-15	13:30	Lithium (Li)	11	mg/kg	ALS	RG_MIDCO_SE-1_2021-09-15_1330
SE	MIDCO	667764	5487585	2021		2021-09-15	13:30	Magnesium (Mg)	6,050	mg/kg	ALS	RG_MIDCO_SE-1_2021-09-15_1330
SE.	MIDCO	667764	5487585	2021		2021-09-15	13:30	Manganese (Mn)	1,040	mg/kg	ALS	RG MIDCO SE-1 2021-09-15 1330
SE	MIDCO	667764	5487585	2021		2021-09-15	13:30	Mercury (Hg)	0.025	mg/kg	ALS	RG_MIDCO_SE-1_2021-09-15_1330
SE	MIDCO	667764	5487585	2021		2021-09-15	13:30	Molybdenum (Mo)	1.4	mg/kg	ALS	RG MIDCO SE-1 2021-09-15 1330
SE	MIDCO	667764	5487585	2021		2021-09-15	13:30	Nickel (Ni)	125	mg/kg	ALS	RG MIDCO SE-1 2021-09-15 1330
E	MIDCO	667764	5487585	2021		2021-09-15	13:30	Phosphorus (P)	1,010	mg/kg	ALS	RG_MIDCO_SE-1_2021-09-15_1330
E	MIDCO	667764	5487585	2021		2021-09-15	13:30	Potassium (K)	1,450	mg/kg	ALS	RG_MIDCO_SE-1_2021-09-15_1330
SE	MIDCO	667764	5487585	2021		2021-09-15	13:30	Selenium (Se)	1.8	mg/kg	ALS	RG_MIDCO_SE-1_2021-09-15_1330
E	MIDCO	667764	5487585	2021		2021-09-15	13:30	Silver (Ag)	<0.10	mg/kg	ALS	RG_MIDCO_SE-1_2021-09-15_1330
SE.	MIDCO	667764	5487585	2021		2021-09-15	13:30	Sodium (Na)	208	mg/kg	ALS	RG MIDCO SE-1 2021-09-15 1330
SE	MIDCO	667764	5487585	2021	1	2021-09-15	13:30	Strontium (Sr)	130	mg/kg	ALS	RG_MIDCO_SE-1_2021-09-15_1330
E	MIDCO	667764	5487585	2021	1	2021-09-15	13:30	Sulfur (S)	2,200	mg/kg	ALS	RG_MIDCO_SE-1_2021-09-15_1330
E E	MIDCO	667764	5487585	2021		2021-09-15	13:30	Thallium (TI)	0.26	mg/kg	ALS	RG MIDCO SE-1 2021-09-15 1330
E	MIDCO	667764	5487585	2021		2021-09-15	13:30	Tin (Sn)	<2.0	mg/kg	ALS	RG_MIDCO_SE-1_2021-09-15_1330
SE.	MIDCO	667764	5487585	2021		2021-09-15	13:30	Titanium (Ti)	6.1	mg/kg	ALS	RG_MIDCO_SE-1_2021-09-15_1330
SE.	MIDCO	667764	5487585	2021		2021-09-15	13:30	Tungsten (W)	<0.50	mg/kg	ALS	RG MIDCO SE-1 2021-09-15 1330
SE.	MIDCO	667764	5487585	2021		2021-09-15	13:30	Uranium (U)	0.8	mg/kg	ALS	RG MIDCO SE-1 2021-09-15 1330
SE	MIDCO	667764	5487585	2021		2021-09-15	13:30	Vanadium (V)	16	mg/kg	ALS	RG MIDCO SE-1 2021-09-15 1330
SE	MIDCO	667764	5487585	2021		2021-09-15	13:30	Zinc (Zn)	120	mg/kg	ALS	RG_MIDCO_SE-1_2021-09-15_1330
SE	MIDCO	667764	5487585	2021		2021-09-15	13:30	Zirconium (Zr)	<1.0	mg/kg	ALS	RG MIDCO SE-1 2021-09-15 1330
SE	MIDCO	667764	5487585	2021		2021-09-15	13:30	Acenaphthene	<0.025	mg/kg	ALS	RG MIDCO SE-1 2021-09-15 1330
SE.	MIDCO	667764	5487585	2021		2021-09-15	13:30	Acenaphthylene	<0.013	mg/kg	ALS	RG MIDCO SE-1 2021-09-15 1330
SE.	MIDCO	667764	5487585	2021		2021-09-15	13:30	Acridine	<0.040	mg/kg	ALS	RG MIDCO SE-1 2021-09-15 1330
SE	MIDCO	667764	5487585	2021		2021-09-15	13:30	Anthracene	<0.010	mg/kg	ALS	RG MIDCO SE-1 2021-09-15 1330
SE	MIDCO	667764	5487585	2021		2021-09-15	13:30	Benz(a)anthracene	0.033	mg/kg	ALS	RG MIDCO SE-1 2021-09-15 1330
SE	MIDCO	667764	5487585	2021		2021-09-15	13:30	Benzo(a)pyrene	<0.025	mg/kg	ALS	RG MIDCO SE-1 2021-09-15 1330
SE	MIDCO	667764	5487585	2021		2021-09-15	13:30	Benzo(b&j)fluoranthene	0.099	mg/kg	ALS	RG MIDCO SE-1 2021-09-15 1330
SE	MIDCO	667764	5487585	2021		2021-09-15	13:30	Benzo(b+j+k)fluoranthene	0.099	mg/kg	ALS	RG MIDCO SE-1 2021-09-15 1330
SE	MIDCO	667764	5487585	2021		2021-09-15	13:30	Benzo(e)pyrene	0.11	mg/kg	ALS	RG MIDCO SE-1 2021-09-15 1330
SE	MIDCO	667764	5487585	2021		2021-09-15	13:30	Benzo(g_h_i)perylene	0.038	mg/kg	ALS	RG MIDCO SE-1 2021-09-15 1330
SE.	MIDCO	667764	5487585	2021		2021-09-15	13:30	Benzo(k)fluoranthene	<0.025	mg/kg	ALS	RG MIDCO SE-1 2021-09-15 1330
E E	MIDCO	667764	5487585	2021		2021-09-15	13:30	Chrysene	0.12	mg/kg	ALS	RG MIDCO SE-1 2021-09-15 1330
SE	MIDCO	667764	5487585	2021		2021-09-15	13:30	Dibenz(a h)anthracene	<0.013	mg/kg	ALS	RG MIDCO SE-1 2021-09-15 1330
E E	MIDCO	667764	5487585	2021		2021-09-15	13:30	Fluoranthene	<0.030	mg/kg	ALS	RG MIDCO SE-1 2021-09-15 1330
SE	MIDCO	667764	5487585	2021		2021-09-15	13:30	Fluorene	0.055	mg/kg	ALS	RG MIDCO SE-1 2021-09-15 1330
SE SE	MIDCO	667764	5487585	2021		2021-09-15	13:30	Indeno(1,2,3-c,d)pyrene	<0.025	mg/kg	ALS	RG MIDCO SE-1 2021-09-15 1330
SE.	MIDCO	667764	5487585	2021		2021-09-15	13:30	1-Methylnaphthalene	0.4	mg/kg	ALS	RG MIDCO SE-1 2021-09-15 1330
_	MIDCO	667764	5487585	2021		2021-09-15	13:30	2-Methylnaphthalene	0.61	mg/kg	ALS	RG MIDCO SE-1 2021-09-15 1330
SE												

WSP Canada Inc. Page 236 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	Station		(UTMs) ^(a)		Replicate			Analyte	- Popult	Unit		Laboratory Information
Type	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MIDCO	667764	5487585	2021	1	2021-09-15	13:30	Perylene	<0.025	mg/kg	ALS	RG_MIDCO_SE-1_2021-09-15_1330
SE	MIDCO	667764	5487585	2021	1	2021-09-15	13:30	Phenanthrene	0.4	mg/kg	ALS	RG_MIDCO_SE-1_2021-09-15_1330
SE	MIDCO	667764	5487585	2021	1	2021-09-15	13:30	Pyrene	0.044	mg/kg	ALS	RG_MIDCO_SE-1_2021-09-15_1330
SE	MIDCO	667764	5487585	2021	1	2021-09-15	13:30	Quinoline	<0.025	mg/kg	ALS	RG_MIDCO_SE-1_2021-09-15_1330
SE	MIDCO	667764	5487585	2021	1	2021-09-15	13:30	d10-Acenaphthene	72	%	ALS	RG_MIDCO_SE-1_2021-09-15_1330
SE	MIDCO	667764	5487585	2021	1	2021-09-15	13:30	d12-Chrysene	89	%	ALS	RG_MIDCO_SE-1_2021-09-15_1330
SE	MIDCO	667764	5487585	2021	1	2021-09-15	13:30	d8-Naphthalene	74	%	ALS	RG_MIDCO_SE-1_2021-09-15_1330
SE	MIDCO	667764	5487585	2021	1	2021-09-15	13:30	d10-Phenanthrene	86	%	ALS	RG_MIDCO_SE-1_2021-09-15_1330
SE	MIDCO	667764	5487585	2021	1	2021-09-15	13:30	IACR:Coarse	<0.050	-	ALS	RG_MIDCO_SE-1_2021-09-15_1330
SE	MIDCO	667764	5487585	2021	1	2021-09-15	13:30	IACR:Fine	0.064	-	ALS	RG_MIDCO_SE-1_2021-09-15_1330
SE	MIDCO	667764	5487585	2021	1	2021-09-15	13:30	B(a)P Total Potency Equivalent	0.036	mg/kg	ALS	RG_MIDCO_SE-1_2021-09-15_1330
SE	MIDCO	667764	5487585	2021	1	2021-09-15	13:30	IACR (CCME)	0.92	-	ALS	RG_MIDCO_SE-1_2021-09-15_1330
SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	Moisture	83	%	ALS	RG_MIDCO_SE-2_2021-09-15_1330
SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	pH (1:2 soil:water)	8.0	рН	ALS	RG_MIDCO_SE-2_2021-09-15_1330
SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	% Gravel (>2 mm)	1.8	%	ALS	RG_MIDCO_SE-2_2021-09-15_1330
SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	% Sand (2.00 mm - 1.00 mm)	4.0	%	ALS	RG_MIDCO_SE-2_2021-09-15_1330
SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	% Sand (1.00 mm - 0.50 mm)	5.6	%	ALS	RG_MIDCO_SE-2_2021-09-15_1330
SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	% Sand (0.50 mm - 0.25 mm)	4.8	%	ALS	RG_MIDCO_SE-2_2021-09-15_1330
SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	% Sand (0.25 mm - 0.125 mm)	4.6	%	ALS	RG_MIDCO_SE-2_2021-09-15_1330
SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	% Sand (0.125 mm - 0.063 mm)	6.6	%	ALS	RG_MIDCO_SE-2_2021-09-15_1330
SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	% Silt (0.063 mm - 0.0312 mm)	26	%	ALS	RG_MIDCO_SE-2_2021-09-15_1330
SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	% Silt (0.031 mm - 0.004 mm)	38	%	ALS	RG_MIDCO_SE-2_2021-09-15_1330
SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	% Clay (<4 μm)	8.4	%	ALS	RG_MIDCO_SE-2_2021-09-15_1330
SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	Texture	Silt loam	-	ALS	RG_MIDCO_SE-2_2021-09-15_1330
SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	Total Organic Carbon	5.3	%	ALS	RG_MIDCO_SE-2_2021-09-15_1330
SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	Aluminum (AI)	8,180	mg/kg	ALS	RG_MIDCO_SE-2_2021-09-15_1330
SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	Antimony (Sb)	0.26	mg/kg	ALS	RG_MIDCO_SE-2_2021-09-15_1330
SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	Arsenic (As)	5.5	mg/kg	ALS	RG_MIDCO_SE-2_2021-09-15_1330
SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	Barium (Ba)	152	mg/kg	ALS	RG_MIDCO_SE-2_2021-09-15_1330
SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	Beryllium (Be)	0.59	mg/kg	ALS	RG_MIDCO_SE-2_2021-09-15_1330
SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	Bismuth (Bi)	<0.20	mg/kg	ALS	RG_MIDCO_SE-2_2021-09-15_1330
SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	Boron (B)	10	mg/kg	ALS	RG_MIDCO_SE-2_2021-09-15_1330
SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	Cadmium (Cd)	1.3	mg/kg	ALS	RG_MIDCO_SE-2_2021-09-15_1330
SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	Calcium (Ca)	106,000	mg/kg	ALS	RG_MIDCO_SE-2_2021-09-15_1330
SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	Chromium (Cr)	11	mg/kg	ALS	RG_MIDCO_SE-2_2021-09-15_1330
SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	Cobalt (Co)	75	mg/kg	ALS	RG_MIDCO_SE-2_2021-09-15_1330
SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	Copper (Cu)	15	mg/kg	ALS	RG_MIDCO_SE-2_2021-09-15_1330
SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	Iron (Fe)	13,000	mg/kg	ALS	RG_MIDCO_SE-2_2021-09-15_1330
SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	Lead (Pb)	8.2	mg/kg	ALS	RG_MIDCO_SE-2_2021-09-15_1330
SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	Lithium (Li)	12	mg/kg	ALS	RG_MIDCO_SE-2_2021-09-15_1330
SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	Magnesium (Mg)	6,930	mg/kg	ALS	RG_MIDCO_SE-2_2021-09-15_1330
SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	Manganese (Mn)	703	mg/kg	ALS	RG_MIDCO_SE-2_2021-09-15_1330
SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	Mercury (Hg)	0.022	mg/kg	ALS	RG_MIDCO_SE-2_2021-09-15_1330
SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	Molybdenum (Mo)	1.3	mg/kg	ALS	RG_MIDCO_SE-2_2021-09-15_1330
SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	Nickel (Ni)	120	mg/kg	ALS	RG_MIDCO_SE-2_2021-09-15_1330
SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	Phosphorus (P)	1,170	mg/kg	ALS	RG_MIDCO_SE-2_2021-09-15_1330
SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	Potassium (K)	1,940	mg/kg	ALS	RG_MIDCO_SE-2_2021-09-15_1330

WSP Canada Inc. Page 237 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Type	Station	Location	ı (UTMs) ^(a)	Vacr	Donlingto	Doto	Tipe	Analyta	Dogult -	Unit		Laboratory Information
Гуре	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	Selenium (Se)	2.7	mg/kg	ALS	RG MIDCO SE-2 2021-09-15 1330
SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	Silver (Ag)	<0.10	mg/kg	ALS	RG MIDCO SE-2 2021-09-15 1330
SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	Sodium (Na)	230	mg/kg	ALS	RG MIDCO SE-2 2021-09-15 1330
SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	Strontium (Sr)	148	mg/kg	ALS	RG MIDCO SE-2 2021-09-15 1330
SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	Sulfur (S)	2,600	mg/kg	ALS	RG MIDCO SE-2 2021-09-15 1330
SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	Thallium (TI)	0.26	mg/kg	ALS	RG MIDCO SE-2 2021-09-15 1330
SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	Tin (Sn)	<2.0	mg/kg	ALS	RG MIDCO SE-2 2021-09-15 1330
SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	Titanium (Ti)	17	mg/kg	ALS	RG MIDCO SE-2 2021-09-15 1330
SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	Tungsten (W)	<0.50	mg/kg	ALS	RG MIDCO SE-2 2021-09-15 1330
SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	Uranium (U)	0.86	mg/kg	ALS	RG MIDCO SE-2 2021-09-15 1330
SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	Vanadium (V)	19	mg/kg	ALS	RG MIDCO SE-2 2021-09-15 1330
SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	Zinc (Zn)	120	mg/kg	ALS	RG MIDCO SE-2 2021-09-15 1330
SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	Zirconium (Zr)	<1.0	mg/kg	ALS	RG MIDCO SE-2 2021-09-15 1330
SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	Acenaphthene	<0.035	mg/kg	ALS	RG MIDCO SE-2 2021-09-15 1330
SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	Acenaphthylene	<0.013	mg/kg	ALS	RG MIDCO SE-2 2021-09-15 1330
SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	Acridine	<0.050	mg/kg	ALS	RG MIDCO SE-2 2021-09-15 1330
SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	Anthracene	<0.010	mg/kg	ALS	RG MIDCO SE-2 2021-09-15 1330
SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	Benz(a)anthracene	0.034	mg/kg	ALS	RG MIDCO SE-2 2021-09-15 1330
SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	Benzo(a)pyrene	<0.025	mg/kg	ALS	RG MIDCO SE-2 2021-09-15 1330
SE SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	Benzo(b&j)fluoranthene	0.11	mg/kg	ALS	RG MIDCO SE-2 2021-09-15 1330
SE SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	Benzo(b+j+k)fluoranthene	0.11	mg/kg	ALS	RG MIDCO SE-2 2021-09-15 1330
SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	Benzo(e)pyrene	0.11	mg/kg	ALS	RG MIDCO SE-2 2021-09-15 1330
SE SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	Benzo(g_h_i)perylene	0.048	mg/kg	ALS	RG MIDCO SE-2 2021-09-15 1330
SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	Benzo(k)fluoranthene	<0.025	mg/kg	ALS	RG MIDCO SE-2 2021-09-15 1330
SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	Chrysene	0.088	mg/kg	ALS	RG MIDCO SE-2 2021-09-15 1330
SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	Dibenz(a h)anthracene	<0.013	mg/kg	ALS	RG MIDCO SE-2 2021-09-15 1330
SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	Fluoranthene	0.033	mg/kg	ALS	RG MIDCO SE-2 2021-09-15 1330
SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	Fluorene	0.05	mg/kg	ALS	RG MIDCO SE-2 2021-09-15 1330
SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	Indeno(1,2,3-c,d)pyrene	<0.025	mg/kg	ALS	RG MIDCO SE-2 2021-09-15 1330
SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	1-Methylnaphthalene	0.48	mg/kg	ALS	RG MIDCO SE-2 2021-09-15 1330
SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	2-Methylnaphthalene	0.75	mg/kg	ALS	RG MIDCO SE-2 2021-09-15 1330
SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	Naphthalene	0.79	mg/kg	ALS	RG MIDCO SE-2 2021-09-15 1330
SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	Perylene	<0.025	mg/kg	ALS	RG MIDCO SE-2 2021-09-15 1330
SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	Phenanthrene	0.48	mg/kg	ALS	RG MIDCO SE-2 2021-09-15 1330
SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	Pyrene	<0.060	mg/kg	ALS	RG MIDCO SE-2 2021-09-15 1330
SE SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	Quinoline	<0.025	mg/kg	ALS	RG MIDCO SE-2 2021-09-15 1330
SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	d10-Acenaphthene	72	%	ALS	RG MIDCO SE-2 2021-09-15 1330
SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	d12-Chrysene	88	%	ALS	RG MIDCO SE-2 2021-09-15 1330
SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	d8-Naphthalene	74	%	ALS	RG MIDCO SE-2 2021-09-15 1330
SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	d10-Phenanthrene	81	%	ALS	RG MIDCO SE-2 2021-09-15 1330
SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	IACR:Coarse	<0.050	/0	ALS	RG MIDCO SE-2 2021-09-15 1330
SE	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	IACR:Fine	0.066	-	ALS	RG MIDCO SE-2 2021-09-15 1330
SE		667740			2				_	- ma/ka		
SE SE	MIDCO		5487632	2021	+	2021-09-15	13:30	B(a)P Total Potency Equivalent	0.037	mg/kg	ALS	RG_MIDCO_SE-2_2021-09-15_1330
	MIDCO	667740	5487632	2021	2	2021-09-15	13:30	IACR (CCME)	0.96	0/	ALS	RG_MIDCO_SE-2_2021-09-15_1330
SE	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	Moisture	59	% nU	ALS	RG_MIDCO_SE-3_2021-09-15_1330
SE	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	pH (1:2 soil:water)	8.3	pH	ALS	RG_MIDCO_SE-3_2021-09-15_1330
SE	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	% Gravel (>2 mm)	<1.0	%	ALS	RG_MIDCO_SE-3_2021-09-15_1330

WSP Canada Inc. Page 238 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	Ctation	Location	າ (UTMs) ^(a)	Voca	Doubleste	Doto	Time	Analysis	Beeult	Half		Laboratory Information
ype	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
E	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	% Sand (2.00 mm - 1.00 mm)	<1.0	%	ALS	RG MIDCO SE-3 2021-09-15 1330
E	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	% Sand (1.00 mm - 0.50 mm)	3.2	%	ALS	RG MIDCO SE-3 2021-09-15 1330
SE SE	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	% Sand (0.50 mm - 0.25 mm)	2.6	%	ALS	RG MIDCO SE-3 2021-09-15 1330
SE SE	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	% Sand (0.25 mm - 0.125 mm)	4.9	%	ALS	RG_MIDCO_SE-3_2021-09-15_1330
SE	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	% Sand (0.125 mm - 0.063 mm)	15	%	ALS	RG MIDCO SE-3 2021-09-15 1330
SE SE	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	% Silt (0.063 mm - 0.0312 mm)	28	%	ALS	RG MIDCO SE-3 2021-09-15 1330
SE	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	% Silt (0.031 mm - 0.004 mm)	37	%	ALS	RG MIDCO SE-3 2021-09-15 1330
SE SE	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	% Clay (<4 μm)	7.8	%	ALS	RG MIDCO SE-3 2021-09-15 1330
SE	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	Texture	Silt loam	-	ALS	RG_MIDCO_SE-3_2021-09-15_1330
SE SE	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	Total Organic Carbon	3.2	%	ALS	RG MIDCO SE-3 2021-09-15 1330
E E	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	Aluminum (Al)	13,000	mg/kg	ALS	RG MIDCO SE-3 2021-09-15 1330
E E	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	Antimony (Sb)	0.4	mg/kg	ALS	RG MIDCO SE-3 2021-09-15 1330
E E	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	Arsenic (As)	7.7	mg/kg	ALS	RG MIDCO SE-3 2021-09-15 1330
E	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	Barium (Ba)	127	mg/kg	ALS	RG MIDCO SE-3 2021-09-15 1330
E	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	Beryllium (Be)	0.82	mg/kg	ALS	RG MIDCO SE-3 2021-09-15 1330
SE	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	Bismuth (Bi)	<0.20	mg/kg	ALS	RG MIDCO SE-3 2021-09-15 1330
SE	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	Boron (B)	13	mg/kg	ALS	RG MIDCO SE-3 2021-09-15 1330
SE	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	Cadmium (Cd)	1.4	mg/kg	ALS	RG MIDCO SE-3 2021-09-15 1330
E E	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	Calcium (Ca)	36,400	mg/kg	ALS	RG MIDCO SE-3 2021-09-15 1330
E	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	Chromium (Cr)	17	mg/kg	ALS	RG MIDCO SE-3 2021-09-15 1330
E	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	Cobalt (Co)	32		ALS	RG MIDCO SE-3 2021-09-15 1330
E	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	` '	18	mg/kg	ALS	RG MIDCO SE-3 2021-09-15 1330
					_			Copper (Cu)		mg/kg		
E	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	Iron (Fe)	19,400	mg/kg	ALS	RG_MIDCO_SE-3_2021-09-15_1330
E	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	Lead (Pb)	11	mg/kg	ALS	RG_MIDCO_SE-3_2021-09-15_1330
E	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	Lithium (Li)	19	mg/kg	ALS	RG_MIDCO_SE-3_2021-09-15_1330
E .	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	Magnesium (Mg)	7,260	mg/kg	ALS	RG_MIDCO_SE-3_2021-09-15_1330
E .	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	Manganese (Mn)	467	mg/kg	ALS	RG_MIDCO_SE-3_2021-09-15_1330
SE .	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	Mercury (Hg)	0.024	mg/kg	ALS	RG_MIDCO_SE-3_2021-09-15_1330
E .	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	Molybdenum (Mo)	2.2	mg/kg	ALS	RG_MIDCO_SE-3_2021-09-15_1330
SE .	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	Nickel (Ni)	77	mg/kg	ALS	RG_MIDCO_SE-3_2021-09-15_1330
šΕ	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	Phosphorus (P)	1,310	mg/kg	ALS	RG_MIDCO_SE-3_2021-09-15_1330
SE	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	Potassium (K)	3,030	mg/kg	ALS	RG_MIDCO_SE-3_2021-09-15_1330
SE .	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	Selenium (Se)	2.6	mg/kg	ALS	RG_MIDCO_SE-3_2021-09-15_1330
E	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	Silver (Ag)	0.11	mg/kg	ALS	RG_MIDCO_SE-3_2021-09-15_1330
E	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	Sodium (Na)	137	mg/kg	ALS	RG_MIDCO_SE-3_2021-09-15_1330
E	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	Strontium (Sr)	74	mg/kg	ALS	RG_MIDCO_SE-3_2021-09-15_1330
E	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	Sulfur (S)	1,400	mg/kg	ALS	RG_MIDCO_SE-3_2021-09-15_1330
E	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	Thallium (TI)	0.39	mg/kg	ALS	RG_MIDCO_SE-3_2021-09-15_1330
E	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	Tin (Sn)	<2.0	mg/kg	ALS	RG_MIDCO_SE-3_2021-09-15_1330
E	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	Titanium (Ti)	15	mg/kg	ALS	RG_MIDCO_SE-3_2021-09-15_1330
E	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	Tungsten (W)	<0.50	mg/kg	ALS	RG_MIDCO_SE-3_2021-09-15_1330
E	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	Uranium (U)	0.78	mg/kg	ALS	RG_MIDCO_SE-3_2021-09-15_1330
Е	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	Vanadium (V)	28	mg/kg	ALS	RG_MIDCO_SE-3_2021-09-15_1330
Е	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	Zinc (Zn)	146	mg/kg	ALS	RG_MIDCO_SE-3_2021-09-15_1330
E	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_MIDCO_SE-3_2021-09-15_1330
E	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	Acenaphthene	<0.010	mg/kg	ALS	RG_MIDCO_SE-3_2021-09-15_1330
E	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	Acenaphthylene	< 0.0050	mg/kg	ALS	RG MIDCO SE-3 2021-09-15 1330

WSP Canada Inc. Page 239 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Τ	Ctation	Location	(UTMs) ^(a)	Vacu	Danlingto	Doto	Time	Analysis	Decult	Ll _{io} i4		Laboratory Information
Туре	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	Acridine	<0.020	mg/kg	ALS	RG MIDCO SE-3 2021-09-15 1330
SE	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	Anthracene	<0.0040	mg/kg	ALS	RG MIDCO SE-3 2021-09-15 1330
SE	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	Benz(a)anthracene	0.011	mg/kg	ALS	RG MIDCO SE-3 2021-09-15 1330
SE	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	Benzo(a)pyrene	<0.010	mg/kg	ALS	RG MIDCO SE-3 2021-09-15 1330
SE	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	Benzo(b&j)fluoranthene	0.039	mg/kg	ALS	RG MIDCO SE-3 2021-09-15 1330
SE	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	Benzo(b+j+k)fluoranthene	0.039	mg/kg	ALS	RG MIDCO SE-3 2021-09-15 1330
SE	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	Benzo(e)pyrene	0.048	mg/kg	ALS	RG MIDCO SE-3 2021-09-15 1330
SE	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	Benzo(g_h_i)perylene	0.016	mg/kg	ALS	RG MIDCO SE-3 2021-09-15 1330
SE	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	Benzo(k)fluoranthene	<0.010	mg/kg	ALS	RG MIDCO SE-3 2021-09-15 1330
SE	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	Chrysene	0.038	mg/kg	ALS	RG MIDCO SE-3 2021-09-15 1330
SE	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	Dibenz(a h)anthracene	<0.0050	mg/kg	ALS	RG MIDCO SE-3 2021-09-15 1330
SE	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	Fluoranthene	<0.020	mg/kg	ALS	RG MIDCO SE-3 2021-09-15 1330
SE	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	Fluorene	0.025	mg/kg	ALS	RG MIDCO SE-3 2021-09-15 1330
SE	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	Indeno(1,2,3-c,d)pyrene	<0.010	mg/kg	ALS	RG MIDCO SE-3 2021-09-15 1330
SE	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	1-Methylnaphthalene	0.16	mg/kg	ALS	RG MIDCO SE-3 2021-09-15 1330
SE	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	2-Methylnaphthalene	0.10	 	ALS	RG_MIDCO_SE-3_2021-09-15_1330
SE SE	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	Naphthalene	0.093	mg/kg	ALS	RG_MIDCO_SE-3_2021-09-15_1330
SE		+			3					mg/kg		
	MIDCO	667713	5487624	2021		2021-09-15	13:30	Perylene	0.02	mg/kg	ALS	RG_MIDCO_SE-3_2021-09-15_1330
SE	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	Phenanthrene	0.18	mg/kg	ALS	RG_MIDCO_SE-3_2021-09-15_1330
SE SE	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	Pyrene	<0.030	mg/kg	ALS	RG_MIDCO_SE-3_2021-09-15_1330
SE SE	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	Quinoline	<0.050	mg/kg	ALS	RG_MIDCO_SE-3_2021-09-15_1330
SE	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	d10-Acenaphthene	79	%	ALS	RG_MIDCO_SE-3_2021-09-15_1330
SE	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	d12-Chrysene	97	%	ALS	RG_MIDCO_SE-3_2021-09-15_1330
SE	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	d8-Naphthalene	80	%	ALS	RG_MIDCO_SE-3_2021-09-15_1330
SE	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	d10-Phenanthrene	91	%	ALS	RG_MIDCO_SE-3_2021-09-15_1330
SE	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	IACR:Coarse	<0.050	-	ALS	RG_MIDCO_SE-3_2021-09-15_1330
SE	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	IACR:Fine	<0.050	-	ALS	RG_MIDCO_SE-3_2021-09-15_1330
SE	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	B(a)P Total Potency Equivalent	<0.020	mg/kg	ALS	RG_MIDCO_SE-3_2021-09-15_1330
SE	MIDCO	667713	5487624	2021	3	2021-09-15	13:30	IACR (CCME)	0.36	-	ALS	RG_MIDCO_SE-3_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	Moisture	58	%	ALS	RG_MIDCO_SE-4_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	pH (1:2 soil:water)	8.2	рН	ALS	RG_MIDCO_SE-4_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	% Gravel (>2 mm)	1.1	%	ALS	RG_MIDCO_SE-4_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	% Sand (2.00 mm - 1.00 mm)	5.1	%	ALS	RG_MIDCO_SE-4_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	% Sand (1.00 mm - 0.50 mm)	13	%	ALS	RG_MIDCO_SE-4_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	% Sand (0.50 mm - 0.25 mm)	6.2	%	ALS	RG_MIDCO_SE-4_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	% Sand (0.25 mm - 0.125 mm)	5.0	%	ALS	RG_MIDCO_SE-4_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	% Sand (0.125 mm - 0.063 mm)	12	%	ALS	RG_MIDCO_SE-4_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	% Silt (0.063 mm - 0.0312 mm)	21	%	ALS	RG_MIDCO_SE-4_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	% Silt (0.031 mm - 0.004 mm)	29	%	ALS	RG_MIDCO_SE-4_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	% Clay (<4 μm)	7.3	%	ALS	RG_MIDCO_SE-4_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	Texture	Silt loam	-	ALS	RG_MIDCO_SE-4_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	Total Organic Carbon	2.8	%	ALS	RG_MIDCO_SE-4_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	Aluminum (AI)	13,500	mg/kg	ALS	RG_MIDCO_SE-4_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	Antimony (Sb)	0.39	mg/kg	ALS	RG_MIDCO_SE-4_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	Arsenic (As)	7.1	mg/kg	ALS	RG MIDCO SE-4 2021-09-15 1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	Barium (Ba)	134	mg/kg	ALS	RG MIDCO SE-4 2021-09-15 1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	Beryllium (Be)	0.77	mg/kg	ALS	RG MIDCO SE-4 2021-09-15 1330

WSP Canada Inc. Page 240 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Table I-1	l: Sediment Chem			CMm LAEMP	Sampling St	ations, 2012 to	2022					
Туре	Station	Location	(UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
Type	Station	Easting	Northing	i eai	Replicate	Date	Tille	Analyte	Result	Onit	Lab	Sample ID
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	Bismuth (Bi)	<0.20	mg/kg	ALS	RG_MIDCO_SE-4_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	Boron (B)	15	mg/kg	ALS	RG_MIDCO_SE-4_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	Cadmium (Cd)	1.4	mg/kg	ALS	RG_MIDCO_SE-4_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	Calcium (Ca)	37,400	mg/kg	ALS	RG_MIDCO_SE-4_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	Chromium (Cr)	18	mg/kg	ALS	RG_MIDCO_SE-4_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	Cobalt (Co)	33	mg/kg	ALS	RG_MIDCO_SE-4_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	Copper (Cu)	18	mg/kg	ALS	RG_MIDCO_SE-4_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	Iron (Fe)	19,600	mg/kg	ALS	RG_MIDCO_SE-4_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	Lead (Pb)	11	mg/kg	ALS	RG_MIDCO_SE-4_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	Lithium (Li)	20	mg/kg	ALS	RG_MIDCO_SE-4_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	Magnesium (Mg)	7,280	mg/kg	ALS	RG_MIDCO_SE-4_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	Manganese (Mn)	484	mg/kg	ALS	RG_MIDCO_SE-4_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	Mercury (Hg)	0.025	mg/kg	ALS	RG_MIDCO_SE-4_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	Molybdenum (Mo)	2.0	mg/kg	ALS	RG_MIDCO_SE-4_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	Nickel (Ni)	78	mg/kg	ALS	RG_MIDCO_SE-4_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	Phosphorus (P)	1,330	mg/kg	ALS	RG_MIDCO_SE-4_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	Potassium (K)	3,230	mg/kg	ALS	RG_MIDCO_SE-4_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	Selenium (Se)	2.8	mg/kg	ALS	RG_MIDCO_SE-4_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	Silver (Ag)	0.1	mg/kg	ALS	RG_MIDCO_SE-4_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	Sodium (Na)	146	mg/kg	ALS	RG_MIDCO_SE-4_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	Strontium (Sr)	77	mg/kg	ALS	RG_MIDCO_SE-4_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	Sulfur (S)	1,400	mg/kg	ALS	RG_MIDCO_SE-4_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	Thallium (TI)	0.4	mg/kg	ALS	RG_MIDCO_SE-4_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	Tin (Sn)	<2.0	mg/kg	ALS	RG_MIDCO_SE-4_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	Titanium (Ti)	16	mg/kg	ALS	RG_MIDCO_SE-4_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	Tungsten (W)	<0.50	mg/kg	ALS	RG_MIDCO_SE-4_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	Uranium (U)	0.77	mg/kg	ALS	RG_MIDCO_SE-4_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	Vanadium (V)	29	mg/kg	ALS	RG_MIDCO_SE-4_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	Zinc (Zn)	146	mg/kg	ALS	RG_MIDCO_SE-4_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_MIDCO_SE-4_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	Acenaphthene	<0.015	mg/kg	ALS	RG_MIDCO_SE-4_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	Acenaphthylene	<0.0050	mg/kg	ALS	RG_MIDCO_SE-4_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	Acridine	0.015	mg/kg	ALS	RG_MIDCO_SE-4_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	Anthracene	<0.0040	mg/kg	ALS	RG_MIDCO_SE-4_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	Benz(a)anthracene	0.014	mg/kg	ALS	RG_MIDCO_SE-4_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	Benzo(a)pyrene	<0.010	mg/kg	ALS	RG_MIDCO_SE-4_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	Benzo(b&j)fluoranthene	0.04	mg/kg	ALS	RG_MIDCO_SE-4_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	Benzo(b+j+k)fluoranthene	0.04	mg/kg	ALS	RG_MIDCO_SE-4_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	Benzo(e)pyrene	0.05	mg/kg	ALS	RG_MIDCO_SE-4_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	Benzo(g_h_i)perylene	0.019	mg/kg	ALS	RG_MIDCO_SE-4_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	Benzo(k)fluoranthene	<0.010	mg/kg	ALS	RG_MIDCO_SE-4_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	Chrysene	0.06	mg/kg	ALS	RG_MIDCO_SE-4_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	Dibenz(a_h)anthracene	<0.0050	mg/kg	ALS	RG_MIDCO_SE-4_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	Fluoranthene	0.013	mg/kg	ALS	RG_MIDCO_SE-4_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	Fluorene	0.027	mg/kg	ALS	RG MIDCO SE-4_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	Indeno(1,2,3-c,d)pyrene	<0.010	mg/kg	ALS	RG_MIDCO_SE-4_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	1-Methylnaphthalene	0.18	mg/kg		RG MIDCO SE-4 2021-09-15 1330

WSP Canada Inc. Page 241 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	Station		(UTMs) ^(a)	Year	Replicate		Time	Analyte	Result	Unit		Laboratory Information
Type	Station	Easting	Northing	rear	Replicate	Date	Tille	Allalyte	Result	Ullit	Lab	Sample ID
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	2-Methylnaphthalene	0.27	mg/kg	ALS	RG_MIDCO_SE-4_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	Naphthalene	0.1	mg/kg	ALS	RG_MIDCO_SE-4_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	Perylene	0.02	mg/kg	ALS	RG_MIDCO_SE-4_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	Phenanthrene	0.19	mg/kg	ALS	RG_MIDCO_SE-4_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	Pyrene	0.025	mg/kg	ALS	RG_MIDCO_SE-4_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	Quinoline	<0.050	mg/kg	ALS	RG_MIDCO_SE-4_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	d10-Acenaphthene	87	%	ALS	RG_MIDCO_SE-4_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	d12-Chrysene	105	%	ALS	RG_MIDCO_SE-4_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	d8-Naphthalene	88	%	ALS	RG_MIDCO_SE-4_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	d10-Phenanthrene	99	%	ALS	RG_MIDCO_SE-4_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	IACR:Coarse	<0.050	-	ALS	RG_MIDCO_SE-4_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	IACR:Fine	<0.050	-	ALS	RG_MIDCO_SE-4_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	B(a)P Total Potency Equivalent	<0.020	mg/kg	ALS	RG_MIDCO_SE-4_2021-09-15_1330
SE	MIDCO	667690	5487630	2021	4	2021-09-15	13:30	IACR (CCME)	0.38	-	ALS	RG_MIDCO_SE-4_2021-09-15_1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	Moisture	89	%	ALS	RG_MIDCO_SE-5_2021-09-15_1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	pH (1:2 soil:water)	7.9	рН	ALS	RG_MIDCO_SE-5_2021-09-15_1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	% Gravel (>2 mm)	17	%	ALS	RG_MIDCO_SE-5_2021-09-15_1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	% Sand (2.00 mm - 1.00 mm)	8.0	%	ALS	RG_MIDCO_SE-5_2021-09-15_1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	% Sand (1.00 mm - 0.50 mm)	15	%	ALS	RG_MIDCO_SE-5_2021-09-15_1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	% Sand (0.50 mm - 0.25 mm)	13	%	ALS	RG_MIDCO_SE-5_2021-09-15_1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	% Sand (0.25 mm - 0.125 mm)	7.6	%	ALS	RG_MIDCO_SE-5_2021-09-15_1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	% Sand (0.125 mm - 0.063 mm)	6.1	%	ALS	RG_MIDCO_SE-5_2021-09-15_1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	% Silt (0.063 mm - 0.0312 mm)	10	%	ALS	RG_MIDCO_SE-5_2021-09-15_1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	% Silt (0.031 mm - 0.004 mm)	18	%	ALS	RG MIDCO SE-5 2021-09-15 1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	% Clay (<4 μm)	5.8	%	ALS	RG MIDCO SE-5 2021-09-15 1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	Texture	Sandy loam	-	ALS	RG MIDCO SE-5 2021-09-15 1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	Total Organic Carbon	2.9	%	ALS	RG_MIDCO_SE-5_2021-09-15_1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	Aluminum (Al)	10,300	mg/kg	ALS	RG_MIDCO_SE-5_2021-09-15_1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	Antimony (Sb)	0.33	mg/kg	ALS	RG_MIDCO_SE-5_2021-09-15_1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	Arsenic (As)	6.0	mg/kg	ALS	RG_MIDCO_SE-5_2021-09-15_1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	Barium (Ba)	153	mg/kg	ALS	RG_MIDCO_SE-5_2021-09-15_1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	Beryllium (Be)	0.67	mg/kg	ALS	RG_MIDCO_SE-5_2021-09-15_1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	Bismuth (Bi)	<0.20	mg/kg	ALS	RG_MIDCO_SE-5_2021-09-15_1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	Boron (B)	13	mg/kg	ALS	RG_MIDCO_SE-5_2021-09-15_1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	Cadmium (Cd)	1.3	mg/kg	ALS	RG_MIDCO_SE-5_2021-09-15_1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	Calcium (Ca)	82,000	mg/kg	ALS	RG_MIDCO_SE-5_2021-09-15_1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	Chromium (Cr)	14	mg/kg	ALS	RG_MIDCO_SE-5_2021-09-15_1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	Cobalt (Co)	73	mg/kg	ALS	RG_MIDCO_SE-5_2021-09-15_1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	Copper (Cu)	16	mg/kg	ALS	RG_MIDCO_SE-5_2021-09-15_1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	Iron (Fe)	15,300	mg/kg	ALS	RG_MIDCO_SE-5_2021-09-15_1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	Lead (Pb)	9.3	mg/kg	ALS	RG_MIDCO_SE-5_2021-09-15_1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	Lithium (Ĺi)	15	mg/kg	ALS	RG_MIDCO_SE-5_2021-09-15_1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	Magnesium (Mg)	6,730	mg/kg	ALS	RG_MIDCO_SE-5_2021-09-15_1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	Manganese (Mn)	762	mg/kg	ALS	RG MIDCO SE-5 2021-09-15 1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	Mercury (Hg)	0.03	mg/kg	ALS	RG MIDCO SE-5 2021-09-15 1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	Molybdenum (Mo)	1.6	mg/kg	ALS	RG MIDCO SE-5 2021-09-15 1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	Nickel (Ni)	123	mg/kg	ALS	RG MIDCO SE-5 2021-09-15 1330

WSP Canada Inc. Page 242 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Table I-	1: Sediment Chem			CMm LAEMP	Sampling St	ations, 2012 to	2022					
Туре	Station		ı (UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
		Easting	Northing					· ·			Lab	Sample ID
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	Phosphorus (P)	1,030	mg/kg	ALS	RG_MIDCO_SE-5_2021-09-15_1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	Potassium (K)	2,580	mg/kg	ALS	RG_MIDCO_SE-5_2021-09-15_1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	Selenium (Se)	2.6	mg/kg	ALS	RG_MIDCO_SE-5_2021-09-15_1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	Silver (Ag)	0.1	mg/kg	ALS	RG_MIDCO_SE-5_2021-09-15_1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	Sodium (Na)	214	mg/kg	ALS	RG_MIDCO_SE-5_2021-09-15_1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	Strontium (Sr)	127	mg/kg	ALS	RG_MIDCO_SE-5_2021-09-15_1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	Sulfur (S)	2,600	mg/kg	ALS	RG_MIDCO_SE-5_2021-09-15_1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	Thallium (TI)	0.35	mg/kg	ALS	RG_MIDCO_SE-5_2021-09-15_1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	Tin (Sn)	<2.0	mg/kg	ALS	RG_MIDCO_SE-5_2021-09-15_1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	Titanium (Ti)	10	mg/kg	ALS	RG_MIDCO_SE-5_2021-09-15_1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	Tungsten (W)	<0.50	mg/kg	ALS	RG_MIDCO_SE-5_2021-09-15_1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	Uranium (U)	0.84	mg/kg	ALS	RG_MIDCO_SE-5_2021-09-15_1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	Vanadium (V)	23	mg/kg	ALS	RG_MIDCO_SE-5_2021-09-15_1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	Zinc (Zn)	127	mg/kg	ALS	RG_MIDCO_SE-5_2021-09-15_1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_MIDCO_SE-5_2021-09-15_1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	Acenaphthene	< 0.030	mg/kg	ALS	RG_MIDCO_SE-5_2021-09-15_1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	Acenaphthylene	<0.020	mg/kg	ALS	RG_MIDCO_SE-5_2021-09-15_1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	Acridine	<0.040	mg/kg	ALS	RG_MIDCO_SE-5_2021-09-15_1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	Anthracene	<0.016	mg/kg	ALS	RG_MIDCO_SE-5_2021-09-15_1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	Benz(a)anthracene	0.12	mg/kg	ALS	RG_MIDCO_SE-5_2021-09-15_1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	Benzo(a)pyrene	<0.040	mg/kg	ALS	RG MIDCO SE-5 2021-09-15 1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	Benzo(b&j)fluoranthene	0.11	mg/kg	ALS	RG MIDCO SE-5 2021-09-15 1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	Benzo(b+j+k)fluoranthene	0.11	mg/kg	ALS	RG_MIDCO_SE-5_2021-09-15_1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	Benzo(e)pyrene	0.15	mg/kg	ALS	RG MIDCO SE-5 2021-09-15 1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	Benzo(g_h_i)perylene	0.056	mg/kg	ALS	RG MIDCO SE-5 2021-09-15 1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	Benzo(k)fluoranthene	<0.040	mg/kg	ALS	RG_MIDCO_SE-5_2021-09-15_1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	Chrysene	0.095	mg/kg	ALS	RG MIDCO SE-5 2021-09-15 1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	Dibenz(a h)anthracene	<0.020	mg/kg	ALS	RG MIDCO SE-5 2021-09-15 1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	Fluoranthene	<0.040	mg/kg	ALS	RG MIDCO SE-5 2021-09-15 1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	Fluorene	0.068	mg/kg	ALS	RG MIDCO SE-5 2021-09-15 1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	Indeno(1,2,3-c,d)pyrene	<0.040	mg/kg	ALS	RG MIDCO SE-5 2021-09-15 1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	1-Methylnaphthalene	0.53	mg/kg	ALS	RG MIDCO SE-5 2021-09-15 1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	2-Methylnaphthalene	0.83	mg/kg	ALS	RG MIDCO SE-5 2021-09-15 1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	Naphthalene	0.31	mg/kg	ALS	RG MIDCO SE-5 2021-09-15 1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	Perylene	<0.040	mg/kg	ALS	RG MIDCO SE-5 2021-09-15 1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	Phenanthrene	0.54	mg/kg	ALS	RG MIDCO SE-5 2021-09-15 1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	Pyrene	<0.070	mg/kg	ALS	RG MIDCO SE-5 2021-09-15 1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	Quinoline	<0.040	mg/kg	ALS	RG MIDCO SE-5 2021-09-15 1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	d10-Acenaphthene	85	%	ALS	RG MIDCO SE-5 2021-09-15 1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	d12-Chrysene	106	%	ALS	RG MIDCO SE-5 2021-09-15 1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	d8-Naphthalene	86	%	ALS	RG MIDCO SE-5 2021-09-15 1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	d10-Phenanthrene	100	%	ALS	RG MIDCO SE-5 2021-09-15 1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	IACR:Coarse	0.05	-	ALS	RG MIDCO SE-5 2021-09-15 1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	IACR:Fine	0.096	-	ALS	RG MIDCO SE-5 2021-09-15 1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	B(a)P Total Potency Equivalent	0.059	mg/kg	ALS	RG MIDCO SE-5 2021-09-15 1330
SE	MIDCO	667675	5487637	2021	5	2021-09-15	13:30	IACR (CCME)	1.4	ilig/kg	ALS	RG MIDCO SE-5 2021-09-15 1330
SE		659493	5496565		1			Moisture		%		RG MI5 SE-4 2021-09-15 1500
o⊑	MI5	009493	5490505	2021	4	2021-09-15	15:00	livioisture	37	70	ALS	NG_IVII0_3E-4_2021-09-10_1000

WSP Canada Inc. Page 243 of 337

Reference No. 22574542-001-R-Rev0-1000

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Type	Station	Location	າ (UTMs) ^(a)	Year	Poplieste	Data	Time	Analyta	Popult	Unit		Laboratory Information
уре	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MI5	659493	5496565	2021	4	2021-09-15	15:00	pH (1:2 soil:water)	8.3	рН	ALS	RG MI5 SE-4 2021-09-15 1500
SE	MI5	659493	5496565	2021	4	2021-09-15	15:00	% Gravel (>2 mm)	1.5	%	ALS	RG_MI5_SE-4_2021-09-15_1500
SE	MI5	659493	5496565	2021	4	2021-09-15	15:00	% Sand (2.00 mm - 1.00 mm)	1.1	%	ALS	RG_MI5_SE-4_2021-09-15_1500
SE.	MI5	659493	5496565	2021	4	2021-09-15	15:00	% Sand (1.00 mm - 0.50 mm)	3.3	%	ALS	RG MI5 SE-4 2021-09-15 1500
SE.	MI5	659493	5496565	2021	4	2021-09-15	15:00	% Sand (0.50 mm - 0.25 mm)	18	%	ALS	RG_MI5_SE-4_2021-09-15_1500
SE	MI5	659493	5496565	2021	4	2021-09-15	15:00	% Sand (0.25 mm - 0.125 mm)	35	%	ALS	RG MI5 SE-4 2021-09-15 1500
SE	MI5	659493	5496565	2021	4	2021-09-15	15:00	% Sand (0.125 mm - 0.063 mm)	19	%	ALS	RG MI5 SE-4 2021-09-15 1500
SE	MI5	659493	5496565	2021	4	2021-09-15	15:00	% Silt (0.063 mm - 0.0312 mm)	11	%	ALS	RG_MI5_SE-4_2021-09-15_1500
SE	MI5	659493	5496565	2021	4	2021-09-15	15:00	% Silt (0.031 mm - 0.004 mm)	9.4	%	ALS	RG_MI5_SE-4_2021-09-15_1500
SE	MI5	659493	5496565	2021	4	2021-09-15	15:00	% Clay (<4 µm)	2.1	%	ALS	RG MI5 SE-4 2021-09-15 1500
SE	MI5	659493	5496565	2021	4	2021-09-15	15:00	Texture	Loamy sand	-	ALS	RG MI5 SE-4 2021-09-15 1500
SE	MI5	659493	5496565	2021	4	2021-09-15	15:00	Total Organic Carbon	2.1	%	ALS	RG MI5 SE-4 2021-09-15 1500
SE	MI5	659493	5496565	2021	4	2021-09-15	15:00	Aluminum (Al)	7,210	mg/kg	ALS	RG MI5 SE-4 2021-09-15 1500
SE	MI5	659493	5496565	2021	4	2021-09-15	15:00	Antimony (Sb)	1.0	mg/kg	ALS	RG MI5 SE-4 2021-09-15 1500
SE	MI5	659493	5496565	2021	4	2021-09-15	15:00	Arsenic (As)	6.8	mg/kg	ALS	RG MI5 SE-4 2021-09-15 1500
SE	MI5	659493	5496565	2021	4	2021-09-15	15:00	Barium (Ba)	209	mg/kg	ALS	RG MI5 SE-4 2021-09-15 1500
SE	MI5	659493	5496565	2021	4	2021-09-15	15:00	Beryllium (Be)	0.56	mg/kg	ALS	RG MI5 SE-4 2021-09-15 1500
SE	MI5	659493	5496565	2021	4	2021-09-15	15:00	Bismuth (Bi)	<0.20	mg/kg	ALS	RG MI5 SE-4 2021-09-15 1500
SE	MI5	659493	5496565	2021	4	2021-09-15	15:00	Boron (B)	<5.0	mg/kg	ALS	RG MI5 SE-4 2021-09-15 1500
SE	MI5	659493	5496565	2021	4	2021-09-15	15:00	Cadmium (Cd)	1.1	mg/kg	ALS	RG MI5 SE-4 2021-09-15 1500
SE	MI5	659493	5496565	2021	4	2021-09-15	15:00	Calcium (Ca)	21,400	mg/kg	ALS	RG MI5 SE-4 2021-09-15 1500
SE	MI5	659493	5496565	2021	4	2021-09-15	15:00	Chromium (Cr)	13	mg/kg	ALS	RG_MI5_SE-4_2021-09-15_1500
SE	MI5	659493	5496565	2021	4	2021-09-15	15:00	Cobalt (Co)	6.6	mg/kg	ALS	RG MI5 SE-4 2021-09-15 1500
SE	MI5	659493	5496565	2021	4	2021-09-15	15:00	Copper (Cu)	12	mg/kg	ALS	RG_MI5_SE-4_2021-09-15_1500
SE	MI5	659493	5496565	2021	4	2021-09-15	15:00	Iron (Fe)	14,900	mg/kg	ALS	RG MI5 SE-4 2021-09-15 1500
SE	MI5	659493	5496565	2021	4	2021-09-15	15:00	Lead (Pb)	8.2	mg/kg	ALS	RG MI5 SE-4 2021-09-15 1500
SE	MI5	659493	5496565	2021	4	2021-09-15	15:00	Lithium (Li)	8.4	mg/kg	ALS	RG MI5 SE-4 2021-09-15 1500
SE	MI5	659493	5496565	2021	4	2021-09-15	15:00	Magnesium (Mg)	4,550	mg/kg	ALS	RG_MI5_SE-4_2021-09-15_1500
SE	MI5	659493	5496565	2021	4	2021-09-15	15:00	Manganese (Mn)	235	mg/kg	ALS	RG MI5 SE-4 2021-09-15 1500
SE	MI5	659493	5496565	2021	4	2021-09-15	15:00	Mercury (Hg)	0.024	mg/kg	ALS	RG MI5 SE-4 2021-09-15 1500
SE	MI5	659493	5496565	2021	1	2021-09-15	15:00	Molybdenum (Mo)	1.5	mg/kg	ALS	RG MI5 SE-4 2021-09-15 1500
SE	MI5	659493	5496565	2021	4	2021-09-15	15:00	Nickel (Ni)	27	mg/kg	ALS	RG MI5 SE-4 2021-09-15 1500
SE	MI5	659493	5496565	2021	4	2021-09-15	15:00	Phosphorus (P)	1,230	mg/kg	ALS	RG MI5 SE-4 2021-09-15 1500
SE	MI5	659493	5496565	2021	4	2021-09-15	15:00	Potassium (K)	1,440	mg/kg	ALS	RG MI5 SE-4 2021-09-15 1500
SE	MI5	659493	5496565	2021	1	2021-09-15	15:00	Selenium (Se)	0.76	mg/kg	ALS	RG MI5 SE-4 2021-09-15 1500
SE	MI5	659493	5496565	2021	4	2021-09-15	15:00	Silver (Ag)	0.15	mg/kg	ALS	RG MI5 SE-4 2021-09-15 1500
SE	MI5	659493	5496565	2021	4	2021-09-15	15:00	Sodium (Na)	67	mg/kg	ALS	RG MI5 SE-4 2021-09-15 1500
SE	MI5	659493	5496565	2021	4	2021-09-15	15:00	Strontium (Sr)	55	mg/kg	ALS	RG MI5 SE-4 2021-09-15 1500
SE	MI5	659493	5496565	2021	1	2021-09-15	15:00	Sulfur (S)	<1000	mg/kg	ALS	RG MI5 SE-4 2021-09-15 1500
SE	MI5	659493	5496565	2021	1	2021-09-15	15:00	Thallium (TI)	0.25	mg/kg	ALS	RG MI5 SE-4 2021-09-15 1500
SE	MI5	659493	5496565	2021	4	2021-09-15	15:00	Tin (Sn)	<2.0		ALS	RG MI5 SE-4 2021-09-15 1500
SE	MI5	659493	5496565	2021	4	2021-09-15	15:00		24	mg/kg	ALS	RG MI5 SE-4 2021-09-15 1500
SE			+		4			Titanium (Ti)		mg/kg		
	MI5	659493	5496565	2021	4	2021-09-15	15:00	Tungsten (W)	<0.50	mg/kg	ALS	RG_MI5_SE-4_2021-09-15_1500
SE	MI5	659493	5496565	2021	4	2021-09-15	15:00	Uranium (U)	0.95	mg/kg	ALS	RG_MI5_SE-4_2021-09-15_1500
SE	MI5	659493	5496565	2021	4	2021-09-15	15:00	Vanadium (V)	37	mg/kg	ALS	RG_MI5_SE-4_2021-09-15_1500
SE	MI5	659493	5496565	2021	4	2021-09-15	15:00	Zinc (Zn)	96	mg/kg	ALS	RG_MI5_SE-4_2021-09-15_1500
SE	MI5	659493	5496565	2021	4	2021-09-15	15:00	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_MI5_SE-4_2021-09-15_1500

WSP Canada Inc. Page 244 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

SE SE SE SE	Station MI5	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit		
SE SE	MI5										Lab	Sample ID
SE		659493	5496565	2021	4	2021-09-15	15:00	Acenaphthene	< 0.0050	mg/kg	ALS	RG MI5 SE-4 2021-09-15 1500
	MI5	659493	5496565	2021	4	2021-09-15	15:00	Acenaphthylene	< 0.0050	mg/kg	ALS	RG MI5 SE-4 2021-09-15 1500
SE	MI5	659493	5496565	2021	4	2021-09-15	15:00	Acridine	<0.010	mg/kg	ALS	RG MI5 SE-4 2021-09-15 1500
	MI5	659493	5496565	2021	4	2021-09-15	15:00	Anthracene	<0.0040	mg/kg	ALS	RG MI5 SE-4 2021-09-15 1500
SE	MI5	659493	5496565	2021	4	2021-09-15	15:00	Benz(a)anthracene	<0.010	mg/kg	ALS	RG_MI5_SE-4_2021-09-15_1500
SE	MI5	659493	5496565	2021	4	2021-09-15	15:00	Benzo(a)pyrene	<0.010	mg/kg	ALS	RG MI5 SE-4 2021-09-15 1500
SE	MI5	659493	5496565	2021	4	2021-09-15	15:00	Benzo(b&j)fluoranthene	0.016	mg/kg	ALS	RG MI5 SE-4 2021-09-15 1500
SE	MI5	659493	5496565	2021	4	2021-09-15	15:00	Benzo(b+j+k)fluoranthene	0.016	mg/kg	ALS	RG MI5 SE-4 2021-09-15 1500
SE	MI5	659493	5496565	2021	4	2021-09-15	15:00	Benzo(e)pyrene	0.02	mg/kg	ALS	RG MI5 SE-4 2021-09-15 1500
SE	MI5	659493	5496565	2021	4	2021-09-15	15:00	Benzo(g_h_i)perylene	<0.010	mg/kg	ALS	RG MI5 SE-4 2021-09-15 1500
SE	MI5	659493	5496565	2021	4	2021-09-15	15:00	Benzo(k)fluoranthene	<0.010	mg/kg	ALS	RG_MI5_SE-4_2021-09-15_1500
SE	MI5	659493	5496565	2021	4	2021-09-15	15:00	Chrysene	0.023	mg/kg	ALS	RG MI5 SE-4 2021-09-15 1500
SE	MI5	659493	5496565	2021	4	2021-09-15	15:00	Dibenz(a_h)anthracene	<0.0050	mg/kg		RG MI5 SE-4 2021-09-15 1500
SE	MI5	659493	5496565	2021	4	2021-09-15	15:00	Fluoranthene	<0.020	mg/kg	ALS	RG MI5 SE-4 2021-09-15 1500
SE	MI5	659493	5496565	2021	4	2021-09-15	15:00	Fluorene	<0.010	mg/kg	ALS	RG MI5 SE-4 2021-09-15 1500
SE	MI5	659493	5496565	2021	4	2021-09-15	15:00	Indeno(1,2,3-c,d)pyrene	<0.010	mg/kg	ALS	RG MI5 SE-4 2021-09-15 1500
SE	MI5	659493	5496565	2021	4	2021-09-15	15:00	1-Methylnaphthalene	0.064	mg/kg	ALS	RG MI5 SE-4 2021-09-15 1500
SE	MI5	659493	5496565	2021	4	2021-09-15	15:00	2-Methylnaphthalene	0.075	mg/kg	ALS	RG MI5 SE-4 2021-09-15 1500
SE	MI5	659493	5496565	2021	4	2021-09-15	15:00	Naphthalene	0.034	mg/kg	ALS	RG MI5 SE-4 2021-09-15 1500
SE	MI5	659493	5496565	2021	4	2021-09-15	15:00	Perylene	<0.010	mg/kg	ALS	RG MI5 SE-4 2021-09-15 1500
SE	MI5	659493	5496565	2021	4	2021-09-15	15:00	Phenanthrene	0.11	mg/kg	ALS	RG MI5 SE-4 2021-09-15 1500
SE	MI5	659493	5496565	2021	4	2021-09-15	15:00	Pyrene	<0.020	mg/kg	ALS	RG_MI5_SE-4_2021-09-15_1500
SE	MI5	659493	5496565	2021	4	2021-09-15	15:00	Quinoline	<0.050	mg/kg	ALS	RG MI5 SE-4 2021-09-15 1500
SE	MI5	659493	5496565	2021	4	2021-09-15	15:00	d10-Acenaphthene	85	%	ALS	RG MI5 SE-4 2021-09-15 1500
SE	MI5	659493	5496565	2021	4	2021-09-15	15:00	d12-Chrysene	102	%	ALS	RG MI5 SE-4 2021-09-15 1500
SE	MI5	659493	5496565	2021	4	2021-09-15	15:00	d8-Naphthalene	84	%	ALS	RG MI5 SE-4 2021-09-15 1500
SE	MI5	659493	5496565	2021	4	2021-09-15	15:00	d10-Phenanthrene	96	%	ALS	RG MI5 SE-4 2021-09-15 1500
SE	MI5	659493	5496565	2021	4	2021-09-15	15:00	IACR:Coarse	<0.050	-	ALS	RG MI5 SE-4 2021-09-15 1500
SE	MI5	659493	5496565	2021	4	2021-09-15	15:00	IACR:Fine	<0.050	_	ALS	RG MI5 SE-4 2021-09-15 1500
SE	MI5	659493	5496565	2021	4	2021-09-15	15:00	B(a)P Total Potency Equivalent	<0.020	mg/kg	ALS	RG MI5 SE-4 2021-09-15 1500
SE	MI5	659493	5496565	2021	4	2021-09-15	15:00	IACR (CCME)	0.19	-		RG MI5 SE-4 2021-09-15 1500
SE	MI5	659504	5496614	2021		2021-09-15	15:00	Moisture	50	%	ALS	RG MI5 SE-5 2021-09-15 1500
SE	MI5	659504	5496614	2021		2021-09-15	15:00	pH (1:2 soil:water)	8.3	pН	ALS	RG MI5 SE-5 2021-09-15 1500
SE	MI5	659504	5496614	2021		2021-09-15	15:00	% Gravel (>2 mm)	2.9	%	ALS	RG MI5 SE-5 2021-09-15 1500
SE	MI5	659504	5496614	2021		2021-09-15	15:00	% Sand (2.00 mm - 1.00 mm)	1.1	%	ALS	RG MI5 SE-5 2021-09-15 1500
SE	MI5	659504	5496614	2021		2021-09-15	15:00	% Sand (1.00 mm - 0.50 mm)	3.9	%	ALS	RG MI5 SE-5 2021-09-15 1500
SE	MI5	659504	5496614	2021		2021-09-15	15:00	% Sand (0.50 mm - 0.25 mm)	19	%	ALS	RG MI5 SE-5 2021-09-15 1500
SE	MI5	659504	5496614	2021		2021-09-15	15:00	% Sand (0.25 mm - 0.125 mm)	35	%	ALS	RG MI5 SE-5 2021-09-15 1500
SE	MI5	659504	5496614	2021		2021-09-15	15:00	% Sand (0.125 mm - 0.063 mm)	18	%	ALS	RG MI5 SE-5 2021-09-15 1500
SE	MI5	659504	5496614	2021		2021-09-15	15:00	% Silt (0.063 mm - 0.0312 mm)	10	%	ALS	RG MI5 SE-5 2021-09-15 1500
SE	MI5	659504	5496614	2021		2021-09-15	15:00	% Silt (0.031 mm - 0.004 mm)	8.7	%		RG MI5 SE-5 2021-09-15 1500
SE	MI5	659504	5496614	2021	5	2021-09-15	15:00	% Clay (<4 μm)	1.8	%	ALS	RG MI5 SE-5 2021-09-15 1500
SE	MI5	659504	5496614	2021		2021-09-15	15:00	Texture	Loamy sand		ALS	RG MI5 SE-5 2021-09-15 1500
	MI5	659504	5496614	2021		2021-09-15	15:00	Total Organic Carbon	1.7	%	ALS	RG MI5 SE-5 2021-09-15 1500
SE I	MI5	659504	5496614	2021	5	2021-09-15	15:00	Aluminum (Al)	6,620	mg/kg	ALS	RG MI5 SE-5 2021-09-15 1500
		000004	J-30014	ZUZ I	1 3	202 1-03 - 10	13.00	раминин (ді <i>)</i>	0,020	iliy/ky	\LU	\C_W O_CL-O_ZOZ -03- O_ OOO
SE SE	MI5	659504	5496614	2021	5	2021-09-15	15:00	Antimony (Sb)	1.0	mg/kg	ALS	RG MI5 SE-5 2021-09-15 1500

WSP Canada Inc. Page 245 of 337

Sediment Screening

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Table I-1	: Sediment Chem			CMm LAEMP S	ampling Sta	ations, 2012 to	2022					
Туре	Station	Location	າ (UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
Type	Station	Easting	Northing	i eai	replicate	Date	Tille	Analyte	Result	Offic	Lab	Sample ID
SE	MI5	659504	5496614	2021	5	2021-09-15	15:00	Barium (Ba)	214	mg/kg	ALS	RG_MI5_SE-5_2021-09-15_1500
SE	MI5	659504	5496614	2021	5	2021-09-15	15:00	Beryllium (Be)	0.54	mg/kg	ALS	RG_MI5_SE-5_2021-09-15_1500
SE	MI5	659504	5496614	2021	5	2021-09-15	15:00	Bismuth (Bi)	<0.20	mg/kg	ALS	RG_MI5_SE-5_2021-09-15_1500
SE	MI5	659504	5496614	2021	5	2021-09-15	15:00	Boron (B)	<5.0	mg/kg	ALS	RG_MI5_SE-5_2021-09-15_1500
SE	MI5	659504	5496614	2021	5	2021-09-15	15:00	Cadmium (Cd)	1.1	mg/kg	ALS	RG_MI5_SE-5_2021-09-15_1500
SE	MI5	659504	5496614	2021	5	2021-09-15	15:00	Calcium (Ca)	22,500	mg/kg	ALS	RG_MI5_SE-5_2021-09-15_1500
SE	MI5	659504	5496614	2021	5	2021-09-15	15:00	Chromium (Cr)	12	mg/kg	ALS	RG_MI5_SE-5_2021-09-15_1500
SE	MI5	659504	5496614	2021	5	2021-09-15	15:00	Cobalt (Co)	6.4	mg/kg	ALS	RG_MI5_SE-5_2021-09-15_1500
SE	MI5	659504	5496614	2021	5	2021-09-15	15:00	Copper (Cu)	12	mg/kg	ALS	RG_MI5_SE-5_2021-09-15_1500
SE	MI5	659504	5496614	2021	5	2021-09-15	15:00	Iron (Fe)	14,100	mg/kg	ALS	RG_MI5_SE-5_2021-09-15_1500
SE	MI5	659504	5496614	2021	5	2021-09-15	15:00	Lead (Pb)	8.0	mg/kg	ALS	RG_MI5_SE-5_2021-09-15_1500
SE	MI5	659504	5496614	2021	5	2021-09-15	15:00	Lithium (Li)	8.3	mg/kg	ALS	RG_MI5_SE-5_2021-09-15_1500
SE	MI5	659504	5496614	2021	5	2021-09-15	15:00	Magnesium (Mg)	4,590	mg/kg	ALS	RG_MI5_SE-5_2021-09-15_1500
SE	MI5	659504	5496614	2021	5	2021-09-15	15:00	Manganese (Mn)	223	mg/kg	ALS	RG_MI5_SE-5_2021-09-15_1500
SE	MI5	659504	5496614	2021	5	2021-09-15	15:00	Mercury (Hg)	0.037	mg/kg	ALS	RG_MI5_SE-5_2021-09-15_1500
SE	MI5	659504	5496614	2021	5	2021-09-15	15:00	Molybdenum (Mo)	1.5	mg/kg	ALS	RG_MI5_SE-5_2021-09-15_1500
SE	MI5	659504	5496614	2021	5	2021-09-15	15:00	Nickel (Ni)	27	mg/kg	ALS	RG_MI5_SE-5_2021-09-15_1500
SE	MI5	659504	5496614	2021	5	2021-09-15	15:00	Phosphorus (P)	1,270	mg/kg	ALS	RG_MI5_SE-5_2021-09-15_1500
SE	MI5	659504	5496614	2021	5	2021-09-15	15:00	Potassium (K)	1,290	mg/kg	ALS	RG_MI5_SE-5_2021-09-15_1500
SE	MI5	659504	5496614	2021	5	2021-09-15	15:00	Selenium (Se)	0.82	mg/kg	ALS	RG_MI5_SE-5_2021-09-15_1500
SE	MI5	659504	5496614	2021	5	2021-09-15	15:00	Silver (Ag)	0.14	mg/kg	ALS	RG_MI5_SE-5_2021-09-15_1500
SE	MI5	659504	5496614	2021	5	2021-09-15	15:00	Sodium (Na)	63	mg/kg	ALS	RG_MI5_SE-5_2021-09-15_1500
SE	MI5	659504	5496614	2021	5	2021-09-15	15:00	Strontium (Sr)	57	mg/kg	ALS	RG_MI5_SE-5_2021-09-15_1500
SE	MI5	659504	5496614	2021	5	2021-09-15	15:00	Sulfur (S)	<1000	mg/kg	ALS	RG_MI5_SE-5_2021-09-15_1500
SE	MI5	659504	5496614	2021	5	2021-09-15	15:00	Thallium (TI)	0.24	mg/kg	ALS	RG_MI5_SE-5_2021-09-15_1500
SE	MI5	659504	5496614	2021	5	2021-09-15	15:00	Tin (Sn)	<2.0	mg/kg	ALS	RG_MI5_SE-5_2021-09-15_1500
SE	MI5	659504	5496614	2021	5	2021-09-15	15:00	Titanium (Ti)	25	mg/kg	ALS	RG_MI5_SE-5_2021-09-15_1500
SE	MI5	659504	5496614	2021	5	2021-09-15	15:00	Tungsten (W)	<0.50	mg/kg	ALS	RG_MI5_SE-5_2021-09-15_1500
SE	MI5	659504	5496614	2021	5	2021-09-15	15:00	Uranium (U)	0.92	mg/kg	ALS	RG_MI5_SE-5_2021-09-15_1500
SE	MI5	659504	5496614	2021	5	2021-09-15	15:00	Vanadium (V)	35	mg/kg	ALS	RG_MI5_SE-5_2021-09-15_1500
SE	MI5	659504	5496614	2021	5	2021-09-15	15:00	Zinc (Zn)	91	mg/kg	ALS	RG_MI5_SE-5_2021-09-15_1500
SE	MI5	659504	5496614	2021	5	2021-09-15	15:00	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_MI5_SE-5_2021-09-15_1500
SE	MI5	659504	5496614	2021	5	2021-09-15	15:00	Acenaphthene	<0.0050	mg/kg	ALS	RG_MI5_SE-5_2021-09-15_1500
SE	MI5	659504	5496614	2021	5	2021-09-15	15:00	Acenaphthylene	<0.0050	mg/kg	ALS	RG_MI5_SE-5_2021-09-15_1500
SE	MI5	659504	5496614	2021	5	2021-09-15	15:00	Acridine	<0.010	mg/kg	ALS	RG_MI5_SE-5_2021-09-15_1500
SE	MI5	659504	5496614	2021	5	2021-09-15	15:00	Anthracene	<0.0040	mg/kg	ALS	RG_MI5_SE-5_2021-09-15_1500
SE	MI5	659504	5496614	2021	5	2021-09-15	15:00	Benz(a)anthracene	<0.010	mg/kg	ALS	RG_MI5_SE-5_2021-09-15_1500
SE	MI5	659504	5496614	2021	5	2021-09-15	15:00	Benzo(a)pyrene	<0.010	mg/kg	ALS	RG_MI5_SE-5_2021-09-15_1500
SE	MI5	659504	5496614	2021	5	2021-09-15	15:00	Benzo(b&j)fluoranthene	0.018	mg/kg	ALS	RG_MI5_SE-5_2021-09-15_1500
SE	MI5	659504	5496614	2021	5	2021-09-15	15:00	Benzo(b+j+k)fluoranthene	0.018	mg/kg	ALS	RG_MI5_SE-5_2021-09-15_1500
SE	MI5	659504	5496614	2021	5	2021-09-15	15:00	Benzo(e)pyrene	0.021	mg/kg	ALS	RG_MI5_SE-5_2021-09-15_1500
SE	MI5	659504	5496614	2021	5	2021-09-15	15:00	Benzo(g_h_i)perylene	<0.010	mg/kg	ALS	RG_MI5_SE-5_2021-09-15_1500
SE	MI5	659504	5496614	2021	5	2021-09-15	15:00	Benzo(k)fluoranthene	<0.010	mg/kg	ALS	RG_MI5_SE-5_2021-09-15_1500
SE	MI5	659504	5496614	2021	5	2021-09-15	15:00	Chrysene	0.038	mg/kg	ALS	RG_MI5_SE-5_2021-09-15_1500
SE	MI5	659504	5496614	2021	5	2021-09-15	15:00	Dibenz(a_h)anthracene	<0.0050	mg/kg	ALS	RG_MI5_SE-5_2021-09-15_1500
SE	MI5	659504	5496614	2021	5	2021-09-15	15:00	Fluoranthene	0.014	mg/kg	ALS	RG_MI5_SE-5_2021-09-15_1500
SE	MI5	659504	5496614	2021	5	2021-09-15	15:00	Fluorene	0.01	mg/kg	ALS	RG_MI5_SE-5_2021-09-15_1500

WSP Canada Inc. Page 246 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Гуре	Station	Location	ı (UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
ype	Station	Easting	Northing	rear	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE.	MI5	659504	5496614	2021	5	2021-09-15	15:00	Indeno(1,2,3-c,d)pyrene	<0.010	mg/kg	ALS	RG MI5 SE-5 2021-09-15 1500
SE.	MI5	659504	5496614	2021	5	2021-09-15	15:00	1-Methylnaphthalene	0.075	mg/kg	ALS	RG MI5 SE-5 2021-09-15 1500
SE	MI5	659504	5496614	2021	5	2021-09-15	15:00	2-Methylnaphthalene	0.09	mg/kg	ALS	RG_MI5_SE-5_2021-09-15_1500
SE	MI5	659504	5496614	2021	5	2021-09-15	15:00	Naphthalene	0.038	mg/kg	ALS	RG MI5 SE-5 2021-09-15 1500
SE	MI5	659504	5496614	2021	5	2021-09-15	15:00	Perylene	<0.010	mg/kg	ALS	RG_MI5_SE-5_2021-09-15_1500
SE	MI5	659504	5496614	2021	5	2021-09-15	15:00	Phenanthrene	0.11	mg/kg	ALS	RG MI5 SE-5 2021-09-15 1500
SE.	MI5	659504	5496614	2021	5	2021-09-15	15:00	Pyrene	<0.020	mg/kg	ALS	RG MI5 SE-5 2021-09-15 1500
SE	MI5	659504	5496614	2021	5	2021-09-15	15:00	Quinoline	<0.050	mg/kg	ALS	RG_MI5_SE-5_2021-09-15_1500
SE	MI5	659504	5496614	2021	5	2021-09-15	15:00	d10-Acenaphthene	76	%	ALS	RG_MI5_SE-5_2021-09-15_1500
SE	MI5	659504	5496614	2021	5	2021-09-15	15:00	d12-Chrysene	91	%	ALS	RG MI5 SE-5 2021-09-15 1500
SE	MI5	659504	5496614	2021	5	2021-09-15	15:00	d8-Naphthalene	77	%	ALS	RG_MI5_SE-5_2021-09-15_1500
SE	MI5	659504	5496614	2021	5	2021-09-15	15:00	d10-Phenanthrene	85	%	ALS	RG MI5 SE-5 2021-09-15 1500
SE	MI5	659504	5496614	2021	5	2021-09-15	15:00	IACR:Coarse	<0.050	-	ALS	RG MI5 SE-5 2021-09-15 1500
SE	MI5	659504	5496614	2021	5	2021-09-15	15:00	IACR:Fine	<0.050	-	ALS	RG MI5 SE-5 2021-09-15 1500
SE	MI5	659504	5496614	2021	5	2021-09-15	15:00	B(a)P Total Potency Equivalent	<0.020	mg/kg	ALS	RG MI5 SE-5 2021-09-15 1500
SE	MI5	659504	5496614	2021	5	2021-09-15	15:00	IACR (CCME)	0.2	-	ALS	RG_MI5_SE-5_2021-09-15_1500
SE	MI25	668195	5482814	2021	1	2021-09-15	12:00	Moisture	38	%	ALS	RG MI25 SE-1 2021-09-15 1200
SE	MI25	668195	5482814	2021	1	2021-09-15	12:00	pH (1:2 soil:water)	8.1	рН	ALS	RG MI25 SE-1 2021-09-15 1200
SE	MI25	668195	5482814	2021	1	2021-09-15	12:00	% Gravel (>2 mm)	4.0	%	ALS	RG MI25 SE-1 2021-09-15 1200
SE	MI25	668195	5482814	2021	1	2021-09-15	12:00	% Sand (2.00 mm - 1.00 mm)	5.1	%	ALS	RG MI25 SE-1 2021-09-15 1200
SE	MI25	668195	5482814	2021	1	2021-09-15	12:00	% Sand (1.00 mm - 0.50 mm)	5.8	%	ALS	RG MI25 SE-1 2021-09-15 1200
SE.	MI25	668195	5482814	2021	1	2021-09-15	12:00	% Sand (0.50 mm - 0.25 mm)	12	%	ALS	RG MI25 SE-1 2021-09-15 1200
SE	MI25	668195	5482814	2021	1	2021-09-15	12:00	% Sand (0.25 mm - 0.125 mm)	18	%	ALS	RG MI25 SE-1 2021-09-15 1200
SE	MI25	668195	5482814	2021	1	2021-09-15	12:00	% Sand (0.125 mm - 0.063 mm)	13	%	ALS	RG MI25 SE-1 2021-09-15 1200
SE	MI25	668195	5482814	2021	1	2021-09-15	12:00	% Silt (0.063 mm - 0.0312 mm)	16	%	ALS	RG MI25 SE-1 2021-09-15 1200
SE	MI25	668195	5482814	2021	1	2021-09-15	12:00	% Silt (0.031 mm - 0.004 mm)	21	%	ALS	RG MI25 SE-1 2021-09-15 1200
SE	MI25	668195	5482814	2021	1	2021-09-15	12:00	% Clay (<4 μm)	6.4	%	ALS	RG MI25 SE-1 2021-09-15 1200
SE	MI25	668195	5482814	2021	1	2021-09-15	12:00	Texture	Sandy loam	-	ALS	RG MI25 SE-1 2021-09-15 1200
SE	MI25	668195	5482814	2021	1	2021-09-15	12:00	Total Organic Carbon	2.1	%	ALS	RG MI25 SE-1 2021-09-15 1200
SE	MI25	668195	5482814	2021	1	2021-09-15	12:00	Aluminum (Al)	12,700	mg/kg	ALS	RG MI25 SE-1 2021-09-15 1200
SE	MI25	668195	5482814	2021	1	2021-09-15	12:00	Antimony (Sb)	0.64	mg/kg	ALS	RG MI25 SE-1 2021-09-15 1200
SE	MI25	668195	5482814	2021	1	2021-09-15	12:00	Arsenic (As)	12	mg/kg	ALS	RG MI25 SE-1 2021-09-15 1200
SE	MI25	668195	5482814	2021	1	2021-09-15	12:00	Barium (Ba)	151	mg/kg	ALS	RG MI25 SE-1 2021-09-15 1200
SE	MI25	668195	5482814	2021	1	2021-09-15	12:00	Beryllium (Be)	0.83	mg/kg	ALS	RG MI25 SE-1 2021-09-15 1200
SE	MI25	668195	5482814	2021	1	2021-09-15	12:00	Bismuth (Bi)	0.22	mg/kg	ALS	RG MI25 SE-1 2021-09-15 1200
SE	MI25	668195	5482814	2021	1	2021-09-15	12:00	Boron (B)	8.6	mg/kg	ALS	RG MI25 SE-1 2021-09-15 1200
SE	MI25	668195	5482814	2021	1	2021-09-15	12:00	Cadmium (Cd)	1.3	mg/kg	ALS	RG MI25 SE-1 2021-09-15 1200
SE	MI25	668195	5482814	2021	1	2021-09-15	12:00	Calcium (Ca)	15,000	mg/kg	ALS	RG MI25 SE-1 2021-09-15 1200
SE	MI25	668195	5482814	2021	1	2021-09-15	12:00	Chromium (Cr)	18	mg/kg	ALS	RG MI25 SE-1 2021-09-15 1200
SE	MI25	668195	5482814	2021	1	2021-09-15	12:00	Cobalt (Co)	8.7	mg/kg	ALS	RG MI25 SE-1 2021-09-15 1200
E	MI25	668195	5482814	2021	1	2021-09-15	12:00	Copper (Cu)	27	mg/kg	ALS	RG MI25 SE-1 2021-09-15 1200
SE	MI25	668195	5482814	2021	1	2021-09-15	12:00	Iron (Fe)	23,800	mg/kg	ALS	RG MI25 SE-1 2021-09-15 1200
SE	MI25	668195	5482814	2021	1	2021-09-15	12:00	Lead (Pb)	17	mg/kg	ALS	RG MI25 SE-1 2021-09-15 1200
SE	MI25	668195	5482814	2021	1	2021-09-15	12:00	Lithium (Li)	22	mg/kg	ALS	RG MI25 SE-1 2021-09-15 1200
SE	MI25	668195	5482814	2021	1	2021-09-15	12:00	Magnesium (Mg)	6,530	mg/kg	ALS	RG MI25 SE-1 2021-09-15 1200
SE	MI25	668195	5482814	2021	1	2021-09-15	12:00	Manganese (Mn)	476	mg/kg	ALS	RG MI25 SE-1 2021-09-15 1200
SE		ļ			1		4	, ,				
	MI25	668195	5482814	2021	1	2021-09-15	12:00	Mercury (Hg)	0.027	mg/kg	ALS	RG_MI25_SE-1_2021-09-15_1

WSP Canada Inc. Page 247 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Гуре	Station	Location	ı (UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
ype	Station	Easting	Northing	i eai	Replicate	Date	Tille	Allalyte	Result	Ullit	Lab	Sample ID
SE	MI25	668195	5482814	2021	1	2021-09-15	12:00	Molybdenum (Mo)	5.7	mg/kg	ALS	RG_MI25_SE-1_2021-09-15_1200
SE	MI25	668195	5482814	2021	1	2021-09-15	12:00	Nickel (Ni)	31	mg/kg	ALS	RG_MI25_SE-1_2021-09-15_1200
SE	MI25	668195	5482814	2021	1	2021-09-15	12:00	Phosphorus (P)	1,500	mg/kg	ALS	RG_MI25_SE-1_2021-09-15_1200
SE	MI25	668195	5482814	2021	1	2021-09-15	12:00	Potassium (K)	2,270	mg/kg	ALS	RG_MI25_SE-1_2021-09-15_1200
SE	MI25	668195	5482814	2021	1	2021-09-15	12:00	Selenium (Se)	0.94	mg/kg	ALS	RG_MI25_SE-1_2021-09-15_1200
SE	MI25	668195	5482814	2021	1	2021-09-15	12:00	Silver (Ag)	0.13	mg/kg	ALS	RG_MI25_SE-1_2021-09-15_1200
SE	MI25	668195	5482814	2021	1	2021-09-15	12:00	Sodium (Na)	86	mg/kg	ALS	RG_MI25_SE-1_2021-09-15_1200
SE	MI25	668195	5482814	2021	1	2021-09-15	12:00	Strontium (Sr)	46	mg/kg	ALS	RG_MI25_SE-1_2021-09-15_1200
SE	MI25	668195	5482814	2021	1	2021-09-15	12:00	Sulfur (S)	<1000	mg/kg	ALS	RG_MI25_SE-1_2021-09-15_1200
SE	MI25	668195	5482814	2021	1	2021-09-15	12:00	Thallium (TI)	0.65	mg/kg	ALS	RG_MI25_SE-1_2021-09-15_1200
SE	MI25	668195	5482814	2021	1	2021-09-15	12:00	Tin (Sn)	<2.0	mg/kg	ALS	RG_MI25_SE-1_2021-09-15_1200
SE	MI25	668195	5482814	2021	1	2021-09-15	12:00	Titanium (Ti)	9.9	mg/kg	ALS	RG_MI25_SE-1_2021-09-15_1200
SE	MI25	668195	5482814	2021	1	2021-09-15	12:00	Tungsten (W)	<0.50	mg/kg	ALS	RG MI25 SE-1 2021-09-15 1200
SE	MI25	668195	5482814	2021	1	2021-09-15	12:00	Uranium (U)	0.86	mg/kg	ALS	RG_MI25_SE-1_2021-09-15_1200
SE	MI25	668195	5482814	2021	1	2021-09-15	12:00	Vanadium (V)	32	mg/kg	ALS	RG_MI25_SE-1_2021-09-15_1200
SE	MI25	668195	5482814	2021	1	2021-09-15	12:00	Zinc (Zn)	134	mg/kg	ALS	RG_MI25_SE-1_2021-09-15_1200
SE.	MI25	668195	5482814	2021	1	2021-09-15	12:00	Zirconium (Zr)	<1.0	mg/kg	ALS	RG MI25 SE-1_2021-09-15_1200
SE .	MI25	668195	5482814	2021	1	2021-09-15	12:00	Acenaphthene	< 0.0050	mg/kg	ALS	RG MI25 SE-1 2021-09-15 1200
SE .	MI25	668195	5482814	2021	1	2021-09-15	12:00	Acenaphthylene	< 0.0050	mg/kg	ALS	RG_MI25_SE-1_2021-09-15_1200
E	MI25	668195	5482814	2021	1	2021-09-15	12:00	Acridine	<0.010	mg/kg	ALS	RG MI25 SE-1 2021-09-15 1200
E	MI25	668195	5482814	2021	1	2021-09-15	12:00	Anthracene	<0.0040	mg/kg	ALS	RG MI25 SE-1 2021-09-15 1200
E	MI25	668195	5482814	2021	1	2021-09-15	12:00	Benz(a)anthracene	<0.010	mg/kg	ALS	RG_MI25_SE-1_2021-09-15_1200
SE	MI25	668195	5482814	2021	1	2021-09-15	12:00	Benzo(a)pyrene	<0.010	mg/kg	ALS	RG MI25 SE-1 2021-09-15 1200
SE .	MI25	668195	5482814	2021	1	2021-09-15	12:00	Benzo(b&j)fluoranthene	<0.010	mg/kg	ALS	RG MI25 SE-1 2021-09-15 1200
SE .	MI25	668195	5482814	2021	1	2021-09-15	12:00	Benzo(b+j+k)fluoranthene	<0.015	mg/kg	ALS	RG MI25 SE-1 2021-09-15 1200
E	MI25	668195	5482814	2021	1	2021-09-15	12:00	Benzo(e)pyrene	<0.010	mg/kg	ALS	RG_MI25_SE-1_2021-09-15_1200
SE	MI25	668195	5482814	2021	1	2021-09-15	12:00	Benzo(g_h_i)perylene	<0.010	mg/kg	ALS	RG_MI25_SE-1_2021-09-15_1200
SE .	MI25	668195	5482814	2021	1	2021-09-15	12:00	Benzo(k)fluoranthene	<0.010	mg/kg	ALS	RG MI25 SE-1 2021-09-15 1200
SE	MI25	668195	5482814	2021	1	2021-09-15	12:00	Chrysene	<0.010	mg/kg	ALS	RG_MI25_SE-1_2021-09-15_1200
SE	MI25	668195	5482814	2021	1	2021-09-15	12:00	Dibenz(a_h)anthracene	<0.0050	mg/kg		RG MI25 SE-1 2021-09-15 1200
SE .	MI25	668195	5482814	2021	1	2021-09-15	12:00	Fluoranthene	<0.010	mg/kg		RG_MI25_SE-1_2021-09-15_1200
SE SE	MI25	668195	5482814	2021	1	2021-09-15	12:00	Fluorene	<0.010	mg/kg	ALS	RG MI25 SE-1 2021-09-15 1200
SE .	MI25	668195	5482814	2021	1	2021-09-15	12:00	Indeno(1,2,3-c,d)pyrene	<0.010	mg/kg	ALS	RG MI25 SE-1 2021-09-15 1200
SE .	MI25	668195	5482814	2021	1	2021-09-15	12:00	1-Methylnaphthalene	<0.050	mg/kg	ALS	RG MI25 SE-1 2021-09-15 1200
SE SE	MI25	668195	5482814	2021	1	2021-09-15	12:00	2-Methylnaphthalene	<0.010	mg/kg	ALS	RG MI25 SE-1 2021-09-15 1200
E E	MI25	668195	5482814	2021	1	2021-09-15	12:00	Naphthalene	<0.010	mg/kg	ALS	RG MI25 SE-1 2021-09-15 1200
E E	MI25	668195	5482814	2021	1	2021-09-15	12:00	Perylene	<0.010	mg/kg	ALS	RG MI25 SE-1 2021-09-15 1200
E E	MI25	668195	5482814	2021	1	2021-09-15	12:00	Phenanthrene	<0.020	mg/kg	ALS	RG MI25 SE-1 2021-09-15 1200
E	MI25	668195	5482814	2021	1	2021-09-15	12:00	Pyrene	<0.010	mg/kg	ALS	RG MI25 SE-1 2021-09-15 1200
E E	MI25	668195	5482814	2021	1	2021-09-15	12:00	Quinoline	<0.050	mg/kg	ALS	RG MI25 SE-1 2021-09-15 1200
E E	MI25	668195	5482814	2021	1	2021-09-15	12:00	d10-Acenaphthene	79	%	ALS	RG MI25 SE-1 2021-09-15 1200
E E	MI25	668195	5482814	2021	1	2021-09-15	12:00	d12-Chrysene	97	%	ALS	RG MI25 SE-1 2021-09-15 1200
E E	MI25	668195	5482814	2021	1	2021-09-15	12:00	d8-Naphthalene	80	%	ALS	RG MI25 SE-1 2021-09-15 1200
SE SE	MI25	668195	5482814	2021	1	2021-09-15	12:00	d10-Phenanthrene	91	%	ALS	RG MI25 SE-1 2021-09-15 1200
SE SE	MI25	668195	5482814	2021	1	2021-09-15	12:00	IACR:Coarse	<0.050	-	ALS	RG MI25 SE-1 2021-09-15 1200
SE SE	MI25	668195	5482814	2021	1	2021-09-15	12:00	IACR:Fine	<0.050		ALS	RG MI25 SE-1 2021-09-15 1200
SE	MI25	668195	5482814	2021	1	2021-09-15	12:00	B(a)P Total Potency Equivalent	<0.020	mg/kg		RG_MI25_SE-1_2021-09-15_1200

WSP Canada Inc. Page 248 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Γναρο	Ctation	Location	ı (UTMs) ^(a)	Vaar	Donlinete	Data	Tipe	Analyte	Dogult	Unit		Laboratory Information
ype	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MI25	668195	5482814	2021	1	2021-09-15	12:00	IACR (CCME)	<0.15	-	ALS	RG MI25 SE-1 2021-09-15 1200
SE	MI25	668187	5482834	2021		2021-09-15	12:00	Moisture	48	%	ALS	RG MI25 SE-2 2021-09-15 1200
SE	MI25	668187	5482834	2021	2	2021-09-15	12:00	pH (1:2 soil:water)	8.2	рН	ALS	RG_MI25_SE-2_2021-09-15_1200
SE	MI25	668187	5482834	2021	2	2021-09-15	12:00	% Gravel (>2 mm)	5.7	%	ALS	RG MI25 SE-2 2021-09-15 1200
SE	MI25	668187	5482834	2021	2	2021-09-15	12:00	% Sand (2.00 mm - 1.00 mm)	7.5	%	ALS	RG MI25 SE-2 2021-09-15 1200
SE	MI25	668187	5482834	2021		2021-09-15	12:00	% Sand (1.00 mm - 0.50 mm)	9.9	%	ALS	RG MI25 SE-2 2021-09-15 1200
SE	MI25	668187	5482834	2021	2	2021-09-15	12:00	% Sand (0.50 mm - 0.25 mm)	14	%	ALS	RG MI25 SE-2 2021-09-15 1200
SE	MI25	668187	5482834	2021		2021-09-15	12:00	% Sand (0.25 mm - 0.125 mm)	14	%	ALS	RG MI25 SE-2 2021-09-15 1200
SE	MI25	668187	5482834	2021		2021-09-15	12:00	% Sand (0.125 mm - 0.063 mm)	11	%	ALS	RG MI25 SE-2 2021-09-15 1200
SE	MI25	668187	5482834	2021		2021-09-15	12:00	% Silt (0.063 mm - 0.0312 mm)	14	%	ALS	RG MI25 SE-2 2021-09-15 1200
SE	MI25	668187	5482834	2021		2021-09-15	12:00	% Silt (0.031 mm - 0.004 mm)	18	%	ALS	RG MI25 SE-2 2021-09-15 1200
SE	MI25	668187	5482834	2021		2021-09-15	12:00	% Clay (<4 μm)	5.4	%	ALS	RG MI25 SE-2 2021-09-15 1200
SE	MI25	668187	5482834	2021		2021-09-15	12:00	Texture	Sandy loam	-	ALS	RG MI25 SE-2 2021-09-15 1200
SE SE	MI25	668187	5482834	2021		2021-09-15	12:00	Total Organic Carbon	1.6	%	ALS	RG MI25 SE-2 2021-09-15 1200
SE	MI25	668187	5482834	2021	2	2021-09-15	12:00	Aluminum (Al)	15,600	mg/kg	ALS	RG MI25 SE-2 2021-09-15 1200
SE	MI25	668187	5482834	2021		2021-09-15	12:00	Antimony (Sb)	0.66	mg/kg	ALS	RG_MI25_SE-2_2021-09-15_1200
SE	MI25	668187	5482834	2021		2021-09-15	12:00	Arsenic (As)	12	mg/kg	ALS	RG_MI25_SE-2_2021-09-15_1200
SE	MI25	668187	5482834	2021	2	2021-09-15	12:00	Barium (Ba)	165	mg/kg	ALS	RG MI25 SE-2 2021-09-15 1200
SE	MI25	668187	5482834	2021	2	2021-09-15	12:00	Beryllium (Be)	1.0	mg/kg	ALS	RG MI25 SE-2 2021-09-15 1200
SE	MI25	668187	5482834	2021		2021-09-15	12:00	Bismuth (Bi)	0.24	mg/kg	ALS	RG MI25 SE-2 2021-09-15 1200
SE	MI25	668187	5482834	2021	2	2021-09-15	12:00	Boron (B)	13	mg/kg	ALS	RG MI25 SE-2 2021-09-15 1200
SE	MI25	668187	5482834	2021		2021-09-15	12:00	Cadmium (Cd)	1.5		ALS	RG MI25 SE-2 2021-09-15 1200
SE	MI25	668187	5482834	2021	2	2021-09-15	12:00	Calcium (Ca)	14,700	mg/kg	ALS	RG MI25 SE-2 2021-09-15 1200
SE SE			-					Chromium (Cr)	· ·	mg/kg		
	MI25	668187	5482834	2021	2	2021-09-15	12:00	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	22	mg/kg	ALS	RG_MI25_SE-2_2021-09-15_1200
SE	MI25	668187	5482834	2021	2	2021-09-15	12:00	Cobalt (Co)	8.9	mg/kg	ALS	RG_MI25_SE-2_2021-09-15_1200
SE	MI25	668187	5482834	2021	2	2021-09-15	12:00	Copper (Cu)	30	mg/kg	ALS	RG_MI25_SE-2_2021-09-15_1200
SE	MI25	668187	5482834	2021	2	2021-09-15	12:00	Iron (Fe)	25,500	mg/kg	ALS	RG_MI25_SE-2_2021-09-15_1200
SE	MI25	668187	5482834	2021	2	2021-09-15	12:00	Lead (Pb)	19	mg/kg	ALS	RG_MI25_SE-2_2021-09-15_1200
SE	MI25	668187	5482834	2021		2021-09-15	12:00	Lithium (Li)	24	mg/kg	ALS	RG_MI25_SE-2_2021-09-15_1200
SE	MI25	668187	5482834	2021	2	2021-09-15	12:00	Magnesium (Mg)	6,390	mg/kg	ALS	RG_MI25_SE-2_2021-09-15_1200
SE	MI25	668187	5482834	2021		2021-09-15	12:00	Manganese (Mn)	541	mg/kg	ALS	RG_MI25_SE-2_2021-09-15_1200
SE	MI25	668187	5482834	2021		2021-09-15	12:00	Mercury (Hg)	0.026	mg/kg	ALS	RG_MI25_SE-2_2021-09-15_1200
SE	MI25	668187	5482834	2021		2021-09-15	12:00	Molybdenum (Mo)	5.9	mg/kg	ALS	RG_MI25_SE-2_2021-09-15_1200
SE	MI25	668187	5482834	2021		2021-09-15	12:00	Nickel (Ni)	33	mg/kg	ALS	RG_MI25_SE-2_2021-09-15_1200
SE	MI25	668187	5482834	2021		2021-09-15	12:00	Phosphorus (P)	1,450	mg/kg	ALS	RG_MI25_SE-2_2021-09-15_1200
SE	MI25	668187	5482834	2021		2021-09-15	12:00	Potassium (K)	3,380	mg/kg	ALS	RG_MI25_SE-2_2021-09-15_1200
SE	MI25	668187	5482834	2021		2021-09-15	12:00	Selenium (Se)	1.9	mg/kg	ALS	RG_MI25_SE-2_2021-09-15_1200
SE	MI25	668187	5482834	2021		2021-09-15	12:00	Silver (Ag)	0.14	mg/kg	ALS	RG_MI25_SE-2_2021-09-15_1200
SE	MI25	668187	5482834	2021		2021-09-15	12:00	Sodium (Na)	98	mg/kg	ALS	RG_MI25_SE-2_2021-09-15_1200
SE	MI25	668187	5482834	2021		2021-09-15	12:00	Strontium (Sr)	44	mg/kg	ALS	RG_MI25_SE-2_2021-09-15_1200
SE	MI25	668187	5482834	2021		2021-09-15	12:00	Sulfur (S)	<1000	mg/kg	ALS	RG_MI25_SE-2_2021-09-15_1200
SE	MI25	668187	5482834	2021	2	2021-09-15	12:00	Thallium (TI)	0.75	mg/kg	ALS	RG_MI25_SE-2_2021-09-15_1200
SE	MI25	668187	5482834	2021		2021-09-15	12:00	Tin (Sn)	<2.0	mg/kg	ALS	RG_MI25_SE-2_2021-09-15_1200
SE	MI25	668187	5482834	2021	2	2021-09-15	12:00	Titanium (Ti)	14	mg/kg	ALS	RG_MI25_SE-2_2021-09-15_1200
SE	MI25	668187	5482834	2021	2	2021-09-15	12:00	Tungsten (W)	<0.50	mg/kg	ALS	RG_MI25_SE-2_2021-09-15_1200
SE	MI25	668187	5482834	2021	2	2021-09-15	12:00	Uranium (U)	0.88	mg/kg	ALS	RG_MI25_SE-2_2021-09-15_1200
SE	MI25	668187	5482834	2021	2	2021-09-15	12:00	Vanadium (V)	39	mg/kg	ALS	RG_MI25_SE-2_2021-09-15_1200

WSP Canada Inc. Page 249 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

уре	Station	Location	ı (UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
ype	Station	Easting	Northing	i eai	Replicate	Date	Tille	Analyte	Result	Ullit	Lab	Sample ID
SE	MI25	668187	5482834	2021	2	2021-09-15	12:00	Zinc (Zn)	152	mg/kg	ALS	RG_MI25_SE-2_2021-09-15_1200
SE	MI25	668187	5482834	2021	2	2021-09-15	12:00	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_MI25_SE-2_2021-09-15_1200
SE	MI25	668187	5482834	2021	2	2021-09-15	12:00	Acenaphthene	< 0.0050	mg/kg	ALS	RG_MI25_SE-2_2021-09-15_1200
SE	MI25	668187	5482834	2021	2	2021-09-15	12:00	Acenaphthylene	< 0.0050	mg/kg	ALS	RG_MI25_SE-2_2021-09-15_1200
SE	MI25	668187	5482834	2021	2	2021-09-15	12:00	Acridine	<0.010	mg/kg	ALS	RG_MI25_SE-2_2021-09-15_1200
SE	MI25	668187	5482834	2021	2	2021-09-15	12:00	Anthracene	<0.0040	mg/kg	ALS	RG_MI25_SE-2_2021-09-15_1200
SE	MI25	668187	5482834	2021	2	2021-09-15	12:00	Benz(a)anthracene	<0.010	mg/kg	ALS	RG_MI25_SE-2_2021-09-15_1200
SE	MI25	668187	5482834	2021	2	2021-09-15	12:00	Benzo(a)pyrene	<0.010	mg/kg	ALS	RG_MI25_SE-2_2021-09-15_1200
SE	MI25	668187	5482834	2021	2	2021-09-15	12:00	Benzo(b&j)fluoranthene	<0.010	mg/kg	ALS	RG_MI25_SE-2_2021-09-15_1200
SE	MI25	668187	5482834	2021	2	2021-09-15	12:00	Benzo(b+j+k)fluoranthene	<0.015	mg/kg	ALS	RG_MI25_SE-2_2021-09-15_1200
SE	MI25	668187	5482834	2021	2	2021-09-15	12:00	Benzo(e)pyrene	0.011	mg/kg	ALS	RG_MI25_SE-2_2021-09-15_1200
SE	MI25	668187	5482834	2021	2	2021-09-15	12:00	Benzo(g_h_i)perylene	<0.010	mg/kg	ALS	RG MI25 SE-2 2021-09-15 1200
SE	MI25	668187	5482834	2021	2	2021-09-15	12:00	Benzo(k)fluoranthene	<0.010	mg/kg	ALS	RG MI25 SE-2 2021-09-15 1200
SE	MI25	668187	5482834	2021	2	2021-09-15	12:00	Chrysene	0.017	mg/kg	ALS	RG MI25 SE-2 2021-09-15 1200
SE	MI25	668187	5482834	2021	2	2021-09-15	12:00	Dibenz(a h)anthracene	<0.0050	mg/kg	ALS	RG_MI25_SE-2_2021-09-15_1200
SE	MI25	668187	5482834	2021	2	2021-09-15	12:00	Fluoranthene	<0.010	mg/kg	ALS	RG MI25 SE-2 2021-09-15 1200
SE	MI25	668187	5482834	2021	2	2021-09-15	12:00	Fluorene	<0.010	mg/kg	ALS	RG MI25 SE-2 2021-09-15 1200
SE .	MI25	668187	5482834	2021	2	2021-09-15	12:00	Indeno(1,2,3-c,d)pyrene	<0.010	mg/kg	ALS	RG MI25 SE-2 2021-09-15 1200
SE .	MI25	668187	5482834	2021	2	2021-09-15	12:00	1-Methylnaphthalene	<0.050	mg/kg	ALS	RG MI25 SE-2 2021-09-15 1200
E	MI25	668187	5482834	2021	2	2021-09-15	12:00	2-Methylnaphthalene	<0.010	mg/kg	ALS	RG MI25 SE-2 2021-09-15 1200
E	MI25	668187	5482834	2021	2	2021-09-15	12:00	Naphthalene	<0.010	mg/kg	ALS	RG MI25 SE-2 2021-09-15 1200
E	MI25	668187	5482834	2021	2	2021-09-15	12:00	Perylene	<0.010	mg/kg	ALS	RG MI25 SE-2 2021-09-15 1200
E	MI25	668187	5482834	2021	2	2021-09-15	12:00	Phenanthrene	0.017	mg/kg	ALS	RG MI25 SE-2 2021-09-15 1200
E	MI25	668187	5482834	2021	2	2021-09-15	12:00	Pyrene	<0.010	mg/kg	ALS	RG MI25 SE-2 2021-09-15 1200
E E	MI25	668187	5482834	2021	2	2021-09-15	12:00	Quinoline	<0.050	mg/kg	ALS	RG MI25 SE-2 2021-09-15 1200
E E	MI25	668187	5482834	2021	2	2021-09-15	12:00	d10-Acenaphthene	76	%	ALS	RG MI25 SE-2 2021-09-15 1200
E E	MI25	668187	5482834	2021	2	2021-09-15	12:00	d12-Chrysene	93	%	ALS	RG MI25 SE-2 2021-09-15 1200
E E	MI25	668187	5482834	2021	2	2021-09-15	12:00	d8-Naphthalene	76	%	ALS	RG MI25 SE-2 2021-09-15 1200
SE SE	MI25	668187	5482834	2021	2	2021-09-15	12:00	d10-Phenanthrene	88	%	ALS	RG MI25 SE-2 2021-09-15 1200
E E	MI25	668187	5482834	2021	2	2021-09-15	12:00	IACR:Coarse	<0.050	-	ALS	RG MI25 SE-2 2021-09-15 1200
E E	MI25	668187	5482834	2021	_	2021-09-15	12:00	IACR:Fine	<0.050	_		RG_MI25_SE-2_2021-09-15_1200
E	MI25	668187	5482834	2021	2	2021-09-15	12:00	B(a)P Total Potency Equivalent	<0.020	mg/kg	ALS	RG MI25 SE-2 2021-09-15 1200
E E	MI25	668187	5482834	2021	2	2021-09-15	12:00	IACR (CCME)	<0.15	ing/kg	ALS	RG MI25 SE-2 2021-09-15 1200
E E	MI25	668173	5482859	2021	3	2021-09-15	12:00	Moisture	90	%	ALS	RG MI25 SE-3 2021-09-15 1200
E	MI25	668173	5482859	2021	3	2021-09-15	12:00	pH (1:2 soil:water)	7.6	pH	ALS	RG MI25 SE-3 2021-09-15 1200
E E	MI25	668173	5482859	2021	3	2021-09-15	12:00	% Gravel (>2 mm)	6.2	%	ALS	RG MI25 SE-3 2021-09-15 1200
E E	MI25	668173	5482859	2021	3	2021-09-15	12:00	% Sand (2.00 mm - 1.00 mm)	1.4	%	ALS	RG MI25 SE-3 2021-09-15 1200
E E	MI25	668173	5482859	2021	3	2021-09-15	12:00	% Sand (2.00 mm - 0.50 mm)	1.8	%	ALS	RG MI25 SE-3 2021-09-15 1200
E E	MI25	668173	5482859	2021	3	2021-09-15	12:00	% Sand (1.00 mm - 0.25 mm)	6.2	%	ALS	RG MI25 SE-3 2021-09-15 1200
E	MI25	668173	5482859	2021	3	2021-09-15	12:00	% Sand (0.25 mm - 0.125 mm)	13	%	ALS	RG MI25 SE-3 2021-09-15 1200
Ε	MI25	668173	5482859	2021	3	2021-09-15	12:00	% Sand (0.25 mm - 0.125 mm)	8.8	%	ALS	RG MI25 SE-3 2021-09-15 1200
E E	MI25	668173	5482859	2021	3	2021-09-15	12:00	% Sand (0.125 mm - 0.063 mm) % Silt (0.063 mm - 0.0312 mm)	28	%	ALS	RG_MI25_SE-3_2021-09-15_1200 RG_MI25_SE-3_2021-09-15_1200
E E			-		-							
	MI25	668173	5482859	2021	3	2021-09-15	12:00	% Silt (0.031 mm - 0.004 mm)	29	%	ALS	RG_MI25_SE-3_2021-09-15_1200
E	MI25	668173	5482859	2021	3	2021-09-15	12:00	% Clay (<4 μm)	5.2	%	ALS	RG_MI25_SE-3_2021-09-15_1200
SE SE	MI25	668173	5482859	2021	3	2021-09-15	12:00	Texture	Silt loam	- 0/	ALS	RG_MI25_SE-3_2021-09-15_1200
· – 1	MI25	668173	5482859	2021	3	2021-09-15	12:00	Total Organic Carbon Aluminum (Al)	2.0	%	ALS	RG_MI25_SE-3_2021-09-15_1200

WSP Canada Inc. Page 250 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	Ctation	Location	ı (UTMs) ^(a)	Veen	Donlingto	Doto	Time	Analyse	- Dooult	Heit		Laboratory Information
ype	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE.	MI25	668173	5482859	2021	3	2021-09-15	12:00	Antimony (Sb)	0.67	mg/kg	ALS	RG MI25 SE-3 2021-09-15 1200
E	MI25	668173	5482859	2021	3	2021-09-15	12:00	Arsenic (As)	12	mg/kg	ALS	RG MI25 SE-3 2021-09-15 1200
E	MI25	668173	5482859	2021	3	2021-09-15	12:00	Barium (Ba)	171	mg/kg	ALS	RG MI25 SE-3 2021-09-15 1200
E	MI25	668173	5482859	2021	3	2021-09-15	12:00	Beryllium (Be)	0.91	mg/kg	ALS	RG MI25 SE-3 2021-09-15 1200
E	MI25	668173	5482859	2021	3	2021-09-15	12:00	Bismuth (Bi)	0.22	mg/kg	ALS	RG MI25 SE-3 2021-09-15 1200
E	MI25	668173	5482859	2021	3	2021-09-15	12:00	Boron (B)	11	mg/kg	ALS	RG MI25 SE-3 2021-09-15 1200
E E	MI25	668173	5482859	2021	3	2021-09-15	12:00	Cadmium (Cd)	1.5	mg/kg	ALS	RG MI25 SE-3 2021-09-15 1200
E	MI25	668173	5482859	2021	3	2021-09-15	12:00	Calcium (Ca)	15,200	mg/kg	ALS	RG MI25 SE-3 2021-09-15 1200
E	MI25	668173	5482859	2021	3	2021-09-15	12:00	Chromium (Cr)	21	mg/kg	ALS	RG MI25 SE-3 2021-09-15 1200
E	MI25	668173	5482859	2021	3	2021-09-15	12:00	Cobalt (Co)	8.8	mg/kg	ALS	RG MI25 SE-3 2021-09-15 1200
E	MI25	668173	5482859	2021	3	2021-09-15	12:00	Copper (Cu)	28	mg/kg	ALS	RG MI25 SE-3 2021-09-15 1200
E	MI25	668173	5482859	2021	3	2021-09-15	12:00	Iron (Fe)	23,100	mg/kg	ALS	RG MI25 SE-3 2021-09-15 1200
E	MI25	668173	5482859	2021	3	2021-09-15	12:00	Lead (Pb)	21	mg/kg	ALS	RG MI25 SE-3 2021-09-15 1200
E	MI25	668173	5482859	2021	3	2021-09-15	12:00	Lithium (Li)	23	mg/kg	ALS	RG MI25 SE-3 2021-09-15 1200
E	MI25	668173	5482859	2021	3	2021-09-15	12:00	Magnesium (Mg)	5,910	mg/kg	ALS	RG MI25 SE-3 2021-09-15 1200
E	MI25	668173	5482859	2021	3	2021-09-15	12:00	Manganese (Mn)	512	mg/kg	ALS	RG MI25 SE-3 2021-09-15 1200
E	MI25	668173	5482859	2021	3	2021-09-15	12:00	Mercury (Hg)	0.034	mg/kg	ALS	RG MI25 SE-3 2021-09-15 1200
E	MI25	668173	5482859	2021	3	2021-09-15	12:00	Molybdenum (Mo)	5.3	mg/kg	ALS	RG MI25 SE-3 2021-09-15 1200
E	MI25	668173	5482859	2021	3	2021-09-15	12:00	Nickel (Ni)	32	mg/kg	ALS	RG MI25 SE-3 2021-09-15 1200
E	MI25	668173	5482859	2021	3	2021-09-15	12:00	Phosphorus (P)	1,460	mg/kg	ALS	RG MI25 SE-3 2021-09-15 1200
E	MI25	668173	5482859	2021	3	2021-09-15	12:00	Potassium (K)	3,030		ALS	RG_MI25_SE-3_2021-09-15_1200
E	MI25	668173	5482859	2021	3	2021-09-15	12:00	Selenium (Se)	1.2	mg/kg	ALS	RG MI25 SE-3 2021-09-15 1200
E	MI25	668173	5482859	2021	3	2021-09-15	12:00	Silver (Ag)	0.16	mg/kg	ALS	RG MI25 SE-3 2021-09-15 1200
E	MI25	668173	5482859	2021	3	2021-09-15	12:00	Sodium (Na)	92	mg/kg	ALS	
E								` ,	47	mg/kg		RG_MI25_SE-3_2021-09-15_1200
E	MI25 MI25	668173 668173	5482859 5482859	2021 2021	3	2021-09-15	12:00 12:00	Strontium (Sr)	<1000	mg/kg	ALS ALS	RG_MI25_SE-3_2021-09-15_1200
						2021-09-15		Sulfur (S)		mg/kg	<u> </u>	RG_MI25_SE-3_2021-09-15_1200
E	MI25	668173	5482859	2021	3	2021-09-15	12:00	Thallium (TI)	0.72	mg/kg	ALS	RG_MI25_SE-3_2021-09-15_1200
SE SE	MI25	668173	5482859	2021	3	2021-09-15	12:00	Tin (Sn)	<2.0	mg/kg	ALS	RG_MI25_SE-3_2021-09-15_1200
E	MI25	668173	5482859	2021	3	2021-09-15	12:00	Titanium (Ti)	8.7	mg/kg	ALS	RG_MI25_SE-3_2021-09-15_1200
	MI25	668173	5482859	2021	· ·	2021-09-15	12:00	Tungsten (W)	<0.50	mg/kg	ALS	RG_MI25_SE-3_2021-09-15_1200
E	MI25	668173	5482859	2021		2021-09-15	12:00	Uranium (U)	0.91	mg/kg	ALS	RG_MI25_SE-3_2021-09-15_1200
E	MI25	668173	5482859	2021	3	2021-09-15	12:00	Vanadium (V)	37	mg/kg	ALS	RG_MI25_SE-3_2021-09-15_1200
E	MI25	668173	5482859	2021	3	2021-09-15	12:00	Zinc (Zn)	141	mg/kg	ALS	RG_MI25_SE-3_2021-09-15_1200
E	MI25	668173	5482859	2021	3	2021-09-15	12:00	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_MI25_SE-3_2021-09-15_1200
E	MI25	668173	5482859	2021	3	2021-09-15	12:00	Acenaphthene	<0.050	mg/kg	ALS	RG_MI25_SE-3_2021-09-15_1200
E	MI25	668173	5482859	2021	3	2021-09-15	12:00	Acenaphthylene	<0.025	mg/kg	ALS	RG_MI25_SE-3_2021-09-15_1200
E	MI25	668173	5482859	2021	3	2021-09-15	12:00	Acridine	<0.050	mg/kg	ALS	RG_MI25_SE-3_2021-09-15_1200
E	MI25	668173	5482859	2021	3	2021-09-15	12:00	Anthracene	<0.020	mg/kg	ALS	RG_MI25_SE-3_2021-09-15_1200
E	MI25	668173	5482859	2021	3	2021-09-15	12:00	Benz(a)anthracene	<0.050	mg/kg	ALS	RG_MI25_SE-3_2021-09-15_1200
E	MI25	668173	5482859	2021	3	2021-09-15	12:00	Benzo(a)pyrene	<0.050	mg/kg	ALS	RG_MI25_SE-3_2021-09-15_1200
E	MI25	668173	5482859	2021	3	2021-09-15	12:00	Benzo(b&j)fluoranthene	<0.050	mg/kg	ALS	RG_MI25_SE-3_2021-09-15_1200
<u>E</u>	MI25	668173	5482859	2021	3	2021-09-15	12:00	Benzo(b+j+k)fluoranthene	<0.075	mg/kg	ALS	RG_MI25_SE-3_2021-09-15_1200
E	MI25	668173	5482859	2021	3	2021-09-15	12:00	Benzo(e)pyrene	<0.050	mg/kg	ALS	RG_MI25_SE-3_2021-09-15_1200
E	MI25	668173	5482859	2021	3	2021-09-15	12:00	Benzo(g_h_i)perylene	<0.050	mg/kg	ALS	RG_MI25_SE-3_2021-09-15_1200
E	MI25	668173	5482859	2021	3	2021-09-15	12:00	Benzo(k)fluoranthene	<0.050	mg/kg	ALS	RG_MI25_SE-3_2021-09-15_1200
E	MI25	668173	5482859	2021	3	2021-09-15	12:00	Chrysene	<0.050	mg/kg	ALS	RG_MI25_SE-3_2021-09-15_1200
SE	MI25	668173	5482859	2021	3	2021-09-15	12:00	Dibenz(a_h)anthracene	< 0.025	mg/kg	ALS	RG_MI25_SE-3_2021-09-15_1200

WSP Canada Inc. Page 251 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	1: Sediment Chem		(UTMs) ^(a)									Laboratory Information
Type	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MI25	668173	5482859	2021	3	2021-09-15	12:00	Fluoranthene	<0.050	mg/kg	ALS	RG MI25 SE-3 2021-09-15 1200
SE	MI25	668173	5482859	2021	3	2021-09-15	12:00	Fluorene	<0.050	mg/kg	ALS	RG MI25 SE-3 2021-09-15 1200
SE	MI25	668173	5482859	2021	3	2021-09-15	12:00	Indeno(1,2,3-c,d)pyrene	<0.050	mg/kg	ALS	RG MI25 SE-3 2021-09-15 1200
SE	MI25	668173	5482859	2021	3	2021-09-15	12:00	1-Methylnaphthalene	0.025	mg/kg	ALS	RG MI25 SE-3 2021-09-15 1200
SE	MI25	668173	5482859	2021	3	2021-09-15	12:00	2-Methylnaphthalene	<0.050	mg/kg	ALS	RG MI25 SE-3 2021-09-15 1200
SE	MI25	668173	5482859	2021	3	2021-09-15	12:00	Naphthalene	<0.050	mg/kg	ALS	RG MI25 SE-3 2021-09-15 1200
SE	MI25	668173	5482859	2021	3	2021-09-15	12:00	Perylene	<0.050	mg/kg	ALS	RG MI25 SE-3 2021-09-15 1200
SE	MI25	668173	5482859	2021	3	2021-09-15	12:00	Phenanthrene	0.067	mg/kg	ALS	RG MI25 SE-3 2021-09-15 1200
SE	MI25	668173	5482859	2021	3	2021-09-15	12:00	Pyrene	<0.050	mg/kg	ALS	RG MI25 SE-3 2021-09-15 1200
SE	MI25	668173	5482859	2021	3	2021-09-15	12:00	Quinoline	<0.050	mg/kg	ALS	RG_MI25_SE-3_2021-09-15_1200
SE	MI25	668173	5482859	2021	3	2021-09-15	12:00	d10-Acenaphthene	67	%	ALS	RG MI25 SE-3 2021-09-15 1200
SE	MI25	668173	5482859	2021	3	2021-09-15	12:00	d12-Chrysene	80	%	ALS	RG MI25 SE-3 2021-09-15 1200
SE	MI25	668173	5482859	2021	3	2021-09-15	12:00	d8-Naphthalene	75	%	ALS	RG MI25 SE-3 2021-09-15 1200
SE	MI25	668173	5482859	2021	3	2021-09-15	12:00	d10-Phenanthrene	78	%	ALS	RG MI25 SE-3 2021-09-15 1200
SE	MI25	668173	5482859	2021	3	2021-09-15	12:00	IACR:Coarse	<0.050	-	ALS	RG MI25 SE-3 2021-09-15 1200
SE	MI25	668173	5482859	2021	3	2021-09-15	12:00	IACR:Fine	0.059	-	ALS	RG MI25 SE-3 2021-09-15 1200
SE	MI25	668173	5482859	2021	3	2021-09-15	12:00	B(a)P Total Potency Equivalent	<0.048	mg/kg	ALS	RG MI25 SE-3 2021-09-15 1200
SE	MI25	668173	5482859	2021	3	2021-09-15	12:00	IACR (CCME)	<0.54	-	ALS	RG_MI25_SE-3_2021-09-15_1200
SE	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	Moisture	98	%	ALS	RG MIDAG SE-1 2021-09-15 1400
SE	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	pH (1:2 soil:water)	8.0	рН	ALS	RG MIDAG SE-1 2021-09-15 1400
SE	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	% Gravel (>2 mm)	27	%	ALS	RG MIDAG SE-1 2021-09-15 1400
SE	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	% Sand (2.00 mm - 1.00 mm)	12	%	ALS	RG MIDAG SE-1 2021-09-15 1400
SE	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	% Sand (1.00 mm - 0.50 mm)	15	%	ALS	RG_MIDAG_SE-1_2021-09-15_1400
SE	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	% Sand (0.50 mm - 0.25 mm)	8.5	%	ALS	RG MIDAG SE-1 2021-09-15 1400
SE	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	% Sand (0.25 mm - 0.125 mm)	3.0	%	ALS	RG_MIDAG_SE-1_2021-09-15_1400
SE	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	% Sand (0.125 mm - 0.063 mm)	4.7	%	ALS	RG_MIDAG_SE-1_2021-09-15_1400
SE	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	% Silt (0.063 mm - 0.0312 mm)	11	%	ALS	RG_MIDAG_SE-1_2021-09-15_1400
SE	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	% Silt (0.031 mm - 0.004 mm)	15	%	ALS	RG_MIDAG_SE-1_2021-09-15_1400
SE	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	% Clay (<4 μm)	3.6	%	ALS	RG_MIDAG_SE-1_2021-09-15_1400
SE	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	Texture	Sandy loam	-	ALS	RG_MIDAG_SE-1_2021-09-15_1400
SE	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	Total Organic Carbon	4.9	%	ALS	RG_MIDAG_SE-1_2021-09-15_1400
SE	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	Aluminum (Al)	10,400	mg/kg	ALS	RG_MIDAG_SE-1_2021-09-15_1400
SE	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	Antimony (Sb)	0.41	mg/kg	ALS	RG_MIDAG_SE-1_2021-09-15_1400
SE	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	Arsenic (As)	7.8	mg/kg	ALS	RG_MIDAG_SE-1_2021-09-15_1400
SE	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	Barium (Ba)	166	mg/kg	ALS	RG_MIDAG_SE-1_2021-09-15_1400
SE	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	Beryllium (Be)	0.76	mg/kg	ALS	RG_MIDAG_SE-1_2021-09-15_1400
SE	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	Bismuth (Bi)	<0.20	mg/kg	ALS	RG_MIDAG_SE-1_2021-09-15_1400
SE	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	Boron (B)	11	mg/kg	ALS	RG_MIDAG_SE-1_2021-09-15_1400
SE	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	Cadmium (Cd)	1.4	mg/kg	ALS	RG_MIDAG_SE-1_2021-09-15_1400
SE	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	Calcium (Ca)	59,700	mg/kg	ALS	RG_MIDAG_SE-1_2021-09-15_1400
SE	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	Chromium (Cr)	16	mg/kg	ALS	RG_MIDAG_SE-1_2021-09-15_1400
SE	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	Cobalt (Co)	30	mg/kg	ALS	RG_MIDAG_SE-1_2021-09-15_1400
SE	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	Copper (Cu)	16	mg/kg	ALS	RG_MIDAG_SE-1_2021-09-15_1400
SE	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	Iron (Fe)	17,100	mg/kg	ALS	RG_MIDAG_SE-1_2021-09-15_1400
SE	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	Lead (Pb)	9.3	mg/kg	ALS	RG_MIDAG_SE-1_2021-09-15_1400
SE	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	Lithium (Li)	14	mg/kg	ALS	RG_MIDAG_SE-1_2021-09-15_1400
SE	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	Magnesium (Mg)	9,360	mg/kg	ALS	RG_MIDAG_SE-1_2021-09-15_1400

WSP Canada Inc. Page 252 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

`	Ctation	Location	(UTMs) ^(a)	Veer	Donlingto	Doto	Time	Analysta	Decuit-	Unit		Laboratory Information
ype	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	Manganese (Mn)	493	mg/kg	ALS	RG MIDAG SE-1 2021-09-15 1400
SE	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	Mercury (Hg)	0.04	mg/kg	ALS	RG MIDAG SE-1 2021-09-15 1400
Ε	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	Molybdenum (Mo)	1.4	mg/kg	ALS	RG MIDAG SE-1 2021-09-15 1400
Ε	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	Nickel (Ni)	80	mg/kg	ALS	RG MIDAG SE-1 2021-09-15 1400
E	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	Phosphorus (P)	1,190	mg/kg	ALS	RG_MIDAG_SE-1_2021-09-15_1400
E	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	Potassium (K)	2,390	mg/kg	ALS	RG MIDAG SE-1 2021-09-15 1400
E	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	Selenium (Se)	2.2	mg/kg	ALS	RG MIDAG SE-1 2021-09-15 1400
=	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	Silver (Ag)	0.15	mg/kg	ALS	RG MIDAG SE-1 2021-09-15 1400
Е	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	Sodium (Na)	151	mg/kg	ALS	RG MIDAG SE-1 2021-09-15 1400
Ε	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	Strontium (Sr)	102	mg/kg	ALS	RG_MIDAG_SE-1_2021-09-15_1400
E	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	Sulfur (S)	1,900	mg/kg	ALS	RG MIDAG SE-1 2021-09-15 1400
E	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	Thallium (TI)	0.61	mg/kg	ALS	RG MIDAG SE-1 2021-09-15 1400
E	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	Tin (Sn)	2.1	mg/kg	ALS	RG MIDAG SE-1 2021-09-15 1400
E	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	Titanium (Ti)	12	mg/kg	ALS	RG MIDAG SE-1 2021-09-15 1400
Ξ	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	Tungsten (W)	<0.50	mg/kg	ALS	RG MIDAG SE-1 2021-09-15 1400
	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	Uranium (U)	0.76	mg/kg	ALS	RG_MIDAG_SE-1_2021-09-15_1400
	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	Vanadium (V)	26	mg/kg	ALS	RG MIDAG SE-1 2021-09-15 1400
=	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	Zinc (Zn)	157	mg/kg	ALS	RG MIDAG SE-1 2021-09-15 140
E	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	Zirconium (Zr)	<1.0	mg/kg	ALS	RG MIDAG SE-1 2021-09-15 1400
=	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	Acenaphthene	<0.090	mg/kg	ALS	RG_MIDAG_SE-1_2021-09-15_1400
=	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	Acenaphthylene	<0.090	mg/kg	ALS	RG_MIDAG_SE-1_2021-09-15_1400
=	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	Acridine	<0.18	mg/kg	ALS	RG MIDAG SE-1 2021-09-15 140
=	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	Anthracene	<0.072	mg/kg	ALS	RG_MIDAG_SE-1_2021-09-15_140
=	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	Benz(a)anthracene	<0.18	mg/kg	ALS	RG_MIDAG_SE-1_2021-09-15_140
E	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	Benzo(a)pyrene	<0.18	mg/kg	ALS	RG_MIDAG_SE-1_2021-09-15_140
E	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	Benzo(b&j)fluoranthene	<0.18	mg/kg	ALS	RG MIDAG SE-1 2021-09-15 1400
E	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	Benzo(b+j+k)fluoranthene	<0.27	mg/kg	ALS	RG MIDAG SE-1 2021-09-15 1400
E	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	Benzo(e)pyrene	<0.18	mg/kg	ALS	RG_MIDAG_SE-1_2021-09-15_1400
E	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	Benzo(g_h_i)perylene	<0.18	mg/kg	ALS	RG_MIDAG_SE-1_2021-09-15_1400
E	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	Benzo(k)fluoranthene	<0.18	mg/kg	ALS	RG_MIDAG_SE-1_2021-09-15_1400
E	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	Chrysene	<0.18	mg/kg	ALS	RG MIDAG SE-1 2021-09-15 140
E	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	Dibenz(a_h)anthracene	<0.090	mg/kg	ALS	RG MIDAG SE-1 2021-09-15 1400
E	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	Fluoranthene	<0.18	mg/kg	ALS	RG_MIDAG_SE-1_2021-09-15_1400
E	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	Fluorene	<0.18	mg/kg	ALS	RG_MIDAG_SE-1_2021-09-15_1400
=	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	Indeno(1,2,3-c,d)pyrene	<0.18	mg/kg	ALS	RG_MIDAG_SE-1_2021-09-15_1400
E	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	1-Methylnaphthalene	0.21	mg/kg	ALS	RG_MIDAG_SE-1_2021-09-15_140
E	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	2-Methylnaphthalene	0.28	mg/kg	ALS	RG_MIDAG_SE-1_2021-09-15_1400
=	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	Naphthalene	0.19	mg/kg	ALS	RG_MIDAG_SE-1_2021-09-15_1400
Ξ	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	Perylene	<0.18	mg/kg	ALS	RG_MIDAG_SE-1_2021-09-15_1400
=	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	Phenanthrene	0.34	mg/kg	ALS	RG_MIDAG_SE-1_2021-09-15_1400
	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	Pyrene	<0.18	mg/kg	ALS	RG_MIDAG_SE-1_2021-09-15_1400
Ξ	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	Quinoline	<0.18	mg/kg	ALS	RG_MIDAG_SE-1_2021-09-15_1400
Ξ	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	d10-Acenaphthene	64	%	ALS	RG_MIDAG_SE-1_2021-09-15_1400
Ξ	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	d12-Chrysene	72	%	ALS	RG_MIDAG_SE-1_2021-09-15_1400
=	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	d8-Naphthalene	72	%	ALS	RG_MIDAG_SE-1_2021-09-15_1400
Ξ	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	d10-Phenanthrene	71	%	ALS	RG_MIDAG_SE-1_2021-09-15_1400
E	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	IACR:Coarse	0.11	_	ALS	RG MIDAG SE-1 2021-09-15 1400

WSP Canada Inc. Page 253 of 337

Reference No. 22574542-001-R-Rev0-1000

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

vno	Station	Location	(UTMs) ^(a)	Year	Replicate	Date	Time	Apolyto	Result	Unit		Laboratory Information
ype	Station	Easting	Northing	rear	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	IACR:Fine	0.21	-	ALS	RG_MIDAG_SE-1_2021-09-15_1400
SE.	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	B(a)P Total Potency Equivalent	<0.17	mg/kg	ALS	RG_MIDAG_SE-1_2021-09-15_1400
SE.	MIDAG	665265	5489439	2021	1	2021-09-15	14:00	IACR (CCME)	<1.9	-	ALS	RG MIDAG SE-1 2021-09-15 1400
SE	MIUCO	668232	5486600	2021	1	2021-09-15	12:30	Moisture	88	%	ALS	RG MIUCO SE-1 2021-09-15 1230
SE	MIUCO	668232	5486600	2021	1	2021-09-15	12:30	pH (1:2 soil:water)	7.7	pН	ALS	RG_MIUCO_SE-1_2021-09-15_1230
SE	MIUCO	668232	5486600	2021	1	2021-09-15	12:30	% Gravel (>2 mm)	5.6	%	ALS	RG MIUCO SE-1 2021-09-15 1230
SE.	MIUCO	668232	5486600	2021		2021-09-15	12:30	% Sand (2.00 mm - 1.00 mm)	14	%	ALS	RG MIUCO SE-1 2021-09-15 1230
SE.	MIUCO	668232	5486600	2021	1	2021-09-15	12:30	% Sand (1.00 mm - 0.50 mm)	22	%	ALS	RG_MIUCO_SE-1_2021-09-15_1230
SE.	MIUCO	668232	5486600	2021	+	2021-09-15	12:30	% Sand (0.50 mm - 0.25 mm)	9.1	%	ALS	RG MIUCO SE-1 2021-09-15 1230
SE.	MIUCO	668232	5486600	2021	_	2021-09-15	12:30	% Sand (0.25 mm - 0.125 mm)	3.7	%	ALS	RG MIUCO SE-1 2021-09-15 1230
SE	MIUCO	668232	5486600	2021	_	2021-09-15	12:30	% Sand (0.125 mm - 0.063 mm)	5.6	%	ALS	RG_MIUCO_SE-1_2021-09-15_1230
SE	MIUCO	668232	5486600	2021		2021-09-15	12:30	% Silt (0.063 mm - 0.0312 mm)	17	%	ALS	RG MIUCO SE-1 2021-09-15 1230
SE	MIUCO	668232	5486600	2021	+	2021-09-15	12:30	% Silt (0.031 mm - 0.004 mm)	19	%	ALS	RG MIUCO SE-1 2021-09-15 1230
SE	MIUCO	668232	5486600	2021	+	2021-09-15	12:30	% Clay (<4 μm)	3.5	%	ALS	RG MIUCO SE-1 2021-09-15 1230
SE.	MIUCO	668232	5486600	2021	+	2021-09-15	12:30	Texture	Sandy loam	-	ALS	RG MIUCO SE-1 2021-09-15 1230
SE	MIUCO	668232	5486600	2021	1	2021-09-15	12:30	Total Organic Carbon	1.1	%	ALS	RG_MIUCO_SE-1_2021-09-15_1230
SE	MIUCO	668232	5486600	2021		2021-09-15	12:30	Aluminum (Al)	15,000	mg/kg	ALS	RG MIUCO SE-1 2021-09-15 1230
SE	MIUCO	668232	5486600	2021	+	2021-09-15	12:30	Antimony (Sb)	0.4	mg/kg	ALS	RG MIUCO SE-1 2021-09-15 1230
E	MIUCO	668232	5486600	2021	1	2021-09-15	12:30	Arsenic (As)	7.4	mg/kg	ALS	RG_MIUCO_SE-1_2021-09-15_1230
Е	MIUCO	668232	5486600	2021	+	2021-09-15	12:30	Barium (Ba)	185	mg/kg	ALS	RG MIUCO SE-1 2021-09-15 1230
E	MIUCO	668232	5486600	2021	_	2021-09-15	12:30	Beryllium (Be)	0.96	mg/kg	ALS	RG MIUCO SE-1 2021-09-15 1230
Ε	MIUCO	668232	5486600	2021		2021-09-15	12:30	Bismuth (Bi)	0.21	mg/kg	ALS	RG_MIUCO_SE-1_2021-09-15_1230
SE.	MIUCO	668232	5486600	2021		2021-09-15	12:30	Boron (B)	15	mg/kg	ALS	RG MIUCO SE-1 2021-09-15 1230
SE	MIUCO	668232	5486600	2021		2021-09-15	12:30	Cadmium (Cd)	1.0	mg/kg	ALS	RG MIUCO SE-1 2021-09-15 1230
SE	MIUCO	668232	5486600	2021	+	2021-09-15	12:30	Calcium (Ca)	19,700	mg/kg	ALS	RG MIUCO SE-1 2021-09-15 1230
SE.	MIUCO	668232	5486600	2021	+	2021-09-15	12:30	Chromium (Cr)	20	mg/kg	ALS	RG MIUCO SE-1 2021-09-15 1230
SE.	MIUCO	668232	5486600	2021	1	2021-09-15	12:30	Cobalt (Co)	9.3	mg/kg	ALS	RG_MIUCO_SE-1_2021-09-15_1230
SE.	MIUCO	668232	5486600	2021		2021-09-15	12:30	Copper (Cu)	21	mg/kg	ALS	RG_MIUCO_SE-1_2021-09-15_1230
SE.	MIUCO	668232	5486600	2021	_	2021-09-15	12:30	Iron (Fe)	21,600	mg/kg	ALS	RG MIUCO SE-1 2021-09-15 1230
SE.	MIUCO	668232	5486600	2021		2021-09-15	12:30	Lead (Pb)	13	mg/kg	ALS	RG MIUCO SE-1 2021-09-15 1230
SE	MIUCO	668232	5486600	2021		2021-09-15	12:30	Lithium (Li)	22	mg/kg	ALS	RG_MIUCO_SE-1_2021-09-15_1230
SE.	MIUCO	668232	5486600	2021	+	2021-09-15	12:30	Magnesium (Mg)	6,310	mg/kg	ALS	RG MIUCO SE-1 2021-09-15 1230
SE	MIUCO	668232	5486600	2021		2021-09-15	12:30	Manganese (Mn)	585	mg/kg	ALS	RG MIUCO SE-1 2021-09-15 1230
SE.	MIUCO	668232	5486600	2021		2021-09-15	12:30	Mercury (Hg)	0.026	mg/kg	ALS	RG MIUCO SE-1 2021-09-15 1230
SE	MIUCO	668232	5486600	2021		2021-09-15	12:30	Molybdenum (Mo)	2.2	mg/kg	ALS	RG MIUCO SE-1 2021-09-15 1230
SE.	MIUCO	668232	5486600	2021	1	2021-09-15	12:30	Nickel (Ni)	26	mg/kg	ALS	RG_MIUCO_SE-1_2021-09-15_1230
SE	MIUCO	668232	5486600	2021	1	2021-09-15	12:30	Phosphorus (P)	1,450	mg/kg	ALS	RG MIUCO SE-1 2021-09-15 1230
SE	MIUCO	668232	5486600	2021		2021-09-15	12:30	Potassium (K)	3,570	mg/kg	ALS	RG MIUCO SE-1 2021-09-15 1230
SE	MIUCO	668232	5486600	2021	+	2021-09-15	12:30	Selenium (Se)	1.1	mg/kg	ALS	RG MIUCO SE-1 2021-09-15 1230
Ε	MIUCO	668232	5486600	2021	+	2021-09-15	12:30	Silver (Ag)	0.13	mg/kg	ALS	RG MIUCO SE-1 2021-09-15 1230
E	MIUCO	668232	5486600	2021	_	2021-09-15	12:30	Sodium (Na)	111	mg/kg	ALS	RG_MIUCO_SE-1_2021-09-15_1230
SE.	MIUCO	668232	5486600	2021		2021-09-15	12:30	Strontium (Sr)	49	mg/kg	ALS	RG MIUCO SE-1 2021-09-15 1230
E	MIUCO	668232	5486600	2021		2021-09-15	12:30	Sulfur (S)	1,000	mg/kg	ALS	RG MIUCO SE-1 2021-09-15 1230
SE	MIUCO	668232	5486600	2021		2021-09-15	12:30	Thallium (TI)	0.44	mg/kg	ALS	RG MIUCO SE-1 2021-09-15 1230
E E	MIUCO	668232	5486600	2021		2021-09-15	12:30	Tin (Sn)	<2.0	mg/kg	ALS	RG MIUCO SE-1 2021-09-15 1230
E	MIUCO	668232	5486600	2021	+	2021-09-15	12:30	Titanium (Ti)	11	mg/kg	ALS	RG MIUCO SE-1 2021-09-15 1230
>⊏ I												

WSP Canada Inc. Page 254 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	Ctation	Location	ı (UTMs) ^(a)	Vacu	Doubleste	Data	Time	Analysis	Docult	Ll ₁₀ i4		Laboratory Information
ype	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MIUCO	668232	5486600	2021	1	2021-09-15	12:30	Uranium (U)	0.68	mg/kg	ALS	RG MIUCO SE-1 2021-09-15 1230
iΕ	MIUCO	668232	5486600	2021	1	2021-09-15	12:30	Vanadium (V)	32	mg/kg	ALS	RG MIUCO SE-1 2021-09-15 1230
SE .	MIUCO	668232	5486600	2021	1	2021-09-15	12:30	Zinc (Zn)	95	mg/kg	ALS	RG MIUCO SE-1 2021-09-15 1230
SE	MIUCO	668232	5486600	2021	1	2021-09-15	12:30	Zirconium (Zr)	<1.0	mg/kg	ALS	RG MIUCO SE-1 2021-09-15 1230
SE	MIUCO	668232	5486600	2021	1	2021-09-15	12:30	Acenaphthene	<0.020	mg/kg	ALS	RG_MIUCO_SE-1_2021-09-15_1230
SE	MIUCO	668232	5486600	2021	1	2021-09-15	12:30	Acenaphthylene	<0.020	mg/kg	ALS	RG MIUCO SE-1 2021-09-15 1230
E E	MIUCO	668232	5486600	2021	1	2021-09-15	12:30	Acridine	<0.040	mg/kg	ALS	RG MIUCO SE-1 2021-09-15 1230
E E	MIUCO	668232	5486600	2021	1	2021-09-15	12:30	Anthracene	<0.016	mg/kg	ALS	RG MIUCO SE-1 2021-09-15 1230
E E	MIUCO	668232	5486600	2021	1	2021-09-15	12:30	Benz(a)anthracene	<0.040	mg/kg	ALS	RG_MIUCO_SE-1_2021-09-15_1230
E E	MIUCO	668232	5486600	2021	1	2021-09-15	12:30	Benzo(a)pyrene	<0.040	mg/kg	ALS	RG MIUCO SE-1 2021-09-15 1230
E E	MIUCO	668232	5486600	2021	1	2021-09-15	12:30	Benzo(b&j)fluoranthene	<0.040	mg/kg	ALS	RG MIUCO SE-1 2021-09-15 1230
E	MIUCO	668232	5486600	2021	1	2021-09-15	12:30	Benzo(b+j+k)fluoranthene	<0.060	mg/kg	ALS	RG MIUCO SE-1 2021-09-15 1230
E	MIUCO	668232	5486600	2021	1 1	2021-09-15	12:30	Benzo(e)pyrene	0.048	mg/kg	ALS	RG MIUCO SE-1 2021-09-15 1230
E	MIUCO	668232	5486600	2021	1 1	2021-09-15	12:30	Benzo(g_h_i)perylene	<0.040	mg/kg	ALS	RG MIUCO SE-1 2021-09-15 1230
E	MIUCO	668232	5486600	2021	1 1	2021-09-15	12:30	Benzo(k)fluoranthene	<0.040	mg/kg	ALS	RG MIUCO SE-1 2021-09-15 1230
E	MIUCO	668232	5486600	2021	1	2021-09-15	12:30	Chrysene	0.075	mg/kg	ALS	RG MIUCO SE-1 2021-09-15 1230
E	MIUCO	668232	5486600	2021	1 1	2021-09-15	12:30	Dibenz(a_h)anthracene	<0.020	mg/kg	ALS	RG MIUCO SE-1 2021-09-15 1230
E	MIUCO	668232	5486600	2021	1 1	2021-09-15	12:30	Fluoranthene	<0.020	mg/kg	ALS	RG MIUCO SE-1 2021-09-15 1230
E	MIUCO	668232	5486600	2021	1	2021-09-15	12:30	Fluorene	<0.040		ALS	RG MIUCO SE-1 2021-09-15 1230
E	MIUCO	668232	5486600	2021	1	2021-09-15	12:30	Indeno(1,2,3-c,d)pyrene	<0.040	mg/kg	ALS	RG MIUCO SE-1 2021-09-15 1230
E	MIUCO	668232	5486600	2021	1		12:30		0.040	mg/kg	ALS	RG MIUCO SE-1 2021-09-15 1230
E E	MIUCO		5486600	2021	1	2021-09-15 2021-09-15	12:30	1-Methylnaphthalene	0.11	mg/kg	ALS	RG MIUCO SE-1 2021-09-15 1230
		668232			1 1			2-Methylnaphthalene		mg/kg		
E	MIUCO	668232	5486600	2021		2021-09-15	12:30	Naphthalene	0.098	mg/kg	ALS	RG_MIUCO_SE-1_2021-09-15_1230
E	MIUCO	668232	5486600	2021	1 1	2021-09-15	12:30	Perylene	<0.040	mg/kg	ALS	RG_MIUCO_SE-1_2021-09-15_1230
E	MIUCO	668232	5486600	2021	1	2021-09-15	12:30	Phenanthrene	0.18	mg/kg	ALS	RG_MIUCO_SE-1_2021-09-15_1230
E	MIUCO	668232	5486600	2021	1 1	2021-09-15	12:30	Pyrene	<0.040	mg/kg	ALS	RG_MIUCO_SE-1_2021-09-15_1230
E	MIUCO	668232	5486600	2021	1	2021-09-15	12:30	Quinoline	<0.040	mg/kg	ALS	RG_MIUCO_SE-1_2021-09-15_1230
E	MIUCO	668232	5486600	2021	1	2021-09-15	12:30	d10-Acenaphthene	75	%	ALS	RG_MIUCO_SE-1_2021-09-15_1230
E	MIUCO	668232	5486600	2021	1	2021-09-15	12:30	d12-Chrysene	79	%	ALS	RG_MIUCO_SE-1_2021-09-15_1230
E	MIUCO	668232	5486600	2021	1	2021-09-15	12:30	d8-Naphthalene	71	%	ALS	RG_MIUCO_SE-1_2021-09-15_1230
E	MIUCO	668232	5486600	2021	1 1	2021-09-15	12:30	d10-Phenanthrene	78	%	ALS	RG_MIUCO_SE-1_2021-09-15_1230
E	MIUCO	668232	5486600	2021	1 1	2021-09-15	12:30	IACR:Coarse	<0.050	-	ALS	RG_MIUCO_SE-1_2021-09-15_1230
E	MIUCO	668232	5486600	2021	1	2021-09-15	12:30	IACR:Fine	<0.050	-	ALS	RG_MIUCO_SE-1_2021-09-15_1230
E	MIUCO	668232	5486600	2021	1	2021-09-15	12:30	B(a)P Total Potency Equivalent	0.039	mg/kg	ALS	RG_MIUCO_SE-1_2021-09-15_1230
Е	MIUCO	668232	5486600	2021	1	2021-09-15	12:30	IACR (CCME)	0.45	-	ALS	RG_MIUCO_SE-1_2021-09-15_1230
E	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	Moisture	86	%	ALS	RG_MIUCO_SE-2_2021-09-15_1230
E	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	pH (1:2 soil:water)	7.9	рН	ALS	RG_MIUCO_SE-2_2021-09-15_1230
E	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	% Gravel (>2 mm)	<1.0	%	ALS	RG_MIUCO_SE-2_2021-09-15_1230
E	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	% Sand (2.00 mm - 1.00 mm)	8.8	%	ALS	RG_MIUCO_SE-2_2021-09-15_1230
Е	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	% Sand (1.00 mm - 0.50 mm)	11	%	ALS	RG_MIUCO_SE-2_2021-09-15_1230
E	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	% Sand (0.50 mm - 0.25 mm)	7.2	%	ALS	RG_MIUCO_SE-2_2021-09-15_1230
Ē	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	% Sand (0.25 mm - 0.125 mm)	4.1	%	ALS	RG_MIUCO_SE-2_2021-09-15_1230
E	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	% Sand (0.125 mm - 0.063 mm)	10	%	ALS	RG_MIUCO_SE-2_2021-09-15_1230
Е	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	% Silt (0.063 mm - 0.0312 mm)	21	%	ALS	RG_MIUCO_SE-2_2021-09-15_1230
Е	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	% Silt (0.031 mm - 0.004 mm)	30	%	ALS	RG_MIUCO_SE-2_2021-09-15_1230
Е	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	% Clay (<4 μm)	7.2	%	ALS	RG_MIUCO_SE-2_2021-09-15_1230
SE .	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	Texture	Silt loam	_	ALS	RG MIUCO SE-2 2021-09-15 1230

WSP Canada Inc. Page 255 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations. 2012 to 2022

Table I-1	: Sediment Chem			CMm LAEMP	Sampling St	tations, 2012 to	2022					
Туре	Station		(UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
		Easting	Northing		rtophoato						Lab	Sample ID
SE	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	Total Organic Carbon	2.0	%	ALS	RG_MIUCO_SE-2_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	Aluminum (AI)	14,100	mg/kg	ALS	RG_MIUCO_SE-2_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	Antimony (Sb)	0.38	mg/kg	ALS	RG_MIUCO_SE-2_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	Arsenic (As)	7.1	mg/kg	ALS	RG_MIUCO_SE-2_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	Barium (Ba)	264	mg/kg	ALS	RG_MIUCO_SE-2_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	Beryllium (Be)	0.95	mg/kg	ALS	RG_MIUCO_SE-2_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	Bismuth (Bi)	0.2	mg/kg	ALS	RG_MIUCO_SE-2_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	Boron (B)	14	mg/kg	ALS	RG_MIUCO_SE-2_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	Cadmium (Cd)	0.89	mg/kg	ALS	RG_MIUCO_SE-2_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	Calcium (Ca)	19,200	mg/kg	ALS	RG_MIUCO_SE-2_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	Chromium (Cr)	19	mg/kg	ALS	RG_MIUCO_SE-2_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	Cobalt (Co)	8.6	mg/kg	ALS	RG_MIUCO_SE-2_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	Copper (Cu)	20	mg/kg	ALS	RG_MIUCO_SE-2_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	Iron (Fe)	22,000	mg/kg	ALS	RG_MIUCO_SE-2_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	Lead (Pb)	12	mg/kg	ALS	RG_MIUCO_SE-2_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	Lithium (Li)	22	mg/kg	ALS	RG_MIUCO_SE-2_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	Magnesium (Mg)	6,550	mg/kg	ALS	RG_MIUCO_SE-2_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	Manganese (Mn)	447	mg/kg	ALS	RG_MIUCO_SE-2_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	Mercury (Hg)	0.022	mg/kg	ALS	RG_MIUCO_SE-2_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	Molybdenum (Mo)	2.1	mg/kg	ALS	RG_MIUCO_SE-2_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	Nickel (Ni)	24	mg/kg	ALS	RG_MIUCO_SE-2_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	Phosphorus (P)	1,340	mg/kg	ALS	RG_MIUCO_SE-2_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	Potassium (K)	3,180	mg/kg	ALS	RG_MIUCO_SE-2_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	Selenium (Se)	0.86	mg/kg	ALS	RG_MIUCO_SE-2_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	Silver (Ag)	0.11	mg/kg	ALS	RG_MIUCO_SE-2_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	Sodium (Na)	127	mg/kg	ALS	RG_MIUCO_SE-2_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	Strontium (Sr)	53	mg/kg	ALS	RG_MIUCO_SE-2_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	Sulfur (S)	1,000	mg/kg	ALS	RG_MIUCO_SE-2_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	Thallium (TI)	0.37	mg/kg	ALS	RG_MIUCO_SE-2_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	Tin (Sn)	<2.0	mg/kg	ALS	RG_MIUCO_SE-2_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	Titanium (Ti)	15	mg/kg	ALS	RG_MIUCO_SE-2_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	Tungsten (W)	<0.50	mg/kg	ALS	RG_MIUCO_SE-2_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	Uranium (U)	0.55	mg/kg	ALS	RG_MIUCO_SE-2_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	Vanadium (V)	30	mg/kg	ALS	RG_MIUCO_SE-2_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	Zinc (Zn)	95	mg/kg	ALS	RG_MIUCO_SE-2_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_MIUCO_SE-2_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	Acenaphthene	<0.020	mg/kg	ALS	RG_MIUCO_SE-2_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	Acenaphthylene	<0.020	mg/kg	ALS	RG_MIUCO_SE-2_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	Acridine	<0.040	mg/kg	ALS	RG_MIUCO_SE-2_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	Anthracene	<0.016	mg/kg	ALS	RG_MIUCO_SE-2_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	Benz(a)anthracene	<0.040	mg/kg	ALS	RG_MIUCO_SE-2_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	Benzo(a)pyrene	<0.040	mg/kg	ALS	RG_MIUCO_SE-2_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	Benzo(b&j)fluoranthene	<0.040	mg/kg	ALS	RG_MIUCO_SE-2_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	Benzo(b+j+k)fluoranthene	<0.060	mg/kg	ALS	RG_MIUCO_SE-2_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	Benzo(e)pyrene	<0.040	mg/kg	ALS	RG_MIUCO_SE-2_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	Benzo(g_h_i)perylene	<0.040	mg/kg	ALS	RG_MIUCO_SE-2_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	Benzo(k)fluoranthene	<0.040	mg/kg	ALS	RG MIUCO SE-2 2021-09-15 1230

WSP Canada Inc. Page 256 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	Station		ı (UTMs) ^(a)	Year	Replicate		Time	Apolyto	Booult	Unit		Laboratory Information
Type	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	Chrysene	<0.040	mg/kg	ALS	RG_MIUCO_SE-2_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	Dibenz(a_h)anthracene	<0.020	mg/kg	ALS	RG_MIUCO_SE-2_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	Fluoranthene	<0.040	mg/kg	ALS	RG_MIUCO_SE-2_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	Fluorene	<0.040	mg/kg	ALS	RG_MIUCO_SE-2_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	Indeno(1,2,3-c,d)pyrene	<0.040	mg/kg	ALS	RG_MIUCO_SE-2_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	1-Methylnaphthalene	<0.040	mg/kg	ALS	RG_MIUCO_SE-2_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	2-Methylnaphthalene	0.041	mg/kg	ALS	RG_MIUCO_SE-2_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	Naphthalene	<0.040	mg/kg	ALS	RG_MIUCO_SE-2_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	Perylene	<0.040	mg/kg	ALS	RG_MIUCO_SE-2_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	Phenanthrene	0.071	mg/kg	ALS	RG_MIUCO_SE-2_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	Pyrene	<0.040	mg/kg	ALS	RG_MIUCO_SE-2_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	Quinoline	<0.040	mg/kg	ALS	RG_MIUCO_SE-2_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	d10-Acenaphthene	71	%	ALS	RG_MIUCO_SE-2_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	d12-Chrysene	73	%	ALS	RG_MIUCO_SE-2_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	d8-Naphthalene	73	%	ALS	RG_MIUCO_SE-2_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	d10-Phenanthrene	72	%	ALS	RG_MIUCO_SE-2_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	IACR:Coarse	<0.050	-	ALS	RG_MIUCO_SE-2_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	IACR:Fine	<0.050	-	ALS	RG_MIUCO_SE-2_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	B(a)P Total Potency Equivalent	<0.038	mg/kg	ALS	RG_MIUCO_SE-2_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	2	2021-09-15	12:30	IACR (CCME)	<0.43	-	ALS	RG_MIUCO_SE-2_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	Moisture	68	%	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	pH (1:2 soil:water)	8.1	рН	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	% Gravel (>2 mm)	3.9	%	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	% Sand (2.00 mm - 1.00 mm)	11	%	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	% Sand (1.00 mm - 0.50 mm)	9.8	%	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	% Sand (0.50 mm - 0.25 mm)	5.4	%	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	% Sand (0.25 mm - 0.125 mm)	5.3	%	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	% Sand (0.125 mm - 0.063 mm)	9.4	%	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	% Silt (0.063 mm - 0.0312 mm)	21	%	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	% Silt (0.031 mm - 0.004 mm)	28	%	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	% Clay (<4 μm)	6.3	%	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	Texture	Silt loam	-	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	Total Organic Carbon	2.0	%	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	Aluminum (Al)	670	mg/kg	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	Antimony (Sb)	0.15	mg/kg	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	Arsenic (As)	1.3	mg/kg	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	Barium (Ba)	124	mg/kg	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	Beryllium (Be)	0.21	mg/kg	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	Bismuth (Bi)	<0.20	mg/kg	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	Boron (B)	5.4	mg/kg	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	Cadmium (Cd)	5.1	mg/kg	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	Calcium (Ca)	235,000	mg/kg	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	Chromium (Cr)	1.2	mg/kg	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	Cobalt (Co)	170	mg/kg	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	Copper (Cu)	3.9	mg/kg	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	Iron (Fe)	2,210	mg/kg	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	Lead (Pb)	1.5	mg/kg	ALS	RG_MIUCO_SE-3_2021-09-15_1230

WSP Canada Inc. Page 257 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	Station		(UTMs) ^(a)	Year	Replicate		Time	Analyta	Popult	Unit		Laboratory Information
Type	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	Lithium (Li)	<2.0	mg/kg	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	Magnesium (Mg)	4,830	mg/kg	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	Manganese (Mn)	1,730	mg/kg	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	Mercury (Hg)	0.012	mg/kg	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	Molybdenum (Mo)	0.23	mg/kg	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	Nickel (Ni)	171	mg/kg	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	Phosphorus (P)	184	mg/kg	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	Potassium (K)	220	mg/kg	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	Selenium (Se)	1.2	mg/kg	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	Silver (Ag)	<0.10	mg/kg	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	Sodium (Na)	285	mg/kg	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	Strontium (Sr)	316	mg/kg	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	Sulfur (S)	4,000	mg/kg	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	Thallium (TI)	0.091	mg/kg	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	Tin (Sn)	<2.0	mg/kg	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	Titanium (Ti)	1.9	mg/kg	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	Tungsten (W)	<0.50	mg/kg	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	Uranium (U)	1.5	mg/kg	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	Vanadium (V)	2.4	mg/kg	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	Zinc (Zn)	438	mg/kg	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	Acenaphthene	0.0055	mg/kg	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	Acenaphthylene	<0.0050	mg/kg	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	Acridine	<0.010	mg/kg	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	Anthracene	<0.0040	mg/kg	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	Benz(a)anthracene	0.011	mg/kg	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	Benzo(a)pyrene	<0.010	mg/kg	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	Benzo(b&j)fluoranthene	0.032	mg/kg	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	Benzo(b+j+k)fluoranthene	0.032	mg/kg	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	Benzo(e)pyrene	0.033	mg/kg	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	Benzo(g_h_i)perylene	<0.010	mg/kg		RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	Benzo(k)fluoranthene	<0.010	mg/kg	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	Chrysene	0.06	mg/kg	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	Dibenz(a_h)anthracene	0.0069	mg/kg	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	Fluoranthene	0.016	mg/kg	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	Fluorene	0.013	mg/kg	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	Indeno(1,2,3-c,d)pyrene	<0.010	mg/kg	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	1-Methylnaphthalene	0.054	mg/kg	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	2-Methylnaphthalene	0.079	mg/kg	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	Naphthalene	0.06	mg/kg	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	Perylene	0.024	mg/kg	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	Phenanthrene	0.11	mg/kg		RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	Pyrene	0.019	mg/kg	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	Quinoline	<0.050	mg/kg	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	d10-Acenaphthene	70	%	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	d12-Chrysene	78	%	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	d8-Naphthalene	78	%	ALS	RG_MIUCO_SE-3_2021-09-15_1230

WSP Canada Inc. Page 258 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	Station		(UTMs) ^(a)		Replicate			Anglista	Dogult	Unit		Laboratory Information
Type	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	d10-Phenanthrene	76	%	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	IACR:Coarse	< 0.050	-	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	IACR:Fine	<0.050	-	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	B(a)P Total Potency Equivalent	<0.020	mg/kg	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	MIUCO	668227	5486628	2021	3	2021-09-15	12:30	IACR (CCME)	0.34	-	ALS	RG_MIUCO_SE-3_2021-09-15_1230
SE	CORCK	668478	5487339	2021	1	2021-09-15	08:30	Moisture	85	%	ALS	RG_CORCK_SE-1_2021_09-15_0830
SE	CORCK	668478	5487339	2021	1	2021-09-15	08:30	pH (1:2 soil:water)	8.0	рН	ALS	RG_CORCK_SE-1_2021_09-15_0830
SE	CORCK	668478	5487339	2021	1	2021-09-15	08:30	% Gravel (>2 mm)	4.1	%	ALS	RG_CORCK_SE-1_2021_09-15_0830
SE	CORCK	668478	5487339	2021	1	2021-09-15	08:30	% Sand (2.00 mm - 1.00 mm)	1.9	%	ALS	RG_CORCK_SE-1_2021_09-15_0830
SE	CORCK	668478	5487339	2021	1	2021-09-15	08:30	% Sand (1.00 mm - 0.50 mm)	1.9	%	ALS	RG_CORCK_SE-1_2021_09-15_0830
SE	CORCK	668478	5487339	2021	1	2021-09-15	08:30	% Sand (0.50 mm - 0.25 mm)	2.3	%	ALS	RG_CORCK_SE-1_2021_09-15_0830
SE	CORCK	668478	5487339	2021	1	2021-09-15	08:30	% Sand (0.25 mm - 0.125 mm)	9.5	%	ALS	RG_CORCK_SE-1_2021_09-15_0830
SE	CORCK	668478	5487339	2021	1	2021-09-15	08:30	% Sand (0.125 mm - 0.063 mm)	16	%	ALS	RG_CORCK_SE-1_2021_09-15_0830
SE	CORCK	668478	5487339	2021	1	2021-09-15	08:30	% Silt (0.063 mm - 0.0312 mm)	26	%	ALS	RG_CORCK_SE-1_2021_09-15_0830
SE	CORCK	668478	5487339	2021	1	2021-09-15	08:30	% Silt (0.031 mm - 0.004 mm)	33	%	ALS	RG_CORCK_SE-1_2021_09-15_0830
SE	CORCK	668478	5487339	2021	1	2021-09-15	08:30	% Clay (<4 μm)	5.6	%	ALS	RG_CORCK_SE-1_2021_09-15_0830
SE	CORCK	668478	5487339	2021	1	2021-09-15	08:30	Texture	Silt loam	-	ALS	RG_CORCK_SE-1_2021_09-15_0830
SE	CORCK	668478	5487339	2021	1	2021-09-15	08:30	Total Organic Carbon	4.0	%	ALS	RG_CORCK_SE-1_2021_09-15_0830
SE	CORCK	668478	5487339	2021	1	2021-09-15	08:30	Aluminum (AI)	867	mg/kg	ALS	RG_CORCK_SE-1_2021_09-15_0830
SE	CORCK	668478	5487339	2021	1	2021-09-15	08:30	Antimony (Sb)	0.14	mg/kg	ALS	RG_CORCK_SE-1_2021_09-15_0830
SE	CORCK	668478	5487339	2021	1	2021-09-15	08:30	Arsenic (As)	1.1	mg/kg	ALS	RG_CORCK_SE-1_2021_09-15_0830
SE	CORCK	668478	5487339	2021	1	2021-09-15	08:30	Barium (Ba)	103	mg/kg	ALS	RG_CORCK_SE-1_2021_09-15_0830
SE	CORCK	668478	5487339	2021	1	2021-09-15	08:30	Beryllium (Be)	0.19	mg/kg	ALS	RG_CORCK_SE-1_2021_09-15_0830
SE	CORCK	668478	5487339	2021	1	2021-09-15	08:30	Bismuth (Bi)	<0.20	mg/kg	ALS	RG_CORCK_SE-1_2021_09-15_0830
SE	CORCK	668478	5487339	2021	1	2021-09-15	08:30	Boron (B)	5.5	mg/kg	ALS	RG_CORCK_SE-1_2021_09-15_0830
SE	CORCK	668478	5487339	2021	1	2021-09-15	08:30	Cadmium (Cd)	4.4	mg/kg	ALS	RG_CORCK_SE-1_2021_09-15_0830
SE	CORCK	668478	5487339	2021	1	2021-09-15	08:30	Calcium (Ca)	194,000	mg/kg	ALS	RG_CORCK_SE-1_2021_09-15_0830
SE	CORCK	668478	5487339	2021	1	2021-09-15	08:30	Chromium (Cr)	1.3	mg/kg	ALS	RG_CORCK_SE-1_2021_09-15_0830
SE	CORCK	668478	5487339	2021	1	2021-09-15	08:30	Cobalt (Co)	145	mg/kg	ALS	RG_CORCK_SE-1_2021_09-15_0830
SE	CORCK	668478	5487339	2021	1	2021-09-15	08:30	Copper (Cu)	3.2	mg/kg		RG_CORCK_SE-1_2021_09-15_0830
SE	CORCK	668478	5487339	2021	1	2021-09-15	08:30	Iron (Fe)	1,870	mg/kg	ALS	RG_CORCK_SE-1_2021_09-15_0830
SE	CORCK	668478	5487339	2021	1	2021-09-15	08:30	Lead (Pb)	1.2	mg/kg	ALS	RG_CORCK_SE-1_2021_09-15_0830
SE	CORCK	668478	5487339	2021	1	2021-09-15	08:30	Lithium (Li)	<2.0	mg/kg	ALS	RG_CORCK_SE-1_2021_09-15_0830
SE	CORCK	668478	5487339	2021	1	2021-09-15	08:30	Magnesium (Mg)	4,200	mg/kg	ALS	RG_CORCK_SE-1_2021_09-15_0830
SE	CORCK	668478	5487339	2021	1	2021-09-15	08:30	Manganese (Mn)	1,510	mg/kg	ALS	RG_CORCK_SE-1_2021_09-15_0830
SE	CORCK	668478	5487339	2021	1	2021-09-15	08:30	Mercury (Hg)	0.0089	mg/kg	ALS	RG_CORCK_SE-1_2021_09-15_0830
SE	CORCK	668478	5487339	2021	1	2021-09-15	08:30	Molybdenum (Mo)	0.24	mg/kg	ALS	RG_CORCK_SE-1_2021_09-15_0830
SE	CORCK	668478	5487339	2021	1	2021-09-15	08:30	Nickel (Ni)	147	mg/kg	ALS	RG_CORCK_SE-1_2021_09-15_0830
SE	CORCK	668478	5487339	2021	1	2021-09-15	08:30	Phosphorus (P)	130	mg/kg	ALS	RG_CORCK_SE-1_2021_09-15_0830
SE	CORCK	668478	5487339	2021	1	2021-09-15	08:30	Potassium (K)	260	mg/kg	ALS	RG_CORCK_SE-1_2021_09-15_0830
SE	CORCK	668478	5487339	2021	1	2021-09-15	08:30	Selenium (Se)	1.3	mg/kg	ALS	RG_CORCK_SE-1_2021_09-15_0830
SE	CORCK	668478	5487339	2021	1	2021-09-15	08:30	Silver (Ag)	<0.10	mg/kg	ALS	RG_CORCK_SE-1_2021_09-15_0830
SE	CORCK	668478	5487339	2021	1	2021-09-15	08:30	Sodium (Na)	246	mg/kg	ALS	RG_CORCK_SE-1_2021_09-15_0830
SE	CORCK	668478	5487339	2021	1	2021-09-15	08:30	Strontium (Sr)	269	mg/kg	ALS	RG_CORCK_SE-1_2021_09-15_0830
SE	CORCK	668478	5487339	2021	1	2021-09-15	08:30	Sulfur (S)	3,300	mg/kg	ALS	RG_CORCK_SE-1_2021_09-15_0830
SE	CORCK	668478	5487339	2021	1	2021-09-15	08:30	Thallium (TI)	0.084	mg/kg	ALS	RG_CORCK_SE-1_2021_09-15_0830
SE	CORCK	668478	5487339	2021	1	2021-09-15	08:30	Tin (Sn)	<2.0	mg/kg	ALS	RG_CORCK_SE-1_2021_09-15_0830

WSP Canada Inc. Page 259 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Type	Station	Location	(UTMs) ^(a)	Veer	Poplicate	Data	Time	Analyte	Pegult	Unit		Laboratory Information
Гуре	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	CORCK	668478	5487339	2021	1	2021-09-15	08:30	Titanium (Ti)	3.1	mg/kg	ALS	RG CORCK SE-1 2021 09-15 0830
SE	CORCK	668478	5487339	2021	1	2021-09-15	08:30	Tungsten (W)	<0.50	mg/kg	ALS	RG_CORCK_SE-1_2021_09-15_0830
SE	CORCK	668478	5487339	2021	1	2021-09-15	08:30	Uranium (U)	1.3	mg/kg	ALS	RG CORCK SE-1 2021 09-15 0830
SE	CORCK	668478	5487339	2021	1	2021-09-15	08:30	Vanadium (V)	2.9	mg/kg	ALS	RG CORCK SE-1 2021 09-15 0830
SE	CORCK	668478	5487339	2021	1	2021-09-15	08:30	Zinc (Zn)	377	mg/kg	ALS	RG CORCK SE-1_2021_09-15_0830
SE	CORCK	668478	5487339	2021	1	2021-09-15	08:30	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_CORCK_SE-1_2021_09-15_0830
SE	CORCK	668478	5487339	2021	1	2021-09-15	08:30	Acenaphthene	0.082	mg/kg	ALS	RG CORCK SE-1 2021 09-15 0830
SE	CORCK	668478	5487339	2021	1	2021-09-15	08:30	Acenaphthylene	0.018	mg/kg	ALS	RG CORCK SE-1 2021 09-15 0830
SE	CORCK	668478	5487339	2021	1	2021-09-15	08:30	Acridine	0.14	mg/kg	ALS	RG CORCK SE-1 2021 09-15 0830
SE	CORCK	668478	5487339	2021	1	2021-09-15	08:30	Anthracene	<0.012	mg/kg	ALS	RG CORCK SE-1 2021 09-15 0830
SE	CORCK	668478	5487339	2021	1	2021-09-15	08:30	Benz(a)anthracene	0.095	mg/kg	ALS	RG CORCK SE-1 2021 09-15 0830
SE	CORCK	668478	5487339	2021	1	2021-09-15	08:30	Benzo(a)pyrene	0.077	mg/kg	ALS	RG CORCK SE-1 2021 09-15 0830
SE	CORCK	668478	5487339	2021	1	2021-09-15	08:30	Benzo(b&j)fluoranthene	0.27	mg/kg	ALS	RG CORCK SE-1 2021 09-15 0830
SE	CORCK	668478	5487339	2021	1	2021-09-15	08:30	Benzo(b+j+k)fluoranthene	0.27	mg/kg	ALS	RG CORCK SE-1 2021 09-15 0830
SE	CORCK	668478	5487339	2021	1	2021-09-15	08:30	Benzo(e)pyrene	0.34	mg/kg	ALS	RG CORCK SE-1 2021 09-15 0830
SE	CORCK	668478	5487339	2021	1	2021-09-15	08:30	Benzo(g_h_i)perylene	0.17	mg/kg	ALS	RG CORCK SE-1 2021 09-15 0830
SE SE	CORCK	668478	5487339	2021	1	2021-09-15	08:30	Benzo(k)fluoranthene	<0.030	mg/kg	ALS	RG CORCK SE-1 2021 09-15 0830
SE	CORCK	668478	5487339	2021	1	2021-09-15	08:30	Chrysene	0.45	mg/kg	ALS	RG CORCK SE-1 2021 09-15 0830
E E	CORCK	668478	5487339	2021	1	2021-09-15	08:30	Dibenz(a h)anthracene	0.043	mg/kg	ALS	RG CORCK SE-1 2021 09-15 0830
E	CORCK	668478	5487339	2021	1	2021-09-15	08:30	Fluoranthene	0.1	mg/kg	ALS	RG CORCK SE-1 2021 09-15 0830
E	CORCK	668478	5487339	2021	1	2021-09-15	08:30	Fluorene	0.24	mg/kg	ALS	RG CORCK SE-1 2021 09-15 0830
E	CORCK	668478	5487339	2021	1	2021-09-15	08:30	Indeno(1,2,3-c,d)pyrene	0.031	mg/kg	ALS	RG CORCK SE-1 2021 09-15 0830
E	CORCK	668478	5487339	2021	1	2021-09-15	08:30	1-Methylnaphthalene	1.5	mg/kg	ALS	RG CORCK SE-1 2021 09-15 0830
E	CORCK	668478	5487339	2021	1	2021-09-15	08:30	2-Methylnaphthalene	2.6	mg/kg	ALS	RG CORCK SE-1 2021 09-15 0830
E	CORCK	668478	5487339	2021	1	2021-09-15	08:30	Naphthalene	0.84	mg/kg	ALS	RG CORCK SE-1 2021 09-15 0830
E E	CORCK	668478	5487339	2021	1	2021-09-15	08:30	Perylene	<0.030	mg/kg	ALS	RG CORCK SE-1 2021 09-15 0830
E E	CORCK	668478	5487339	2021	1	2021-09-15	08:30	Phenanthrene	1.3	mg/kg	ALS	RG CORCK SE-1 2021 09-15 0830
E E	CORCK	668478	5487339	2021	1	2021-09-15	08:30	Pyrene	0.14		ALS	RG CORCK SE-1 2021 09-15 0830
E E	CORCK	668478	5487339	2021	1	2021-09-15	08:30	Quinoline	<0.030	mg/kg	ALS	RG CORCK SE-1 2021 09-15 0830
E	CORCK	668478	5487339	2021	1 1	2021-09-15	08:30	d10-Acenaphthene	81	mg/kg %	ALS	RG CORCK SE-1 2021 09-15 0830
			1		1 1			·				
E	CORCK	668478	5487339	2021	1 1	2021-09-15	08:30	d12-Chrysene	74	%	ALS	RG_CORCK_SE-1_2021_09-15_0830
E E	CORCK	668478	5487339	2021	1 1	2021-09-15	08:30	d8-Naphthalene	72	%	ALS	RG_CORCK_SE-1_2021_09-15_0830
	CORCK	668478	5487339	2021	1 1	2021-09-15	08:30	d10-Phenanthrene	73	%	ALS	RG_CORCK_SE-1_2021_09-15_0830
E	CORCK	668478	5487339	2021	1 1	2021-09-15	08:30	IACR:Coarse	0.085	-	ALS	RG_CORCK_SE-1_2021_09-15_0830
E	CORCK	668478	5487339	2021	1 1	2021-09-15	08:30	IACR:Fine	0.16		ALS	RG_CORCK_SE-1_2021_09-15_0830
E	CORCK	668478	5487339	2021	1	2021-09-15	08:30	B(a)P Total Potency Equivalent	0.17	mg/kg	ALS	RG_CORCK_SE-1_2021_09-15_0830
E	CORCK	668478	5487339	2021	1	2021-09-15	08:30	IACR (CCME)	2.7	- 0/	ALS	RG_CORCK_SE-1_2021_09-15_0830
<u>E</u>	CORCK	668478	5487339	2021	2	2021-09-15	08:30	Moisture	62	%	ALS	RG_CORCK_SE-2_2021_09-15_0830
E	CORCK	668478	5487339	2021	2	2021-09-15	08:30	pH (1:2 soil:water)	8.3	pH	ALS	RG_CORCK_SE-2_2021_09-15_0830
E	CORCK	668478	5487339	2021	2	2021-09-15	08:30	% Gravel (>2 mm)	<1.0	%	ALS	RG_CORCK_SE-2_2021_09-15_0830
E	CORCK	668478	5487339	2021	2	2021-09-15	08:30	% Sand (2.00 mm - 1.00 mm)	1.7	%	ALS	RG_CORCK_SE-2_2021_09-15_0830
E -	CORCK	668478	5487339	2021	2	2021-09-15	08:30	% Sand (1.00 mm - 0.50 mm)	2.6	%	ALS	RG_CORCK_SE-2_2021_09-15_083
蒷	CORCK	668478	5487339	2021	2	2021-09-15	08:30	% Sand (0.50 mm - 0.25 mm)	7.1	%	ALS	RG_CORCK_SE-2_2021_09-15_083
E	CORCK	668478	5487339	2021		2021-09-15	08:30	% Sand (0.25 mm - 0.125 mm)	21	%	ALS	RG_CORCK_SE-2_2021_09-15_083
E	CORCK	668478	5487339	2021	2	2021-09-15	08:30	% Sand (0.125 mm - 0.063 mm)	23	%	ALS	RG_CORCK_SE-2_2021_09-15_083
E	CORCK	668478	5487339	2021	2	2021-09-15	08:30	% Silt (0.063 mm - 0.0312 mm)	21	%	ALS	RG_CORCK_SE-2_2021_09-15_083
E	CORCK	668478	5487339	2021	2	2021-09-15	08:30	% Silt (0.031 mm - 0.004 mm)	21	%	ALS	RG_CORCK_SE-2_2021_09-15_083

WSP Canada Inc. Page 260 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

VDO	Station	Location	(UTMs) ^(a)	Year	Replicate	Date	Time	Analyta	Result	Unit		Laboratory Information
уре	Station	Easting	Northing	rear	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	CORCK	668478	5487339	2021	2	2021-09-15	08:30	% Clay (<4 μm)	3.4	%	ALS	RG CORCK SE-2 2021 09-15 0830
SE.	CORCK	668478	5487339	2021	2	2021-09-15	08:30	Texture	Sandy loam	-	ALS	RG CORCK SE-2 2021 09-15 0830
SE.	CORCK	668478	5487339	2021	2	2021-09-15	08:30	Total Organic Carbon	3.4	%	ALS	RG CORCK SE-2 2021 09-15 0830
SE	CORCK	668478	5487339	2021	2	2021-09-15	08:30	Aluminum (Al)	823	mg/kg	ALS	RG CORCK SE-2 2021 09-15 0830
SE	CORCK	668478	5487339	2021	2	2021-09-15	08:30	Antimony (Sb)	0.14	mg/kg	ALS	RG CORCK SE-2 2021 09-15 0830
SE	CORCK	668478	5487339	2021	2	2021-09-15	08:30	Arsenic (As)	1.3	mg/kg	ALS	RG CORCK SE-2 2021 09-15 0830
SE	CORCK	668478	5487339	2021	2	2021-09-15	08:30	Barium (Ba)	123	mg/kg	ALS	RG CORCK SE-2 2021 09-15 0830
SE	CORCK	668478	5487339	2021	2	2021-09-15	08:30	Beryllium (Be)	0.19	mg/kg	ALS	RG CORCK SE-2 2021 09-15 0830
SE	CORCK	668478	5487339	2021	2	2021-09-15	08:30	Bismuth (Bi)	<0.20	mg/kg	ALS	RG CORCK SE-2 2021 09-15 0830
SE.	CORCK	668478	5487339	2021	2	2021-09-15	08:30	Boron (B)	<5.0	mg/kg	ALS	RG CORCK SE-2 2021 09-15 0830
SE	CORCK	668478	5487339	2021	2	2021-09-15	08:30	Cadmium (Cd)	6.1	mg/kg	ALS	RG CORCK SE-2 2021 09-15 0830
SE	CORCK	668478	5487339	2021	2	2021-09-15	08:30	Calcium (Ca)	240,000	mg/kg	ALS	RG CORCK SE-2 2021 09-15 0830
SE	CORCK	668478	5487339	2021	2	2021-09-15	08:30	Chromium (Cr)	1.3	mg/kg	ALS	RG CORCK SE-2 2021 09-15 0830
SE	CORCK	668478	5487339	2021	2	2021-09-15	08:30	Cobalt (Co)	232	mg/kg	ALS	RG CORCK SE-2 2021 09-15 0830
SE	CORCK	668478	5487339	2021	2	2021-09-15	08:30	Copper (Cu)	4.0	mg/kg	ALS	RG CORCK SE-2 2021 09-15 0830
SE	CORCK	668478	5487339	2021	2	2021-09-15	08:30	Iron (Fe)	1,860	mg/kg	ALS	RG_CORCK_SE-2_2021_09-15_0830
SE	CORCK	668478	5487339	2021	2	2021-09-15	08:30	Lead (Pb)	1.1	mg/kg	ALS	RG CORCK SE-2 2021 09-15 0830
SE	CORCK	668478	5487339	2021	2	2021-09-15	08:30	Lithium (Li)	2.1	mg/kg	ALS	RG CORCK SE-2 2021 09-15 0830
SE	CORCK	668478	5487339	2021	2	2021-09-15	08:30	Magnesium (Mg)	5,140	mg/kg	ALS	RG CORCK SE-2 2021 09-15 0830
SE SE	CORCK	668478	5487339	2021	2	2021-09-15	08:30	Manganese (Mn)	1,880	mg/kg	ALS	RG_CORCK_SE-2_2021_09-15_0830
E E	CORCK	668478	5487339	2021	2	2021-09-15	08:30	Mercury (Hg)	0.011	mg/kg	ALS	RG CORCK SE-2 2021 09-15 0830
E E	CORCK	668478	5487339	2021	2	2021-09-15	08:30	Molybdenum (Mo)	0.24	mg/kg	ALS	RG CORCK SE-2 2021 09-15 0830
SE	CORCK	668478	5487339	2021	2	2021-09-15	08:30	Nickel (Ni)	189	mg/kg	ALS	RG CORCK SE-2 2021 09-15 0830
SE .	CORCK	668478	5487339	2021	2	2021-09-15	08:30	Phosphorus (P)	136	mg/kg	ALS	RG CORCK SE-2 2021 09-15 0830
SE	CORCK	668478	5487339	2021	2	2021-09-15	08:30	Potassium (K)	240	mg/kg	ALS	RG CORCK SE-2 2021 09-15 0830
SE	CORCK	668478	5487339	2021	2	2021-09-15	08:30	Selenium (Se)	1.0	mg/kg	ALS	RG CORCK SE-2 2021 09-15 0830
SE	CORCK	668478	5487339	2021	2	2021-09-15	08:30	Silver (Ag)	<0.10	mg/kg	ALS	RG CORCK SE-2 2021 09-15 0830
SE	CORCK	668478	5487339	2021	2	2021-09-15	08:30	Sodium (Na)	270	mg/kg	ALS	RG CORCK SE-2 2021 09-15 0830
SE	CORCK	668478	5487339	2021	2	2021-09-15	08:30	Strontium (Sr)	299	mg/kg	ALS	RG CORCK SE-2 2021 09-15 0830
SE	CORCK	668478	5487339	2021	2	2021-09-15	08:30	Sulfur (S)	3,500	mg/kg	ALS	RG CORCK SE-2 2021 09-15 0830
SE	CORCK	668478	5487339	2021	2	2021-09-15	08:30	Thallium (TI)	0.17	mg/kg	ALS	RG CORCK SE-2 2021 09-15 0830
SE	CORCK	668478	5487339	2021	2	2021-09-15	08:30	Tin (Sn)	<2.0	mg/kg	ALS	RG CORCK SE-2 2021 09-15 0830
SE	CORCK	668478	5487339	2021	2	2021-09-15	08:30	Titanium (Ti)	3.6	mg/kg	ALS	RG CORCK SE-2 2021 09-15 0830
SE	CORCK	668478	5487339	2021	2	2021-09-15	08:30	Tungsten (W)	<0.50	mg/kg	ALS	RG CORCK SE-2 2021 09-15 0830
SE	CORCK	668478	5487339	2021	2	2021-09-15	08:30	Uranium (U)	1.5	mg/kg	ALS	RG CORCK SE-2 2021 09-15 0830
SE	CORCK	668478	5487339	2021	2	2021-09-15	08:30	Vanadium (V)	2.9	mg/kg	ALS	RG CORCK SE-2 2021 09-15 0830
SE	CORCK	668478	5487339	2021	2	2021-09-15	08:30	Zinc (Zn)	486	mg/kg	ALS	RG CORCK SE-2 2021 09-15 0830
SE SE	CORCK	668478	5487339	2021	2	2021-09-15	08:30	Zirconium (Zr)	<1.0	mg/kg	ALS	RG CORCK SE-2 2021 09-15 0830
SE	CORCK	668478	5487339	2021	2	2021-09-15	08:30	Acenaphthene	0.027	mg/kg	ALS	RG CORCK SE-2 2021 09-15 0830
SE SE	CORCK	668478	5487339	2021	2	2021-09-15	08:30	Acenaphthylene	<0.0050	mg/kg	ALS	RG CORCK SE-2 2021 09-15 0830
SE SE	CORCK	668478	5487339	2021	2	2021-09-15	08:30	Acridine	0.049	mg/kg	ALS	RG CORCK SE-2 2021 09-15 0830
SE SE	CORCK	668478	5487339	2021	2	2021-09-15	08:30	Anthracene	<0.0040	mg/kg	ALS	RG CORCK SE-2 2021 09-15 0830
SE SE	CORCK	668478	5487339	2021	2	2021-09-15	08:30	Benz(a)anthracene	0.035	mg/kg	ALS	RG CORCK SE-2 2021 09-15 0830
	CORCK	668478	5487339	2021	2	2021-09-15	08:30	Benzo(a)pyrene	0.03	mg/kg	ALS	RG CORCK SE-2 2021 09-15 0830
	COLLOIL	000470						· /: •				
SE.		669/79	5/127330	2021	2	2021 00 15	∪δ∙3∪	IRanzo(h&i)fluoranthana	0.1	ma/ka	VI C	IRC CURCK CE 3 3034 00 45 0030
SE SE	CORCK	668478 668478	5487339 5487339	2021 2021	2 2	2021-09-15 2021-09-15	08:30 08:30	Benzo(b&j)fluoranthene Benzo(b+j+k)fluoranthene	0.1	mg/kg mg/kg	ALS ALS	RG_CORCK_SE-2_2021_09-15_0830 RG_CORCK_SE-2_2021_09-15_0830

WSP Canada Inc. Page 261 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

			ected from the (UTMs) ^(a)									Laboratory Information
Type	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	CORCK	668478	5487339	2021	2	2021-09-15	08:30	Benzo(g h i)perylene	0.067	mg/kg	ALS	RG CORCK SE-2 2021 09-15 0830
SE	CORCK	668478	5487339	2021	2	2021-09-15	08:30	Benzo(k)fluoranthene	<0.010	mg/kg	ALS	RG CORCK SE-2 2021 09-15 0830
SE	CORCK	668478	5487339	2021	2	2021-09-15	08:30	Chrysene	0.17	mg/kg	ALS	RG CORCK SE-2 2021 09-15 0830
SE	CORCK	668478	5487339	2021	2	2021-09-15	08:30	Dibenz(a h)anthracene	0.015	mg/kg	ALS	RG CORCK SE-2 2021 09-15 0830
SE	CORCK	668478	5487339	2021	2	2021-09-15	08:30	Fluoranthene	0.032	mg/kg	ALS	RG CORCK SE-2 2021 09-15 0830
SE	CORCK	668478	5487339	2021	2	2021-09-15	08:30	Fluorene	0.09	mg/kg	ALS	RG CORCK SE-2 2021 09-15 0830
SE	CORCK	668478	5487339	2021	2	2021-09-15	08:30	Indeno(1,2,3-c,d)pyrene	0.012	mg/kg	ALS	RG CORCK SE-2 2021 09-15 0830
SE	CORCK	668478	5487339	2021	2	2021-09-15	08:30	1-Methylnaphthalene	0.62	mg/kg	ALS	RG CORCK SE-2 2021 09-15 0830
SE	CORCK	668478	5487339	2021	2	2021-09-15	08:30	2-Methylnaphthalene	1.0	mg/kg	ALS	RG CORCK SE-2 2021 09-15 0830
SE	CORCK	668478	5487339	2021	2	2021-09-15	08:30	Naphthalene	0.36	mg/kg	ALS	RG CORCK SE-2 2021 09-15 0830
SE	CORCK	668478	5487339	2021	2	2021-09-15	08:30	Perylene	<0.010	mg/kg	ALS	RG_CORCK_SE-2_2021_09-15_0830
SE	CORCK	668478	5487339	2021	2	2021-09-15	08:30	Phenanthrene	0.49	mg/kg	ALS	RG CORCK SE-2 2021 09-15 0830
SE	CORCK	668478	5487339	2021	2	2021-09-15	08:30	Pyrene	0.054	mg/kg	ALS	RG CORCK SE-2 2021 09-15 0830
SE	CORCK	668478	5487339	2021	2	2021-09-15	08:30	Quinoline	<0.050	mg/kg	ALS	RG CORCK SE-2 2021 09-15 0830
SE	CORCK	668478	5487339	2021	2	2021-09-15	08:30	d10-Acenaphthene	80	%	ALS	RG CORCK SE-2 2021 09-15 0830
SE	CORCK	668478	5487339	2021	2	2021-09-15	08:30	d12-Chrysene	77	%	ALS	RG CORCK SE-2 2021 09-15 0830
SE	CORCK	668478	5487339	2021	2	2021-09-15	08:30	d8-Naphthalene	76	%	ALS	RG CORCK SE-2 2021 09-15 0830
SE	CORCK	668478	5487339	2021	2	2021-09-15	08:30	d10-Phenanthrene	73	%	ALS	RG CORCK SE-2 2021 09-15 0830
SE	CORCK	668478	5487339	2021	2	2021-09-15	08:30	IACR:Coarse	<0.050	-	ALS	RG CORCK SE-2 2021 09-15 0830
SE	CORCK	668478	5487339	2021	2	2021-09-15	08:30	IACR:Fine	0.06	-	ALS	RG CORCK SE-2 2021 09-15 0830
SE	CORCK	668478	5487339	2021	2	2021-09-15	08:30	B(a)P Total Potency Equivalent	0.063	mg/kg	ALS	RG CORCK SE-2 2021 09-15 0830
SE	CORCK	668478	5487339	2021	2	2021-09-15	08:30	IACR (CCME)	1.0	-	ALS	RG CORCK SE-2 2021 09-15 0830
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	Moisture	69	%	ALS	RG CORCK SE-3 2021 09-15 0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	pH (1:2 soil:water)	8.1	pН	ALS	RG CORCK SE-3 2021 09-15 0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	% Gravel (>2 mm)	<1.0	%	ALS	RG CORCK SE-3 2021 09-15 0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	% Sand (2.00 mm - 1.00 mm)	2.0	%	ALS	RG CORCK SE-3 2021 09-15 0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	% Sand (1.00 mm - 0.50 mm)	2.6	%	ALS	RG CORCK SE-3 2021 09-15 0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	% Sand (0.50 mm - 0.25 mm)	6.0	%	ALS	RG CORCK SE-3 2021 09-15 0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	% Sand (0.25 mm - 0.125 mm)	18	%	ALS	RG CORCK SE-3 2021 09-15 0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	% Sand (0.125 mm - 0.063 mm)	20	%	ALS	RG CORCK SE-3 2021 09-15 0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	% Silt (0.063 mm - 0.0312 mm)	22	%	ALS	RG_CORCK_SE-3_2021_09-15_0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	% Silt (0.031 mm - 0.004 mm)	25	%	ALS	RG CORCK SE-3 2021 09-15 0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	% Clay (<4 μm)	4.4	%	ALS	RG CORCK SE-3 2021 09-15 0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	Texture	Sandy loam	-	ALS	RG CORCK SE-3 2021 09-15 0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	Total Organic Carbon	3.2	%	ALS	RG CORCK SE-3 2021 09-15 0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	Aluminum (Al)	953	mg/kg	ALS	RG CORCK SE-3 2021 09-15 0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	Antimony (Sb)	0.15	mg/kg	ALS	RG CORCK SE-3 2021 09-15 0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	Arsenic (As)	1.4	mg/kg	ALS	RG CORCK SE-3 2021 09-15 0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	Barium (Ba)	121	mg/kg	ALS	RG CORCK SE-3 2021 09-15 0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	Beryllium (Be)	0.23	mg/kg	ALS	RG CORCK SE-3 2021 09-15 0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	Bismuth (Bi)	<0.20	mg/kg	ALS	RG CORCK SE-3 2021 09-15 0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	Boron (B)	5.2	mg/kg	ALS	RG CORCK SE-3 2021 09-15 0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	Cadmium (Cd)	5.4	mg/kg	ALS	RG CORCK SE-3 2021 09-15 0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	Calcium (Ca)	226,000	mg/kg	ALS	RG CORCK SE-3 2021 09-15 0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	Chromium (Cr)	1.6	mg/kg	ALS	RG_CORCK_SE-3_2021_09-15_0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	Cobalt (Co)	203	mg/kg	ALS	RG CORCK SE-3 2021 09-15 0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	Copper (Cu)	4.1	mg/kg	ALS	RG CORCK SE-3 2021 09-15 0945

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Туре	Station	Location	ı (UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
Type	Station	Easting	Northing	i eai	Replicate	Date	Tille	Allalyte	Result	Offic	Lab	Sample ID
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	Iron (Fe)	2,310	mg/kg	ALS	RG_CORCK_SE-3_2021_09-15_0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	Lead (Pb)	1.4	mg/kg	ALS	RG_CORCK_SE-3_2021_09-15_0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	Lithium (Li)	2.1	mg/kg	ALS	RG_CORCK_SE-3_2021_09-15_0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	Magnesium (Mg)	4,720	mg/kg	ALS	RG_CORCK_SE-3_2021_09-15_0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	Manganese (Mn)	1,800	mg/kg	ALS	RG_CORCK_SE-3_2021_09-15_0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	Mercury (Hg)	0.015	mg/kg	ALS	RG_CORCK_SE-3_2021_09-15_0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	Molybdenum (Mo)	0.26	mg/kg	ALS	RG_CORCK_SE-3_2021_09-15_0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	Nickel (Ni)	180	mg/kg	ALS	RG_CORCK_SE-3_2021_09-15_0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	Phosphorus (P)	153	mg/kg	ALS	RG_CORCK_SE-3_2021_09-15_0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	Potassium (K)	270	mg/kg	ALS	RG_CORCK_SE-3_2021_09-15_0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	Selenium (Se)	1.4	mg/kg	ALS	RG_CORCK_SE-3_2021_09-15_0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	Silver (Ag)	<0.10	mg/kg	ALS	RG_CORCK_SE-3_2021_09-15_0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	Sodium (Na)	268	mg/kg	ALS	RG_CORCK_SE-3_2021_09-15_0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	Strontium (Sr)	305	mg/kg	ALS	RG_CORCK_SE-3_2021_09-15_0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	Sulfur (S)	3,800	mg/kg	ALS	RG_CORCK_SE-3_2021_09-15_0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	Thallium (TI)	0.16	mg/kg	ALS	RG_CORCK_SE-3_2021_09-15_0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	Tin (Sn)	<2.0	mg/kg	ALS	RG_CORCK_SE-3_2021_09-15_0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	Titanium (Ti)	4.0	mg/kg	ALS	RG CORCK SE-3 2021 09-15 0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	Tungsten (W)	<0.50	mg/kg	ALS	RG_CORCK_SE-3_2021_09-15_0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	Uranium (U)	1.5	mg/kg	ALS	RG_CORCK_SE-3_2021_09-15_0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	Vanadium (V)	3.2	mg/kg	ALS	RG CORCK SE-3 2021 09-15 0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	Zinc (Zn)	458	mg/kg	ALS	RG CORCK SE-3 2021 09-15 0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	Zirconium (Zr)	<1.0	mg/kg	ALS	RG CORCK SE-3 2021 09-15 0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	Acenaphthene	0.035	mg/kg	ALS	RG CORCK SE-3 2021 09-15 0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	Acenaphthylene	0.0088	mg/kg	ALS	RG CORCK SE-3 2021 09-15 0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	Acridine	0.076	mg/kg	ALS	RG CORCK SE-3 2021 09-15 0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	Anthracene	<0.0040	mg/kg	ALS	RG CORCK SE-3 2021 09-15 0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	Benz(a)anthracene	0.049	mg/kg	ALS	RG CORCK SE-3 2021 09-15 0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	Benzo(a)pyrene	0.041	mg/kg	ALS	RG CORCK SE-3 2021 09-15 0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	Benzo(b&j)fluoranthene	0.14	mg/kg	ALS	RG CORCK SE-3 2021 09-15 0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	Benzo(b+j+k)fluoranthene	0.14	mg/kg	ALS	RG CORCK SE-3 2021 09-15 0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	Benzo(e)pyrene	0.18	mg/kg	ALS	RG CORCK SE-3 2021 09-15 0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	Benzo(g h i)perylene	0.094	mg/kg	ALS	RG CORCK SE-3 2021 09-15 0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	Benzo(k)fluoranthene	<0.010	mg/kg	ALS	RG CORCK SE-3 2021 09-15 0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	Chrysene	0.23	mg/kg	ALS	RG CORCK SE-3 2021 09-15 0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	Dibenz(a_h)anthracene	0.027	mg/kg	ALS	RG CORCK SE-3 2021 09-15 0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	Fluoranthene	0.04	mg/kg	ALS	RG CORCK SE-3 2021 09-15 0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	Fluorene	0.13	mg/kg	ALS	RG CORCK SE-3 2021 09-15 0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	Indeno(1,2,3-c,d)pyrene	0.012	mg/kg	ALS	RG CORCK SE-3 2021 09-15 0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	1-Methylnaphthalene	0.82	mg/kg	ALS	RG_CORCK_SE-3_2021_09-15_0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	2-Methylnaphthalene	1.4	mg/kg	ALS	RG_CORCK_SE-3_2021_09-15_0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	Naphthalene	0.44	mg/kg	ALS	RG_CORCK_SE-3_2021_09-15_0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	Perylene	<0.010	mg/kg	ALS	RG CORCK SE-3 2021 09-15 0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	Phenanthrene	0.68	mg/kg	ALS	RG CORCK SE-3 2021 09-15 0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	Pyrene	0.072	mg/kg	ALS	RG CORCK SE-3 2021 09-15 0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	Quinoline	<0.050	mg/kg	ALS	RG CORCK SE-3 2021 09-15 0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	d10-Acenaphthene	85	%		RG CORCK SE-3 2021 09-15 0945

WSP Canada Inc. Page 263 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	Station		(UTMs) ^(a)	Year	Replicate		Time	Analyte	Result	Unit		Laboratory Information
Type	Station	Easting	Northing	rear	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	d12-Chrysene	97	%	ALS	RG_CORCK_SE-3_2021_09-15_0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	d8-Naphthalene	89	%	ALS	RG_CORCK_SE-3_2021_09-15_0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	d10-Phenanthrene	91	%	ALS	RG_CORCK_SE-3_2021_09-15_0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	IACR:Coarse	< 0.050	-	ALS	RG_CORCK_SE-3_2021_09-15_0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	IACR:Fine	0.082	-	ALS	RG_CORCK_SE-3_2021_09-15_0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	B(a)P Total Potency Equivalent	0.093	mg/kg	ALS	RG_CORCK_SE-3_2021_09-15_0945
SE	CORCK	668485	548357	2021	3	2021-09-15	09:45	IACR (CCME)	1.4	-	ALS	RG_CORCK_SE-3_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	Moisture	59	%	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	pH (1:2 soil:water)	8.0	рН	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	% Gravel (>2 mm)	<1.0	%	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	% Sand (2.00 mm - 1.00 mm)	3.0	%	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	% Sand (1.00 mm - 0.50 mm)	3.7	%	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	% Sand (0.50 mm - 0.25 mm)	7.7	%	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	% Sand (0.25 mm - 0.125 mm)	18	%	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	% Sand (0.125 mm - 0.063 mm)	19	%	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	% Silt (0.063 mm - 0.0312 mm)	21	%	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	% Silt (0.031 mm - 0.004 mm)	23	%	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	% Clay (<4 μm)	4.7	%	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	Texture	Sandy loam	-	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	Total Organic Carbon	4.4	%	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	Aluminum (Al)	2,600	mg/kg	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	Antimony (Sb)	0.31	mg/kg	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	Arsenic (As)	3.1	mg/kg	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	Barium (Ba)	214	mg/kg	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	Beryllium (Be)	0.44	mg/kg	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	Bismuth (Bi)	<0.20	mg/kg	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	Boron (B)	7.9	mg/kg	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	Cadmium (Cd)	9.3	mg/kg	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	Calcium (Ca)	338,000	mg/kg	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	Chromium (Cr)	3.8	mg/kg		RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	Cobalt (Co)	370	mg/kg	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	Copper (Cu)	7.7	mg/kg	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	Iron (Fe)	4,730	mg/kg	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	Lead (Pb)	2.6	mg/kg	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	Lithium (Li)	3.7	mg/kg	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	Magnesium (Mg)	6,870	mg/kg	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	Manganese (Mn)	2,720	mg/kg	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	Mercury (Hg)	0.025	mg/kg	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	Molybdenum (Mo)	0.78	mg/kg	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	Nickel (Ni)	304	mg/kg	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	Phosphorus (P)	283	mg/kg	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	Potassium (K)	680	mg/kg	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	Selenium (Se)	3.2	mg/kg	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	Silver (Ag)	<0.10	mg/kg	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	Sodium (Na)	419	mg/kg	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	Strontium (Sr)	431	mg/kg	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	Sulfur (S)	5,100	mg/kg	ALS	RG_CORCK_SE-4_2021_09-15_0945

WSP Canada Inc. Page 264 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Table I-1	I: Sediment Chem			CMm LAEMP	Sampling St	tations, 2012 to	2022					
Туре	Station		ı (UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
		Easting	Northing		торпошто			·		O	Lab	Sample ID
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	Thallium (TI)	0.41	mg/kg	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	Tin (Sn)	<2.0	mg/kg	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	Titanium (Ti)	8.3	mg/kg	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	Tungsten (W)	<0.50	mg/kg	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	Uranium (U)	2.1	mg/kg	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	Vanadium (V)	8.3	mg/kg	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	Zinc (Zn)	782	mg/kg	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	Acenaphthene	0.048	mg/kg	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	Acenaphthylene	0.0091	mg/kg	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	Acridine	0.091	mg/kg	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	Anthracene	<0.0040	mg/kg	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	Benz(a)anthracene	0.063	mg/kg	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	Benzo(a)pyrene	0.048	mg/kg	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	Benzo(b&j)fluoranthene	0.17	mg/kg	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	Benzo(b+j+k)fluoranthene	0.17	mg/kg	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	Benzo(e)pyrene	0.22	mg/kg	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	Benzo(g_h_i)perylene	0.11	mg/kg	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	Benzo(k)fluoranthene	<0.010	mg/kg	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	Chrysene	0.28	mg/kg	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	Dibenz(a_h)anthracene	0.024	mg/kg	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	Fluoranthene	0.046	mg/kg	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	Fluorene	0.14	mg/kg	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	Indeno(1,2,3-c,d)pyrene	0.022	mg/kg	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	1-Methylnaphthalene	0.94	mg/kg	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	2-Methylnaphthalene	1.6	mg/kg	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	Naphthalene	0.52	mg/kg	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	Perylene	<0.010	mg/kg	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	Phenanthrene	0.78	mg/kg	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	Pyrene	0.085	mg/kg	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	Quinoline	<0.050	mg/kg	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	d10-Acenaphthene	83	%	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	d12-Chrysene	94	%	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	d8-Naphthalene	84	%	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	d10-Phenanthrene	88	%	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	IACR:Coarse	<0.050	-	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	IACR:Fine	0.096	-	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	B(a)P Total Potency Equivalent	0.1	mg/kg	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668485	548357	2021	4	2021-09-15	09:45	IACR (CCME)	1.7	-	ALS	RG_CORCK_SE-4_2021_09-15_0945
SE	CORCK	668527	5487371	2021	5	2021-09-15	11:00	Moisture	93	%	ALS	RG_CORCK_SE-5_2021_09-15_1100
SE	CORCK	668527	5487371	2021	5	2021-09-15	11:00	pH (1:2 soil:water)	7.8	рН	ALS	RG_CORCK_SE-5_2021_09-15_1100
SE	CORCK	668527	5487371	2021	5	2021-09-15	11:00	% Gravel (>2 mm)	2.5	%	ALS	RG_CORCK_SE-5_2021_09-15_1100
SE	CORCK	668527	5487371	2021	5	2021-09-15	11:00	% Sand (2.00 mm - 1.00 mm)	4.6	%	ALS	RG_CORCK_SE-5_2021_09-15_1100
SE	CORCK	668527	5487371	2021	5	2021-09-15	11:00	% Sand (1.00 mm - 0.50 mm)	4.1	%	ALS	RG_CORCK_SE-5_2021_09-15_1100
SE	CORCK	668527	5487371	2021	5	2021-09-15	11:00	% Sand (0.50 mm - 0.25 mm)	5.4	%	ALS	RG_CORCK_SE-5_2021_09-15_1100
SE	CORCK	668527	5487371	2021	5	2021-09-15	11:00	% Sand (0.25 mm - 0.125 mm)	12	%	ALS	RG_CORCK_SE-5_2021_09-15_1100
SE	CORCK	668527	5487371	2021	5	2021-09-15	11:00	% Sand (0.125 mm - 0.063 mm)	16	%	ALS	RG CORCK SE-5 2021 09-15 1100

WSP Canada Inc. Page 265 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Table I-1	: Sediment Chem	istry Data Col	lected from the	CMm LAEMP S	Sampling Sta	ations, 2012 to	2022					
Туре	Station	Location	າ (UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
Type	Station	Easting	Northing	i eai	Replicate	Date	Tille	Allalyte	Nesuit	Offic	Lab	Sample ID
SE	CORCK	668527	5487371	2021	5	2021-09-15	11:00	% Silt (0.063 mm - 0.0312 mm)	21	%	ALS	RG_CORCK_SE-5_2021_09-15_1100
SE	CORCK	668527	5487371	2021	5	2021-09-15	11:00	% Silt (0.031 mm - 0.004 mm)	28	%	ALS	RG_CORCK_SE-5_2021_09-15_1100
SE	CORCK	668527	5487371	2021	5	2021-09-15	11:00	% Clay (<4 μm)	5.9	%	ALS	RG_CORCK_SE-5_2021_09-15_1100
SE	CORCK	668527	5487371	2021	5	2021-09-15	11:00	Texture	Silt loam	-	ALS	RG_CORCK_SE-5_2021_09-15_1100
SE	CORCK	668527	5487371	2021	5	2021-09-15	11:00	Total Organic Carbon	4.2	%	ALS	RG_CORCK_SE-5_2021_09-15_1100
SE	CORCK	668527	5487371	2021	5	2021-09-15	11:00	Aluminum (Al)	1,390	mg/kg	ALS	RG_CORCK_SE-5_2021_09-15_1100
SE	CORCK	668527	5487371	2021	5	2021-09-15	11:00	Antimony (Sb)	0.25	mg/kg	ALS	RG_CORCK_SE-5_2021_09-15_1100
SE	CORCK	668527	5487371	2021	5	2021-09-15	11:00	Arsenic (As)	2.1	mg/kg	ALS	RG_CORCK_SE-5_2021_09-15_1100
SE	CORCK	668527	5487371	2021	5	2021-09-15	11:00	Barium (Ba)	178	mg/kg	ALS	RG_CORCK_SE-5_2021_09-15_1100
SE	CORCK	668527	5487371	2021	5	2021-09-15	11:00	Beryllium (Be)	0.33	mg/kg	ALS	RG_CORCK_SE-5_2021_09-15_1100
SE	CORCK	668527	5487371	2021	5	2021-09-15	11:00	Bismuth (Bi)	<0.20	mg/kg	ALS	RG_CORCK_SE-5_2021_09-15_1100
SE	CORCK	668527	5487371	2021	5	2021-09-15	11:00	Boron (B)	8.0	mg/kg	ALS	RG_CORCK_SE-5_2021_09-15_1100
SE	CORCK	668527	5487371	2021	5	2021-09-15	11:00	Cadmium (Cd)	6.9	mg/kg	ALS	RG_CORCK_SE-5_2021_09-15_1100
SE	CORCK	668527	5487371	2021	5	2021-09-15	11:00	Calcium (Ca)	290,000	mg/kg	ALS	RG_CORCK_SE-5_2021_09-15_1100
SE	CORCK	668527	5487371	2021	5	2021-09-15	11:00	Chromium (Cr)	2.3	mg/kg	ALS	RG_CORCK_SE-5_2021_09-15_1100
SE	CORCK	668527	5487371	2021	5	2021-09-15	11:00	Cobalt (Co)	223	mg/kg	ALS	RG_CORCK_SE-5_2021_09-15_1100
SE	CORCK	668527	5487371	2021	5	2021-09-15	11:00	Copper (Cu)	5.9	mg/kg	ALS	RG_CORCK_SE-5_2021_09-15_1100
SE	CORCK	668527	5487371	2021	5	2021-09-15	11:00	Iron (Fe)	3,570	mg/kg	ALS	RG_CORCK_SE-5_2021_09-15_1100
SE	CORCK	668527	5487371	2021	5	2021-09-15	11:00	Lead (Pb)	2.3	mg/kg	ALS	RG_CORCK_SE-5_2021_09-15_1100
SE	CORCK	668527	5487371	2021	5	2021-09-15	11:00	Lithium (Li)	2.8	mg/kg	ALS	RG_CORCK_SE-5_2021_09-15_1100
SE	CORCK	668527	5487371	2021	5	2021-09-15	11:00	Magnesium (Mg)	6,310	mg/kg	ALS	RG_CORCK_SE-5_2021_09-15_1100
SE	CORCK	668527	5487371	2021	5	2021-09-15	11:00	Manganese (Mn)	2,090	mg/kg	ALS	RG_CORCK_SE-5_2021_09-15_1100
SE	CORCK	668527	5487371	2021	5	2021-09-15	11:00	Mercury (Hg)	0.025	mg/kg	ALS	RG_CORCK_SE-5_2021_09-15_1100
SE	CORCK	668527	5487371	2021	5	2021-09-15	11:00	Molybdenum (Mo)	0.37	mg/kg	ALS	RG_CORCK_SE-5_2021_09-15_1100
SE	CORCK	668527	5487371	2021	5	2021-09-15	11:00	Nickel (Ni)	235	mg/kg	ALS	RG_CORCK_SE-5_2021_09-15_1100
SE	CORCK	668527	5487371	2021	5	2021-09-15	11:00	Phosphorus (P)	308	mg/kg	ALS	RG_CORCK_SE-5_2021_09-15_1100
SE	CORCK	668527	5487371	2021	5	2021-09-15	11:00	Potassium (K)	410	mg/kg	ALS	RG_CORCK_SE-5_2021_09-15_1100
SE	CORCK	668527	5487371	2021	5	2021-09-15	11:00	Selenium (Se)	2.6	mg/kg	ALS	RG_CORCK_SE-5_2021_09-15_1100
SE	CORCK	668527	5487371	2021	5	2021-09-15	11:00	Silver (Ag)	<0.10	mg/kg	ALS	RG_CORCK_SE-5_2021_09-15_1100
SE	CORCK	668527	5487371	2021	5	2021-09-15	11:00	Sodium (Na)	418	mg/kg	ALS	RG_CORCK_SE-5_2021_09-15_1100
SE	CORCK	668527	5487371	2021	5	2021-09-15	11:00	Strontium (Sr)	398	mg/kg	ALS	RG_CORCK_SE-5_2021_09-15_1100
SE	CORCK	668527	5487371	2021	5	2021-09-15	11:00	Sulfur (S)	5,900	mg/kg	ALS	RG_CORCK_SE-5_2021_09-15_1100
SE	CORCK	668527	5487371	2021	5	2021-09-15	11:00	Thallium (TI)	0.15	mg/kg	ALS	RG_CORCK_SE-5_2021_09-15_1100
SE	CORCK	668527	5487371	2021	5	2021-09-15	11:00	Tin (Sn)	<2.0	mg/kg	ALS	RG_CORCK_SE-5_2021_09-15_1100
SE	CORCK	668527	5487371	2021	5	2021-09-15	11:00	Titanium (Ti)	5.4	mg/kg	ALS	RG_CORCK_SE-5_2021_09-15_1100
SE	CORCK	668527	5487371	2021	5	2021-09-15	11:00	Tungsten (W)	<0.50	mg/kg	ALS	RG_CORCK_SE-5_2021_09-15_1100
SE	CORCK	668527	5487371	2021	5	2021-09-15	11:00	Uranium (U)	1.9	mg/kg	ALS	RG_CORCK_SE-5_2021_09-15_1100
SE	CORCK	668527	5487371	2021	5	2021-09-15	11:00	Vanadium (V)	4.8	mg/kg	ALS	RG_CORCK_SE-5_2021_09-15_1100
SE	CORCK	668527	5487371	2021	5	2021-09-15	11:00	Zinc (Zn)	582	mg/kg	ALS	RG_CORCK_SE-5_2021_09-15_1100
SE	CORCK	668527	5487371	2021	5	2021-09-15	11:00	Zirconium (Zr)	<1.0	mg/kg	ALS	RG_CORCK_SE-5_2021_09-15_1100
SE	CORCK	668527	5487371	2021	5	2021-09-15	11:00	Acenaphthene	0.13	mg/kg	ALS	RG_CORCK_SE-5_2021_09-15_1100
SE	CORCK	668527	5487371	2021	5	2021-09-15	11:00	Acenaphthylene	<0.035	mg/kg	ALS	RG_CORCK_SE-5_2021_09-15_1100
SE	CORCK	668527	5487371	2021	5	2021-09-15	11:00	Acridine	0.25	mg/kg	ALS	RG_CORCK_SE-5_2021_09-15_1100
SE	CORCK	668527	5487371	2021	5	2021-09-15	11:00	Anthracene	<0.028	mg/kg	ALS	RG_CORCK_SE-5_2021_09-15_1100
SE	CORCK	668527	5487371	2021	5	2021-09-15	11:00	Benz(a)anthracene	0.16	mg/kg	ALS	RG_CORCK_SE-5_2021_09-15_1100
SE	CORCK	668527	5487371	2021	5	2021-09-15	11:00	Benzo(a)pyrene	0.12	mg/kg	ALS	RG_CORCK_SE-5_2021_09-15_1100
SE	CORCK	668527	5487371	2021	5	2021-09-15	11:00	Benzo(b&j)fluoranthene	0.48	mg/kg	ALS	RG_CORCK_SE-5_2021_09-15_1100

WSP Canada Inc. Page 266 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Гура	Station	Location	(UTMs) ^(a)	Year	Poplicate	Date	Time	Analyta	Popult	Unit		Laboratory Information
уре	Station	Easting	Northing	rear	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE.	CORCK	668527	5487371	2021	5	2021-09-15	11:00	Benzo(b+j+k)fluoranthene	0.48	mg/kg	ALS	RG_CORCK_SE-5_2021_09-15_1100
E	CORCK	668527	5487371	2021	5	2021-09-15	11:00	Benzo(e)pyrene	0.59	mg/kg	ALS	RG_CORCK_SE-5_2021_09-15_1100
Ε	CORCK	668527	5487371	2021	5	2021-09-15	11:00	Benzo(g_h_i)perylene	0.29	mg/kg	ALS	RG_CORCK_SE-5_2021_09-15_1100
SE.	CORCK	668527	5487371	2021	5	2021-09-15	11:00	Benzo(k)fluoranthene	<0.070	mg/kg	ALS	RG CORCK SE-5 2021 09-15 1100
SE	CORCK	668527	5487371	2021	5	2021-09-15	11:00	Chrysene	0.74	mg/kg	ALS	RG CORCK SE-5 2021 09-15 1100
SE.	CORCK	668527	5487371	2021	5	2021-09-15	11:00	Dibenz(a h)anthracene	0.066	mg/kg	ALS	RG CORCK SE-5 2021 09-15 1100
SE.	CORCK	668527	5487371	2021	5	2021-09-15	11:00	Fluoranthene	<0.070	mg/kg	ALS	RG CORCK SE-5 2021 09-15 1100
SE	CORCK	668527	5487371	2021	5	2021-09-15	11:00	Fluorene	0.41	mg/kg	ALS	RG CORCK SE-5 2021 09-15 1100
SE.	CORCK	668527	5487371	2021	5	2021-09-15	11:00	Indeno(1,2,3-c,d)pyrene	<0.070	mg/kg	ALS	RG CORCK SE-5 2021 09-15 1100
SE	CORCK	668527	5487371	2021	5	2021-09-15	11:00	1-Methylnaphthalene	2.6	mg/kg	ALS	RG CORCK SE-5 2021 09-15 1100
SE	CORCK	668527	5487371	2021	5	2021-09-15	11:00	2-Methylnaphthalene	4.2	mg/kg	ALS	RG_CORCK_SE-5_2021_09-15_1100
SE.	CORCK	668527	5487371	2021	5	2021-09-15	11:00	Naphthalene	1.4	mg/kg	ALS	RG CORCK SE-5 2021 09-15 1100
SE.	CORCK	668527	5487371	2021	5	2021-09-15	11:00	Perylene	<0.070	mg/kg	ALS	RG CORCK SE-5 2021 09-15 1100
SE	CORCK	668527	5487371	2021	5	2021-09-15	11:00	Phenanthrene	2.1	mg/kg	ALS	RG CORCK SE-5 2021 09-15 1100
SE	CORCK	668527	5487371	2021	5	2021-09-15	11:00	Pyrene	0.26	mg/kg	ALS	RG CORCK SE-5 2021 09-15 1100
SE	CORCK	668527	5487371	2021	5	2021-09-15	11:00	Quinoline	<0.070	mg/kg	ALS	RG CORCK SE-5 2021 09-15 1100
SE	CORCK	668527	5487371	2021	5	2021-09-15	11:00	d10-Acenaphthene	84	%	ALS	RG_CORCK_SE-5_2021_09-15_1100
SE	CORCK	668527	5487371	2021	5	2021-09-15	11:00	d12-Chrysene	96	%	ALS	RG CORCK SE-5 2021 09-15 1100
SE	CORCK	668527	5487371	2021	5	2021-09-15	11:00	d8-Naphthalene	87	%	ALS	RG CORCK SE-5 2021 09-15 1100
SE.	CORCK	668527	5487371	2021	5	2021-09-15	11:00	d10-Phenanthrene	93	%	ALS	RG CORCK SE-5 2021 09-15 1100
SE	CORCK	668527	5487371	2021	5	2021-09-15	11:00	IACR:Coarse	0.15	-	ALS	RG CORCK SE-5 2021 09-15 1100
SE	CORCK	668527	5487371	2021	5	2021-09-15	11:00	IACR:Fine	0.3	-	ALS	RG CORCK SE-5 2021 09-15 1100
SE	CORCK	668527	5487371	2021	5	2021-09-15	11:00	B(a)P Total Potency Equivalent	0.27	mg/kg	ALS	RG CORCK SE-5 2021 09-15 1100
SE	CORCK	668527	5487371	2021	5	2021-09-15	11:00	IACR (CCME)	4.8	-	ALS	RG CORCK SE-5 2021 09-15 1100
SE	RG MI5	659559	5496348	2022	1	2022-09-12	09:30	Moisture	66.5	%	ALS	RG MI5 SE-1 2022-09-12 N
SE	RG MI5	659559	5496348	2022	1	2022-09-12	09:30	pH (1:2 soil:water)	7.68	рН	ALS	RG MI5 SE-1 2022-09-12 N
SE	RG MI5	659559	5496348	2022	1	2022-09-12	09:30	% Clay (<4 μm)	4.2	%	ALS	RG MI5 SE-1 2022-09-12 N
SE	RG MI5	659559	5496348	2022	1	2022-09-12	09:30	% Silt (0.063 mm - 0.0312 mm)	14.6	%	ALS	RG_MI5_SE-1_2022-09-12_N
SE	RG MI5	659559	5496348	2022	1	2022-09-12	09:30	% Silt (0.031 mm - 0.004 mm)	14.6	%	ALS	RG MI5 SE-1 2022-09-12 N
SE	RG MI5	659559	5496348	2022	1	2022-09-12	09:30	% Sand (0.125 mm - 0.063 mm)	17.4	%	ALS	RG MI5 SE-1 2022-09-12 N
SE	RG MI5	659559	5496348	2022	1	2022-09-12	09:30	% Sand (0.25 mm - 0.125 mm)	27.8	%	ALS	RG MI5 SE-1 2022-09-12 N
SE	RG MI5	659559	5496348	2022	1	2022-09-12	09:30	% Sand (0.50 mm - 0.25 mm)	16.9	%	ALS	RG MI5 SE-1 2022-09-12 N
SE	RG MI5	659559	5496348	2022	1	2022-09-12	09:30	% Sand (1.00 mm - 0.50 mm)	2.6	%	ALS	RG MI5 SE-1 2022-09-12 N
SE	RG MI5	659559	5496348	2022	1	2022-09-12	09:30	% Sand (2.00 mm - 1.00 mm)	<1	%	ALS	RG MI5 SE-1 2022-09-12 N
SE	RG MI5	659559	5496348	2022	1	2022-09-12	09:30	% Gravel (>2 mm)	1.4	%	ALS	RG MI5 SE-1 2022-09-12 N
SE	RG MI5	659559	5496348	2022	1	2022-09-12	09:30	Inorganic Carbon <63 µm	1.12	%	ALS	RG_MI5_SE-1_2022-09-12_N
SE	RG MI5	659559	5496348	2022	1	2022-09-12	09:30	Total Carbon <63 µm	4.94	%	ALS	RG MI5 SE-1 2022-09-12 N
SE	RG MI5	659559	5496348	2022	1	2022-09-12	09:30	Total Organic Carbon	3.82	%	ALS	RG MI5 SE-1 2022-09-12 N
SE	RG MI5	659559	5496348	2022	1	2022-09-12	09:30	Inorganic Carbon (as CaCO3 equivalent)	9.36	%	ALS	RG MI5 SE-1 2022-09-12 N
SE	RG_MI5	659559	5496348	2022	1	2022-09-12	09:30	Aluminum (Al)	7640	mg/kg	ALS	RG_MI5_SE-1_2022-09-12_N
SE.	RG_MI5	659559	5496348	2022	1	2022-09-12	09:30	Antimony (Sb)	0.74	mg/kg	ALS	RG_MI5_SE-1_2022-09-12_N
SE	RG MI5	659559	5496348	2022	1	2022-09-12	09:30	Arsenic (As)	5.06	mg/kg	ALS	RG MI5 SE-1 2022-09-12 N
SE.	RG MI5	659559	5496348	2022	1	2022-09-12	09:30	Barium (Ba)	190	mg/kg	ALS	RG MI5 SE-1 2022-09-12 N
SE	RG MI5	659559	5496348	2022	1	2022-09-12	09:30	Beryllium (Be)	0.61	mg/kg	ALS	RG MI5 SE-1 2022-09-12 N
SE	RG MI5	659559	5496348	2022	1	2022-09-12	09:30	Bismuth (Bi)	<0.2	mg/kg	ALS	RG MI5 SE-1 2022-09-12 N
SE	RG MI5	659559	5496348	2022	1	2022-09-12	09:30	Boron (B)	7.9	mg/kg	ALS	RG MI5 SE-1 2022-09-12 N
SE	RG MI5	659559	5496348	2022	1	2022-09-12	09:30	Cadmium (Cd)	1.41	mg/kg	ALS	RG MI5 SE-1 2022-09-12 N

WSP Canada Inc. Page 267 of 337

Sediment Screening

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

T	04-4	Location	(UTMs) ^(a)	V	David .	D. I			D	114		Laboratory Information
Type	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	RG MI5	659559	5496348	2022	1	2022-09-12	09:30	Calcium (Ca)	38700	mg/kg	ALS	RG MI5 SE-1 2022-09-12 N
SE	RG MI5	659559	5496348	2022	1	2022-09-12	09:30	Chromium (Cr)	11.6	mg/kg	ALS	RG MI5 SE-1 2022-09-12 N
SE	RG MI5	659559	5496348	2022	1	2022-09-12	09:30	Cobalt (Co)	6.09	mg/kg	ALS	RG MI5 SE-1 2022-09-12 N
SE	RG MI5	659559	5496348	2022	1	2022-09-12	09:30	Copper (Cu)	11.2	mg/kg	ALS	RG MI5 SE-1 2022-09-12 N
SE	RG MI5	659559	5496348	2022	1	2022-09-12	09:30	Iron (Fe)	11900	mg/kg	ALS	RG MI5 SE-1 2022-09-12 N
SE	RG MI5	659559	5496348	2022	1	2022-09-12	09:30	Lead (Pb)	8.13	mg/kg	ALS	RG MI5 SE-1 2022-09-12 N
SE	RG MI5	659559	5496348	2022	1	2022-09-12	09:30	Lithium (Li)	10.1	mg/kg	ALS	RG MI5 SE-1 2022-09-12 N
SE	RG MI5	659559	5496348	2022	1	2022-09-12	09:30	Magnesium (Mg)	4550	mg/kg	ALS	RG MI5 SE-1 2022-09-12 N
SE	RG MI5	659559	5496348	2022	1	2022-09-12	09:30	Manganese (Mn)	147	mg/kg	ALS	RG MI5 SE-1 2022-09-12 N
SE	RG MI5	659559	5496348	2022	1	2022-09-12	09:30	Mercury (Hg)	0.0373	mg/kg	ALS	RG MI5 SE-1 2022-09-12 N
SE	RG MI5	659559	5496348	2022	1	2022-09-12	09:30	Molybdenum (Mo)	1.26	mg/kg	ALS	RG MI5 SE-1 2022-09-12 N
SE	RG MI5	659559	5496348	2022	1	2022-09-12	09:30	Nickel (Ni)	27.5	mg/kg	ALS	RG MI5 SE-1 2022-09-12 N
SE	RG MI5	659559	5496348	2022	1 1	2022-09-12	09:30	Phosphorus (P)	1220	mg/kg	ALS	RG MI5 SE-1 2022-09-12 N
SE	RG MI5	659559	5496348	2022	1	2022-09-12	09:30	Potassium (K)	1380	mg/kg	ALS	RG MI5 SE-1 2022-09-12 N
SE	RG MI5	659559	5496348	2022	1 1	2022-09-12	09:30	Selenium (Se)	1.74	mg/kg	ALS	RG MI5 SE-1_2022-09-12 N
SE	RG MI5	659559	5496348	2022	1	2022-09-12	09:30	Silver (Ag)	0.17	mg/kg	ALS	RG MI5 SE-1 2022-09-12 N
SE	RG MI5	659559	5496348	2022	1 1	2022-09-12	09:30	Sodium (Na)	87	mg/kg	ALS	RG MI5 SE-1 2022-09-12 N
SE	RG MI5	659559	5496348	2022	1	2022-09-12	09:30	Strontium (Sr)	73.3	mg/kg	ALS	RG MI5 SE-1 2022-09-12 N
SE	RG MI5	659559	5496348	2022	1	2022-09-12	09:30	Sulfur (S)	<1000	mg/kg	ALS	RG MI5 SE-1 2022-09-12 N
SE	RG MI5	659559	5496348	2022	1	2022-09-12	09:30	Thallium (TI)	0.253	mg/kg	ALS	RG MI5 SE-1 2022-09-12 N
SE	RG MI5	659559	5496348	2022	1 1	2022-09-12	09:30	Tin (Sn)	<2		ALS	RG MI5 SE-1 2022-09-12 N
SE	RG MI5	659559	5496348	2022	1	2022-09-12	09:30	Titanium (Ti)	41.5	mg/kg	ALS	RG_MI5_SE-1_2022-09-12_N
SE	RG MI5	659559	5496348	2022	1	2022-09-12	09:30	Tungsten (W)	<0.5	mg/kg	ALS	RG MI5 SE-1 2022-09-12 N
SE					1 1					mg/kg		
SE	RG_MI5	659559	5496348	2022	1 1	2022-09-12	09:30	Uranium (U)	1.28	mg/kg	ALS	RG_MI5_SE-1_2022-09-12_N
	RG_MI5	659559	5496348	2022	1 1	2022-09-12	09:30	Vanadium (V)	30.9	mg/kg	ALS	RG_MI5_SE-1_2022-09-12_N
SE	RG_MI5	659559	5496348	2022	1 1	2022-09-12	09:30	Zinc (Zn)	94.6	mg/kg	ALS	RG_MI5_SE-1_2022-09-12_N
SE	RG_MI5	659559	5496348	2022	1 1	2022-09-12	09:30	Zirconium (Zr)	1.1	mg/kg	ALS	RG_MI5_SE-1_2022-09-12_N
SE	RG_MI5	659559	5496348	2022	1	2022-09-12	09:30	Acenaphthene	<0.05	mg/kg	ALS	RG_MI5_SE-1_2022-09-12_N
SE	RG_MI5	659559	5496348	2022	1	2022-09-12	09:30	Acenaphthylene	<0.05	mg/kg	ALS	RG_MI5_SE-1_2022-09-12_N
SE	RG_MI5	659559	5496348	2022	1 1	2022-09-12	09:30	Acridine	<0.05	mg/kg	ALS	RG_MI5_SE-1_2022-09-12_N
SE	RG_MI5	659559	5496348	2022	1 1	2022-09-12	09:30	Anthracene	<0.05	mg/kg	ALS	RG_MI5_SE-1_2022-09-12_N
SE	RG_MI5	659559	5496348	2022	1	2022-09-12	09:30	Benz(a)anthracene	<0.05	mg/kg	ALS	RG_MI5_SE-1_2022-09-12_N
SE	RG_MI5	659559	5496348	2022	1 1	2022-09-12	09:30	Benzo(a)pyrene	<0.05	mg/kg	ALS	RG_MI5_SE-1_2022-09-12_N
SE	RG_MI5	659559	5496348	2022	1 1	2022-09-12	09:30	Benzo(b&j)fluoranthene	<0.05	mg/kg	ALS	RG_MI5_SE-1_2022-09-12_N
SE	RG_MI5	659559	5496348	2022	1 1	2022-09-12	09:30	Benzo(b+j+k)fluoranthene	<0.075	mg/kg	ALS	RG_MI5_SE-1_2022-09-12_N
SE	RG_MI5	659559	5496348	2022	1 1	2022-09-12	09:30	Benzo(g_h_i)perylene	<0.05	mg/kg	ALS	RG_MI5_SE-1_2022-09-12_N
SE	RG_MI5	659559	5496348	2022	1 1	2022-09-12	09:30	Benzo(k)fluoranthene	<0.05	mg/kg	ALS	RG_MI5_SE-1_2022-09-12_N
SE	RG_MI5	659559	5496348	2022	1 1	2022-09-12	09:30	Chrysene	0.073	mg/kg	ALS	RG_MI5_SE-1_2022-09-12_N
SE	RG_MI5	659559	5496348	2022	1 1	2022-09-12	09:30	Dibenz(a_h)anthracene	<0.05	mg/kg	ALS	RG_MI5_SE-1_2022-09-12_N
SE	RG_MI5	659559	5496348	2022	1 1	2022-09-12	09:30	Fluoranthene	<0.05	mg/kg	ALS	RG_MI5_SE-1_2022-09-12_N
SE	RG_MI5	659559	5496348	2022	1	2022-09-12	09:30	Fluorene	<0.05	mg/kg	ALS	RG_MI5_SE-1_2022-09-12_N
SE	RG_MI5	659559	5496348	2022	1	2022-09-12	09:30	Indeno(1,2,3-c,d)pyrene	<0.05	mg/kg	ALS	RG_MI5_SE-1_2022-09-12_N
SE	RG_MI5	659559	5496348	2022	1	2022-09-12	09:30	1+2-Methylnaphthalene	0.263	mg/kg	ALS	RG_MI5_SE-1_2022-09-12_N
SE	RG_MI5	659559	5496348	2022	1	2022-09-12	09:30	1-Methylnaphthalene	0.118	mg/kg	ALS	RG_MI5_SE-1_2022-09-12_N
SE	RG_MI5	659559	5496348	2022	1	2022-09-12	09:30	2-Methylnaphthalene	0.145	mg/kg	ALS	RG_MI5_SE-1_2022-09-12_N
SE	RG_MI5	659559	5496348	2022	1	2022-09-12	09:30	Naphthalene	0.073	mg/kg	ALS	RG_MI5_SE-1_2022-09-12_N
SE	RG_MI5	659559	5496348	2022	1	2022-09-12	09:30	Phenanthrene	0.172	mg/kg	ALS	RG_MI5_SE-1_2022-09-12_N

WSP Canada Inc. Page 268 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

10101	T. Ocalinent Onen		ected from the	OWIIII EALIWII		1						l abanatam dafamaattan
Гуре	Station		(UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
	70.145	Easting	Northing				22.22	•	2.25		Lab	Sample ID
SE	RG_MI5	659559	5496348	2022	1 1	2022-09-12	09:30	Pyrene	<0.05	mg/kg	ALS	RG_MI5_SE-1_2022-09-12_N
SE	RG_MI5	659559	5496348	2022	1 1	2022-09-12	09:30	Quinoline	<0.05	mg/kg	ALS	RG_MI5_SE-1_2022-09-12_N
SE	RG_MI5	659559	5496348	2022	1 1	2022-09-12	09:30	B(a)P Total Potency Equivalent	<0.065	mg/kg	ALS	RG_MI5_SE-1_2022-09-12_N
SE	RG_MI5	659559	5496348	2022	1 1	2022-09-12	09:30	PAHs, total (BC Sched 3.4)	0.46	mg/kg	ALS	RG_MI5_SE-1_2022-09-12_N
SE	RG_MI5	659559	5496348	2022	1	2022-09-12	09:30	PAHs, total	0.32	mg/kg	ALS	RG_MI5_SE-1_2022-09-12_N
SE	RG_MI5	659559	5496348	2022	1	2022-09-12	09:30	d9-Acridine	90.9	%	ALS	RG_MI5_SE-1_2022-09-12_N
SE	RG_MI5	659559	5496348	2022	1	2022-09-12	09:30	d12-Chrysene	104	%	ALS	RG_MI5_SE-1_2022-09-12_N
SE	RG_MI5	659559	5496348	2022	1	2022-09-12	09:30	d8-Naphthalene	73.1	%	ALS	RG_MI5_SE-1_2022-09-12_N
SE	RG_MI5	659559	5496348	2022	1	2022-09-12	09:30	d10-Phenanthrene	92.8	%	ALS	RG_MI5_SE-1_2022-09-12_N
SE	RG_MI5	659503	5496521	2022	2	2022-09-12	10:00	Moisture	82.1	%	ALS	RG_MI5_SE-2_2022-09-12_N
SE	RG_MI5	659503	5496521	2022	2	2022-09-12	10:00	pH (1:2 soil:water)	7.61	pН	ALS	RG_MI5_SE-2_2022-09-12_N
SE	RG_MI5	659503	5496521	2022	2	2022-09-12	10:00	% Clay (<4 μm)	7.5	%	ALS	RG_MI5_SE-2_2022-09-12_N
SE	RG_MI5	659503	5496521	2022	2	2022-09-12	10:00	% Silt (0.063 mm - 0.0312 mm)	27.3	%	ALS	RG_MI5_SE-2_2022-09-12_N
SE	RG_MI5	659503	5496521	2022	2	2022-09-12	10:00	% Silt (0.031 mm - 0.004 mm)	30	%	ALS	RG_MI5_SE-2_2022-09-12_N
SE	RG_MI5	659503	5496521	2022	2	2022-09-12	10:00	% Sand (0.125 mm - 0.063 mm)	7.5	%	ALS	RG_MI5_SE-2_2022-09-12_N
SE	RG_MI5	659503	5496521	2022	2	2022-09-12	10:00	% Sand (0.25 mm - 0.125 mm)	4.7	%	ALS	RG_MI5_SE-2_2022-09-12_N
SE	RG_MI5	659503	5496521	2022	2	2022-09-12	10:00	% Sand (0.50 mm - 0.25 mm)	3.4	%	ALS	RG_MI5_SE-2_2022-09-12_N
SE	RG_MI5	659503	5496521	2022	2	2022-09-12	10:00	% Sand (1.00 mm - 0.50 mm)	4.4	%	ALS	RG_MI5_SE-2_2022-09-12_N
SE	RG_MI5	659503	5496521	2022	2	2022-09-12	10:00	% Sand (2.00 mm - 1.00 mm)	6.2	%	ALS	RG_MI5_SE-2_2022-09-12_N
SE	RG_MI5	659503	5496521	2022	2	2022-09-12	10:00	% Gravel (>2 mm)	9	%	ALS	RG_MI5_SE-2_2022-09-12_N
SE	RG_MI5	659503	5496521	2022	2	2022-09-12	10:00	Inorganic Carbon <63 µm	2.24	%	ALS	RG MI5 SE-2 2022-09-12 N
SE	RG_MI5	659503	5496521	2022	2	2022-09-12	10:00	Total Carbon <63 μm	8.87	%	ALS	RG_MI5_SE-2_2022-09-12_N
SE	RG_MI5	659503	5496521	2022	2	2022-09-12	10:00	Total Organic Carbon	6.63	%	ALS	RG MI5 SE-2 2022-09-12 N
SE	RG MI5	659503	5496521	2022	2	2022-09-12	10:00	Inorganic Carbon (as CaCO3 equivalent)	18.6	%	ALS	RG MI5 SE-2 2022-09-12 N
SE	RG MI5	659503	5496521	2022	2	2022-09-12	10:00	Aluminum (Al)	6310	mg/kg	ALS	RG MI5 SE-2 2022-09-12 N
SE	RG MI5	659503	5496521	2022	2	2022-09-12	10:00	Antimony (Sb)	0.49	mg/kg	ALS	RG MI5 SE-2 2022-09-12 N
SE	RG MI5	659503	5496521	2022	2	2022-09-12	10:00	Arsenic (As)	4.85	mg/kg	ALS	RG MI5 SE-2 2022-09-12 N
SE	RG MI5	659503	5496521	2022	2	2022-09-12	10:00	Barium (Ba)	200	mg/kg	ALS	RG MI5 SE-2 2022-09-12 N
SE	RG_MI5	659503	5496521	2022	2	2022-09-12	10:00	Beryllium (Be)	0.44	mg/kg	ALS	RG MI5 SE-2 2022-09-12 N
SE	RG MI5	659503	5496521	2022	2	2022-09-12	10:00	Bismuth (Bi)	<0.2	mg/kg	ALS	RG MI5 SE-2 2022-09-12 N
SE	RG MI5	659503	5496521	2022	2	2022-09-12	10:00	Boron (B)	9.1	mg/kg	ALS	RG_MI5_SE-2_2022-09-12_N
SE	RG MI5	659503	5496521	2022	2	2022-09-12	10:00	Cadmium (Cd)	1.67	mg/kg	ALS	RG MI5 SE-2 2022-09-12 N
SE	RG MI5	659503	5496521	2022	2	2022-09-12	10:00	Calcium (Ca)	65200	mg/kg	ALS	RG MI5 SE-2 2022-09-12 N
SE	RG MI5	659503	5496521	2022	2	2022-09-12	10:00	Chromium (Cr)	10.1	mg/kg	ALS	RG MI5 SE-2 2022-09-12 N
SE	RG MI5	659503	5496521	2022	2	2022-09-12	10:00	Cobalt (Co)	6.27	mg/kg	ALS	RG MI5 SE-2 2022-09-12 N
SE	RG MI5	659503	5496521	2022	2	2022-09-12	10:00	Copper (Cu)	10.2	mg/kg	ALS	RG MI5 SE-2 2022-09-12 N
SE	RG MI5	659503	5496521	2022	2	2022-09-12	10:00	Iron (Fe)	10300	mg/kg	ALS	RG MI5 SE-2 2022-09-12 N
SE	RG MI5	659503	5496521	2022	2	2022-09-12	10:00	Lead (Pb)	6.49	mg/kg	ALS	RG MI5 SE-2 2022-09-12 N
SE	RG MI5	659503	5496521	2022	2	2022-09-12	10:00	Lithium (Li)	8.4	mg/kg	ALS	RG MI5 SE-2 2022-09-12 N
SE	RG MI5	659503	5496521	2022	2	2022-09-12	10:00	Magnesium (Mg)	5450	mg/kg	ALS	RG MI5 SE-2 2022-09-12 N
SE	RG MI5	659503	5496521	2022	2	2022-09-12	10:00	Manganese (Mn)	191	mg/kg	ALS	RG MI5 SE-2 2022-09-12 N
SE	RG_MI5	659503	5496521	2022	2	2022-09-12	10:00	Mercury (Hg)	0.0277	mg/kg	ALS	RG_MI5_SE-2_2022-09-12_N
SE	RG_MI5	659503	5496521	2022	2	2022-09-12	10:00		0.0277	1	ALS	RG MI5 SE-2 2022-09-12 N
SE	_				+			Molybdenum (Mo)		mg/kg		
SE	RG_MI5	659503	5496521 5406521	2022	2	2022-09-12	10:00	Nickel (Ni)	29.9	mg/kg	ALS	RG_MI5_SE-2_2022-09-12_N
	RG_MI5 RG MI5	659503 659503	5496521 5496521	2022 2022	2 2	2022-09-12 2022-09-12	10:00 10:00	Phosphorus (P) Potassium (K)	1210 1130	mg/kg mg/kg	ALS ALS	RG_MI5_SE-2_2022-09-12_N RG_MI5_SE-2_2022-09-12_N
SE		nnunlik	1 744n 171	71177		17077-09-17	10.00	IPORSSIUM (K.)	1 11 4 ()	marka	$\Delta L \simeq$	16.5 IVID DE-7 7077-09-17 N

WSP Canada Inc. Page 269 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Table I-	1: Sediment Chem			CMm LAEMP	Sampling St	ations, 2012 to	2022					
Туре	Station	Location	(UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
Type	Station	Easting	Northing	i cai	Replicate	Date	Tille	Allalyte	Nesuit	Oilit	Lab	Sample ID
SE	RG_MI5	659503	5496521	2022	2	2022-09-12	10:00	Silver (Ag)	0.15	mg/kg	ALS	RG_MI5_SE-2_2022-09-12_N
SE	RG_MI5	659503	5496521	2022	2	2022-09-12	10:00	Sodium (Na)	123	mg/kg	ALS	RG_MI5_SE-2_2022-09-12_N
SE	RG_MI5	659503	5496521	2022	2	2022-09-12	10:00	Strontium (Sr)	107	mg/kg	ALS	RG_MI5_SE-2_2022-09-12_N
SE	RG_MI5	659503	5496521	2022	2	2022-09-12	10:00	Sulfur (S)	<1000	mg/kg	ALS	RG_MI5_SE-2_2022-09-12_N
SE	RG_MI5	659503	5496521	2022	2	2022-09-12	10:00	Thallium (TI)	0.186	mg/kg	ALS	RG_MI5_SE-2_2022-09-12_N
SE	RG_MI5	659503	5496521	2022	2	2022-09-12	10:00	Tin (Sn)	<2	mg/kg	ALS	RG_MI5_SE-2_2022-09-12_N
SE	RG_MI5	659503	5496521	2022	2	2022-09-12	10:00	Titanium (Ti)	25.7	mg/kg	ALS	RG_MI5_SE-2_2022-09-12_N
SE	RG_MI5	659503	5496521	2022	2	2022-09-12	10:00	Tungsten (W)	<0.5	mg/kg	ALS	RG_MI5_SE-2_2022-09-12_N
SE	RG_MI5	659503	5496521	2022	2	2022-09-12	10:00	Uranium (U)	0.857	mg/kg	ALS	RG_MI5_SE-2_2022-09-12_N
SE	RG_MI5	659503	5496521	2022	2	2022-09-12	10:00	Vanadium (V)	24.1	mg/kg	ALS	RG_MI5_SE-2_2022-09-12_N
SE	RG_MI5	659503	5496521	2022	2	2022-09-12	10:00	Zinc (Zn)	94.9	mg/kg	ALS	RG_MI5_SE-2_2022-09-12_N
SE	RG_MI5	659503	5496521	2022	2	2022-09-12	10:00	Zirconium (Zr)	<1	mg/kg	ALS	RG MI5 SE-2 2022-09-12 N
SE	RG MI5	659503	5496521	2022	2	2022-09-12	10:00	Acenaphthene	<0.066	mg/kg	ALS	RG MI5 SE-2 2022-09-12 N
SE	RG MI5	659503	5496521	2022	2	2022-09-12	10:00	Acenaphthylene	<0.066	mg/kg	ALS	RG MI5 SE-2 2022-09-12 N
SE	RG MI5	659503	5496521	2022	2	2022-09-12	10:00	Acridine	<0.066	mg/kg	ALS	RG MI5 SE-2 2022-09-12 N
SE	RG MI5	659503	5496521	2022	2	2022-09-12	10:00	Anthracene	0.204	mg/kg	ALS	RG MI5 SE-2 2022-09-12 N
SE	RG_MI5	659503	5496521	2022	2	2022-09-12	10:00	Benz(a)anthracene	<0.066	mg/kg	ALS	RG_MI5_SE-2_2022-09-12_N
SE	RG MI5	659503	5496521	2022	2	2022-09-12	10:00	Benzo(a)pyrene	<0.066	mg/kg	ALS	RG MI5 SE-2 2022-09-12 N
SE	RG MI5	659503	5496521	2022	2	2022-09-12	10:00	Benzo(b&j)fluoranthene	<0.066	mg/kg	ALS	RG MI5 SE-2 2022-09-12 N
SE	RG MI5	659503	5496521	2022	2	2022-09-12	10:00	Benzo(b+j+k)fluoranthene	<0.093	mg/kg	ALS	RG MI5 SE-2 2022-09-12 N
SE	RG_MI5	659503	5496521	2022	2	2022-09-12	10:00	Benzo(g_h_i)perylene	<0.066	mg/kg	ALS	RG MI5 SE-2 2022-09-12 N
SE	RG_MI5	659503	5496521	2022	2	2022-09-12	10:00	Benzo(k)fluoranthene	<0.066	mg/kg	ALS	RG MI5 SE-2 2022-09-12 N
SE	RG MI5	659503	5496521	2022	2	2022-09-12	10:00	Chrysene	0.081	mg/kg	ALS	RG MI5 SE-2 2022-09-12 N
SE	RG MI5	659503	5496521	2022	2	2022-09-12	10:00	Dibenz(a_h)anthracene	<0.066	mg/kg	ALS	RG MI5 SE-2 2022-09-12 N
SE	RG MI5	659503	5496521	2022	2	2022-09-12	10:00	Fluoranthene	<0.066	mg/kg	ALS	RG MI5 SE-2 2022-09-12 N
SE	RG MI5	659503	5496521	2022	2	2022-09-12	10:00	Fluorene	<0.066	mg/kg	ALS	RG MI5 SE-2 2022-09-12 N
SE	RG MI5	659503	5496521	2022	2	2022-09-12	10:00	Indeno(1,2,3-c,d)pyrene	<0.066	mg/kg	ALS	RG MI5 SE-2 2022-09-12 N
SE	RG MI5	659503	5496521	2022	2	2022-09-12	10:00	1+2-Methylnaphthalene	0.324	mg/kg	ALS	RG MI5 SE-2 2022-09-12 N
SE	RG_MI5	659503	5496521	2022	2	2022-09-12	10:00	1-Methylnaphthalene	0.14	mg/kg	ALS	RG MI5 SE-2 2022-09-12 N
SE	RG MI5	659503	5496521	2022	2	2022-09-12	10:00	2-Methylnaphthalene	0.184	mg/kg	ALS	RG MI5 SE-2 2022-09-12 N
SE	RG MI5	659503	5496521	2022		2022-09-12	10:00	Naphthalene	0.096	mg/kg	ALS	RG MI5 SE-2 2022-09-12 N
SE	RG MI5	659503	5496521	2022	2	2022-09-12	10:00	Phenanthrene	0.203	mg/kg	ALS	RG MI5 SE-2 2022-09-12 N
SE	RG MI5	659503	5496521	2022	2	2022-09-12	10:00	Pyrene	<0.066	mg/kg	ALS	RG MI5 SE-2 2022-09-12 N
SE	RG MI5	659503	5496521	2022	2	2022-09-12	10:00	Quinoline	<0.066	mg/kg	ALS	RG MI5 SE-2 2022-09-12 N
SE	RG_MI5	659503	5496521	2022	2	2022-09-12	10:00	B(a)P Total Potency Equivalent	0.08	mg/kg	ALS	RG MI5 SE-2 2022-09-12 N
SE	RG_MI5	659503	5496521	2022	2	2022-09-12	10:00	PAHs, total (BC Sched 3.4)	0.77	+	ALS	RG_MI5_SE-2_2022-09-12_N
SE	_	659503			2					mg/kg		
	RG_MI5		5496521	2022		2022-09-12	10:00	PAHs, total	0.58	mg/kg	ALS	RG_MI5_SE-2_2022-09-12_N
SE	RG_MI5	659503	5496521	2022	2	2022-09-12	10:00	d9-Acridine	105	%	ALS	RG_MI5_SE-2_2022-09-12_N
SE	RG_MI5	659503	5496521	2022	2	2022-09-12	10:00	d12-Chrysene	119	%	ALS	RG_MI5_SE-2_2022-09-12_N
SE	RG_MI5	659503	5496521	2022	2	2022-09-12	10:00	d8-Naphthalene	73.5	%	ALS	RG_MI5_SE-2_2022-09-12_N
SE	RG_MI5	659503	5496521	2022	2	2022-09-12	10:00	d10-Phenanthrene	109	%	ALS	RG_MI5_SE-2_2022-09-12_N
SE	RG_MI5	659499	5496580	2022	3	2022-09-12	10:30	Moisture	50.5	%	ALS	RG_MI5_SE-3_2022-09-12_N
SE	RG_MI5	659499	5496580	2022	3	2022-09-12	10:30	pH (1:2 soil:water)	7.67	pH	ALS	RG_MI5_SE-3_2022-09-12_N
SE	RG_MI5	659499	5496580	2022	3	2022-09-12	10:30	% Clay (<4 μm)	6.1	%	ALS	RG_MI5_SE-3_2022-09-12_N
SE	RG_MI5	659499	5496580	2022	3	2022-09-12	10:30	% Silt (0.063 mm - 0.0312 mm)	18.2	%	ALS	RG_MI5_SE-3_2022-09-12_N
SE	RG_MI5	659499	5496580	2022	3	2022-09-12	10:30	% Silt (0.031 mm - 0.004 mm)	21.1	%	ALS	RG_MI5_SE-3_2022-09-12_N
SE	RG_MI5	659499	5496580	2022	3	2022-09-12	10:30	% Sand (0.125 mm - 0.063 mm)	11	%	ALS	RG_MI5_SE-3_2022-09-12_N

WSP Canada Inc. Page 270 of 337

Sediment Screening

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

T	Otation	Location	າ (UTMs) ^(a)	V	Danlingt	Dete	T	Accelete	Decode	1114		Laboratory Information
ype	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	RG MI5	659499	5496580	2022	3	2022-09-12	10:30	% Sand (0.25 mm - 0.125 mm)	13.1	%	ALS	RG MI5 SE-3 2022-09-12 N
SE	RG MI5	659499	5496580	2022	3	2022-09-12	10:30	% Sand (0.50 mm - 0.25 mm)	14.2	%	ALS	RG MI5 SE-3 2022-09-12 N
SE	RG MI5	659499	5496580	2022	3	2022-09-12	10:30	% Sand (1.00 mm - 0.50 mm)	10.5	%	ALS	RG MI5 SE-3 2022-09-12 N
SE	RG MI5	659499	5496580	2022	3	2022-09-12	10:30	% Sand (2.00 mm - 1.00 mm)	3.3	%	ALS	RG MI5 SE-3 2022-09-12 N
SE	RG MI5	659499	5496580	2022	3	2022-09-12	10:30	% Gravel (>2 mm)	2.5	%	ALS	RG MI5 SE-3 2022-09-12 N
SE	RG MI5	659499	5496580	2022	3	2022-09-12	10:30	Inorganic Carbon <63 µm	1.42	%	ALS	RG MI5 SE-3 2022-09-12 N
SE	RG MI5	659499	5496580	2022	3	2022-09-12	10:30	Total Carbon <63 µm	6.04	%	ALS	RG MI5 SE-3 2022-09-12 N
SE	RG MI5	659499	5496580	2022	3	2022-09-12	10:30	Total Organic Carbon	4.62	%	ALS	RG MI5 SE-3 2022-09-12 N
SE	RG MI5	659499	5496580	2022	3	2022-09-12	10:30	Inorganic Carbon (as CaCO3 equivalent)	11.8	%	ALS	RG_MI5_SE-3_2022-09-12_N
SE	RG MI5	659499	5496580	2022	3	2022-09-12	10:30	Aluminum (Al)	6050	mg/kg	ALS	RG MI5 SE-3 2022-09-12 N
SE	RG MI5	659499	5496580	2022	3	2022-09-12	10:30	Antimony (Sb)	0.66	mg/kg	ALS	RG MI5 SE-3 2022-09-12 N
SE	RG MI5	659499	5496580	2022	3	2022-09-12	10:30	Arsenic (As)	5.01	mg/kg	ALS	RG MI5 SE-3 2022-09-12 N
SE	RG MI5	659499	5496580	2022	3	2022-09-12	10:30	Barium (Ba)	204	mg/kg	ALS	RG MI5 SE-3 2022-09-12 N
SE	RG MI5	659499	5496580	2022	3	2022-09-12	10:30	Beryllium (Be)	0.54	mg/kg	ALS	RG MI5 SE-3 2022-09-12 N
SE	RG MI5	659499	5496580	2022	3	2022-09-12	10:30	Bismuth (Bi)	<0.2	mg/kg	ALS	RG MI5 SE-3 2022-09-12 N
SE	RG MI5	659499	5496580	2022	3	2022-09-12	10:30	Boron (B)	7.9	mg/kg	ALS	RG MI5 SE-3 2022-09-12 N
SE .	RG MI5	659499	5496580	2022	3	2022-09-12	10:30	Cadmium (Cd)	1.73	mg/kg	ALS	RG MI5 SE-3 2022-09-12 N
SE	RG_MI5	659499	5496580	2022	3	2022-09-12	10:30	Calcium (Ca)	46100	mg/kg	ALS	RG MI5 SE-3 2022-09-12 N
SE	RG MI5	659499	5496580	2022	3	2022-09-12	10:30	Chromium (Cr)	10	mg/kg	ALS	RG MI5 SE-3 2022-09-12 N
E E	RG MI5	659499	5496580	2022	3	2022-09-12	10:30	Cobalt (Co)	5.96	mg/kg	ALS	RG MI5 SE-3 2022-09-12 N
E E	RG MI5	659499	5496580	2022	3	2022-09-12	10:30	Copper (Cu)	10.7	mg/kg	ALS	RG MI5 SE-3 2022-09-12 N
E E	RG MI5	659499	5496580	2022	3	2022-09-12	10:30	Iron (Fe)	13900	mg/kg	ALS	RG MI5 SE-3 2022-09-12 N
SE	RG_MI5	659499	5496580	2022	3	2022-09-12	10:30	Lead (Pb)	7.49	mg/kg	ALS	RG MI5 SE-3 2022-09-12 N
SE	RG MI5	659499	5496580	2022	3	2022-09-12	10:30	Lithium (Li)	8.8	mg/kg	ALS	RG MI5 SE-3 2022-09-12 N
SE	RG MI5	659499	5496580	2022	3	2022-09-12	10:30	Magnesium (Mg)	4240	mg/kg	ALS	RG MI5 SE-3 2022-09-12 N
SE	RG MI5	659499	5496580	2022	3	2022-09-12	10:30	Manganese (Mn)	202	mg/kg	ALS	RG MI5 SE-3 2022-09-12 N
SE	RG MI5	659499	5496580	2022	3	2022-09-12	10:30	Mercury (Hg)	0.0338	mg/kg	ALS	RG MI5 SE-3 2022-09-12 N
SE	RG MI5	659499	5496580	2022	3	2022-09-12	10:30	Molybdenum (Mo)	1.17	mg/kg	ALS	RG MI5 SE-3 2022-09-12 N
SE	RG MI5	659499	5496580	2022	3	2022-09-12	10:30	Nickel (Ni)	27.8	mg/kg	ALS	RG MI5 SE-3 2022-09-12 N
SE	RG MI5	659499	5496580	2022	3	2022-09-12	10:30	Phosphorus (P)	1190	mg/kg	ALS	RG MI5 SE-3 2022-09-12 N
SE	RG MI5	659499	5496580	2022		2022-09-12	10:30	Potassium (K)	1040	mg/kg	ALS	RG MI5 SE-3 2022-09-12 N
SE	RG MI5	659499	5496580	2022	-	2022-09-12	10:30	Selenium (Se)	2.12	mg/kg	ALS	RG MI5 SE-3 2022-09-12 N
SE	RG MI5	659499	5496580	2022		2022-09-12	10:30	Silver (Ag)	0.17	mg/kg	ALS	RG MI5 SE-3 2022-09-12 N
SE	RG MI5	659499	5496580	2022	3	2022-09-12	10:30	Sodium (Na)	79	mg/kg	ALS	RG MI5 SE-3 2022-09-12 N
SE	RG MI5	659499	5496580	2022	3	2022-09-12	10:30	Strontium (Sr)	93.2	mg/kg	ALS	RG MI5 SE-3 2022-09-12 N
SE	RG MI5	659499	5496580	2022	3	2022-09-12	10:30	Sulfur (S)	<1000	mg/kg	ALS	RG MI5 SE-3 2022-09-12 N
SE	RG MI5	659499	5496580	2022	3	2022-09-12	10:30	Thallium (TI)	0.222	mg/kg	ALS	RG MI5 SE-3 2022-09-12 N
SE	RG MI5	659499	5496580	2022	3	2022-09-12	10:30	Tin (Sn)	<2	mg/kg	ALS	RG MI5 SE-3 2022-09-12 N
SE	RG MI5	659499	5496580	2022		2022-09-12	10:30	Titanium (Ti)	30.3	mg/kg	ALS	RG MI5 SE-3 2022-09-12 N
SE	RG MI5	659499	5496580	2022	4	2022-09-12	10:30	Tungsten (W)	<0.5	mg/kg	ALS	RG MI5 SE-3 2022-09-12 N
SE	RG MI5	659499	5496580	2022	3	2022-09-12	10:30	Uranium (U)	1.02	mg/kg	ALS	RG MI5 SE-3 2022-09-12 N
SE	RG MI5	659499	5496580	2022	3	2022-09-12	10:30	Vanadium (V)	25.1	mg/kg	ALS	RG MI5 SE-3 2022-09-12 N
SE SE	RG MI5	659499	5496580	2022	3	2022-09-12	10:30	Zinc (Zn)	91.8	mg/kg	ALS	RG MI5 SE-3 2022-09-12 N
SE I	RG_MI5	659499	5496580	2022	3	2022-09-12	10:30	Zirconium (Zr)	<1	mg/kg	ALS	RG MI5 SE-3 2022-09-12 N
SE I	RG_MI5	659499	5496580	2022	3	2022-09-12	10:30	Acenaphthene	<0.05	1 - 1 - 1	ALS	RG MI5 SE-3 2022-09-12 N
SE SE	RG_MI5	659499	5496580	2022	3	2022-09-12	10:30	Acenaphthylene	<0.05	mg/kg	ALS	RG MI5 SE-3 2022-09-12 N
SE SE	-	_			_			· · ·		mg/kg		
	RG_MI5	659499	5496580	2022	3	2022-09-12	10:30	Acridine	<0.05	mg/kg	ALS	RG_MI5_SE-3_2022-09-12_N

WSP Canada Inc. Page 271 of 337

Sediment Screening

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

T	Chatian	Location	ı (UTMs) ^(a)	Vacu	Doubleste	Dete	Times	Analysis	Dooult	11:54		Laboratory Information
Type	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	RG MI5	659499	5496580	2022	3	2022-09-12	10:30	Anthracene	0.099	mg/kg	ALS	RG MI5 SE-3 2022-09-12 N
SE	RG MI5	659499	5496580	2022	3	2022-09-12	10:30	Benz(a)anthracene	<0.05	mg/kg	ALS	RG MI5 SE-3 2022-09-12 N
SE	RG MI5	659499	5496580	2022	3	2022-09-12	10:30	Benzo(a)pyrene	<0.05	mg/kg	ALS	RG MI5 SE-3 2022-09-12 N
SE	RG MI5	659499	5496580	2022	3	2022-09-12	10:30	Benzo(b&j)fluoranthene	<0.05	mg/kg	ALS	RG MI5 SE-3 2022-09-12 N
SE	RG MI5	659499	5496580	2022	3	2022-09-12	10:30	Benzo(b+j+k)fluoranthene	<0.075	mg/kg	ALS	RG MI5 SE-3 2022-09-12 N
SE	RG MI5	659499	5496580	2022	3	2022-09-12	10:30	Benzo(g_h_i)perylene	<0.05	mg/kg	ALS	RG MI5 SE-3 2022-09-12 N
SE	RG MI5	659499	5496580	2022	3	2022-09-12	10:30	Benzo(k)fluoranthene	<0.05	mg/kg	ALS	RG MI5 SE-3 2022-09-12 N
SE	RG MI5	659499	5496580	2022	3	2022-09-12	10:30	Chrysene	< 0.05	mg/kg	ALS	RG MI5 SE-3 2022-09-12 N
SE	RG MI5	659499	5496580	2022	3	2022-09-12	10:30	Dibenz(a h)anthracene	< 0.05	mg/kg	ALS	RG MI5 SE-3 2022-09-12 N
SE	RG MI5	659499	5496580	2022	3	2022-09-12	10:30	Fluoranthene	<0.05	mg/kg	ALS	RG MI5 SE-3 2022-09-12 N
SE	RG MI5	659499	5496580	2022	3	2022-09-12	10:30	Fluorene	<0.05	mg/kg	ALS	RG MI5 SE-3 2022-09-12 N
SE	RG MI5	659499	5496580	2022	3	2022-09-12	10:30	Indeno(1,2,3-c,d)pyrene	<0.05	mg/kg	ALS	RG MI5 SE-3 2022-09-12 N
SE	RG MI5	659499	5496580	2022	3	2022-09-12	10:30	1+2-Methylnaphthalene	0.15	mg/kg	ALS	RG MI5 SE-3 2022-09-12 N
SE	RG MI5	659499	5496580	2022	3	2022-09-12	10:30	1-Methylnaphthalene	0.064	mg/kg	ALS	RG MI5 SE-3 2022-09-12 N
SE	RG MI5	659499	5496580	2022	3	2022-09-12	10:30	2-Methylnaphthalene	0.086	mg/kg	ALS	RG MI5 SE-3 2022-09-12 N
SE	RG MI5	659499	5496580	2022	3	2022-09-12	10:30	Naphthalene	0.041	mg/kg	ALS	RG MI5 SE-3 2022-09-12 N
SE	RG MI5	659499	5496580	2022	3	2022-09-12	10:30	Phenanthrene	0.097	mg/kg	ALS	RG MI5 SE-3 2022-09-12 N
SE	RG MI5	659499	5496580	2022	3	2022-09-12	10:30	Pyrene	<0.05	mg/kg	ALS	RG MI5 SE-3 2022-09-12 N
SE	RG MI5	659499	5496580	2022	3	2022-09-12	10:30	Quinoline	<0.05	mg/kg	ALS	RG MI5 SE-3 2022-09-12 N
SE	RG MI5	659499	5496580	2022	3	2022-09-12	10:30	B(a)P Total Potency Equivalent	<0.05	mg/kg	ALS	RG MI5 SE-3 2022-09-12 N
SE	RG MI5	659499	5496580	2022	3	2022-09-12	10:30	PAHs, total (BC Sched 3.4)	0.32	mg/kg	ALS	RG MI5 SE-3 2022-09-12 N
SE	RG MI5	659499	5496580	2022	3	2022-09-12	10:30	PAHs, total	0.32		ALS	RG_MI5_SE-3_2022-09-12_N
SE	RG MI5	659499	5496580	2022	3	2022-09-12	10:30	d9-Acridine	96.7	mg/kg %	ALS	RG MI5 SE-3 2022-09-12 N
SE	_									%		
SE	RG_MI5	659499	5496580	2022	3	2022-09-12	10:30	d12-Chrysene	112		ALS ALS	RG_MI5_SE-3_2022-09-12_N
	RG_MI5	659499	5496580	2022	3	2022-09-12	10:30	d8-Naphthalene	84.5	%		RG_MI5_SE-3_2022-09-12_N
SE	RG_MI5	659499	5496580	2022	3	2022-09-12	10:30	d10-Phenanthrene	102	%	ALS	RG_MI5_SE-3_2022-09-12_N
SE	RG_MIULE	660482	5493070	2022	1 1	2022-09-12	15:41	Moisture	77	%	ALS	RG_MIULE_SE-1_2022-09-12_N
SE	RG_MIULE	660482	5493070	2022	1	2022-09-12	15:41	pH (1:2 soil:water)	7.33 4	pΗ	ALS	RG_MIULE_SE-1_2022-09-12_N
SE	RG_MIULE	660482	5493070	2022	1	2022-09-12	15:41	% Clay (<4 μm)	7	%	ALS	RG_MIULE_SE-1_2022-09-12_N
SE	RG_MIULE	660482	5493070	2022	1	2022-09-12	15:41	% Silt (0.063 mm - 0.0312 mm)	20.2	%	ALS	RG_MIULE_SE-1_2022-09-12_N
SE	RG_MIULE	660482	5493070	2022	1	2022-09-12	15:41	% Silt (0.031 mm - 0.004 mm)	20	%	ALS	RG_MIULE_SE-1_2022-09-12_N
SE	RG_MIULE	660482	5493070	2022	1	2022-09-12	15:41	% Sand (0.125 mm - 0.063 mm)	14.4	%	ALS	RG_MIULE_SE-1_2022-09-12_N
SE	RG_MIULE	660482	5493070	2022	1	2022-09-12	15:41	% Sand (0.25 mm - 0.125 mm)	15	%	ALS	RG_MIULE_SE-1_2022-09-12_N
SE	RG_MIULE	660482	5493070	2022	1 1	2022-09-12	15:41	% Sand (0.50 mm - 0.25 mm)	6.5	%	ALS	RG_MIULE_SE-1_2022-09-12_N
SE	RG_MIULE	660482	5493070	2022	1 1	2022-09-12	15:41	% Sand (1.00 mm - 0.50 mm)	2.4	%	ALS	RG_MIULE_SE-1_2022-09-12_N
SE	RG_MIULE	660482	5493070	2022	1	2022-09-12	15:41	% Sand (2.00 mm - 1.00 mm)	2.4	%	ALS	RG_MIULE_SE-1_2022-09-12_N
SE	RG_MIULE	660482	5493070	2022	1	2022-09-12	15:41	% Gravel (>2 mm)	15.1	%	ALS	RG_MIULE_SE-1_2022-09-12_N
SE	RG_MIULE	660482	5493070	2022	1	2022-09-12	15:41	Inorganic Carbon <63 μm	1.71	%	ALS	RG_MIULE_SE-1_2022-09-12_N
SE	RG_MIULE	660482	5493070	2022	1 1	2022-09-12	15:41	Total Carbon <63 μm	7.63	%	ALS	RG_MIULE_SE-1_2022-09-12_N
SE	RG_MIULE	660482	5493070	2022	1	2022-09-12	15:41	Total Organic Carbon	5.92	%	ALS	RG_MIULE_SE-1_2022-09-12_N
SE	RG_MIULE	660482	5493070	2022	1	2022-09-12	15:41	Inorganic Carbon (as CaCO3 equivalent)	14.3	%	ALS	RG_MIULE_SE-1_2022-09-12_N
SE	RG_MIULE	660482	5493070	2022	1	2022-09-12	15:41	Aluminum (Al)	7070	mg/kg	ALS	RG_MIULE_SE-1_2022-09-12_N
SE	RG_MIULE	660482	5493070	2022	1	2022-09-12	15:41	Antimony (Sb)	0.56	mg/kg	ALS	RG_MIULE_SE-1_2022-09-12_N
SE	RG_MIULE	660482	5493070	2022	1	2022-09-12	15:41	Arsenic (As)	5.6	mg/kg	ALS	RG_MIULE_SE-1_2022-09-12_N
SE	RG_MIULE	660482	5493070	2022	1	2022-09-12	15:41	Barium (Ba)	166	mg/kg	ALS	RG_MIULE_SE-1_2022-09-12_N
SE	RG_MIULE	660482	5493070	2022	1	2022-09-12	15:41	Beryllium (Be)	0.62	mg/kg	ALS	RG_MIULE_SE-1_2022-09-12_N
SE	RG_MIULE	660482	5493070	2022	1	2022-09-12	15:41	Bismuth (Bi)	<0.2	mg/kg	ALS	RG_MIULE_SE-1_2022-09-12_N

WSP Canada Inc. Page 272 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

i adie i-	I: Sediment Chem	-		CIVIM LAEMP S	sampling St	ations, 2012 to	2022					
Туре	Station		(UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
		Easting	Northing	2222	•			· ·			Lab	Sample ID
SE	RG_MIULE	660482	5493070	2022	1	2022-09-12	15:41	Boron (B)	8.8	mg/kg	ALS	RG_MIULE_SE-1_2022-09-12_N
SE	RG_MIULE	660482	5493070	2022	1	2022-09-12	15:41	Cadmium (Cd)	1.19	mg/kg	ALS	RG_MIULE_SE-1_2022-09-12_N
SE	RG_MIULE	660482	5493070	2022	1	2022-09-12	15:41	Calcium (Ca)	55400	mg/kg	ALS	RG_MIULE_SE-1_2022-09-12_N
SE	RG_MIULE	660482	5493070	2022	1	2022-09-12	15:41	Chromium (Cr)	10.2	mg/kg	ALS	RG_MIULE_SE-1_2022-09-12_N
SE	RG_MIULE	660482	5493070	2022	1	2022-09-12	15:41	Cobalt (Co)	8.97	mg/kg	ALS	RG_MIULE_SE-1_2022-09-12_N
SE	RG_MIULE	660482	5493070	2022	1	2022-09-12	15:41	Copper (Cu)	11.3	mg/kg	ALS	RG_MIULE_SE-1_2022-09-12_N
SE	RG_MIULE	660482	5493070	2022	1	2022-09-12	15:41	Iron (Fe)	11900	mg/kg	ALS	RG_MIULE_SE-1_2022-09-12_N
SE	RG_MIULE	660482	5493070	2022	1	2022-09-12	15:41	Lead (Pb)	8.32	mg/kg	ALS	RG_MIULE_SE-1_2022-09-12_N
SE	RG_MIULE	660482	5493070	2022	1	2022-09-12	15:41	Lithium (Li)	10.7	mg/kg	ALS	RG_MIULE_SE-1_2022-09-12_N
SE	RG_MIULE	660482	5493070	2022	1	2022-09-12	15:41	Magnesium (Mg)	6520	mg/kg	ALS	RG_MIULE_SE-1_2022-09-12_N
SE	RG_MIULE	660482	5493070	2022	1	2022-09-12	15:41	Manganese (Mn)	198	mg/kg	ALS	RG_MIULE_SE-1_2022-09-12_N
SE	RG_MIULE	660482	5493070	2022	1	2022-09-12	15:41	Mercury (Hg)	0.0325	mg/kg	ALS	RG_MIULE_SE-1_2022-09-12_N
SE	RG_MIULE	660482	5493070	2022	1	2022-09-12	15:41	Molybdenum (Mo)	1.39	mg/kg	ALS	RG_MIULE_SE-1_2022-09-12_N
SE	RG_MIULE	660482	5493070	2022	1	2022-09-12	15:41	Nickel (Ni)	37.8	mg/kg	ALS	RG_MIULE_SE-1_2022-09-12_N
SE	RG_MIULE	660482	5493070	2022	1	2022-09-12	15:41	Phosphorus (P)	1080	mg/kg	ALS	RG_MIULE_SE-1_2022-09-12_N
SE	RG_MIULE	660482	5493070	2022	1	2022-09-12	15:41	Potassium (K)	1370	mg/kg	ALS	RG_MIULE_SE-1_2022-09-12_N
SE	RG_MIULE	660482	5493070	2022	1	2022-09-12	15:41	Selenium (Se)	1.95	mg/kg	ALS	RG_MIULE_SE-1_2022-09-12_N
SE	RG_MIULE	660482	5493070	2022	1	2022-09-12	15:41	Silver (Ag)	0.16	mg/kg	ALS	RG_MIULE_SE-1_2022-09-12_N
SE	RG_MIULE	660482	5493070	2022	1	2022-09-12	15:41	Sodium (Na)	103	mg/kg	ALS	RG_MIULE_SE-1_2022-09-12_N
SE	RG_MIULE	660482	5493070	2022	1	2022-09-12	15:41	Strontium (Sr)	86.1	mg/kg	ALS	RG_MIULE_SE-1_2022-09-12_N
SE	RG_MIULE	660482	5493070	2022	1	2022-09-12	15:41	Sulfur (S)	1000	mg/kg	ALS	RG_MIULE_SE-1_2022-09-12_N
SE	RG_MIULE	660482	5493070	2022	1	2022-09-12	15:41	Thallium (TI)	0.327	mg/kg	ALS	RG MIULE SE-1 2022-09-12 N
SE	RG_MIULE	660482	5493070	2022	1	2022-09-12	15:41	Tin (Sn)	<2	mg/kg	ALS	RG_MIULE_SE-1_2022-09-12_N
SE	RG MIULE	660482	5493070	2022	1	2022-09-12	15:41	Titanium (Ti)	20	mg/kg	ALS	RG MIULE SE-1 2022-09-12 N
SE	RG MIULE	660482	5493070	2022	1	2022-09-12	15:41	Tungsten (W)	<0.5	mg/kg	ALS	RG_MIULE_SE-1_2022-09-12_N
SE	RG MIULE	660482	5493070	2022	1	2022-09-12	15:41	Uranium (U)	0.854	mg/kg	ALS	RG_MIULE_SE-1_2022-09-12_N
SE	RG MIULE	660482	5493070	2022	1	2022-09-12	15:41	Vanadium (V)	22.2	mg/kg	ALS	RG_MIULE_SE-1_2022-09-12_N
SE	RG MIULE	660482	5493070	2022	1	2022-09-12	15:41	Zinc (Zn)	96.5	mg/kg	ALS	RG MIULE SE-1 2022-09-12 N
SE	RG MIULE	660482	5493070	2022	1	2022-09-12	15:41	Zirconium (Zr)	1.2	mg/kg	ALS	RG_MIULE_SE-1_2022-09-12_N
SE	RG MIULE	660482	5493070	2022	1	2022-09-12	15:41	Acenaphthene	<0.05	mg/kg	ALS	RG MIULE SE-1 2022-09-12 N
SE	RG MIULE	660482	5493070	2022	1	2022-09-12	15:41	Acenaphthylene	<0.05	mg/kg	ALS	RG MIULE SE-1 2022-09-12 N
SE	RG MIULE	660482	5493070	2022	1	2022-09-12	15:41	Acridine	<0.05	mg/kg	ALS	RG MIULE SE-1 2022-09-12 N
SE	RG MIULE	660482	5493070	2022	1	2022-09-12	15:41	Anthracene	<0.05	mg/kg	ALS	RG MIULE SE-1 2022-09-12 N
SE	RG MIULE	660482	5493070	2022	1	2022-09-12	15:41	Benz(a)anthracene	<0.05	mg/kg	ALS	RG MIULE SE-1_2022-09-12 N
SE	RG MIULE	660482	5493070	2022	1	2022-09-12	15:41	Benzo(a)pyrene	<0.05	mg/kg	ALS	RG MIULE SE-1 2022-09-12 N
SE	RG_MIULE	660482	5493070	2022	1	2022-09-12	15:41	Benzo(b&j)fluoranthene	0.068	mg/kg	ALS	RG MIULE SE-1 2022-09-12 N
SE	RG MIULE	660482	5493070	2022	1	2022-09-12	15:41	Benzo(b+j+k)fluoranthene	<0.075	mg/kg	ALS	RG MIULE SE-1 2022-09-12 N
SE	RG MIULE	660482	5493070	2022	1	2022-09-12	15:41	Benzo(g h i)perylene	<0.05	mg/kg	ALS	RG MIULE SE-1_2022-09-12 N
SE	RG MIULE	660482	5493070	2022	1	2022-09-12	15:41	Benzo(k)fluoranthene	<0.05	mg/kg	ALS	RG MIULE SE-1 2022-09-12 N
SE	RG MIULE	660482	5493070	2022	1	2022-09-12	15:41	Chrysene	0.105	mg/kg	ALS	RG MIULE SE-1 2022-09-12 N
SE	RG MIULE	660482	5493070	2022	1	2022-09-12	15:41	Dibenz(a h)anthracene	<0.05	mg/kg	ALS	RG MIULE SE-1_2022-09-12 N
SE	RG MIULE	660482	5493070	2022	1	2022-09-12	15:41	Fluoranthene	<0.05	mg/kg	ALS	RG MIULE SE-1_2022-09-12 N
SE	RG MIULE	660482	5493070	2022	1	2022-09-12	15:41	Fluorene	<0.05	mg/kg	ALS	RG MIULE SE-1 2022-09-12 N
SE	RG_MIULE	660482	5493070	2022	1	2022-09-12	15:41	Indeno(1,2,3-c,d)pyrene	<0.05	mg/kg	ALS	RG MIULE SE-1_2022-09-12_N
SE	RG MIULE	660482	5493070	2022	1	2022-09-12	15:41	1+2-Methylnaphthalene	0.522	mg/kg	ALS	RG MIULE SE-1 2022-09-12 N
SE	RG_MIULE	660482	5493070	2022	1	2022-09-12	15:41	1-Methylnaphthalene	0.322	mg/kg	ALS	RG MIULE SE-1 2022-09-12 N
					1			, ,				
SE	RG_MIULE	660482	5493070	2022]	2022-09-12	15:41	2-Methylnaphthalene	0.307	mg/kg	ALS	RG_MIULE_SE-1_2022-09-12_N

WSP Canada Inc. Page 273 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Type	Station	Location	(UTMs) ^(a)	Year	Poplicate	Date	Time	Analyto	Pocult	Unit		Laboratory Information
уре	Station	Easting	Northing	rear	Replicate	Date	rime	Analyte	Result	Unit	Lab	Sample ID
SE	RG MIULE	660482	5493070	2022	1	2022-09-12	15:41	Naphthalene	0.154	mg/kg	ALS	RG MIULE SE-1 2022-09-12 N
SE	RG MIULE	660482	5493070	2022	1	2022-09-12	15:41	Phenanthrene	0.272	mg/kg	ALS	RG MIULE SE-1 2022-09-12 N
SE	RG MIULE	660482	5493070	2022	1	2022-09-12	15:41	Pyrene	<0.05	mg/kg	ALS	RG MIULE SE-1 2022-09-12 N
SE	RG MIULE	660482	5493070	2022	1	2022-09-12	15:41	Quinoline	< 0.05	mg/kg	ALS	RG MIULE SE-1 2022-09-12 N
SE	RG MIULE	660482	5493070	2022	1	2022-09-12	15:41	B(a)P Total Potency Equivalent	0.066	mg/kg	ALS	RG MIULE SE-1 2022-09-12 N
SE	RG MIULE	660482	5493070	2022	1	2022-09-12	15:41	PAHs, total (BC Sched 3.4)	0.84	mg/kg	ALS	RG MIULE SE-1 2022-09-12 N
SE	RG MIULE	660482	5493070	2022	1	2022-09-12	15:41	PAHs, total	0.6	mg/kg	ALS	RG MIULE SE-1 2022-09-12 N
SE	RG MIULE	660482	5493070	2022	1	2022-09-12	15:41	d9-Acridine	98.5	%	ALS	RG MIULE SE-1 2022-09-12 N
SE	RG MIULE	660482	5493070	2022	1	2022-09-12	15:41	d12-Chrysene	112	%	ALS	RG MIULE SE-1 2022-09-12 N
SE	RG MIULE	660482	5493070	2022	1	2022-09-12	15:41	d8-Naphthalene	63.6	%	ALS	RG_MIULE_SE-1_2022-09-12_N
SE	RG MIULE	660482	5493070	2022	1	2022-09-12	15:41	d10-Phenanthrene	101	%	ALS	RG_MIULE_SE-1_2022-09-12_N
SE	RG MIULE	660563	5493002	2022	2	2022-09-12	14:31	Moisture	73.2	%	ALS	RG MIULE SE-2 2022-09-12 N
SE	RG MIULE	660563	5493002	2022	2	2022-09-12	14:31	pH (1:2 soil:water)	7.49	рН	ALS	RG MIULE SE-2 2022-09-12 N
SE	RG MIULE	660563	5493002	2022	2	2022-09-12	14:31	% Clay (<4 μm)	4.9	%	ALS	RG_MIULE_SE-2_2022-09-12_N
SE	RG MIULE	660563	5493002	2022	2	2022-09-12	14:31	% Silt (0.063 mm - 0.0312 mm)	20.9	%	ALS	RG MIULE SE-2 2022-09-12 N
SE	RG MIULE	660563	5493002	2022	2	2022-09-12	14:31	% Silt (0.031 mm - 0.004 mm)	23.8	%	ALS	RG_MIULE_SE-2_2022-09-12_N
SE	RG MIULE	660563	5493002	2022	2	2022-09-12	14:31	% Sand (0.125 mm - 0.063 mm)	7.8	%	ALS	RG_MIULE_SE-2_2022-09-12_N
SE	RG MIULE	660563	5493002	2022	2	2022-09-12	14:31	% Sand (0.25 mm - 0.125 mm)	8	%	ALS	RG MIULE SE-2 2022-09-12 N
SE	RG MIULE	660563	5493002	2022	2	2022-09-12	14:31	% Sand (0.50 mm - 0.25 mm)	13.1	%	ALS	RG MIULE SE-2 2022-09-12 N
SE	RG MIULE	660563	5493002	2022	2	2022-09-12	14:31	% Sand (1.00 mm - 0.50 mm)	10.9	%	ALS	RG MIULE SE-2 2022-09-12 N
SE	RG MIULE	660563	5493002	2022	2	2022-09-12	14:31	% Sand (2.00 mm - 1.00 mm)	5	%	ALS	RG MIULE SE-2 2022-09-12 N
SE	RG_MIULE	660563	5493002	2022	2	2022-09-12	14:31	% Gravel (>2 mm)	5.6	%	ALS	RG_MIULE_SE-2_2022-09-12_N
SE	RG MIULE	660563	5493002	2022	2	2022-09-12	14:31	Inorganic Carbon <63 µm	2.09	%	ALS	RG MIULE SE-2 2022-09-12 N
SE	RG MIULE	660563	5493002	2022	2	2022-09-12	14:31	Total Carbon <63 µm	7.78	%	ALS	RG MIULE SE-2 2022-09-12 N
SE	RG MIULE	660563	5493002	2022	2	2022-09-12	14:31	Total Organic Carbon	5.69	%	ALS	RG MIULE SE-2 2022-09-12 N
SE	RG MIULE	660563	5493002	2022	2	2022-09-12	14:31	Inorganic Carbon (as CaCO3 equivalent)	17.4	%	ALS	RG MIULE SE-2 2022-09-12 N
SE	RG MIULE	660563	5493002	2022	2	2022-09-12	14:31	Aluminum (AI)	6350	mg/kg	ALS	RG MIULE SE-2 2022-09-12 N
SE	RG MIULE	660563	5493002	2022	2	2022-09-12	14:31	Antimony (Sb)	0.6	mg/kg	ALS	RG_MIULE_SE-2_2022-09-12_N
SE	RG MIULE	660563	5493002	2022	2	2022-09-12	14:31	Arsenic (As)	5.98	mg/kg	ALS	RG MIULE SE-2 2022-09-12 N
SE	RG MIULE	660563	5493002	2022	2	2022-09-12	14:31	Barium (Ba)	147	mg/kg	ALS	RG MIULE SE-2 2022-09-12 N
SE	RG MIULE	660563	5493002	2022	2	2022-09-12	14:31	Beryllium (Be)	0.6	mg/kg	ALS	RG_MIULE_SE-2_2022-09-12_N
SE	RG MIULE	660563	5493002	2022	2	2022-09-12	14:31	Bismuth (Bi)	<0.2	mg/kg	ALS	RG MIULE SE-2 2022-09-12 N
SE	RG MIULE	660563	5493002	2022	2	2022-09-12	14:31	Boron (B)	8.5	mg/kg	ALS	RG MIULE SE-2 2022-09-12 N
SE	RG MIULE	660563	5493002	2022	2	2022-09-12	14:31	Cadmium (Cd)	1.39	mg/kg	ALS	RG MIULE SE-2 2022-09-12 N
SE	RG MIULE	660563	5493002	2022	2	2022-09-12	14:31	Calcium (Ca)	57900	mg/kg	ALS	RG MIULE SE-2 2022-09-12 N
SE	RG MIULE	660563	5493002	2022	2	2022-09-12	14:31	Chromium (Cr)	10.3	mg/kg	ALS	RG MIULE SE-2 2022-09-12 N
SE	RG_MIULE	660563	5493002	2022	2	2022-09-12	14:31	Cobalt (Co)	9.87	mg/kg	ALS	RG MIULE SE-2 2022-09-12 N
SE	RG MIULE	660563	5493002	2022	2	2022-09-12	14:31	Copper (Cu)	13.4	mg/kg	ALS	RG MIULE SE-2 2022-09-12 N
SE	RG MIULE	660563	5493002	2022	2	2022-09-12	14:31	Iron (Fe)	15400	mg/kg	ALS	RG MIULE SE-2 2022-09-12 N
SE	RG MIULE	660563	5493002	2022	2	2022-09-12	14:31	Lead (Pb)	8.02	mg/kg	ALS	RG MIULE SE-2 2022-09-12 N
SE	RG MIULE	660563	5493002	2022	2	2022-09-12	14:31	Lithium (Li)	10.7	mg/kg	ALS	RG MIULE SE-2 2022-09-12 N
SE	RG MIULE	660563	5493002	2022	2	2022-09-12	14:31	Magnesium (Mg)	5460	mg/kg	ALS	RG MIULE SE-2 2022-09-12 N
SE	RG MIULE	660563	5493002	2022	2	2022-09-12	14:31	Manganese (Mn)	217	mg/kg	ALS	RG MIULE SE-2 2022-09-12 N
SE	RG MIULE	660563	5493002	2022	2	2022-09-12	14:31	Mercury (Hg)	0.0271	mg/kg	ALS	RG MIULE SE-2 2022-09-12 N
SE	RG MIULE	660563	5493002	2022	2	2022-09-12	14:31	Molybdenum (Mo)	1.83	mg/kg	ALS	RG MIULE SE-2 2022-09-12 N
ᆫ	· · · · · · 							`			i	
SE	RG MIULE	660563	5493002	2022	2	2022-09-12	14:31	Nickel (Ni)	427	mg/kg	ALS	RG MIULE SE-2 2022-09-12 N

WSP Canada Inc. Page 274 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Γ	Station	Location	(UTMs) ^(a)	Vaar	Donlingto	Doto	Time	Analysis	Beault	Heit		Laboratory Information
Гуре	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	RG MIULE	660563	5493002	2022	2	2022-09-12	14:31	Potassium (K)	1220	mg/kg	ALS	RG MIULE SE-2 2022-09-12 N
SE	RG MIULE	660563	5493002	2022	2	2022-09-12	14:31	Selenium (Se)	2.43	mg/kg	ALS	RG MIULE SE-2 2022-09-12 N
SE	RG MIULE	660563	5493002	2022	2	2022-09-12	14:31	Silver (Ag)	0.14	mg/kg	ALS	RG MIULE SE-2 2022-09-12 N
SE	RG MIULE	660563	5493002	2022	2	2022-09-12	14:31	Sodium (Na)	105	mg/kg	ALS	RG MIULE SE-2 2022-09-12 N
SE.	RG MIULE	660563	5493002	2022	2	2022-09-12	14:31	Strontium (Sr)	93.4	mg/kg	ALS	RG_MIULE_SE-2_2022-09-12_N
SE.	RG MIULE	660563	5493002	2022	2	2022-09-12	14:31	Sulfur (S)	<1000	mg/kg	ALS	RG MIULE SE-2 2022-09-12 N
Ε	RG MIULE	660563	5493002	2022	2	2022-09-12	14:31	Thallium (TI)	0.305	mg/kg	ALS	RG_MIULE_SE-2_2022-09-12_N
E	RG MIULE	660563	5493002	2022	2	2022-09-12	14:31	Tin (Sn)	<2	mg/kg	ALS	RG MIULE SE-2 2022-09-12 N
E	RG MIULE	660563	5493002	2022	2	2022-09-12	14:31	Titanium (Ti)	21.6	mg/kg	ALS	RG_MIULE_SE-2_2022-09-12_N
E	RG MIULE	660563	5493002	2022	2	2022-09-12	14:31	Tungsten (W)	<0.5	mg/kg	ALS	RG MIULE SE-2 2022-09-12 N
E	RG MIULE	660563	5493002	2022	2	2022-09-12	14:31	Uranium (U)	0.862	mg/kg	ALS	RG MIULE SE-2 2022-09-12 N
E	RG MIULE	660563	5493002	2022	2	2022-09-12	14:31	Vanadium (V)	23.7	mg/kg	ALS	RG MIULE SE-2 2022-09-12 N
<u>=</u> E	RG MIULE	660563	5493002	2022	2	2022-09-12	14:31	Zinc (Zn)	121	mg/kg	ALS	RG MIULE SE-2 2022-09-12 N
<u>=</u> E	RG MIULE	660563	5493002	2022	2	2022-09-12	14:31	Zirconium (Zr)	<1	mg/kg	ALS	RG_MIULE_SE-2_2022-09-12_N
<u>=</u> E	RG MIULE	660563	5493002	2022	2	2022-09-12	14:31	Acenaphthene	<0.05	mg/kg	ALS	RG MIULE SE-2 2022-09-12 N
<u>–</u> Е	RG MIULE	660563	5493002	2022	2	2022-09-12	14:31	Acenaphthylene	<0.05	mg/kg	ALS	RG MIULE SE-2 2022-09-12 N
Ē	RG MIULE	660563	5493002	2022	2	2022-09-12	14:31	Acridine	<0.05	mg/kg	ALS	RG MIULE SE-2 2022-09-12 N
<u>=</u> E	RG_MIULE	660563	5493002	2022	2	2022-09-12	14:31	Anthracene	<0.05	mg/kg	ALS	RG MIULE SE-2 2022-09-12 N
<u>=</u> E	RG MIULE	660563	5493002	2022	2	2022-09-12	14:31	Benz(a)anthracene	<0.05	mg/kg	ALS	RG MIULE SE-2 2022-09-12 N
<u>=</u> E	RG MIULE	660563	5493002	2022	2	2022-09-12	14:31	Benzo(a)pyrene	<0.05	mg/kg	ALS	RG MIULE SE-2 2022-09-12 N
<u></u>	RG MIULE	660563	5493002	2022	2	2022-09-12	14:31	Benzo(b&j)fluoranthene	0.059	mg/kg	ALS	RG MIULE SE-2 2022-09-12 N
-	RG MIULE	660563	5493002	2022	2	2022-09-12	14:31	Benzo(b+j+k)fluoranthene	<0.075	mg/kg	ALS	RG MIULE SE-2 2022-09-12 N
<u>-</u>	RG MIULE	660563	5493002	2022	2	2022-09-12	14:31	Benzo(g_h_i)perylene	<0.05	mg/kg	ALS	RG MIULE SE-2 2022-09-12 N
<u>-</u> Е	RG MIULE	660563	5493002	2022	2	2022-09-12	14:31	Benzo(k)fluoranthene	<0.05	mg/kg	ALS	RG_MIULE_SE-2_2022-09-12_N
<u>-</u> Е	RG MIULE	660563	5493002	2022	2	2022-09-12	14:31	Chrysene	0.1	mg/kg	ALS	RG MIULE SE-2 2022-09-12 N
<u>-</u> Е	RG MIULE	660563	5493002	2022	2	2022-09-12	14:31	Dibenz(a h)anthracene	<0.05	mg/kg	ALS	RG MIULE SE-2 2022-09-12 N
<u>– </u>	RG MIULE	660563	5493002	2022	2	2022-09-12	14:31	Fluoranthene	<0.05	mg/kg	ALS	RG MIULE SE-2 2022-09-12 N
E	RG MIULE	660563	5493002	2022	2	2022-09-12	14:31	Fluorene	<0.05	mg/kg	ALS	RG MIULE SE-2 2022-09-12 N
E	RG MIULE	660563	5493002	2022	2	2022-09-12	14:31	Indeno(1,2,3-c,d)pyrene	<0.05	mg/kg	ALS	RG MIULE SE-2 2022-09-12 N
E	RG MIULE	660563	5493002	2022	2	2022-09-12	14:31	1+2-Methylnaphthalene	0.391		ALS	RG MIULE SE-2 2022-09-12 N
	_		5493002		2	2022-09-12		· · ·		mg/kg		
E E	RG_MIULE RG MIULE	660563 660563	5493002	2022	2	2022-09-12	14:31 14:31	1-Methylnaphthalene 2-Methylnaphthalene	0.163 0.228	mg/kg	ALS ALS	RG_MIULE_SE-2_2022-09-12_N
<u>E</u> E	RG_MIULE	660563	5493002	2022	2	2022-09-12	14:31	Naphthalene	0.228	mg/kg	ALS	RG_MIULE_SE-2_2022-09-12_N RG_MIULE_SE-2_2022-09-12_N
E E	RG_MIULE	660563	5493002	2022		2022-09-12		Phenanthrene	0.117	mg/kg		RG MIULE SE-2 2022-09-12 N
	RG_MIULE		-		2		14:31			mg/kg	ALS	
E	_	660563	5493002	2022	2	2022-09-12	14:31	Pyrene	<0.05	mg/kg	ALS	RG_MIULE_SE-2_2022-09-12_N
<u>E</u>	RG_MIULE	660563	5493002	2022	2	2022-09-12	14:31	Quinoline	<0.05	mg/kg	ALS	RG_MIULE_SE-2_2022-09-12_N
<u>E</u>	RG_MIULE	660563	5493002	2022	2	2022-09-12	14:31	B(a)P Total Potency Equivalent	<0.065	mg/kg	ALS	RG_MIULE_SE-2_2022-09-12_N
<u>E</u>	RG_MIULE	660563	5493002	2022	2	2022-09-12	14:31	PAHs, total (BC Sched 3.4)	0.66	mg/kg	ALS	RG_MIULE_SE-2_2022-09-12_N
<u>E</u>	RG_MIULE	660563	5493002	2022	2	2022-09-12	14:31	PAHs, total	0.49	mg/kg	ALS	RG_MIULE_SE-2_2022-09-12_N
<u>E</u>	RG_MIULE	660563	5493002	2022	2	2022-09-12	14:31	d9-Acridine	95.9	%	ALS	RG_MIULE_SE-2_2022-09-12_N
<u>E</u>	RG_MIULE	660563	5493002	2022	2	2022-09-12	14:31	d12-Chrysene	109	%	ALS	RG_MIULE_SE-2_2022-09-12_N
<u>E</u>	RG_MIULE	660563	5493002	2022	2	2022-09-12	14:31	d8-Naphthalene	80.4	%	ALS	RG_MIULE_SE-2_2022-09-12_N
Ξ_	RG_MIULE	660563	5493002	2022	2	2022-09-12	14:31	d10-Phenanthrene	101	%	ALS	RG_MIULE_SE-2_2022-09-12_N
<u>E</u>	RG_MIULE	660633	5492985	2022	3	2022-09-12	13:40	Moisture	79	%	ALS	RG_MIULE_SE-3_2022-09-12_N
<u> </u>	RG_MIULE	660633	5492985	2022	3	2022-09-12	13:40	pH (1:2 soil:water)	7.34	pН	ALS	RG_MIULE_SE-3_2022-09-12_N
E	RG_MIULE	660633	5492985	2022	3	2022-09-12	13:40	% Clay (<4 μm)	6.1	%	ALS	RG_MIULE_SE-3_2022-09-12_N
E	RG_MIULE	660633	5492985	2022	3	2022-09-12	13:40	% Silt (0.063 mm - 0.0312 mm)	24.7	%	ALS	RG_MIULE_SE-3_2022-09-12_N

WSP Canada Inc. Page 275 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Type	Station	Location	(UTMs) ^(a)	Voor	Poplieste	Date	Time	Analyta	Pocult -	Unit		Laboratory Information
ype	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	RG MIULE	660633	5492985	2022	3	2022-09-12	13:40	% Silt (0.031 mm - 0.004 mm)	27.5	%	ALS	RG MIULE SE-3 2022-09-12 N
SE	RG MIULE	660633	5492985	2022	3	2022-09-12	13:40	% Sand (0.125 mm - 0.063 mm)	6.7	%	ALS	RG MIULE SE-3 2022-09-12 N
SE	RG MIULE	660633	5492985	2022	3	2022-09-12	13:40	% Sand (0.25 mm - 0.125 mm)	5.5	%	ALS	RG MIULE SE-3 2022-09-12 N
SE	RG MIULE	660633	5492985	2022	3	2022-09-12	13:40	% Sand (0.50 mm - 0.25 mm)	5	%	ALS	RG MIULE SE-3 2022-09-12 N
SE	RG MIULE	660633	5492985	2022	3	2022-09-12	13:40	% Sand (1.00 mm - 0.50 mm)	7.2	%	ALS	RG MIULE SE-3 2022-09-12 N
SE	RG MIULE	660633	5492985	2022	3	2022-09-12	13:40	% Sand (2.00 mm - 1.00 mm)	4.6	%	ALS	RG MIULE SE-3 2022-09-12 N
SE	RG MIULE	660633	5492985	2022	3	2022-09-12	13:40	% Gravel (>2 mm)	12.7	%	ALS	RG MIULE SE-3 2022-09-12 N
SE	RG MIULE	660633	5492985	2022	3	2022-09-12	13:40	Inorganic Carbon <63 µm	2.48	%	ALS	RG MIULE SE-3 2022-09-12 N
SE	RG MIULE	660633	5492985	2022	3	2022-09-12	13:40	Total Carbon <63 µm	9.5	%	ALS	RG MIULE SE-3 2022-09-12 N
SE	RG MIULE	660633	5492985	2022	3	2022-09-12	13:40	Total Organic Carbon	7.02	%	ALS	RG MIULE SE-3 2022-09-12 N
SE	RG MIULE	660633	5492985	2022	3	2022-09-12	13:40	Inorganic Carbon (as CaCO3 equivalent)	20.7	%	ALS	RG MIULE SE-3 2022-09-12 N
SE	RG MIULE	660633	5492985	2022	3	2022-09-12	13:40	Aluminum (Al)	5290	mg/kg	ALS	RG_MIULE_SE-3_2022-09-12_N
SE	RG MIULE	660633	5492985	2022	3	2022-09-12	13:40	Antimony (Sb)	0.5	mg/kg	ALS	RG_MIULE_SE-3_2022-09-12_N
SE	RG_MIULE	660633	5492985	2022	3	2022-09-12	13:40	Arsenic (As)	4.72	mg/kg	ALS	RG MIULE SE-3 2022-09-12 N
SE	RG MIULE	660633	5492985	2022	3	2022-09-12	13:40	Barium (Ba)	149	mg/kg	ALS	RG MIULE SE-3 2022-09-12 N
SE	RG_MIULE	660633	5492985	2022	3	2022-09-12	13:40	Beryllium (Be)	0.51	mg/kg	ALS	RG_MIULE_SE-3_2022-09-12_N
SE.	RG MIULE	660633	5492985	2022	3	2022-09-12	13:40	Bismuth (Bi)	<0.2	mg/kg	ALS	RG_MIULE_SE-3_2022-09-12_N
SE	RG_MIULE	660633	5492985	2022	3	2022-09-12	13:40	Boron (B)	7.4	mg/kg	ALS	RG MIULE SE-3 2022-09-12 N
SE	RG MIULE	660633	5492985	2022	3	2022-09-12	13:40	Cadmium (Cd)	1.41	mg/kg	ALS	RG_MIULE_SE-3_2022-09-12_N
SE	RG MIULE	660633	5492985	2022	3	2022-09-12	13:40	Calcium (Ca)	79400	mg/kg	ALS	RG MIULE SE-3 2022-09-12 N
SE	RG MIULE	660633	5492985	2022	3	2022-09-12	13:40	Chromium (Cr)	8.52	mg/kg	ALS	RG MIULE SE-3 2022-09-12 N
SE	RG_MIULE	660633	5492985	2022	3	2022-09-12	13:40	Cobalt (Co)	9.5	mg/kg	ALS	RG_MIULE_SE-3_2022-09-12_N
SE	RG MIULE	660633	5492985	2022	3	2022-09-12	13:40	Copper (Cu)	10.2	mg/kg	ALS	RG MIULE SE-3 2022-09-12 N
SE	RG MIULE	660633	5492985	2022	3	2022-09-12	13:40	Iron (Fe)	11000	mg/kg	ALS	RG MIULE SE-3 2022-09-12 N
SE	RG MIULE	660633	5492985	2022	3	2022-09-12	13:40	Lead (Pb)	6.92	mg/kg	ALS	RG MIULE SE-3 2022-09-12 N
SE	RG MIULE	660633	5492985	2022	3	2022-09-12	13:40	Lithium (Li)	9.8	mg/kg	ALS	RG_MIULE_SE-3_2022-09-12_N
SE	RG MIULE	660633	5492985	2022	3	2022-09-12	13:40	Magnesium (Mg)	6430	mg/kg	ALS	RG MIULE SE-3 2022-09-12 N
SE	RG MIULE	660633	5492985	2022	3	2022-09-12	13:40	Manganese (Mn)	212	mg/kg	ALS	RG MIULE SE-3 2022-09-12 N
SE	RG_MIULE	660633	5492985	2022	3	2022-09-12	13:40	Mercury (Hg)	0.0277	mg/kg	ALS	RG MIULE SE-3 2022-09-12 N
SE	RG MIULE	660633	5492985	2022	3	2022-09-12	13:40	Molybdenum (Mo)	1.29	mg/kg	ALS	RG_MIULE_SE-3_2022-09-12_N
SE	RG MIULE	660633	5492985	2022	3	2022-09-12	13:40	Nickel (Ni)	36.6	mg/kg	ALS	RG_MIULE_SE-3_2022-09-12_N
SE	RG MIULE	660633	5492985	2022	3	2022-09-12	13:40	Phosphorus (P)	1020	mg/kg		RG_MIULE_SE-3_2022-09-12_N
SE	RG_MIULE	660633	5492985	2022	3	2022-09-12	13:40	Potassium (K)	950	mg/kg	ALS	RG MIULE SE-3 2022-09-12 N
SE	RG_MIULE	660633	5492985	2022	3	2022-09-12	13:40	Selenium (Se)	3.19	mg/kg	ALS	RG MIULE SE-3 2022-09-12 N
SE	RG_MIULE	660633	5492985	2022	3	2022-09-12	13:40	Silver (Ag)	0.15	mg/kg	ALS	RG_MIULE_SE-3_2022-09-12_N
SE	RG_MIULE	660633	5492985	2022	3	2022-09-12	13:40	Sodium (Na)	125	mg/kg	ALS	RG_MIULE_SE-3_2022-09-12_N
SE	RG_MIULE	660633	5492985	2022	3	2022-09-12	13:40	Strontium (Sr)	114	mg/kg	ALS	RG MIULE SE-3 2022-09-12 N
SE	RG_MIULE	660633	5492985	2022	3	2022-09-12	13:40	Sulfur (S)	1400	mg/kg	ALS	RG MIULE SE-3 2022-09-12 N
SE	RG_MIULE	660633	5492985	2022	3	2022-09-12	13:40	Thallium (TI)	0.263	mg/kg	ALS	RG_MIULE_SE-3_2022-09-12_N
SE	RG_MIULE	660633	5492985	2022	3	2022-09-12	13:40	Tin (Sn)	<2	mg/kg	ALS	RG_MIULE_SE-3_2022-09-12_N
SE	RG_MIULE	660633	5492985	2022	3	2022-09-12	13:40	Titanium (Ti)	14.7	mg/kg	ALS	RG_MIULE_SE-3_2022-09-12_N
SE	RG_MIULE	660633	5492985	2022	3	2022-09-12	13:40	Tungsten (W)	<0.5	mg/kg	ALS	RG_MIULE_SE-3_2022-09-12_N
SE	RG_MIULE	660633	5492985	2022	3	2022-09-12	13:40	Uranium (U)	0.776	mg/kg	ALS	RG_MIULE_SE-3_2022-09-12_N
SE	RG_MIULE	660633	5492985	2022	3	2022-09-12	13:40	Vanadium (V)	17.6	mg/kg	ALS	RG_MIULE_SE-3_2022-09-12_N
SE	RG_MIULE	660633	5492985	2022	3	2022-09-12	13:40	Zinc (Zn)	100	mg/kg	ALS	RG_MIULE_SE-3_2022-09-12_N
:	_				1 -		40.40				A1.0	
SE	RG_MIULE	660633	5492985	2022	3	2022-09-12	13:40	Zirconium (Zr)	1.2	mg/kg	ALS	RG_MIULE_SE-3_2022-09-12_N

WSP Canada Inc. Page 276 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Toma	Ctotion	Location	ı (UTMs) ^(a)	Vasii	Dankasta	Dete	Time	Analysis	Decult	Hois		Laboratory Information
Type	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	RG MIULE	660633	5492985	2022	3	2022-09-12	13:40	Acenaphthylene	<0.05	mg/kg	ALS	RG MIULE SE-3 2022-09-12 N
SE	RG MIULE	660633	5492985	2022	3	2022-09-12	13:40	Acridine	<0.05	mg/kg	ALS	RG MIULE SE-3 2022-09-12 N
SE	RG MIULE	660633	5492985	2022	3	2022-09-12	13:40	Anthracene	<0.05	mg/kg	ALS	RG MIULE SE-3 2022-09-12 N
SE	RG MIULE	660633	5492985	2022	3	2022-09-12	13:40	Benz(a)anthracene	<0.05	mg/kg	ALS	RG MIULE SE-3 2022-09-12 N
SE	RG MIULE	660633	5492985	2022	3	2022-09-12	13:40	Benzo(a)pyrene	<0.05	mg/kg	ALS	RG MIULE SE-3 2022-09-12 N
SE	RG MIULE	660633	5492985	2022	3	2022-09-12	13:40	Benzo(b&j)fluoranthene	0.084	mg/kg	ALS	RG MIULE SE-3 2022-09-12 N
SE	RG MIULE	660633	5492985	2022	3	2022-09-12	13:40	Benzo(b+j+k)fluoranthene	0.084	mg/kg	ALS	RG MIULE SE-3 2022-09-12 N
SE	RG MIULE	660633	5492985	2022	3	2022-09-12	13:40	Benzo(g_h_i)perylene	<0.05	mg/kg	ALS	RG MIULE SE-3 2022-09-12 N
SE	RG MIULE	660633	5492985	2022	3	2022-09-12	13:40	Benzo(k)fluoranthene	<0.05	mg/kg	ALS	RG MIULE SE-3 2022-09-12 N
SE	RG MIULE	660633	5492985	2022	3	2022-09-12	13:40	Chrysene	0.115	mg/kg	ALS	RG MIULE SE-3 2022-09-12 N
SE	RG MIULE	660633	5492985	2022	3	2022-09-12	13:40	Dibenz(a h)anthracene	<0.05	mg/kg	ALS	RG MIULE SE-3 2022-09-12 N
SE	RG MIULE	660633	5492985	2022	3	2022-09-12	13:40	Fluoranthene	0.058	mg/kg	ALS	RG MIULE SE-3 2022-09-12 N
SE	RG MIULE	660633	5492985	2022	3	2022-09-12	13:40	Fluorene	<0.05	mg/kg	ALS	RG MIULE SE-3 2022-09-12 N
SE	RG MIULE	660633	5492985	2022	3	2022-09-12	13:40	Indeno(1,2,3-c,d)pyrene	<0.05	mg/kg	ALS	RG MIULE SE-3 2022-09-12 N
SE	RG MIULE	660633	5492985	2022	3	2022-09-12	13:40	1+2-Methylnaphthalene	0.441	mg/kg	ALS	RG MIULE SE-3 2022-09-12 N
SE	RG MIULE	660633	5492985	2022	3	2022-09-12	13:40	1-Methylnaphthalene	0.182	mg/kg	ALS	RG MIULE SE-3 2022-09-12 N
SE	RG MIULE	660633	5492985	2022	3	2022-09-12	13:40	2-Methylnaphthalene	0.259	mg/kg	ALS	RG MIULE SE-3 2022-09-12 N
SE	RG MIULE	660633	5492985	2022	3	2022-09-12	13:40	Naphthalene	0.132	mg/kg	ALS	RG MIULE SE-3 2022-09-12 N
SE	RG MIULE	660633	5492985	2022	3	2022-09-12	13:40	Phenanthrene	0.132	mg/kg	ALS	RG MIULE SE-3 2022-09-12 N
SE	RG MIULE	660633	5492985	2022	3	2022-09-12	13:40	Pyrene	<0.05	mg/kg	ALS	RG MIULE SE-3 2022-09-12 N
SE	RG MIULE	660633	5492985	2022	3	2022-09-12	13:40	Quinoline	<0.05	mg/kg	ALS	RG MIULE SE-3 2022-09-12 N
SE	RG MIULE	660633	5492985	2022	3	2022-09-12	13:40	B(a)P Total Potency Equivalent	0.067		ALS	RG MIULE SE-3 2022-09-12 N
SE	RG MIULE	660633	5492985	2022	3	2022-09-12	13:40	PAHs, total (BC Sched 3.4)	0.81	mg/kg	ALS	RG MIULE SE-3 2022-09-12 N
SE	RG MIULE	660633	5492985		_			PAHs, total		mg/kg		
SE	RG_MIULE	660633	5492985	2022 2022	3	2022-09-12	13:40	d9-Acridine	0.63 109	mg/kg %	ALS ALS	RG_MIULE_SE-3_2022-09-12_N RG_MIULE_SE-3_2022-09-12_N
	—					2022-09-12	13:40			%		
SE SE	RG_MIULE	660633	5492985	2022	3	2022-09-12	13:40	d12-Chrysene	124		ALS	RG_MIULE_SE-3_2022-09-12_N
	RG_MIULE	660633	5492985	2022	3	2022-09-12	13:40	d8-Naphthalene	102	%	ALS	RG_MIULE_SE-3_2022-09-12_N
SE	RG_MIULE	660633	5492985	2022	3	2022-09-12	13:40	d10-Phenanthrene	115	%	ALS	RG_MIULE_SE-3_2022-09-12_N
SE	RG_MIULE	660593	5492990	2022	4	2022-09-12	16:25	Moisture	85.5	%	ALS	RG_MIULE_SE-4_2022-09-12_N
SE	RG_MIULE	660593	5492990	2022	4	2022-09-12	16:25	pH (1:2 soil:water)	7.21	pН	ALS	RG_MIULE_SE-4_2022-09-12_N
SE	RG_MIULE	660593	5492990	2022	4	2022-09-12	16:25	% Clay (<4 μm)	6.5	%	ALS	RG_MIULE_SE-4_2022-09-12_N
SE	RG_MIULE	660593	5492990	2022	4	2022-09-12	16:25	% Silt (0.063 mm - 0.0312 mm)	30.3	%	ALS	RG_MIULE_SE-4_2022-09-12_N
SE	RG_MIULE	660593	5492990	2022	4	2022-09-12	16:25	% Silt (0.031 mm - 0.004 mm)	33.1	%	ALS	RG_MIULE_SE-4_2022-09-12_N
SE	RG_MIULE	660593	5492990	2022	4	2022-09-12	16:25	% Sand (0.125 mm - 0.063 mm)	6.1	%	ALS	RG_MIULE_SE-4_2022-09-12_N
SE	RG_MIULE	660593	5492990	2022	4	2022-09-12	16:25	% Sand (0.25 mm - 0.125 mm)	5.1	%	ALS	RG_MIULE_SE-4_2022-09-12_N
SE	RG_MIULE	660593	5492990	2022	4	2022-09-12	16:25	% Sand (0.50 mm - 0.25 mm)	7	%	ALS	RG_MIULE_SE-4_2022-09-12_N
SE	RG_MIULE	660593	5492990	2022	4	2022-09-12	16:25	% Sand (1.00 mm - 0.50 mm)	4.3	%	ALS	RG_MIULE_SE-4_2022-09-12_N
SE	RG_MIULE	660593	5492990	2022	4	2022-09-12	16:25	% Sand (2.00 mm - 1.00 mm)	2.9	%	ALS	RG_MIULE_SE-4_2022-09-12_N
SE	RG_MIULE	660593	5492990	2022	4	2022-09-12	16:25	% Gravel (>2 mm)	4.7	%	ALS	RG_MIULE_SE-4_2022-09-12_N
SE	RG_MIULE	660593	5492990	2022	4	2022-09-12	16:25	Inorganic Carbon <63 μm	2.5	%	ALS	RG_MIULE_SE-4_2022-09-12_N
SE	RG_MIULE	660593	5492990	2022	4	2022-09-12	16:25	Total Carbon <63 μm	9.97	%	ALS	RG_MIULE_SE-4_2022-09-12_N
SE	RG_MIULE	660593	5492990	2022	4	2022-09-12	16:25	Total Organic Carbon	7.47	%	ALS	RG_MIULE_SE-4_2022-09-12_N
SE	RG_MIULE	660593	5492990	2022	4	2022-09-12	16:25	Inorganic Carbon (as CaCO3 equivalent)	20.8	%	ALS	RG_MIULE_SE-4_2022-09-12_N
SE	RG_MIULE	660593	5492990	2022	4	2022-09-12	16:25	Aluminum (Al)	5410	mg/kg	ALS	RG_MIULE_SE-4_2022-09-12_N
SE	RG_MIULE	660593	5492990	2022	4	2022-09-12	16:25	Antimony (Sb)	0.41	mg/kg	ALS	RG_MIULE_SE-4_2022-09-12_N
SE	RG_MIULE	660593	5492990	2022	4	2022-09-12	16:25	Arsenic (As)	4.3	mg/kg	ALS	RG_MIULE_SE-4_2022-09-12_N
SE	RG_MIULE	660593	5492990	2022	4	2022-09-12	16:25	Barium (Ba)	153	mg/kg	ALS	RG_MIULE_SE-4_2022-09-12_N

WSP Canada Inc. Page 277 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	Station	Location	(UTMs) ^(a)	Vacr	Donlingto	Doto	Time	Analyte	Docult	Unit		Laboratory Information
уре	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	RG MIULE	660593	5492990	2022	4	2022-09-12	16:25	Beryllium (Be)	0.49	mg/kg	ALS	RG MIULE SE-4 2022-09-12 N
SE	RG MIULE	660593	5492990	2022	4	2022-09-12	16:25	Bismuth (Bi)	<0.2	mg/kg	ALS	RG MIULE SE-4 2022-09-12 N
E SE	RG MIULE	660593	5492990	2022	4	2022-09-12	16:25	Boron (B)	10.6	mg/kg	ALS	RG MIULE SE-4 2022-09-12 N
SE.	RG MIULE	660593	5492990	2022	4	2022-09-12	16:25	Cadmium (Cd)	1.4	mg/kg	ALS	RG MIULE SE-4 2022-09-12 N
E E	RG MIULE	660593	5492990	2022	4	2022-09-12	16:25	Calcium (Ca)	83400	mg/kg	ALS	RG MIULE SE-4 2022-09-12 N
E	RG MIULE	660593	5492990	2022	4	2022-09-12	16:25	Chromium (Cr)	8.24	mg/kg	ALS	RG MIULE SE-4 2022-09-12 N
E	RG MIULE	660593	5492990	2022	4	2022-09-12	16:25	Cobalt (Co)	10.9	mg/kg	ALS	RG MIULE SE-4 2022-09-12 N
E	RG MIULE	660593	5492990	2022	4	2022-09-12	16:25	Copper (Cu)	10	mg/kg	ALS	RG MIULE SE-4 2022-09-12 N
E	RG MIULE	660593	5492990	2022	4	2022-09-12	16:25	Iron (Fe)	9640	mg/kg	ALS	RG_MIULE_SE-4_2022-09-12_N
E	RG MIULE	660593	5492990	2022	4	2022-09-12	16:25	Lead (Pb)	6.63	mg/kg	ALS	RG MIULE SE-4 2022-09-12 N
E	RG MIULE	660593	5492990	2022	4	2022-09-12	16:25	Lithium (Li)	10	mg/kg	ALS	RG MIULE SE-4 2022-09-12 N
E	RG MIULE	660593	5492990	2022	4	2022-09-12	16:25	Magnesium (Mg)	5850	mg/kg	ALS	RG MIULE SE-4 2022-09-12 N
<u>=</u>	RG MIULE	660593	5492990	2022	4	2022-09-12	16:25	Manganese (Mn)	213	mg/kg	ALS	RG MIULE SE-4 2022-09-12 N
E	RG_MIULE	660593	5492990	2022	4	2022-09-12	16:25	Mercury (Hg)	0.0337	mg/kg	ALS	RG MIULE SE-4 2022-09-12 N
 E	RG MIULE	660593	5492990	2022	4	2022-09-12	16:25	Molybdenum (Mo)	1.15	mg/kg	ALS	RG MIULE SE-4 2022-09-12 N
E.	RG MIULE	660593	5492990	2022	4	2022-09-12	16:25	Nickel (Ni)	39.3	mg/kg	ALS	RG MIULE SE-4 2022-09-12 N
E	RG MIULE	660593	5492990	2022	4	2022-09-12	16:25	Phosphorus (P)	955	mg/kg	ALS	RG MIULE SE-4 2022-09-12 N
E	RG_MIULE	660593	5492990	2022	4	2022-09-12	16:25	Potassium (K)	1360	mg/kg	ALS	RG MIULE SE-4 2022-09-12 N
<u>=</u>	RG MIULE	660593	5492990	2022	4	2022-09-12	16:25	Selenium (Se)	3.88	mg/kg	ALS	RG MIULE SE-4 2022-09-12 N
E	RG MIULE	660593	5492990	2022	4	2022-09-12	16:25	Silver (Ag)	0.15	mg/kg	ALS	RG_MIULE_SE-4_2022-09-12_N
E	RG MIULE	660593	5492990	2022	4	2022-09-12	16:25	Sodium (Na)	158	mg/kg	ALS	RG MIULE SE-4 2022-09-12 N
 E	RG MIULE	660593	5492990	2022	4	2022-09-12	16:25	Strontium (Sr)	114	mg/kg	ALS	RG MIULE SE-4 2022-09-12 N
E E	RG MIULE	660593	5492990	2022	4	2022-09-12	16:25	Sulfur (S)	1600	mg/kg	ALS	RG MIULE SE-4 2022-09-12 N
SE	RG MIULE	660593	5492990	2022	4	2022-09-12	16:25	Thallium (TI)	0.258	mg/kg	ALS	RG_MIULE_SE-4_2022-09-12_N
E E	RG MIULE	660593	5492990	2022	4	2022-09-12	16:25	Tin (Sn)	<2	mg/kg	ALS	RG MIULE SE-4 2022-09-12 N
SE	RG MIULE	660593	5492990	2022	4	2022-09-12	16:25	Titanium (Ti)	15.8	mg/kg	ALS	RG MIULE SE-4 2022-09-12 N
SE	RG MIULE	660593	5492990	2022	4	2022-09-12	16:25	Tungsten (W)	<0.5	mg/kg	ALS	RG MIULE SE-4 2022-09-12 N
SE	RG MIULE	660593	5492990	2022	4	2022-09-12	16:25	Uranium (U)	0.755	mg/kg	ALS	RG MIULE SE-4 2022-09-12 N
SE	RG MIULE	660593	5492990	2022	4	2022-09-12	16:25	Vanadium (V)	15.9	mg/kg	ALS	RG MIULE SE-4 2022-09-12 N
SE	RG MIULE	660593	5492990	2022	4	2022-09-12	16:25	Zinc (Zn)	99.3	mg/kg	ALS	RG MIULE SE-4 2022-09-12 N
SE	RG_MIULE	660593	5492990	2022	4	2022-09-12	16:25	Zirconium (Zr)	1.1	mg/kg	ALS	RG MIULE SE-4 2022-09-12 N
SE	RG MIULE	660593	5492990	2022	4	2022-09-12	16:25	Acenaphthene	<0.068	mg/kg	ALS	RG MIULE SE-4 2022-09-12 N
SE	RG MIULE	660593	5492990	2022	4	2022-09-12	16:25	Acenaphthylene	<0.068	mg/kg	ALS	RG MIULE SE-4 2022-09-12 N
SE	RG MIULE	660593	5492990	2022	4	2022-09-12	16:25	Acridine	<0.068	mg/kg	ALS	RG MIULE SE-4 2022-09-12 N
SE	RG MIULE	660593	5492990	2022	4	2022-09-12	16:25	Anthracene	0.357	mg/kg	ALS	RG MIULE SE-4 2022-09-12 N
SE	RG MIULE	660593	5492990	2022	4	2022-09-12	16:25	Benz(a)anthracene	<0.068	mg/kg	ALS	RG MIULE SE-4 2022-09-12 N
E SE	RG_MIULE	660593	5492990	2022	4	2022-09-12	16:25	Benzo(a)pyrene	<0.068	mg/kg	ALS	RG MIULE SE-4 2022-09-12 N
E	RG MIULE	660593	5492990	2022	4	2022-09-12	16:25	Benzo(b&j)fluoranthene	0.085	mg/kg	ALS	RG MIULE SE-4 2022-09-12 N
SE	RG MIULE	660593	5492990	2022	4	2022-09-12	16:25	Benzo(b+j+k)fluoranthene	<0.096	mg/kg	ALS	RG MIULE SE-4 2022-09-12 N
E E	RG MIULE	660593	5492990	2022	4	2022-09-12	16:25	Benzo(g_h_i)perylene	<0.068	mg/kg	ALS	RG MIULE SE-4 2022-09-12 N
E	RG MIULE	660593	5492990	2022	4	2022-09-12	16:25	Benzo(k)fluoranthene	<0.068	mg/kg	ALS	RG MIULE SE-4 2022-09-12 N
E	RG MIULE	660593	5492990	2022	4	2022-09-12	16:25	Chrysene	0.15	mg/kg	ALS	RG MIULE SE-4 2022-09-12 N
Ε	RG MIULE	660593	5492990	2022	4	2022-09-12	16:25	Dibenz(a h)anthracene	<0.068	mg/kg	ALS	RG MIULE SE-4 2022-09-12 N
SE	RG MIULE	660593	5492990	2022	4	2022-09-12	16:25	Fluoranthene	0.075	mg/kg	ALS	RG MIULE SE-4 2022-09-12 N
	RG MIULE	660593	5492990	2022	4	2022-09-12	16:25	Fluorene	<0.068	mg/kg	ALS	RG MIULE SE-4 2022-09-12 N
;⊨ !	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	000000	0-02000	2022								
SE SE	RG MIULE	660593	5492990	2022	1	2022-09-12	16:25	Indeno(1,2,3-c,d)pyrene	<0.068	mg/kg	ALS	RG MIULE SE-4 2022-09-12 N

WSP Canada Inc. Page 278 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Station	Table I-	1: Sediment Chem			CMm LAEMP	Sampling St	ations, 2012 to	2022					
Fig. Mar. E.	Type	Station			Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
SE RO MULE 000093 5402090 2022 4 2022-00-12 10-23 Admitshines 0.102 mghp ALS RO MULE 844 - 2022-00-12 N SE RO MULE 000053 5402090 2022 4 2022-00-12 10-25 Personal transport 0.568 mghp ALS RO MULE 844 - 2022-00-12 N SE RO MULE 000053 5402090 2022 4 2022-00-12 N PSP Personal transport 0.568 mghp ALS RO MULE 844 - 2022-00-12 N SE RO MULE 000053 5402000 2022 4 2022-00-12 N PSP Personal transport 0.568 mghp ALS RO MULE 844 - 2022-00-12 N SE RO MULE 000053 5402000 2022 4 2022-00-12 N PSP Personal transport 0.568 mghp ALS RO MULE 844 - 2022-00-12 N PSP Personal transport 0.568 mghp ALS RO MULE 844 - 2022-00-12 N PSP Personal transport 0.568 mghp ALS RO MULE 844 - 2022-00-12 N PSP Personal transport 0.568 mghp ALS RO MULE 844 - 2022-00-12 N PSP Personal transport 0.568 mghp ALS RO MULE 844 - 2022-00-12 N PSP Personal transport 0.568 mghp ALS RO MULE 844 - 2022-00-12 N PSP Personal transport 0.568 mghp ALS RO MULE 844 - 2022-00-12 N PSP PS	1) pc	Otation	Easting	Northing	i cui	Replicate	Date	111110	Analyte	rtosait	Oint	Lab	
Fig. RG MULE		RG_MIULE	660593		2022	4		16:25	1-Methylnaphthalene	0.268	mg/kg	ALS	RG_MIULE_SE-4_2022-09-12_N
SE RG MULE 880893 589990 2022 4 2022-081-12 18:25 Phenamitrene 0.388 mg/sg ALS RG MULE 884-072-091-12 N		RG_MIULE	660593	5492990	2022	4	2022-09-12	16:25	2-Methylnaphthalene	0.394	mg/kg	ALS	RG_MIULE_SE-4_2022-09-12_N
SE RG MULE 690593 5492990 2022 4 2022-09-12 10:25 Pyrme -9.088 mg/sq ALS RG MULE SE4-9202-09-12 N SE RG MULE 690593 5492990 2022 4 2022-09-12 10:25 B(a)P Total Portny-Equivation -0.088 mg/sq ALS RG MULE SE4-9202-09-12 N SE RG MULE 690593 5492990 2022 4 2022-09-12 10:25 B(a)P Total Portny-Equivation -0.088 mg/sq ALS RG MULE SE4-9202-09-12 N SE RG MULE 690593 5492990 2022 4 2022-09-12 10:25 Pyrhs, footif -1.22 mg/sq ALS RG MULE SE4-9202-09-12 N SE RG MULE 690593 5492990 2022 4 2022-09-12 10:25 Pyrhs, footif -1.22 mg/sq ALS RG MULE SE4-9202-09-12 N SE RG MULE 690593 5492900 2022 4 2022-09-12 10:25 Pyrhs, footif -1.22 mg/sq ALS RG MULE SE4-9202-09-12 N SE RG MULE 690593 5492900 2022 4 2022-09-12 10:25 Pyrhs, footif -1.22 mg/sq ALS RG MULE SE4-9202-09-12 N SE RG MULE 690593 5492900 2022 4 2022-09-12 10:25 Pyrhs, footif -1.22 mg/sq ALS RG MULE SE4-9202-09-12 N SE RG MULE 690593 5492900 2022 4 2022-09-12 10:25 Pyrhs, footif -1.22 Pyrhs,		RG_MIULE	660593	5492990	2022	4	2022-09-12	16:25	Naphthalene	0.192	mg/kg	ALS	RG_MIULE_SE-4_2022-09-12_N
SE RS, MULE 80593 5492990 2022 4 2022-001-2 10:25 Bolf-Potal Potancy Equivalent 0.088 mg/sg ALS RS, MULE SE4 2022-001-2 N SE RS, MULE 80593 5492990 2022 4 2022-001-2 10:25 Bolf-Potal Potancy Equivalent 0.088 mg/sg ALS RS, MULE SE4 2022-001-2 N SE RS, MULE 80593 5492990 2022 4 2022-001-2 10:25 Bolf-Potal Potancy Equivalent 1.088 mg/sg ALS RS, MULE SE4 2022-001-2 N SE RS, MULE 80593 5492990 2022 4 2022-001-2 10:25 Bolf-Potal Potancy Equivalent 122 mg/sg ALS RS, MULE SE4 2022-001-2 N SE RS, MULE 80593 5492990 2022 4 2022-001-2 10:25 Bolf-Potal Potancy Equivalent 122 mg/sg ALS RS, MULE SE4 2022-001-2 N SE RS, MULE 80593 5492990 2022 4 2022-001-2 10:25 Bolf-Potancy Equivalent 122 mg/sg ALS RS, MULE SE4 2022-001-2 N SE RS, MULE 80593 5492990 2022 4 2022-001-2 10:25 Bolf-Potancy Equivalent 11:25 mg/sg ALS RS, MULE SE4 2022-001-2 N SE RS, MULE 80593 5492990 2022 4 2022-001-2 10:25 Bolf-Potancy Equivalent 11:25 mg/sg ALS RS, MULE SE4 2022-001-2 N SE RS, MULE 80593 5492990 2022 4 2022-001-2 10:25 Bolf-Potancy Equivalent 11:25 mg/sg ALS RS, MULE SE4 2022-001-2 N SE RS, MULE 80593 5492900 2022 5 2022-001-2 10:25 Bolf-Potancy Equivalent 11:25 mg/sg ALS RS, MULE SE4 2022-001-2 N SE RS, MULE 80593 5492900 2022 5 2022-001-2 10:25 Bolf-Potancy Equivalent 11:25 mg/sg ALS RS, MULE SE4 2022-001-2 N SE RS, MULE 80593 5492900 2022 5 2022-001-2 10:25 Bolf-Potancy Equivalent 11:25 mg/sg ALS RS, MULE SE4 2022-001-2 N SE RS, MULE 80593 5492900 2022 5 2022-001-2 10:25 Bolf-Potancy Equivalent 11:25 mg/sg ALS RS, MULE SE4 2022-001-2 N SE RS, MULE 80593 5492900 2022 5 2022-001-2 10:25 Mr. Mult 11:25 mg/sg ALS		RG_MIULE	660593	5492990	2022	4	2022-09-12	16:25	Phenanthrene	0.358	mg/kg	ALS	RG_MIULE_SE-4_2022-09-12_N
SE RG MIULE 660593 5492990 2022 4 2022-09-12 16:25 1	SE	RG_MIULE	660593	5492990	2022	4	2022-09-12	16:25	1 -	<0.068	mg/kg	ALS	RG_MIULE_SE-4_2022-09-12_N
SE R.G. MILLE 660593 5402900 2022 4 2022-09-12 10-25 PA-Hs. total 1-22 mg/hg ALS R.G. MILLE 542-2022-09-12 N	SE	RG_MIULE	660593	5492990	2022	4	2022-09-12	16:25	Quinoline	<0.068	mg/kg	ALS	RG_MIULE_SE-4_2022-09-12_N
SE RS MULE 606993 6462900 2022 4 2022-09-12 10.25 PAHs Iosal 1.22 mg/kg ALS RG MULE_SE4_2022-09-12 N	SE	RG_MIULE	660593	5492990	2022	4	2022-09-12	16:25	B(a)P Total Potency Equivalent	0.088	mg/kg	ALS	RG_MIULE_SE-4_2022-09-12_N
SE RG MULE 660963	SE	RG_MIULE	660593	5492990	2022	4	2022-09-12	16:25	PAHs, total (BC Sched 3.4)	1.53	mg/kg	ALS	RG_MIULE_SE-4_2022-09-12_N
Fig. MILLE	SE	RG_MIULE	660593	5492990	2022	4	2022-09-12	16:25	PAHs, total	1.22	mg/kg	ALS	RG_MIULE_SE-4_2022-09-12_N
SE RG MIULE 680593 5492990 2022 4 2022-09-12 15:20 dd-Phanthrane 124 % ALS RG MIULE SE-2 2022-09-12 N SE RG MIULE 680489 5493098 2022 5 2022-09-12 15:00 Moisture 89.2 % ALS RG MIULE SE-2 2022-09-12 N SE RG MIULE 680489 5493098 2022 5 2022-09-12 N SE RG MIULE 6804	SE	RG_MIULE	660593	5492990	2022	4	2022-09-12	16:25	d9-Acridine	122	%	ALS	RG_MIULE_SE-4_2022-09-12_N
SE RG MIULE 660593 5492990 2022	SE	RG_MIULE	660593	5492990	2022	4	2022-09-12	16:25	d12-Chrysene	126	%	ALS	RG_MIULE_SE-4_2022-09-12_N
SE RG MILLE 660469 5493098 2022 5 2022-09-12 15:00 1	SE	RG_MIULE	660593	5492990	2022	4	2022-09-12	16:25	d8-Naphthalene	81.9	%	ALS	RG_MIULE_SE-4_2022-09-12_N
SE RG MIULE 680469 5493098 2022 5 2022-09-12 15:00 56 laye m) 4.9 7.55 pH ALS RG MIULE SE-5 2022-09-12 N SE RG MIULE 680469 5493098 2022 5 2022-09-12 15:00 56 laye m) 4.9 4.9 5 ALS RG MIULE SE-5 2022-09-12 N SE RG MIULE 680469 5493098 2022 5 2022-09-12 15:00 56 laye m 19.4 5 ALS RG MIULE SE-5 2022-09-12 N SE RG MIULE 680469 5493098 2022 5 2022-09-12 15:00 56 laye m 19.4 5 ALS RG MIULE SE-5 2022-09-12 N SE RG MIULE 680469 5493098 2022 5 2022-09-12 15:00 56 laye m 19.4 5 ALS RG MIULE SE-5 2022-09-12 N SE RG MIULE 680469 5493098 2022 5 2022-09-12 15:00 56 laye m 19.4 5 ALS RG MIULE SE-5 2022-09-12 N SE RG MIULE 860469 5493098 2022 5 2022-09-12 15:00 56 laye m 19.7 5 ALS RG MIULE SE-5 2022-09-12 N SE RG MIULE 860469 5493098 2022 5 2022-09-12 15:00 56 laye m 19.7 5 ALS RG MIULE SE-5 2022-09-12 N SE RG MIULE 860469 5493098 2022 5 2022-09-12 15:00 56 laye m 10.1 19.7 5 ALS RG MIULE SE-5 2022-09-12 N SE RG MIULE 860469 5493098 2022 5 2022-09-12 15:00 56 laye m 10.0 mm 19.7 5 ALS RG MIULE SE-5 2022-09-12 N SE RG MIULE SE-0 40049 5493098 2022 5 2022-09-12 15:00 56 laye m 10.0 mm 19.7 4 ALS RG MIULE SE-5 2022-09-12 N SE RG MIULE SE-0 40049 5493098 2022 5 2022-09-12 15:00 56 laye m 10.0 mm 19.7 5 ALS RG MIULE SE-5 2022-09-12 N SE RG MIULE SE-0 40049 5493098 2022 5 2022-09-12 15:00 4 laye m 10.0 mm 10.1 13.3 5 ALS RG MIULE SE-5 2022-09-12 N SE RG MIULE SE-0 40049 5493098 2022 5 2022-09-12 15:00 10.0 mm 10.0 mm 10.1 13.9 M ALS RG MIULE SE-5 2022-09-12 N SE RG MIULE SE-0 40049 5493098 2022 5 2022-09-12 15:00 10.0 mm	SE	RG_MIULE	660593	5492990	2022	4	2022-09-12	16:25	d10-Phenanthrene	124	%	ALS	RG_MIULE_SE-4_2022-09-12_N
SE RG MIULE 660469 5493098 2022 5 2022-09-12 15:00 % Sitt (0.083 mm - 0.0312 mm) 17.4 % ALS RG MIULE 565-5 2022-09-12 N	SE	RG_MIULE	660469	5493098	2022	5	2022-09-12	15:00	Moisture	69.2	%	ALS	RG_MIULE_SE-5_2022-09-12_N
SE RG MIULE 660469 5493098 2022 5 2022-09-12 15:00 % SIII (0.083 mm - 0.00312 mm) 17.4 % ALS RG MIULE SE-5 2022-09-12 N	SE	RG_MIULE	660469	5493098	2022	5	2022-09-12	15:00	pH (1:2 soil:water)	7.55	рН	ALS	RG_MIULE_SE-5_2022-09-12_N
SE RG MIULE	SE	RG_MIULE	660469	5493098	2022	5	2022-09-12	15:00	% Clay (<4 μm)	4.9	%	ALS	RG_MIULE_SE-5_2022-09-12_N
SE RG MULE 660469 5493098 2022 5 2022-09-12 15:00 % Sand (0.25 mm - 0.063 mm) 8.2 % ALS RG MULE SE-5 2022-09-12 N SE RG MULE 660469 5493098 2022 5 2022-09-12 15:00 % Sand (0.25 mm - 0.25 mm) 19.7 % ALS RG MULE SE-5 2022-09-12 N SE RG MULE 660469 5493098 2022 5 2022-09-12 15:00 % Sand (0.25 mm - 0.25 mm) 19.7 % ALS RG MULE SE-5 2022-09-12 N SE RG MULE 660469 5493098 2022 5 2022-09-12 N 5 5 5 5 5 5 5 5 5	SE	RG_MIULE	660469	5493098	2022	5	2022-09-12	15:00	% Silt (0.063 mm - 0.0312 mm)	17.4	%	ALS	RG_MIULE_SE-5_2022-09-12_N
SE RG MULE 660469 5493098 2022 5 2022-09-12 15:00 % Sand (0.25 mm - 0.125 mm) 10.1 % ALS RG MULE SE-5 2022-09-12 N	SE	RG_MIULE	660469	5493098	2022	5	2022-09-12	15:00	% Silt (0.031 mm - 0.004 mm)	19.4	%	ALS	RG MIULE SE-5 2022-09-12 N
SE RG MIULE 660469 5493098 2022 5 2022-09-12 15:00 % Sand (0.50 mm - 0.25 mm) 19.7 % ALS RG MIULE SE-5, 2022-09-12 N	SE	RG_MIULE	660469	5493098	2022	5	2022-09-12	15:00	% Sand (0.125 mm - 0.063 mm)	8.2	%	ALS	RG MIULE SE-5 2022-09-12 N
SE RG MIULE 660469 5493098 2022 5 2022-09-12 15:00 % Sand (1.00 mm - 0.50 mm) 13.3 % ALS RG MIULE SE-5 2022-09-12 N	SE	RG_MIULE	660469	5493098	2022	5	2022-09-12	15:00	% Sand (0.25 mm - 0.125 mm)	10.1	%	ALS	RG MIULE SE-5 2022-09-12 N
SE RG MIULE 660469 5493098 2022 5 2022-09-12 15:00 % Sand (2.00 mm - 1.00 mm) 13.3 % ALS RG MIULE SE-5 2022-09-12 N	SE	RG MIULE	660469	5493098	2022	5	2022-09-12	15:00	% Sand (0.50 mm - 0.25 mm)	19.7	%	ALS	RG MIULE SE-5 2022-09-12 N
SE RG MIULE 660469 5493098 2022 5 2022-09-12 15:00 % Sand (2 00 mm - 1.00 mm) 4 % ALS RG MIULE IS-5-2022-09-12 N SE RG MIULE 660469 5493098 2022 5 2022-09-12 15:00 horaganic Carbon +63 µm 1.89 % ALS RG MIULE IS-5-2022-09-12 N SE RG MIULE 660469 5493098 2022 5 2022-09-12 15:00 Total Carbon +63 µm 1.89 % ALS RG MIULE IS-5-2022-09-12 N SE RG MIULE 660469 5493098 2022 5 2022-09-12 I 15:00 Total Carbon +63 µm 4.97 % ALS RG MIULE SE-5 2022-09-12 N SE RG MIULE 660469 5493098 2022 5 2022-09-12 I 15:00 Inorganic Carbon (as CaCO3 equivalent) 15.8 % ALS RG MIULE SE-5 2022-09-12 N SE RG MIULE 660469 5493098 2022 5 2022-09-12 I 15:00 Inorganic Carbon (as CaCO3 equivalent) 15.8 % ALS	SE	RG MIULE	660469	5493098	2022	5	2022-09-12	15:00	% Sand (1.00 mm - 0.50 mm)	13.3	%	ALS	RG MIULE SE-5 2022-09-12 N
SE RG MIULE 660469 5493098 2022 5 2022-09-12 15:00 Mo Gravel (>2 mm) 3 % ALS RG MIULE SE-5 2022-09-12 N	SE	RG MIULE	660469	5493098	2022	5	2022-09-12	15:00		4	%	ALS	
SE RG MIULE 660469 5493098 2022 5 2022-09-12 15:00 Total Carbon <63 µm 6.86 % ALS RG MIULE SE-5 2022-09-12 N	SE	RG MIULE	660469	5493098	2022	5	2022-09-12	15:00	% Gravel (>2 mm)	3	%	ALS	RG MIULE SE-5 2022-09-12 N
SE RG MIULE 660469 5493098 2022 5 2022-09-12 15:00 Total Carbon -683 µm 6.86 % ALS RG MIULE SE-5 2022-09-12 N	SE	RG MIULE	660469	5493098	2022	5	2022-09-12	15:00	Inorganic Carbon <63 µm	1.89	%	ALS	RG MIULE SE-5 2022-09-12 N
SE RG MIULE 660469 5493098 2022 5 2022-09-12 15:00 Total Organic Carbon 4.97 % A.L.S RG MIULE Sc-5 2022-09-12 N SE RG MIULE 660469 5493098 2022 5 2022-09-12 1 15:00 Inorganic Carbon (as CaCO3 equivalent) 15.8 % ALS RG MIULE Sc-5 2022-09-12 N SE RG MIULE 660469 5493098 2022 5 2022-09-12 1 15:00 Antimony (Sb) 0.52 mg/kg ALS RG MIULE Sc-5 2022-09-12 N SE RG MIULE 660469 5493098 2022 5 2022-09-12 1 15:00 Antimony (Sb) 0.52 mg/kg ALS RG MIULE Sc-5 2022-09-12 N SE RG MIULE 660469 5493098 2022 5 2022-09-12 1 15:00 Asrain(As) 5.93 mg/kg ALS RG MIULE Sc-5 2022-09-12 N SE RG MIULE 660469 5493098 2022 5 2022-09-12 1 15:00 Barium (Ba) 0.61 mg/kg	SE	RG_MIULE	660469	5493098	2022	5	2022-09-12	15:00	Total Carbon <63 μm	6.86	%	ALS	RG MIULE SE-5 2022-09-12 N
SE RG MIULE 660469 5493098 2022 5 2022-09-12 15:00 Aluminum (AI) 6830 mg/kg ALS RG MIULE SE-5 2022-09-12 N	SE	RG_MIULE	660469	5493098	2022	5	2022-09-12	15:00		4.97	%	ALS	RG MIULE SE-5 2022-09-12 N
SE RG MIULE 660469 5493098 2022 5 2022-09-12 15:00 Antimony (Sb) 0.52 mg/kg ALS RG MIULE SE-5_2022-09-12 N SE RG MIULE 660469 5493098 2022 5 2022-09-12 15:00 Arsenic (As) 5.93 mg/kg ALS RG MIULE SE-5_2022-09-12 N N SE RG MIULE 660469 5493098 2022 5 2022-09-12 15:00 Barum (Ba) 133 mg/kg ALS RG MIULE SE-5_2022-09-12 N S 2022-09-12 15:00 Beryllium (Be) 0.61 mg/kg ALS RG MIULE SE-5_2022-09-12 N S 2022-09-12 15:00 Beryllium (Be) 0.61 mg/kg ALS RG MIULE SE-5_2022-09-12 N S 2022-09-12 15:00 Beryllium (Be) 0.61 mg/kg ALS RG MIULE SE-5_2022-09-12 N S 2022-09-12 15:00 Beron (B) 8.4 mg/kg ALS RG MIULE SE-5_2022-09-12 N S 2022-09-12 15:00 Cadmium (Cd) 1.2 mg/kg A	SE	RG_MIULE	660469	5493098	2022	5	2022-09-12	15:00	Inorganic Carbon (as CaCO3 equivalent)	15.8	%	ALS	RG MIULE SE-5 2022-09-12 N
SE RG MIULE 660469 5493098 2022 5 2022-09-12 15:00 Arsenic (As) 5.93 mg/kg ALS RG MIULE SE-5_2022-09-12 N SE RG MIULE 660469 5493098 2022 5 2022-09-12 15:00 Barium (Ba) 133 mg/kg ALS RG MIULE SE-5_2022-09-12 N SE RG MIULE 660469 5493098 2022 5 2022-09-12 15:00 Beryllium (Be) 0.61 mg/kg ALS RG MIULE SE-5_2022-09-12 N SE RG MIULE 660469 5493098 2022 5 2022-09-12 15:00 Bismuth (Bi) -0.2 mg/kg ALS RG MIULE SE-5_2022-09-12 N SE RG MIULE 660469 5493098 2022 5 2022-09-12 15:00 Boron (B) 8.4 mg/kg ALS RG MIULE SE-5_2022-09-12 N SE RG MIULE 660469 5493098 2022 5 2022-09-12 15:00 Cadmium (Cd) 1.2 mg/kg ALS RG MIULE SE-5_2022-09-12 N SE RG MIULE	SE	RG_MIULE	660469	5493098	2022	5	2022-09-12	15:00	Aluminum (Al)	6830	mg/kg	ALS	RG_MIULE_SE-5_2022-09-12_N
SE RG_MIULE 660469 5493098 2022 5 2022-09-12 15:00 Barium (Ba) 133 mg/kg ALS_RG_MIULE_SE-5_2022-09-12_N N SE RG_MIULE 660469 5493098 2022 5 2022-09-12_15:00 Beryllium (Be) 0.61 mg/kg ALS_RG_MIULE_SE-5_2022-09-12_N N SE RG_MIULE 660469 5493098 2022 5 2022-09-12_15:00 Bismuth (Bi) <0.2	SE	RG_MIULE	660469	5493098	2022	5	2022-09-12	15:00	Antimony (Sb)	0.52	mg/kg	ALS	RG_MIULE_SE-5_2022-09-12_N
SE RG_MIULE 660469 5493098 2022 5 2022-09-12 15:00 Barium (Ba) 133 mg/kg ALS_RG_MIULE_SE-5_2022-09-12_N N SE RG_MIULE 660469 5493098 2022 5 2022-09-12_15:00 Beryllium (Be) 0.61 mg/kg ALS_RG_MIULE_SE-5_2022-09-12_N N SE RG_MIULE 660469 5493098 2022 5 2022-09-12_15:00 Bismuth (Bi) <0.2	SE	RG MIULE	660469	5493098	2022	5	2022-09-12	15:00	Arsenic (As)	5.93	mg/kg	ALS	RG MIULE SE-5 2022-09-12 N
SE RG_MIULE 660469 5493098 2022 5 2022-09-12 15:00 Beryllium (Be) 0.61 mg/kg ALS RG_MIULE_SE-5_2022-09-12_N N SE RG_MIULE 660469 5493098 2022 5 2022-09-12_15:00 Bismuth (Bi) <0.2	SE	RG MIULE	660469	5493098	2022	5	2022-09-12	15:00	Barium (Ba)	133		ALS	RG MIULE SE-5 2022-09-12 N
SE RG_MIULE 660469 5493098 2022 5 2022-09-12 15:00 Bismuth (Bi) <0.2 mg/kg ALS RG_MIULE_SE-5_2022-09-12_N SE RG_MIULE 660469 5493098 2022 5 2022-09-12 15:00 Born (B) 8.4 mg/kg ALS RG_MIULE_SE-5_2022-09-12_N SE RG_MIULE 660469 5493098 2022 5 2022-09-12 15:00 Cadmium (Cd) 1.2 mg/kg ALS RG_MIULE_SE-5_2022-09-12_N SE RG_MIULE 660469 5493098 2022 5 2022-09-12 15:00 Calcium (Ca) 56000 mg/kg ALS RG_MIULE_SE-5_2022-09-12_N SE RG_MIULE 660469 5493098 2022 5 2022-09-12 15:00 Chromium (Cr) 9.72 mg/kg ALS RG_MIULE_SE-5_2022-09-12_N SE RG_MIULE 660469 5493098 2022 5 2022-09-12 15:00 Copper (Cu) 11.4 mg/kg ALS RG_MIULE_SE-5_2	SE	RG MIULE	660469	5493098	2022	5	2022-09-12	15:00	Beryllium (Be)	0.61	mg/kg	ALS	RG MIULE SE-5 2022-09-12 N
SE RG_MIULE 660469 5493098 2022 5 2022-09-12 15:00 Boron (B) 8.4 mg/kg ALS RG_MIULE SE-5_2022-09-12_N SE RG_MIULE 660469 5493098 2022 5 2022-09-12 15:00 Cadmium (Cd) 1.2 mg/kg ALS RG_MIULE SE-5_2022-09-12_N SE RG_MIULE 660469 5493098 2022 5 2022-09-12 15:00 Calcium (Ca) 56000 mg/kg ALS RG_MIULE SE-5_2022-09-12_N SE RG_MIULE 660469 5493098 2022 5 2022-09-12_15:00 Chromium (Cr) 9.72 mg/kg ALS RG_MIULE SE-5_2022-09-12_N SE RG_MIULE 660469 5493098 2022 5 2022-09-12_15:00 Cobalt (Co) 9.54 mg/kg ALS RG_MIULE SE-5_2022-09-12_N SE RG_MIULE 660469 5493098 2022 5 2022-09-12_15:00 Looper (Cu) 11.4 mg/kg ALS RG_MIULE SE-5_2022-09-12_N SE<	SE	RG MIULE	660469	5493098		5	2022-09-12	15:00	, , ,			ALS	RG MIULE SE-5 2022-09-12 N
SE RG_MIULE 660469 5493098 2022 5 2022-09-12 15:00 Cadmium (Cd) 1.2 mg/kg ALS RG_MIULE_SE-5_2022-09-12_N SE RG_MIULE 660469 5493098 2022 5 2022-09-12 15:00 Calcium (Ca) 56000 mg/kg ALS RG_MIULE_SE-5_2022-09-12_N SE RG_MIULE 660469 5493098 2022 5 2022-09-12_N 15:00 Chromium (Cr) 9.72 mg/kg ALS RG_MIULE_SE-5_2022-09-12_N SE RG_MIULE 660469 5493098 2022 5 2022-09-12_N 15:00 Cobalt (Co) 9.54 mg/kg ALS RG_MIULE_SE-5_2022-09-12_N SE RG_MIULE 660469 5493098 2022 5 2022-09-12_N 15:00 Copper (Cu) 11.4 mg/kg ALS RG_MIULE_SE-5_2022-09-12_N SE RG_MIULE 660469 5493098 2022 5 2022-09-12_N 15:00 Iron (Fe) 13300 mg/kg ALS RG_MI	SE	RG MIULE	660469	5493098	2022	5	2022-09-12	15:00	Boron (B)	8.4	mg/kg	ALS	RG MIULE SE-5 2022-09-12 N
SE RG MIULE 660469 5493098 2022 5 2022-09-12 15:00 Calcium (Ca) 56000 mg/kg ALS RG MIULE SE-5_2022-09-12 N SE RG MIULE 660469 5493098 2022 5 2022-09-12 15:00 Chromium (Cr) 9.72 mg/kg ALS RG MIULE SE-5_2022-09-12 N SE RG MIULE 660469 5493098 2022 5 2022-09-12 15:00 Cobalt (Co) 9.54 mg/kg ALS RG MIULE SE-5_2022-09-12 N SE RG MIULE 660469 5493098 2022 5 2022-09-12 15:00 Copper (Cu) 11.4 mg/kg ALS RG MIULE SE-5_2022-09-12 N SE RG MIULE 660469 5493098 2022 5 2022-09-12 15:00 Iron (Fe) 13300 mg/kg ALS RG MIULE SE-5_2022-09-12 N SE RG MIULE 660469 5493098 2022 5 2022-09-12 15:00 Lithium (Li) 11 mg/kg ALS RG MIULE SE-5_	SE	RG MIULE	660469	5493098	2022	5	2022-09-12	15:00	Cadmium (Cd)	1.2	+	ALS	RG MIULE SE-5 2022-09-12 N
SE RG_MIULE 660469 5493098 2022 5 2022-09-12 15:00 Chromium (Cr) 9.72 mg/kg ALS RG_MIULE_SE-5_2022-09-12_N SE RG_MIULE 660469 5493098 2022 5 2022-09-12_15:00 Cobalt (Co) 9.54 mg/kg ALS RG_MIULE_SE-5_2022-09-12_N SE RG_MIULE 660469 5493098 2022 5 2022-09-12_15:00 Copper (Cu) 11.4 mg/kg ALS RG_MIULE_SE-5_2022-09-12_N SE RG_MIULE 660469 5493098 2022 5 2022-09-12_15:00 Iron (Fe) 13300 mg/kg ALS RG_MIULE_SE-5_2022-09-12_N SE RG_MIULE 660469 5493098 2022 5 2022-09-12_15:00 Lead (Pb) 8.21 mg/kg ALS RG_MIULE_SE-5_2022-09-12_N SE RG_MIULE 660469 5493098 2022 5 2022-09-12_15:00 Lithium (Li) 11 mg/kg ALS RG_MIULE_SE-5_2022-09-12_N SE RG_MIULE	SE	RG MIULE	660469	5493098	2022	5	2022-09-12	15:00	Calcium (Ca)	56000		ALS	RG MIULE SE-5 2022-09-12 N
SE RG_MIULE 660469 5493098 2022 5 2022-09-12 15:00 Cobalt (Co) 9.54 mg/kg ALS RG_MIULE_SE-5_2022-09-12_N SE RG_MIULE 660469 5493098 2022 5 2022-09-12_15:00 Copper (Cu) 11.4 mg/kg ALS RG_MIULE_SE-5_2022-09-12_N SE RG_MIULE 660469 5493098 2022 5 2022-09-12_15:00 Iron (Fe) 13300 mg/kg ALS RG_MIULE_SE-5_2022-09-12_N SE RG_MIULE 660469 5493098 2022 5 2022-09-12_15:00 Lead (Pb) 8.21 mg/kg ALS RG_MIULE_SE-5_2022-09-12_N SE RG_MIULE 660469 5493098 2022 5 2022-09-12_15:00 Lithium (Li) 11 mg/kg ALS RG_MIULE_SE-5_2022-09-12_N SE RG_MIULE 660469 5493098 2022 5 2022-09-12_15:00 Magnesium (Mg) 5770 mg/kg ALS RG_MIULE_SE-5_2022-09-12_N SE RG_MIULE		_	660469	5493098		5			X /			ALS	
SE RG_MIULE 660469 5493098 2022 5 2022-09-12 15:00 Copper (Cu) 11.4 mg/kg ALS RG_MIULE_SE-5_2022-09-12_N SE RG_MIULE 660469 5493098 2022 5 2022-09-12 15:00 Iron (Fe) 13300 mg/kg ALS RG_MIULE_SE-5_2022-09-12_N SE RG_MIULE 660469 5493098 2022 5 2022-09-12 15:00 Lead (Pb) 8.21 mg/kg ALS RG_MIULE_SE-5_2022-09-12_N SE RG_MIULE 660469 5493098 2022 5 2022-09-12 15:00 Lithium (Li) 11 mg/kg ALS RG_MIULE_SE-5_2022-09-12_N SE RG_MIULE 660469 5493098 2022 5 2022-09-12 15:00 Manganese (Mn) 182 mg/kg ALS RG_MIULE_SE-5_2022-09-12_N SE RG_MIULE 660469 5493098 2022 5 2022-09-12 15:00 Mercury (Hg) 0.0315 mg/kg ALS RG_MIULE_SE-5_2		_	660469	5493098		5	2022-09-12		• • • • • • • • • • • • • • • • • • • •	_		ALS	
SE RG_MIULE 660469 5493098 2022 5 2022-09-12 15:00 Iron (Fe) 13300 mg/kg ALS RG_MIULE_SE-5_2022-09-12_N SE RG_MIULE 660469 5493098 2022 5 2022-09-12 15:00 Lead (Pb) 8.21 mg/kg ALS RG_MIULE_SE-5_2022-09-12_N SE RG_MIULE 660469 5493098 2022 5 2022-09-12 15:00 Lithium (Li) 11 mg/kg ALS RG_MIULE_SE-5_2022-09-12_N SE RG_MIULE 660469 5493098 2022 5 2022-09-12 15:00 Manganese (Mn) 5770 mg/kg ALS RG_MIULE_SE-5_2022-09-12_N SE RG_MIULE 660469 5493098 2022 5 2022-09-12 15:00 Manganese (Mn) 182 mg/kg ALS RG_MIULE_SE-5_2022-09-12_N SE RG_MIULE 660469 5493098 2022 5 2022-09-12 15:00 Mercury (Hg) 0.0315 mg/kg ALS RG_MIULE_SE-		_											
SE RG_MIULE 660469 5493098 2022 5 2022-09-12 15:00 Lead (Pb) 8.21 mg/kg ALS RG_MIULE_SE-5_2022-09-12_N SE RG_MIULE 660469 5493098 2022 5 2022-09-12_N 15:00 Lithium (Li) 11 mg/kg ALS RG_MIULE_SE-5_2022-09-12_N SE RG_MIULE 660469 5493098 2022 5 2022-09-12_N 15:00 Manganese (Mn) 182 mg/kg ALS RG_MIULE_SE-5_2022-09-12_N SE RG_MIULE 660469 5493098 2022 5 2022-09-12_N 15:00 Manganese (Mn) 182 mg/kg ALS RG_MIULE_SE-5_2022-09-12_N SE RG_MIULE 660469 5493098 2022 5 2022-09-12_N 15:00 Mercury (Hg) 0.0315 mg/kg ALS RG_MIULE_SE-5_2022-09-12_N													
SE RG_MIULE 660469 5493098 2022 5 2022-09-12 15:00 Lithium (Li) 11 mg/kg ALS RG_MIULE_SE-5_2022-09-12_N SE RG_MIULE 660469 5493098 2022 5 2022-09-12 15:00 Magnesium (Mg) 5770 mg/kg ALS RG_MIULE_SE-5_2022-09-12_N SE RG_MIULE 660469 5493098 2022 5 2022-09-12_15:00 Manganese (Mn) 182 mg/kg ALS RG_MIULE_SE-5_2022-09-12_N SE RG_MIULE 660469 5493098 2022 5 2022-09-12_15:00 Mercury (Hg) 0.0315 mg/kg ALS RG_MIULE_SE-5_2022-09-12_N		_		-		5			, ,				
SE RG_MIULE 660469 5493098 2022 5 2022-09-12 15:00 Magnesium (Mg) 5770 mg/kg ALS RG_MIULE_SE-5_2022-09-12_N SE RG_MIULE 660469 5493098 2022 5 2022-09-12_N 15:00 Manganese (Mn) 182 mg/kg ALS RG_MIULE_SE-5_2022-09-12_N SE RG_MIULE 660469 5493098 2022 5 2022-09-12_N 15:00 Mercury (Hg) 0.0315 mg/kg ALS RG_MIULE_SE-5_2022-09-12_N		_							` '				
SE RG_MIULE 660469 5493098 2022 5 2022-09-12 15:00 Manganese (Mn) 182 mg/kg ALS RG_MIULE_SE-5_2022-09-12_N SE RG_MIULE 660469 5493098 2022 5 2022-09-12 15:00 Mercury (Hg) 0.0315 mg/kg ALS RG_MIULE_SE-5_2022-09-12_N		_				5							
SE RG_MIULE 660469 5493098 2022 5 2022-09-12 15:00 Mercury (Hg) 0.0315 mg/kg ALS RG_MIULE_SE-5_2022-09-12_N						5	1		· · · · ·				
		_				5			` ` ` ` ` /				
	SE	RG_MIULE	660469	5493098	2022	5	2022-09-12	15:00	Molybdenum (Mo)	1.37	mg/kg	ALS	RG MIULE SE-5 2022-09-12 N

WSP Canada Inc. Page 279 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Table I-	1: Sediment Chem			CMm LAEMP	Sampling St	ations, 2012 to	2022		_	_		
Туре	Station	Location	(UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
Type	Station	Easting	Northing	i cai	Replicate	Date	Time	Analyte	Result	Onit	Lab	Sample ID
SE	RG_MIULE	660469	5493098	2022	5	2022-09-12	15:00	Nickel (Ni)	35.8	mg/kg	ALS	RG_MIULE_SE-5_2022-09-12_N
SE	RG_MIULE	660469	5493098	2022	5	2022-09-12	15:00	Phosphorus (P)	1080	mg/kg	ALS	RG_MIULE_SE-5_2022-09-12_N
SE	RG_MIULE	660469	5493098	2022	5	2022-09-12	15:00	Potassium (K)	1280	mg/kg	ALS	RG_MIULE_SE-5_2022-09-12_N
SE	RG_MIULE	660469	5493098	2022	5	2022-09-12	15:00	Selenium (Se)	2.06	mg/kg	ALS	RG_MIULE_SE-5_2022-09-12_N
SE	RG_MIULE	660469	5493098	2022	5	2022-09-12	15:00	Silver (Ag)	0.13	mg/kg	ALS	RG_MIULE_SE-5_2022-09-12_N
SE	RG_MIULE	660469	5493098	2022	5	2022-09-12	15:00	Sodium (Na)	90	mg/kg	ALS	RG_MIULE_SE-5_2022-09-12_N
SE	RG_MIULE	660469	5493098	2022	5	2022-09-12	15:00	Strontium (Sr)	85.5	mg/kg	ALS	RG_MIULE_SE-5_2022-09-12_N
SE	RG_MIULE	660469	5493098	2022	5	2022-09-12	15:00	Sulfur (S)	1100	mg/kg	ALS	RG_MIULE_SE-5_2022-09-12_N
SE	RG_MIULE	660469	5493098	2022	5	2022-09-12	15:00	Thallium (TI)	0.317	mg/kg	ALS	RG_MIULE_SE-5_2022-09-12_N
SE	RG_MIULE	660469	5493098	2022	5	2022-09-12	15:00	Tin (Sn)	<2	mg/kg	ALS	RG_MIULE_SE-5_2022-09-12_N
SE	RG_MIULE	660469	5493098	2022	5	2022-09-12	15:00	Titanium (Ti)	16.3	mg/kg	ALS	RG_MIULE_SE-5_2022-09-12_N
SE	RG_MIULE	660469	5493098	2022	5	2022-09-12	15:00	Tungsten (W)	<0.5	mg/kg	ALS	RG_MIULE_SE-5_2022-09-12_N
SE	RG_MIULE	660469	5493098	2022	5	2022-09-12	15:00	Uranium (U)	0.806	mg/kg	ALS	RG_MIULE_SE-5_2022-09-12_N
SE	RG_MIULE	660469	5493098	2022	5	2022-09-12	15:00	Vanadium (V)	21.3	mg/kg	ALS	RG_MIULE_SE-5_2022-09-12_N
SE	RG_MIULE	660469	5493098	2022	5	2022-09-12	15:00	Zinc (Zn)	99.6	mg/kg	ALS	RG_MIULE_SE-5_2022-09-12_N
SE	RG_MIULE	660469	5493098	2022	5	2022-09-12	15:00	Zirconium (Zr)	1.1	mg/kg	ALS	RG_MIULE_SE-5_2022-09-12_N
SE	RG_MIULE	660469	5493098	2022	5	2022-09-12	15:00	Acenaphthene	<0.05	mg/kg	ALS	RG_MIULE_SE-5_2022-09-12_N
SE	RG_MIULE	660469	5493098	2022	5	2022-09-12	15:00	Acenaphthylene	<0.05	mg/kg	ALS	RG_MIULE_SE-5_2022-09-12_N
SE	RG_MIULE	660469	5493098	2022	5	2022-09-12	15:00	Acridine	<0.05	mg/kg	ALS	RG_MIULE_SE-5_2022-09-12_N
SE	RG_MIULE	660469	5493098	2022	5	2022-09-12	15:00	Anthracene	<0.05	mg/kg	ALS	RG_MIULE_SE-5_2022-09-12_N
SE	RG_MIULE	660469	5493098	2022	5	2022-09-12	15:00	Benz(a)anthracene	<0.05	mg/kg	ALS	RG_MIULE_SE-5_2022-09-12_N
SE	RG_MIULE	660469	5493098	2022	5	2022-09-12	15:00	Benzo(a)pyrene	<0.05	mg/kg	ALS	RG_MIULE_SE-5_2022-09-12_N
SE	RG_MIULE	660469	5493098	2022	5	2022-09-12	15:00	Benzo(b&j)fluoranthene	<0.05	mg/kg	ALS	RG_MIULE_SE-5_2022-09-12_N
SE	RG_MIULE	660469	5493098	2022	5	2022-09-12	15:00	Benzo(b+j+k)fluoranthene	< 0.075	mg/kg	ALS	RG_MIULE_SE-5_2022-09-12_N
SE	RG_MIULE	660469	5493098	2022	5	2022-09-12	15:00	Benzo(g_h_i)perylene	<0.05	mg/kg	ALS	RG_MIULE_SE-5_2022-09-12_N
SE	RG_MIULE	660469	5493098	2022	5	2022-09-12	15:00	Benzo(k)fluoranthene	<0.05	mg/kg	ALS	RG_MIULE_SE-5_2022-09-12_N
SE	RG_MIULE	660469	5493098	2022	5	2022-09-12	15:00	Chrysene	0.064	mg/kg	ALS	RG_MIULE_SE-5_2022-09-12_N
SE	RG_MIULE	660469	5493098	2022	5	2022-09-12	15:00	Dibenz(a_h)anthracene	<0.05	mg/kg	ALS	RG_MIULE_SE-5_2022-09-12_N
SE	RG_MIULE	660469	5493098	2022	5	2022-09-12	15:00	Fluoranthene	<0.05	mg/kg	ALS	RG_MIULE_SE-5_2022-09-12_N
SE	RG_MIULE	660469	5493098	2022	5	2022-09-12	15:00	Fluorene	<0.05	mg/kg	ALS	RG_MIULE_SE-5_2022-09-12_N
SE	RG_MIULE	660469	5493098	2022	5	2022-09-12	15:00	Indeno(1,2,3-c,d)pyrene	<0.05	mg/kg	ALS	RG_MIULE_SE-5_2022-09-12_N
SE	RG_MIULE	660469	5493098	2022	5	2022-09-12	15:00	1+2-Methylnaphthalene	0.304	mg/kg	ALS	RG_MIULE_SE-5_2022-09-12_N
SE	RG_MIULE	660469	5493098	2022	5	2022-09-12	15:00	1-Methylnaphthalene	0.127	mg/kg	ALS	RG_MIULE_SE-5_2022-09-12_N
SE	RG_MIULE	660469	5493098	2022	5	2022-09-12	15:00	2-Methylnaphthalene	0.177	mg/kg	ALS	RG_MIULE_SE-5_2022-09-12_N
SE	RG_MIULE	660469	5493098	2022	5	2022-09-12	15:00	Naphthalene	0.091	mg/kg	ALS	RG_MIULE_SE-5_2022-09-12_N
SE	RG_MIULE	660469	5493098	2022	5	2022-09-12	15:00	Phenanthrene	0.166	mg/kg	ALS	RG_MIULE_SE-5_2022-09-12_N
SE	RG_MIULE	660469	5493098	2022	5	2022-09-12	15:00	Pyrene	<0.05	mg/kg	ALS	RG_MIULE_SE-5_2022-09-12_N
SE	RG_MIULE	660469	5493098	2022	5	2022-09-12	15:00	Quinoline	<0.05	mg/kg	ALS	RG_MIULE_SE-5_2022-09-12_N
SE	RG_MIULE	660469	5493098	2022	5	2022-09-12	15:00	B(a)P Total Potency Equivalent	<0.065	mg/kg	ALS	RG_MIULE_SE-5_2022-09-12_N
SE	RG_MIULE	660469	5493098	2022	5	2022-09-12	15:00	PAHs, total (BC Sched 3.4)	0.5	mg/kg	ALS	RG_MIULE_SE-5_2022-09-12_N
SE	RG_MIULE	660469	5493098	2022	5	2022-09-12	15:00	PAHs, total	0.32	mg/kg	ALS	RG_MIULE_SE-5_2022-09-12_N
SE	RG_MIULE	660469	5493098	2022	5	2022-09-12	15:00	d9-Acridine	102	%	ALS	RG_MIULE_SE-5_2022-09-12_N
SE	RG_MIULE	660469	5493098	2022	5	2022-09-12	15:00	d12-Chrysene	117	%	ALS	RG_MIULE_SE-5_2022-09-12_N
SE	RG_MIULE	660469	5493098	2022	5	2022-09-12	15:00	d8-Naphthalene	83.5	%	ALS	RG_MIULE_SE-5_2022-09-12_N
SE	RG_MIULE	660469	5493098	2022	5	2022-09-12	15:00	d10-Phenanthrene	106	%	ALS	RG_MIULE_SE-5_2022-09-12_N
SE	RG_MIDAG	665217	5489528	2022	1	2022-09-13	11:07	Moisture	82.8	%	ALS	RG_MIDAG_SE-1_2022-09-13_N
SE	RG MIDAG	665217	5489528	2022	1	2022-09-13	11:07	pH (1:2 soil:water)	7.57	рН	ALS	RG_MIDAG_SE-1_2022-09-13_N

WSP Canada Inc. Page 280 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

i abie i-	1: Sediment Chem			JIVIIII LAEIVIP	Jamping St	ativiis, 2012 (0						l also make may be for more the
Type	Station		(UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
		Easting	Northing								Lab	Sample ID
SE	RG_MIDAG	665217	5489528	2022	1	2022-09-13	11:07	% Clay (<4 μm)	5.6	%	ALS	RG_MIDAG_SE-1_2022-09-13_N
SE	RG_MIDAG	665217	5489528	2022	1	2022-09-13	11:07	% Silt (0.063 mm - 0.0312 mm)	23.6	%	ALS	RG_MIDAG_SE-1_2022-09-13_N
SE	RG_MIDAG	665217	5489528	2022	1	2022-09-13	11:07	% Silt (0.031 mm - 0.004 mm)	25.5	%	ALS	RG_MIDAG_SE-1_2022-09-13_N
SE	RG_MIDAG	665217	5489528	2022	1	2022-09-13	11:07	% Sand (0.125 mm - 0.063 mm)	9.5	%	ALS	RG_MIDAG_SE-1_2022-09-13_N
SE	RG_MIDAG	665217	5489528	2022	1	2022-09-13	11:07	% Sand (0.25 mm - 0.125 mm)	4.6	%	ALS	RG_MIDAG_SE-1_2022-09-13_N
SE	RG_MIDAG	665217	5489528	2022	1	2022-09-13	11:07	% Sand (0.50 mm - 0.25 mm)	1.6	%	ALS	RG_MIDAG_SE-1_2022-09-13_N
SE	RG_MIDAG	665217	5489528	2022	1	2022-09-13	11:07	% Sand (1.00 mm - 0.50 mm)	3.1	%	ALS	RG_MIDAG_SE-1_2022-09-13_N
SE	RG_MIDAG	665217	5489528	2022	1	2022-09-13	11:07	% Sand (2.00 mm - 1.00 mm)	7.3	%	ALS	RG_MIDAG_SE-1_2022-09-13_N
SE	RG_MIDAG	665217	5489528	2022	1	2022-09-13	11:07	% Gravel (>2 mm)	19.2	%	ALS	RG_MIDAG_SE-1_2022-09-13_N
SE	RG_MIDAG	665217	5489528	2022	1	2022-09-13	11:07	Inorganic Carbon <63 µm	2.55	%	ALS	RG_MIDAG_SE-1_2022-09-13_N
SE	RG_MIDAG	665217	5489528	2022	1	2022-09-13	11:07	Total Carbon <63 μm	10.2	%	ALS	RG_MIDAG_SE-1_2022-09-13_N
SE	RG_MIDAG	665217	5489528	2022	1	2022-09-13	11:07	Total Organic Carbon	7.65	%	ALS	RG_MIDAG_SE-1_2022-09-13_N
SE	RG_MIDAG	665217	5489528	2022	1	2022-09-13	11:07	Inorganic Carbon (as CaCO3 equivalent)	21.2	%	ALS	RG_MIDAG_SE-1_2022-09-13_N
SE	RG_MIDAG	665217	5489528	2022	1	2022-09-13	11:07	Aluminum (Al)	6160	mg/kg	ALS	RG_MIDAG_SE-1_2022-09-13_N
SE	RG_MIDAG	665217	5489528	2022	1	2022-09-13	11:07	Antimony (Sb)	0.41	mg/kg	ALS	RG_MIDAG_SE-1_2022-09-13_N
SE	RG_MIDAG	665217	5489528	2022	1	2022-09-13	11:07	Arsenic (As)	4.9	mg/kg	ALS	RG_MIDAG_SE-1_2022-09-13_N
SE	RG_MIDAG	665217	5489528	2022	1	2022-09-13	11:07	Barium (Ba)	107	mg/kg	ALS	RG_MIDAG_SE-1_2022-09-13_N
SE	RG_MIDAG	665217	5489528	2022	1	2022-09-13	11:07	Beryllium (Be)	0.58	mg/kg	ALS	RG_MIDAG_SE-1_2022-09-13_N
SE	RG_MIDAG	665217	5489528	2022	1	2022-09-13	11:07	Bismuth (Bi)	<0.2	mg/kg	ALS	RG_MIDAG_SE-1_2022-09-13_N
SE	RG_MIDAG	665217	5489528	2022	1	2022-09-13	11:07	Boron (B)	8.3	mg/kg	ALS	RG_MIDAG_SE-1_2022-09-13_N
SE	RG_MIDAG	665217	5489528	2022	1	2022-09-13	11:07	Cadmium (Cd)	1.54	mg/kg	ALS	RG_MIDAG_SE-1_2022-09-13_N
SE	RG_MIDAG	665217	5489528	2022	1	2022-09-13	11:07	Calcium (Ca)	73400	mg/kg	ALS	RG_MIDAG_SE-1_2022-09-13_N
SE	RG MIDAG	665217	5489528	2022	1	2022-09-13	11:07	Chromium (Cr)	9.44	mg/kg	ALS	RG MIDAG SE-1 2022-09-13 N
SE	RG MIDAG	665217	5489528	2022	1	2022-09-13	11:07	Cobalt (Co)	16.1	mg/kg	ALS	RG MIDAG SE-1 2022-09-13 N
SE	RG MIDAG	665217	5489528	2022	1	2022-09-13	11:07	Copper (Cu)	11	mg/kg	ALS	RG MIDAG SE-1 2022-09-13 N
SE	RG MIDAG	665217	5489528	2022	1	2022-09-13	11:07	Iron (Fe)	10300	mg/kg	ALS	RG MIDAG SE-1 2022-09-13 N
SE	RG MIDAG	665217	5489528	2022	1	2022-09-13	11:07	Lead (Pb)	7.38	mg/kg	ALS	RG MIDAG SE-1 2022-09-13 N
SE	RG MIDAG	665217	5489528	2022	1	2022-09-13	11:07	Lithium (Li)	10.8	mg/kg	ALS	RG MIDAG SE-1 2022-09-13 N
SE	RG MIDAG	665217	5489528	2022	1	2022-09-13	11:07	Magnesium (Mg)	7670	mg/kg	ALS	RG MIDAG SE-1 2022-09-13 N
SE	RG MIDAG	665217	5489528	2022	1	2022-09-13	11:07	Manganese (Mn)	156	mg/kg	ALS	RG MIDAG SE-1 2022-09-13 N
SE	RG MIDAG	665217	5489528	2022	1	2022-09-13	11:07	Mercury (Hg)	0.0401	mg/kg	ALS	RG_MIDAG_SE-1_2022-09-13_N
SE	RG MIDAG	665217	5489528	2022	1	2022-09-13	11:07	Molybdenum (Mo)	1.18	mg/kg	ALS	RG MIDAG SE-1 2022-09-13 N
SE	RG MIDAG	665217	5489528	2022	1	2022-09-13	11:07	Nickel (Ni)	57.7	mg/kg	ALS	RG MIDAG SE-1 2022-09-13 N
SE	RG MIDAG	665217	5489528	2022	1	2022-09-13	11:07	Phosphorus (P)	955	mg/kg	ALS	RG MIDAG SE-1 2022-09-13 N
SE	RG MIDAG	665217	5489528	2022	1	2022-09-13	11:07	Potassium (K)	1160	mg/kg	ALS	RG MIDAG SE-1 2022-09-13 N
SE	RG MIDAG	665217	5489528	2022	1	2022-09-13	11:07	Selenium (Se)	3.27	mg/kg	ALS	RG MIDAG SE-1 2022-09-13 N
SE	RG MIDAG	665217	5489528	2022	1	2022-09-13	11:07	Silver (Ag)	0.17	mg/kg	ALS	RG MIDAG SE-1 2022-09-13 N
SE	RG MIDAG	665217	5489528	2022	1	2022-09-13	11:07	Sodium (Na)	116	mg/kg	ALS	RG MIDAG SE-1 2022-09-13 N
SE	RG MIDAG	665217	5489528	2022	1	2022-09-13	11:07	Strontium (Sr)	106	mg/kg	ALS	RG MIDAG SE-1 2022-09-13 N
SE	RG MIDAG	665217	5489528	2022	1	2022-09-13	11:07	Sulfur (S)	1700	mg/kg	ALS	RG MIDAG SE-1 2022-09-13 N
SE	RG MIDAG	665217	5489528	2022	1	2022-09-13	11:07	Thallium (TI)	0.37	mg/kg	ALS	RG MIDAG SE-1 2022-09-13 N
SE	RG MIDAG	665217	5489528	2022	1	2022-09-13	11:07	Tin (Sn)	<2	mg/kg	ALS	RG MIDAG SE-1 2022-09-13 N
SE	RG MIDAG	665217	5489528	2022	1	2022-09-13	11:07	Titanium (Ti)	17.3	mg/kg	ALS	RG MIDAG SE-1 2022-09-13 N
SE	RG_MIDAG	665217	5489528	2022	1	2022-09-13	11:07	Tungsten (W)	<0.5	 	ALS	RG MIDAG SE-1 2022-09-13 N
SE	RG_MIDAG	665217	5489528	2022	1	2022-09-13	11:07	Uranium (U)	0.871	mg/kg	i	RG MIDAG SE-1 2022-09-13 N
SE	RG_MIDAG RG MIDAG	665217	5489528	2022	1			· /		mg/kg	ALS ALS	RG MIDAG SE-1 2022-09-13 N
	_				1 1	2022-09-13	11:07	Vanadium (V)	16.3	mg/kg		
SE	RG_MIDAG	665217	5489528	2022	1	2022-09-13	11:07	Zinc (Zn)	116	mg/kg	ALS	RG_MIDAG_SE-1_2022-09-13_N

WSP Canada Inc. Page 281 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Table I-	1: Sediment Chem			CMm LAEMP	Sampling Sta	ations, 2012 to	2022					
Туре	Station	Location	ı (UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
Type	Station	Easting	Northing	i cai	Replicate	Date	Tille	Allalyte	Nesuit	Offic	Lab	Sample ID
SE	RG_MIDAG	665217	5489528	2022	1	2022-09-13	11:07	Zirconium (Zr)	1.3	mg/kg	ALS	RG_MIDAG_SE-1_2022-09-13_N
SE	RG_MIDAG	665217	5489528	2022	1	2022-09-13	11:07	Acenaphthene	<0.071	mg/kg	ALS	RG_MIDAG_SE-1_2022-09-13_N
SE	RG_MIDAG	665217	5489528	2022	1	2022-09-13	11:07	Acenaphthylene	<0.071	mg/kg	ALS	RG_MIDAG_SE-1_2022-09-13_N
SE	RG_MIDAG	665217	5489528	2022	1	2022-09-13	11:07	Acridine	<0.071	mg/kg	ALS	RG_MIDAG_SE-1_2022-09-13_N
SE	RG_MIDAG	665217	5489528	2022	1	2022-09-13	11:07	Anthracene	<0.071	mg/kg	ALS	RG_MIDAG_SE-1_2022-09-13_N
SE	RG_MIDAG	665217	5489528	2022	1	2022-09-13	11:07	Benz(a)anthracene	<0.071	mg/kg	ALS	RG_MIDAG_SE-1_2022-09-13_N
SE	RG_MIDAG	665217	5489528	2022	1	2022-09-13	11:07	Benzo(a)pyrene	<0.071	mg/kg	ALS	RG_MIDAG_SE-1_2022-09-13_N
SE	RG_MIDAG	665217	5489528	2022	1	2022-09-13	11:07	Benzo(b&j)fluoranthene	0.123	mg/kg	ALS	RG_MIDAG_SE-1_2022-09-13_N
SE	RG_MIDAG	665217	5489528	2022	1	2022-09-13	11:07	Benzo(b+j+k)fluoranthene	0.123	mg/kg	ALS	RG_MIDAG_SE-1_2022-09-13_N
SE	RG_MIDAG	665217	5489528	2022	1	2022-09-13	11:07	Benzo(g_h_i)perylene	<0.071	mg/kg	ALS	RG_MIDAG_SE-1_2022-09-13_N
SE	RG_MIDAG	665217	5489528	2022	1	2022-09-13	11:07	Benzo(k)fluoranthene	<0.071	mg/kg	ALS	RG_MIDAG_SE-1_2022-09-13_N
SE	RG_MIDAG	665217	5489528	2022	1	2022-09-13	11:07	Chrysene	0.191	mg/kg	ALS	RG_MIDAG_SE-1_2022-09-13_N
SE	RG_MIDAG	665217	5489528	2022	1	2022-09-13	11:07	Dibenz(a_h)anthracene	<0.071	mg/kg	ALS	RG_MIDAG_SE-1_2022-09-13_N
SE	RG_MIDAG	665217	5489528	2022	1	2022-09-13	11:07	Fluoranthene	<0.071	mg/kg	ALS	RG_MIDAG_SE-1_2022-09-13_N
SE	RG_MIDAG	665217	5489528	2022	1	2022-09-13	11:07	Fluorene	<0.071	mg/kg	ALS	RG_MIDAG_SE-1_2022-09-13_N
SE	RG_MIDAG	665217	5489528	2022	1	2022-09-13	11:07	Indeno(1,2,3-c,d)pyrene	<0.071	mg/kg	ALS	RG_MIDAG_SE-1_2022-09-13_N
SE	RG_MIDAG	665217	5489528	2022	1	2022-09-13	11:07	1+2-Methylnaphthalene	1.14	mg/kg	ALS	RG_MIDAG_SE-1_2022-09-13_N
SE	RG_MIDAG	665217	5489528	2022	1	2022-09-13	11:07	1-Methylnaphthalene	0.465	mg/kg	ALS	RG_MIDAG_SE-1_2022-09-13_N
SE	RG_MIDAG	665217	5489528	2022	1	2022-09-13	11:07	2-Methylnaphthalene	0.676	mg/kg	ALS	RG_MIDAG_SE-1_2022-09-13_N
SE	RG_MIDAG	665217	5489528	2022	1	2022-09-13	11:07	Naphthalene	0.333	mg/kg	ALS	RG_MIDAG_SE-1_2022-09-13_N
SE	RG_MIDAG	665217	5489528	2022	1	2022-09-13	11:07	Phenanthrene	0.523	mg/kg	ALS	RG_MIDAG_SE-1_2022-09-13_N
SE	RG_MIDAG	665217	5489528	2022	1	2022-09-13	11:07	Pyrene	<0.071	mg/kg	ALS	RG_MIDAG_SE-1_2022-09-13_N
SE	RG_MIDAG	665217	5489528	2022	1	2022-09-13	11:07	Quinoline	<0.071	mg/kg	ALS	RG_MIDAG_SE-1_2022-09-13_N
SE	RG_MIDAG	665217	5489528	2022	1	2022-09-13	11:07	B(a)P Total Potency Equivalent	0.096	mg/kg	ALS	RG_MIDAG_SE-1_2022-09-13_N
SE	RG_MIDAG	665217	5489528	2022	1	2022-09-13	11:07	PAHs, total (BC Sched 3.4)	1.72	mg/kg	ALS	RG_MIDAG_SE-1_2022-09-13_N
SE	RG_MIDAG	665217	5489528	2022	1	2022-09-13	11:07	PAHs, total	1.17	mg/kg	ALS	RG_MIDAG_SE-1_2022-09-13_N
SE	RG_MIDAG	665217	5489528	2022	1	2022-09-13	11:07	d9-Acridine	105	%	ALS	RG_MIDAG_SE-1_2022-09-13_N
SE	RG_MIDAG	665217	5489528	2022	1	2022-09-13	11:07	d12-Chrysene	123	%	ALS	RG_MIDAG_SE-1_2022-09-13_N
SE	RG_MIDAG	665217	5489528	2022	1	2022-09-13	11:07	d8-Naphthalene	84.1	%	ALS	RG_MIDAG_SE-1_2022-09-13_N
SE	RG_MIDAG	665217	5489528	2022	1	2022-09-13	11:07	d10-Phenanthrene	111	%	ALS	RG_MIDAG_SE-1_2022-09-13_N
SE	RG_MIDAG	665266	5489463	2022	2	2022-09-13	10:17	Moisture	85.9	%	ALS	RG_MIDAG_SE-2_2022-09-13_N
SE	RG_MIDAG	665266	5489463	2022	2	2022-09-13	10:17	pH (1:2 soil:water)	7.42	рН	ALS	RG_MIDAG_SE-2_2022-09-13_N
SE	RG_MIDAG	665266	5489463	2022	2	2022-09-13	10:17	% Clay (<4 μm)	9.1	%	ALS	RG_MIDAG_SE-2_2022-09-13_N
SE	RG_MIDAG	665266	5489463	2022	2	2022-09-13	10:17	% Silt (0.063 mm - 0.0312 mm)	36.8	%	ALS	RG_MIDAG_SE-2_2022-09-13_N
SE	RG_MIDAG	665266	5489463	2022	2	2022-09-13	10:17	% Silt (0.031 mm - 0.004 mm)	41.1	%	ALS	RG_MIDAG_SE-2_2022-09-13_N
SE	RG_MIDAG	665266	5489463	2022	2	2022-09-13	10:17	% Sand (0.125 mm - 0.063 mm)	7.4	%	ALS	RG_MIDAG_SE-2_2022-09-13_N
SE	RG_MIDAG	665266	5489463	2022	2	2022-09-13	10:17	% Sand (0.25 mm - 0.125 mm)	3	%	ALS	RG_MIDAG_SE-2_2022-09-13_N
SE	RG_MIDAG	665266	5489463	2022	2	2022-09-13	10:17	% Sand (0.50 mm - 0.25 mm)	1.4	%	ALS	RG_MIDAG_SE-2_2022-09-13_N
SE	RG_MIDAG	665266	5489463	2022	2	2022-09-13	10:17	% Sand (1.00 mm - 0.50 mm)	1	%	ALS	RG_MIDAG_SE-2_2022-09-13_N
SE	RG_MIDAG	665266	5489463	2022	2	2022-09-13	10:17	% Sand (2.00 mm - 1.00 mm)	<1	%	ALS	RG_MIDAG_SE-2_2022-09-13_N
SE	RG_MIDAG	665266	5489463	2022	2	2022-09-13	10:17	% Gravel (>2 mm)	<1	%	ALS	RG_MIDAG_SE-2_2022-09-13_N
SE	RG_MIDAG	665266	5489463	2022	2	2022-09-13	10:17	Inorganic Carbon <63 µm	2.49	%	ALS	RG_MIDAG_SE-2_2022-09-13_N
SE	RG_MIDAG	665266	5489463	2022	2	2022-09-13	10:17	Total Carbon <63 μm	12.9	%	ALS	RG_MIDAG_SE-2_2022-09-13_N
SE	RG_MIDAG	665266	5489463	2022	2	2022-09-13	10:17	Total Organic Carbon	10.4	%	ALS	RG_MIDAG_SE-2_2022-09-13_N
SE	RG_MIDAG	665266	5489463	2022	2	2022-09-13	10:17	Inorganic Carbon (as CaCO3 equivalent)	20.7	%	ALS	RG_MIDAG_SE-2_2022-09-13_N
SE	RG_MIDAG	665266	5489463	2022	2	2022-09-13	10:17	Aluminum (Al)	6530	mg/kg	ALS	RG_MIDAG_SE-2_2022-09-13_N
SE	RG_MIDAG	665266	5489463	2022	2	2022-09-13	10:17	Antimony (Sb)	0.48	mg/kg	ALS	RG_MIDAG_SE-2_2022-09-13_N

WSP Canada Inc. Page 282 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Type	Station	Location	(UTMs) ^(a)	Year	Poplicate	Data	Time	Analyta	Popult	Unit		Laboratory Information
ype	Station	Easting	Northing	rear	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	RG MIDAG	665266	5489463	2022	2	2022-09-13	10:17	Arsenic (As)	5.45	mg/kg	ALS	RG MIDAG SE-2 2022-09-13 N
SE	RG MIDAG	665266	5489463	2022	2	2022-09-13	10:17	Barium (Ba)	111	mg/kg	ALS	RG MIDAG SE-2 2022-09-13 N
SE	RG MIDAG	665266	5489463	2022	2	2022-09-13	10:17	Beryllium (Be)	0.61	mg/kg	ALS	RG_MIDAG_SE-2_2022-09-13_N
SE	RG MIDAG	665266	5489463	2022	2	2022-09-13	10:17	Bismuth (Bi)	<0.2	mg/kg	ALS	RG MIDAG SE-2 2022-09-13 N
SE.	RG MIDAG	665266	5489463	2022	2	2022-09-13	10:17	Boron (B)	8.7	mg/kg	ALS	RG_MIDAG_SE-2_2022-09-13_N
SE	RG MIDAG	665266	5489463	2022	2	2022-09-13	10:17	Cadmium (Cd)	1.68	mg/kg	ALS	RG MIDAG SE-2 2022-09-13 N
SE	RG MIDAG	665266	5489463	2022	2	2022-09-13	10:17	Calcium (Ca)	76400	mg/kg	ALS	RG MIDAG SE-2 2022-09-13 N
SE	RG MIDAG	665266	5489463	2022	2	2022-09-13	10:17	Chromium (Cr)	10.1	mg/kg	ALS	RG_MIDAG_SE-2_2022-09-13_N
SE	RG MIDAG	665266	5489463	2022	2	2022-09-13	10:17	Cobalt (Co)	17.5	mg/kg	ALS	RG_MIDAG_SE-2_2022-09-13_N
SE	RG MIDAG	665266	5489463	2022	2	2022-09-13	10:17	Copper (Cu)	11.7	mg/kg	ALS	RG MIDAG SE-2 2022-09-13 N
SE	RG MIDAG	665266	5489463	2022	2	2022-09-13	10:17	Iron (Fe)	10400	mg/kg	ALS	RG_MIDAG_SE-2_2022-09-13_N
SE	RG MIDAG	665266	5489463	2022	2	2022-09-13	10:17	Lead (Pb)	7.34	mg/kg	ALS	RG MIDAG SE-2 2022-09-13 N
SE	RG MIDAG	665266	5489463	2022	2	2022-09-13	10:17	Lithium (Li)	11.3	mg/kg	ALS	RG MIDAG SE-2 2022-09-13 N
SE	RG MIDAG	665266	5489463	2022	2	2022-09-13	10:17	Magnesium (Mg)	7770	mg/kg	ALS	RG MIDAG SE-2 2022-09-13 N
SE	RG MIDAG	665266	5489463	2022	2	2022-09-13	10:17	Manganese (Mn)	194	mg/kg	ALS	RG MIDAG SE-2 2022-09-13 N
SE	RG MIDAG	665266	5489463	2022	2	2022-09-13	10:17	Mercury (Hg)	0.0352	mg/kg	ALS	RG MIDAG SE-2 2022-09-13 N
SE	RG MIDAG	665266	5489463	2022	2	2022-09-13	10:17	Molybdenum (Mo)	1.23	mg/kg	ALS	RG MIDAG SE-2 2022-09-13 N
SE	RG MIDAG	665266	5489463	2022	2	2022-09-13	10:17	Nickel (Ni)	62.7	mg/kg	ALS	RG MIDAG SE-2 2022-09-13 N
SE	RG MIDAG	665266	5489463	2022	2	2022-09-13	10:17	Phosphorus (P)	1100	mg/kg	ALS	RG MIDAG SE-2 2022-09-13 N
SE	RG MIDAG	665266	5489463	2022	2	2022-09-13	10:17	Potassium (K)	1280	mg/kg	ALS	RG MIDAG SE-2 2022-09-13 N
SE	RG MIDAG	665266	5489463	2022	2	2022-09-13	10:17	Selenium (Se)	4.71	mg/kg	ALS	RG MIDAG SE-2 2022-09-13 N
SE	RG MIDAG	665266	5489463	2022	2	2022-09-13	10:17	Silver (Ag)	0.19	mg/kg	ALS	RG_MIDAG_SE-2_2022-09-13_N
SE	RG MIDAG	665266	5489463	2022	2	2022-09-13	10:17	Sodium (Na)	175	mg/kg	ALS	RG MIDAG SE-2 2022-09-13 N
SE	RG MIDAG	665266	5489463	2022	2	2022-09-13	10:17	Strontium (Sr)	114	mg/kg	ALS	RG_MIDAG_SE-2_2022-09-13_N
SE	RG MIDAG	665266	5489463	2022	2	2022-09-13	10:17	Sulfur (S)	1800	mg/kg	ALS	RG MIDAG SE-2 2022-09-13 N
SE	RG MIDAG	665266	5489463	2022	2	2022-09-13	10:17	Thallium (TI)	0.39	mg/kg	ALS	RG MIDAG SE-2 2022-09-13 N
SE	RG MIDAG	665266	5489463	2022	2	2022-09-13	10:17	Tin (Sn)	<2	mg/kg	ALS	RG MIDAG SE-2 2022-09-13 N
SE	RG MIDAG	665266	5489463	2022	2	2022-09-13	10:17	Titanium (Ti)	13.7	mg/kg	ALS	RG MIDAG SE-2 2022-09-13 N
SE	RG MIDAG	665266	5489463	2022	2	2022-09-13	10:17	Tungsten (W)	<0.5	mg/kg	ALS	RG MIDAG SE-2 2022-09-13 N
SE	RG MIDAG	665266	5489463	2022	2	2022-09-13	10:17	Uranium (U)	0.967	mg/kg	ALS	RG MIDAG SE-2 2022-09-13 N
SE	RG MIDAG	665266	5489463	2022	2	2022-09-13	10:17	Vanadium (V)	17.7	mg/kg	ALS	RG_MIDAG_SE-2_2022-09-13_N
SE	RG MIDAG	665266	5489463	2022	2	2022-09-13	10:17	Zinc (Zn)	123	mg/kg	ALS	RG MIDAG SE-2 2022-09-13 N
SE	RG MIDAG	665266	5489463	2022	2	2022-09-13	10:17	Zirconium (Zr)	1.5	mg/kg	ALS	RG MIDAG SE-2 2022-09-13 N
SE	RG MIDAG	665266	5489463	2022	2	2022-09-13	10:17	Acenaphthene	<0.069	mg/kg	ALS	RG MIDAG SE-2 2022-09-13 N
SE	RG MIDAG	665266	5489463	2022	2	2022-09-13	10:17	Acenaphthylene	<0.069	mg/kg	ALS	RG MIDAG SE-2 2022-09-13 N
SE	RG MIDAG	665266	5489463	2022	2	2022-09-13	10:17	Acridine	<0.069	mg/kg	ALS	RG MIDAG SE-2 2022-09-13 N
SE	RG MIDAG	665266	5489463	2022	2	2022-09-13	10:17	Anthracene	<0.069	mg/kg	ALS	RG MIDAG SE-2 2022-09-13 N
SE	RG MIDAG	665266	5489463	2022	2	2022-09-13	10:17	Benz(a)anthracene	<0.069	mg/kg	ALS	RG MIDAG SE-2 2022-09-13 N
SE	RG MIDAG	665266	5489463	2022	2	2022-09-13	10:17	Benzo(a)pyrene	<0.069	mg/kg	ALS	RG MIDAG SE-2 2022-09-13 N
SE	RG MIDAG	665266	5489463	2022	2	2022-09-13	10:17	Benzo(b&j)fluoranthene	0.103	mg/kg	ALS	RG MIDAG SE-2 2022-09-13 N
SE	RG_MIDAG	665266	5489463	2022	2	2022-09-13	10:17	Benzo(b+j+k)fluoranthene	0.103	mg/kg	ALS	RG MIDAG SE-2 2022-09-13 N
SE	RG MIDAG	665266	5489463	2022	2	2022-09-13	10:17	Benzo(g_h_i)perylene	<0.069	mg/kg	ALS	RG MIDAG SE-2 2022-09-13 N
SE	RG MIDAG	665266	5489463	2022	2	2022-09-13	10:17	Benzo(k)fluoranthene	<0.069	mg/kg	ALS	RG MIDAG SE-2 2022-09-13 N
SE	RG MIDAG	665266	5489463	2022	2	2022-09-13	10:17	Chrysene	0.146	mg/kg	ALS	RG MIDAG SE-2 2022-09-13 N
	RG MIDAG	665266	5489463	2022	2	2022-09-13	10:17	Dibenz(a h)anthracene	<0.069	mg/kg	ALS	RG MIDAG SE-2 2022-09-13 N
SE I		—						\ = /		99		
SE SE	RG MIDAG	665266	5489463	2022	2	2022-09-13	10:17	Fluoranthene	0.074	mg/kg	ALS	RG MIDAG SE-2 2022-09-13 N

WSP Canada Inc. Page 283 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	Ctation	Location	ı (UTMs) ^(a)	Vacu	Doubleate	Dete	Time	Analista	Decult	Hois		Laboratory Information
Гуре	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	RG MIDAG	665266	5489463	2022	2	2022-09-13	10:17	Indeno(1,2,3-c,d)pyrene	<0.069	mg/kg	ALS	RG MIDAG SE-2 2022-09-13 N
SE.	RG MIDAG	665266	5489463	2022	2	2022-09-13	10:17	1+2-Methylnaphthalene	0.819	mg/kg	ALS	RG MIDAG SE-2 2022-09-13 N
SE	RG MIDAG	665266	5489463	2022	2	2022-09-13	10:17	1-Methylnaphthalene	0.333	mg/kg	ALS	RG MIDAG SE-2 2022-09-13 N
SE	RG MIDAG	665266	5489463	2022	2	2022-09-13	10:17	2-Methylnaphthalene	0.486	mg/kg	ALS	RG MIDAG SE-2 2022-09-13 N
SE	RG MIDAG	665266	5489463	2022	2	2022-09-13	10:17	Naphthalene	0.236	mg/kg	ALS	RG MIDAG SE-2 2022-09-13 N
SE	RG MIDAG	665266	5489463	2022	2	2022-09-13	10:17	Phenanthrene	0.416	mg/kg	ALS	RG MIDAG SE-2 2022-09-13 N
SE	RG MIDAG	665266	5489463	2022	2	2022-09-13	10:17	Pyrene	0.071	mg/kg	ALS	RG MIDAG SE-2 2022-09-13 N
SE	RG MIDAG	665266	5489463	2022	2	2022-09-13	10:17	Quinoline	<0.069	mg/kg	ALS	RG MIDAG SE-2 2022-09-13 N
SE	RG_MIDAG	665266	5489463	2022	2	2022-09-13	10:17	B(a)P Total Potency Equivalent	0.091	mg/kg	ALS	RG_MIDAG_SE-2_2022-09-13_N
SE	RG MIDAG	665266	5489463	2022	2	2022-09-13	10:17	PAHs, total (BC Sched 3.4)	1.43	mg/kg	ALS	RG MIDAG SE-2 2022-09-13 N
SE	RG MIDAG	665266	5489463	2022	2	2022-09-13	10:17	PAHs, total	1.05	mg/kg	ALS	RG MIDAG SE-2 2022-09-13 N
SE	RG MIDAG	665266	5489463	2022	2	2022-09-13	10:17	d9-Acridine	92.7	%	ALS	RG MIDAG SE-2 2022-09-13 N
SE	RG MIDAG	665266	5489463	2022	2	2022-09-13	10:17	d12-Chrysene	105	%	ALS	RG MIDAG SE-2 2022-09-13 N
SE	RG MIDAG	665266	5489463	2022	2	2022-09-13	10:17	d8-Naphthalene	70	%	ALS	RG_MIDAG_SE-2_2022-09-13_N
SE	RG MIDAG	665266	5489463	2022	2	2022-09-13	10:17	d10-Phenanthrene	96.7	%	ALS	RG MIDAG SE-2 2022-09-13 N
SE	RG MIDAG	665217	5489528	2022	3	2022-09-13	09:20	Moisture	83.9	%	ALS	RG MIDAG SE-3 2022-09-13 N
SE	RG MIDAG	665217	5489528	2022	3	2022-09-13	09:20	pH (1:2 soil:water)	7.28	pH	ALS	RG MIDAG_SE-3_2022-09-13_N
SE	RG MIDAG	665217	5489528	2022	3	2022-09-13	09:20	7	8.5	%	ALS	RG MIDAG SE-3 2022-09-13 N
SE	RG_MIDAG	665217	5489528	2022	3	2022-09-13	09.20	% Clay (<4 μm) % Silt (0.063 mm - 0.0312 mm)	35.2	%		RG MIDAG SE-3 2022-09-13 N
E					3					%	ALS ALS	
	RG_MIDAG	665217	5489528	2022		2022-09-13	09:20	% Silt (0.031 mm - 0.004 mm)	36.7			RG_MIDAG_SE-3_2022-09-13_N
E	RG_MIDAG	665217	5489528	2022	3	2022-09-13	09:20	% Sand (0.125 mm - 0.063 mm)	10.6	%	ALS	RG_MIDAG_SE-3_2022-09-13_N
E	RG_MIDAG	665217	5489528	2022	3	2022-09-13	09:20	% Sand (0.25 mm - 0.125 mm)	5.4	%	ALS	RG_MIDAG_SE-3_2022-09-13_N
E	RG_MIDAG	665217	5489528	2022	3	2022-09-13	09:20	% Sand (0.50 mm - 0.25 mm)	1.6	%	ALS	RG_MIDAG_SE-3_2022-09-13_N
E	RG_MIDAG	665217	5489528	2022	3	2022-09-13	09:20	% Sand (1.00 mm - 0.50 mm)	<1	%	ALS	RG_MIDAG_SE-3_2022-09-13_N
SE	RG_MIDAG	665217	5489528	2022	3	2022-09-13	09:20	% Sand (2.00 mm - 1.00 mm)	<1	%	ALS	RG_MIDAG_SE-3_2022-09-13_N
SE	RG_MIDAG	665217	5489528	2022	3	2022-09-13	09:20	% Gravel (>2 mm)	<1	%	ALS	RG_MIDAG_SE-3_2022-09-13_N
SE_	RG_MIDAG	665217	5489528	2022	3	2022-09-13	09:20	Inorganic Carbon <63 μm	2.74	%	ALS	RG_MIDAG_SE-3_2022-09-13_N
SE	RG_MIDAG	665217	5489528	2022	3	2022-09-13	09:20	Total Carbon <63 μm	13	%	ALS	RG_MIDAG_SE-3_2022-09-13_N
SE	RG_MIDAG	665217	5489528	2022	3	2022-09-13	09:20	Total Organic Carbon	10.3	%	ALS	RG_MIDAG_SE-3_2022-09-13_N
SE	RG_MIDAG	665217	5489528	2022	3	2022-09-13	09:20	Inorganic Carbon (as CaCO3 equivalent)	22.8	%	ALS	RG_MIDAG_SE-3_2022-09-13_N
SE	RG_MIDAG	665217	5489528	2022	-	2022-09-13	09:20	Aluminum (AI)	5800	mg/kg	ALS	RG_MIDAG_SE-3_2022-09-13_N
SE	RG_MIDAG	665217	5489528	2022	-	2022-09-13	09:20	Antimony (Sb)	0.38	mg/kg	ALS	RG_MIDAG_SE-3_2022-09-13_N
SE	RG_MIDAG	665217	5489528	2022		2022-09-13	09:20	Arsenic (As)	4.33	mg/kg	ALS	RG_MIDAG_SE-3_2022-09-13_N
SE	RG_MIDAG	665217	5489528	2022	3	2022-09-13	09:20	Barium (Ba)	111	mg/kg	ALS	RG_MIDAG_SE-3_2022-09-13_N
SE	RG_MIDAG	665217	5489528	2022	3	2022-09-13	09:20	Beryllium (Be)	0.56	mg/kg	ALS	RG_MIDAG_SE-3_2022-09-13_N
SE	RG_MIDAG	665217	5489528	2022	3	2022-09-13	09:20	Bismuth (Bi)	<0.2	mg/kg	ALS	RG_MIDAG_SE-3_2022-09-13_N
SE	RG_MIDAG	665217	5489528	2022	3	2022-09-13	09:20	Boron (B)	8	mg/kg	ALS	RG_MIDAG_SE-3_2022-09-13_N
SE	RG_MIDAG	665217	5489528	2022	3	2022-09-13	09:20	Cadmium (Cd)	1.57	mg/kg	ALS	RG_MIDAG_SE-3_2022-09-13_N
SE	RG_MIDAG	665217	5489528	2022	-	2022-09-13	09:20	Calcium (Ca)	81500	mg/kg	ALS	RG_MIDAG_SE-3_2022-09-13_N
SE.	RG_MIDAG	665217	5489528	2022	3	2022-09-13	09:20	Chromium (Cr)	8.97	mg/kg	ALS	RG_MIDAG_SE-3_2022-09-13_N
SE.	RG_MIDAG	665217	5489528	2022	3	2022-09-13	09:20	Cobalt (Co)	15.2	mg/kg	ALS	RG_MIDAG_SE-3_2022-09-13_N
SE	RG_MIDAG	665217	5489528	2022	3	2022-09-13	09:20	Copper (Cu)	10.9	mg/kg	ALS	RG_MIDAG_SE-3_2022-09-13_N
SE	RG_MIDAG	665217	5489528	2022	3	2022-09-13	09:20	Iron (Fe)	9360	mg/kg	ALS	RG_MIDAG_SE-3_2022-09-13_N
SE.	RG_MIDAG	665217	5489528	2022	3	2022-09-13	09:20	Lead (Pb)	6.96	mg/kg	ALS	RG_MIDAG_SE-3_2022-09-13_N
Ε	RG_MIDAG	665217	5489528	2022	3	2022-09-13	09:20	Lithium (Li)	11.1	mg/kg	ALS	RG_MIDAG_SE-3_2022-09-13_N
Ε	RG_MIDAG	665217	5489528	2022	3	2022-09-13	09:20	Magnesium (Mg)	7200	mg/kg	ALS	RG_MIDAG_SE-3_2022-09-13_N
SE	RG MIDAG	665217	5489528	2022		2022-09-13	09:20	Manganese (Mn)	132	mg/kg	ALS	RG MIDAG SE-3 2022-09-13 N

WSP Canada Inc. Page 284 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Type	Station	Location	ı (UTMs) ^(a)	Year	Poplicate	Data	Time	Analyto	Pocult -	Unit		Laboratory Information
ype	Station	Easting	Northing	rear	Replicate	Date	rime	Analyte	Result	Unit	Lab	Sample ID
SE	RG MIDAG	665217	5489528	2022	3	2022-09-13	09:20	Mercury (Hg)	0.0326	mg/kg	ALS	RG_MIDAG_SE-3_2022-09-13_N
SE.	RG MIDAG	665217	5489528	2022	3	2022-09-13	09:20	Molybdenum (Mo)	1.09	mg/kg	ALS	RG MIDAG SE-3 2022-09-13 N
SE	RG MIDAG	665217	5489528	2022	3	2022-09-13	09:20	Nickel (Ni)	57.9	mg/kg	ALS	RG MIDAG SE-3 2022-09-13 N
SE	RG MIDAG	665217	5489528	2022	3	2022-09-13	09:20	Phosphorus (P)	984	mg/kg	ALS	RG MIDAG SE-3 2022-09-13 N
SE	RG MIDAG	665217	5489528	2022	3	2022-09-13	09:20	Potassium (K)	1110	mg/kg	ALS	RG_MIDAG_SE-3_2022-09-13_N
SE	RG MIDAG	665217	5489528	2022	3	2022-09-13	09:20	Selenium (Se)	3.73	mg/kg	ALS	RG MIDAG SE-3 2022-09-13 N
SE	RG MIDAG	665217	5489528	2022	3	2022-09-13	09:20	Silver (Ag)	0.17	mg/kg	ALS	RG MIDAG SE-3 2022-09-13 N
SE	RG MIDAG	665217	5489528	2022	3	2022-09-13	09:20	Sodium (Na)	145	mg/kg	ALS	RG_MIDAG_SE-3_2022-09-13_N
SE	RG MIDAG	665217	5489528	2022	3	2022-09-13	09:20	Strontium (Sr)	116	mg/kg	ALS	RG MIDAG SE-3 2022-09-13 N
SE	RG MIDAG	665217	5489528	2022	3	2022-09-13	09:20	Sulfur (S)	1900	mg/kg	ALS	RG MIDAG SE-3 2022-09-13 N
SE	RG MIDAG	665217	5489528	2022	3	2022-09-13	09:20	Thallium (TI)	0.356	mg/kg	ALS	RG_MIDAG_SE-3_2022-09-13_N
SE	RG MIDAG	665217	5489528	2022	3	2022-09-13	09:20	Tin (Sn)	<2	mg/kg	ALS	RG MIDAG SE-3 2022-09-13 N
SE	RG MIDAG	665217	5489528	2022	3	2022-09-13	09:20	Titanium (Ti)	14.1	mg/kg	ALS	RG MIDAG SE-3 2022-09-13 N
SE	RG MIDAG	665217	5489528	2022	3	2022-09-13	09:20	Tungsten (W)	<0.5	mg/kg	ALS	RG MIDAG SE-3 2022-09-13 N
SE	RG MIDAG	665217	5489528	2022	3	2022-09-13	09:20	Uranium (U)	0.885	mg/kg	ALS	RG MIDAG SE-3 2022-09-13 N
SE	RG MIDAG	665217	5489528	2022	3	2022-09-13	09:20	Vanadium (V)	15.2	mg/kg	ALS	RG_MIDAG_SE-3_2022-09-13_N
SE	RG MIDAG	665217	5489528	2022	3	2022-09-13	09:20	Zinc (Zn)	115	mg/kg	ALS	RG MIDAG SE-3 2022-09-13 N
SE	RG MIDAG	665217	5489528	2022	3	2022-09-13	09:20	Zirconium (Zr)	1.3	mg/kg	ALS	RG MIDAG SE-3 2022-09-13 N
SE	RG MIDAG	665217	5489528	2022	3	2022-09-13	09:20	Acenaphthene	<0.07	mg/kg	ALS	RG MIDAG SE-3 2022-09-13 N
SE	RG MIDAG	665217	5489528	2022	3	2022-09-13	09:20	Acenaphthylene	<0.07	mg/kg	ALS	RG MIDAG SE-3 2022-09-13 N
SE	RG MIDAG	665217	5489528	2022	3	2022-09-13	09:20	Acridine	<0.07	mg/kg	ALS	RG MIDAG SE-3 2022-09-13 N
SE	RG MIDAG	665217	5489528	2022	3	2022-09-13	09:20	Anthracene	<0.07	mg/kg	ALS	RG MIDAG SE-3 2022-09-13 N
SE	RG MIDAG	665217	5489528	2022	3	2022-09-13	09:20	Benz(a)anthracene	<0.07	mg/kg	ALS	RG MIDAG SE-3 2022-09-13 N
SE	RG MIDAG	665217	5489528	2022	3	2022-09-13	09:20	Benzo(a)pyrene	<0.07	mg/kg	ALS	RG MIDAG SE-3 2022-09-13 N
SE	RG MIDAG	665217	5489528	2022	3	2022-09-13	09:20	Benzo(b&j)fluoranthene	0.11	mg/kg	ALS	RG MIDAG SE-3 2022-09-13 N
SE	RG MIDAG	665217	5489528	2022	3	2022-09-13	09:20	Benzo(b+j+k)fluoranthene	0.11	mg/kg	ALS	RG MIDAG SE-3 2022-09-13 N
SE	RG MIDAG	665217	5489528	2022	3	2022-09-13	09:20	Benzo(g_h_i)perylene	<0.07	mg/kg	ALS	RG MIDAG SE-3 2022-09-13 N
SE	RG MIDAG	665217	5489528	2022	3	2022-09-13	09:20	Benzo(k)fluoranthene	<0.07	mg/kg	ALS	RG MIDAG SE-3 2022-09-13 N
SE	RG MIDAG	665217	5489528	2022	3	2022-09-13	09:20	Chrysene	0.163	mg/kg	ALS	RG MIDAG SE-3 2022-09-13 N
SE	RG MIDAG	665217	5489528	2022	3	2022-09-13	09:20	Dibenz(a_h)anthracene	<0.07	mg/kg	ALS	RG MIDAG SE-3 2022-09-13 N
SE	RG MIDAG	665217	5489528	2022	3	2022-09-13	09:20	Fluoranthene	0.092	mg/kg	ALS	RG MIDAG SE-3 2022-09-13 N
SE	RG MIDAG	665217	5489528	2022	3	2022-09-13	09:20	Fluorene	<0.07	mg/kg	ALS	RG MIDAG SE-3 2022-09-13 N
SE	RG MIDAG	665217	5489528	2022	3	2022-09-13	09:20	Indeno(1,2,3-c,d)pyrene	<0.07	mg/kg	ALS	RG MIDAG SE-3 2022-09-13 N
SE	RG MIDAG	665217	5489528	2022	3	2022-09-13	09:20	1+2-Methylnaphthalene	0.876	mg/kg	ALS	RG MIDAG SE-3 2022-09-13 N
SE	RG MIDAG	665217	5489528	2022	3	2022-09-13	09:20	1-Methylnaphthalene	0.366	mg/kg	ALS	RG MIDAG SE-3 2022-09-13 N
SE	RG MIDAG	665217	5489528	2022	3	2022-09-13	09:20	2-Methylnaphthalene	0.51	mg/kg	ALS	RG MIDAG SE-3 2022-09-13 N
SE	RG_MIDAG	665217	5489528	2022	3	2022-09-13	09:20	Naphthalene	0.267		ALS	RG MIDAG SE-3 2022-09-13 N
SE	RG MIDAG	665217	5489528	2022	3	2022-09-13	09.20	Phenanthrene	0.207	mg/kg	ALS	RG MIDAG SE-3 2022-09-13 N
SE SE	RG_MIDAG RG MIDAG	665217	5489528	2022	3	2022-09-13	09.20	Pyrene	0.44	mg/kg mg/kg	ALS	RG MIDAG SE-3 2022-09-13 N
SE SE	RG_MIDAG RG MIDAG	665217	5489528	2022	3	2022-09-13	09.20	Quinoline	<0.079		ALS	RG MIDAG SE-3 2022-09-13 N
SE SE	RG_MIDAG RG MIDAG	665217		2022	3	2022-09-13				mg/kg	ł	
	_	665217	5489528		3		09:20	B(a)P Total Potency Equivalent	0.093	mg/kg	ALS	RG_MIDAG_SE-3_2022-09-13_N
SE	RG_MIDAG		5489528	2022		2022-09-13	09:20	PAHs, total (BC Sched 3.4)	1.55	mg/kg	ALS	RG_MIDAG_SE-3_2022-09-13_N
SE	RG_MIDAG	665217	5489528	2022	3	2022-09-13	09:20	PAHs, total	1.15	mg/kg	ALS	RG_MIDAG_SE-3_2022-09-13_N
SE	RG_MIDAG	665217	5489528	2022	3	2022-09-13	09:20	d9-Acridine	99.5	%	ALS	RG_MIDAG_SE-3_2022-09-13_N
SE	RG_MIDAG	665217	5489528	2022	3	2022-09-13	09:20	d12-Chrysene	114	%	ALS	RG_MIDAG_SE-3_2022-09-13_N
SE	RG_MIDAG	665217	5489528	2022	3	2022-09-13	09:20	d8-Naphthalene	78.8	%	ALS	RG_MIDAG_SE-3_2022-09-13_N
SE	RG_MIDAG	665217	5489528	2022	3	2022-09-13	09:20	d10-Phenanthrene	102	%	ALS	RG_MIDAG_SE-3_2022-09-13_N

WSP Canada Inc. Page 285 of 337

T	Ctation	Location	ı (UTMs) ^(a)	Vacu	Doublecte	Dete	Time	Analysta	Boould	Ша		Laboratory Information
Type	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	RG_MIDAG	665246	5489483	2022	4	2022-09-13	10:37	Moisture	90	%	ALS	RG MIDAG SE-4 2022-09-13 N
SE	RG MIDAG	665246	5489483	2022	4	2022-09-13	10:37	pH (1:2 soil:water)	7.42	pН	ALS	RG MIDAG SE-4 2022-09-13 N
SE	RG MIDAG	665246	5489483	2022	4	2022-09-13	10:37	% Clay (<4 μm)	9.7	%	ALS	RG MIDAG SE-4 2022-09-13 N
SE	RG MIDAG	665246	5489483	2022	4	2022-09-13	10:37	% Silt (0.063 mm - 0.0312 mm)	35.5	%	ALS	RG MIDAG SE-4 2022-09-13 N
SE	RG MIDAG	665246	5489483	2022	4	2022-09-13	10:37	% Silt (0.031 mm - 0.004 mm)	39.8	%	ALS	RG MIDAG SE-4 2022-09-13 N
SE	RG MIDAG	665246	5489483	2022	4	2022-09-13	10:37	% Sand (0.125 mm - 0.063 mm)	8.1	%	ALS	RG MIDAG SE-4 2022-09-13 N
SE	RG MIDAG	665246	5489483	2022	4	2022-09-13	10:37	% Sand (0.25 mm - 0.125 mm)	4.4	%	ALS	RG MIDAG SE-4 2022-09-13 N
SE	RG MIDAG	665246	5489483	2022	4	2022-09-13	10:37	% Sand (0.50 mm - 0.25 mm)	1.6	%	ALS	RG MIDAG SE-4 2022-09-13 N
SE	RG MIDAG	665246	5489483	2022	4	2022-09-13	10:37	% Sand (1.00 mm - 0.50 mm)	<1	%	ALS	RG MIDAG SE-4 2022-09-13 N
SE	RG MIDAG	665246	5489483	2022	4	2022-09-13	10:37	% Sand (2.00 mm - 1.00 mm)	<1	%	ALS	RG MIDAG SE-4 2022-09-13 N
SE	RG MIDAG	665246	5489483	2022	4	2022-09-13	10:37	% Gravel (>2 mm)	<1	%	ALS	RG MIDAG SE-4 2022-09-13 N
SE	RG MIDAG	665246	5489483	2022	4	2022-09-13	10:37	Inorganic Carbon <63 µm	2.19	%	ALS	RG MIDAG SE-4 2022-09-13 N
SE	RG MIDAG	665246	5489483	2022	4	2022-09-13	10:37	Total Carbon <63 µm	11.9	%	ALS	RG MIDAG SE-4 2022-09-13 N
SE	RG MIDAG	665246	5489483	2022	4	2022-09-13	10:37	Total Organic Carbon	9.71	%	ALS	RG MIDAG SE-4 2022-09-13 N
SE	RG MIDAG	665246	5489483	2022	4	2022-09-13	10:37	Inorganic Carbon (as CaCO3 equivalent)	18.2	%	ALS	RG MIDAG SE-4 2022-09-13 N
SE	RG MIDAG	665246	5489483	2022	4	2022-09-13	10:37	Aluminum (Al)	6920	mg/kg	ALS	RG MIDAG SE-4 2022-09-13 N
SE	RG MIDAG	665246	5489483	2022	4	2022-09-13	10:37	Antimony (Sb)	0.5	mg/kg	ALS	RG MIDAG SE-4 2022-09-13 N
SE	RG MIDAG	665246	5489483	2022	4	2022-09-13	10:37	Arsenic (As)	5.13	mg/kg	ALS	RG MIDAG SE-4 2022-09-13 N
SE	RG MIDAG	665246	5489483	2022	4	2022-09-13	10:37	Barium (Ba)	123	mg/kg	ALS	RG MIDAG SE-4 2022-09-13 N
SE	RG MIDAG	665246	5489483	2022	4	2022-09-13	10:37	Beryllium (Be)	0.62	mg/kg	ALS	RG MIDAG SE-4 2022-09-13 N
SE	RG MIDAG	665246	5489483	2022	4	2022-09-13	10:37	Bismuth (Bi)	<0.2	mg/kg	ALS	RG MIDAG SE-4 2022-09-13 N
SE	RG MIDAG	665246	5489483	2022	4	2022-09-13	10:37	Boron (B)	10	mg/kg	ALS	RG MIDAG SE-4 2022-09-13 N
SE	RG MIDAG	665246	5489483	2022	4	2022-09-13	10:37	Cadmium (Cd)	1.72	mg/kg	ALS	RG MIDAG SE-4 2022-09-13 N
SE	RG MIDAG	665246	5489483	2022	4	2022-09-13	10:37	Calcium (Ca)	67600	mg/kg	ALS	RG MIDAG SE-4 2022-09-13 N
SE	RG MIDAG	665246	5489483	2022	4	2022-09-13	10:37	Chromium (Cr)	10.4	mg/kg	ALS	RG MIDAG SE-4 2022-09-13 N
SE	RG MIDAG	665246	5489483	2022	4	2022-09-13	10:37	Cobalt (Co)	20.2	mg/kg	ALS	RG MIDAG SE-4 2022-09-13 N
SE	RG MIDAG	665246	5489483	2022	4	2022-09-13	10:37	Copper (Cu)	12.6	mg/kg	ALS	RG MIDAG SE-4 2022-09-13 N
SE	RG MIDAG	665246	5489483	2022	4	2022-09-13	10:37	Iron (Fe)	10400	mg/kg	ALS	RG MIDAG SE-4 2022-09-13 N
SE	RG MIDAG	665246	5489483	2022	4	2022-09-13	10:37	Lead (Pb)	7.75	mg/kg	ALS	RG MIDAG SE-4 2022-09-13 N
SE	RG MIDAG	665246	5489483	2022	4	2022-09-13	10:37	Lithium (Li)	11.1	mg/kg	ALS	RG MIDAG SE-4 2022-09-13 N
SE	RG_MIDAG	665246	5489483	2022	4	2022-09-13	10:37	Magnesium (Mg)	7190	mg/kg	ALS	RG_MIDAG_SE-4_2022-09-13_N
SE	RG MIDAG	665246	5489483	2022	4	2022-09-13	10:37	Manganese (Mn)	282	mg/kg	ALS	RG MIDAG SE-4 2022-09-13 N
SE	RG MIDAG	665246	5489483	2022	4	2022-09-13	10:37	Mercury (Hg)	0.0444	mg/kg	ALS	RG MIDAG SE-4 2022-09-13 N
SE	RG MIDAG	665246	5489483	2022	4	2022-09-13	10:37	Molybdenum (Mo)	1.25	mg/kg	ALS	RG MIDAG SE-4 2022-09-13 N
SE	RG MIDAG	665246	5489483	2022	4	2022-09-13	10:37	Nickel (Ni)	64.4	mg/kg	ALS	RG MIDAG SE-4 2022-09-13 N
SE	RG MIDAG	665246	5489483	2022	4	2022-09-13	10:37	Phosphorus (P)	1020	mg/kg	ALS	RG MIDAG SE-4 2022-09-13 N
SE	RG_MIDAG	665246	5489483	2022	4	2022-09-13	10:37	Potassium (K)	1390	mg/kg	ALS	RG MIDAG SE-4 2022-09-13 N
SE	RG MIDAG	665246	5489483	2022	4	2022-09-13	10:37	Selenium (Se)	6.19	mg/kg	ALS	RG MIDAG SE-4 2022-09-13 N
SE	RG MIDAG	665246	5489483	2022	4	2022-09-13	10:37	Silver (Ag)	0.21	mg/kg	ALS	RG MIDAG SE-4 2022-09-13 N
SE	RG MIDAG	665246	5489483	2022	4	2022-09-13	10:37	Sodium (Na)	149	mg/kg	ALS	RG MIDAG SE-4 2022-09-13 N
SE	RG MIDAG	665246	5489483	2022	4	2022-09-13	10:37	Strontium (Sr)	102	mg/kg	ALS	RG MIDAG SE-4 2022-09-13 N
SE	RG MIDAG	665246	5489483	2022	4	2022-09-13	10:37	Sulfur (S)	2100	mg/kg	ALS	RG MIDAG SE-4 2022-09-13 N
SE	RG MIDAG	665246	5489483	2022	4	2022-09-13	10:37	Thallium (TI)	0.379	mg/kg	ALS	RG MIDAG SE-4 2022-09-13 N
SE	RG MIDAG	665246	5489483	2022	4	2022-09-13	10:37	Tin (Sn)	<2	mg/kg	ALS	RG MIDAG SE-4 2022-09-13 N
SE	RG_MIDAG	665246	5489483	2022	1	2022-09-13	10:37	Titanium (Ti)	14.2	mg/kg	ALS	RG MIDAG SE-4 2022-09-13 N
SE	RG MIDAG	665246	5489483	2022	4	2022-09-13	10:37	Tungsten (W)	<0.5	mg/kg	ALS	RG MIDAG SE-4 2022-09-13 N
J∟	NG_MIDAG	665246	5489483	2022	+ 4	2022-09-13	10:37	Uranium (U)	1.02	mg/kg	ALS	RG MIDAG SE-4 2022-09-13 N

Sediment Screening

i abie i-	1: Sediment Chem			CMM LAEMP	Sampling St	ations, 2012 to	2022					
Type	Station		(UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
		Easting	Northing					· ·			Lab	Sample ID
SE	RG_MIDAG	665246	5489483	2022	4	2022-09-13	10:37	Vanadium (V)	18.9	mg/kg	ALS	RG_MIDAG_SE-4_2022-09-13_N
SE	RG_MIDAG	665246	5489483	2022	4	2022-09-13	10:37	Zinc (Zn)	125	mg/kg	ALS	RG_MIDAG_SE-4_2022-09-13_N
SE	RG_MIDAG	665246	5489483	2022	4	2022-09-13	10:37	Zirconium (Zr)	1.4	mg/kg	ALS	RG_MIDAG_SE-4_2022-09-13_N
SE	RG_MIDAG	665246	5489483	2022	4	2022-09-13	10:37	Acenaphthene	<0.14	mg/kg	ALS	RG_MIDAG_SE-4_2022-09-13_N
SE	RG_MIDAG	665246	5489483	2022	4	2022-09-13	10:37	Acenaphthylene	<0.14	mg/kg	ALS	RG_MIDAG_SE-4_2022-09-13_N
SE	RG_MIDAG	665246	5489483	2022	4	2022-09-13	10:37	Acridine	<0.14	mg/kg	ALS	RG_MIDAG_SE-4_2022-09-13_N
SE	RG_MIDAG	665246	5489483	2022	4	2022-09-13	10:37	Anthracene	<0.14	mg/kg	ALS	RG_MIDAG_SE-4_2022-09-13_N
SE	RG_MIDAG	665246	5489483	2022	4	2022-09-13	10:37	Benz(a)anthracene	<0.14	mg/kg	ALS	RG_MIDAG_SE-4_2022-09-13_N
SE	RG_MIDAG	665246	5489483	2022	4	2022-09-13	10:37	Benzo(a)pyrene	<0.14	mg/kg	ALS	RG_MIDAG_SE-4_2022-09-13_N
SE	RG_MIDAG	665246	5489483	2022	4	2022-09-13	10:37	Benzo(b&j)fluoranthene	0.212	mg/kg	ALS	RG_MIDAG_SE-4_2022-09-13_N
SE	RG_MIDAG	665246	5489483	2022	4	2022-09-13	10:37	Benzo(b+j+k)fluoranthene	0.212	mg/kg	ALS	RG_MIDAG_SE-4_2022-09-13_N
SE	RG_MIDAG	665246	5489483	2022	4	2022-09-13	10:37	Benzo(g_h_i)perylene	<0.14	mg/kg	ALS	RG_MIDAG_SE-4_2022-09-13_N
SE	RG_MIDAG	665246	5489483	2022	4	2022-09-13	10:37	Benzo(k)fluoranthene	<0.14	mg/kg	ALS	RG_MIDAG_SE-4_2022-09-13_N
SE	RG_MIDAG	665246	5489483	2022	4	2022-09-13	10:37	Chrysene	0.243	mg/kg	ALS	RG_MIDAG_SE-4_2022-09-13_N
SE	RG_MIDAG	665246	5489483	2022	4	2022-09-13	10:37	Dibenz(a_h)anthracene	<0.14	mg/kg	ALS	RG_MIDAG_SE-4_2022-09-13_N
SE	RG_MIDAG	665246	5489483	2022	4	2022-09-13	10:37	Fluoranthene	<0.14	mg/kg	ALS	RG_MIDAG_SE-4_2022-09-13_N
SE	RG_MIDAG	665246	5489483	2022	4	2022-09-13	10:37	Fluorene	<0.14	mg/kg	ALS	RG_MIDAG_SE-4_2022-09-13_N
SE	RG_MIDAG	665246	5489483	2022	4	2022-09-13	10:37	Indeno(1,2,3-c,d)pyrene	<0.14	mg/kg	ALS	RG_MIDAG_SE-4_2022-09-13_N
SE	RG_MIDAG	665246	5489483	2022	4	2022-09-13	10:37	1+2-Methylnaphthalene	0.986	mg/kg	ALS	RG MIDAG SE-4 2022-09-13 N
SE	RG_MIDAG	665246	5489483	2022	4	2022-09-13	10:37	1-Methylnaphthalene	0.403	mg/kg	ALS	RG MIDAG SE-4 2022-09-13 N
SE	RG MIDAG	665246	5489483	2022	4	2022-09-13	10:37	2-Methylnaphthalene	0.583	mg/kg	ALS	RG MIDAG SE-4 2022-09-13 N
SE	RG MIDAG	665246	5489483	2022	4	2022-09-13	10:37	Naphthalene	0.296	mg/kg	ALS	RG MIDAG SE-4_2022-09-13_N
SE	RG MIDAG	665246	5489483	2022	4	2022-09-13	10:37	Phenanthrene	0.544	mg/kg	ALS	RG MIDAG SE-4 2022-09-13 N
SE	RG MIDAG	665246	5489483	2022	4	2022-09-13	10:37	Pyrene	<0.14	mg/kg	ALS	RG MIDAG SE-4 2022-09-13 N
SE	RG MIDAG	665246	5489483	2022	4	2022-09-13	10:37	Quinoline	<0.14	mg/kg	ALS	RG MIDAG SE-4 2022-09-13 N
SE	RG MIDAG	665246	5489483	2022	4	2022-09-13	10:37	B(a)P Total Potency Equivalent	0.185	mg/kg	ALS	RG MIDAG SE-4 2022-09-13 N
SE	RG MIDAG	665246	5489483	2022	4	2022-09-13	10:37	PAHs, total (BC Sched 3.4)	1.67	mg/kg	ALS	RG MIDAG SE-4 2022-09-13 N
SE	RG MIDAG	665246	5489483	2022	4	2022-09-13	10:37	PAHs, total	1.3	mg/kg	ALS	RG MIDAG SE-4 2022-09-13 N
SE	RG MIDAG	665246	5489483	2022	4	2022-09-13	10:37	d9-Acridine	99.8	%	ALS	RG MIDAG SE-4_2022-09-13_N
SE	RG MIDAG	665246	5489483	2022	4	2022-09-13	10:37	d12-Chrysene	114	%	ALS	RG MIDAG SE-4 2022-09-13 N
SE	RG MIDAG	665246	5489483	2022	4	2022-09-13	10:37	d8-Naphthalene	74.5	%	ALS	RG MIDAG SE-4 2022-09-13 N
SE	RG MIDAG	665246	5489483	2022	4	2022-09-13	10:37	d10-Phenanthrene	102	%	ALS	RG MIDAG SE-4 2022-09-13 N
SE	RG MIDAG	665189	5489543	2022	5	2022-09-13	09:10	Moisture	88	%	ALS	RG MIDAG SE-5 2022-09-13 N
SE	RG MIDAG	665189	5489543	2022	5	2022-09-13	09:10	pH (1:2 soil:water)	7.65	рН	ALS	RG MIDAG SE-5 2022-09-13 N
SE	RG MIDAG	665189	5489543	2022	5	2022-09-13	09:10	% Clay (<4 μm)	8.1	%	ALS	RG MIDAG SE-5 2022-09-13 N
SE	RG_MIDAG	665189	5489543	2022	5	2022-09-13	09:10	% Silt (0.063 mm - 0.0312 mm)	36.3	%	ALS	RG MIDAG SE-5 2022-09-13 N
SE	RG MIDAG	665189	5489543	2022	5	2022-09-13	09:10	% Silt (0.031 mm - 0.004 mm)	39.4	%	ALS	RG MIDAG SE-5 2022-09-13 N
SE	RG MIDAG	665189	5489543	2022	5	2022-09-13	09:10	% Sand (0.125 mm - 0.063 mm)	6.4	%	ALS	RG MIDAG SE-5 2022-09-13 N
SE	RG MIDAG	665189	5489543	2022	5	2022-09-13	09:10	% Sand (0.25 mm - 0.125 mm)	3.4	%	ALS	RG MIDAG SE-5 2022-09-13 N
SE	RG_MIDAG	665189	5489543	2022	5	2022-09-13	09:10	% Sand (0.50 mm - 0.25 mm)	1.3	%	ALS	RG MIDAG SE-5 2022-09-13 N
SE	RG MIDAG	665189	5489543	2022	5	2022-09-13	09:10	% Sand (0.30 mm - 0.50 mm)	<1	%	ALS	RG MIDAG SE-5 2022-09-13 N
SE	RG_MIDAG	665189	5489543	2022	5	2022-09-13	09:10	% Sand (2.00 mm - 1.00 mm)	<1	%	ALS	RG MIDAG SE-5 2022-09-13 N
SE	RG_MIDAG	665189	5489543	2022	5	2022-09-13	09:10	% Gravel (>2 mm)	3.5	%	ALS	RG MIDAG SE-5 2022-09-13 N
SE	_		5489543		5					%		RG MIDAG SE-5 2022-09-13 N
	RG_MIDAG	665189		2022	5	2022-09-13	09:10	Inorganic Carbon <63 µm	2.97	+	ALS	
SE	RG_MIDAG	665189	5489543	2022	5	2022-09-13	09:10	Total Carbon <63 µm	15.5	%	ALS	RG_MIDAG_SE-5_2022-09-13_N
SE	RG_MIDAG	665189	5489543	2022	5	2022-09-13	09:10	Total Organic Carbon	12.5	%	ALS	RG_MIDAG_SE-5_2022-09-13_N
SE	RG_MIDAG	665189	5489543	2022	5	2022-09-13	09:10	Inorganic Carbon (as CaCO3 equivalent)	24.7	%	ALS	RG_MIDAG_SE-5_2022-09-13_N

WSP Canada Inc. Page 287 of 337

Sediment Screening

	Otation.	Location	າ (UTMs) ^(a)	V	Dankert	Dete	Time	Analyte	Door H	Had		Laboratory Information
ype	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	RG MIDAG	665189	5489543	2022	5	2022-09-13	09:10	Aluminum (AI)	6680	mg/kg	ALS	RG MIDAG SE-5 2022-09-13 N
SE.	RG MIDAG	665189	5489543	2022	5	2022-09-13	09:10	Antimony (Sb)	0.46	mg/kg	ALS	RG MIDAG SE-5 2022-09-13 N
SE.	RG MIDAG	665189	5489543	2022	5	2022-09-13	09:10	Arsenic (As)	4.66	mg/kg	ALS	RG MIDAG SE-5 2022-09-13 N
SE	RG MIDAG	665189	5489543	2022	5	2022-09-13	09:10	Barium (Ba)	117	mg/kg	ALS	RG MIDAG SE-5 2022-09-13 N
SE.	RG MIDAG	665189	5489543	2022	5	2022-09-13	09:10	Beryllium (Be)	0.57	mg/kg	ALS	RG MIDAG SE-5 2022-09-13 N
SE	RG MIDAG	665189	5489543	2022	5	2022-09-13	09:10	Bismuth (Bi)	<0.2	mg/kg	ALS	RG MIDAG SE-5 2022-09-13 N
SE	RG MIDAG	665189	5489543	2022	5	2022-09-13	09:10	Boron (B)	10.2	mg/kg	ALS	RG MIDAG SE-5 2022-09-13 N
E SE	RG MIDAG	665189	5489543	2022	5	2022-09-13	09:10	Cadmium (Cd)	1.56	mg/kg	ALS	RG MIDAG SE-5 2022-09-13 N
SE	RG MIDAG	665189	5489543	2022	5	2022-09-13	09:10	Calcium (Ca)	92000	mg/kg	ALS	RG_MIDAG_SE-5_2022-09-13_N
SE.	RG MIDAG	665189	5489543	2022	5	2022-09-13	09:10	Chromium (Cr)	10.4	mg/kg	ALS	RG MIDAG SE-5 2022-09-13 N
E SE	RG MIDAG	665189	5489543	2022	5	2022-09-13	09:10	Cobalt (Co)	14.2	mg/kg	ALS	RG MIDAG SE-5 2022-09-13 N
E SE	RG MIDAG	665189	5489543	2022	5	2022-09-13	09:10	Copper (Cu)	10.6	mg/kg	ALS	RG MIDAG SE-5 2022-09-13 N
SE	RG MIDAG	665189	5489543	2022	5	2022-09-13	09:10	Iron (Fe)	9640	mg/kg	ALS	RG MIDAG SE-5 2022-09-13 N
E SE	RG MIDAG	665189	5489543	2022	5	2022-09-13	09:10	Lead (Pb)	6.82	mg/kg	ALS	RG_MIDAG_SE-5_2022-09-13_N
E SE	RG MIDAG	665189	5489543	2022	5	2022-09-13	09:10	Lithium (Li)	11.3	mg/kg	ALS	RG MIDAG SE-5 2022-09-13 N
E SE	RG MIDAG	665189	5489543	2022	5	2022-09-13	09:10	Magnesium (Mg)	7290	mg/kg	ALS	RG MIDAG SE-5 2022-09-13 N
E SE	RG MIDAG	665189	5489543	2022	5	2022-09-13	09:10	Manganese (Mn)	148	mg/kg	ALS	RG MIDAG SE-5 2022-09-13 N
E E	RG MIDAG	665189	5489543	2022	5	2022-09-13	09:10	Mercury (Hg)	0.0334	mg/kg	ALS	RG MIDAG SE-5 2022-09-13 N
E	RG MIDAG	665189	5489543	2022	5	2022-09-13	09:10	Molybdenum (Mo)	1.19	mg/kg	ALS	RG MIDAG SE-5 2022-09-13 N
<u>=</u>	RG MIDAG	665189	5489543	2022	5	2022-09-13	09:10	Nickel (Ni)	57.2	mg/kg	ALS	RG MIDAG SE-5 2022-09-13 N
<u>-</u> Е	RG MIDAG	665189	5489543	2022	5	2022-09-13	09:10	Phosphorus (P)	1010	mg/kg	ALS	RG MIDAG SE-5 2022-09-13 N
<u>–</u> Е	RG MIDAG	665189	5489543	2022	5	2022-09-13	09:10	Potassium (K)	1390	mg/kg	ALS	RG MIDAG SE-5 2022-09-13 N
E	RG MIDAG	665189	5489543	2022	5	2022-09-13	09:10	Selenium (Se)	5.18	mg/kg	ALS	RG MIDAG SE-5 2022-09-13 N
E	RG MIDAG	665189	5489543	2022	5	2022-09-13	09:10	Silver (Ag)	0.17	mg/kg	ALS	RG_MIDAG_SE-5_2022-09-13_N
E	RG MIDAG	665189	5489543	2022	5	2022-09-13	09:10	Sodium (Na)	162	mg/kg	ALS	RG MIDAG SE-5 2022-09-13 N
E	RG MIDAG	665189	5489543	2022	5	2022-09-13	09:10	Strontium (Sr)	129	mg/kg	ALS	RG MIDAG SE-5 2022-09-13 N
SE	RG MIDAG	665189	5489543	2022	5	2022-09-13	09:10	Sulfur (S)	2400	mg/kg	ALS	RG MIDAG SE-5 2022-09-13 N
SE	RG MIDAG	665189	5489543	2022	5	2022-09-13	09:10	Thallium (TI)	0.393	mg/kg	ALS	RG MIDAG SE-5 2022-09-13 N
SE	RG MIDAG	665189	5489543	2022	5	2022-09-13	09:10	Tin (Sn)	<2	mg/kg	ALS	RG MIDAG SE-5 2022-09-13 N
SE	RG MIDAG	665189	5489543	2022	5	2022-09-13	09:10	Titanium (Ti)	17.9	mg/kg	ALS	RG MIDAG SE-5 2022-09-13 N
SE	RG_MIDAG	665189	5489543	2022	5	2022-09-13	09:10	Tungsten (W)	<0.5	mg/kg	ALS	RG MIDAG SE-5 2022-09-13 N
SE	RG MIDAG	665189	5489543	2022	5	2022-09-13	09:10	Uranium (U)	0.975	mg/kg	ALS	RG MIDAG SE-5 2022-09-13 N
SE	RG MIDAG	665189	5489543	2022	5	2022-09-13	09:10	Vanadium (V)	18.1	mg/kg	ALS	RG MIDAG SE-5 2022-09-13 N
SE	RG MIDAG	665189	5489543	2022	5	2022-09-13	09:10	Zinc (Zn)	117	mg/kg	ALS	RG MIDAG SE-5 2022-09-13 N
SE	RG MIDAG	665189	5489543	2022	5	2022-09-13	09:10	Zirconium (Zr)	1.7	mg/kg	ALS	RG MIDAG SE-5 2022-09-13 N
SE	RG MIDAG	665189	5489543	2022	5	2022-09-13	09:10	Acenaphthene	<0.073	mg/kg	ALS	RG MIDAG SE-5 2022-09-13 N
SE	RG MIDAG	665189	5489543	2022	5	2022-09-13	09:10	Acenaphthylene	<0.073	mg/kg	ALS	RG MIDAG SE-5 2022-09-13 N
SE	RG MIDAG	665189	5489543	2022	5	2022-09-13	09:10	Acridine	<0.073	mg/kg	ALS	RG MIDAG SE-5 2022-09-13 N
SE	RG MIDAG	665189	5489543	2022	5	2022-09-13	09:10	Anthracene	<0.073	mg/kg	ALS	RG MIDAG SE-5 2022-09-13 N
SE.	RG MIDAG	665189	5489543	2022	5	2022-09-13	09:10	Benz(a)anthracene	<0.073	mg/kg	ALS	RG MIDAG SE-5 2022-09-13 N
SE	RG MIDAG	665189	5489543	2022	5	2022-09-13	09:10	Benzo(a)pyrene	<0.073	mg/kg	ALS	RG MIDAG SE-5 2022-09-13 N
SE	RG MIDAG	665189	5489543	2022	5	2022-09-13	09:10	Benzo(b&j)fluoranthene	0.081	mg/kg	ALS	RG MIDAG SE-5 2022-09-13 N
SE	RG MIDAG	665189	5489543	2022	5	2022-09-13	09:10	Benzo(bkj)fluoranthene	<0.103	mg/kg	ALS	RG MIDAG SE-5 2022-09-13 N
SE	RG_MIDAG	665189	5489543	2022	5	2022-09-13	09:10	Benzo(g_h_i)perylene	<0.073	mg/kg	ALS	RG MIDAG SE-5 2022-09-13 N
SE	RG_MIDAG	665189	5489543	2022	5	2022-09-13	09:10	Benzo(k)fluoranthene	<0.073		ALS	RG MIDAG SE-5 2022-09-13 N
	RG_MIDAG	665189	5489543	2022	5		09:10			mg/kg	ALS	RG MIDAG SE-5 2022-09-13 N
SE SE	_					2022-09-13		Chrysene	0.124	mg/kg		
□	RG_MIDAG	665189	5489543	2022	5	2022-09-13	09:10	Dibenz(a_h)anthracene	< 0.073	mg/kg	ALS	RG_MIDAG_SE-5_2022-09-13_N

WSP Canada Inc. Page 288 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	1: Sediment Chem		(UTMs) ^(a)									Laboratory Information
Type	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	RG MIDAG	665189	5489543	2022	5	2022-09-13	09:10	Fluoranthene	<0.073	mg/kg	ALS	RG_MIDAG_SE-5_2022-09-13_N
SE	RG MIDAG	665189	5489543	2022	5	2022-09-13	09:10	Fluorene	<0.073	mg/kg	ALS	RG MIDAG SE-5 2022-09-13 N
SE	RG MIDAG	665189	5489543	2022	5	2022-09-13	09:10	Indeno(1,2,3-c,d)pyrene	<0.073	mg/kg	ALS	RG MIDAG SE-5 2022-09-13 N
SE	RG MIDAG	665189	5489543	2022	5	2022-09-13	09:10	1+2-Methylnaphthalene	0.66	mg/kg	ALS	RG MIDAG SE-5 2022-09-13 N
SE	RG MIDAG	665189	5489543	2022	5	2022-09-13	09:10	1-Methylnaphthalene	0.276	mg/kg	ALS	RG MIDAG SE-5 2022-09-13 N
SE	RG MIDAG	665189	5489543	2022	5	2022-09-13	09:10	2-Methylnaphthalene	0.384	mg/kg	ALS	RG MIDAG SE-5 2022-09-13 N
SE	RG MIDAG	665189	5489543	2022	5	2022-09-13	09:10	Naphthalene	0.218	mg/kg	ALS	RG MIDAG SE-5 2022-09-13 N
SE	RG MIDAG	665189	5489543	2022	5	2022-09-13	09:10	Phenanthrene	0.335	mg/kg	ALS	RG MIDAG SE-5 2022-09-13 N
SE	RG MIDAG	665189	5489543	2022	5	2022-09-13	09:10	Pyrene	<0.073	mg/kg	ALS	RG MIDAG SE-5 2022-09-13 N
SE	RG MIDAG	665189	5489543	2022	5	2022-09-13	09:10	Quinoline	<0.073	mg/kg	ALS	RG MIDAG SE-5 2022-09-13 N
SE	RG MIDAG	665189	5489543	2022	5	2022-09-13	09:10	B(a)P Total Potency Equivalent	0.094	mg/kg	ALS	RG MIDAG SE-5 2022-09-13 N
SE	RG MIDAG	665189	5489543	2022	5	2022-09-13	09:10	PAHs, total (BC Sched 3.4)	1.06	mg/kg	ALS	RG MIDAG SE-5 2022-09-13 N
SE	RG MIDAG	665189	5489543	2022	5	2022-09-13	09:10	PAHs, total	0.76	mg/kg	ALS	RG MIDAG SE-5 2022-09-13 N
SE	RG MIDAG	665189	5489543	2022	5	2022-09-13	09:10	d9-Acridine	99.3	%	ALS	RG MIDAG SE-5 2022-09-13 N
SE	RG MIDAG	665189	5489543	2022	5	2022-09-13	09:10	d12-Chrysene	115	%	ALS	RG MIDAG SE-5 2022-09-13 N
SE	RG MIDAG	665189	5489543	2022	5	2022-09-13	09:10	d8-Naphthalene	77.5	%	ALS	RG MIDAG SE-5 2022-09-13 N
SE	RG_MIDAG	665189	5489543	2022	5	2022-09-13	09:10	d10-Phenanthrene	103	%	ALS	RG MIDAG SE-5 2022-09-13 N
SE	RG MIDCO	667769	5487592	2022	1	2022-09-13	14:07	Moisture	75.7	%	ALS	RG MIDCO SE-1 2022-09-13 N
SE	_				1				7.85	1		
	RG_MIDCO	667769	5487592	2022	1	2022-09-13	14:07	pH (1:2 soil:water)		pΗ	ALS	RG_MIDCO_SE-1_2022-09-13_N
SE	RG_MIDCO	667769	5487592	2022	1	2022-09-13	14:07	% Clay (<4 μm)	10.9	%	ALS	RG_MIDCO_SE-1_2022-09-13_N
SE	RG_MIDCO	667769	5487592	2022	1 1	2022-09-13	14:07	% Silt (0.063 mm - 0.0312 mm)	28.8	%	ALS	RG_MIDCO_SE-1_2022-09-13_N
SE	RG_MIDCO	667769	5487592	2022	1	2022-09-13	14:07	% Silt (0.031 mm - 0.004 mm)	39.4	%	ALS	RG_MIDCO_SE-1_2022-09-13_N
SE	RG_MIDCO	667769	5487592	2022	1	2022-09-13	14:07	% Sand (0.125 mm - 0.063 mm)	7.2	%	ALS	RG_MIDCO_SE-1_2022-09-13_N
SE	RG_MIDCO	667769	5487592	2022	1	2022-09-13	14:07	% Sand (0.25 mm - 0.125 mm)	4	%	ALS	RG_MIDCO_SE-1_2022-09-13_N
SE	RG_MIDCO	667769	5487592	2022	1	2022-09-13	14:07	% Sand (0.50 mm - 0.25 mm)	2.5	%	ALS	RG_MIDCO_SE-1_2022-09-13_N
SE	RG_MIDCO	667769	5487592	2022	1	2022-09-13	14:07	% Sand (1.00 mm - 0.50 mm)	2.6	%	ALS	RG_MIDCO_SE-1_2022-09-13_N
SE	RG_MIDCO	667769	5487592	2022	1	2022-09-13	14:07	% Sand (2.00 mm - 1.00 mm)	3.4	%	ALS	RG_MIDCO_SE-1_2022-09-13_N
SE	RG_MIDCO	667769	5487592	2022	1	2022-09-13	14:07	% Gravel (>2 mm)	1.2	%	ALS	RG_MIDCO_SE-1_2022-09-13_N
SE	RG_MIDCO	667769	5487592	2022	1	2022-09-13	14:07	Inorganic Carbon <63 μm	2.33	%	ALS	RG_MIDCO_SE-1_2022-09-13_N
SE	RG_MIDCO	667769	5487592	2022	1	2022-09-13	14:07	Total Carbon <63 μm	9.32	%	ALS	RG_MIDCO_SE-1_2022-09-13_N
SE	RG_MIDCO	667769	5487592	2022	1	2022-09-13	14:07	Total Organic Carbon	6.99	%	ALS	RG_MIDCO_SE-1_2022-09-13_N
SE	RG_MIDCO	667769	5487592	2022	1	2022-09-13	14:07	Inorganic Carbon (as CaCO3 equivalent)	19.4	%	ALS	RG_MIDCO_SE-1_2022-09-13_N
SE	RG_MIDCO	667769	5487592	2022	1	2022-09-13	14:07	Aluminum (Al)	7430	mg/kg	ALS	RG_MIDCO_SE-1_2022-09-13_N
SE	RG_MIDCO	667769	5487592	2022	1	2022-09-13	14:07	Antimony (Sb)	0.31	mg/kg	ALS	RG_MIDCO_SE-1_2022-09-13_N
SE	RG_MIDCO	667769	5487592	2022	1	2022-09-13	14:07	Arsenic (As)	5.29	mg/kg	ALS	RG_MIDCO_SE-1_2022-09-13_N
SE	RG_MIDCO	667769	5487592	2022	1 .	2022-09-13	14:07	Barium (Ba)	142	mg/kg	ALS	RG_MIDCO_SE-1_2022-09-13_N
SE	RG_MIDCO	667769	5487592	2022	1 1	2022-09-13	14:07	Beryllium (Be)	0.65	mg/kg	ALS	RG_MIDCO_SE-1_2022-09-13_N
SE	RG_MIDCO	667769	5487592	2022	1	2022-09-13	14:07	Bismuth (Bi)	<0.2	mg/kg	ALS	RG_MIDCO_SE-1_2022-09-13_N
SE	RG_MIDCO	667769	5487592	2022	1	2022-09-13	14:07	Boron (B)	10.3	mg/kg	ALS	RG_MIDCO_SE-1_2022-09-13_N
SE	RG_MIDCO	667769	5487592	2022	1	2022-09-13	14:07	Cadmium (Cd)	1.98	mg/kg	ALS	RG_MIDCO_SE-1_2022-09-13_N
SE	RG_MIDCO	667769	5487592	2022	1	2022-09-13	14:07	Calcium (Ca)	75500	mg/kg	ALS	RG_MIDCO_SE-1_2022-09-13_N
SE	RG_MIDCO	667769	5487592	2022	1	2022-09-13	14:07	Chromium (Cr)	9.34	mg/kg	ALS	RG_MIDCO_SE-1_2022-09-13_N
SE	RG_MIDCO	667769	5487592	2022	1	2022-09-13	14:07	Cobalt (Co)	81	mg/kg	ALS	RG_MIDCO_SE-1_2022-09-13_N
SE	RG_MIDCO	667769	5487592	2022	1	2022-09-13	14:07	Copper (Cu)	13.6	mg/kg	ALS	RG_MIDCO_SE-1_2022-09-13_N
SE	RG_MIDCO	667769	5487592	2022	1	2022-09-13	14:07	Iron (Fe)	13200	mg/kg	ALS	RG_MIDCO_SE-1_2022-09-13_N
SE	RG_MIDCO	667769	5487592	2022	1	2022-09-13	14:07	Lead (Pb)	9.36	mg/kg	ALS	RG_MIDCO_SE-1_2022-09-13_N
SE	RG_MIDCO	667769	5487592	2022	1	2022-09-13	14:07	Lithium (Li)	13.8	mg/kg	ALS	RG_MIDCO_SE-1_2022-09-13_N

WSP Canada Inc. Page 289 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Type	Station	Location	ı (UTMs) ^(a)	Voer	Poplieste	Data	Time	Analyta	Popult	Hoit		Laboratory Information
Гуре	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	RG MIDCO	667769	5487592	2022	1	2022-09-13	14:07	Magnesium (Mg)	5720	mg/kg	ALS	RG MIDCO SE-1 2022-09-13 N
SE	RG MIDCO	667769	5487592	2022	1	2022-09-13	14:07	Manganese (Mn)	751	mg/kg	ALS	RG MIDCO SE-1 2022-09-13 N
SE	RG MIDCO	667769	5487592	2022	1	2022-09-13	14:07	Mercury (Hg)	0.0341	mg/kg	ALS	RG MIDCO SE-1 2022-09-13 N
SE	RG MIDCO	667769	5487592	2022	1	2022-09-13	14:07	Molybdenum (Mo)	1.48	mg/kg	ALS	RG MIDCO SE-1 2022-09-13 N
SE	RG MIDCO	667769	5487592	2022	1	2022-09-13	14:07	Nickel (Ni)	119	mg/kg	ALS	RG MIDCO SE-1 2022-09-13 N
SE	RG MIDCO	667769	5487592	2022	1	2022-09-13	14:07	Phosphorus (P)	1040	mg/kg	ALS	RG MIDCO SE-1 2022-09-13 N
SE	RG MIDCO	667769	5487592	2022	1	2022-09-13	14:07	Potassium (K)	1320	mg/kg	ALS	RG MIDCO SE-1 2022-09-13 N
SE	RG MIDCO	667769	5487592	2022	1	2022-09-13	14:07	Selenium (Se)	3.53	mg/kg	ALS	RG MIDCO SE-1 2022-09-13 N
SE	RG MIDCO	667769	5487592	2022	1	2022-09-13	14:07	Silver (Ag)	0.1	mg/kg	ALS	RG MIDCO SE-1 2022-09-13 N
SE	RG MIDCO	667769	5487592	2022	1	2022-09-13	14:07	Sodium (Na)	160	mg/kg	ALS	RG MIDCO SE-1 2022-09-13 N
SE	RG MIDCO	667769	5487592	2022	1	2022-09-13	14:07	Strontium (Sr)	133	mg/kg	ALS	RG MIDCO SE-1 2022-09-13 N
SE	RG MIDCO	667769	5487592	2022	1	2022-09-13	14:07	Sulfur (S)	1800	mg/kg	ALS	RG MIDCO SE-1 2022-09-13 N
SE	RG MIDCO	667769	5487592	2022	1	2022-09-13	14:07	Thallium (TI)	0.267	mg/kg	ALS	RG MIDCO SE-1 2022-09-13 N
SE	RG MIDCO	667769	5487592	2022	1	2022-09-13	14:07	Tin (Sn)	<2	mg/kg	ALS	RG MIDCO SE-1 2022-09-13 N
SE	RG MIDCO	667769	5487592	2022	1	2022-09-13	14:07	Titanium (Ti)	19.1	mg/kg	ALS	RG MIDCO SE-1 2022-09-13 N
SE	RG MIDCO	667769	5487592	2022	1	2022-09-13	14:07	Tungsten (W)	<0.5	mg/kg	ALS	RG_MIDCO_SE-1_2022-09-13_N
SE	RG MIDCO	667769	5487592	2022	1	2022-09-13	14:07	Uranium (U)	0.987	mg/kg	ALS	RG MIDCO SE-1 2022-09-13 N
SE	RG MIDCO	667769	5487592	2022	1	2022-09-13	14:07	Vanadium (V)	15	mg/kg	ALS	RG MIDCO SE-1 2022-09-13 N
SE	RG MIDCO	667769	5487592	2022	1	2022-09-13	14:07	Zinc (Zn)	152	mg/kg	ALS	RG MIDCO SE-1 2022-09-13 N
SE	RG MIDCO	667769	5487592	2022	1	2022-09-13	14:07	Zirconium (Zr)	1	mg/kg	ALS	RG MIDCO SE-1 2022-09-13 N
SE	RG MIDCO	667769	5487592	2022	1	2022-09-13	14:07	Acenaphthene	<0.05	mg/kg	ALS	RG MIDCO SE-1 2022-09-13 N
SE	RG MIDCO	667769	5487592	2022	1	2022-09-13	14:07	Acenaphthylene	<0.05	mg/kg	ALS	RG MIDCO SE-1 2022-09-13 N
SE	RG MIDCO	667769	5487592	2022	1	2022-09-13	14:07	Acridine	0.074	mg/kg	ALS	RG MIDCO SE-1 2022-09-13 N
SE	RG MIDCO	667769	5487592	2022	1	2022-09-13	14:07	Anthracene	<0.05	mg/kg	ALS	RG MIDCO SE-1 2022-09-13 N
SE	RG MIDCO	667769	5487592	2022	1	2022-09-13	14:07	Benz(a)anthracene	<0.05	mg/kg	ALS	RG MIDCO SE-1 2022-09-13 N
SE	RG MIDCO	667769	5487592	2022	1	2022-09-13	14:07	Benzo(a)pyrene	<0.05	mg/kg	ALS	RG MIDCO SE-1 2022-09-13 N
SE	RG MIDCO	667769	5487592	2022	1	2022-09-13	14:07	Benzo(b&j)fluoranthene	0.168	mg/kg	ALS	RG MIDCO SE-1 2022-09-13 N
SE	RG MIDCO	667769	5487592	2022	1	2022-09-13	14:07	Benzo(b+j+k)fluoranthene	0.168	mg/kg	ALS	RG_MIDCO_SE-1_2022-09-13_N
SE	RG MIDCO	667769	5487592	2022	1	2022-09-13	14:07	Benzo(g_h_i)perylene	0.086	mg/kg	ALS	RG MIDCO SE-1 2022-09-13 N
SE	RG MIDCO	667769	5487592	2022	1	2022-09-13	14:07	Benzo(k)fluoranthene	<0.05	mg/kg	ALS	RG MIDCO SE-1 2022-09-13 N
SE	RG MIDCO	667769	5487592	2022	1	2022-09-13	14:07	Chrysene	0.28	mg/kg	ALS	RG_MIDCO_SE-1_2022-09-13_N
SE	RG MIDCO	667769	5487592	2022	1	2022-09-13	14:07	Dibenz(a h)anthracene	<0.05	mg/kg	ALS	RG MIDCO SE-1 2022-09-13 N
SE	RG MIDCO	667769	5487592	2022	1	2022-09-13	14:07	Fluoranthene	0.06	mg/kg	ALS	RG MIDCO SE-1 2022-09-13 N
SE	RG MIDCO	667769	5487592	2022	1	2022-09-13	14:07	Fluorene	0.108	mg/kg	ALS	RG MIDCO SE-1 2022-09-13 N
SE	RG MIDCO	667769	5487592	2022	1	2022-09-13	14:07	Indeno(1,2,3-c,d)pyrene	<0.05	mg/kg	ALS	RG MIDCO SE-1 2022-09-13 N
SE	RG_MIDCO	667769	5487592	2022	1	2022-09-13	14:07	1+2-Methylnaphthalene	1.91	mg/kg	ALS	RG_MIDCO_SE-1_2022-09-13_N
SE	RG MIDCO	667769	5487592	2022	1	2022-09-13	14:07	1-Methylnaphthalene	0.744	mg/kg	ALS	RG MIDCO SE-1 2022-09-13 N
SE	RG_MIDCO	667769	5487592	2022	1	2022-09-13	14:07	2-Methylnaphthalene	1.17	mg/kg	ALS	RG MIDCO SE-1 2022-09-13 N
SE	RG_MIDCO	667769	5487592	2022	1	2022-09-13	14:07	Naphthalene	0.45	mg/kg	ALS	RG_MIDCO_SE-1_2022-09-13_N
SE	RG_MIDCO	667769	5487592	2022	1	2022-09-13	14:07	Phenanthrene	0.681	mg/kg	ALS	RG_MIDCO_SE-1_2022-09-13_N
SE	RG_MIDCO	667769	5487592	2022	1	2022-09-13	14:07	Pyrene	0.079	mg/kg	ALS	RG_MIDCO_SE-1_2022-09-13_N
SE	RG_MIDCO	667769	5487592	2022	1	2022-09-13	14:07	Quinoline	<0.05	mg/kg	ALS	RG_MIDCO_SE-1_2022-09-13_N
SE	RG_MIDCO	667769	5487592	2022	1	2022-09-13	14:07	B(a)P Total Potency Equivalent	0.078	mg/kg	ALS	RG_MIDCO_SE-1_2022-09-13_N
SE	RG_MIDCO	667769	5487592	2022	1	2022-09-13	14:07	PAHs, total (BC Sched 3.4)	2.83	mg/kg	ALS	RG_MIDCO_SE-1_2022-09-13_N
SE	RG_MIDCO	667769	5487592	2022	1	2022-09-13	14:07	PAHs, total	1.91	mg/kg	ALS	RG_MIDCO_SE-1_2022-09-13_N
SE	RG_MIDCO	667769	5487592	2022	1	2022-09-13	14:07	d9-Acridine	98.1	%	ALS	RG_MIDCO_SE-1_2022-09-13_N
SE	RG MIDCO	667769	5487592	2022	1	2022-09-13	14:07	d12-Chrysene	110	%	ALS	RG MIDCO SE-1 2022-09-13 N

WSP Canada Inc. Page 290 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Tyrna	Station	Location	ı (UTMs) ^(a)	Veer	Donlingto	Dete	Time	Avaluta	Docult	Heit		Laboratory Information
Гуре	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	RG MIDCO	667769	5487592	2022	1	2022-09-13	14:07	d8-Naphthalene	100	%	ALS	RG MIDCO SE-1 2022-09-13 N
SE	RG MIDCO	667769	5487592	2022	1	2022-09-13	14:07	d10-Phenanthrene	104	%	ALS	RG MIDCO SE-1 2022-09-13 N
SE	RG MIDCO	667734	5487613	2022	2	2022-09-13	15:23	Moisture	67.6	%	ALS	RG_MIDCO_SE-2_2022-09-13_N
SE	RG MIDCO	667734	5487613	2022	2	2022-09-13	15:23	pH (1:2 soil:water)	7.89	рН	ALS	RG MIDCO SE-2 2022-09-13 N
SE	RG MIDCO	667734	5487613	2022	2	2022-09-13	15:23	% Clay (<4 μm)	7.1	%	ALS	RG MIDCO SE-2 2022-09-13 N
SE	RG MIDCO	667734	5487613	2022	2	2022-09-13	15:23	% Silt (0.063 mm - 0.0312 mm)	18.7	%	ALS	RG MIDCO SE-2 2022-09-13 N
SE	RG MIDCO	667734	5487613	2022	2	2022-09-13	15:23	% Silt (0.031 mm - 0.004 mm)	25.6	%	ALS	RG MIDCO SE-2 2022-09-13 N
SE	RG MIDCO	667734	5487613	2022	2	2022-09-13	15:23	% Sand (0.125 mm - 0.063 mm)	8.9	%	ALS	RG MIDCO SE-2 2022-09-13 N
SE	RG MIDCO	667734	5487613	2022	2	2022-09-13	15:23	% Sand (0.25 mm - 0.125 mm)	5.6	%	ALS	RG MIDCO SE-2 2022-09-13 N
SE	RG MIDCO	667734	5487613	2022		2022-09-13	15:23	% Sand (0.50 mm - 0.25 mm)	6.2	%	ALS	RG MIDCO SE-2 2022-09-13 N
SE	RG MIDCO	667734	5487613	2022	2	2022-09-13	15:23	% Sand (1.00 mm - 0.50 mm)	15.5	%	ALS	RG MIDCO SE-2 2022-09-13 N
SE	RG MIDCO	667734	5487613	2022	2	2022-09-13	15:23	% Sand (2.00 mm - 1.00 mm)	10	%	ALS	RG MIDCO SE-2 2022-09-13 N
SE	RG MIDCO	667734	5487613	2022	2	2022-09-13	15:23	% Gravel (>2 mm)	2.4	%	ALS	RG MIDCO SE-2 2022-09-13 N
SE	RG MIDCO	667734	5487613	2022		2022-09-13	15:23	Inorganic Carbon <63 µm	1.68	%	ALS	RG MIDCO SE-2 2022-09-13 N
SE	RG MIDCO	667734	5487613	2022	2	2022-09-13	15:23	Total Carbon <63 µm	5.95	%	ALS	RG MIDCO SE-2 2022-09-13 N
SE	RG MIDCO	667734	5487613	2022	2	2022-09-13	15:23	Total Organic Carbon	4.27	%	ALS	RG MIDCO SE-2 2022-09-13 N
SE	RG MIDCO	667734	5487613	2022	2	2022-09-13	15:23	Inorganic Carbon (as CaCO3 equivalent)	14	%	ALS	RG MIDCO SE-2 2022-09-13 N
SE	RG MIDCO	667734	5487613	2022	2	2022-09-13	15:23	Aluminum (Al)	10900	mg/kg	ALS	RG MIDCO SE-2 2022-09-13 N
SE	RG MIDCO	667734	5487613	2022	2	2022-09-13	15:23	Antimony (Sb)	0.36	mg/kg	ALS	RG MIDCO SE-2 2022-09-13 N
SE	RG MIDCO	667734	5487613	2022	2	2022-09-13	15:23	Arsenic (As)	6.78	mg/kg	ALS	RG MIDCO SE-2 2022-09-13 N
SE	RG MIDCO	667734	5487613	2022	2	2022-09-13	15:23	Barium (Ba)	150	mg/kg	ALS	RG MIDCO SE-2 2022-09-13 N
SE	RG MIDCO	667734	5487613	2022		2022-09-13	15:23	Beryllium (Be)	0.8	mg/kg	ALS	RG MIDCO SE-2 2022-09-13 N
SE	RG MIDCO	667734	5487613	2022	2	2022-09-13	15:23	Bismuth (Bi)	<0.2	mg/kg	ALS	RG MIDCO SE-2 2022-09-13 N
SE	RG MIDCO	667734	5487613	2022	2	2022-09-13	15:23	Boron (B)	12.8	mg/kg	ALS	RG MIDCO SE-2 2022-09-13 N
SE	RG MIDCO	667734	5487613	2022	2	2022-09-13	15:23	Cadmium (Cd)	2.06	mg/kg	ALS	RG MIDCO SE-2 2022-09-13 N
SE	RG MIDCO	667734	5487613	2022	2	2022-09-13	15:23	Calcium (Ca)	66200	mg/kg	ALS	RG MIDCO SE-2 2022-09-13 N
SE	RG MIDCO	667734	5487613	2022	2	2022-09-13	15:23	Chromium (Cr)	13.6	mg/kg	ALS	RG MIDCO SE-2 2022-09-13 N
SE	RG MIDCO	667734	5487613	2022	2	2022-09-13	15:23	Cobalt (Co)	64	mg/kg	ALS	RG MIDCO SE-2 2022-09-13 N
SE	RG MIDCO	667734	5487613	2022	2	2022-09-13	15:23	Copper (Cu)	16.7	mg/kg	ALS	RG MIDCO SE-2 2022-09-13 N
SE	RG MIDCO	667734	5487613	2022	2	2022-09-13	15:23	Iron (Fe)	17800	mg/kg	ALS	RG MIDCO SE-2 2022-09-13 N
SE	RG MIDCO	667734	5487613	2022	+	2022-09-13	15:23	Lead (Pb)	10.9	mg/kg	ALS	RG MIDCO SE-2 2022-09-13 N
SE	RG MIDCO	667734	5487613	2022		2022-09-13	15:23	Lithium (Li)	19.1	mg/kg	ALS	RG MIDCO SE-2 2022-09-13 N
SE	RG MIDCO	667734	5487613	2022		2022-09-13	15:23	Magnesium (Mg)	6680	mg/kg	ALS	RG MIDCO SE-2 2022-09-13 N
SE	RG MIDCO	667734	5487613	2022		2022-09-13	15:23	Manganese (Mn)	584	mg/kg	ALS	RG MIDCO SE-2 2022-09-13 N
SE	RG MIDCO	667734	5487613	2022		2022-09-13	15:23	Mercury (Hg)	0.0319	mg/kg	ALS	RG MIDCO SE-2 2022-09-13 N
SE	RG MIDCO	667734	5487613	2022		2022-09-13	15:23	Molybdenum (Mo)	1.67	mg/kg	ALS	RG MIDCO SE-2 2022-09-13 N
SE	RG MIDCO	667734	5487613	2022		2022-09-13	15:23	Nickel (Ni)	114	mg/kg	ALS	RG MIDCO SE-2 2022-09-13 N
SE	RG MIDCO	667734	5487613	2022		2022-09-13	15:23	Phosphorus (P)	1230	mg/kg	ALS	RG MIDCO SE-2 2022-09-13 N
SE	RG MIDCO	667734	5487613	2022		2022-09-13	15:23	Potassium (K)	2010	mg/kg	ALS	RG MIDCO SE-2 2022-09-13 N
SE	RG MIDCO	667734	5487613	2022		2022-09-13	15:23	Selenium (Se)	3.99	mg/kg	ALS	RG MIDCO SE-2 2022-09-13 N
SE	RG MIDCO	667734	5487613	2022		2022-09-13	15:23	Silver (Ag)	0.1	mg/kg	ALS	RG MIDCO SE-2 2022-09-13 N
SE	RG MIDCO	667734	5487613	2022	2	2022-09-13	15:23	Sodium (Na)	181	mg/kg	ALS	RG MIDCO SE-2 2022-09-13 N
SE	RG MIDCO	667734	5487613	2022	2	2022-09-13	15:23	Strontium (Sr)	120	mg/kg	ALS	RG MIDCO SE-2 2022-09-13 N
SE	RG_MIDCO	667734	5487613	2022	2	2022-09-13	15:23	Sulfur (S)	2000	mg/kg	ALS	RG MIDCO SE-2 2022-09-13 N
SE	RG_MIDCO	667734	5487613	2022	2	2022-09-13	15:23	Thallium (TI)	0.321	mg/kg	ALS	RG MIDCO SE-2 2022-09-13 N
SE	RG_MIDCO	667734	5487613	2022	2	2022-09-13	15:23	Tin (Sn)	<2	mg/kg	ALS	RG MIDCO SE-2 2022-09-13 N
SE SE	RG_MIDCO	667734	5487613	2022		2022-09-13	15:23	, ,	26.6		ALS	RG MIDCO SE-2 2022-09-13 N
=	KG_MIDCO	007734	540/013	ZUZZ		2022-09-13	10.23	Titanium (Ti)	∠0.0	mg/kg	ALO	NO NI NO NO NO NO NO N

WSP Canada Inc. Page 291 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

T	Otation.	Location	ı (UTMs) ^(a)	V	Danlingt	Dete	T:	Amalata	D lt	114		Laboratory Information
ype	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	RG MIDCO	667734	5487613	2022	2	2022-09-13	15:23	Tungsten (W)	<0.5	mg/kg	ALS	RG MIDCO SE-2 2022-09-13 N
SE.	RG MIDCO	667734	5487613	2022	2	2022-09-13	15:23	Uranium (U)	0.955	mg/kg	ALS	RG MIDCO SE-2 2022-09-13 N
SE.	RG MIDCO	667734	5487613	2022	2	2022-09-13	15:23	Vanadium (V)	21	mg/kg	ALS	RG MIDCO SE-2 2022-09-13 N
SE	RG MIDCO	667734	5487613	2022	2	2022-09-13	15:23	Zinc (Zn)	169	mg/kg	ALS	RG MIDCO SE-2 2022-09-13 N
SE.	RG MIDCO	667734	5487613	2022	2	2022-09-13	15:23	Zirconium (Zr)	1.3	mg/kg	ALS	RG MIDCO SE-2 2022-09-13 N
SE	RG MIDCO	667734	5487613	2022	2	2022-09-13	15:23	Acenaphthene	<0.05	mg/kg	ALS	RG MIDCO SE-2 2022-09-13 N
SE	RG MIDCO	667734	5487613	2022	2	2022-09-13	15:23	Acenaphthylene	<0.05	mg/kg	ALS	RG MIDCO SE-2 2022-09-13 N
SE	RG MIDCO	667734	5487613	2022	2	2022-09-13	15:23	Acridine	<0.05	mg/kg	ALS	RG MIDCO SE-2 2022-09-13 N
SE	RG MIDCO	667734	5487613	2022	2	2022-09-13	15:23	Anthracene	<0.05	mg/kg	ALS	RG_MIDCO_SE-2_2022-09-13_N
SE.	RG MIDCO	667734	5487613	2022	2	2022-09-13	15:23	Benz(a)anthracene	<0.05	mg/kg	ALS	RG MIDCO SE-2 2022-09-13 N
SE.	RG MIDCO	667734	5487613	2022	2	2022-09-13	15:23	Benzo(a)pyrene	<0.05	mg/kg	ALS	RG MIDCO SE-2 2022-09-13 N
E	RG MIDCO	667734	5487613	2022	2	2022-09-13	15:23	Benzo(b&j)fluoranthene	0.1	mg/kg	ALS	RG MIDCO SE-2 2022-09-13 N
SE	RG MIDCO	667734	5487613	2022	2	2022-09-13	15:23	Benzo(b+j+k)fluoranthene	0.1	mg/kg	ALS	RG MIDCO SE-2 2022-09-13 N
E SE	RG MIDCO	667734	5487613	2022	2	2022-09-13	15:23	Benzo(g_h_i)perylene	0.058	mg/kg	ALS	RG MIDCO SE-2 2022-09-13 N
E E	RG MIDCO	667734	5487613	2022	2	2022-09-13	15:23	Benzo(k)fluoranthene	<0.05	mg/kg	ALS	RG MIDCO SE-2 2022-09-13 N
E SE	RG MIDCO	667734	5487613	2022	2	2022-09-13	15:23	Chrysene	0.178	mg/kg	ALS	RG MIDCO SE-2 2022-09-13 N
E SE	RG MIDCO	667734	5487613	2022	2	2022-09-13	15:23	Dibenz(a h)anthracene	<0.05	mg/kg	ALS	RG MIDCO SE-2 2022-09-13 N
SE.	RG MIDCO	667734	5487613	2022	2	2022-09-13	15:23	Fluoranthene	<0.05	mg/kg	ALS	RG MIDCO SE-2 2022-09-13 N
E	RG MIDCO	667734	5487613	2022	2	2022-09-13	15:23	Fluorene	0.072	mg/kg	ALS	RG MIDCO SE-2 2022-09-13 N
<u>-</u> Е	RG MIDCO	667734	5487613	2022	2	2022-09-13	15:23	Indeno(1,2,3-c,d)pyrene	<0.05	mg/kg	ALS	RG MIDCO SE-2 2022-09-13 N
<u>-</u> Е	RG MIDCO	667734	5487613	2022	2	2022-09-13	15:23	1+2-Methylnaphthalene	1.33	mg/kg	ALS	RG MIDCO SE-2 2022-09-13 N
E	RG MIDCO	667734	5487613	2022		2022-09-13	15:23	1-Methylnaphthalene	0.513	mg/kg	ALS	RG MIDCO SE-2 2022-09-13 N
E	RG MIDCO	667734	5487613	2022	2	2022-09-13	15:23	2-Methylnaphthalene	0.814	mg/kg	ALS	RG_MIDCO_SE-2_2022-09-13_N
E	RG MIDCO	667734	5487613	2022	2	2022-09-13	15:23	Naphthalene	0.341	mg/kg	ALS	RG_MIDCO_SE-2_2022-09-13_N
E	RG MIDCO	667734	5487613	2022	2	2022-09-13	15:23	Phenanthrene	0.449	mg/kg	ALS	RG MIDCO SE-2 2022-09-13 N
E	RG MIDCO	667734	5487613	2022	2	2022-09-13	15:23	Pyrene	0.054	mg/kg	ALS	RG MIDCO SE-2 2022-09-13 N
E	RG MIDCO	667734	5487613	2022	2	2022-09-13	15:23	Quinoline	<0.05	mg/kg	ALS	RG MIDCO SE-2 2022-09-13 N
SE	RG MIDCO	667734	5487613	2022	2	2022-09-13	15:23	B(a)P Total Potency Equivalent	0.07	mg/kg	ALS	RG MIDCO SE-2 2022-09-13 N
SE	RG MIDCO	667734	5487613	2022	2	2022-09-13	15:23	PAHs, total (BC Sched 3.4)	1.91	mg/kg	ALS	RG MIDCO SE-2 2022-09-13 N
SE	RG MIDCO	667734	5487613	2022	2	2022-09-13	15:23	PAHs, total	1.25	mg/kg	ALS	RG MIDCO SE-2 2022-09-13 N
SE	RG MIDCO	667734	5487613	2022	+	2022-09-13	15:23	d9-Acridine	90.3	%	ALS	RG MIDCO SE-2 2022-09-13 N
SE	RG MIDCO	667734	5487613	2022	-	2022-09-13	15:23	d12-Chrysene	104	%	ALS	RG MIDCO SE-2 2022-09-13 N
SE	RG MIDCO	667734	5487613	2022	-	2022-09-13	15:23	d8-Naphthalene	68.4	%	ALS	RG MIDCO SE-2 2022-09-13 N
SE	RG MIDCO	667734	5487613	2022	2	2022-09-13	15:23	d10-Phenanthrene	95.4	%	ALS	RG MIDCO SE-2 2022-09-13 N
SE	RG MIDCO	667706	5487633	2022	3	2022-09-13	14:34	Moisture	78.4	%	ALS	RG MIDCO SE-3 2022-09-13 N
SE	RG MIDCO	667706	5487633	2022	3	2022-09-13	14:34	pH (1:2 soil:water)	7.83	pH	ALS	RG MIDCO SE-3 2022-09-13 N
SE	RG MIDCO	667706	5487633	2022	3	2022-09-13	14:34	% Clay (<4 μm)	8.3	%	ALS	RG MIDCO SE-3 2022-09-13 N
SE	RG MIDCO	667706	5487633	2022	3	2022-09-13	14:34	% Silt (0.063 mm - 0.0312 mm)	22.2	%	ALS	RG MIDCO SE-3 2022-09-13 N
SE	RG MIDCO	667706	5487633	2022		2022-09-13	14:34	% Silt (0.031 mm - 0.004 mm)	30.6	%	ALS	RG MIDCO SE-3 2022-09-13 N
SE	RG MIDCO	667706	5487633	2022	3	2022-09-13	14:34	% Sand (0.125 mm - 0.063 mm)	6.6	%	ALS	RG MIDCO SE-3 2022-09-13 N
SE	RG MIDCO	667706	5487633	2022	3	2022-09-13	14:34	% Sand (0.25 mm - 0.125 mm)	5.8	%	ALS	RG MIDCO SE-3 2022-09-13 N
SE	RG MIDCO	667706	5487633	2022	3	2022-09-13	14:34	% Sand (0.50 mm - 0.25 mm)	7.1	%	ALS	RG MIDCO SE-3 2022-09-13 N
SE	RG MIDCO	667706	5487633	2022	3	2022-09-13	14:34	% Sand (0.00 mm - 0.50 mm)	9.6	%	ALS	RG MIDCO SE-3 2022-09-13 N
SE	RG MIDCO	667706	5487633	2022	3	2022-09-13	14:34	% Sand (2.00 mm - 1.00 mm)	6.4	%	ALS	RG MIDCO SE-3 2022-09-13 N
SE	RG MIDCO	667706	5487633	2022	3	2022-09-13	14:34	% Gravel (>2 mm)	3.4	%	ALS	RG MIDCO SE-3 2022-09-13 N
SE	RG_MIDCO	667706	5487633	2022	3	2022-09-13	14:34	Inorganic Carbon <63 µm	2.09	%	ALS	RG MIDCO SE-3 2022-09-13 N
SE SE	RG_MIDCO	667706	5487633	2022	_	2022-09-13	14:34	Total Carbon <63 µm	7.96	%	ALS	RG MIDCO SE-3 2022-09-13 N
ン匚	KG_MIDCO	007700	540/633	2022	ა	ZUZZ-U9-13	14.34	Trotal Carbon >03 pm	7.90	70	ALO	NG_NIIDCO_3E-3_2022-09-13_N

WSP Canada Inc. Page 292 of 337

	Otation.	Location	ı (UTMs) ^(a)	V	Daniinat	Dete	T:	Analyti	Desert	114		Laboratory Information
ype	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	RG MIDCO	667706	5487633	2022	3	2022-09-13	14:34	Total Organic Carbon	5.87	%	ALS	RG MIDCO SE-3 2022-09-13 N
SE	RG MIDCO	667706	5487633	2022	3	2022-09-13	14:34	Inorganic Carbon (as CaCO3 equivalent)	17.4	%	ALS	RG MIDCO SE-3 2022-09-13 N
SE	RG MIDCO	667706	5487633	2022	3	2022-09-13	14:34	Aluminum (AI)	8370	mg/kg	ALS	RG MIDCO SE-3 2022-09-13 N
SE	RG MIDCO	667706	5487633	2022	3	2022-09-13	14:34	Antimony (Sb)	0.33	mg/kg	ALS	RG MIDCO SE-3 2022-09-13 N
SE	RG MIDCO	667706	5487633	2022	3	2022-09-13	14:34	Arsenic (As)	5.9	mg/kg	ALS	RG MIDCO SE-3 2022-09-13 N
SE	RG MIDCO	667706	5487633	2022	3	2022-09-13	14:34	Barium (Ba)	142	mg/kg	ALS	RG MIDCO SE-3 2022-09-13 N
SE	RG MIDCO	667706	5487633	2022	3	2022-09-13	14:34	Beryllium (Be)	0.69	mg/kg	ALS	RG MIDCO SE-3 2022-09-13 N
E SE	RG MIDCO	667706	5487633	2022	3	2022-09-13	14:34	Bismuth (Bi)	<0.2	mg/kg	ALS	RG MIDCO SE-3 2022-09-13 N
SE.	RG MIDCO	667706	5487633	2022	3	2022-09-13	14:34	Boron (B)	10.1	mg/kg	ALS	RG_MIDCO_SE-3_2022-09-13_N
SE	RG MIDCO	667706	5487633	2022	3	2022-09-13	14:34	Cadmium (Cd)	1.84	mg/kg	ALS	RG MIDCO SE-3 2022-09-13 N
SE	RG MIDCO	667706	5487633	2022	3	2022-09-13	14:34	Calcium (Ca)	80000	mg/kg	ALS	RG MIDCO SE-3 2022-09-13 N
SE	RG MIDCO	667706	5487633	2022	3	2022-09-13	14:34	Chromium (Cr)	10.5	mg/kg	ALS	RG MIDCO SE-3 2022-09-13 N
SE	RG MIDCO	667706	5487633	2022	3	2022-09-13	14:34	Cobalt (Co)	65.9	mg/kg	ALS	RG MIDCO SE-3 2022-09-13 N
E E	RG MIDCO	667706	5487633	2022	3	2022-09-13	14:34	Copper (Cu)	14.8	mg/kg	ALS	RG MIDCO SE-3 2022-09-13 N
SE	RG MIDCO	667706	5487633	2022	3	2022-09-13	14:34	Iron (Fe)	15400	mg/kg	ALS	RG MIDCO SE-3 2022-09-13 N
SE	RG MIDCO	667706	5487633	2022	3	2022-09-13	14:34	Lead (Pb)	10.1	mg/kg	ALS	RG MIDCO SE-3 2022-09-13 N
SE	RG MIDCO	667706	5487633	2022	3	2022-09-13	14:34	Lithium (Li)	16.1	mg/kg	ALS	RG MIDCO SE-3 2022-09-13 N
E E	RG MIDCO	667706	5487633	2022	3	2022-09-13	14:34	Magnesium (Mg)	6930	mg/kg	ALS	RG MIDCO SE-3 2022-09-13 N
E.	RG MIDCO	667706	5487633	2022	3	2022-09-13	14:34	Manganese (Mn)	629	mg/kg	ALS	RG MIDCO SE-3 2022-09-13 N
E	RG MIDCO	667706	5487633	2022	3	2022-09-13	14:34	Mercury (Hg)	0.0313	mg/kg	ALS	RG_MIDCO_SE-3_2022-09-13_N
E	RG_MIDCO	667706	5487633	2022	3	2022-09-13	14:34	Molybdenum (Mo)	1.58	mg/kg	ALS	RG MIDCO SE-3 2022-09-13 N
E	RG_MIDCO	667706	5487633	2022	3	2022-09-13	14:34	Nickel (Ni)	109		ALS	RG MIDCO SE-3 2022-09-13 N
E	RG_MIDCO	667706	5487633	2022	3	2022-09-13	14:34	· /		mg/kg	ALS	RG_MIDCO_SE-3_2022-09-13_N
E E	RG_MIDCO	667706	5487633		3			Phosphorus (P)	1150 1410	mg/kg	ALS	RG_MIDCO_SE-3_2022-09-13_N
SE	_			2022	, ,	2022-09-13	14:34	Potassium (K)		mg/kg		
SE SE	RG_MIDCO	667706	5487633	2022	3	2022-09-13	14:34	Selenium (Se)	3.4	mg/kg	ALS	RG_MIDCO_SE-3_2022-09-13_N
	RG_MIDCO	667706	5487633	2022	, ,	2022-09-13	14:34	Silver (Ag)	0.1	mg/kg	ALS	RG_MIDCO_SE-3_2022-09-13_N
SE SE	RG_MIDCO	667706	5487633	2022	3	2022-09-13	14:34	Sodium (Na)	163	mg/kg	ALS	RG_MIDCO_SE-3_2022-09-13_N
	RG_MIDCO	667706	5487633	2022	3	2022-09-13	14:34	Strontium (Sr)	137	mg/kg	ALS	RG_MIDCO_SE-3_2022-09-13_N
SE	RG_MIDCO	667706	5487633	2022	3	2022-09-13	14:34	Sulfur (S)	1900	mg/kg	ALS	RG_MIDCO_SE-3_2022-09-13_N
SE	RG_MIDCO	667706	5487633	2022	3	2022-09-13	14:34	Thallium (TI)	0.28	mg/kg	ALS	RG_MIDCO_SE-3_2022-09-13_N
SE	RG_MIDCO	667706	5487633	2022		2022-09-13	14:34	Tin (Sn)	<2	mg/kg	ALS	RG_MIDCO_SE-3_2022-09-13_N
SE	RG_MIDCO	667706	5487633	2022	3	2022-09-13	14:34	Titanium (Ti)	21.2	mg/kg	ALS	RG_MIDCO_SE-3_2022-09-13_N
SE	RG_MIDCO	667706	5487633	2022	3	2022-09-13	14:34	Tungsten (W)	<0.5	mg/kg	ALS	RG_MIDCO_SE-3_2022-09-13_N
SE	RG_MIDCO	667706	5487633	2022	3	2022-09-13	14:34	Uranium (U)	0.94	mg/kg	ALS	RG_MIDCO_SE-3_2022-09-13_N
SE	RG_MIDCO	667706	5487633	2022	3	2022-09-13	14:34	Vanadium (V)	16.5	mg/kg	ALS	RG_MIDCO_SE-3_2022-09-13_N
SE	RG_MIDCO	667706	5487633	2022	3	2022-09-13	14:34	Zinc (Zn)	147	mg/kg	ALS	RG_MIDCO_SE-3_2022-09-13_N
SE.	RG_MIDCO	667706	5487633	2022	3	2022-09-13	14:34	Zirconium (Zr)	1.1	mg/kg	ALS	RG_MIDCO_SE-3_2022-09-13_N
SE	RG_MIDCO	667706	5487633	2022	3	2022-09-13	14:34	Acenaphthene	<0.05	mg/kg	ALS	RG_MIDCO_SE-3_2022-09-13_N
SE.	RG_MIDCO	667706	5487633	2022	3	2022-09-13	14:34	Acenaphthylene	<0.05	mg/kg	ALS	RG_MIDCO_SE-3_2022-09-13_N
SE	RG_MIDCO	667706	5487633	2022	3	2022-09-13	14:34	Acridine	0.081	mg/kg	ALS	RG_MIDCO_SE-3_2022-09-13_N
SE	RG_MIDCO	667706	5487633	2022	3	2022-09-13	14:34	Anthracene	<0.05	mg/kg	ALS	RG_MIDCO_SE-3_2022-09-13_N
SE	RG_MIDCO	667706	5487633	2022	3	2022-09-13	14:34	Benz(a)anthracene	<0.05	mg/kg	ALS	RG_MIDCO_SE-3_2022-09-13_N
SE	RG_MIDCO	667706	5487633	2022	3	2022-09-13	14:34	Benzo(a)pyrene	<0.05	mg/kg	ALS	RG_MIDCO_SE-3_2022-09-13_N
SE	RG_MIDCO	667706	5487633	2022	3	2022-09-13	14:34	Benzo(b&j)fluoranthene	0.171	mg/kg	ALS	RG_MIDCO_SE-3_2022-09-13_N
SE	RG_MIDCO	667706	5487633	2022	3	2022-09-13	14:34	Benzo(b+j+k)fluoranthene	0.171	mg/kg	ALS	RG_MIDCO_SE-3_2022-09-13_N
SE	RG_MIDCO	667706	5487633	2022	3	2022-09-13	14:34	Benzo(g_h_i)perylene	0.091	mg/kg	ALS	RG_MIDCO_SE-3_2022-09-13_N
SE	RG MIDCO	667706	5487633	2022	3	2022-09-13	14:34	Benzo(k)fluoranthene	< 0.05	mg/kg	ALS	RG MIDCO SE-3 2022-09-13 N

WSP Canada Inc. Page 293 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Type -	Station	Location	(UTMs) ^(a)	Vaar	Poplicate	Data	Time	Analyta	Dogult.	Unit		Laboratory Information
Гуре	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	RG MIDCO	667706	5487633	2022	3	2022-09-13	14:34	Chrysene	0.276	mg/kg	ALS	RG MIDCO SE-3 2022-09-13 N
SE	RG MIDCO	667706	5487633	2022	3	2022-09-13	14:34	Dibenz(a h)anthracene	< 0.05	mg/kg	ALS	RG MIDCO SE-3 2022-09-13 N
SE	RG MIDCO	667706	5487633	2022	3	2022-09-13	14:34	Fluoranthene	0.062	mg/kg	ALS	RG_MIDCO_SE-3_2022-09-13_N
SE	RG MIDCO	667706	5487633	2022	3	2022-09-13	14:34	Fluorene	0.104	mg/kg	ALS	RG MIDCO SE-3 2022-09-13 N
SE	RG MIDCO	667706	5487633	2022	3	2022-09-13	14:34	Indeno(1,2,3-c,d)pyrene	< 0.05	mg/kg	ALS	RG MIDCO SE-3 2022-09-13 N
SE	RG MIDCO	667706	5487633	2022	3	2022-09-13	14:34	1+2-Methylnaphthalene	1.91	mg/kg	ALS	RG MIDCO SE-3 2022-09-13 N
SE	RG MIDCO	667706	5487633	2022	3	2022-09-13	14:34	1-Methylnaphthalene	0.741	mg/kg	ALS	RG MIDCO SE-3 2022-09-13 N
SE	RG MIDCO	667706	5487633	2022	3	2022-09-13	14:34	2-Methylnaphthalene	1.17	mg/kg	ALS	RG MIDCO SE-3 2022-09-13 N
SE	RG MIDCO	667706	5487633	2022	3	2022-09-13	14:34	Naphthalene	0.495	mg/kg	ALS	RG MIDCO SE-3 2022-09-13 N
SE	RG MIDCO	667706	5487633	2022	3	2022-09-13	14:34	Phenanthrene	0.669	mg/kg	ALS	RG MIDCO SE-3 2022-09-13 N
SE	RG_MIDCO	667706	5487633	2022	3	2022-09-13	14:34	Pyrene	0.081	mg/kg	ALS	RG_MIDCO_SE-3_2022-09-13_N
SE	RG MIDCO	667706	5487633	2022	3	2022-09-13	14:34	Quinoline	< 0.05	mg/kg	ALS	RG MIDCO SE-3 2022-09-13 N
SE	RG MIDCO	667706	5487633	2022	3	2022-09-13	14:34	B(a)P Total Potency Equivalent	0.078	mg/kg	ALS	RG MIDCO SE-3 2022-09-13 N
SE	RG MIDCO	667706	5487633	2022	3	2022-09-13	14:34	PAHs, total (BC Sched 3.4)	2.86	mg/kg	ALS	RG MIDCO SE-3 2022-09-13 N
SE	RG_MIDCO	667706	5487633	2022	3	2022-09-13	14:34	PAHs, total	1.95	mg/kg	ALS	RG MIDCO SE-3 2022-09-13 N
SE	RG_MIDCO	667706	5487633	2022	3	2022-09-13	14:34	d9-Acridine	94.8	%	ALS	RG_MIDCO_SE-3_2022-09-13_N
SE	RG_MIDCO	667706	5487633	2022	3	2022-09-13	14:34	d12-Chrysene	108	%	ALS	RG_MIDCO_SE-3_2022-09-13_N
SE	RG MIDCO	667706	5487633	2022	3	2022-09-13	14:34	d8-Naphthalene	76.8	%	ALS	RG MIDCO SE-3 2022-09-13 N
SE	RG_MIDCO	667706	5487633	2022	3	2022-09-13	14:34	d10-Phenanthrene	100	%	ALS	RG MIDCO SE-3 2022-09-13 N
SE	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	Moisture	76.6	%	ALS	RG_MIDCO_SE-4_2022-09-13_N
SE	RG MIDCO	667682	5487632	2022	4	2022-09-13	13:54	pH (1:2 soil:water)	8.03	рН	ALS	RG MIDCO SE-4 2022-09-13 N
SE	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	% Clay (<4 μm)	7.3	%	ALS	RG_MIDCO_SE-4_2022-09-13_N
SE	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	% Silt (0.063 mm - 0.0312 mm)	21	%	ALS	RG_MIDCO_SE-4_2022-09-13_N
SE	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	% Silt (0.031 mm - 0.004 mm)	29.3	%	ALS	RG_MIDCO_SE-4_2022-09-13_N
SE	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	% Sand (0.125 mm - 0.063 mm)	4.5	%	ALS	RG_MIDCO_SE-4_2022-09-13_N
SE	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	% Sand (0.25 mm - 0.125 mm)	3.9	%	ALS	RG_MIDCO_SE-4_2022-09-13_N
SE	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	% Sand (0.50 mm - 0.25 mm)	6	%	ALS	RG_MIDCO_SE-4_2022-09-13_N
SE	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	% Sand (1.00 mm - 0.50 mm)	11	%	ALS	RG_MIDCO_SE-4_2022-09-13_N
SE	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	% Sand (2.00 mm - 1.00 mm)	13	%	ALS	RG_MIDCO_SE-4_2022-09-13_N
SE	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	% Gravel (>2 mm)	4	%	ALS	RG_MIDCO_SE-4_2022-09-13_N
SE	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	Inorganic Carbon <63 μm	2.43	%	ALS	RG_MIDCO_SE-4_2022-09-13_N
SE	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	Total Carbon <63 µm	8.31	%	ALS	RG_MIDCO_SE-4_2022-09-13_N
SE	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	Total Organic Carbon	5.88	%	ALS	RG_MIDCO_SE-4_2022-09-13_N
SE	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	Inorganic Carbon (as CaCO3 equivalent)	20.2	%	ALS	RG_MIDCO_SE-4_2022-09-13_N
SE	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	Aluminum (Al)	9290	mg/kg	ALS	RG_MIDCO_SE-4_2022-09-13_N
SE	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	Antimony (Sb)	0.34	mg/kg	ALS	RG_MIDCO_SE-4_2022-09-13_N
SE	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	Arsenic (As)	6.69	mg/kg	ALS	RG_MIDCO_SE-4_2022-09-13_N
SE	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	Barium (Ba)	161	mg/kg	ALS	RG_MIDCO_SE-4_2022-09-13_N
SE	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	Beryllium (Be)	0.71	mg/kg	ALS	RG_MIDCO_SE-4_2022-09-13_N
SE	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	Bismuth (Bi)	<0.2	mg/kg	ALS	RG_MIDCO_SE-4_2022-09-13_N
SE	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	Boron (B)	9.9	mg/kg	ALS	RG_MIDCO_SE-4_2022-09-13_N
SE	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	Cadmium (Cd)	2.24	mg/kg	ALS	RG_MIDCO_SE-4_2022-09-13_N
SE	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	Calcium (Ca)	73300	mg/kg	ALS	RG_MIDCO_SE-4_2022-09-13_N
SE	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	Chromium (Cr)	11.8	mg/kg	ALS	RG_MIDCO_SE-4_2022-09-13_N
SE	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	Cobalt (Co)	82.6	mg/kg	ALS	RG_MIDCO_SE-4_2022-09-13_N
SE	RG MIDCO	667682	5487632	2022	4	2022-09-13	13:54	Copper (Cu)	16.4	mg/kg	ALS	RG MIDCO SE-4 2022-09-13 N
3E												

WSP Canada Inc. Page 294 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Table I-	l: Sediment Chem	istry Data Coll	lected from the	CMm LAEMP S	Sampling Sta	ations, 2012 to	2022					
Туре	Station	Location	ı (UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
Type	Station	Easting	Northing	i cai	Replicate	Date	Tille	Analyte	Result	Offic	Lab	Sample ID
SE	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	Lead (Pb)	10.4	mg/kg	ALS	RG_MIDCO_SE-4_2022-09-13_N
SE	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	Lithium (Li)	15.7	mg/kg	ALS	RG_MIDCO_SE-4_2022-09-13_N
SE	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	Magnesium (Mg)	6670	mg/kg	ALS	RG_MIDCO_SE-4_2022-09-13_N
SE	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	Manganese (Mn)	684	mg/kg	ALS	RG_MIDCO_SE-4_2022-09-13_N
SE	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	Mercury (Hg)	0.0332	mg/kg	ALS	RG_MIDCO_SE-4_2022-09-13_N
SE	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	Molybdenum (Mo)	1.58	mg/kg	ALS	RG_MIDCO_SE-4_2022-09-13_N
SE	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	Nickel (Ni)	134	mg/kg	ALS	RG_MIDCO_SE-4_2022-09-13_N
SE	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	Phosphorus (P)	1300	mg/kg	ALS	RG_MIDCO_SE-4_2022-09-13_N
SE	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	Potassium (K)	1550	mg/kg	ALS	RG_MIDCO_SE-4_2022-09-13_N
SE	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	Selenium (Se)	4.2	mg/kg	ALS	RG_MIDCO_SE-4_2022-09-13_N
SE	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	Silver (Ag)	0.11	mg/kg	ALS	RG_MIDCO_SE-4_2022-09-13_N
SE	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	Sodium (Na)	186	mg/kg	ALS	RG_MIDCO_SE-4_2022-09-13_N
SE	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	Strontium (Sr)	132	mg/kg	ALS	RG_MIDCO_SE-4_2022-09-13_N
SE	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	Sulfur (S)	2100	mg/kg	ALS	RG_MIDCO_SE-4_2022-09-13_N
SE	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	Thallium (TI)	0.298	mg/kg	ALS	RG_MIDCO_SE-4_2022-09-13_N
SE	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	Tin (Sn)	<2	mg/kg	ALS	RG_MIDCO_SE-4_2022-09-13_N
SE	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	Titanium (Ti)	22.8	mg/kg	ALS	RG_MIDCO_SE-4_2022-09-13_N
SE	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	Tungsten (W)	<0.5	mg/kg	ALS	RG_MIDCO_SE-4_2022-09-13_N
SE	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	Uranium (U)	0.994	mg/kg	ALS	RG_MIDCO_SE-4_2022-09-13_N
SE	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	Vanadium (V)	18.4	mg/kg	ALS	RG_MIDCO_SE-4_2022-09-13_N
SE	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	Zinc (Zn)	176	mg/kg	ALS	RG_MIDCO_SE-4_2022-09-13_N
SE	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	Zirconium (Zr)	1.1	mg/kg	ALS	RG_MIDCO_SE-4_2022-09-13_N
SE	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	Acenaphthene	<0.05	mg/kg	ALS	RG_MIDCO_SE-4_2022-09-13_N
SE	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	Acenaphthylene	<0.05	mg/kg	ALS	RG_MIDCO_SE-4_2022-09-13_N
SE	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	Acridine	0.085	mg/kg	ALS	RG_MIDCO_SE-4_2022-09-13_N
SE	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	Anthracene	<0.05	mg/kg	ALS	RG_MIDCO_SE-4_2022-09-13_N
SE	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	Benz(a)anthracene	<0.05	mg/kg	ALS	RG_MIDCO_SE-4_2022-09-13_N
SE	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	Benzo(a)pyrene	0.05	mg/kg	ALS	RG_MIDCO_SE-4_2022-09-13_N
SE	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	Benzo(b&j)fluoranthene	0.203	mg/kg	ALS	RG_MIDCO_SE-4_2022-09-13_N
SE	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	Benzo(b+j+k)fluoranthene	0.257	mg/kg	ALS	RG_MIDCO_SE-4_2022-09-13_N
SE	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	Benzo(g_h_i)perylene	0.088	mg/kg	ALS	RG_MIDCO_SE-4_2022-09-13_N
SE	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	Benzo(k)fluoranthene	0.054	mg/kg	ALS	RG_MIDCO_SE-4_2022-09-13_N
SE	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	Chrysene	0.325	mg/kg	ALS	RG_MIDCO_SE-4_2022-09-13_N
SE	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	Dibenz(a_h)anthracene	<0.05	mg/kg	ALS	RG_MIDCO_SE-4_2022-09-13_N
SE	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	Fluoranthene	0.075	mg/kg	ALS	RG_MIDCO_SE-4_2022-09-13_N
SE	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	Fluorene	0.124	mg/kg	ALS	RG_MIDCO_SE-4_2022-09-13_N
SE	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	Indeno(1,2,3-c,d)pyrene	<0.05	mg/kg	ALS	RG_MIDCO_SE-4_2022-09-13_N
SE	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	1+2-Methylnaphthalene	2.26	mg/kg	ALS	RG_MIDCO_SE-4_2022-09-13_N
SE	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	1-Methylnaphthalene	0.879	mg/kg	ALS	RG_MIDCO_SE-4_2022-09-13_N
SE	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	2-Methylnaphthalene	1.38	mg/kg	ALS	RG_MIDCO_SE-4_2022-09-13_N
SE	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	Naphthalene	0.594	mg/kg	ALS	RG_MIDCO_SE-4_2022-09-13_N
SE	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	Phenanthrene	0.782	mg/kg	ALS	RG_MIDCO_SE-4_2022-09-13_N
SE	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	Pyrene	0.095	mg/kg	ALS	RG_MIDCO_SE-4_2022-09-13_N
SE	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	Quinoline	<0.05	mg/kg	ALS	RG_MIDCO_SE-4_2022-09-13_N
SE	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	B(a)P Total Potency Equivalent	0.11	mg/kg	ALS	RG_MIDCO_SE-4_2022-09-13_N
SE	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	PAHs, total (BC Sched 3.4)	3.42	mg/kg	ALS	RG_MIDCO_SE-4_2022-09-13_N
SE	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	PAHs, total	2.39	mg/kg	ALS	RG_MIDCO_SE-4_2022-09-13_N

WSP Canada Inc. Page 295 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Type	Station	Location	ı (UTMs) ^(a)	Veer	Poplicate	Data	Time	Analyta	Popult	Unit		Laboratory Information
Гуре	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	RG MIDCO	667682	5487632	2022	4	2022-09-13	13:54	d9-Acridine	92.3	%	ALS	RG MIDCO SE-4 2022-09-13 N
SE	RG MIDCO	667682	5487632	2022	4	2022-09-13	13:54	d12-Chrysene	106	%	ALS	RG MIDCO SE-4 2022-09-13 N
SE	RG MIDCO	667682	5487632	2022	4	2022-09-13	13:54	d8-Naphthalene	83.1	%	ALS	RG MIDCO SE-4 2022-09-13 N
SE	RG MIDCO	667682	5487632	2022	4	2022-09-13	13:54	d10-Phenanthrene	97.9	%	ALS	RG MIDCO SE-4 2022-09-13 N
SE	RG MIDCO	667666	5487664	2022	5	2022-09-13	13:13	Moisture	73.8	%	ALS	RG MIDCO SE-5 2022-09-13 N
SE	RG MIDCO	667666	5487664	2022	5	2022-09-13	13:13	pH (1:2 soil:water)	8.12	рН	ALS	RG MIDCO SE-5 2022-09-13 N
SE	RG MIDCO	667666	5487664	2022	5	2022-09-13	13:13	% Clay (<4 μm)	10	%	ALS	RG MIDCO SE-5 2022-09-13 N
SE	RG MIDCO	667666	5487664	2022	5	2022-09-13	13:13	% Silt (0.063 mm - 0.0312 mm)	26.5	%	ALS	RG MIDCO SE-5 2022-09-13 N
SE	RG MIDCO	667666	5487664	2022	5	2022-09-13	13:13	% Silt (0.031 mm - 0.004 mm)	37.2	%	ALS	RG MIDCO SE-5 2022-09-13 N
SE	RG MIDCO	667666	5487664	2022	5	2022-09-13	13:13	% Sand (0.125 mm - 0.063 mm)	5.2	%	ALS	RG MIDCO SE-5 2022-09-13 N
SE	RG MIDCO	667666	5487664	2022	5	2022-09-13	13:13	% Sand (0.25 mm - 0.125 mm)	3.4	%	ALS	RG MIDCO SE-5 2022-09-13 N
SE	RG MIDCO	667666	5487664	2022	5	2022-09-13	13:13	% Sand (0.50 mm - 0.25 mm)	3.9	%	ALS	RG MIDCO SE-5 2022-09-13 N
SE	RG MIDCO	667666	5487664	2022	5	2022-09-13	13:13	% Sand (1.00 mm - 0.50 mm)	7	%	ALS	RG MIDCO SE-5 2022-09-13 N
SE	RG MIDCO	667666	5487664	2022	5	2022-09-13	13:13	% Sand (2.00 mm - 1.00 mm)	4.5	%	ALS	RG MIDCO SE-5 2022-09-13 N
SE	RG MIDCO	667666	5487664	2022	5	2022-09-13	13:13	% Gravel (>2 mm)	2.3	%	ALS	RG MIDCO SE-5 2022-09-13 N
SE	RG MIDCO	667666	5487664	2022	5	2022-09-13	13:13	Inorganic Carbon <63 µm	2.22	%	ALS	RG MIDCO SE-5 2022-09-13 N
SE	RG MIDCO	667666	5487664	2022	5	2022-09-13	13:13	Total Carbon <63 µm	9.52	%	ALS	RG MIDCO SE-5 2022-09-13 N
SE	RG MIDCO	667666	5487664	2022	5	2022-09-13	13:13	Total Organic Carbon	7.3	%	ALS	RG MIDCO SE-5 2022-09-13 N
SE	RG MIDCO	667666	5487664	2022	5	2022-09-13	13:13	Inorganic Carbon (as CaCO3 equivalent)	18.5	%	ALS	RG MIDCO SE-5 2022-09-13 N
SE	RG MIDCO	667666	5487664	2022	5	2022-09-13	13:13	Aluminum (Al)	11400	mg/kg	ALS	RG MIDCO SE-5 2022-09-13 N
E E	RG MIDCO	667666	5487664	2022	5	2022-09-13	13:13	Antimony (Sb)	0.28	mg/kg	ALS	RG MIDCO SE-5 2022-09-13 N
SE	RG MIDCO	667666	5487664	2022	5	2022-09-13	13:13	Arsenic (As)	6.44	mg/kg	ALS	RG MIDCO SE-5 2022-09-13 N
SE	RG MIDCO	667666	5487664	2022	5	2022-09-13	13:13	Barium (Ba)	110	mg/kg	ALS	RG MIDCO SE-5 2022-09-13 N
SE	RG MIDCO	667666	5487664	2022	5	2022-09-13	13:13	Beryllium (Be)	0.71	mg/kg	ALS	RG MIDCO SE-5 2022-09-13 N
SE	RG MIDCO	667666	5487664	2022	5	2022-09-13	13:13	Bismuth (Bi)	<0.2	mg/kg	ALS	RG MIDCO SE-5 2022-09-13 N
SE	RG MIDCO	667666	5487664	2022	5	2022-09-13	13:13	Boron (B)	9.9	mg/kg	ALS	RG MIDCO SE-5 2022-09-13 N
SE	RG MIDCO	667666	5487664	2022	5	2022-09-13	13:13	Cadmium (Cd)	1.27	mg/kg	ALS	RG MIDCO SE-5 2022-09-13 N
SE	RG MIDCO	667666	5487664	2022	5	2022-09-13	13:13	Calcium (Ca)	46400	mg/kg	ALS	RG MIDCO SE-5 2022-09-13 N
SE	RG MIDCO	667666	5487664	2022	5	2022-09-13	13:13	Chromium (Cr)	13.3	mg/kg	ALS	RG MIDCO SE-5 2022-09-13 N
SE	RG MIDCO	667666	5487664	2022	5	2022-09-13	13:13	Cobalt (Co)	48.8	mg/kg	ALS	RG MIDCO SE-5 2022-09-13 N
SE	RG MIDCO	667666	5487664	2022	5	2022-09-13	13:13	Copper (Cu)	16.4	mg/kg	ALS	RG MIDCO SE-5 2022-09-13 N
SE	RG MIDCO	667666	5487664	2022	5	2022-09-13	13:13	Iron (Fe)	21200	mg/kg	ALS	RG MIDCO SE-5 2022-09-13 N
SE	RG MIDCO	667666	5487664	2022	5	2022-09-13	13:13	Lead (Pb)	10.1	mg/kg	ALS	RG MIDCO SE-5 2022-09-13 N
SE	RG MIDCO	667666	5487664	2022	5	2022-09-13	13:13	Lithium (Li)	21.6	mg/kg	ALS	RG MIDCO SE-5 2022-09-13 N
SE	RG MIDCO	667666	5487664	2022	5	2022-09-13	13:13	Magnesium (Mg)	7570	mg/kg	ALS	RG MIDCO SE-5 2022-09-13 N
SE	RG MIDCO	667666	5487664	2022	5	2022-09-13	13:13	Manganese (Mn)	605	mg/kg	ALS	RG MIDCO SE-5 2022-09-13 N
SE	RG MIDCO	667666	5487664	2022	5	2022-09-13	13:13	Mercury (Hg)	0.0233	mg/kg	ALS	RG MIDCO SE-5 2022-09-13 N
SE	RG MIDCO	667666	5487664	2022	5	2022-09-13	13:13	Molybdenum (Mo)	1.36	mg/kg	ALS	RG MIDCO SE-5 2022-09-13 N
SE	RG MIDCO	667666	5487664	2022	5	2022-09-13	13:13	Nickel (Ni)	89.4	mg/kg	ALS	RG MIDCO SE-5 2022-09-13 N
SE	RG MIDCO	667666	5487664	2022	5	2022-09-13	13:13	Phosphorus (P)	1220	mg/kg	ALS	RG MIDCO SE-5 2022-09-13 N
SE	RG MIDCO	667666	5487664	2022	5	2022-09-13	13:13	Potassium (K)	1920	mg/kg	ALS	RG MIDCO SE-5 2022-09-13 N
SE	RG MIDCO	667666	5487664	2022	5	2022-09-13	13:13	Selenium (Se)	2.25	mg/kg	ALS	RG MIDCO SE-5 2022-09-13 N
SE	RG MIDCO	667666	5487664	2022	5	2022-09-13	13:13	Silver (Ag)	<0.1	mg/kg	ALS	RG MIDCO SE-5 2022-09-13 N
SE	RG_MIDCO	667666	5487664	2022	5	2022-09-13	13:13	Sodium (Na)	151	mg/kg	ALS	RG MIDCO SE-5 2022-09-13 N
SE SE	RG_MIDCO	667666	5487664	2022	5	2022-09-13	13:13	Strontium (Sr)	91.9	mg/kg	ALS	RG MIDCO SE-5 2022-09-13 N
SE SE	RG_MIDCO	667666	5487664	2022	5			` /	<1000		ALS	RG MIDCO SE-5 2022-09-13 N
SE SE	_	4				2022-09-13	13:13	Sulfur (S)		mg/kg		
÷ .	RG_MIDCO	667666	5487664	2022	5	2022-09-13	13:13	Thallium (TI)	0.284	mg/kg	ALS	RG_MIDCO_SE-5_2022-09-13_N

WSP Canada Inc. Page 296 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Т	Ctation	Location	ı (UTMs) ^(a)	Vasu	Danlington	Dete	Times	Analysis	Dogult	Heit		Laboratory Information
ype	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	RG MIDCO	667666	5487664	2022	5	2022-09-13	13:13	Tin (Sn)	<2	mg/kg	ALS	RG MIDCO SE-5 2022-09-13 N
SE	RG MIDCO	667666	5487664	2022	5	2022-09-13	13:13	Titanium (Ti)	26.9	mg/kg	ALS	RG MIDCO SE-5 2022-09-13 N
SE	RG MIDCO	667666	5487664	2022	5	2022-09-13	13:13	Tungsten (W)	<0.5	mg/kg	ALS	RG MIDCO SE-5 2022-09-13 N
SE	RG MIDCO	667666	5487664	2022	5	2022-09-13	13:13	Uranium (U)	0.692	mg/kg	ALS	RG MIDCO SE-5 2022-09-13 N
SE	RG MIDCO	667666	5487664	2022	5	2022-09-13	13:13	Vanadium (V)	20.5	mg/kg	ALS	RG MIDCO SE-5 2022-09-13 N
SE	RG MIDCO	667666	5487664	2022	5	2022-09-13	13:13	Zinc (Zn)	128	mg/kg	ALS	RG MIDCO SE-5 2022-09-13 N
SE	RG MIDCO	667666	5487664	2022	5	2022-09-13	13:13	Zirconium (Zr)	1.2	mg/kg	ALS	RG MIDCO SE-5 2022-09-13 N
SE.	RG MIDCO	667666	5487664	2022	5	2022-09-13	13:13	Acenaphthene	<0.05	mg/kg	ALS	RG MIDCO SE-5 2022-09-13 N
SE.	RG MIDCO	667666	5487664	2022	5	2022-09-13	13:13	Acenaphthylene	<0.05	mg/kg	ALS	RG_MIDCO_SE-5_2022-09-13_N
SE	RG MIDCO	667666	5487664	2022	5	2022-09-13	13:13	Acridine	0.061	mg/kg	ALS	RG MIDCO SE-5 2022-09-13 N
SE	RG MIDCO	667666	5487664	2022	5	2022-09-13	13:13	Anthracene	<0.05	mg/kg	ALS	RG MIDCO SE-5 2022-09-13 N
SE.	RG MIDCO	667666	5487664	2022	5	2022-09-13	13:13	Benz(a)anthracene	<0.05	mg/kg	ALS	RG MIDCO SE-5 2022-09-13 N
SE	RG MIDCO	667666	5487664	2022	5	2022-09-13	13:13	Benzo(a)pyrene	<0.05	mg/kg	ALS	RG MIDCO SE-5 2022-09-13 N
SE	RG MIDCO	667666	5487664	2022	5	2022-09-13	13:13	Benzo(b&j)fluoranthene	0.174	mg/kg	ALS	RG MIDCO SE-5 2022-09-13 N
SE	RG MIDCO	667666	5487664	2022	5	2022-09-13	13:13	Benzo(b+j+k)fluoranthene	0.174	mg/kg	ALS	RG MIDCO SE-5 2022-09-13 N
SE	RG MIDCO	667666	5487664	2022	5	2022-09-13	13:13	Benzo(g_h_i)perylene	0.076	mg/kg	ALS	RG MIDCO SE-5 2022-09-13 N
E SE	RG MIDCO	667666	5487664	2022	5	2022-09-13	13:13	Benzo(k)fluoranthene	<0.05	mg/kg	ALS	RG MIDCO SE-5 2022-09-13 N
SE.	RG MIDCO	667666	5487664	2022	5	2022-09-13	13:13	Chrysene	0.254	mg/kg	ALS	RG MIDCO SE-5 2022-09-13 N
E E	RG MIDCO	667666	5487664	2022	5	2022-09-13	13:13	Dibenz(a h)anthracene	<0.05	mg/kg	ALS	RG MIDCO SE-5 2022-09-13 N
E	RG MIDCO	667666	5487664	2022	5	2022-09-13	13:13	Fluoranthene	0.058	mg/kg	ALS	RG MIDCO SE-5 2022-09-13 N
E	RG MIDCO	667666	5487664	2022	5	2022-09-13	13:13	Fluorene	0.094	mg/kg	ALS	RG MIDCO SE-5 2022-09-13 N
E	RG MIDCO	667666	5487664	2022	5	2022-09-13	13:13	Indeno(1,2,3-c,d)pyrene	<0.05	mg/kg	ALS	RG MIDCO SE-5 2022-09-13 N
E	RG MIDCO	667666	5487664	2022	5	2022-09-13	13:13	1+2-Methylnaphthalene	1.79	mg/kg	ALS	RG_MIDCO_SE-5_2022-09-13_N
SE	RG MIDCO	667666	5487664	2022	5	2022-09-13	13:13	1-Methylnaphthalene	0.699	mg/kg	ALS	RG MIDCO SE-5 2022-09-13 N
E	RG MIDCO	667666	5487664	2022	5	2022-09-13	13:13	2-Methylnaphthalene	1.09	mg/kg	ALS	RG MIDCO SE-5 2022-09-13 N
E E	RG MIDCO	667666	5487664	2022	5	2022-09-13	13:13	Naphthalene	0.443	mg/kg	ALS	RG MIDCO SE-5 2022-09-13 N
SE	RG MIDCO	667666	5487664	2022	5	2022-09-13	13:13	Phenanthrene	0.606	mg/kg	ALS	RG MIDCO SE-5 2022-09-13 N
SE	RG MIDCO	667666	5487664	2022	5	2022-09-13	13:13	Pyrene	0.074	mg/kg	ALS	RG MIDCO SE-5 2022-09-13 N
SE	RG MIDCO	667666	5487664	2022	5	2022-09-13	13:13	Quinoline	<0.05	mg/kg	ALS	RG MIDCO SE-5 2022-09-13 N
SE	RG MIDCO	667666	5487664	2022	5	2022-09-13	13:13	B(a)P Total Potency Equivalent	0.078	mg/kg	ALS	RG MIDCO SE-5 2022-09-13 N
SE	RG MIDCO	667666	5487664	2022		2022-09-13	13:13	PAHs, total (BC Sched 3.4)	2.62	mg/kg	ALS	RG MIDCO SE-5 2022-09-13 N
SE	RG MIDCO	667666	5487664	2022	5	2022-09-13	13:13	PAHs, total	1.78	mg/kg	ALS	RG MIDCO SE-5 2022-09-13 N
SE	RG MIDCO	667666	5487664	2022	5	2022-09-13	13:13	d9-Acridine	91.8	%	ALS	RG MIDCO SE-5 2022-09-13 N
SE	RG MIDCO	667666	5487664	2022	5	2022-09-13	13:13	d12-Chrysene	106	%	ALS	RG MIDCO SE-5 2022-09-13 N
SE	RG MIDCO	667666	5487664	2022	5	2022-09-13	13:13	d8-Naphthalene	78.7	%	ALS	RG MIDCO SE-5 2022-09-13 N
SE	RG MIDCO	667666	5487664	2022	5	2022-09-13	13:13	d10-Phenanthrene	97.1	%	ALS	RG MIDCO SE-5 2022-09-13 N
SE	RG MIUCO	668232	5486599	2022	1	2022-09-13	10:57	pH (1:2 soil:water)	8.23	pH	ALS	RG MIUCO SE-1 2022-09-14 N
SE	RG_MIUCO	668232	5486599	2022	1	2022-09-14	10:57	% Clay (<4 μm)	6.4	%	ALS	RG MIUCO SE-1 2022-09-14 N
SE	RG_MIUCO	668232	5486599	2022	1	2022-09-14	10:57	% Silt (0.063 mm - 0.0312 mm)	25.5	%	ALS	RG MIUCO SE-1 2022-09-14 N
SE	RG_MIUCO	668232	5486599	2022	1	2022-09-14	10:57	% Silt (0.003 mm - 0.004 mm)	28.8	%	ALS	RG MIUCO SE-1 2022-09-14 N
SE	RG MIUCO	668232	5486599	2022	1	2022-09-14	10:57	% Sand (0.125 mm - 0.063 mm)	19.3	%	ALS	RG MIUCO SE-1 2022-09-14 N
SE	RG_MIUCO	668232	5486599	2022	1	2022-09-14	10:57	% Sand (0.125 mm - 0.003 mm)	8.7	%	ALS	RG MIUCO SE-1 2022-09-14 N
SE SE	RG_MIUCO	668232	5486599	2022	1	2022-09-14	10.57	% Sand (0.23 mm - 0.123 mm) % Sand (0.50 mm - 0.25 mm)	3.7	%	ALS	RG MIUCO SE-1 2022-09-14 N
SE	RG_MIUCO	668232	5486599	2022	1	2022-09-14	10.57	% Sand (0.50 mm - 0.25 mm)	1.2	%	ALS	RG MIUCO SE-1 2022-09-14 N
SE SE	RG_MIUCO	668232	5486599	2022	1	2022-09-14		% Sand (1.00 mm - 0.50 mm) % Sand (2.00 mm - 1.00 mm)		%		RG MIUCO SE-1 2022-09-14 N
	_				1		10:57		1.4		ALS	
SE	RG_MIUCO	668232	5486599	2022	1	2022-09-14	10:57	% Gravel (>2 mm)	5	%	ALS	RG_MIUCO_SE-1_2022-09-14_N
SE	RG_MIUCO	668232	5486599	2022	1	2022-09-14	10:57	Inorganic Carbon <63 μm	0.77	%	ALS	RG_MIUCO_SE-1_2022-09-14_N

WSP Canada Inc. Page 297 of 337

Sediment Screening

	Ctation	Location	ı (UTMs) ^(a)	Vasu	Doubleate	Dete	Time	Analista	Desult	Hois		Laboratory Information
ype	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	RG MIUCO	668232	5486599	2022	1	2022-09-14	10:57	Total Carbon <63 µm	3.49	%	ALS	RG MIUCO SE-1 2022-09-14 N
SE.	RG MIUCO	668232	5486599	2022	1	2022-09-14	10:57	Total Organic Carbon	2.72	%	ALS	RG MIUCO SE-1 2022-09-14 N
SE.	RG MIUCO	668232	5486599	2022	1	2022-09-14	10:57	Inorganic Carbon (as CaCO3 equivalent)	6.42	%	ALS	RG MIUCO SE-1 2022-09-14 N
SE.	RG MIUCO	668232	5486599	2022	1	2022-09-14	10:57	Aluminum (Al)	9400	mg/kg	ALS	RG MIUCO SE-1 2022-09-14 N
SE	RG MIUCO	668232	5486599	2022	1	2022-09-14	10:57	Antimony (Sb)	0.39	mg/kg	ALS	RG_MIUCO_SE-1_2022-09-14_N
SE.	RG MIUCO	668232	5486599	2022	1	2022-09-14	10:57	Arsenic (As)	7.23	mg/kg	ALS	RG MIUCO SE-1 2022-09-14 N
E E	RG MIUCO	668232	5486599	2022	1	2022-09-14	10:57	Barium (Ba)	558	mg/kg	ALS	RG MIUCO SE-1 2022-09-14 N
<u>=</u> E	RG MIUCO	668232	5486599	2022	1	2022-09-14	10:57	Beryllium (Be)	0.66	mg/kg	ALS	RG MIUCO SE-1 2022-09-14 N
E	RG MIUCO	668232	5486599	2022	1	2022-09-14	10:57	Bismuth (Bi)	<0.2	mg/kg	ALS	RG_MIUCO_SE-1_2022-09-14_N
E	RG MIUCO	668232	5486599	2022	1	2022-09-14	10:57	Boron (B)	8.3	mg/kg	ALS	RG MIUCO SE-1 2022-09-14 N
E	RG MIUCO	668232	5486599	2022	1	2022-09-14	10:57	Cadmium (Cd)	0.761	mg/kg	ALS	RG MIUCO SE-1 2022-09-14 N
<u> </u>	RG MIUCO	668232	5486599	2022	1 1	2022-09-14	10:57	Calcium (Ca)	25300	mg/kg	ALS	RG MIUCO SE-1 2022-09-14 N
E	RG MIUCO	668232	5486599	2022	1	2022-09-14	10:57	Chromium (Cr)	12.8	mg/kg	ALS	RG MIUCO SE-1 2022-09-14 N
E	RG MIUCO	668232	5486599	2022	1 1	2022-09-14	10:57	Cobalt (Co)	7.15	mg/kg	ALS	RG MIUCO SE-1 2022-09-14 N
E	RG MIUCO	668232	5486599	2022	1 1	2022-09-14	10:57	Copper (Cu)	17.9	mg/kg	ALS	RG MIUCO SE-1 2022-09-14 N
E	RG MIUCO	668232	5486599	2022	1 1	2022-09-14	10:57	Iron (Fe)	21000	mg/kg	ALS	RG MIUCO SE-1 2022-09-14 N
E	RG MIUCO	668232	5486599	2022	1 1	2022-09-14	10:57	Lead (Pb)	12.4	mg/kg	ALS	RG MIUCO SE-1 2022-09-14 N
E	RG MIUCO	668232	5486599	2022	1 1	2022-09-14	10:57	Lithium (Li)	19.4	mg/kg	ALS	RG MIUCO SE-1 2022-09-14 N
E	RG MIUCO	668232	5486599	2022	1 1	2022-09-14	10:57	Magnesium (Mg)	6470	mg/kg	ALS	RG MIUCO SE-1 2022-09-14 N
<u>–</u> Е	RG MIUCO	668232	5486599	2022	1	2022-09-14	10:57	Manganese (Mn)	302	mg/kg	ALS	RG MIUCO SE-1 2022-09-14 N
<u>-</u> E	RG MIUCO	668232	5486599	2022	1	2022-09-14	10:57	Mercury (Hg)	0.0284	mg/kg	ALS	RG MIUCO SE-1 2022-09-14 N
E E	RG MIUCO	668232	5486599	2022	1	2022-09-14	10:57	Molybdenum (Mo)	2.07	mg/kg	ALS	RG MIUCO SE-1 2022-09-14 N
E	RG MIUCO	668232	5486599	2022	1	2022-09-14	10:57	Nickel (Ni)	21.3	mg/kg	ALS	RG MIUCO SE-1 2022-09-14 N
E	RG MIUCO	668232	5486599	2022	1	2022-09-14	10:57	Phosphorus (P)	1320	mg/kg	ALS	RG MIUCO SE-1 2022-09-14 N
Ε	RG MIUCO	668232	5486599	2022	1	2022-09-14	10:57	Potassium (K)	1630	mg/kg	ALS	RG MIUCO SE-1 2022-09-14 N
E	RG MIUCO	668232	5486599	2022	1	2022-09-14	10:57	Selenium (Se)	0.72	mg/kg	ALS	RG MIUCO SE-1 2022-09-14 N
E E	RG MIUCO	668232	5486599	2022	1	2022-09-14	10:57	Silver (Ag)	0.12	mg/kg	ALS	RG MIUCO SE-1 2022-09-14 N
E	RG MIUCO	668232	5486599	2022	1	2022-09-14	10:57	Sodium (Na)	244	mg/kg	ALS	RG_MIUCO_SE-1_2022-09-14_N
E	RG MIUCO	668232	5486599	2022	1 1	2022-09-14	10:57	Strontium (Sr)	98.5	mg/kg	ALS	RG MIUCO SE-1 2022-09-14 N
E	RG MIUCO	668232	5486599	2022	1	2022-09-14	10:57	Sulfur (S)	1000	mg/kg	ALS	RG MIUCO SE-1 2022-09-14 N
E	RG MIUCO	668232	5486599	2022	1 1	2022-09-14	10:57	Thallium (TI)	0.301			RG MIUCO SE-1 2022-09-14 N
SE	RG_MIUCO	668232	5486599	2022	1 1	2022-09-14	10:57	Tin (Sn)	<2	mg/kg mg/kg	ALS ALS	RG MIUCO SE-1 2022-09-14 N
SE	RG_MIUCO	668232	5486599	2022	1 1	2022-09-14	10:57	Titanium (Ti)	29.1	mg/kg	ALS	RG MIUCO SE-1 2022-09-14 N
šE	RG MIUCO	668232	5486599	2022	1 1	2022-09-14	10:57	Tungsten (W)	<0.5		ALS	RG MIUCO SE-1 2022-09-14 N
SE	RG_MIUCO	668232	5486599	2022	1	2022-09-14	10:57	Uranium (U)	0.628	mg/kg	ALS	RG MIUCO SE-1 2022-09-14 N
E	RG_MIUCO	668232	5486599	2022	1	2022-09-14	10:57	Vanadium (V)	20.8	mg/kg mg/kg	ALS	RG MIUCO SE-1 2022-09-14 N
E	_				1		10:57					RG MIUCO SE-1 2022-09-14 N
E E	RG_MIUCO RG MIUCO	668232 668232	5486599 5486599	2022 2022	1 1	2022-09-14 2022-09-14	10:57	Zinc (Zn)	88.4	mg/kg	ALS	RG MIUCO SE-1 2022-09-14 N
SE SE	_		5486599		3		09:44	Zirconium (Zr)	1.7	mg/kg	ALS	RG MIUCO SE-3 2022-09-14 N
E E	RG_MIUCO RG MIUCO	668201 668201	5486675	2022 2022	3	2022-09-14 2022-09-14	09:44	pH (1:2 soil:water) % Clay (<4 μm)	7.94 9.2	pH %	ALS ALS	RG MIUCO SE-3 2022-09-14 N
E E	RG_MIUCO	668201	5486675		3	2022-09-14	09:44	% Clay (<4 μm) % Silt (0.063 mm - 0.0312 mm)	17.2	%		RG MIUCO SE-3 2022-09-14 N
	_			2022	+			,			ALS	
E	RG_MIUCO	668201	5486675	2022	3	2022-09-14	09:44	% Silt (0.031 mm - 0.004 mm)	24	%	ALS	RG_MIUCO_SE-3_2022-09-14_N
E	RG_MIUCO	668201	5486675	2022	3	2022-09-14	09:44	% Sand (0.125 mm - 0.063 mm)	12.2	%	ALS	RG_MIUCO_SE-3_2022-09-14_N
E	RG_MIUCO	668201	5486675	2022	3	2022-09-14	09:44	% Sand (0.25 mm - 0.125 mm)	13.8	%	ALS	RG_MIUCO_SE-3_2022-09-14_N
E	RG_MIUCO	668201	5486675	2022	3	2022-09-14	09:44	% Sand (0.50 mm - 0.25 mm)	11.6	%	ALS	RG_MIUCO_SE-3_2022-09-14_N
E	RG_MIUCO	668201	5486675	2022	3	2022-09-14	09:44	% Sand (1.00 mm - 0.50 mm)	5.8	%	ALS	RG_MIUCO_SE-3_2022-09-14_N
SE SE	RG_MIUCO	668201	5486675	2022	3	2022-09-14	09:44	% Sand (2.00 mm - 1.00 mm)	3.5	%	ALS	RG_MIUCO_SE-3_2022-09-14_N

WSP Canada Inc. Page 298 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Table I-	1: Sediment Chem		(UTMs) ^(a)	CIVIIII LAEIVIP		18110115, 2012 10	7 2022					l abovetom, Information
Type	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Laboratory Information Sample ID
SE	RG MIUCO	668201	5486675	2022	3	2022-09-14	09:44	% Gravel (>2 mm)	2.7	%	ALS	RG MIUCO SE-3 2022-09-14 N
SE	RG_MIUCO	668201	5486675	2022	3	2022-09-14	09:44	Inorganic Carbon <63 µm	0.367	%	ALS	RG MIUCO SE-3 2022-09-14 N
SE	RG MIUCO	668201	5486675	2022	3	2022-09-14	09:44	Total Carbon <63 µm	7.12	%	ALS	RG MIUCO SE-3 2022-09-14 N
SE	RG_MIUCO	668201	5486675	2022	3	2022-09-14	09:44	Total Organic Carbon	6.75	%	ALS	RG MIUCO SE-3 2022-09-14 N
SE	RG_MIUCO	668201	5486675	2022	3	2022-09-14	09:44	Inorganic Carbon (as CaCO3 equivalent)	3.06	%	ALS	RG MIUCO SE-3 2022-09-14 N
SE	RG_MIUCO	668201	5486675	2022	3	2022-09-14	09:44	Aluminum (Al)	9830		ALS	RG_MIUCO_SE-3_2022-09-14_N
SE	_	668201	5486675		3			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		mg/kg		RG_MIUCO_SE-3_2022-09-14_N
SE	RG_MIUCO RG MIUCO	668201	5486675	2022	3	2022-09-14	09:44	Antimony (Sb)	0.4	mg/kg	ALS	
SE	_			2022	+ -	2022-09-14	09:44	Arsenic (As)	5.93	mg/kg	ALS	RG_MIUCO_SE-3_2022-09-14_N
	RG_MIUCO	668201	5486675	2022	3	2022-09-14	09:44	Barium (Ba)	176	mg/kg	ALS	RG_MIUCO_SE-3_2022-09-14_N
SE	RG_MIUCO	668201	5486675	2022	3	2022-09-14	09:44	Beryllium (Be)	0.77	mg/kg	ALS	RG_MIUCO_SE-3_2022-09-14_N
SE	RG_MIUCO	668201	5486675	2022	3	2022-09-14	09:44	Bismuth (Bi)	0.21	mg/kg	ALS	RG_MIUCO_SE-3_2022-09-14_N
SE	RG_MIUCO	668201	5486675	2022	3	2022-09-14	09:44	Boron (B)	6.7	mg/kg	ALS	RG_MIUCO_SE-3_2022-09-14_N
SE	RG_MIUCO	668201	5486675	2022	3	2022-09-14	09:44	Cadmium (Cd)	0.901	mg/kg	ALS	RG_MIUCO_SE-3_2022-09-14_N
SE	RG_MIUCO	668201	5486675	2022	3	2022-09-14	09:44	Calcium (Ca)	14400	mg/kg	ALS	RG_MIUCO_SE-3_2022-09-14_N
SE	RG_MIUCO	668201	5486675	2022	3	2022-09-14	09:44	Chromium (Cr)	14.4	mg/kg	ALS	RG_MIUCO_SE-3_2022-09-14_N
SE	RG_MIUCO	668201	5486675	2022	3	2022-09-14	09:44	Cobalt (Co)	7.4	mg/kg	ALS	RG_MIUCO_SE-3_2022-09-14_N
SE	RG_MIUCO	668201	5486675	2022	3	2022-09-14	09:44	Copper (Cu)	18.8	mg/kg	ALS	RG_MIUCO_SE-3_2022-09-14_N
SE	RG_MIUCO	668201	5486675	2022	3	2022-09-14	09:44	Iron (Fe)	18200	mg/kg	ALS	RG_MIUCO_SE-3_2022-09-14_N
SE	RG_MIUCO	668201	5486675	2022	3	2022-09-14	09:44	Lead (Pb)	12.8	mg/kg	ALS	RG_MIUCO_SE-3_2022-09-14_N
SE	RG_MIUCO	668201	5486675	2022	3	2022-09-14	09:44	Lithium (Li)	19.6	mg/kg	ALS	RG_MIUCO_SE-3_2022-09-14_N
SE	RG_MIUCO	668201	5486675	2022	3	2022-09-14	09:44	Magnesium (Mg)	5350	mg/kg	ALS	RG_MIUCO_SE-3_2022-09-14_N
SE	RG_MIUCO	668201	5486675	2022	3	2022-09-14	09:44	Manganese (Mn)	289	mg/kg	ALS	RG_MIUCO_SE-3_2022-09-14_N
SE	RG_MIUCO	668201	5486675	2022	3	2022-09-14	09:44	Mercury (Hg)	0.0353	mg/kg	ALS	RG_MIUCO_SE-3_2022-09-14_N
SE	RG_MIUCO	668201	5486675	2022	3	2022-09-14	09:44	Molybdenum (Mo)	1.61	mg/kg	ALS	RG_MIUCO_SE-3_2022-09-14_N
SE	RG_MIUCO	668201	5486675	2022	3	2022-09-14	09:44	Nickel (Ni)	22.5	mg/kg	ALS	RG_MIUCO_SE-3_2022-09-14_N
SE	RG_MIUCO	668201	5486675	2022	3	2022-09-14	09:44	Phosphorus (P)	1310	mg/kg	ALS	RG_MIUCO_SE-3_2022-09-14_N
SE	RG_MIUCO	668201	5486675	2022	3	2022-09-14	09:44	Potassium (K)	1790	mg/kg	ALS	RG_MIUCO_SE-3_2022-09-14_N
SE	RG_MIUCO	668201	5486675	2022	3	2022-09-14	09:44	Selenium (Se)	1	mg/kg	ALS	RG MIUCO SE-3 2022-09-14 N
SE	RG_MIUCO	668201	5486675	2022	3	2022-09-14	09:44	Silver (Ag)	0.13	mg/kg	ALS	RG MIUCO SE-3 2022-09-14 N
SE	RG MIUCO	668201	5486675	2022	3	2022-09-14	09:44	Sodium (Na)	97	mg/kg	ALS	RG MIUCO SE-3 2022-09-14 N
SE	RG MIUCO	668201	5486675	2022	3	2022-09-14	09:44	Strontium (Sr)	55.8	mg/kg	ALS	RG_MIUCO_SE-3_2022-09-14_N
SE	RG MIUCO	668201	5486675	2022	3	2022-09-14	09:44	Sulfur (S)	<1000	mg/kg	ALS	RG MIUCO SE-3 2022-09-14 N
SE	RG MIUCO	668201	5486675	2022	3	2022-09-14	09:44	Thallium (TI)	0.326	mg/kg	ALS	RG MIUCO SE-3 2022-09-14 N
SE	RG MIUCO	668201	5486675	2022	3	2022-09-14	09:44	Tin (Sn)	<2	mg/kg	ALS	RG MIUCO SE-3 2022-09-14 N
SE	RG MIUCO	668201	5486675	2022	3	2022-09-14	09:44	Titanium (Ti)	31.2	mg/kg	ALS	RG MIUCO SE-3 2022-09-14 N
SE	RG MIUCO	668201	5486675	2022	3	2022-09-14	09:44	Tungsten (W)	<0.5	mg/kg	ALS	RG MIUCO SE-3 2022-09-14 N
SE	RG MIUCO	668201	5486675	2022	3	2022-09-14	09:44	Uranium (U)	0.924	mg/kg	ALS	RG MIUCO SE-3 2022-09-14 N
SE	RG MIUCO	668201	5486675	2022	3	2022-09-14	09:44	Vanadium (V)	23.1	mg/kg	ALS	RG MIUCO SE-3 2022-09-14 N
SE	RG MIUCO	668201	5486675	2022	3	2022-09-14	09:44	Zinc (Zn)	96	mg/kg	ALS	RG MIUCO SE-3 2022-09-14 N
SE	RG MIUCO	668201	5486675	2022	3	2022-09-14	09:44	Zirconium (Zr)	1.8	mg/kg	ALS	RG MIUCO SE-3 2022-09-14 N
SE	RG MIUCO	668225	5486586	2022	4	2022-09-14	11:22	pH (1:2 soil:water)	8.02	рН	ALS	RG MIUCO SE-4 2022-09-14 N
SE	RG MIUCO	668225	5486586	2022	4	2022-09-14	11:22	% Clay (<4 μm)	4.6	%	ALS	RG MIUCO SE-4 2022-09-14 N
SE	RG MIUCO	668225	5486586	2022	1	2022-09-14	11:22	% Silt (0.063 mm - 0.0312 mm)	17.7	%	ALS	RG MIUCO SE-4 2022-09-14 N
SE	RG_MIUCO	668225	5486586	2022	1	2022-09-14	11:22	% Silt (0.003 mm - 0.004 mm)	17.7	%	ALS	RG MIUCO SE-4 2022-09-14 N
SE	RG_MIUCO	668225	5486586	2022	1	2022-09-14	11:22		17.1	%	ALS	RG MIUCO SE-4 2022-09-14 N
	_				4			% Sand (0.125 mm - 0.063 mm)		1		RG MIUCO SE-4 2022-09-14 N
SE	RG_MIUCO	668225	5486586	2022	4	2022-09-14	11:22	% Sand (0.25 mm - 0.125 mm)	18.5	%	ALS	
SE	RG_MIUCO	668225	5486586	2022	4	2022-09-14	11:22	% Sand (0.50 mm - 0.25 mm)	12.8	%	ALS	RG_MIUCO_SE-4_2022-09-14_N

WSP Canada Inc. Page 299 of 337

Sediment Screening

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	Ctation	Location	ı (UTMs) ^(a)	Vasii	Danlingto	Dete	Time	Avadesta	Decult	Hois		Laboratory Information
ype	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	RG MIUCO	668225	5486586	2022	4	2022-09-14	11:22	% Sand (1.00 mm - 0.50 mm)	6.1	%	ALS	RG MIUCO SE-4 2022-09-14 N
SE	RG MIUCO	668225	5486586	2022	4	2022-09-14	11:22	% Sand (2.00 mm - 1.00 mm)	2.1	%	ALS	RG MIUCO SE-4 2022-09-14 N
SE.	RG MIUCO	668225	5486586	2022	4	2022-09-14	11:22	% Gravel (>2 mm)	2	%	ALS	RG MIUCO SE-4 2022-09-14 N
SE	RG MIUCO	668225	5486586	2022	4	2022-09-14	11:22	Inorganic Carbon <63 µm	0.36	%	ALS	RG_MIUCO_SE-4_2022-09-14_N
SE	RG MIUCO	668225	5486586	2022	4	2022-09-14	11:22	Total Carbon <63 µm	2	%	ALS	RG_MIUCO_SE-4_2022-09-14_N
SE	RG MIUCO	668225	5486586	2022	4	2022-09-14	11:22	Total Organic Carbon	1.64	%	ALS	RG MIUCO SE-4 2022-09-14 N
SE	RG MIUCO	668225	5486586	2022	4	2022-09-14	11:22	Inorganic Carbon (as CaCO3 equivalent)	3	%	ALS	RG MIUCO SE-4 2022-09-14 N
<u>=</u> SE	RG MIUCO	668225	5486586	2022	4	2022-09-14	11:22	Aluminum (Al)	10300	mg/kg	ALS	RG MIUCO SE-4 2022-09-14 N
SE	RG MIUCO	668225	5486586	2022	4	2022-09-14	11:22	Antimony (Sb)	0.4	mg/kg	ALS	RG MIUCO SE-4 2022-09-14 N
SE	RG MIUCO	668225	5486586	2022	4	2022-09-14	11:22	Arsenic (As)	7.72	mg/kg	ALS	RG MIUCO SE-4 2022-09-14 N
E SE	RG MIUCO	668225	5486586	2022	4	2022-09-14	11:22	Barium (Ba)	209	mg/kg	ALS	RG MIUCO SE-4 2022-09-14 N
<u>=</u> SE	RG MIUCO	668225	5486586	2022	4	2022-09-14	11:22	Beryllium (Be)	0.75	mg/kg	ALS	RG MIUCO SE-4 2022-09-14 N
SE	RG MIUCO	668225	5486586	2022	4	2022-09-14	11:22	Bismuth (Bi)	0.22	mg/kg	ALS	RG MIUCO SE-4 2022-09-14 N
<u>=</u> E	RG MIUCO	668225	5486586	2022	4	2022-09-14	11:22	Boron (B)	6.1	mg/kg	ALS	RG MIUCO SE-4 2022-09-14 N
SE	RG MIUCO	668225	5486586	2022	4	2022-09-14	11:22	Cadmium (Cd)	0.673	mg/kg	ALS	RG MIUCO SE-4 2022-09-14 N
<u>=</u> E	RG MIUCO	668225	5486586	2022	4	2022-09-14	11:22	Calcium (Ca)	13200	mg/kg	ALS	RG MIUCO SE-4 2022-09-14 N
<u> </u>	RG MIUCO	668225	5486586	2022	4	2022-09-14	11:22	Chromium (Cr)	14.1	mg/kg	ALS	RG MIUCO SE-4 2022-09-14 N
<u>=</u> E	RG MIUCO	668225	5486586	2022	4	2022-09-14	11:22	Cobalt (Co)	8.83	mg/kg	ALS	RG MIUCO SE-4 2022-09-14 N
E	RG MIUCO	668225	5486586	2022	4	2022-09-14	11:22	Copper (Cu)	18.3	mg/kg	ALS	RG MIUCO SE-4 2022-09-14 N
<u>–</u> Е	RG MIUCO	668225	5486586	2022	4	2022-09-14	11:22	Iron (Fe)	23200	mg/kg	ALS	RG MIUCO SE-4 2022-09-14 N
<u>–</u> Е	RG MIUCO	668225	5486586	2022	4	2022-09-14	11:22	Lead (Pb)	14.6	mg/kg	ALS	RG MIUCO SE-4 2022-09-14 N
<u>– </u>	RG MIUCO	668225	5486586	2022	4	2022-09-14	11:22	Lithium (Li)	20.5	mg/kg	ALS	RG MIUCO SE-4 2022-09-14 N
E	RG MIUCO	668225	5486586	2022	4	2022-09-14	11:22	Magnesium (Mg)	6020	mg/kg	ALS	RG MIUCO SE-4 2022-09-14 N
E	RG MIUCO	668225	5486586	2022	1	2022-09-14	11:22	Manganese (Mn)	576	mg/kg	ALS	RG MIUCO SE-4 2022-09-14 N
; <u>-</u> E	RG MIUCO	668225	5486586	2022	1	2022-09-14	11:22	Mercury (Hg)	0.0223	mg/kg	ALS	RG MIUCO SE-4 2022-09-14 N
; <u>-</u> E	RG MIUCO	668225	5486586	2022	4	2022-09-14	11:22	Molybdenum (Mo)	2.32	mg/kg	ALS	RG MIUCO SE-4 2022-09-14 N
; <u>-</u> E	RG MIUCO	668225	5486586	2022	1	2022-09-14	11:22	Nickel (Ni)	24.3	mg/kg	ALS	RG MIUCO SE-4 2022-09-14 N
; <u>-</u> ;E	RG MIUCO	668225	5486586	2022	4	2022-09-14	11:22	Phosphorus (P)	1370	mg/kg	ALS	RG MIUCO SE-4 2022-09-14 N
SE	RG MIUCO	668225	5486586	2022	4	2022-09-14	11:22	Potassium (K)	1620	mg/kg	ALS	RG MIUCO SE-4 2022-09-14 N
SE	RG MIUCO	668225	5486586	2022	4	2022-09-14	11:22	Selenium (Se)	0.57	mg/kg	ALS	RG MIUCO SE-4 2022-09-14 N
	RG MIUCO	668225	5486586	2022	4	2022-09-14	11:22	Silver (Ag)	<0.1			RG MIUCO SE-4 2022-09-14 N
SE SE	RG_MIUCO	668225	5486586	2022	4	2022-09-14	11:22	Sodium (Na)	81	mg/kg mg/kg	ALS ALS	RG MIUCO SE-4 2022-09-14 N
SE	RG_MIUCO	668225	5486586	2022	4	2022-09-14	11:22	Strontium (Sr)	39.8	mg/kg	ALS	RG MIUCO SE-4 2022-09-14 N
SE	RG MIUCO	668225	5486586	2022	4	2022-09-14	11:22	Sulfur (S)	<1000		ALS	RG MIUCO SE-4 2022-09-14 N
SE	RG_MIUCO	668225	5486586	2022	4	2022-09-14	11:22	Thallium (TI)	0.322	mg/kg	ALS	RG MIUCO SE-4 2022-09-14 N
SE	RG_MIUCO	668225	5486586	2022	4	2022-09-14	11:22	Tin (Sn)	2.5	mg/kg mg/kg	ALS	RG MIUCO SE-4 2022-09-14 N
SE	RG_MIUCO	668225	5486586	2022	4	2022-09-14	11:22	Titanium (Ti)	28.5		ALS	RG MIUCO SE-4 2022-09-14 N
	RG_MIUCO	668225	5486586	2022	4	2022-09-14				mg/kg		
SE SE	RG_MIUCO		5486586		4		11:22	Tungsten (W) Uranium (U)	<0.5	mg/kg	ALS	RG_MIUCO_SE-4_2022-09-14_N RG_MIUCO_SE-4_2022-09-14_N
E	RG_MIUCO	668225 668225	5486586	2022 2022	4	2022-09-14 2022-09-14	11:22 11:22	Vanadium (V)	0.604 21.9	mg/kg	ALS ALS	RG MIUCO SE-4 2022-09-14 N
E E	RG_MIUCO	668225	5486586	2022	4	2022-09-14		Zinc (Zn)		mg/kg		RG MIUCO SE-4 2022-09-14 N
	_				4		11:22		93.6	mg/kg	ALS	
SE	RG_MIUCO	668225	5486586	2022	4	2022-09-14	11:22	Zirconium (Zr)	1.3	mg/kg	ALS	RG_MIUCO_SE-4_2022-09-14_N
SE	RG_MIUCO	668187	5486695	2022	5	2022-09-14	09:22	Moisture	37.9	%	ALS	RG_MIUCO_SE-5_2022-09-14_N
SE	RG_MIUCO	668187	5486695	2022	5	2022-09-14	09:22	pH (1:2 soil:water)	8.06	pΗ	ALS	RG_MIUCO_SE-5_2022-09-14_N
E	RG_MIUCO	668187	5486695	2022	5	2022-09-14	09:22	% Clay (<4 μm)	5.5	%	ALS	RG_MIUCO_SE-5_2022-09-14_N
SE	RG_MIUCO	668187	5486695	2022	5	2022-09-14	09:22	% Silt (0.063 mm - 0.0312 mm)	16.3	%	ALS	RG_MIUCO_SE-5_2022-09-14_N
SE	RG_MIUCO	668187	5486695	2022	5	2022-09-14	09:22	% Silt (0.031 mm - 0.004 mm)	20.7	%	ALS	RG MIUCO SE-5 2022-09-14 N

WSP Canada Inc. Page 300 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Туре	Station		ı (UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
Type	Station	Easting	Northing	i eai	Replicate	Date	Tille	Allalyte	Nesuit	Oilit	Lab	Sample ID
SE	RG_MIUCO	668187	5486695	2022	5	2022-09-14	09:22	% Sand (0.125 mm - 0.063 mm)	12.3	%	ALS	RG_MIUCO_SE-5_2022-09-14_N
SE	RG_MIUCO	668187	5486695	2022	5	2022-09-14	09:22	% Sand (0.25 mm - 0.125 mm)	11.7	%	ALS	RG_MIUCO_SE-5_2022-09-14_N
SE	RG_MIUCO	668187	5486695	2022	5	2022-09-14	09:22	% Sand (0.50 mm - 0.25 mm)	8.8	%	ALS	RG_MIUCO_SE-5_2022-09-14_N
SE	RG_MIUCO	668187	5486695	2022	5	2022-09-14	09:22	% Sand (1.00 mm - 0.50 mm)	10.9	%	ALS	RG_MIUCO_SE-5_2022-09-14_N
SE	RG_MIUCO	668187	5486695	2022	5	2022-09-14	09:22	% Sand (2.00 mm - 1.00 mm)	8.9	%	ALS	RG_MIUCO_SE-5_2022-09-14_N
SE	RG_MIUCO	668187	5486695	2022	5	2022-09-14	09:22	% Gravel (>2 mm)	4.9	%	ALS	RG_MIUCO_SE-5_2022-09-14_N
SE	RG_MIUCO	668187	5486695	2022	5	2022-09-14	09:22	Inorganic Carbon <63 μm	0.578	%	ALS	RG_MIUCO_SE-5_2022-09-14_N
SE	RG_MIUCO	668187	5486695	2022	5	2022-09-14	09:22	Total Carbon <63 μm	3.37	%	ALS	RG_MIUCO_SE-5_2022-09-14_N
SE	RG_MIUCO	668187	5486695	2022	5	2022-09-14	09:22	Total Organic Carbon	2.79	%	ALS	RG_MIUCO_SE-5_2022-09-14_N
SE	RG_MIUCO	668187	5486695	2022	5	2022-09-14	09:22	Inorganic Carbon (as CaCO3 equivalent)	4.81	%	ALS	RG_MIUCO_SE-5_2022-09-14_N
SE	RG_MIUCO	668187	5486695	2022	5	2022-09-14	09:22	Aluminum (AI)	13200	mg/kg	ALS	RG_MIUCO_SE-5_2022-09-14_N
SE	RG_MIUCO	668187	5486695	2022	5	2022-09-14	09:22	Antimony (Sb)	0.45	mg/kg	ALS	RG_MIUCO_SE-5_2022-09-14_N
SE	RG_MIUCO	668187	5486695	2022	5	2022-09-14	09:22	Arsenic (As)	9.45	mg/kg	ALS	RG_MIUCO_SE-5_2022-09-14_N
SE	RG_MIUCO	668187	5486695	2022	5	2022-09-14	09:22	Barium (Ba)	156	mg/kg	ALS	RG_MIUCO_SE-5_2022-09-14_N
SE	RG_MIUCO	668187	5486695	2022	5	2022-09-14	09:22	Beryllium (Be)	0.86	mg/kg	ALS	RG_MIUCO_SE-5_2022-09-14_N
SE	RG_MIUCO	668187	5486695	2022	5	2022-09-14	09:22	Bismuth (Bi)	0.25	mg/kg	ALS	RG_MIUCO_SE-5_2022-09-14_N
SE	RG_MIUCO	668187	5486695	2022	5	2022-09-14	09:22	Boron (B)	8.1	mg/kg	ALS	RG_MIUCO_SE-5_2022-09-14_N
SE	RG_MIUCO	668187	5486695	2022	5	2022-09-14	09:22	Cadmium (Cd)	0.669	mg/kg	ALS	RG_MIUCO_SE-5_2022-09-14_N
SE	RG_MIUCO	668187	5486695	2022	5	2022-09-14	09:22	Calcium (Ca)	17300	mg/kg	ALS	RG_MIUCO_SE-5_2022-09-14_N
SE	RG_MIUCO	668187	5486695	2022	5	2022-09-14	09:22	Chromium (Cr)	16.8	mg/kg	ALS	RG_MIUCO_SE-5_2022-09-14_N
SE	RG_MIUCO	668187	5486695	2022	5	2022-09-14	09:22	Cobalt (Co)	9.77	mg/kg	ALS	RG_MIUCO_SE-5_2022-09-14_N
SE	RG_MIUCO	668187	5486695	2022	5	2022-09-14	09:22	Copper (Cu)	20.4	mg/kg	ALS	RG_MIUCO_SE-5_2022-09-14_N
SE	RG_MIUCO	668187	5486695	2022	5	2022-09-14	09:22	Iron (Fe)	31300	mg/kg	ALS	RG_MIUCO_SE-5_2022-09-14_N
SE	RG_MIUCO	668187	5486695	2022	5	2022-09-14	09:22	Lead (Pb)	14.9	mg/kg	ALS	RG_MIUCO_SE-5_2022-09-14_N
SE	RG_MIUCO	668187	5486695	2022	5	2022-09-14	09:22	Lithium (Li)	21.7	mg/kg	ALS	RG_MIUCO_SE-5_2022-09-14_N
SE	RG_MIUCO	668187	5486695	2022	5	2022-09-14	09:22	Magnesium (Mg)	6390	mg/kg	ALS	RG_MIUCO_SE-5_2022-09-14_N
SE	RG_MIUCO	668187	5486695	2022	5	2022-09-14	09:22	Manganese (Mn)	700	mg/kg	ALS	RG_MIUCO_SE-5_2022-09-14_N
SE	RG_MIUCO	668187	5486695	2022	5	2022-09-14	09:22	Mercury (Hg)	0.0204	mg/kg	ALS	RG_MIUCO_SE-5_2022-09-14_N
SE	RG_MIUCO	668187	5486695	2022	5	2022-09-14	09:22	Molybdenum (Mo)	1.89	mg/kg	ALS	RG_MIUCO_SE-5_2022-09-14_N
SE	RG_MIUCO	668187	5486695	2022	5	2022-09-14	09:22	Nickel (Ni)	26.9	mg/kg	ALS	RG_MIUCO_SE-5_2022-09-14_N
SE	RG_MIUCO	668187	5486695	2022	5	2022-09-14	09:22	Phosphorus (P)	1400	mg/kg	ALS	RG_MIUCO_SE-5_2022-09-14_N
SE	RG_MIUCO	668187	5486695	2022	5	2022-09-14	09:22	Potassium (K)	2170	mg/kg	ALS	RG_MIUCO_SE-5_2022-09-14_N
SE	RG_MIUCO	668187	5486695	2022	5	2022-09-14	09:22	Selenium (Se)	0.39	mg/kg	ALS	RG_MIUCO_SE-5_2022-09-14_N
SE	RG_MIUCO	668187	5486695	2022	5	2022-09-14	09:22	Silver (Ag)	<0.1	mg/kg	ALS	RG_MIUCO_SE-5_2022-09-14_N
SE	RG_MIUCO	668187	5486695	2022	5	2022-09-14	09:22	Sodium (Na)	73	mg/kg	ALS	RG_MIUCO_SE-5_2022-09-14_N
SE	RG_MIUCO	668187	5486695	2022	5	2022-09-14	09:22	Strontium (Sr)	55.5	mg/kg	ALS	RG_MIUCO_SE-5_2022-09-14_N
SE	RG_MIUCO	668187	5486695	2022	5	2022-09-14	09:22	Sulfur (S)	<1000	mg/kg	ALS	RG_MIUCO_SE-5_2022-09-14_N
SE	RG_MIUCO	668187	5486695	2022	5	2022-09-14	09:22	Thallium (TI)	0.304	mg/kg	ALS	RG_MIUCO_SE-5_2022-09-14_N
SE	RG_MIUCO	668187	5486695	2022	5	2022-09-14	09:22	Tin (Sn)	<2	mg/kg	ALS	RG_MIUCO_SE-5_2022-09-14_N
SE	RG_MIUCO	668187	5486695	2022	5	2022-09-14	09:22	Titanium (Ti)	12.1	mg/kg	ALS	RG_MIUCO_SE-5_2022-09-14_N
SE	RG_MIUCO	668187	5486695	2022	5	2022-09-14	09:22	Tungsten (W)	<0.5	mg/kg	ALS	RG_MIUCO_SE-5_2022-09-14_N
SE	RG_MIUCO	668187	5486695	2022	5	2022-09-14	09:22	Uranium (U)	0.55	mg/kg	ALS	RG_MIUCO_SE-5_2022-09-14_N
SE	RG_MIUCO	668187	5486695	2022	5	2022-09-14	09:22	Vanadium (V)	25.9	mg/kg	ALS	RG_MIUCO_SE-5_2022-09-14_N
SE	RG_MIUCO	668187	5486695	2022	5	2022-09-14	09:22	Zinc (Zn)	96.1	mg/kg	ALS	RG_MIUCO_SE-5_2022-09-14_N
SE	RG_MIUCO	668187	5486695	2022	5	2022-09-14	09:22	Zirconium (Zr)	<1	mg/kg	ALS	RG_MIUCO_SE-5_2022-09-14_N
SE	RG_MIUCO	668187	5486695	2022	5	2022-09-14	09:22	Acenaphthene	<0.05	mg/kg	ALS	RG_MIUCO_SE-5_2022-09-14_N
SE	RG MIUCO	668187	5486695	2022	5	2022-09-14	09:22	Acenaphthylene	<0.05	mg/kg	ALS	RG_MIUCO_SE-5_2022-09-14_N

WSP Canada Inc. Page 301 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Type	Station	Location	(UTMs) ^(a)	Year	Poplicate	Data	Time	Analyta	Popult	Unit		Laboratory Information
ype	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	RG MIUCO	668187	5486695	2022	5	2022-09-14	09:22	Acridine	<0.05	mg/kg	ALS	RG MIUCO SE-5 2022-09-14 N
SE	RG MIUCO	668187	5486695	2022	5	2022-09-14	09:22	Anthracene	<0.05	mg/kg	ALS	RG MIUCO SE-5 2022-09-14 N
SE	RG MIUCO	668187	5486695	2022	5	2022-09-14	09:22	Benz(a)anthracene	<0.05	mg/kg	ALS	RG MIUCO SE-5 2022-09-14 N
SE	RG MIUCO	668187	5486695	2022	5	2022-09-14	09:22	Benzo(a)pyrene	<0.05	mg/kg	ALS	RG MIUCO SE-5 2022-09-14 N
SE.	RG MIUCO	668187	5486695	2022	5	2022-09-14	09:22	Benzo(b&j)fluoranthene	<0.05	mg/kg	ALS	RG MIUCO SE-5 2022-09-14 N
SE	RG MIUCO	668187	5486695	2022	5	2022-09-14	09:22	Benzo(b+j+k)fluoranthene	<0.075	mg/kg	ALS	RG MIUCO SE-5 2022-09-14 N
SE	RG MIUCO	668187	5486695	2022	5	2022-09-14	09:22	Benzo(g_h_i)perylene	<0.05	mg/kg	ALS	RG MIUCO SE-5 2022-09-14 N
SE	RG MIUCO	668187	5486695	2022	5	2022-09-14	09:22	Benzo(k)fluoranthene	<0.05	mg/kg	ALS	RG MIUCO SE-5 2022-09-14 N
SE	RG MIUCO	668187	5486695	2022	5	2022-09-14	09:22	Chrysene	<0.05	mg/kg	ALS	RG MIUCO SE-5 2022-09-14 N
SE	RG MIUCO	668187	5486695	2022	5	2022-09-14	09:22	Dibenz(a h)anthracene	<0.05	mg/kg	ALS	RG MIUCO SE-5 2022-09-14 N
SE	RG MIUCO	668187	5486695	2022	5	2022-09-14	09:22	Fluoranthene	<0.05	mg/kg	ALS	RG_MIUCO_SE-5_2022-09-14_N
SE	RG MIUCO	668187	5486695	2022	5	2022-09-14	09:22	Fluorene	<0.05	mg/kg	ALS	RG MIUCO SE-5 2022-09-14 N
SE	RG MIUCO	668187	5486695	2022	5	2022-09-14	09:22	Indeno(1,2,3-c,d)pyrene	<0.05	mg/kg	ALS	RG MIUCO SE-5 2022-09-14 N
SE	RG MIUCO	668187	5486695	2022	5	2022-09-14	09:22	1+2-Methylnaphthalene	0.125	mg/kg	ALS	RG MIUCO SE-5 2022-09-14 N
SE	RG MIUCO	668187	5486695	2022	5	2022-09-14	09:22	1-Methylnaphthalene	0.054	mg/kg	ALS	RG MIUCO SE-5 2022-09-14 N
SE	RG MIUCO	668187	5486695	2022	5	2022-09-14	09:22	2-Methylnaphthalene	0.071	mg/kg	ALS	RG_MIUCO_SE-5_2022-09-14_N
SE	RG MIUCO	668187	5486695	2022	5	2022-09-14	09:22	Naphthalene	0.044	mg/kg	ALS	RG MIUCO SE-5 2022-09-14 N
SE	RG MIUCO	668187	5486695	2022	5	2022-09-14	09:22	Phenanthrene	0.092	mg/kg	ALS	RG MIUCO SE-5 2022-09-14 N
SE	RG MIUCO	668187	5486695	2022	5	2022-09-14	09:22	Pyrene	<0.05	mg/kg	ALS	RG MIUCO SE-5 2022-09-14 N
SE	RG MIUCO	668187	5486695	2022	5	2022-09-14	09:22	Quinoline	<0.05	mg/kg	ALS	RG MIUCO SE-5 2022-09-14 N
SE	RG MIUCO	668187	5486695	2022	5	2022-09-14	09:22	B(a)P Total Potency Equivalent	<0.065	mg/kg	ALS	RG MIUCO SE-5 2022-09-14 N
SE	RG MIUCO	668187	5486695	2022	5	2022-09-14	09:22	PAHs, total (BC Sched 3.4)	0.21	mg/kg	ALS	RG MIUCO SE-5 2022-09-14 N
SE	RG MIUCO	668187	5486695	2022	5	2022-09-14	09:22	PAHs, total	<0.2	mg/kg	ALS	RG MIUCO SE-5 2022-09-14 N
SE	RG MIUCO	668187	5486695	2022	5	2022-09-14	09:22	d9-Acridine	107	%	ALS	RG MIUCO SE-5 2022-09-14 N
SE	RG MIUCO	668187	5486695	2022	5	2022-09-14	09:22	d12-Chrysene	129	%	ALS	RG MIUCO SE-5 2022-09-14 N
SE	RG MIUCO	668187	5486695	2022	5	2022-09-14	09:22	d8-Naphthalene	114	%	ALS	RG MIUCO SE-5 2022-09-14 N
SE	RG MIUCO	668187	5486695	2022	5	2022-09-14	09:22	d10-Phenanthrene	117	%	ALS	RG MIUCO SE-5 2022-09-14 N
SE	RG CORCK	668529	5487366	2022	1	2022-09-14	14:24	Moisture	57	%	ALS	RG CORCK SE-1 2022-09-14 N
SE	RG_CORCK	668529	5487366	2022	1	2022-09-14	14:24	pH (1:2 soil:water)	8.14	рН	ALS	RG CORCK SE-1 2022-09-14 N
SE	RG CORCK	668529	5487366	2022	1	2022-09-14	14:24	% Clay (<4 μm)	4.9	%	ALS	RG CORCK SE-1 2022-09-14 N
SE	RG_CORCK	668529	5487366	2022	1	2022-09-14	14:24	% Silt (0.063 mm - 0.0312 mm)	18.3	%	ALS	RG CORCK SE-1 2022-09-14 N
SE	RG CORCK	668529	5487366	2022	1	2022-09-14	14:24	% Silt (0.031 mm - 0.004 mm)	23.8	%	ALS	RG CORCK SE-1 2022-09-14 N
SE	RG_CORCK	668529	5487366	2022	1	2022-09-14	14:24	% Sand (0.125 mm - 0.063 mm)	14.8	%	ALS	RG CORCK SE-1 2022-09-14 N
SE	RG CORCK	668529	5487366	2022	1	2022-09-14	14:24	% Sand (0.25 mm - 0.125 mm)	13.6	%	ALS	RG CORCK SE-1 2022-09-14 N
SE	RG CORCK	668529	5487366	2022	1	2022-09-14	14:24	% Sand (0.50 mm - 0.25 mm)	3.3	%	ALS	RG CORCK SE-1 2022-09-14 N
SE	RG_CORCK	668529	5487366	2022	1	2022-09-14	14:24	% Sand (1.00 mm - 0.50 mm)	1.9	%	ALS	RG_CORCK_SE-1_2022-09-14_N
SE	RG_CORCK	668529	5487366	2022	1	2022-09-14	14:24	% Sand (2.00 mm - 1.00 mm)	3.3	%	ALS	RG_CORCK_SE-1_2022-09-14_N
SE	RG CORCK	668529	5487366	2022	1	2022-09-14	14:24	% Gravel (>2 mm)	16.1	%	ALS	RG CORCK SE-1 2022-09-14 N
SE	RG CORCK	668529	5487366	2022	1	2022-09-14	14:24	Inorganic Carbon <63 µm	7.39	%	ALS	RG CORCK SE-1 2022-09-14 N
SE	RG_CORCK	668529	5487366	2022	1	2022-09-14	14:24	Total Carbon <63 µm	13	%	ALS	RG CORCK SE-1_2022-09-14 N
SE	RG_CORCK	668529	5487366	2022	1	2022-09-14	14:24	Total Organic Carbon	5.61	%	ALS	RG CORCK SE-1_2022-09-14 N
SE	RG CORCK	668529	5487366	2022	1	2022-09-14	14:24	Inorganic Carbon (as CaCO3 equivalent)	61.6	%	ALS	RG CORCK SE-1 2022-09-14 N
SE	RG_CORCK	668529	5487366	2022	1	2022-09-14	14:24	Aluminum (Al)	1950	mg/kg	ALS	RG CORCK SE-1_2022-09-14 N
SE	RG CORCK	668529	5487366	2022	1	2022-09-14	14:24	Antimony (Sb)	0.26	mg/kg	ALS	RG CORCK SE-1_2022-09-14 N
SE	RG_CORCK	668529	5487366	2022	1	2022-09-14	14:24	Arsenic (As)	2.69	mg/kg	ALS	RG CORCK SE-1_2022-09-14 N
_	_			2022	1	2022-09-14	14:24	Barium (Ba)	146	mg/kg	ALS	RG CORCK SE-1 2022-09-14 N
SE	RG CORCK	668529	5487366	ZUZZ		ZUZZ-U3-14	14.24		140	IIIu/ku	ALS	ING CONCN SE-1 2022-09-14 N

WSP Canada Inc. Page 302 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

71100	Ctation	Location	(UTMs) ^(a)	Veer	Donlinete	Doto	Tipe	Analyte	Docult	Lloit		Laboratory Information
уре	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	RG CORCK	668529	5487366	2022	1	2022-09-14	14:24	Bismuth (Bi)	<0.2	mg/kg	ALS	RG CORCK SE-1 2022-09-14 N
SE	RG CORCK	668529	5487366	2022	1	2022-09-14	14:24	Boron (B)	6.5	mg/kg	ALS	RG_CORCK_SE-1_2022-09-14_N
SE	RG CORCK	668529	5487366	2022	1	2022-09-14	14:24	Cadmium (Cd)	9.08	mg/kg	ALS	RG CORCK SE-1 2022-09-14 N
SE	RG CORCK	668529	5487366	2022	1	2022-09-14	14:24	Calcium (Ca)	340000	mg/kg	ALS	RG CORCK SE-1 2022-09-14 N
SE	RG CORCK	668529	5487366	2022	1	2022-09-14	14:24	Chromium (Cr)	3.39	mg/kg	ALS	RG_CORCK_SE-1_2022-09-14_N
SE	RG CORCK	668529	5487366	2022	1	2022-09-14	14:24	Cobalt (Co)	230	mg/kg	ALS	RG CORCK SE-1 2022-09-14 N
E	RG CORCK	668529	5487366	2022	1	2022-09-14	14:24	Copper (Cu)	6.64	mg/kg	ALS	RG CORCK SE-1 2022-09-14 N
E	RG CORCK	668529	5487366	2022	1	2022-09-14	14:24	Iron (Fe)	4980	mg/kg	ALS	RG CORCK SE-1 2022-09-14 N
E	RG_CORCK	668529	5487366	2022	1	2022-09-14	14:24	Lead (Pb)	3.28	mg/kg	ALS	RG_CORCK_SE-1_2022-09-14_N
Ε	RG_CORCK	668529	5487366	2022	1	2022-09-14	14:24	Lithium (Li)	3	mg/kg	ALS	RG_CORCK_SE-1_2022-09-14_N
SE.	RG CORCK	668529	5487366	2022	1	2022-09-14	14:24	Magnesium (Mg)	6420	mg/kg	ALS	RG_CORCK_SE-1_2022-09-14_N
SE.	RG CORCK	668529	5487366	2022	1	2022-09-14	14:24	Manganese (Mn)	1950	mg/kg	ALS	RG CORCK SE-1 2022-09-14 N
<u>=</u> SE	RG CORCK	668529	5487366	2022	1	2022-09-14	14:24	Mercury (Hg)	0.03	mg/kg	ALS	RG_CORCK_SE-1_2022-09-14_N
E	RG_CORCK	668529	5487366	2022	1	2022-09-14	14:24	Molybdenum (Mo)	0.55	mg/kg	ALS	RG_CORCK_SE-1_2022-09-14_N
<u>=</u>	RG CORCK	668529	5487366	2022	1	2022-09-14	14:24	Nickel (Ni)	227	mg/kg	ALS	RG CORCK SE-1 2022-09-14 N
E	RG_CORCK	668529	5487366	2022	1	2022-09-14	14:24	Phosphorus (P)	266	mg/kg	ALS	RG CORCK SE-1_2022-09-14 N
E	RG CORCK	668529	5487366	2022	1	2022-09-14	14:24	Potassium (K)	580	mg/kg	ALS	RG CORCK SE-1 2022-09-14 N
E	RG_CORCK	668529	5487366	2022	1	2022-09-14	14:24	Selenium (Se)	2.06	mg/kg	ALS	RG CORCK SE-1 2022-09-14 N
E	RG CORCK	668529	5487366	2022	1	2022-09-14	14:24	Silver (Ag)	<0.1	mg/kg	ALS	RG CORCK SE-1 2022-09-14 N
E	RG CORCK	668529	5487366	2022	1	2022-09-14	14:24	Sodium (Na)	348	mg/kg	ALS	RG_CORCK_SE-1_2022-09-14_N
Ē	RG CORCK	668529	5487366	2022	1	2022-09-14	14:24	Strontium (Sr)	403	mg/kg	ALS	RG CORCK SE-1 2022-09-14 N
E	RG CORCK	668529	5487366	2022	1	2022-09-14	14:24	Sulfur (S)	4900	mg/kg	ALS	RG CORCK SE-1 2022-09-14 N
E	RG CORCK	668529	5487366	2022	1	2022-09-14	14:24	Thallium (TI)	0.171	mg/kg	ALS	RG_CORCK_SE-1_2022-09-14_N
E	RG CORCK	668529	5487366	2022	1	2022-09-14	14:24	Tin (Sn)	<2	mg/kg	ALS	RG_CORCK_SE-1_2022-09-14_N
E	RG_CORCK	668529	5487366	2022	1	2022-09-14	14:24	Titanium (Ti)	7.2	mg/kg	ALS	RG CORCK SE-1 2022-09-14 N
E	RG CORCK	668529	5487366	2022	1	2022-09-14	14:24	Tungsten (W)	<0.5	mg/kg	ALS	RG CORCK SE-1 2022-09-14 N
βE	RG CORCK	668529	5487366	2022	1	2022-09-14	14:24	Uranium (U)	2.23	mg/kg	ALS	RG CORCK SE-1 2022-09-14 N
βE	RG CORCK	668529	5487366	2022	1	2022-09-14	14:24	Vanadium (V)	6.43	mg/kg	ALS	RG_CORCK_SE-1_2022-09-14_N
SE.	RG CORCK	668529	5487366	2022	1	2022-09-14	14:24	Zinc (Zn)	703	mg/kg	ALS	RG CORCK SE-1 2022-09-14 N
SE.	RG CORCK	668529	5487366	2022	1	2022-09-14	14:24	Zirconium (Zr)	<1	mg/kg	ALS	RG_CORCK_SE-1_2022-09-14_N
SE.	RG CORCK	668529	5487366	2022	1	2022-09-14	14:24	Acenaphthene	<0.05	mg/kg	ALS	RG_CORCK_SE-1_2022-09-14_N
SE.	RG CORCK	668529	5487366	2022	1	2022-09-14	14:24	Acenaphthylene	<0.05	mg/kg	ALS	RG CORCK SE-1 2022-09-14 N
SE	RG CORCK	668529	5487366	2022	1	2022-09-14	14:24	Acridine	0.058	mg/kg	ALS	RG CORCK SE-1 2022-09-14 N
SE	RG CORCK	668529	5487366	2022	1	2022-09-14	14:24	Anthracene	<0.05	mg/kg	ALS	RG CORCK SE-1 2022-09-14 N
βE	RG CORCK	668529	5487366	2022	1	2022-09-14	14:24	Benz(a)anthracene	<0.05	mg/kg	ALS	RG CORCK SE-1 2022-09-14 N
SE.	RG CORCK	668529	5487366	2022	1	2022-09-14	14:24	Benzo(a)pyrene	<0.05	mg/kg	ALS	RG CORCK SE-1 2022-09-14 N
SE.	RG_CORCK	668529	5487366	2022	1	2022-09-14	14:24	Benzo(b&j)fluoranthene	0.125	mg/kg	ALS	RG CORCK SE-1 2022-09-14 N
<u>=</u> SE	RG CORCK	668529	5487366	2022	1	2022-09-14	14:24	Benzo(b+j+k)fluoranthene	0.125	mg/kg	ALS	RG CORCK SE-1 2022-09-14 N
SE	RG CORCK	668529	5487366	2022	1	2022-09-14	14:24	Benzo(g_h_i)perylene	0.066	mg/kg	ALS	RG CORCK SE-1 2022-09-14 N
E	RG CORCK	668529	5487366	2022	1	2022-09-14	14:24	Benzo(k)fluoranthene	<0.05	mg/kg	ALS	RG CORCK SE-1 2022-09-14 N
<u>=</u>	RG_CORCK	668529	5487366	2022	1	2022-09-14	14:24	Chrysene	0.189	mg/kg	ALS	RG CORCK SE-1 2022-09-14 N
E	RG CORCK	668529	5487366	2022	1	2022-09-14	14:24	Dibenz(a h)anthracene	<0.05	mg/kg	ALS	RG CORCK SE-1 2022-09-14 N
E	RG_CORCK	668529	5487366	2022	1	2022-09-14	14:24	Fluoranthene	<0.05	mg/kg	ALS	RG CORCK SE-1 2022-09-14 N
<u>=</u> E	RG CORCK	668529	5487366	2022	1	2022-09-14	14:24	Fluorene	0.08	mg/kg	ALS	RG CORCK SE-1 2022-09-14 N
<u>=</u> E	RG CORCK	668529	5487366	2022	1	2022-09-14	14:24	Indeno(1,2,3-c,d)pyrene	<0.05	mg/kg	ALS	RG CORCK SE-1 2022-09-14 N
<u>=</u> Е	RG CORCK	668529	5487366	2022	1	2022-09-14	14:24	1+2-Methylnaphthalene	1.56	mg/kg	ALS	RG CORCK SE-1 2022-09-14 N
SE	RG CORCK	668529	5487366	2022	1	2022-09-14	14:24	1-Methylnaphthalene	0.598	mg/kg	ALS	RG CORCK SE-1 2022-09-14 N

WSP Canada Inc. Page 303 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Type	Station	Location	(UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Pocult -	Unit		Laboratory Information
ype	Station	Easting	Northing	rear	Replicate	Date	rime	Analyte	Result	Unit	Lab	Sample ID
SE	RG CORCK	668529	5487366	2022	1	2022-09-14	14:24	2-Methylnaphthalene	0.964	mg/kg	ALS	RG CORCK SE-1 2022-09-14 N
SE.	RG_CORCK	668529	5487366	2022	1	2022-09-14	14:24	Naphthalene	0.341	mg/kg	ALS	RG_CORCK_SE-1_2022-09-14_N
SE.	RG_CORCK	668529	5487366	2022	1	2022-09-14	14:24	Phenanthrene	0.541	mg/kg	ALS	RG_CORCK_SE-1_2022-09-14_N
SE.	RG CORCK	668529	5487366	2022	1	2022-09-14	14:24	Pyrene	0.056	mg/kg	ALS	RG CORCK SE-1 2022-09-14 N
SE.	RG CORCK	668529	5487366	2022	1	2022-09-14	14:24	Quinoline	< 0.05	mg/kg	ALS	RG_CORCK_SE-1_2022-09-14_N
SE	RG CORCK	668529	5487366	2022	1	2022-09-14	14:24	B(a)P Total Potency Equivalent	0.072	mg/kg	ALS	RG CORCK SE-1 2022-09-14 N
SE	RG CORCK	668529	5487366	2022	1	2022-09-14	14:24	PAHs, total (BC Sched 3.4)	2.17	mg/kg	ALS	RG CORCK SE-1 2022-09-14 N
SE	RG CORCK	668529	5487366	2022	1	2022-09-14	14:24	PAHs, total	1.4	mg/kg	ALS	RG CORCK SE-1 2022-09-14 N
SE	RG_CORCK	668529	5487366	2022	1	2022-09-14	14:24	d9-Acridine	114	%	ALS	RG_CORCK_SE-1_2022-09-14_N
SE	RG_CORCK	668529	5487366	2022	1	2022-09-14	14:24	d12-Chrysene	126	%	ALS	RG_CORCK_SE-1_2022-09-14_N
SE	RG CORCK	668529	5487366	2022	1	2022-09-14	14:24	d8-Naphthalene	122	%	ALS	RG_CORCK_SE-1_2022-09-14_N
SE	RG CORCK	668529	5487366	2022	1	2022-09-14	14:24	d10-Phenanthrene	121	%	ALS	RG CORCK SE-1 2022-09-14 N
SE	RG CORCK	668477	5487346	2022	2	2022-09-14	14:03	pH (1:2 soil:water)	8.03	рН	ALS	RG CORCK SE-2 2022-09-14 N
SE	RG_CORCK	668477	5487346	2022	2	2022-09-14	14:03	% Clay (<4 μm)	6	%	ALS	RG_CORCK_SE-2_2022-09-14_N
SE	RG_CORCK	668477	5487346	2022	2	2022-09-14	14:03	% Silt (0.063 mm - 0.0312 mm)	18.9	%	ALS	RG_CORCK_SE-2_2022-09-14_N
SE	RG_CORCK	668477	5487346	2022	2	2022-09-14	14:03	% Silt (0.031 mm - 0.004 mm)	25.3	%	ALS	RG_CORCK_SE-2_2022-09-14_N
SE	RG_CORCK	668477	5487346	2022	2	2022-09-14	14:03	% Sand (0.125 mm - 0.063 mm)	16.2	%	ALS	RG_CORCK_SE-2_2022-09-14_N
SE	RG_CORCK	668477	5487346	2022	2	2022-09-14	14:03	% Sand (0.25 mm - 0.125 mm)	17.3	%	ALS	RG CORCK SE-2 2022-09-14 N
SE	RG CORCK	668477	5487346	2022	2	2022-09-14	14:03	% Sand (0.50 mm - 0.25 mm)	7.4	%	ALS	RG_CORCK_SE-2_2022-09-14_N
SE	RG CORCK	668477	5487346	2022	2	2022-09-14	14:03	% Sand (1.00 mm - 0.50 mm)	3.8	%	ALS	RG CORCK SE-2 2022-09-14 N
SE	RG CORCK	668477	5487346	2022	2	2022-09-14	14:03	% Sand (2.00 mm - 1.00 mm)	2.9	%	ALS	RG CORCK SE-2 2022-09-14 N
SE	RG_CORCK	668477	5487346	2022	2	2022-09-14	14:03	% Gravel (>2 mm)	2.2	%	ALS	RG_CORCK_SE-2_2022-09-14_N
SE	RG CORCK	668477	5487346	2022	2	2022-09-14	14:03	Inorganic Carbon <63 μm	6.88	%	ALS	RG CORCK SE-2 2022-09-14 N
SE	RG CORCK	668477	5487346	2022	2	2022-09-14	14:03	Total Carbon <63 µm	13.4	%	ALS	RG_CORCK_SE-2_2022-09-14_N
SE	RG CORCK	668477	5487346	2022	2	2022-09-14	14:03	Total Organic Carbon	6.52	%	ALS	RG CORCK SE-2 2022-09-14 N
SE	RG CORCK	668477	5487346	2022	2	2022-09-14	14:03	Inorganic Carbon (as CaCO3 equivalent)	57.3	%	ALS	RG CORCK SE-2 2022-09-14 N
SE	RG CORCK	668477	5487346	2022	2	2022-09-14	14:03	Aluminum (AI)	1670	mg/kg	ALS	RG_CORCK_SE-2_2022-09-14_N
SE	RG CORCK	668477	5487346	2022	2	2022-09-14	14:03	Antimony (Sb)	0.31	mg/kg	ALS	RG_CORCK_SE-2_2022-09-14_N
SE	RG_CORCK	668477	5487346	2022	2	2022-09-14	14:03	Arsenic (As)	2.01	mg/kg	ALS	RG CORCK SE-2 2022-09-14 N
SE	RG CORCK	668477	5487346	2022	2	2022-09-14	14:03	Barium (Ba)	146	mg/kg	ALS	RG CORCK SE-2 2022-09-14 N
SE	RG_CORCK	668477	5487346	2022	2	2022-09-14	14:03	Beryllium (Be)	0.3	mg/kg	ALS	RG_CORCK_SE-2_2022-09-14_N
SE	RG CORCK	668477	5487346	2022	2	2022-09-14	14:03	Bismuth (Bi)	<0.48	mg/kg	ALS	RG CORCK SE-2 2022-09-14 N
SE	RG CORCK	668477	5487346	2022	2	2022-09-14	14:03	Boron (B)	<12	mg/kg	ALS	RG CORCK SE-2 2022-09-14 N
SE	RG CORCK	668477	5487346	2022	2	2022-09-14	14:03	Cadmium (Cd)	7.84	mg/kg	ALS	RG CORCK SE-2 2022-09-14 N
SE	RG CORCK	668477	5487346	2022	2	2022-09-14	14:03	Calcium (Ca)	284000	mg/kg	ALS	RG CORCK SE-2 2022-09-14 N
SE	RG CORCK	668477	5487346	2022	2	2022-09-14	14:03	Chromium (Cr)	2.9	mg/kg	ALS	RG CORCK SE-2 2022-09-14 N
SE	RG_CORCK	668477	5487346	2022	2	2022-09-14	14:03	Cobalt (Co)	193	mg/kg	ALS	RG CORCK SE-2 2022-09-14 N
SE	RG CORCK	668477	5487346	2022	2	2022-09-14	14:03	Copper (Cu)	5.88	mg/kg	ALS	RG CORCK SE-2 2022-09-14 N
SE	RG CORCK	668477	5487346	2022	2	2022-09-14	14:03	Iron (Fe)	3180	mg/kg	ALS	RG CORCK SE-2 2022-09-14 N
SE	RG_CORCK	668477	5487346	2022	2	2022-09-14	14:03	Lead (Pb)	2.52	mg/kg	ALS	RG_CORCK_SE-2_2022-09-14_N
SE	RG_CORCK	668477	5487346	2022	2	2022-09-14	14:03	Lithium (Li)	<4.8	mg/kg	ALS	RG_CORCK_SE-2_2022-09-14_N
SE	RG CORCK	668477	5487346	2022	2	2022-09-14	14:03	Magnesium (Mg)	5720	mg/kg	ALS	RG CORCK SE-2 2022-09-14 N
SE	RG_CORCK	668477	5487346	2022	2	2022-09-14	14:03	Manganese (Mn)	1590	mg/kg	ALS	RG CORCK SE-2 2022-09-14 N
SE	RG CORCK	668477	5487346	2022	2	2022-09-14	14:03	Mercury (Hg)	0.0235	mg/kg	ALS	RG CORCK SE-2 2022-09-14 N
SE	RG_CORCK	668477	5487346	2022	2	2022-09-14	14:03	Molybdenum (Mo)	0.5	mg/kg	ALS	RG CORCK SE-2 2022-09-14 N
	_	668477	5487346	2022	2	2022-09-14	14:03	Nickel (Ni)	199	mg/kg	ALS	RG CORCK SE-2 2022-09-14 N
SE	RG CORCK	000477	3407340	2022			17.00				,,,,,	ING CONOR OF 2 2022 00 14 IV

WSP Canada Inc. Page 304 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Гу <u>гра</u>	Ctation	Location	(UTMs) ^(a)	Veer	Donlingto	Data	Tipes	Analyta	Beault	Unit		Laboratory Information
уре	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	RG CORCK	668477	5487346	2022	2	2022-09-14	14:03	Potassium (K)	560	mg/kg	ALS	RG CORCK SE-2 2022-09-14 N
SE.	RG CORCK	668477	5487346	2022	2	2022-09-14	14:03	Selenium (Se)	2.01	mg/kg	ALS	RG CORCK SE-2 2022-09-14 N
<u>=</u> 8E	RG CORCK	668477	5487346	2022	2	2022-09-14	14:03	Silver (Ag)	<0.24	mg/kg	ALS	RG CORCK SE-2 2022-09-14 N
<u>=</u> 8E	RG CORCK	668477	5487346	2022	2	2022-09-14	14:03	Sodium (Na)	365	mg/kg	ALS	RG CORCK SE-2 2022-09-14 N
E	RG CORCK	668477	5487346	2022	2	2022-09-14	14:03	Strontium (Sr)	365	mg/kg	ALS	RG CORCK SE-2 2022-09-14 N
βE	RG CORCK	668477	5487346	2022	2	2022-09-14	14:03	Sulfur (S)	4200	mg/kg	ALS	RG CORCK SE-2 2022-09-14 N
<u>=</u> E	RG CORCK	668477	5487346	2022	2	2022-09-14	14:03	Thallium (TI)	0.193	mg/kg	ALS	RG CORCK SE-2 2022-09-14 N
E	RG CORCK	668477	5487346	2022	2	2022-09-14	14:03	Tin (Sn)	<4.8	mg/kg	ALS	RG CORCK SE-2 2022-09-14 N
E	RG_CORCK	668477	5487346	2022	2	2022-09-14	14:03	Titanium (Ti)	25.9	mg/kg	ALS	RG_CORCK_SE-2_2022-09-14_N
SE.	RG_CORCK	668477	5487346	2022	2	2022-09-14	14:03	Tungsten (W)	<1.2	mg/kg	ALS	RG_CORCK_SE-2_2022-09-14_N
SE.	RG CORCK	668477	5487346	2022	2	2022-09-14	14:03	Uranium (U)	2.02	mg/kg	ALS	RG_CORCK_SE-2_2022-09-14_N
SE	RG CORCK	668477	5487346	2022	2	2022-09-14	14:03	Vanadium (V)	5.54	mg/kg	ALS	RG CORCK SE-2 2022-09-14 N
SE	RG CORCK	668477	5487346	2022	2	2022-09-14	14:03	Zinc (Zn)	667	mg/kg	ALS	RG CORCK SE-2 2022-09-14 N
SE	RG_CORCK	668477	5487346	2022	2	2022-09-14	14:03	Zirconium (Zr)	<2.4	mg/kg	ALS	RG_CORCK_SE-2_2022-09-14_N
SE.	RG CORCK	668482	5487337	2022	3	2022-09-14	13:13	Moisture	60.7	%	ALS	RG CORCK SE-3 2022-09-14 N
SE	RG_CORCK	668482	5487337	2022	3	2022-09-14	13:13	pH (1:2 soil:water)	7.85	рН	ALS	RG_CORCK_SE-3_2022-09-14_N
SE	RG CORCK	668482	5487337	2022	3	2022-09-14	13:13	% Clay (<4 μm)	5.1	%	ALS	RG CORCK SE-3 2022-09-14 N
SE	RG_CORCK	668482	5487337	2022	3	2022-09-14	13:13	% Silt (0.063 mm - 0.0312 mm)	15.9	%	ALS	RG_CORCK_SE-3_2022-09-14_N
SE	RG CORCK	668482	5487337	2022	3	2022-09-14	13:13	% Silt (0.031 mm - 0.004 mm)	21.1	%	ALS	RG CORCK SE-3 2022-09-14 N
SE	RG CORCK	668482	5487337	2022	3	2022-09-14	13:13	% Sand (0.125 mm - 0.063 mm)	15.1	%	ALS	RG_CORCK_SE-3_2022-09-14_N
E	RG CORCK	668482	5487337	2022	3	2022-09-14	13:13	% Sand (0.25 mm - 0.125 mm)	18.4	%	ALS	RG CORCK SE-3 2022-09-14 N
SE	RG_CORCK	668482	5487337	2022	3	2022-09-14	13:13	% Sand (0.50 mm - 0.25 mm)	14.5	%	ALS	RG CORCK SE-3 2022-09-14 N
SE	RG CORCK	668482	5487337	2022	3	2022-09-14	13:13	% Sand (1.00 mm - 0.50 mm)	6.2	%	ALS	RG_CORCK_SE-3_2022-09-14_N
SE	RG CORCK	668482	5487337	2022	3	2022-09-14	13:13	% Sand (2.00 mm - 1.00 mm)	2.5	%	ALS	RG_CORCK_SE-3_2022-09-14_N
SE	RG_CORCK	668482	5487337	2022	3	2022-09-14	13:13	% Gravel (>2 mm)	1.2	%	ALS	RG_CORCK_SE-3_2022-09-14_N
SE	RG CORCK	668482	5487337	2022	3	2022-09-14	13:13	Inorganic Carbon <63 µm	7.01	%	ALS	RG CORCK SE-3 2022-09-14 N
SE	RG CORCK	668482	5487337	2022	3	2022-09-14	13:13	Total Carbon <63 µm	13.7	%	ALS	RG_CORCK_SE-3_2022-09-14_N
SE	RG CORCK	668482	5487337	2022	3	2022-09-14	13:13	Total Organic Carbon	6.69	%	ALS	RG_CORCK_SE-3_2022-09-14_N
SE	RG CORCK	668482	5487337	2022	3	2022-09-14	13:13	Inorganic Carbon (as CaCO3 equivalent)	58.4	%	ALS	RG CORCK SE-3 2022-09-14 N
SE	RG CORCK	668482	5487337	2022	3	2022-09-14	13:13	Aluminum (AI)	2180	mg/kg	ALS	RG_CORCK_SE-3_2022-09-14_N
SE	RG CORCK	668482	5487337	2022	3	2022-09-14	13:13	Antimony (Sb)	0.32	mg/kg	ALS	RG_CORCK_SE-3_2022-09-14_N
SE	RG CORCK	668482	5487337	2022	3	2022-09-14	13:13	Arsenic (As)	2.64	mg/kg	ALS	RG CORCK SE-3 2022-09-14 N
SE	RG CORCK	668482	5487337	2022	3	2022-09-14	13:13	Barium (Ba)	190	mg/kg	ALS	RG CORCK SE-3 2022-09-14 N
SE	RG CORCK	668482	5487337	2022	3	2022-09-14	13:13	Beryllium (Be)	0.42	mg/kg	ALS	RG CORCK SE-3 2022-09-14 N
SE	RG CORCK	668482	5487337	2022	3	2022-09-14	13:13	Bismuth (Bi)	<0.2	mg/kg	ALS	RG CORCK SE-3 2022-09-14 N
SE	RG CORCK	668482	5487337	2022	3	2022-09-14	13:13	Boron (B)	7.9	mg/kg	ALS	RG CORCK SE-3 2022-09-14 N
SE	RG_CORCK	668482	5487337	2022	3	2022-09-14	13:13	Cadmium (Cd)	10.7	mg/kg	ALS	RG CORCK SE-3 2022-09-14 N
SE	RG CORCK	668482	5487337	2022	3	2022-09-14	13:13	Calcium (Ca)	357000	mg/kg	ALS	RG CORCK SE-3 2022-09-14 N
SE	RG CORCK	668482	5487337	2022	3	2022-09-14	13:13	Chromium (Cr)	3.49	mg/kg	ALS	RG CORCK SE-3 2022-09-14 N
E	RG CORCK	668482	5487337	2022	3	2022-09-14	13:13	Cobalt (Co)	279	mg/kg	ALS	RG CORCK SE-3 2022-09-14 N
SE.	RG_CORCK	668482	5487337	2022	3	2022-09-14	13:13	Copper (Cu)	8.03	mg/kg	ALS	RG_CORCK_SE-3_2022-09-14_N
SE	RG CORCK	668482	5487337	2022	3	2022-09-14	13:13	Iron (Fe)	4160	mg/kg	ALS	RG CORCK SE-3 2022-09-14 N
E SE	RG_CORCK	668482	5487337	2022	3	2022-09-14	13:13	Lead (Pb)	3	mg/kg	ALS	RG CORCK SE-3 2022-09-14 N
SE	RG CORCK	668482	5487337	2022	3	2022-09-14	13:13	Lithium (Li)	3.6	mg/kg	ALS	RG CORCK SE-3 2022-09-14 N
SE	RG CORCK	668482	5487337	2022	3	2022-09-14	13:13	Magnesium (Mg)	7170	mg/kg	ALS	RG CORCK SE-3 2022-09-14 N
SE	RG CORCK	668482	5487337	2022	3	2022-09-14	13:13	Manganese (Mn)	2200	mg/kg	ALS	RG CORCK SE-3 2022-09-14 N
-		· 	5487337	2022	_ 	2022-09-14	13:13	Mercury (Hg)	0.0285	.55		RG CORCK SE-3 2022-09-14 N

WSP Canada Inc. Page 305 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Тура-	Station	Location	(UTMs) ^(a)	Veer	Poplicate	Data	Time	Analyta	Popult	Hoit		Laboratory Information
уре	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	RG CORCK	668482	5487337	2022	3	2022-09-14	13:13	Molybdenum (Mo)	0.8	mg/kg	ALS	RG CORCK SE-3 2022-09-14 N
SE	RG CORCK	668482	5487337	2022	3	2022-09-14	13:13	Nickel (Ni)	284	mg/kg	ALS	RG_CORCK_SE-3_2022-09-14_N
SE	RG CORCK	668482	5487337	2022	3	2022-09-14	13:13	Phosphorus (P)	343	mg/kg	ALS	RG CORCK SE-3 2022-09-14 N
SE	RG CORCK	668482	5487337	2022	3	2022-09-14	13:13	Potassium (K)	600	mg/kg	ALS	RG CORCK SE-3 2022-09-14 N
SE	RG CORCK	668482	5487337	2022	3	2022-09-14	13:13	Selenium (Se)	4.55	mg/kg	ALS	RG CORCK SE-3 2022-09-14 N
E E	RG CORCK	668482	5487337	2022	3	2022-09-14	13:13	Silver (Ag)	<0.1	mg/kg	ALS	RG CORCK SE-3 2022-09-14 N
SE	RG CORCK	668482	5487337	2022	3	2022-09-14	13:13	Sodium (Na)	409	mg/kg	ALS	RG CORCK SE-3 2022-09-14 N
<u>=</u> E	RG CORCK	668482	5487337	2022	3	2022-09-14	13:13	Strontium (Sr)	426	mg/kg	ALS	RG CORCK SE-3 2022-09-14 N
SE	RG_CORCK	668482	5487337	2022	3	2022-09-14	13:13	Sulfur (S)	5000	mg/kg	ALS	RG_CORCK_SE-3_2022-09-14_N
SE	RG_CORCK	668482	5487337	2022	3	2022-09-14	13:13	Thallium (TI)	0.297	mg/kg	ALS	RG_CORCK_SE-3_2022-09-14_N
SE	RG CORCK	668482	5487337	2022	3	2022-09-14	13:13	Tin (Sn)	<2	mg/kg	ALS	RG_CORCK_SE-3_2022-09-14_N
SE	RG CORCK	668482	5487337	2022	3	2022-09-14	13:13	Titanium (Ti)	7.2	mg/kg	ALS	RG CORCK SE-3 2022-09-14 N
SE	RG CORCK	668482	5487337	2022	3	2022-09-14	13:13	Tungsten (W)	<0.5	mg/kg	ALS	RG CORCK SE-3 2022-09-14 N
<u> </u>	RG_CORCK	668482	5487337	2022	3	2022-09-14	13:13	Uranium (U)	2.98	mg/kg	ALS	RG_CORCK_SE-3_2022-09-14_N
SE	RG CORCK	668482	5487337	2022	3	2022-09-14	13:13	Vanadium (V)	7.5	mg/kg	ALS	RG CORCK SE-3 2022-09-14 N
SE	RG_CORCK	668482	5487337	2022	3	2022-09-14	13:13	Zinc (Zn)	831	mg/kg	ALS	RG CORCK SE-3 2022-09-14 N
SE	RG CORCK	668482	5487337	2022	3	2022-09-14	13:13	Zirconium (Zr)	<1	mg/kg	ALS	RG CORCK SE-3 2022-09-14 N
SE	RG_CORCK	668482	5487337	2022	3	2022-09-14	13:13	Acenaphthene	0.051	mg/kg	ALS	RG CORCK SE-3 2022-09-14 N
SE	RG CORCK	668482	5487337	2022	3	2022-09-14	13:13	Acenaphthylene	<0.05	mg/kg	ALS	RG CORCK SE-3 2022-09-14 N
SE	RG CORCK	668482	5487337	2022	3	2022-09-14	13:13	Acridine	0.094	mg/kg	ALS	RG CORCK SE-3 2022-09-14 N
SE	RG_CORCK	668482	5487337	2022	3	2022-09-14	13:13	Anthracene	<0.05	1 - 1	ALS	RG CORCK SE-3 2022-09-14 N
SE SE	_	668482			3	2022-09-14	13:13		0.052	mg/kg	ALS	
	RG_CORCK		5487337	2022				Benz(a)anthracene		mg/kg		RG_CORCK_SE-3_2022-09-14_N
SE_	RG_CORCK	668482	5487337	2022	3	2022-09-14	13:13	Benzo(a)pyrene	0.053	mg/kg	ALS	RG_CORCK_SE-3_2022-09-14_N
SE_	RG_CORCK	668482	5487337	2022	3	2022-09-14	13:13	Benzo(b&j)fluoranthene	0.231	mg/kg	ALS	RG_CORCK_SE-3_2022-09-14_N
SE_	RG_CORCK	668482	5487337	2022	3	2022-09-14	13:13	Benzo(b+j+k)fluoranthene	0.231	mg/kg	ALS	RG_CORCK_SE-3_2022-09-14_N
SE_	RG_CORCK	668482	5487337	2022	3	2022-09-14	13:13	Benzo(g_h_i)perylene	0.102	mg/kg	ALS	RG_CORCK_SE-3_2022-09-14_N
SE_	RG_CORCK	668482	5487337	2022	3	2022-09-14	13:13	Benzo(k)fluoranthene	<0.05	mg/kg	ALS	RG_CORCK_SE-3_2022-09-14_N
SE	RG_CORCK	668482	5487337	2022	3	2022-09-14	13:13	Chrysene	0.314	mg/kg	ALS	RG_CORCK_SE-3_2022-09-14_N
SE	RG_CORCK	668482	5487337	2022	3	2022-09-14	13:13	Dibenz(a_h)anthracene	<0.05	mg/kg	ALS	RG_CORCK_SE-3_2022-09-14_N
SE	RG_CORCK	668482	5487337	2022	3	2022-09-14	13:13	Fluoranthene	0.064	mg/kg	ALS	RG_CORCK_SE-3_2022-09-14_N
SE	RG_CORCK	668482	5487337	2022	3	2022-09-14	13:13	Fluorene	0.15	mg/kg	ALS	RG_CORCK_SE-3_2022-09-14_N
SE	RG_CORCK	668482	5487337	2022	3	2022-09-14	13:13	Indeno(1,2,3-c,d)pyrene	<0.05	mg/kg	ALS	RG_CORCK_SE-3_2022-09-14_N
SE	RG_CORCK	668482	5487337	2022	3	2022-09-14	13:13	1+2-Methylnaphthalene	2.89	mg/kg	ALS	RG_CORCK_SE-3_2022-09-14_N
SE	RG_CORCK	668482	5487337	2022	3	2022-09-14	13:13	1-Methylnaphthalene	1.09	mg/kg	ALS	RG_CORCK_SE-3_2022-09-14_N
SE	RG_CORCK	668482	5487337	2022	3	2022-09-14	13:13	2-Methylnaphthalene	1.8	mg/kg	ALS	RG_CORCK_SE-3_2022-09-14_N
SE	RG_CORCK	668482	5487337	2022	3	2022-09-14	13:13	Naphthalene	0.677	mg/kg	ALS	RG_CORCK_SE-3_2022-09-14_N
SE	RG_CORCK	668482	5487337	2022	3	2022-09-14	13:13	Phenanthrene	1.13	mg/kg	ALS	RG_CORCK_SE-3_2022-09-14_N
SE	RG_CORCK	668482	5487337	2022	3	2022-09-14	13:13	Pyrene	0.098	mg/kg	ALS	RG_CORCK_SE-3_2022-09-14_N
SE	RG_CORCK	668482	5487337	2022	3	2022-09-14	13:13	Quinoline	<0.05	mg/kg	ALS	RG_CORCK_SE-3_2022-09-14_N
SE_	RG_CORCK	668482	5487337	2022	3	2022-09-14	13:13	B(a)P Total Potency Equivalent	0.115	mg/kg	ALS	RG_CORCK_SE-3_2022-09-14_N
SE	RG_CORCK	668482	5487337	2022	3	2022-09-14	13:13	PAHs, total (BC Sched 3.4)	4.39	mg/kg	ALS	RG_CORCK_SE-3_2022-09-14_N
SE	RG_CORCK	668482	5487337	2022	3	2022-09-14	13:13	PAHs, total	2.92	mg/kg	ALS	RG_CORCK_SE-3_2022-09-14_N
SE.	RG_CORCK	668482	5487337	2022	3	2022-09-14	13:13	d9-Acridine	115	%	ALS	RG_CORCK_SE-3_2022-09-14_N
SE.	RG_CORCK	668482	5487337	2022	3	2022-09-14	13:13	d12-Chrysene	126	%	ALS	RG_CORCK_SE-3_2022-09-14_N
SE.	RG_CORCK	668482	5487337	2022	3	2022-09-14	13:13	d8-Naphthalene	125	%	ALS	RG_CORCK_SE-3_2022-09-14_N
SE	RG_CORCK	668482	5487337	2022	3	2022-09-14	13:13	d10-Phenanthrene	121	%	ALS	RG_CORCK_SE-3_2022-09-14_N
SE	RG CORCK	668482	5487346	2022	4	2022-09-14	13:45	Moisture	59	%	ALS	RG CORCK SE-4 2022-09-14 N

WSP Canada Inc. Page 306 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Table I-	1: Sediment Chem			CMm LAEMP	Sampling St	ations, 2012 to	2022					
Туре	Station		ı (UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
		Easting	Northing		rtopnouto			· ·		J	Lab	Sample ID
SE	RG_CORCK	668482	5487346	2022	4	2022-09-14	13:45	pH (1:2 soil:water)	8.21	pН	ALS	RG_CORCK_SE-4_2022-09-14_N
SE	RG_CORCK	668482	5487346	2022	4	2022-09-14	13:45	% Clay (<4 μm)	6.4	%	ALS	RG_CORCK_SE-4_2022-09-14_N
SE	RG_CORCK	668482	5487346	2022	4	2022-09-14	13:45	% Silt (0.063 mm - 0.0312 mm)	17.8	%	ALS	RG_CORCK_SE-4_2022-09-14_N
SE	RG_CORCK	668482	5487346	2022	4	2022-09-14	13:45	% Silt (0.031 mm - 0.004 mm)	25.7	%	ALS	RG_CORCK_SE-4_2022-09-14_N
SE	RG_CORCK	668482	5487346	2022	4	2022-09-14	13:45	% Sand (0.125 mm - 0.063 mm)	15.4	%	ALS	RG_CORCK_SE-4_2022-09-14_N
SE	RG_CORCK	668482	5487346	2022	4	2022-09-14	13:45	% Sand (0.25 mm - 0.125 mm)	13.3	%	ALS	RG_CORCK_SE-4_2022-09-14_N
SE	RG_CORCK	668482	5487346	2022	4	2022-09-14	13:45	% Sand (0.50 mm - 0.25 mm)	7.1	%	ALS	RG_CORCK_SE-4_2022-09-14_N
SE	RG_CORCK	668482	5487346	2022	4	2022-09-14	13:45	% Sand (1.00 mm - 0.50 mm)	4.2	%	ALS	RG_CORCK_SE-4_2022-09-14_N
SE	RG_CORCK	668482	5487346	2022	4	2022-09-14	13:45	% Sand (2.00 mm - 1.00 mm)	4.8	%	ALS	RG_CORCK_SE-4_2022-09-14_N
SE	RG_CORCK	668482	5487346	2022	4	2022-09-14	13:45	% Gravel (>2 mm)	5.3	%	ALS	RG_CORCK_SE-4_2022-09-14_N
SE	RG_CORCK	668482	5487346	2022	4	2022-09-14	13:45	Inorganic Carbon <63 µm	6.71	%	ALS	RG_CORCK_SE-4_2022-09-14_N
SE	RG_CORCK	668482	5487346	2022	4	2022-09-14	13:45	Total Carbon <63 µm	13.2	%	ALS	RG_CORCK_SE-4_2022-09-14_N
SE	RG_CORCK	668482	5487346	2022	4	2022-09-14	13:45	Total Organic Carbon	6.49	%	ALS	RG_CORCK_SE-4_2022-09-14_N
SE	RG_CORCK	668482	5487346	2022	4	2022-09-14	13:45	Inorganic Carbon (as CaCO3 equivalent)	55.9	%	ALS	RG_CORCK_SE-4_2022-09-14_N
SE	RG_CORCK	668482	5487346	2022	4	2022-09-14	13:45	Aluminum (Al)	2470	mg/kg	ALS	RG_CORCK_SE-4_2022-09-14_N
SE	RG_CORCK	668482	5487346	2022	4	2022-09-14	13:45	Antimony (Sb)	0.3	mg/kg	ALS	RG_CORCK_SE-4_2022-09-14_N
SE	RG_CORCK	668482	5487346	2022	4	2022-09-14	13:45	Arsenic (As)	3.36	mg/kg	ALS	RG_CORCK_SE-4_2022-09-14_N
SE	RG_CORCK	668482	5487346	2022	4	2022-09-14	13:45	Barium (Ba)	143	mg/kg	ALS	RG CORCK SE-4 2022-09-14 N
SE	RG CORCK	668482	5487346	2022	4	2022-09-14	13:45	Beryllium (Be)	0.36	mg/kg	ALS	RG CORCK SE-4 2022-09-14 N
SE	RG CORCK	668482	5487346	2022	4	2022-09-14	13:45	Bismuth (Bi)	<0.2	mg/kg	ALS	RG CORCK SE-4 2022-09-14 N
SE	RG_CORCK	668482	5487346	2022	4	2022-09-14	13:45	Boron (B)	5.6	mg/kg	ALS	RG CORCK SE-4 2022-09-14 N
SE	RG_CORCK	668482	5487346	2022	4	2022-09-14	13:45	Cadmium (Cd)	7.45	mg/kg	ALS	RG CORCK SE-4 2022-09-14 N
SE	RG_CORCK	668482	5487346	2022	4	2022-09-14	13:45	Calcium (Ca)	253000	mg/kg	ALS	RG_CORCK_SE-4_2022-09-14_N
SE	RG CORCK	668482	5487346	2022	4	2022-09-14	13:45	Chromium (Cr)	4.56	mg/kg	ALS	RG CORCK SE-4 2022-09-14 N
SE	RG_CORCK	668482	5487346	2022	4	2022-09-14	13:45	Cobalt (Co)	188	mg/kg	ALS	RG CORCK SE-4 2022-09-14 N
SE	RG CORCK	668482	5487346	2022	4	2022-09-14	13:45	Copper (Cu)	6.95	mg/kg	ALS	RG CORCK SE-4 2022-09-14 N
SE	RG CORCK	668482	5487346	2022	4	2022-09-14	13:45	Iron (Fe)	5280	mg/kg	ALS	RG CORCK SE-4 2022-09-14 N
SE	RG_CORCK	668482	5487346	2022	4	2022-09-14	13:45	Lead (Pb)	3.8	mg/kg	ALS	RG CORCK SE-4 2022-09-14 N
SE	RG_CORCK	668482	5487346	2022	4	2022-09-14	13:45	Lithium (Li)	3.2	mg/kg	ALS	RG CORCK SE-4 2022-09-14 N
SE	RG CORCK	668482	5487346	2022	4	2022-09-14	13:45	Magnesium (Mg)	6590	mg/kg	ALS	RG CORCK SE-4 2022-09-14 N
SE	RG_CORCK	668482	5487346	2022	4	2022-09-14	13:45	Manganese (Mn)	1480	mg/kg		RG CORCK SE-4 2022-09-14 N
SE	RG CORCK	668482	5487346	2022	4	2022-09-14	13:45	Mercury (Hg)	0.0265	mg/kg		RG CORCK SE-4 2022-09-14 N
SE	RG_CORCK	668482	5487346	2022	4	2022-09-14	13:45	Molybdenum (Mo)	0.64	mg/kg	ALS	RG CORCK SE-4 2022-09-14 N
SE	RG_CORCK	668482	5487346	2022	4	2022-09-14	13:45	Nickel (Ni)	201	mg/kg	ALS	RG CORCK SE-4 2022-09-14 N
SE	RG CORCK	668482	5487346	2022	4	2022-09-14	13:45	Phosphorus (P)	440	mg/kg	ALS	RG CORCK SE-4 2022-09-14 N
SE	RG_CORCK	668482	5487346	2022	4	2022-09-14	13:45	Potassium (K)	630	mg/kg		RG CORCK SE-4 2022-09-14 N
SE	RG CORCK	668482	5487346	2022	4	2022-09-14	13:45	Selenium (Se)	2.2	mg/kg	ALS	RG CORCK SE-4 2022-09-14 N
SE	RG CORCK	668482	5487346	2022	4	2022-09-14	13:45	Silver (Ag)	<0.1	mg/kg	ALS	RG CORCK SE-4 2022-09-14 N
SE	RG CORCK	668482	5487346	2022	1	2022-09-14	13:45	Sodium (Na)	263	mg/kg	ALS	RG CORCK SE-4 2022-09-14 N
SE	RG_CORCK	668482	5487346	2022	4	2022-09-14	13:45	Strontium (Sr)	300	mg/kg	ALS	RG CORCK SE-4 2022-09-14 N
SE	RG_CORCK	668482	5487346	2022	1	2022-09-14	13:45	Sulfur (S)	3400	mg/kg	ALS	RG CORCK SE-4 2022-09-14 N
SE	RG_CORCK	668482	5487346	2022	4	2022-09-14	13:45	Thallium (TI)	0.242	mg/kg	ALS	RG_CORCK_SE-4_2022-09-14_N
SE	_			2022	4							RG CORCK SE-4 2022-09-14 N
	RG_CORCK	668482	5487346		4	2022-09-14	13:45	Tin (Sn)	<2	mg/kg	ALS	
SE	RG_CORCK	668482	5487346	2022	4	2022-09-14	13:45	Titanium (Ti)	7.7	mg/kg	ALS	RG_CORCK_SE-4_2022-09-14_N
SE	RG_CORCK	668482	5487346	2022	4	2022-09-14	13:45	Tungsten (W)	<0.5	mg/kg	ALS	RG_CORCK_SE-4_2022-09-14_N
SE	RG_CORCK	668482	5487346	2022	4	2022-09-14	13:45	Uranium (U)	1.88	mg/kg	ALS	RG_CORCK_SE-4_2022-09-14_N
SE	RG_CORCK	668482	5487346	2022	4	2022-09-14	13:45	Vanadium (V)	9.02	mg/kg	ALS	RG_CORCK_SE-4_2022-09-14_N

WSP Canada Inc. Page 307 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

			(UTMs) ^(a)			ations, 2012 to						Laboratory Information
Гуре	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	RG_CORCK	668482	5487346	2022	4	2022-09-14	13:45	Zinc (Zn)	593	mg/kg	ALS	RG CORCK SE-4 2022-09-14 N
SE	RG CORCK	668482	5487346	2022	4	2022-09-14	13:45	Zirconium (Zr)	<1	mg/kg	ALS	RG CORCK SE-4 2022-09-14 N
SE	RG CORCK	668482	5487346	2022	4	2022-09-14	13:45	Acenaphthene	0.058	mg/kg	ALS	RG CORCK SE-4 2022-09-14 N
SE	RG CORCK	668482	5487346	2022	4	2022-09-14	13:45	Acenaphthylene	<0.05	mg/kg	ALS	RG CORCK SE-4 2022-09-14 N
SE	RG CORCK	668482	5487346	2022	1	2022-09-14	13:45	Acridine	0.092	mg/kg	ALS	RG CORCK SE-4 2022-09-14 N
SE	RG CORCK	668482	5487346	2022	4	2022-09-14	13:45	Anthracene	<0.05	mg/kg	ALS	RG CORCK SE-4 2022-09-14 N
SE	RG CORCK	668482	5487346	2022	4	2022-09-14	13:45	Benz(a)anthracene	0.076	mg/kg	ALS	RG CORCK SE-4 2022-09-14 N
SE	RG CORCK	668482	5487346	2022	4	2022-09-14	13:45	Benzo(a)pyrene	0.076	mg/kg	ALS	RG CORCK SE-4 2022-09-14 N
SE	RG_CORCK	668482	5487346	2022	4	2022-09-14	13:45	Benzo(b&j)fluoranthene	0.030	1 - 1 - 1 - 1	ALS	RG CORCK SE-4 2022-09-14 N
SE	_	668482	5487346	2022	4	2022-09-14	13:45		0.265	mg/kg	ALS	
SE	RG_CORCK RG_CORCK	668482	5487346	2022	4	2022-09-14	13:45	Benzo(b+j+k)fluoranthene	0.265	mg/kg	ALS	RG_CORCK_SE-4_2022-09-14_N RG_CORCK_SE-4_2022-09-14_N
	_				4			Benzo(g_h_i)perylene		mg/kg		
SE	RG_CORCK	668482	5487346	2022	4	2022-09-14	13:45	Benzo(k)fluoranthene	<0.05	mg/kg	ALS	RG_CORCK_SE-4_2022-09-14_N
SE	RG_CORCK	668482	5487346	2022	4	2022-09-14	13:45	Chrysene	0.421	mg/kg	ALS	RG_CORCK_SE-4_2022-09-14_N
SE	RG_CORCK	668482	5487346	2022	4	2022-09-14	13:45	Dibenz(a_h)anthracene	<0.05	mg/kg	ALS	RG_CORCK_SE-4_2022-09-14_N
SE	RG_CORCK	668482	5487346	2022	4	2022-09-14	13:45	Fluoranthene	0.081	mg/kg	ALS	RG_CORCK_SE-4_2022-09-14_N
SE	RG_CORCK	668482	5487346	2022	4	2022-09-14	13:45	Fluorene	0.167	mg/kg	ALS	RG_CORCK_SE-4_2022-09-14_N
SE	RG_CORCK	668482	5487346	2022	4	2022-09-14	13:45	Indeno(1,2,3-c,d)pyrene	<0.05	mg/kg	ALS	RG_CORCK_SE-4_2022-09-14_N
SE	RG_CORCK	668482	5487346	2022	4	2022-09-14	13:45	1+2-Methylnaphthalene	3.78	mg/kg	ALS	RG_CORCK_SE-4_2022-09-14_N
SE	RG_CORCK	668482	5487346	2022	4	2022-09-14	13:45	1-Methylnaphthalene	1.41	mg/kg	ALS	RG_CORCK_SE-4_2022-09-14_N
SE	RG_CORCK	668482	5487346	2022	4	2022-09-14	13:45	2-Methylnaphthalene	2.37	mg/kg	ALS	RG_CORCK_SE-4_2022-09-14_N
SE	RG_CORCK	668482	5487346	2022	4	2022-09-14	13:45	Naphthalene	0.881	mg/kg	ALS	RG_CORCK_SE-4_2022-09-14_N
SE	RG_CORCK	668482	5487346	2022	4	2022-09-14	13:45	Phenanthrene	1.06	mg/kg	ALS	RG_CORCK_SE-4_2022-09-14_N
SE	RG_CORCK	668482	5487346	2022	4	2022-09-14	13:45	Pyrene	0.134	mg/kg	ALS	RG_CORCK_SE-4_2022-09-14_N
SE	RG_CORCK	668482	5487346	2022	4	2022-09-14	13:45	Quinoline	<0.05	mg/kg	ALS	RG_CORCK_SE-4_2022-09-14_N
SE	RG_CORCK	668482	5487346	2022	4	2022-09-14	13:45	B(a)P Total Potency Equivalent	0.126	mg/kg	ALS	RG_CORCK_SE-4_2022-09-14_N
SE	RG_CORCK	668482	5487346	2022	4	2022-09-14	13:45	PAHs, total (BC Sched 3.4)	5.3	mg/kg	ALS	RG_CORCK_SE-4_2022-09-14_N
SE	RG_CORCK	668482	5487346	2022	4	2022-09-14	13:45	PAHs, total	3.34	mg/kg	ALS	RG_CORCK_SE-4_2022-09-14_N
SE	RG_CORCK	668482	5487346	2022	4	2022-09-14	13:45	d9-Acridine	123	%	ALS	RG_CORCK_SE-4_2022-09-14_N
SE	RG_CORCK	668482	5487346	2022	4	2022-09-14	13:45	d12-Chrysene	112	%	ALS	RG_CORCK_SE-4_2022-09-14_N
SE	RG_CORCK	668482	5487346	2022	4	2022-09-14	13:45	d8-Naphthalene	122	%	ALS	RG_CORCK_SE-4_2022-09-14_N
SE	RG_CORCK	668482	5487346	2022	4	2022-09-14	13:45	d10-Phenanthrene	124	%	ALS	RG_CORCK_SE-4_2022-09-14_N
SE	RG_CORCK	668485	5487324	2022	5	2022-09-14	13:02	Moisture	54.7	%	ALS	RG_CORCK_SE-5_2022-09-14_N
SE	RG_CORCK	668485	5487324	2022	5	2022-09-14	13:02	pH (1:2 soil:water)	8.15	pН	ALS	RG_CORCK_SE-5_2022-09-14_N
SE	RG_CORCK	668485	5487324	2022	5	2022-09-14	13:02	% Clay (<4 μm)	6	%	ALS	RG_CORCK_SE-5_2022-09-14_N
SE	RG_CORCK	668485	5487324	2022	5	2022-09-14	13:02	% Silt (0.063 mm - 0.0312 mm)	16.4	%	ALS	RG_CORCK_SE-5_2022-09-14_N
SE	RG_CORCK	668485	5487324	2022	5	2022-09-14	13:02	% Silt (0.031 mm - 0.004 mm)	22.8	%	ALS	RG_CORCK_SE-5_2022-09-14_N
SE	RG_CORCK	668485	5487324	2022	5	2022-09-14	13:02	% Sand (0.125 mm - 0.063 mm)	15.6	%	ALS	RG_CORCK_SE-5_2022-09-14_N
SE	RG_CORCK	668485	5487324	2022	5	2022-09-14	13:02	% Sand (0.25 mm - 0.125 mm)	15	%	ALS	RG_CORCK_SE-5_2022-09-14_N
SE	RG_CORCK	668485	5487324	2022	5	2022-09-14	13:02	% Sand (0.50 mm - 0.25 mm)	10.2	%	ALS	RG_CORCK_SE-5_2022-09-14_N
SE	RG_CORCK	668485	5487324	2022	5	2022-09-14	13:02	% Sand (1.00 mm - 0.50 mm)	6.2	%	ALS	RG_CORCK_SE-5_2022-09-14_N
SE	RG_CORCK	668485	5487324	2022	5	2022-09-14	13:02	% Sand (2.00 mm - 1.00 mm)	4.3	%	ALS	RG_CORCK_SE-5_2022-09-14_N
SE	RG_CORCK	668485	5487324	2022	5	2022-09-14	13:02	% Gravel (>2 mm)	3.5	%	ALS	RG_CORCK_SE-5_2022-09-14_N
SE	RG CORCK	668485	5487324	2022	5	2022-09-14	13:02	Inorganic Carbon <63 µm	7.92	%	ALS	RG CORCK SE-5 2022-09-14 N
SE	RG_CORCK	668485	5487324	2022	5	2022-09-14	13:02	Total Carbon <63 µm	13.4	%	ALS	RG CORCK SE-5 2022-09-14 N
SE	RG CORCK	668485	5487324	2022	5	2022-09-14	13:02	Total Organic Carbon	5.48	%	ALS	RG CORCK SE-5 2022-09-14 N
SE	RG_CORCK	668485	5487324	2022	5	2022-09-14	13:02	Inorganic Carbon (as CaCO3 equivalent)	66	%	ALS	RG CORCK SE-5 2022-09-14 N
	RG_CORCK	668485	5487324	2022	5	2022-09-14	13:02	Aluminum (Al)	2100	mg/kg	ALS	RG CORCK SE-5 2022-09-14 N

WSP Canada Inc. Page 308 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Γν <i>ι</i> α	Ctation	Location	(UTMs) ^(a)	Vaar	Donlingto	Data	Time	Angluta	Docult	Lloit		Laboratory Information
уре	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	RG CORCK	668485	5487324	2022	5	2022-09-14	13:02	Antimony (Sb)	0.32	mg/kg	ALS	RG_CORCK_SE-5_2022-09-14_N
βE	RG CORCK	668485	5487324	2022	5	2022-09-14	13:02	Arsenic (As)	3.31	mg/kg	ALS	RG CORCK SE-5 2022-09-14 N
E	RG CORCK	668485	5487324	2022	5	2022-09-14	13:02	Barium (Ba)	154	mg/kg	ALS	RG CORCK SE-5 2022-09-14 N
E	RG CORCK	668485	5487324	2022	5	2022-09-14	13:02	Beryllium (Be)	0.38	mg/kg	ALS	RG CORCK SE-5 2022-09-14 N
<u>=</u>	RG CORCK	668485	5487324	2022	5	2022-09-14	13:02	Bismuth (Bi)	<0.2	mg/kg	ALS	RG CORCK SE-5 2022-09-14 N
E	RG_CORCK	668485	5487324	2022	5	2022-09-14	13:02	Boron (B)	6.8	mg/kg	ALS	RG_CORCK_SE-5_2022-09-14_N
E	RG CORCK	668485	5487324	2022	5	2022-09-14	13:02	Cadmium (Cd)	9.16	mg/kg	ALS	RG_CORCK_SE-5_2022-09-14_N
E	RG CORCK	668485	5487324	2022	5	2022-09-14	13:02	Calcium (Ca)	309000	mg/kg	ALS	RG CORCK SE-5 2022-09-14 N
βE	RG_CORCK	668485	5487324	2022	5	2022-09-14	13:02	Chromium (Cr)	4.16	mg/kg	ALS	RG_CORCK_SE-5_2022-09-14_N
SE.	RG_CORCK	668485	5487324	2022	5	2022-09-14	13:02	Cobalt (Co)	283	mg/kg	ALS	RG_CORCK_SE-5_2022-09-14_N
SE.	RG CORCK	668485	5487324	2022	5	2022-09-14	13:02	Copper (Cu)	7.6	mg/kg	ALS	RG_CORCK_SE-5_2022-09-14_N
SE	RG CORCK	668485	5487324	2022	5	2022-09-14	13:02	Iron (Fe)	4950	mg/kg	ALS	RG CORCK SE-5 2022-09-14 N
SE	RG CORCK	668485	5487324	2022	5	2022-09-14	13:02	Lead (Pb)	3.01	mg/kg	ALS	RG CORCK SE-5 2022-09-14 N
SE	RG_CORCK	668485	5487324	2022	5	2022-09-14	13:02	Lithium (Li)	2.8	mg/kg	ALS	RG_CORCK_SE-5_2022-09-14_N
SE	RG CORCK	668485	5487324	2022	5	2022-09-14	13:02	Magnesium (Mg)	6510	mg/kg	ALS	RG CORCK SE-5 2022-09-14 N
SE	RG_CORCK	668485	5487324	2022	5	2022-09-14	13:02	Manganese (Mn)	2170	mg/kg	ALS	RG CORCK SE-5 2022-09-14 N
SE.	RG CORCK	668485	5487324	2022	5	2022-09-14	13:02	Mercury (Hg)	0.0277	mg/kg	ALS	RG CORCK SE-5 2022-09-14 N
SE	RG_CORCK	668485	5487324	2022	5	2022-09-14	13:02	Molybdenum (Mo)	0.69	mg/kg	ALS	RG CORCK SE-5 2022-09-14 N
SE	RG CORCK	668485	5487324	2022	5	2022-09-14	13:02	Nickel (Ni)	267	mg/kg	ALS	RG CORCK SE-5 2022-09-14 N
SE.	RG CORCK	668485	5487324	2022	5	2022-09-14	13:02	Phosphorus (P)	295	mg/kg	ALS	RG_CORCK_SE-5_2022-09-14_N
βE	RG CORCK	668485	5487324	2022	5	2022-09-14	13:02	Potassium (K)	590	mg/kg	ALS	RG CORCK SE-5 2022-09-14 N
SE.	RG_CORCK	668485	5487324	2022	5	2022-09-14	13:02	Selenium (Se)	2.88	mg/kg	ALS	RG CORCK SE-5 2022-09-14 N
SE	RG_CORCK	668485	5487324	2022	5	2022-09-14	13:02	Silver (Ag)	<0.1	mg/kg	ALS	RG_CORCK_SE-5_2022-09-14_N
SE	RG CORCK	668485	5487324	2022	5	2022-09-14	13:02	Sodium (Na)	326	mg/kg	ALS	RG CORCK SE-5 2022-09-14 N
SE	RG_CORCK	668485	5487324	2022	5	2022-09-14	13:02	Strontium (Sr)	372	mg/kg	ALS	RG CORCK SE-5 2022-09-14 N
SE	RG CORCK	668485	5487324	2022	5	2022-09-14	13:02	Sulfur (S)	4300	mg/kg	ALS	RG CORCK SE-5 2022-09-14 N
SE	RG CORCK	668485	5487324	2022	5	2022-09-14	13:02	Thallium (TI)	0.327	mg/kg	ALS	RG_CORCK_SE-5_2022-09-14_N
SE	RG CORCK	668485	5487324	2022	5	2022-09-14	13:02	Tin (Sn)	<2	mg/kg	ALS	RG_CORCK_SE-5_2022-09-14_N
SE	RG_CORCK	668485	5487324	2022	5	2022-09-14	13:02	Titanium (Ti)	8.4	mg/kg	ALS	RG CORCK SE-5 2022-09-14 N
SE	RG CORCK	668485	5487324	2022	5	2022-09-14	13:02	Tungsten (W)	<0.5	mg/kg	ALS	RG_CORCK_SE-5_2022-09-14_N
SE	RG CORCK	668485	5487324	2022	5	2022-09-14	13:02	Uranium (U)	2.21	mg/kg	ALS	RG_CORCK_SE-5_2022-09-14_N
SE	RG CORCK	668485	5487324	2022		2022-09-14	13:02	Vanadium (V)	7.81	mg/kg	ALS	RG CORCK SE-5 2022-09-14 N
SE	RG CORCK	668485	5487324	2022	5	2022-09-14	13:02	Zinc (Zn)	724	mg/kg	ALS	RG CORCK SE-5 2022-09-14 N
SE	RG CORCK	668485	5487324	2022	5	2022-09-14	13:02	Zirconium (Zr)	<1	mg/kg	ALS	RG CORCK SE-5 2022-09-14 N
SE	RG CORCK	668485	5487324	2022	5	2022-09-14	13:02	Acenaphthene	<0.05	mg/kg	ALS	RG CORCK SE-5 2022-09-14 N
SE	RG CORCK	668485	5487324	2022	5	2022-09-14	13:02	Acenaphthylene	<0.05	mg/kg	ALS	RG CORCK SE-5 2022-09-14 N
SE	RG_CORCK	668485	5487324	2022	5	2022-09-14	13:02	Acridine	0.075	mg/kg	ALS	RG CORCK SE-5 2022-09-14 N
SE	RG CORCK	668485	5487324	2022	5	2022-09-14	13:02	Anthracene	<0.05	mg/kg	ALS	RG CORCK SE-5 2022-09-14 N
SE	RG CORCK	668485	5487324	2022	5	2022-09-14	13:02	Benz(a)anthracene	<0.05	mg/kg	ALS	RG CORCK SE-5 2022-09-14 N
E	RG CORCK	668485	5487324	2022	5	2022-09-14	13:02	Benzo(a)pyrene	<0.05	mg/kg	ALS	RG CORCK SE-5 2022-09-14 N
E	RG_CORCK	668485	5487324	2022	5	2022-09-14	13:02	Benzo(b&j)fluoranthene	0.191	mg/kg	ALS	RG_CORCK_SE-5_2022-09-14_N
SE.	RG CORCK	668485	5487324	2022	5	2022-09-14	13:02	Benzo(b+j+k)fluoranthene	0.191	mg/kg	ALS	RG CORCK SE-5 2022-09-14 N
E	RG_CORCK	668485	5487324	2022	5	2022-09-14	13:02	Benzo(g_h_i)perylene	0.089	mg/kg	ALS	RG_CORCK_SE-5_2022-09-14_N
SE.	RG CORCK	668485	5487324	2022	5	2022-09-14	13:02	Benzo(k)fluoranthene	<0.05	mg/kg	ALS	RG CORCK SE-5 2022-09-14 N
SE	RG CORCK	668485	5487324	2022	5	2022-09-14	13:02	Chrysene	0.269	mg/kg	ALS	RG CORCK SE-5 2022-09-14 N
SE	RG CORCK	668485	5487324	2022	5	2022-09-14	13:02	Dibenz(a h)anthracene	<0.05	mg/kg	ALS	RG CORCK SE-5 2022-09-14 N
SE	RG CORCK	668485	5487324	2022	5	2022-09-14	13:02	Fluoranthene	0.052	mg/kg	ALS	RG CORCK SE-5 2022-09-14 N

WSP Canada Inc. Page 309 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Γν.//2.e.	Ctation	Location	ı (UTMs) ^(a)	Voor	Donlingto	Doto	Time	Analyta	Beaut	Unit		Laboratory Information
ype	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
E	RG_CORCK	668485	5487324	2022	5	2022-09-14	13:02	Fluorene	0.116	mg/kg	ALS	RG CORCK SE-5 2022-09-14 N
E	RG CORCK	668485	5487324	2022	5	2022-09-14	13:02	Indeno(1,2,3-c,d)pyrene	< 0.05	mg/kg	ALS	RG CORCK SE-5 2022-09-14 N
E	RG_CORCK	668485	5487324	2022	5	2022-09-14	13:02	1+2-Methylnaphthalene	2.16	mg/kg	ALS	RG CORCK SE-5 2022-09-14 N
E	RG CORCK	668485	5487324	2022	5	2022-09-14	13:02	1-Methylnaphthalene	0.829	mg/kg	ALS	RG CORCK SE-5 2022-09-14 N
SE	RG_CORCK	668485	5487324	2022	5	2022-09-14	13:02	2-Methylnaphthalene	1.33	mg/kg	ALS	RG CORCK SE-5 2022-09-14 N
SE	RG CORCK	668485	5487324	2022	5	2022-09-14	13:02	Naphthalene	0.479	mg/kg	ALS	RG CORCK SE-5 2022-09-14 N
SE	RG CORCK	668485	5487324	2022	5	2022-09-14	13:02	Phenanthrene	0.706	mg/kg	ALS	RG CORCK SE-5 2022-09-14 N
SE	RG CORCK	668485	5487324	2022	5	2022-09-14	13:02	Pyrene	0.081	mg/kg	ALS	RG CORCK SE-5 2022-09-14 N
SE	RG_CORCK	668485	5487324	2022	5	2022-09-14	13:02	Quinoline	< 0.05	mg/kg	ALS	RG_CORCK_SE-5_2022-09-14_N
SE	RG CORCK	668485	5487324	2022	5	2022-09-14	13:02	B(a)P Total Potency Equivalent	0.08	mg/kg	ALS	RG CORCK SE-5 2022-09-14 N
SE	RG CORCK	668485	5487324	2022	5	2022-09-14	13:02	PAHs, total (BC Sched 3.4)	3.03	mg/kg	ALS	RG CORCK SE-5 2022-09-14 N
SE	RG CORCK	668485	5487324	2022	5	2022-09-14	13:02	PAHs, total	1.98	mg/kg	ALS	RG CORCK SE-5 2022-09-14 N
SE	RG CORCK	668485	5487324	2022	5	2022-09-14	13:02	d9-Acridine	110	%	ALS	RG_CORCK_SE-5_2022-09-14_N
SE	RG_CORCK	668485	5487324	2022	5	2022-09-14	13:02	d12-Chrysene	127	%	ALS	RG CORCK SE-5 2022-09-14 N
SE	RG CORCK	668485	5487324	2022	5	2022-09-14	13:02	d8-Naphthalene	118	%	ALS	RG CORCK SE-5 2022-09-14 N
SE	RG_CORCK	668485	5487324	2022	5	2022-09-14	13:02	d10-Phenanthrene	116	%	ALS	RG CORCK SE-5 2022-09-14 N
SE	RG MI25	668209	5482811	2022	1	2022-09-15	11:25	Moisture	46.4	%	ALS	RG MI25 SE-1 2022-09-14 N
SE	RG MI25	668209	5482811	2022	1	2022-09-15	11:25	pH (1:2 soil:water)	8.13	рН	ALS	RG MI25 SE-1 2022-09-14 N
SE	RG MI25	668209	5482811	2022	1	2022-09-15	11:25	% Clay (<4 μm)	5.4	%	ALS	RG MI25 SE-1 2022-09-14 N
SE	RG MI25	668209	5482811	2022	1	2022-09-15	11:25	% Silt (0.063 mm - 0.0312 mm)	9.2	%	ALS	RG_MI25_SE-1_2022-09-14_N
SE.	RG MI25	668209	5482811	2022	1	2022-09-15	11:25	% Silt (0.031 mm - 0.004 mm)	12.9	%	ALS	RG_MI25_SE-1_2022-09-14_N
SE	RG MI25	668209	5482811	2022	1	2022-09-15	11:25	% Sand (0.125 mm - 0.063 mm)	6.8	%	ALS	RG MI25 SE-1 2022-09-14 N
SE	RG MI25	668209	5482811	2022	1	2022-09-15	11:25	% Sand (0.25 mm - 0.125 mm)	8.6	%	ALS	RG_MI25_SE-1_2022-09-14_N
SE	RG MI25	668209	5482811	2022	1	2022-09-15	11:25	% Sand (0.50 mm - 0.25 mm)	12.6	%	ALS	RG MI25 SE-1 2022-09-14 N
SE	RG MI25	668209	5482811	2022	1	2022-09-15	11:25	% Sand (1.00 mm - 0.50 mm)	8.7	%	ALS	RG_MI25_SE-1_2022-09-14_N
SE	RG MI25	668209	5482811	2022	1	2022-09-15	11:25	% Sand (2.00 mm - 1.00 mm)	3.2	%	ALS	RG MI25 SE-1 2022-09-14 N
SE	RG MI25	668209	5482811	2022	1	2022-09-15	11:25	% Gravel (>2 mm)	32.6	%	ALS	RG_MI25_SE-1_2022-09-14_N
SE	RG MI25	668209	5482811	2022	1	2022-09-15	11:25	Inorganic Carbon <63 µm	0.478	%	ALS	RG_MI25_SE-1_2022-09-14_N
SE	RG MI25	668209	5482811	2022	1	2022-09-15	11:25	Total Carbon <63 µm	3.11	%	ALS	RG MI25 SE-1 2022-09-14 N
SE	RG MI25	668209	5482811	2022	1	2022-09-15	11:25	Total Organic Carbon	2.63	%	ALS	RG MI25 SE-1 2022-09-14 N
SE	RG MI25	668209	5482811	2022	1	2022-09-15	11:25	Inorganic Carbon (as CaCO3 equivalent)	3.98	%	ALS	RG_MI25_SE-1_2022-09-14_N
SE	RG MI25	668209	5482811	2022	1	2022-09-15	11:25	Aluminum (AI)	13200	mg/kg	ALS	RG MI25 SE-1 2022-09-14 N
SE	RG MI25	668209	5482811	2022	1	2022-09-15	11:25	Antimony (Sb)	0.61	mg/kg	ALS	RG MI25 SE-1 2022-09-14 N
SE	RG MI25	668209	5482811	2022	1	2022-09-15	11:25	Arsenic (As)	12.1	mg/kg	ALS	RG MI25 SE-1 2022-09-14 N
SE	RG MI25	668209	5482811	2022	1	2022-09-15	11:25	Barium (Ba)	150	mg/kg	ALS	RG_MI25_SE-1_2022-09-14_N
SE	RG MI25	668209	5482811	2022	1	2022-09-15	11:25	Beryllium (Be)	0.82	mg/kg	ALS	RG MI25 SE-1 2022-09-14 N
SE	RG MI25	668209	5482811	2022	1	2022-09-15	11:25	Bismuth (Bi)	0.25	mg/kg	ALS	RG MI25 SE-1 2022-09-14 N
SE	RG MI25	668209	5482811	2022	1	2022-09-15	11:25	Boron (B)	6.5	mg/kg	ALS	RG MI25 SE-1 2022-09-14 N
SE	RG MI25	668209	5482811	2022	1	2022-09-15	11:25	Cadmium (Cd)	1.46	mg/kg	ALS	RG_MI25_SE-1_2022-09-14_N
SE	RG MI25	668209	5482811	2022	1	2022-09-15	11:25	Calcium (Ca)	18300	mg/kg	ALS	RG MI25 SE-1 2022-09-14 N
<u></u>	RG MI25	668209	5482811	2022	1	2022-09-15	11:25	Chromium (Cr)	17.5	mg/kg	ALS	RG MI25 SE-1 2022-09-14 N
<u>=</u> 8E	RG MI25	668209	5482811	2022	1	2022-09-15	11:25	Cobalt (Co)	10.1	mg/kg	ALS	RG MI25 SE-1 2022-09-14 N
SE	RG MI25	668209	5482811	2022	1	2022-09-15	11:25	Copper (Cu)	30	mg/kg	ALS	RG MI25 SE-1 2022-09-14 N
SE	RG MI25	668209	5482811	2022	1	2022-09-15	11:25	Iron (Fe)	26600	mg/kg	ALS	RG MI25 SE-1 2022-09-14 N
SE	RG MI25	668209	5482811	2022	1	2022-09-15	11:25	Lead (Pb)	16.4	mg/kg	ALS	RG MI25 SE-1 2022-09-14 N
E E	RG MI25	668209	5482811	2022	1	2022-09-15	11:25	Lithium (Li)	21	mg/kg	ALS	RG MI25 SE-1 2022-09-14 N
SE	RG MI25	668209	5482811	2022	1	2022-09-15	11:25	Magnesium (Mg)	6390	mg/kg		RG MI25 SE-1 2022-09-14 N

WSP Canada Inc. Page 310 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Table I-1	I: Sediment Chem	istry Data Col	lected from the	CMm LAEMP	Sampling Sta	ations, 2012 to	2022					
Туре	Station	Location	ı (UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
Type	Station	Easting	Northing	i eai	Replicate	Date	Tille	Allalyte	Nesuit	Offic	Lab	Sample ID
SE	RG_MI25	668209	5482811	2022	1	2022-09-15	11:25	Manganese (Mn)	568	mg/kg	ALS	RG_MI25_SE-1_2022-09-14_N
SE	RG_MI25	668209	5482811	2022	1	2022-09-15	11:25	Mercury (Hg)	0.0316	mg/kg	ALS	RG_MI25_SE-1_2022-09-14_N
SE	RG_MI25	668209	5482811	2022	1	2022-09-15	11:25	Molybdenum (Mo)	5.33	mg/kg	ALS	RG_MI25_SE-1_2022-09-14_N
SE	RG_MI25	668209	5482811	2022	1	2022-09-15	11:25	Nickel (Ni)	36.1	mg/kg	ALS	RG_MI25_SE-1_2022-09-14_N
SE	RG_MI25	668209	5482811	2022	1	2022-09-15	11:25	Phosphorus (P)	1390	mg/kg	ALS	RG_MI25_SE-1_2022-09-14_N
SE	RG_MI25	668209	5482811	2022	1	2022-09-15	11:25	Potassium (K)	1970	mg/kg	ALS	RG_MI25_SE-1_2022-09-14_N
SE	RG_MI25	668209	5482811	2022	1	2022-09-15	11:25	Selenium (Se)	0.92	mg/kg	ALS	RG_MI25_SE-1_2022-09-14_N
SE	RG_MI25	668209	5482811	2022	1	2022-09-15	11:25	Silver (Ag)	0.14	mg/kg	ALS	RG_MI25_SE-1_2022-09-14_N
SE	RG_MI25	668209	5482811	2022	1	2022-09-15	11:25	Sodium (Na)	72	mg/kg	ALS	RG_MI25_SE-1_2022-09-14_N
SE	RG_MI25	668209	5482811	2022	1	2022-09-15	11:25	Strontium (Sr)	49.7	mg/kg	ALS	RG_MI25_SE-1_2022-09-14_N
SE	RG_MI25	668209	5482811	2022	1	2022-09-15	11:25	Sulfur (S)	<1000	mg/kg	ALS	RG_MI25_SE-1_2022-09-14_N
SE	RG_MI25	668209	5482811	2022	1	2022-09-15	11:25	Thallium (TI)	0.679	mg/kg	ALS	RG_MI25_SE-1_2022-09-14_N
SE	RG_MI25	668209	5482811	2022	1	2022-09-15	11:25	Tin (Sn)	<2	mg/kg	ALS	RG_MI25_SE-1_2022-09-14_N
SE	RG_MI25	668209	5482811	2022	1	2022-09-15	11:25	Titanium (Ti)	8.3	mg/kg	ALS	RG_MI25_SE-1_2022-09-14_N
SE	RG_MI25	668209	5482811	2022	1	2022-09-15	11:25	Tungsten (W)	<0.5	mg/kg	ALS	RG_MI25_SE-1_2022-09-14_N
SE	RG_MI25	668209	5482811	2022	1	2022-09-15	11:25	Uranium (U)	0.816	mg/kg	ALS	RG_MI25_SE-1_2022-09-14_N
SE	RG_MI25	668209	5482811	2022	1	2022-09-15	11:25	Vanadium (V)	30.2	mg/kg	ALS	RG_MI25_SE-1_2022-09-14_N
SE	RG_MI25	668209	5482811	2022	1	2022-09-15	11:25	Zinc (Zn)	155	mg/kg	ALS	RG_MI25_SE-1_2022-09-14_N
SE	RG_MI25	668209	5482811	2022	1	2022-09-15	11:25	Zirconium (Zr)	1.1	mg/kg	ALS	RG_MI25_SE-1_2022-09-14_N
SE	RG_MI25	668209	5482811	2022	1	2022-09-15	11:25	Acenaphthene	<0.05	mg/kg	ALS	RG_MI25_SE-1_2022-09-14_N
SE	RG_MI25	668209	5482811	2022	1	2022-09-15	11:25	Acenaphthylene	<0.05	mg/kg	ALS	RG_MI25_SE-1_2022-09-14_N
SE	RG_MI25	668209	5482811	2022	1	2022-09-15	11:25	Acridine	<0.05	mg/kg	ALS	RG_MI25_SE-1_2022-09-14_N
SE	RG_MI25	668209	5482811	2022	1	2022-09-15	11:25	Anthracene	<0.05	mg/kg	ALS	RG_MI25_SE-1_2022-09-14_N
SE	RG_MI25	668209	5482811	2022	1	2022-09-15	11:25	Benz(a)anthracene	<0.05	mg/kg	ALS	RG_MI25_SE-1_2022-09-14_N
SE	RG_MI25	668209	5482811	2022	1	2022-09-15	11:25	Benzo(a)pyrene	<0.05	mg/kg	ALS	RG_MI25_SE-1_2022-09-14_N
SE	RG_MI25	668209	5482811	2022	1	2022-09-15	11:25	Benzo(b&j)fluoranthene	<0.05	mg/kg	ALS	RG_MI25_SE-1_2022-09-14_N
SE	RG_MI25	668209	5482811	2022	1	2022-09-15	11:25	Benzo(b+j+k)fluoranthene	<0.075	mg/kg	ALS	RG_MI25_SE-1_2022-09-14_N
SE	RG_MI25	668209	5482811	2022	1	2022-09-15	11:25	Benzo(g_h_i)perylene	<0.05	mg/kg	ALS	RG_MI25_SE-1_2022-09-14_N
SE	RG_MI25	668209	5482811	2022	1	2022-09-15	11:25	Benzo(k)fluoranthene	<0.05	mg/kg	ALS	RG_MI25_SE-1_2022-09-14_N
SE	RG_MI25	668209	5482811	2022	1	2022-09-15	11:25	Chrysene	<0.05	mg/kg	ALS	RG_MI25_SE-1_2022-09-14_N
SE	RG_MI25	668209	5482811	2022	1	2022-09-15	11:25	Dibenz(a_h)anthracene	<0.05	mg/kg	ALS	RG_MI25_SE-1_2022-09-14_N
SE	RG_MI25	668209	5482811	2022	1	2022-09-15	11:25	Fluoranthene	<0.05	mg/kg	ALS	RG_MI25_SE-1_2022-09-14_N
SE	RG_MI25	668209	5482811	2022	1	2022-09-15	11:25	Fluorene	<0.05	mg/kg	ALS	RG_MI25_SE-1_2022-09-14_N
SE	RG_MI25	668209	5482811	2022	1	2022-09-15	11:25	Indeno(1,2,3-c,d)pyrene	<0.05	mg/kg	ALS	RG_MI25_SE-1_2022-09-14_N
SE	RG_MI25	668209	5482811	2022	1	2022-09-15	11:25	1+2-Methylnaphthalene	<0.05	mg/kg	ALS	RG_MI25_SE-1_2022-09-14_N
SE	RG_MI25	668209	5482811	2022	1	2022-09-15	11:25	1-Methylnaphthalene	<0.03	mg/kg	ALS	RG_MI25_SE-1_2022-09-14_N
SE	RG_MI25	668209	5482811	2022	1	2022-09-15	11:25	2-Methylnaphthalene	< 0.03	mg/kg	ALS	RG_MI25_SE-1_2022-09-14_N
SE	RG_MI25	668209	5482811	2022	1	2022-09-15	11:25	Naphthalene	0.01	mg/kg	ALS	RG_MI25_SE-1_2022-09-14_N
SE	RG_MI25	668209	5482811	2022	1	2022-09-15	11:25	Phenanthrene	<0.05	mg/kg	ALS	RG_MI25_SE-1_2022-09-14_N
SE	RG_MI25	668209	5482811	2022	1	2022-09-15	11:25	Pyrene	<0.05	mg/kg	ALS	RG_MI25_SE-1_2022-09-14_N
SE	RG_MI25	668209	5482811	2022	1	2022-09-15	11:25	Quinoline	<0.05	mg/kg	ALS	RG_MI25_SE-1_2022-09-14_N
SE	RG_MI25	668209	5482811	2022	1	2022-09-15	11:25	B(a)P Total Potency Equivalent	<0.065	mg/kg	ALS	RG_MI25_SE-1_2022-09-14_N
SE	RG_MI25	668209	5482811	2022	1	2022-09-15	11:25	PAHs, total (BC Sched 3.4)	<0.2	mg/kg	ALS	RG_MI25_SE-1_2022-09-14_N
SE	RG_MI25	668209	5482811	2022	1	2022-09-15	11:25	PAHs, total	<0.2	mg/kg	ALS	RG_MI25_SE-1_2022-09-14_N
SE	RG_MI25	668209	5482811	2022	1	2022-09-15	11:25	d9-Acridine	112	%	ALS	RG_MI25_SE-1_2022-09-14_N
SE	RG_MI25	668209	5482811	2022	1	2022-09-15	11:25	d12-Chrysene	116	%	ALS	RG_MI25_SE-1_2022-09-14_N
SE	RG_MI25	668209	5482811	2022	1	2022-09-15	11:25	d8-Naphthalene	121	%	ALS	RG_MI25_SE-1_2022-09-14_N

WSP Canada Inc. Page 311 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

l able I-1	: Sediment Chem			CMM LAEMP	Sampling St	ations, 2012 to	2022					
Туре	Station		(UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
		Easting	Northing		110			· ·			Lab	Sample ID
SE	RG_MI25	668209	5482811	2022	1	2022-09-15	11:25	d10-Phenanthrene	123	%	ALS	RG_MI25_SE-1_2022-09-14_N
SE	RG_MI25	668190	5482833	2022	2	2022-09-15	10:50	Moisture	41.9	%	ALS	RG_MI25_SE-2_2022-09-14_N
SE	RG_MI25	668190	5482833	2022	2	2022-09-15	10:50	pH (1:2 soil:water)	8.29	pН	ALS	RG_MI25_SE-2_2022-09-14_N
SE	RG_MI25	668190	5482833	2022	2	2022-09-15	10:50	% Clay (<4 μm)	4.4	%	ALS	RG_MI25_SE-2_2022-09-14_N
SE	RG_MI25	668190	5482833	2022	2	2022-09-15	10:50	% Silt (0.063 mm - 0.0312 mm)	10.1	%	ALS	RG_MI25_SE-2_2022-09-14_N
SE	RG_MI25	668190	5482833	2022	2	2022-09-15	10:50	% Silt (0.031 mm - 0.004 mm)	12.9	%	ALS	RG_MI25_SE-2_2022-09-14_N
SE	RG_MI25	668190	5482833	2022	2	2022-09-15	10:50	% Sand (0.125 mm - 0.063 mm)	10.2	%	ALS	RG_MI25_SE-2_2022-09-14_N
SE	RG_MI25	668190	5482833	2022	2	2022-09-15	10:50	% Sand (0.25 mm - 0.125 mm)	15.5	%	ALS	RG_MI25_SE-2_2022-09-14_N
SE	RG_MI25	668190	5482833	2022	2	2022-09-15	10:50	% Sand (0.50 mm - 0.25 mm)	21.4	%	ALS	RG_MI25_SE-2_2022-09-14_N
SE	RG_MI25	668190	5482833	2022	2	2022-09-15	10:50	% Sand (1.00 mm - 0.50 mm)	12.7	%	ALS	RG_MI25_SE-2_2022-09-14_N
SE	RG_MI25	668190	5482833	2022	2	2022-09-15	10:50	% Sand (2.00 mm - 1.00 mm)	8	%	ALS	RG_MI25_SE-2_2022-09-14_N
SE	RG_MI25	668190	5482833	2022	2	2022-09-15	10:50	% Gravel (>2 mm)	4.8	%	ALS	RG_MI25_SE-2_2022-09-14_N
SE	RG_MI25	668190	5482833	2022	2	2022-09-15	10:50	Inorganic Carbon <63 µm	0.543	%	ALS	RG_MI25_SE-2_2022-09-14_N
SE	RG_MI25	668190	5482833	2022	2	2022-09-15	10:50	Total Carbon <63 μm	2.34	%	ALS	RG_MI25_SE-2_2022-09-14_N
SE	RG_MI25	668190	5482833	2022	2	2022-09-15	10:50	Total Organic Carbon	1.8	%	ALS	RG_MI25_SE-2_2022-09-14_N
SE	RG_MI25	668190	5482833	2022	2	2022-09-15	10:50	Inorganic Carbon (as CaCO3 equivalent)	4.53	%	ALS	RG_MI25_SE-2_2022-09-14_N
SE	RG_MI25	668190	5482833	2022	2	2022-09-15	10:50	Aluminum (Al)	12900	mg/kg	ALS	RG_MI25_SE-2_2022-09-14_N
SE	RG_MI25	668190	5482833	2022	2	2022-09-15	10:50	Antimony (Sb)	0.59	mg/kg	ALS	RG_MI25_SE-2_2022-09-14_N
SE	RG_MI25	668190	5482833	2022	2	2022-09-15	10:50	Arsenic (As)	11.1	mg/kg	ALS	RG_MI25_SE-2_2022-09-14_N
SE	RG_MI25	668190	5482833	2022	2	2022-09-15	10:50	Barium (Ba)	135	mg/kg	ALS	RG_MI25_SE-2_2022-09-14_N
SE	RG_MI25	668190	5482833	2022	2	2022-09-15	10:50	Beryllium (Be)	0.76	mg/kg	ALS	RG_MI25_SE-2_2022-09-14_N
SE	RG_MI25	668190	5482833	2022	2	2022-09-15	10:50	Bismuth (Bi)	0.22	mg/kg	ALS	RG_MI25_SE-2_2022-09-14_N
SE	RG_MI25	668190	5482833	2022	2	2022-09-15	10:50	Boron (B)	9	mg/kg	ALS	RG_MI25_SE-2_2022-09-14_N
SE	RG_MI25	668190	5482833	2022	2	2022-09-15	10:50	Cadmium (Cd)	1.26	mg/kg	ALS	RG_MI25_SE-2_2022-09-14_N
SE	RG_MI25	668190	5482833	2022	2	2022-09-15	10:50	Calcium (Ca)	31400	mg/kg	ALS	RG_MI25_SE-2_2022-09-14_N
SE	RG_MI25	668190	5482833	2022	2	2022-09-15	10:50	Chromium (Cr)	18.2	mg/kg	ALS	RG_MI25_SE-2_2022-09-14_N
SE	RG_MI25	668190	5482833	2022	2	2022-09-15	10:50	Cobalt (Co)	8.4	mg/kg	ALS	RG_MI25_SE-2_2022-09-14_N
SE	RG_MI25	668190	5482833	2022	2	2022-09-15	10:50	Copper (Cu)	25.7	mg/kg	ALS	RG_MI25_SE-2_2022-09-14_N
SE	RG_MI25	668190	5482833	2022	2	2022-09-15	10:50	Iron (Fe)	22700	mg/kg	ALS	RG_MI25_SE-2_2022-09-14_N
SE	RG_MI25	668190	5482833	2022	2	2022-09-15	10:50	Lead (Pb)	15.2	mg/kg	ALS	RG_MI25_SE-2_2022-09-14_N
SE	RG_MI25	668190	5482833	2022	2	2022-09-15	10:50	Lithium (Li)	18.7	mg/kg	ALS	RG_MI25_SE-2_2022-09-14_N
SE	RG_MI25	668190	5482833	2022	2	2022-09-15	10:50	Magnesium (Mg)	6290	mg/kg	ALS	RG_MI25_SE-2_2022-09-14_N
SE	RG_MI25	668190	5482833	2022	2	2022-09-15	10:50	Manganese (Mn)	523	mg/kg	ALS	RG_MI25_SE-2_2022-09-14_N
SE	RG_MI25	668190	5482833	2022	2	2022-09-15	10:50	Mercury (Hg)	0.0292	mg/kg	ALS	RG_MI25_SE-2_2022-09-14_N
SE	RG_MI25	668190	5482833	2022	2	2022-09-15	10:50	Molybdenum (Mo)	4.98	mg/kg	ALS	RG_MI25_SE-2_2022-09-14_N
SE	RG_MI25	668190	5482833	2022	2	2022-09-15	10:50	Nickel (Ni)	31.4	mg/kg	ALS	RG_MI25_SE-2_2022-09-14_N
SE	RG_MI25	668190	5482833	2022	2	2022-09-15	10:50	Phosphorus (P)	1250	mg/kg	ALS	RG_MI25_SE-2_2022-09-14_N
SE	RG_MI25	668190	5482833	2022	2	2022-09-15	10:50	Potassium (K)	2320	mg/kg	ALS	RG_MI25_SE-2_2022-09-14_N
SE	RG_MI25	668190	5482833	2022	2	2022-09-15	10:50	Selenium (Se)	0.68	mg/kg	ALS	RG_MI25_SE-2_2022-09-14_N
SE	RG_MI25	668190	5482833	2022	2	2022-09-15	10:50	Silver (Ag)	0.13	mg/kg	ALS	RG_MI25_SE-2_2022-09-14_N
SE	RG_MI25	668190	5482833	2022	2	2022-09-15	10:50	Sodium (Na)	79	mg/kg	ALS	RG_MI25_SE-2_2022-09-14_N
SE	RG_MI25	668190	5482833	2022	2	2022-09-15	10:50	Strontium (Sr)	60.4	mg/kg	ALS	RG_MI25_SE-2_2022-09-14_N
SE	RG_MI25	668190	5482833	2022	2	2022-09-15	10:50	Sulfur (S)	<1000	mg/kg	ALS	RG_MI25_SE-2_2022-09-14_N
SE	RG_MI25	668190	5482833	2022	2	2022-09-15	10:50	Thallium (TI)	0.633	mg/kg	ALS	RG_MI25_SE-2_2022-09-14_N
SE	RG_MI25	668190	5482833	2022	2	2022-09-15	10:50	Tin (Sn)	<2	mg/kg	ALS	RG_MI25_SE-2_2022-09-14_N
SE	RG_MI25	668190	5482833	2022	2	2022-09-15	10:50	Titanium (Ti)	11.2	mg/kg	ALS	RG_MI25_SE-2_2022-09-14_N
SE	RG_MI25	668190	5482833	2022	2	2022-09-15	10:50	Tungsten (W)	<0.5	mg/kg	ALS	RG MI25 SE-2 2022-09-14 N

WSP Canada Inc. Page 312 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

1/19.0	Station	Location	(UTMs) ^(a)	Veer	Donlinete	Doto	Time	Analyta	Popult	Unit		Laboratory Information
уре	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	RG MI25	668190	5482833	2022	2	2022-09-15	10:50	Uranium (U)	0.806	mg/kg	ALS	RG MI25 SE-2 2022-09-14 N
SE	RG MI25	668190	5482833	2022	2	2022-09-15	10:50	Vanadium (V)	31.4	mg/kg	ALS	RG MI25 SE-2 2022-09-14 N
SE	RG MI25	668190	5482833	2022	2	2022-09-15	10:50	Zinc (Zn)	132	mg/kg	ALS	RG_MI25_SE-2_2022-09-14_N
SE	RG MI25	668190	5482833	2022	2	2022-09-15	10:50	Zirconium (Zr)	<1	mg/kg	ALS	RG MI25 SE-2 2022-09-14 N
SE	RG MI25	668190	5482833	2022	2	2022-09-15	10:50	Acenaphthene	<0.05	mg/kg	ALS	RG_MI25_SE-2_2022-09-14_N
SE	RG MI25	668190	5482833	2022	2	2022-09-15	10:50	Acenaphthylene	<0.05	mg/kg	ALS	RG MI25 SE-2 2022-09-14 N
SE	RG MI25	668190	5482833	2022	2	2022-09-15	10:50	Acridine	<0.05	mg/kg	ALS	RG MI25 SE-2 2022-09-14 N
SE	RG MI25	668190	5482833	2022	2	2022-09-15	10:50	Anthracene	<0.05	mg/kg	ALS	RG MI25 SE-2 2022-09-14 N
SE	RG MI25	668190	5482833	2022	2	2022-09-15	10:50	Benz(a)anthracene	<0.05	mg/kg	ALS	RG MI25 SE-2 2022-09-14 N
SE	RG MI25	668190	5482833	2022	2	2022-09-15	10:50	Benzo(a)pyrene	<0.05	mg/kg	ALS	RG MI25 SE-2 2022-09-14 N
SE	RG MI25	668190	5482833	2022	2	2022-09-15	10:50	Benzo(b&j)fluoranthene	<0.05	mg/kg	ALS	RG MI25 SE-2 2022-09-14 N
SE	RG MI25	668190	5482833	2022	2	2022-09-15	10:50	Benzo(b+j+k)fluoranthene	<0.075	mg/kg	ALS	RG MI25 SE-2 2022-09-14 N
SE	RG MI25	668190	5482833	2022	2	2022-09-15	10:50	Benzo(g h i)perylene	<0.05	mg/kg	ALS	RG MI25 SE-2 2022-09-14 N
SE.	RG MI25	668190	5482833	2022	2	2022-09-15	10:50	Benzo(k)fluoranthene	<0.05	mg/kg	ALS	RG MI25 SE-2 2022-09-14 N
SE	RG MI25	668190	5482833	2022	2	2022-09-15	10:50	Chrysene	<0.05	mg/kg	ALS	RG MI25 SE-2 2022-09-14 N
SE	RG MI25	668190	5482833	2022	2	2022-09-15	10:50	Dibenz(a_h)anthracene	<0.05	mg/kg	ALS	RG MI25 SE-2 2022-09-14 N
SE	RG MI25	668190	5482833	2022	2	2022-09-15	10:50	Fluoranthene	<0.05	mg/kg	ALS	RG MI25 SE-2 2022-09-14 N
SE	RG MI25	668190	5482833	2022	2	2022-09-15	10:50	Fluorene	<0.05	mg/kg	ALS	RG MI25 SE-2 2022-09-14 N
SE	RG MI25	668190	5482833	2022	2	2022-09-15	10:50	Indeno(1,2,3-c,d)pyrene	<0.05	mg/kg	ALS	RG MI25 SE-2 2022-09-14 N
SE SE	RG MI25	668190	5482833	2022	2	2022-09-15	10:50	1+2-Methylnaphthalene	<0.05	mg/kg	ALS	RG MI25 SE-2 2022-09-14 N
E	RG MI25	668190	5482833	2022	2	2022-09-15	10:50	1-Methylnaphthalene	<0.03	mg/kg	ALS	RG MI25 SE-2 2022-09-14 N
SE SE	RG_MI25	668190	5482833	2022	2	2022-09-15	10:50	2-Methylnaphthalene	<0.03	mg/kg	ALS	RG MI25 SE-2 2022-09-14 N
SE.	RG MI25	668190	5482833	2022	2	2022-09-15	10:50	Naphthalene	<0.01	mg/kg	ALS	RG MI25 SE-2 2022-09-14 N
SE	RG MI25	668190	5482833	2022	2	2022-09-15	10:50	Phenanthrene	<0.05	mg/kg	ALS	RG MI25 SE-2 2022-09-14 N
SE	RG MI25	668190	5482833	2022	2	2022-09-15	10:50	Pyrene	<0.05	mg/kg	ALS	RG MI25 SE-2 2022-09-14 N
SE	RG MI25	668190	5482833	2022	2	2022-09-15	10:50	Quinoline	<0.05	mg/kg	ALS	RG MI25 SE-2 2022-09-14 N
SE	RG MI25	668190	5482833	2022	2	2022-09-15	10:50	B(a)P Total Potency Equivalent	<0.065	mg/kg	ALS	RG MI25 SE-2 2022-09-14 N
SE	RG MI25	668190	5482833	2022	2	2022-09-15	10:50	PAHs, total (BC Sched 3.4)	<0.2	mg/kg	ALS	RG MI25 SE-2 2022-09-14 N
SE	RG MI25	668190	5482833	2022	2	2022-09-15	10:50	PAHs, total	<0.2	mg/kg	ALS	RG MI25 SE-2 2022-09-14 N
SE	RG MI25	668190	5482833	2022	2	2022-09-15	10:50	d9-Acridine	105	%	ALS	RG MI25 SE-2 2022-09-14 N
SE	RG MI25	668190	5482833	2022	2	2022-09-15	10:50	d12-Chrysene	126	%	ALS	RG MI25 SE-2 2022-09-14 N
SE	RG MI25	668190	5482833	2022	2	2022-09-15	10:50	d8-Naphthalene	113	%	ALS	RG MI25 SE-2 2022-09-14 N
SE	RG MI25	668190	5482833	2022	2	2022-09-15	10:50	d10-Phenanthrene	116	%	ALS	RG MI25 SE-2 2022-09-14 N
SE	RG MI25	668170	5482853	2022	3	2022-09-15	09:50	Moisture	43.5	%	ALS	RG MI25 SE-3 2022-09-14 N
SE	RG MI25	668170	5482853	2022	3	2022-09-15	09:50	pH (1:2 soil:water)	8.24	pΗ	ALS	RG MI25 SE-3 2022-09-14 N
SE	RG MI25	668170	5482853	2022	3	2022-09-15	09:50	Inorganic Carbon <63 µm	0.508	%	ALS	RG MI25 SE-3 2022-09-14 N
SE	RG MI25	668170	5482853	2022	3	2022-09-15	09:50	Total Carbon <63 µm	2.46	%	ALS	RG MI25 SE-3 2022-09-14 N
SE	RG MI25	668170	5482853	2022	3	2022-09-15	09:50	Total Organic Carbon	1.95	%	ALS	RG MI25 SE-3 2022-09-14 N
SE	RG MI25	668170	5482853	2022	3	2022-09-15	09:50	Inorganic Carbon (as CaCO3 equivalent)	4.24	%	ALS	RG MI25 SE-3 2022-09-14 N
SE SE	RG MI25	668170	5482853	2022	3	2022-09-15	09:50	Aluminum (Al)	15200	mg/kg	ALS	RG MI25 SE-3 2022-09-14 N
SE	RG MI25	668170	5482853	2022	3	2022-09-15	09:50	Antimony (Sb)	0.59	mg/kg	ALS	RG MI25 SE-3 2022-09-14 N
SE	RG MI25	668170	5482853	2022	3	2022-09-15	09:50	Arsenic (As)	11.7	mg/kg	ALS	RG MI25 SE-3 2022-09-14 N
SE SE	RG MI25	668170	5482853	2022	3	2022-09-15	09:50	Barium (Ba)	149	mg/kg	ALS	RG MI25 SE-3 2022-09-14 N
	RG_MI25	668170	5482853	2022	3	2022-09-15	09.50	Beryllium (Be)	0.85	mg/kg	ALS	RG MI25 SE-3 2022-09-14 N
:⊏ I	NG_MIZO			2022	3	2022-09-15	09.50	Bismuth (Bi)	0.83	mg/kg	ALS	RG MI25 SE-3 2022-09-14 N
	BC MISE	669170	1 1/1 × /× × ·									
SE SE	RG_MI25 RG MI25	668170 668170	5482853 5482853	2022	3	2022-09-15	09:50	Boron (B)	9.6	mg/kg	ALS	RG MI25 SE-3 2022-09-14 N

WSP Canada Inc. Page 313 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Type	Station	Location	(UTMs) ^(a)	Year	Poplicate	Data	Time	Analyta	Popult	Unit		Laboratory Information
уре	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	RG MI25	668170	5482853	2022	3	2022-09-15	09:50	Calcium (Ca)	27600	mg/kg	ALS	RG MI25 SE-3 2022-09-14 N
SE	RG MI25	668170	5482853	2022	3	2022-09-15	09:50	Chromium (Cr)	20.2	mg/kg	ALS	RG MI25 SE-3 2022-09-14 N
SE	RG MI25	668170	5482853	2022	3	2022-09-15	09:50	Cobalt (Co)	9.47	mg/kg	ALS	RG_MI25_SE-3_2022-09-14_N
SE	RG MI25	668170	5482853	2022	3	2022-09-15	09:50	Copper (Cu)	28.2	mg/kg	ALS	RG MI25 SE-3 2022-09-14 N
SE	RG MI25	668170	5482853	2022	3	2022-09-15	09:50	Iron (Fe)	27400	mg/kg	ALS	RG_MI25_SE-3_2022-09-14_N
SE	RG MI25	668170	5482853	2022	3	2022-09-15	09:50	Lead (Pb)	19.2	mg/kg	ALS	RG MI25 SE-3 2022-09-14 N
SE	RG MI25	668170	5482853	2022	3	2022-09-15	09:50	Lithium (Li)	21.9	mg/kg	ALS	RG MI25 SE-3 2022-09-14 N
SE	RG MI25	668170	5482853	2022	3	2022-09-15	09:50	Magnesium (Mg)	6840	mg/kg	ALS	RG_MI25_SE-3_2022-09-14_N
SE	RG MI25	668170	5482853	2022	3	2022-09-15	09:50	Manganese (Mn)	708	mg/kg	ALS	RG_MI25_SE-3_2022-09-14_N
SE	RG MI25	668170	5482853	2022	3	2022-09-15	09:50	Mercury (Hg)	0.0267	mg/kg	ALS	RG_MI25_SE-3_2022-09-14_N
SE	RG MI25	668170	5482853	2022	3	2022-09-15	09:50	Molybdenum (Mo)	5.15	mg/kg	ALS	RG_MI25_SE-3_2022-09-14_N
SE	RG MI25	668170	5482853	2022	3	2022-09-15	09:50	Nickel (Ni)	35.1	mg/kg	ALS	RG_MI25_SE-3_2022-09-14_N
SE	RG MI25	668170	5482853	2022	3	2022-09-15	09:50	Phosphorus (P)	1320	mg/kg	ALS	RG_MI25_SE-3_2022-09-14_N
SE	RG MI25	668170	5482853	2022	3	2022-09-15	09:50	Potassium (K)	2720	mg/kg	ALS	RG MI25 SE-3 2022-09-14 N
SE	RG MI25	668170	5482853	2022	3	2022-09-15	09:50	Selenium (Se)	1	mg/kg	ALS	RG MI25 SE-3 2022-09-14 N
SE	RG MI25	668170	5482853	2022	3	2022-09-15	09:50	Silver (Ag)	0.29	mg/kg	ALS	RG MI25 SE-3 2022-09-14 N
SE	RG MI25	668170	5482853	2022	3	2022-09-15	09:50	Sodium (Na)	80	mg/kg	ALS	RG MI25 SE-3 2022-09-14 N
SE	RG MI25	668170	5482853	2022	3	2022-09-15	09:50	Strontium (Sr)	76.9	mg/kg	ALS	RG_MI25_SE-3_2022-09-14_N
SE	RG MI25	668170	5482853	2022	3	2022-09-15	09:50	Sulfur (S)	<1000	mg/kg	ALS	RG MI25 SE-3 2022-09-14 N
SE	RG MI25	668170	5482853	2022	3	2022-09-15	09:50	Thallium (TI)	0.677	mg/kg	ALS	RG_MI25_SE-3_2022-09-14_N
SE	RG MI25	668170	5482853	2022	3	2022-09-15	09:50	Tin (Sn)	<2	mg/kg	ALS	RG_MI25_SE-3_2022-09-14_N
SE	RG MI25	668170	5482853	2022	3	2022-09-15	09:50	Titanium (Ti)	10.4	mg/kg	ALS	RG MI25 SE-3 2022-09-14 N
SE	RG MI25	668170	5482853	2022	3	2022-09-15	09:50	Tungsten (W)	<0.5	mg/kg	ALS	RG MI25 SE-3 2022-09-14 N
SE	RG MI25	668170	5482853	2022	3	2022-09-15	09:50	Uranium (U)	0.758	mg/kg	ALS	RG MI25 SE-3 2022-09-14 N
SE	RG MI25	668170	5482853	2022	3	2022-09-15	09:50	Vanadium (V)	34	mg/kg	ALS	RG MI25 SE-3 2022-09-14 N
SE	RG MI25	668170	5482853	2022	3	2022-09-15	09:50	Zinc (Zn)	156	mg/kg	ALS	RG MI25 SE-3 2022-09-14 N
SE	RG MI25	668170	5482853	2022	3	2022-09-15	09:50	Zirconium (Zr)	<1	mg/kg	ALS	RG MI25 SE-3 2022-09-14 N
SE	RG MI25	668170	5482853	2022	3	2022-09-15	09:50	Acenaphthene	<0.05	mg/kg	ALS	RG MI25 SE-3 2022-09-14 N
SE	RG MI25	668170	5482853	2022	3	2022-09-15	09:50	Acenaphthylene	<0.05	mg/kg	ALS	RG MI25 SE-3 2022-09-14 N
SE	RG MI25	668170	5482853	2022	3	2022-09-15	09:50	Acridine	<0.05	mg/kg	ALS	RG MI25 SE-3 2022-09-14 N
SE	RG MI25	668170	5482853	2022	3	2022-09-15	09:50	Anthracene	<0.05	mg/kg	ALS	RG_MI25_SE-3_2022-09-14_N
SE	RG MI25	668170	5482853	2022	3	2022-09-15	09:50	Benz(a)anthracene	<0.05	mg/kg	ALS	RG MI25 SE-3 2022-09-14 N
SE	RG MI25	668170	5482853	2022	3	2022-09-15	09:50	Benzo(a)pyrene	<0.05	mg/kg	ALS	RG MI25 SE-3 2022-09-14 N
SE	RG MI25	668170	5482853	2022	3	2022-09-15	09:50	Benzo(b&j)fluoranthene	<0.05	mg/kg	ALS	RG MI25 SE-3 2022-09-14 N
SE	RG MI25	668170	5482853	2022	3	2022-09-15	09:50	Benzo(b+j+k)fluoranthene	<0.075	mg/kg	ALS	RG MI25 SE-3 2022-09-14 N
SE	RG MI25	668170	5482853	2022	3	2022-09-15	09:50	Benzo(g_h_i)perylene	<0.05	mg/kg	ALS	RG MI25 SE-3 2022-09-14 N
SE	RG MI25	668170	5482853	2022	3	2022-09-15	09:50	Benzo(k)fluoranthene	<0.05	mg/kg	ALS	RG MI25 SE-3 2022-09-14 N
SE	RG MI25	668170	5482853	2022	3	2022-09-15	09:50	Chrysene	<0.05	mg/kg	ALS	RG MI25 SE-3 2022-09-14 N
SE	RG MI25	668170	5482853	2022	3	2022-09-15	09:50	Dibenz(a h)anthracene	<0.05	mg/kg	ALS	RG MI25 SE-3 2022-09-14 N
SE	RG MI25	668170	5482853	2022	3	2022-09-15	09:50	Fluoranthene	<0.05	mg/kg	ALS	RG MI25 SE-3 2022-09-14 N
SE	RG_MI25	668170	5482853	2022	3	2022-09-15	09:50	Fluorene	<0.05	mg/kg	ALS	RG MI25 SE-3 2022-09-14 N
SE	RG MI25	668170	5482853	2022	3	2022-09-15	09:50	Indeno(1,2,3-c,d)pyrene	<0.05	mg/kg	ALS	RG MI25 SE-3 2022-09-14 N
SE	RG MI25	668170	5482853	2022	3	2022-09-15	09:50	1+2-Methylnaphthalene	<0.05	mg/kg	ALS	RG MI25 SE-3 2022-09-14 N
SE	RG MI25	668170	5482853	2022	3	2022-09-15	09:50	1-Methylnaphthalene	<0.03	mg/kg	ALS	RG MI25 SE-3 2022-09-14 N
SE	RG MI25	668170	5482853	2022	3	2022-09-15	09:50	2-Methylnaphthalene	<0.03	mg/kg	ALS	RG MI25 SE-3 2022-09-14 N
OL 1					 							
SE	RG MI25	668170	5482853	2022	3	2022-09-15	09:50	Naphthalene	<0.01	mg/kg	ALS	RG MI25 SE-3 2022-09-14 N

WSP Canada Inc. Page 314 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Type-	Station	Location	(UTMs) ^(a)	Year	Poplicate	Data	Time	Analysta	Pagult	Unit		Laboratory Information
ype	Station	Easting	Northing	rear	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
E	RG MI25	668170	5482853	2022	3	2022-09-15	09:50	Pyrene	<0.05	mg/kg	ALS	RG MI25 SE-3 2022-09-14 N
E	RG_MI25	668170	5482853	2022	3	2022-09-15	09:50	Quinoline	< 0.05	mg/kg	ALS	RG MI25 SE-3 2022-09-14 N
Е	RG MI25	668170	5482853	2022	3	2022-09-15	09:50	B(a)P Total Potency Equivalent	<0.065	mg/kg	ALS	RG MI25 SE-3 2022-09-14 N
E	RG MI25	668170	5482853	2022	3	2022-09-15	09:50	PAHs, total (BC Sched 3.4)	<0.2	mg/kg	ALS	RG MI25 SE-3 2022-09-14 N
E	RG MI25	668170	5482853	2022	3	2022-09-15	09:50	PAHs, total	<0.2	mg/kg	ALS	RG MI25 SE-3 2022-09-14 N
βE	RG MI25	668170	5482853	2022	3	2022-09-15	09:50	d9-Acridine	119	%	ALS	RG MI25 SE-3 2022-09-14 N
E	RG MI25	668170	5482853	2022	3	2022-09-15	09:50	d12-Chrysene	123	%	ALS	RG MI25 SE-3 2022-09-14 N
SE	RG MI25	668170	5482853	2022	3	2022-09-15	09:50	d8-Naphthalene	120	%	ALS	RG MI25 SE-3 2022-09-14 N
SE	RG_MI25	668170	5482853	2022	3	2022-09-15	09:50	d10-Phenanthrene	119	%	ALS	RG MI25 SE-3 2022-09-14 N
SE	RG AGCK	667627	5488726	2022	1	2022-09-15	16:48	Moisture	81	%	ALS	RG AGCK SE-1 2022-09-14 N
SE	RG AGCK	667627	5488726	2022	1	2022-09-15	16:48	pH (1:2 soil:water)	7.51	рН	ALS	RG AGCK SE-1 2022-09-14 N
βE	RG AGCK	667627	5488726	2022	1	2022-09-15	16:48	Inorganic Carbon <63 µm	3.83	%	ALS	RG AGCK SE-1 2022-09-14 N
βE	RG AGCK	667627	5488726	2022	1	2022-09-15	16:48	Total Carbon <63 µm	13.6	%	ALS	RG AGCK SE-1 2022-09-14 N
SE.	RG_AGCK	667627	5488726	2022	1	2022-09-15	16:48	Total Organic Carbon	9.77	%	ALS	RG_AGCK_SE-1_2022-09-14_N
SE	RG AGCK	667627	5488726	2022	1	2022-09-15	16:48	Inorganic Carbon (as CaCO3 equivalent)	31.9	%	ALS	RG AGCK SE-1 2022-09-14 N
SE	RG AGCK	667627	5488726	2022	1	2022-09-15	16:48	Aluminum (Al)	2780	mg/kg	ALS	RG AGCK SE-1 2022-09-14 N
SE.	RG AGCK	667627	5488726	2022	1	2022-09-15	16:48	Antimony (Sb)	0.94	mg/kg	ALS	RG AGCK SE-1 2022-09-14 N
SE	RG_AGCK	667627	5488726	2022	1	2022-09-15	16:48	Arsenic (As)	6.97	mg/kg	ALS	RG AGCK SE-1 2022-09-14 N
SE	RG AGCK	667627	5488726	2022	1	2022-09-15	16:48	Barium (Ba)	50.2	mg/kg	ALS	RG AGCK SE-1 2022-09-14 N
SE.	RG AGCK	667627	5488726	2022	1	2022-09-15	16:48	Beryllium (Be)	0.41	mg/kg	ALS	RG_AGCK_SE-1_2022-09-14_N
SE.	RG AGCK	667627	5488726	2022	1	2022-09-15	16:48	Bismuth (Bi)	<0.2	mg/kg	ALS	RG AGCK SE-1 2022-09-14 N
SE.	RG AGCK	667627	5488726	2022	1	2022-09-15	16:48	Boron (B)	<5	mg/kg	ALS	RG AGCK SE-1 2022-09-14 N
SE	RG AGCK	667627	5488726	2022	1	2022-09-15	16:48	Cadmium (Cd)	1.26	mg/kg	ALS	RG_AGCK_SE-1_2022-09-14_N
SE	RG AGCK	667627	5488726	2022	1	2022-09-15	16:48	Calcium (Ca)	137000	mg/kg	ALS	RG AGCK SE-1 2022-09-14 N
SE	RG_AGCK	667627	5488726	2022	1	2022-09-15	16:48	Chromium (Cr)	10.8	mg/kg	ALS	RG AGCK SE-1 2022-09-14 N
SE	RG AGCK	667627	5488726	2022	1	2022-09-15	16:48	Cobalt (Co)	2.75	mg/kg	ALS	RG AGCK SE-1 2022-09-14 N
SE	RG AGCK	667627	5488726	2022	1	2022-09-15	16:48	Copper (Cu)	9.09	mg/kg	ALS	RG AGCK SE-1 2022-09-14 N
SE	RG AGCK	667627	5488726	2022	1	2022-09-15	16:48	Iron (Fe)	7250	mg/kg	ALS	RG_AGCK_SE-1_2022-09-14_N
SE	RG AGCK	667627	5488726	2022	1	2022-09-15	16:48	Lead (Pb)	4.62	mg/kg	ALS	RG AGCK SE-1 2022-09-14 N
SE	RG AGCK	667627	5488726	2022	1	2022-09-15	16:48	Lithium (Ĺi)	4	mg/kg	ALS	RG AGCK SE-1 2022-09-14 N
SE	RG_AGCK	667627	5488726	2022	1	2022-09-15	16:48	Magnesium (Mg)	12900	mg/kg	ALS	RG_AGCK_SE-1_2022-09-14_N
SE	RG AGCK	667627	5488726	2022	1	2022-09-15	16:48	Manganese (Mn)	138	mg/kg	ALS	RG AGCK SE-1 2022-09-14 N
SE	RG_AGCK	667627	5488726	2022	1	2022-09-15	16:48	Mercury (Hg)	0.0395	mg/kg	ALS	RG_AGCK_SE-1_2022-09-14_N
SE.	RG_AGCK	667627	5488726	2022	1	2022-09-15	16:48	Molybdenum (Mo)	1.4	mg/kg	ALS	RG_AGCK_SE-1_2022-09-14_N
SE.	RG_AGCK	667627	5488726	2022	1	2022-09-15	16:48	Nickel (Ni)	24.6	mg/kg	ALS	RG_AGCK_SE-1_2022-09-14_N
SE.	RG_AGCK	667627	5488726	2022	1	2022-09-15	16:48	Phosphorus (P)	1050	mg/kg	ALS	RG_AGCK_SE-1_2022-09-14_N
SE.	RG_AGCK	667627	5488726	2022	1	2022-09-15	16:48	Potassium (K)	880	mg/kg	ALS	RG_AGCK_SE-1_2022-09-14_N
SE	RG AGCK	667627	5488726	2022	1	2022-09-15	16:48	Selenium (Se)	2.14	mg/kg	ALS	RG AGCK SE-1 2022-09-14 N
SE.	RG AGCK	667627	5488726	2022	1	2022-09-15	16:48	Silver (Ag)	0.33	mg/kg	ALS	RG AGCK SE-1 2022-09-14 N
E	RG AGCK	667627	5488726	2022	1	2022-09-15	16:48	Sodium (Na)	109	mg/kg	ALS	RG AGCK SE-1 2022-09-14 N
E	RG_AGCK	667627	5488726	2022	1	2022-09-15	16:48	Strontium (Sr)	140	mg/kg	ALS	RG_AGCK_SE-1_2022-09-14_N
βE	RG AGCK	667627	5488726	2022	1	2022-09-15	16:48	Sulfur (S)	<1000	mg/kg	ALS	RG AGCK SE-1 2022-09-14 N
E	RG AGCK	667627	5488726	2022	1	2022-09-15	16:48	Thallium (TI)	0.689	mg/kg	ALS	RG AGCK SE-1 2022-09-14 N
E	RG AGCK	667627	5488726	2022	1	2022-09-15	16:48	Tin (Sn)	<2	mg/kg	ALS	RG AGCK SE-1 2022-09-14 N
E	RG AGCK	667627	5488726	2022	1	2022-09-15	16:48	Titanium (Ti)	10.9	mg/kg	ALS	RG AGCK SE-1 2022-09-14 N
SE	RG AGCK	667627	5488726	2022	1	2022-09-15	16:48	Tungsten (W)	<0.5	mg/kg	ALS	RG AGCK SE-1 2022-09-14 N
SE	RG AGCK	667627	5488726	2022	1	2022-09-15	16:48	Uranium (U)	0.969	mg/kg	ALS	RG AGCK SE-1 2022-09-14 N

WSP Canada Inc. Page 315 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Гуре	Station	Location	(UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
ı ype	Station	Easting	Northing	i eai	Replicate	Date	Tille	Allalyte	Result	Ullit	Lab	Sample ID
SE	RG_AGCK	667627	5488726	2022	1	2022-09-15	16:48	Vanadium (V)	20.1	mg/kg	ALS	RG_AGCK_SE-1_2022-09-14_N
SE	RG_AGCK	667627	5488726	2022	1	2022-09-15	16:48	Zinc (Zn)	147	mg/kg	ALS	RG_AGCK_SE-1_2022-09-14_N
SE	RG_AGCK	667627	5488726	2022	1	2022-09-15	16:48	Zirconium (Zr)	<1	mg/kg	ALS	RG_AGCK_SE-1_2022-09-14_N
SE	RG_AGCK	667627	5488726	2022	1	2022-09-15	16:48	Acenaphthene	<0.068	mg/kg	ALS	RG_AGCK_SE-1_2022-09-14_N
SE	RG_AGCK	667627	5488726	2022	1	2022-09-15	16:48	Acenaphthylene	<0.068	mg/kg	ALS	RG_AGCK_SE-1_2022-09-14_N
SE	RG_AGCK	667627	5488726	2022	1	2022-09-15	16:48	Acridine	<0.068	mg/kg	ALS	RG_AGCK_SE-1_2022-09-14_N
SE	RG_AGCK	667627	5488726	2022	1	2022-09-15	16:48	Anthracene	<0.068	mg/kg	ALS	RG_AGCK_SE-1_2022-09-14_N
SE	RG_AGCK	667627	5488726	2022	1	2022-09-15	16:48	Benz(a)anthracene	<0.068	mg/kg	ALS	RG_AGCK_SE-1_2022-09-14_N
SE	RG_AGCK	667627	5488726	2022	1	2022-09-15	16:48	Benzo(a)pyrene	<0.068	mg/kg	ALS	RG_AGCK_SE-1_2022-09-14_N
SE	RG_AGCK	667627	5488726	2022	1	2022-09-15	16:48	Benzo(b&j)fluoranthene	<0.068	mg/kg	ALS	RG_AGCK_SE-1_2022-09-14_N
SE	RG_AGCK	667627	5488726	2022	1	2022-09-15	16:48	Benzo(b+j+k)fluoranthene	<0.096	mg/kg	ALS	RG_AGCK_SE-1_2022-09-14_N
SE	RG_AGCK	667627	5488726	2022	1	2022-09-15	16:48	Benzo(g_h_i)perylene	<0.068	mg/kg	ALS	RG_AGCK_SE-1_2022-09-14_N
SE	RG_AGCK	667627	5488726	2022	1	2022-09-15	16:48	Benzo(k)fluoranthene	<0.068	mg/kg	ALS	RG_AGCK_SE-1_2022-09-14_N
SE	RG_AGCK	667627	5488726	2022	1	2022-09-15	16:48	Chrysene	<0.068	mg/kg	ALS	RG_AGCK_SE-1_2022-09-14_N
SE	RG_AGCK	667627	5488726	2022	1	2022-09-15	16:48	Dibenz(a_h)anthracene	<0.068	mg/kg	ALS	RG_AGCK_SE-1_2022-09-14_N
SE	RG_AGCK	667627	5488726	2022	1	2022-09-15	16:48	Fluoranthene	<0.068	mg/kg	ALS	RG_AGCK_SE-1_2022-09-14_N
SE	RG_AGCK	667627	5488726	2022	1	2022-09-15	16:48	Fluorene	<0.068	mg/kg	ALS	RG_AGCK_SE-1_2022-09-14_N
SE	RG_AGCK	667627	5488726	2022	1	2022-09-15	16:48	Indeno(1,2,3-c,d)pyrene	<0.068	mg/kg	ALS	RG_AGCK_SE-1_2022-09-14_N
SE	RG_AGCK	667627	5488726	2022	1	2022-09-15	16:48	1+2-Methylnaphthalene	0.155	mg/kg	ALS	RG_AGCK_SE-1_2022-09-14_N
SE	RG_AGCK	667627	5488726	2022	1	2022-09-15	16:48	1-Methylnaphthalene	0.069	mg/kg	ALS	RG_AGCK_SE-1_2022-09-14_N
SE	RG_AGCK	667627	5488726	2022	1	2022-09-15	16:48	2-Methylnaphthalene	0.086	mg/kg	ALS	RG_AGCK_SE-1_2022-09-14_N
SE	RG_AGCK	667627	5488726	2022	1	2022-09-15	16:48	Naphthalene	0.04	mg/kg	ALS	RG_AGCK_SE-1_2022-09-14_N
SE	RG_AGCK	667627	5488726	2022	1	2022-09-15	16:48	Phenanthrene	0.099	mg/kg	ALS	RG_AGCK_SE-1_2022-09-14_N
SE	RG_AGCK	667627	5488726	2022	1	2022-09-15	16:48	Pyrene	<0.068	mg/kg	ALS	RG_AGCK_SE-1_2022-09-14_N
SE	RG_AGCK	667627	5488726	2022	1	2022-09-15	16:48	Quinoline	<0.068	mg/kg	ALS	RG_AGCK_SE-1_2022-09-14_N
SE	RG_AGCK	667627	5488726	2022	1	2022-09-15	16:48	B(a)P Total Potency Equivalent	0.082	mg/kg	ALS	RG_AGCK_SE-1_2022-09-14_N
SE	RG_AGCK	667627	5488726	2022	1	2022-09-15	16:48	PAHs, total (BC Sched 3.4)	<0.23	mg/kg	ALS	RG_AGCK_SE-1_2022-09-14_N
SE	RG_AGCK	667627	5488726	2022	1	2022-09-15	16:48	PAHs, total	<0.26	mg/kg	ALS	RG_AGCK_SE-1_2022-09-14_N
SE	RG_AGCK	667627	5488726	2022	1	2022-09-15	16:48	d9-Acridine	122	%	ALS	RG_AGCK_SE-1_2022-09-14_N
SE	RG_AGCK	667627	5488726	2022	1	2022-09-15	16:48	d12-Chrysene	123	%	ALS	RG_AGCK_SE-1_2022-09-14_N
SE	RG_AGCK	667627	5488726	2022	1	2022-09-15	16:48	d8-Naphthalene	125	%	ALS	RG_AGCK_SE-1_2022-09-14_N
SE	RG_AGCK	667627	5488726	2022	1	2022-09-15	16:48	d10-Phenanthrene	127	%	ALS	RG_AGCK_SE-1_2022-09-14_N
SE	RG_LE1	659639	5494121	2022	1	2022-09-16	10:48	Moisture	44.5	%	ALS	RG_LE1_SE-1_2022-09-14_N
SE	RG_LE1	659639	5494121	2022	1	2022-09-16	10:48	pH (1:2 soil:water)	8.06	рН	ALS	RG_LE1_SE-1_2022-09-14_N
SE	RG_LE1	659639	5494121	2022	1	2022-09-16	10:48	% Clay (<4 μm)	3.1	%	ALS	RG_LE1_SE-1_2022-09-14_N
SE	RG_LE1	659639	5494121	2022	1	2022-09-16	10:48	% Silt (0.063 mm - 0.0312 mm)	10.1	%	ALS	RG_LE1_SE-1_2022-09-14_N
SE	RG_LE1	659639	5494121	2022	1	2022-09-16	10:48	% Silt (0.031 mm - 0.004 mm)	10.3	%	ALS	RG_LE1_SE-1_2022-09-14_N
SE	RG_LE1	659639	5494121	2022	1	2022-09-16	10:48	% Sand (0.125 mm - 0.063 mm)	13.6	%	ALS	RG_LE1_SE-1_2022-09-14_N
SE	RG_LE1	659639	5494121	2022	1	2022-09-16	10:48	% Sand (0.25 mm - 0.125 mm)	16.1	%	ALS	RG_LE1_SE-1_2022-09-14_N
SE	RG_LE1	659639	5494121	2022	1	2022-09-16	10:48	% Sand (0.50 mm - 0.25 mm)	18.9	%	ALS	RG_LE1_SE-1_2022-09-14_N
SE	RG_LE1	659639	5494121	2022	1	2022-09-16	10:48	% Sand (1.00 mm - 0.50 mm)	9.5	%	ALS	RG_LE1_SE-1_2022-09-14_N
SE	RG_LE1	659639	5494121	2022	1	2022-09-16	10:48	% Sand (2.00 mm - 1.00 mm)	7.1	%	ALS	RG_LE1_SE-1_2022-09-14_N
SE	RG_LE1	659639	5494121	2022	1	2022-09-16	10:48	% Gravel (>2 mm)	11.3	%	ALS	RG_LE1_SE-1_2022-09-14_N
SE	RG_LE1	659639	5494121	2022	1	2022-09-16	10:48	Inorganic Carbon <63 µm	0.174	%	ALS	RG_LE1_SE-1_2022-09-14_N
SE	RG_LE1	659639	5494121	2022	1	2022-09-16	10:48	Total Carbon <63 μm	1.59	%	ALS	RG_LE1_SE-1_2022-09-14_N
SE	RG_LE1	659639	5494121	2022	1	2022-09-16	10:48	Total Organic Carbon	1.42	%	ALS	RG_LE1_SE-1_2022-09-14_N
SE	RG_LE1	659639	5494121	2022	1	2022-09-16	10:48	Inorganic Carbon (as CaCO3 equivalent)	1.45	%	ALS	RG LE1 SE-1 2022-09-14 N

WSP Canada Inc. Page 316 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

able i-	1. Sealinent Onen			CIVIIII LAEIVIP	Sampling Stations,	2012 10 2022					
Туре	Station		(UTMs) ^(a)	Year	Replicate D	ate Time	Analyte	Result	Unit		Laboratory Information
		Easting	Northing				· ·			Lab	Sample ID
SE	RG_LE1	659639	5494121	2022	1 2022-0		Aluminum (Al)	7700	mg/kg	ALS	RG_LE1_SE-1_2022-09-14_N
SE	RG_LE1	659639	5494121	2022	1 2022-0		Antimony (Sb)	1.33	mg/kg	ALS	RG_LE1_SE-1_2022-09-14_N
SE	RG_LE1	659639	5494121	2022	1 2022-0		Arsenic (As)	6.25	mg/kg	ALS	RG_LE1_SE-1_2022-09-14_N
SE	RG_LE1	659639	5494121	2022	1 2022-0		Barium (Ba)	248	mg/kg	ALS	RG_LE1_SE-1_2022-09-14_N
SE	RG_LE1	659639	5494121	2022	1 2022-0		Beryllium (Be)	0.5	mg/kg	ALS	RG_LE1_SE-1_2022-09-14_N
SE	RG_LE1	659639	5494121	2022	1 2022-0		Bismuth (Bi)	<0.2	mg/kg	ALS	RG_LE1_SE-1_2022-09-14_N
SE	RG_LE1	659639	5494121	2022	1 2022-0		Boron (B)	<5	mg/kg	ALS	RG_LE1_SE-1_2022-09-14_N
SE	RG_LE1	659639	5494121	2022	1 2022-0		Cadmium (Cd)	1.65	mg/kg	ALS	RG_LE1_SE-1_2022-09-14_N
SE	RG_LE1	659639	5494121	2022	1 2022-0	09-16 10:48	Calcium (Ca)	7400	mg/kg	ALS	RG_LE1_SE-1_2022-09-14_N
SE	RG_LE1	659639	5494121	2022	1 2022-0	09-16 10:48	Chromium (Cr)	14.5	mg/kg	ALS	RG_LE1_SE-1_2022-09-14_N
SE	RG_LE1	659639	5494121	2022	1 2022-0	09-16 10:48	Cobalt (Co)	6.43	mg/kg	ALS	RG_LE1_SE-1_2022-09-14_N
SE	RG_LE1	659639	5494121	2022	1 2022-0	09-16 10:48	Copper (Cu)	17.2	mg/kg	ALS	RG_LE1_SE-1_2022-09-14_N
SE	RG_LE1	659639	5494121	2022	1 2022-0	09-16 10:48	Iron (Fe)	16400	mg/kg	ALS	RG_LE1_SE-1_2022-09-14_N
SE	RG_LE1	659639	5494121	2022	1 2022-0	09-16 10:48	Lead (Pb)	9.63	mg/kg	ALS	RG_LE1_SE-1_2022-09-14_N
SE	RG_LE1	659639	5494121	2022	1 2022-0	09-16 10:48	Lithium (Li)	8.2	mg/kg	ALS	RG_LE1_SE-1_2022-09-14_N
SE	RG_LE1	659639	5494121	2022	1 2022-0	09-16 10:48	Magnesium (Mg)	3090	mg/kg	ALS	RG_LE1_SE-1_2022-09-14_N
SE	RG_LE1	659639	5494121	2022	1 2022-0	09-16 10:48	Manganese (Mn)	272	mg/kg	ALS	RG_LE1_SE-1_2022-09-14_N
SE	RG_LE1	659639	5494121	2022	1 2022-0	09-16 10:48	Mercury (Hg)	0.0439	mg/kg	ALS	RG_LE1_SE-1_2022-09-14_N
SE	RG_LE1	659639	5494121	2022	1 2022-0	09-16 10:48	Molybdenum (Mo)	1.54	mg/kg	ALS	RG_LE1_SE-1_2022-09-14_N
SE	RG_LE1	659639	5494121	2022	1 2022-0	09-16 10:48	Nickel (Ni)	27.5	mg/kg	ALS	RG LE1_SE-1_2022-09-14_N
SE	RG_LE1	659639	5494121	2022	1 2022-0		Phosphorus (P)	1230	mg/kg	ALS	RG_LE1_SE-1_2022-09-14_N
SE	RG LE1	659639	5494121	2022	1 2022-0	09-16 10:48	Potassium (K)	1220	mg/kg	ALS	RG LE1 SE-1 2022-09-14 N
SE	RG_LE1	659639	5494121	2022	1 2022-0	09-16 10:48	Selenium (Se)	0.7	mg/kg	ALS	RG_LE1_SE-1_2022-09-14_N
SE	RG LE1	659639	5494121	2022	1 2022-0		Silver (Ag)	0.18	mg/kg	ALS	RG_LE1_SE-1_2022-09-14_N
SE	RG LE1	659639	5494121	2022	1 2022-0		Sodium (Na)	<50	mg/kg	ALS	RG_LE1_SE-1_2022-09-14_N
SE	RG LE1	659639	5494121	2022	1 2022-0		Strontium (Sr)	36.5	mg/kg	ALS	RG_LE1_SE-1_2022-09-14_N
SE	RG LE1	659639	5494121	2022	1 2022-0		Sulfur (S)	<1000	mg/kg	ALS	RG_LE1_SE-1_2022-09-14_N
SE	RG LE1	659639	5494121	2022	1 2022-0		Thallium (TI)	0.222	mg/kg	ALS	RG_LE1_SE-1_2022-09-14_N
SE	RG_LE1	659639	5494121	2022	1 2022-0		Tin (Sn)	<2	mg/kg	ALS	RG_LE1_SE-1_2022-09-14_N
SE	RG LE1	659639	5494121	2022	1 2022-0		Titanium (Ti)	34	mg/kg	ALS	RG LE1 SE-1 2022-09-14 N
SE	RG LE1	659639	5494121	2022	1 2022-0		Tungsten (W)	<0.5	mg/kg		RG_LE1_SE-1_2022-09-14_N
SE	RG LE1	659639	5494121	2022	1 2022-0		Uranium (U)	1.27	mg/kg	ALS	RG LE1 SE-1 2022-09-14 N
SE	RG_LE1	659639	5494121	2022	1 2022-0		Vanadium (V)	46.9	mg/kg	ALS	RG LE1 SE-1 2022-09-14 N
SE	RG_LE1	659639	5494121	2022	1 2022-0		Zinc (Zn)	119	mg/kg	ALS	RG LE1 SE-1 2022-09-14 N
SE	RG LE1	659639	5494121	2022	1 2022-0		Zirconium (Zr)	<1	mg/kg	ALS	RG LE1 SE-1 2022-09-14 N
SE	RG LE1	659639	5494121	2022	1 2022-0		Acenaphthene	<0.05	mg/kg		RG LE1 SE-1 2022-09-14 N
SE	RG LE1	659639	5494121	2022	1 2022-0		Acenaphthylene	<0.05	mg/kg	ALS	RG LE1 SE-1 2022-09-14 N
SE	RG_LE1	659639	5494121	2022	1 2022-0		Acridine	<0.05	mg/kg	ALS	RG LE1 SE-1 2022-09-14 N
SE	RG LE1	659639	5494121	2022	1 2022-0		Anthracene	<0.05	mg/kg	ALS	RG LE1 SE-1 2022-09-14 N
SE	RG LE1	659639	5494121	2022	1 2022-0		Benz(a)anthracene	<0.05	mg/kg	ALS	RG LE1 SE-1 2022-09-14 N
SE	RG LE1	659639	5494121	2022	1 2022-0		Benzo(a)pyrene	<0.05	mg/kg	ALS	RG LE1 SE-1 2022-09-14 N
SE	RG_LE1	659639	5494121	2022	1 2022-0		Benzo(b&j)fluoranthene	<0.05	mg/kg	ALS	RG LE1 SE-1 2022-09-14 N
SE	RG LE1	659639	5494121	2022	1 2022-0		Benzo(b+j+k)fluoranthene	<0.075	mg/kg	ALS	RG LE1 SE-1 2022-09-14 N
SE	RG_LE1	659639	5494121	2022	1 2022-0		Benzo(g_h_i)perylene	<0.075	mg/kg	ALS	RG LE1 SE-1 2022-09-14 N
SE	RG LE1	659639	5494121	2022	1 2022-0		Benzo(k)fluoranthene	<0.05	mg/kg	ALS	RG LE1 SE-1 2022-09-14 N
SE	RG_LE1	659639	5494121	2022	1 2022-0		Chrysene	0.082	mg/kg	ALS	RG LE1 SE-1 2022-09-14 N
	ING LET	003003	J4341Z1	2022	1 1/2022-0	10.40 ו 10.40	10111 430110	0.002	I HIG/KG	\L\	ING LET GET 2022-03-14 IN

WSP Canada Inc. Page 317 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

T	Ctation	Location	ı (UTMs) ^(a)	Voca	Doublecte	Doto	Time	Analyte	Beaut	Ll _{io} it		Laboratory Information
ype	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	RG LE1	659639	5494121	2022	1	2022-09-16	10:48	Fluoranthene	< 0.05	mg/kg	ALS	RG LE1 SE-1 2022-09-14 N
E	RG LE1	659639	5494121	2022	1	2022-09-16	10:48	Fluorene	< 0.05	mg/kg	ALS	RG LE1 SE-1 2022-09-14 N
E	RG LE1	659639	5494121	2022	1	2022-09-16	10:48	Indeno(1,2,3-c,d)pyrene	<0.05	mg/kg	ALS	RG LE1 SE-1 2022-09-14 N
E	RG LE1	659639	5494121	2022	1	2022-09-16	10:48	1+2-Methylnaphthalene	0.28	mg/kg	ALS	RG LE1 SE-1 2022-09-14 N
E	RG LE1	659639	5494121	2022	1	2022-09-16	10:48	1-Methylnaphthalene	0.14	mg/kg	ALS	RG LE1 SE-1 2022-09-14 N
E	RG LE1	659639	5494121	2022	1	2022-09-16	10:48	2-Methylnaphthalene	0.14	mg/kg	ALS	RG LE1 SE-1 2022-09-14 N
<u>=</u> SE	RG LE1	659639	5494121	2022	1	2022-09-16	10:48	Naphthalene	0.068	mg/kg	ALS	RG LE1 SE-1 2022-09-14 N
E	RG LE1	659639	5494121	2022	1	2022-09-16	10:48	Phenanthrene	0.262	mg/kg	ALS	RG LE1 SE-1 2022-09-14 N
SE	RG LE1	659639	5494121	2022	1	2022-09-16	10:48	Pyrene	<0.05	mg/kg	ALS	RG LE1 SE-1 2022-09-14 N
SE	RG LE1	659639	5494121	2022	1	2022-09-16	10:48	Quinoline	<0.05	mg/kg	ALS	RG LE1 SE-1 2022-09-14 N
SE	RG LE1	659639	5494121	2022	1	2022-09-16	10:48	B(a)P Total Potency Equivalent	<0.065	mg/kg	ALS	RG LE1 SE-1 2022-09-14 N
SE	RG LE1	659639	5494121	2022	1	2022-09-16	10:48	PAHs, total (BC Sched 3.4)	0.55	mg/kg	ALS	RG LE1 SE-1 2022-09-14 N
SE	RG LE1	659639	5494121	2022	1	2022-09-16	10:48	PAHs, total	0.41	mg/kg	ALS	RG LE1 SE-1 2022-09-14 N
SE	RG LE1	659639	5494121	2022	1 1	2022-09-16	10:48	d9-Acridine	106	%	ALS	RG LE1 SE-1 2022-09-14 N
SE	RG LE1	659639	5494121	2022	1	2022-09-16	10:48	d12-Chrysene	129	%	ALS	RG LE1 SE-1 2022-09-14 N
SE	RG_LE1	659639	5494121	2022	1 1	2022-09-16	10:48	d8-Naphthalene	119	%	ALS	RG LE1 SE-1 2022-09-14 N
SE	RG LE1	659639	5494121	2022	1	2022-09-16	10:48	d10-Phenanthrene	118	%	ALS	RG LE1 SE-1 2022-09-14 N
SE	RG_LE1	659554	5494114	2022	2	2022-09-16	09:58	Moisture	46.9	%	ALS	RG LE1 SE-2 2022-09-14 N
SE	RG LE1	659554	5494114	2022	2	2022-09-16	09:58	pH (1:2 soil:water)	8.03	pН	ALS	RG LE1 SE-2 2022-09-14 N
SE	RG LE1	659554	5494114	2022	2	2022-09-16	09:58	% Clay (<4 µm)	2.6	%	ALS	RG LE1 SE-2 2022-09-14 N
<u>=</u> E	RG LE1	659554	5494114	2022	2	2022-09-16	09:58	% Silt (0.063 mm - 0.0312 mm)	12.6	%	ALS	RG LE1 SE-2 2022-09-14 N
SE	RG LE1	659554	5494114	2022	2	2022-09-16	09:58	% Silt (0.031 mm - 0.004 mm)	10.9	%	ALS	RG LE1 SE-2 2022-09-14 N
SE	RG LE1	659554	5494114	2022	2	2022-09-16	09:58	% Sand (0.125 mm - 0.063 mm)	21.2	%	ALS	RG LE1 SE-2 2022-09-14 N
SE	RG LE1	659554	5494114	2022	2	2022-09-16	09:58	% Sand (0.25 mm - 0.125 mm)	24.6	%	ALS	RG LE1 SE-2 2022-09-14 N
SE	RG LE1	659554	5494114	2022	2	2022-09-16	09:58	% Sand (0.50 mm - 0.25 mm)	14.5	%	ALS	RG LE1 SE-2 2022-09-14 N
SE	RG LE1	659554	5494114	2022	2	2022-09-16	09:58	% Sand (1.00 mm - 0.50 mm)	5.8	%	ALS	RG LE1 SE-2 2022-09-14 N
SE	RG LE1	659554	5494114	2022	2	2022-09-16	09:58	% Sand (2.00 mm - 1.00 mm)	2.5	%	ALS	RG LE1 SE-2 2022-09-14 N
SE	RG LE1	659554	5494114	2022	2	2022-09-16	09:58	% Gravel (>2 mm)	5.3	%	ALS	RG_LE1_SE-2_2022-09-14_N
SE	RG LE1	659554	5494114	2022	2	2022-09-16	09:58	Inorganic Carbon <63 µm	0.136	%	ALS	RG LE1 SE-2 2022-09-14 N
SE	RG LE1	659554	5494114	2022	2	2022-09-16	09:58	Total Carbon <63 µm	1.77	%	ALS	RG LE1 SE-2 2022-09-14 N
SE	RG_LE1	659554	5494114	2022	2	2022-09-16	09:58	Total Organic Carbon	1.63	%	ALS	RG_LE1_SE-2_2022-09-14_N
SE	RG LE1	659554	5494114	2022	2	2022-09-16	09:58	Inorganic Carbon (as CaCO3 equivalent)	1.13	%	ALS	RG_LE1_SE-2_2022-09-14_N
SE	RG LE1	659554	5494114	2022	2	2022-09-16	09:58	Aluminum (Al)	7780	mg/kg	ALS	RG LE1 SE-2 2022-09-14 N
SE	RG LE1	659554	5494114	2022	2	2022-09-16	09:58	Antimony (Sb)	1.3	mg/kg	ALS	RG LE1 SE-2 2022-09-14 N
SE	RG LE1	659554	5494114	2022	2	2022-09-16	09:58	Arsenic (As)	6.48	mg/kg	ALS	RG LE1 SE-2 2022-09-14 N
SE	RG LE1	659554	5494114	2022	2	2022-09-16	09:58	Barium (Ba)	267	mg/kg	ALS	RG LE1 SE-2 2022-09-14 N
SE	RG LE1	659554	5494114	2022	2	2022-09-16	09:58	Beryllium (Be)	0.6	mg/kg	ALS	RG LE1 SE-2 2022-09-14 N
SE	RG LE1	659554	5494114	2022	2	2022-09-16	09:58	Bismuth (Bi)	<0.2	mg/kg	ALS	RG LE1 SE-2 2022-09-14 N
SE	RG LE1	659554	5494114	2022	2	2022-09-16	09:58	Boron (B)	<5	mg/kg	ALS	RG LE1 SE-2 2022-09-14 N
SE	RG LE1	659554	5494114	2022	2	2022-09-16	09:58	Cadmium (Cd)	1.64	mg/kg	ALS	RG LE1 SE-2 2022-09-14 N
SE	RG LE1	659554	5494114	2022	2	2022-09-16	09:58	Calcium (Ca)	5960	mg/kg	ALS	RG LE1 SE-2 2022-09-14 N
SE	RG LE1	659554	5494114	2022	2	2022-09-16	09:58	Chromium (Cr)	15	mg/kg	ALS	RG LE1 SE-2 2022-09-14 N
SE	RG_LE1	659554	5494114	2022	2	2022-09-16	09:58	Cobalt (Co)	6.51	mg/kg	ALS	RG LE1 SE-2 2022-09-14 N
SE	RG_LE1	659554	5494114	2022	2	2022-09-10	09:58	Copper (Cu)	15.4	mg/kg	ALS	RG LE1 SE-2 2022-09-14 N
SE	RG LE1	659554	5494114	2022	2	2022-09-10	09:58	Iron (Fe)	15900	mg/kg	ALS	RG LE1 SE-2 2022-09-14 N
SE	RG_LE1	659554	5494114	2022	2	2022-09-16	09.58	Lead (Pb)	9.1	mg/kg	ALS	RG LE1 SE-2 2022-09-14 N
SE SE	_				_			· ,	-			
	RG_LE1	659554	5494114	2022	2	2022-09-16	09:58	Lithium (Li)	8.6	mg/kg	ALS	RG_LE1_SE-2_2022-09-14_N

WSP Canada Inc. Page 318 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	Ctation	Location	(UTMs) ^(a)	Vasu	Dankasta	Dete	Time	Analysis	Beault	Heit		Laboratory Information
ype	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
E	RG LE1	659554	5494114	2022	2	2022-09-16	09:58	Magnesium (Mg)	2450	mg/kg	ALS	RG LE1 SE-2 2022-09-14 N
<u>=</u> Е	RG LE1	659554	5494114	2022	2	2022-09-16	09:58	Manganese (Mn)	240	mg/kg	ALS	RG LE1 SE-2 2022-09-14 N
<u>=</u>	RG LE1	659554	5494114	2022	2	2022-09-16	09:58	Mercury (Hg)	0.0459	mg/kg	ALS	RG LE1 SE-2 2022-09-14 N
<u>=</u>	RG LE1	659554	5494114	2022	2	2022-09-16	09:58	Molybdenum (Mo)	1.52	mg/kg	ALS	RG LE1 SE-2 2022-09-14 N
<u>–</u> Е	RG LE1	659554	5494114	2022	2	2022-09-16	09:58	Nickel (Ni)	26.5	mg/kg	ALS	RG LE1 SE-2 2022-09-14 N
<u>– </u>	RG LE1	659554	5494114	2022	2	2022-09-16	09:58	Phosphorus (P)	1220	mg/kg	ALS	RG LE1 SE-2 2022-09-14 N
<u>–</u> Е	RG LE1	659554	5494114	2022	2	2022-09-16	09:58	Potassium (K)	1160	mg/kg	ALS	RG LE1 SE-2 2022-09-14 N
<u>–</u> E	RG LE1	659554	5494114	2022	2	2022-09-16	09:58	Selenium (Se)	0.66	mg/kg	ALS	RG LE1 SE-2 2022-09-14 N
E	RG LE1	659554	5494114	2022	2	2022-09-16	09:58	Silver (Ag)	0.19	mg/kg	ALS	RG LE1 SE-2 2022-09-14 N
SE	RG LE1	659554	5494114	2022	2	2022-09-16	09:58	Sodium (Na)	<50	mg/kg	ALS	RG LE1 SE-2 2022-09-14 N
SE	RG LE1	659554	5494114	2022	2	2022-09-16	09:58	Strontium (Sr)	36.6	mg/kg	ALS	RG LE1 SE-2 2022-09-14 N
SE	RG LE1	659554	5494114	2022	2	2022-09-16	09:58	Sulfur (S)	<1000	mg/kg	ALS	RG LE1 SE-2 2022-09-14 N
SE	RG LE1	659554	5494114	2022	2	2022-09-16	09:58	Thallium (TI)	0.196	mg/kg	ALS	RG LE1 SE-2 2022-09-14 N
; <u>-</u> E	RG_LE1	659554	5494114	2022	2	2022-09-16	09:58	Tin (Sn)	<2	mg/kg	ALS	RG LE1 SE-2 2022-09-14 N
SE	RG_LE1	659554	5494114	2022	2	2022-09-10	09.58	Titanium (Ti)	30.6	mg/kg	ALS	RG LE1 SE-2 2022-09-14 N
SE	RG_LE1	659554	5494114	2022	2	2022-09-10	09.58	Tungsten (W)	<0.5	mg/kg	ALS	RG LE1 SE-2 2022-09-14 N
SE	RG LE1	659554	5494114	2022	2	2022-09-16	09:58	Uranium (U)	1.23	mg/kg	ALS	RG LE1 SE-2 2022-09-14 N
SE	RG_LE1	659554	5494114	2022	2	2022-09-16	09:58	Vanadium (V)	46	mg/kg	ALS	RG LE1 SE-2 2022-09-14 N
SE	RG_LE1	659554	5494114	2022	2	2022-09-10	09.58	Zinc (Zn)	115	mg/kg	ALS	RG LE1 SE-2 2022-09-14 N
SE	RG_LE1	659554	5494114	2022	2	2022-09-10	09.58	Zirconium (Zr)	<1	mg/kg	ALS	RG LE1 SE-2 2022-09-14 N
SE	RG_LE1	659554	5494114	2022	2	2022-09-10	09.58	Acenaphthene	<0.05	1 - 1	ALS	RG LE1 SE-2 2022-09-14 N
SE	RG_LE1	659554	5494114	2022	2	2022-09-16	09.58	Acenaphthylene	<0.05	mg/kg	ALS	RG LE1 SE-2 2022-09-14 N
SE SE	RG_LE1	659554	5494114	2022	2	2022-09-16	09.58	Acridine	<0.05	mg/kg	ALS	RG LE1 SE-2 2022-09-14 N
SE SE	RG_LE1	659554	5494114	2022	2	2022-09-16	09.58	Anthracene	<0.05	mg/kg	ALS	RG LE1 SE-2 2022-09-14 N
SE SE	-	659554	5494114		2					mg/kg		RG LE1 SE-2 2022-09-14 N
SE SE	RG_LE1 RG LE1	659554	5494114	2022 2022	2	2022-09-16 2022-09-16	09:58 09:58	Benza(a)anthracene	<0.05 <0.05	mg/kg	ALS ALS	RG_LE1_SE-2_2022-09-14_N RG_LE1_SE-2_2022-09-14_N
SE SE	-	659554	5494114		2	2022-09-16		Benzo(a)pyrene	<0.05	mg/kg		
SE SE	RG_LE1 RG LE1	659554	5494114	2022 2022	2	2022-09-16	09:58 09:58	Benzo(b&j)fluoranthene Benzo(b+j+k)fluoranthene	<0.05	mg/kg	ALS ALS	RG_LE1_SE-2_2022-09-14_N
SE SE	_				2					mg/kg		RG_LE1_SE-2_2022-09-14_N
SE SE	RG_LE1	659554	5494114	2022		2022-09-16	09:58	Benzo(g_h_i)perylene	<0.05	mg/kg	ALS	RG_LE1_SE-2_2022-09-14_N
	RG_LE1	659554	5494114	2022	2	2022-09-16	09:58	Benzo(k)fluoranthene	<0.05	mg/kg	ALS	RG_LE1_SE-2_2022-09-14_N
SE	RG_LE1	659554	5494114	2022	2	2022-09-16	09:58	Chrysene	0.06	mg/kg	ALS	RG_LE1_SE-2_2022-09-14_N
SE	RG_LE1	659554	5494114	2022	2	2022-09-16	09:58	Dibenz(a_h)anthracene	<0.05	mg/kg	ALS	RG_LE1_SE-2_2022-09-14_N
SE_	RG_LE1	659554	5494114	2022	2	2022-09-16	09:58	Fluoranthene	<0.05	mg/kg	ALS	RG_LE1_SE-2_2022-09-14_N
SE	RG_LE1	659554	5494114	2022	2	2022-09-16	09:58	Fluorene	<0.05	mg/kg	ALS	RG_LE1_SE-2_2022-09-14_N
SE	RG_LE1	659554	5494114	2022	2	2022-09-16	09:58	Indeno(1,2,3-c,d)pyrene	<0.05	mg/kg	ALS	RG_LE1_SE-2_2022-09-14_N
SE	RG_LE1	659554	5494114	2022	2	2022-09-16	09:58	1+2-Methylnaphthalene	0.134	mg/kg	ALS	RG_LE1_SE-2_2022-09-14_N
SE	RG_LE1	659554	5494114	2022	2	2022-09-16	09:58	1-Methylnaphthalene	0.068	mg/kg	ALS	RG_LE1_SE-2_2022-09-14_N
SE	RG_LE1	659554	5494114	2022	2	2022-09-16	09:58	2-Methylnaphthalene	0.066	mg/kg	ALS	RG_LE1_SE-2_2022-09-14_N
E	RG_LE1	659554	5494114	2022	2	2022-09-16	09:58	Naphthalene	0.033	mg/kg	ALS	RG_LE1_SE-2_2022-09-14_N
E	RG_LE1	659554	5494114	2022	2	2022-09-16	09:58	Phenanthrene	0.143	mg/kg	ALS	RG_LE1_SE-2_2022-09-14_N
E	RG_LE1	659554	5494114	2022	2	2022-09-16	09:58	Pyrene	<0.05	mg/kg	ALS	RG_LE1_SE-2_2022-09-14_N
SE_	RG_LE1	659554	5494114	2022	2	2022-09-16	09:58	Quinoline	<0.05	mg/kg	ALS	RG_LE1_SE-2_2022-09-14_N
E	RG_LE1	659554	5494114	2022	2	2022-09-16	09:58	B(a)P Total Potency Equivalent	<0.065	mg/kg	ALS	RG_LE1_SE-2_2022-09-14_N
SE	RG_LE1	659554	5494114	2022	2	2022-09-16	09:58	PAHs, total (BC Sched 3.4)	0.3	mg/kg	ALS	RG_LE1_SE-2_2022-09-14_N
E	RG_LE1	659554	5494114	2022	2	2022-09-16	09:58	PAHs, total	0.24	mg/kg	ALS	RG_LE1_SE-2_2022-09-14_N
E	RG_LE1	659554	5494114	2022	2	2022-09-16	09:58	d9-Acridine	108	%	ALS	RG_LE1_SE-2_2022-09-14_N
SE	RG_LE1	659554	5494114	2022	2	2022-09-16	09:58	d12-Chrysene	116	%	ALS	RG_LE1_SE-2_2022-09-14_N

WSP Canada Inc. Page 319 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Гуре	04-41	1 4!										
1111	Station		(UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
-		Easting	Northing		Портошо						Lab	Sample ID
SE	RG_LE1	659554	5494114	2022	2	2022-09-16	09:58	d8-Naphthalene	120	%	ALS	RG_LE1_SE-2_2022-09-14_N
SE	RG_LE1	659554	5494114	2022	2	2022-09-16	09:58	d10-Phenanthrene	118	%	ALS	RG_LE1_SE-2_2022-09-14_N
SE	RG_LE1	659588	5494017	2022	3	2022-09-16	09:12	Moisture	33.9	%	ALS	RG_LE1_SE-3_2022-09-14_N
SE	RG_LE1	659588	5494017	2022	3	2022-09-16	09:12	pH (1:2 soil:water)	8.04	pН	ALS	RG_LE1_SE-3_2022-09-14_N
SE	RG_LE1	659588	5494017	2022	3	2022-09-16	09:12	% Clay (<4 μm)	3.2	%	ALS	RG_LE1_SE-3_2022-09-14_N
SE	RG_LE1	659588	5494017	2022	3	2022-09-16	09:12	% Silt (0.063 mm - 0.0312 mm)	6.9	%	ALS	RG_LE1_SE-3_2022-09-14_N
SE	RG_LE1	659588	5494017	2022	3	2022-09-16	09:12	% Silt (0.031 mm - 0.004 mm)	8.3	%	ALS	RG_LE1_SE-3_2022-09-14_N
SE	RG_LE1	659588	5494017	2022	3	2022-09-16	09:12	% Sand (0.125 mm - 0.063 mm)	10	%	ALS	RG_LE1_SE-3_2022-09-14_N
SE	RG_LE1	659588	5494017	2022	3	2022-09-16	09:12	% Sand (0.25 mm - 0.125 mm)	21.3	%	ALS	RG_LE1_SE-3_2022-09-14_N
SE	RG_LE1	659588	5494017	2022	3	2022-09-16	09:12	% Sand (0.50 mm - 0.25 mm)	29.6	%	ALS	RG_LE1_SE-3_2022-09-14_N
SE	RG_LE1	659588	5494017	2022	3	2022-09-16	09:12	% Sand (1.00 mm - 0.50 mm)	14.9	%	ALS	RG_LE1_SE-3_2022-09-14_N
SE	RG_LE1	659588	5494017	2022	3	2022-09-16	09:12	% Sand (2.00 mm - 1.00 mm)	2.9	%	ALS	RG_LE1_SE-3_2022-09-14_N
SE	RG_LE1	659588	5494017	2022	3	2022-09-16	09:12	% Gravel (>2 mm)	2.9	%	ALS	RG_LE1_SE-3_2022-09-14_N
SE	RG_LE1	659588	5494017	2022	3	2022-09-16	09:12	Inorganic Carbon <63 µm	0.115	%	ALS	RG_LE1_SE-3_2022-09-14_N
SE	RG_LE1	659588	5494017	2022	3	2022-09-16	09:12	Total Carbon <63 µm	2.55	%	ALS	RG_LE1_SE-3_2022-09-14_N
SE	RG_LE1	659588	5494017	2022	3	2022-09-16	09:12	Total Organic Carbon	2.44	%	ALS	RG_LE1_SE-3_2022-09-14_N
SE	RG_LE1	659588	5494017	2022	3	2022-09-16	09:12	Inorganic Carbon (as CaCO3 equivalent)	0.96	%	ALS	RG_LE1_SE-3_2022-09-14_N
SE	RG_LE1	659588	5494017	2022	3	2022-09-16	09:12	Aluminum (Al)	8320	mg/kg	ALS	RG_LE1_SE-3_2022-09-14_N
SE	RG LE1	659588	5494017	2022	3	2022-09-16	09:12	Antimony (Sb)	1.67	mg/kg	ALS	RG LE1 SE-3 2022-09-14 N
SE	RG_LE1	659588	5494017	2022	3	2022-09-16	09:12	Arsenic (As)	8.97	mg/kg	ALS	RG LE1 SE-3 2022-09-14 N
SE	RG_LE1	659588	5494017	2022	3	2022-09-16	09:12	Barium (Ba)	267	mg/kg	ALS	RG_LE1_SE-3_2022-09-14_N
SE	RG LE1	659588	5494017	2022	3	2022-09-16	09:12	Beryllium (Be)	0.76	mg/kg	ALS	RG LE1 SE-3 2022-09-14 N
SE	RG_LE1	659588	5494017	2022	3	2022-09-16	09:12	Bismuth (Bi)	<0.2	mg/kg	ALS	RG_LE1_SE-3_2022-09-14_N
SE	RG LE1	659588	5494017	2022	3	2022-09-16	09:12	Boron (B)	<5	mg/kg	ALS	RG_LE1_SE-3_2022-09-14_N
SE	RG LE1	659588	5494017	2022	3	2022-09-16	09:12	Cadmium (Cd)	2.07	mg/kg	ALS	RG_LE1_SE-3_2022-09-14_N
SE	RG LE1	659588	5494017	2022	3	2022-09-16	09:12	Calcium (Ca)	5350	mg/kg	ALS	RG_LE1_SE-3_2022-09-14_N
SE	RG LE1	659588	5494017	2022	3	2022-09-16	09:12	Chromium (Cr)	16.5	mg/kg	ALS	RG_LE1_SE-3_2022-09-14_N
SE	RG LE1	659588	5494017	2022	3	2022-09-16	09:12	Cobalt (Co)	7.12	mg/kg	ALS	RG_LE1_SE-3_2022-09-14_N
SE	RG_LE1	659588	5494017	2022	3	2022-09-16	09:12	Copper (Cu)	17.6	mg/kg	ALS	RG LE1 SE-3 2022-09-14 N
SE	RG LE1	659588	5494017	2022	3	2022-09-16	09:12	Iron (Fe)	20000	mg/kg	ALS	RG LE1 SE-3 2022-09-14 N
SE	RG LE1	659588	5494017	2022	3	2022-09-16	09:12	Lead (Pb)	10.5	mg/kg		RG LE1 SE-3 2022-09-14 N
SE	RG LE1	659588	5494017	2022	3	2022-09-16	09:12	Lithium (Li)	8.9	mg/kg	ALS	RG LE1 SE-3 2022-09-14 N
SE	RG LE1	659588	5494017	2022	3	2022-09-16	09:12	Magnesium (Mg)	2250	mg/kg	ALS	RG LE1 SE-3 2022-09-14 N
SE	RG_LE1	659588	5494017	2022	3	2022-09-16	09:12	Manganese (Mn)	312	mg/kg	ALS	RG LE1 SE-3 2022-09-14 N
SE	RG LE1	659588	5494017	2022	3	2022-09-16	09:12	Mercury (Hg)	0.0455	mg/kg	ALS	RG LE1 SE-3 2022-09-14 N
SE	RG LE1	659588	5494017	2022	3	2022-09-16	09:12	Molybdenum (Mo)	2.22	mg/kg	ALS	RG LE1 SE-3 2022-09-14 N
SE	RG LE1	659588	5494017	2022	3	2022-09-16	09:12	Nickel (Ni)	31.4	mg/kg	ALS	RG LE1 SE-3 2022-09-14 N
SE	RG_LE1	659588	5494017	2022	3	2022-09-16	09:12	Phosphorus (P)	1320	mg/kg	ALS	RG LE1 SE-3 2022-09-14 N
SE	RG LE1	659588	5494017	2022	3	2022-09-16	09:12	Potassium (K)	1320	mg/kg	ALS	RG LE1 SE-3 2022-09-14 N
SE	RG LE1	659588	5494017	2022	3	2022-09-16	09:12	Selenium (Se)	0.71	mg/kg	ALS	RG LE1 SE-3 2022-09-14 N
SE	RG LE1	659588	5494017	2022	3	2022-09-16	09:12	Silver (Ag)	0.71	mg/kg	ALS	RG LE1 SE-3 2022-09-14 N
SE	RG_LE1	659588	5494017	2022	3	2022-09-16	09:12	Sodium (Na)	<50	mg/kg	ALS	RG LE1 SE-3 2022-09-14 N
SE	RG LE1	659588	5494017	2022	3	2022-09-16	09.12	Strontium (Sr)	41.5	mg/kg	ALS	RG LE1 SE-3 2022-09-14 N
SE	RG_LE1	659588	5494017	2022	3	2022-09-16	09:12	Sulfur (S)	<1000	mg/kg	ALS	RG_LE1_SE-3_2022-09-14_N RG_LE1_SE-3_2022-09-14_N
SE	RG_LE1	659588	5494017	2022	3	2022-09-16	09.12	· · · · · ·	0.219		ALS	RG LE1 SE-3 2022-09-14 N
	RG_LE1 RG_LE1				· ·			Thallium (TI)		mg/kg		
SE	K(1 F	659588	5494017	2022	3	2022-09-16	09:12	Tin (Sn)	<2	mg/kg	ALS	RG_LE1_SE-3_2022-09-14_N RG_LE1_SE-3_2022-09-14_N

WSP Canada Inc. Page 320 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	04-4	Location	ı (UTMs) ^(a)	V	D	5.	- :		B 14			Laboratory Information
ype	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE .	RG LE1	659588	5494017	2022	3	2022-09-16	09:12	Tungsten (W)	<0.5	mg/kg	ALS	RG LE1 SE-3 2022-09-14 N
E	RG LE1	659588	5494017	2022	3	2022-09-16	09:12	Uranium (U)	1.34	mg/kg	ALS	RG LE1 SE-3 2022-09-14 N
E	RG LE1	659588	5494017	2022	3	2022-09-16	09:12	Vanadium (V)	56.8	mg/kg	ALS	RG LE1 SE-3 2022-09-14 N
E	RG LE1	659588	5494017	2022	3	2022-09-16	09:12	Zinc (Zn)	133	mg/kg	ALS	RG LE1 SE-3 2022-09-14 N
E	RG LE1	659588	5494017	2022	3	2022-09-16	09:12	Zirconium (Zr)	<1	mg/kg	ALS	RG LE1_SE-3_2022-09-14_N
E E	RG_LE1	659588	5494017	2022	3	2022-09-16	09:12	Acenaphthene	<0.05	mg/kg	ALS	RG LE1 SE-3 2022-09-14 N
E E	RG LE1	659588	5494017	2022	3	2022-09-16	09:12	Acenaphthylene	<0.05	mg/kg	ALS	RG LE1 SE-3 2022-09-14 N
E	RG LE1	659588	5494017	2022	3	2022-09-16	09:12	Acridine	<0.05	mg/kg	ALS	RG LE1 SE-3 2022-09-14 N
E E	RG_LE1	659588	5494017	2022	3	2022-09-16	09:12	Anthracene	<0.05	mg/kg	ALS	RG LE1_SE-3_2022-09-14_N
E	RG LE1	659588	5494017	2022	3	2022-09-16	09:12	Benz(a)anthracene	<0.05	mg/kg	ALS	RG LE1_SE-3_2022-09-14_N
E E	RG LE1	659588	5494017	2022	3	2022-09-16	09:12	Benzo(a)pyrene	<0.05	mg/kg	ALS	RG LE1 SE-3 2022-09-14 N
E E	RG LE1	659588	5494017	2022	3	2022-09-16	09:12	Benzo(b&j)fluoranthene	<0.05	mg/kg	ALS	RG LE1 SE-3 2022-09-14 N
E	RG LE1	659588	5494017	2022	3	2022-09-16	09:12	Benzo(b+j+k)fluoranthene	<0.075	mg/kg	ALS	RG LE1 SE-3 2022-09-14 N
E	RG_LE1	659588	5494017	2022	3	2022-09-16	09:12	Benzo(g_h_i)perylene	<0.075	mg/kg	ALS	RG LE1 SE-3 2022-09-14 N
E	RG LE1	659588	5494017	2022	3	2022-09-16	09:12	Benzo(k)fluoranthene	<0.05	mg/kg	ALS	RG LE1 SE-3 2022-09-14 N
E E	RG_LE1	659588	5494017	2022	3	2022-09-16	09:12	Chrysene	0.062	mg/kg	ALS	RG LE1 SE-3 2022-09-14 N
E E	RG LE1	659588	5494017	2022	3	2022-09-10	09:12	Dibenz(a_h)anthracene	<0.05	mg/kg	ALS	RG LE1 SE-3 2022-09-14 N
E E	RG_LE1	659588	5494017	2022	3	2022-09-10	09:12	Fluoranthene	<0.05		ALS	RG LE1 SE-3 2022-09-14 N
E	RG LE1	659588	5494017	2022	3	2022-09-10	09:12	Fluorene	<0.05	mg/kg	ALS	RG LE1 SE-3 2022-09-14 N
E	RG_LE1	659588	5494017	2022	3	2022-09-10	09:12	Indeno(1,2,3-c,d)pyrene	<0.05	mg/kg	ALS	RG LE1 SE-3 2022-09-14 N
E	RG_LE1	659588	5494017	2022	3	2022-09-16	09:12	, ,,,,	0.161	mg/kg	ALS	RG LE1 SE-3 2022-09-14 N
E	_		5494017	2022	3	2022-09-16	09.12	1+2-Methylnaphthalene	0.079	mg/kg	ALS	RG LE1 SE-3 2022-09-14 N
	RG_LE1	659588	-		_			1-Methylnaphthalene		mg/kg		
E	RG_LE1	659588	5494017	2022	3	2022-09-16	09:12	2-Methylnaphthalene	0.082	mg/kg	ALS	RG_LE1_SE-3_2022-09-14_N
E	RG_LE1	659588	5494017	2022	3	2022-09-16	09:12	Naphthalene	0.038	mg/kg	ALS	RG_LE1_SE-3_2022-09-14_N
E .	RG_LE1	659588	5494017	2022	3	2022-09-16	09:12	Phenanthrene	0.162	mg/kg	ALS	RG_LE1_SE-3_2022-09-14_N
E	RG_LE1	659588	5494017	2022	3	2022-09-16	09:12	Pyrene	<0.05	mg/kg	ALS	RG_LE1_SE-3_2022-09-14_N
E	RG_LE1	659588	5494017	2022	3	2022-09-16	09:12	Quinoline	<0.05	mg/kg	ALS	RG_LE1_SE-3_2022-09-14_N
SE .	RG_LE1	659588	5494017	2022	3	2022-09-16	09:12	B(a)P Total Potency Equivalent	<0.065	mg/kg	ALS	RG_LE1_SE-3_2022-09-14_N
SE	RG_LE1	659588	5494017	2022	3	2022-09-16	09:12	PAHs, total (BC Sched 3.4)	0.34	mg/kg	ALS	RG_LE1_SE-3_2022-09-14_N
E	RG_LE1	659588	5494017	2022	3	2022-09-16	09:12	PAHs, total	0.26	mg/kg	ALS	RG_LE1_SE-3_2022-09-14_N
SE	RG_LE1	659588	5494017	2022		2022-09-16	09:12	d9-Acridine	105	%		RG_LE1_SE-3_2022-09-14_N
SE	RG_LE1	659588	5494017	2022		2022-09-16	09:12	d12-Chrysene	127	%	ALS	RG_LE1_SE-3_2022-09-14_N
Ē	RG_LE1	659588	5494017	2022		2022-09-16	09:12	d8-Naphthalene	119	%	ALS	RG_LE1_SE-3_2022-09-14_N
SE	RG_LE1	659588	5494017	2022	3	2022-09-16	09:12	d10-Phenanthrene	115	%	ALS	RG_LE1_SE-3_2022-09-14_N
E	RG_MI5	659565	5496335	2022	4	2022-09-16	12:00	Moisture	72.4	%	ALS	RG_MI5_SE-4_2022-09-14_N
E	RG_MI5	659565	5496335	2022	4	2022-09-16	12:00	pH (1:2 soil:water)	7.55	рН	ALS	RG_MI5_SE-4_2022-09-14_N
E	RG_MI5	659565	5496335	2022	4	2022-09-16	12:00	% Clay (<4 μm)	5	%	ALS	RG_MI5_SE-4_2022-09-14_N
SE	RG_MI5	659565	5496335	2022	4	2022-09-16	12:00	% Silt (0.063 mm - 0.0312 mm)	21.1	%	ALS	RG_MI5_SE-4_2022-09-14_N
E	RG_MI5	659565	5496335	2022	4	2022-09-16	12:00	% Silt (0.031 mm - 0.004 mm)	23.3	%	ALS	RG_MI5_SE-4_2022-09-14_N
E	RG_MI5	659565	5496335	2022	4	2022-09-16	12:00	% Sand (0.125 mm - 0.063 mm)	4.7	%	ALS	RG_MI5_SE-4_2022-09-14_N
E	RG_MI5	659565	5496335	2022	4	2022-09-16	12:00	% Sand (0.25 mm - 0.125 mm)	3.1	%	ALS	RG_MI5_SE-4_2022-09-14_N
E	RG_MI5	659565	5496335	2022	4	2022-09-16	12:00	% Sand (0.50 mm - 0.25 mm)	3.5	%	ALS	RG_MI5_SE-4_2022-09-14_N
Е	RG_MI5	659565	5496335	2022	4	2022-09-16	12:00	% Sand (1.00 mm - 0.50 mm)	9.6	%	ALS	RG_MI5_SE-4_2022-09-14_N
E	RG_MI5	659565	5496335	2022	4	2022-09-16	12:00	% Sand (2.00 mm - 1.00 mm)	16.6	%	ALS	RG_MI5_SE-4_2022-09-14_N
E	RG_MI5	659565	5496335	2022	4	2022-09-16	12:00	% Gravel (>2 mm)	13.1	%	ALS	RG_MI5_SE-4_2022-09-14_N
Е	RG_MI5	659565	5496335	2022	4	2022-09-16	12:00	Inorganic Carbon <63 μm	1.66	%	ALS	RG_MI5_SE-4_2022-09-14_N
E	RG MI5	659565	5496335	2022	4	2022-09-16	12:00	Total Carbon <63 µm	7.1	%	ALS	RG MI5 SE-4 2022-09-14 N

WSP Canada Inc. Page 321 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Table I-1	: Sediment Chem	istry Data Coll	lected from the	CMm LAEMP S	Sampling Sta	ations, 2012 to	2022					
Туре	Station	Location	ı (UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
Type	Station	Easting	Northing	i cai	Replicate	Date	Tille	Analyte	Result	Offic	Lab	Sample ID
SE	RG_MI5	659565	5496335	2022	4	2022-09-16	12:00	Total Organic Carbon	5.44	%	ALS	RG_MI5_SE-4_2022-09-14_N
SE	RG_MI5	659565	5496335	2022	4	2022-09-16	12:00	Inorganic Carbon (as CaCO3 equivalent)	13.8	%	ALS	RG_MI5_SE-4_2022-09-14_N
SE	RG_MI5	659565	5496335	2022	4	2022-09-16	12:00	Aluminum (Al)	6040	mg/kg	ALS	RG_MI5_SE-4_2022-09-14_N
SE	RG_MI5	659565	5496335	2022	4	2022-09-16	12:00	Antimony (Sb)	0.7	mg/kg	ALS	RG_MI5_SE-4_2022-09-14_N
SE	RG_MI5	659565	5496335	2022	4	2022-09-16	12:00	Arsenic (As)	5.68	mg/kg	ALS	RG_MI5_SE-4_2022-09-14_N
SE	RG_MI5	659565	5496335	2022	4	2022-09-16	12:00	Barium (Ba)	182	mg/kg	ALS	RG_MI5_SE-4_2022-09-14_N
SE	RG_MI5	659565	5496335	2022	4	2022-09-16	12:00	Beryllium (Be)	0.45	mg/kg	ALS	RG_MI5_SE-4_2022-09-14_N
SE	RG_MI5	659565	5496335	2022	4	2022-09-16	12:00	Bismuth (Bi)	<0.2	mg/kg	ALS	RG_MI5_SE-4_2022-09-14_N
SE	RG_MI5	659565	5496335	2022	4	2022-09-16	12:00	Boron (B)	6.9	mg/kg	ALS	RG_MI5_SE-4_2022-09-14_N
SE	RG_MI5	659565	5496335	2022	4	2022-09-16	12:00	Cadmium (Cd)	2.38	mg/kg	ALS	RG_MI5_SE-4_2022-09-14_N
SE	RG_MI5	659565	5496335	2022	4	2022-09-16	12:00	Calcium (Ca)	54300	mg/kg	ALS	RG_MI5_SE-4_2022-09-14_N
SE	RG_MI5	659565	5496335	2022	4	2022-09-16	12:00	Chromium (Cr)	12	mg/kg	ALS	RG_MI5_SE-4_2022-09-14_N
SE	RG_MI5	659565	5496335	2022	4	2022-09-16	12:00	Cobalt (Co)	6.78	mg/kg	ALS	RG_MI5_SE-4_2022-09-14_N
SE	RG_MI5	659565	5496335	2022	4	2022-09-16	12:00	Copper (Cu)	12.7	mg/kg	ALS	RG_MI5_SE-4_2022-09-14_N
SE	RG_MI5	659565	5496335	2022	4	2022-09-16	12:00	Iron (Fe)	13200	mg/kg	ALS	RG_MI5_SE-4_2022-09-14_N
SE	RG_MI5	659565	5496335	2022	4	2022-09-16	12:00	Lead (Pb)	7.02	mg/kg	ALS	RG_MI5_SE-4_2022-09-14_N
SE	RG_MI5	659565	5496335	2022	4	2022-09-16	12:00	Lithium (Li)	7.4	mg/kg	ALS	RG_MI5_SE-4_2022-09-14_N
SE	RG_MI5	659565	5496335	2022	4	2022-09-16	12:00	Magnesium (Mg)	5490	mg/kg	ALS	RG_MI5_SE-4_2022-09-14_N
SE	RG_MI5	659565	5496335	2022	4	2022-09-16	12:00	Manganese (Mn)	196	mg/kg	ALS	RG_MI5_SE-4_2022-09-14_N
SE	RG_MI5	659565	5496335	2022	4	2022-09-16	12:00	Mercury (Hg)	0.0416	mg/kg	ALS	RG_MI5_SE-4_2022-09-14_N
SE	RG_MI5	659565	5496335	2022	4	2022-09-16	12:00	Molybdenum (Mo)	1.23	mg/kg	ALS	RG_MI5_SE-4_2022-09-14_N
SE	RG_MI5	659565	5496335	2022	4	2022-09-16	12:00	Nickel (Ni)	35.1	mg/kg	ALS	RG_MI5_SE-4_2022-09-14_N
SE	RG_MI5	659565	5496335	2022	4	2022-09-16	12:00	Phosphorus (P)	1210	mg/kg	ALS	RG_MI5_SE-4_2022-09-14_N
SE	RG_MI5	659565	5496335	2022	4	2022-09-16	12:00	Potassium (K)	1140	mg/kg	ALS	RG_MI5_SE-4_2022-09-14_N
SE	RG_MI5	659565	5496335	2022	4	2022-09-16	12:00	Selenium (Se)	2.56	mg/kg	ALS	RG_MI5_SE-4_2022-09-14_N
SE	RG_MI5	659565	5496335	2022	4	2022-09-16	12:00	Silver (Ag)	0.18	mg/kg	ALS	RG_MI5_SE-4_2022-09-14_N
SE	RG_MI5	659565	5496335	2022	4	2022-09-16	12:00	Sodium (Na)	132	mg/kg	ALS	RG_MI5_SE-4_2022-09-14_N
SE	RG_MI5	659565	5496335	2022	4	2022-09-16	12:00	Strontium (Sr)	92.2	mg/kg	ALS	RG_MI5_SE-4_2022-09-14_N
SE	RG_MI5	659565	5496335	2022	4	2022-09-16	12:00	Sulfur (S)	<1000	mg/kg	ALS	RG_MI5_SE-4_2022-09-14_N
SE	RG_MI5	659565	5496335	2022	4	2022-09-16	12:00	Thallium (TI)	0.22	mg/kg	ALS	RG_MI5_SE-4_2022-09-14_N
SE	RG_MI5	659565	5496335	2022	4	2022-09-16	12:00	Tin (Sn)	<2	mg/kg	ALS	RG_MI5_SE-4_2022-09-14_N
SE	RG_MI5	659565	5496335	2022	4	2022-09-16	12:00	Titanium (Ti)	30.4	mg/kg	ALS	RG_MI5_SE-4_2022-09-14_N
SE	RG_MI5	659565	5496335	2022	4	2022-09-16	12:00	Tungsten (W)	<0.5	mg/kg	ALS	RG_MI5_SE-4_2022-09-14_N
SE	RG_MI5	659565	5496335	2022	4	2022-09-16	12:00	Uranium (U)	0.991	mg/kg	ALS	RG_MI5_SE-4_2022-09-14_N
SE	RG_MI5	659565	5496335	2022	4	2022-09-16	12:00	Vanadium (V)	29.4	mg/kg	ALS	RG_MI5_SE-4_2022-09-14_N
SE	RG_MI5	659565	5496335	2022	4	2022-09-16	12:00	Zinc (Zn)	117	mg/kg	ALS	RG_MI5_SE-4_2022-09-14_N
SE	RG_MI5	659565	5496335	2022	4	2022-09-16	12:00	Zirconium (Zr)	1.2	mg/kg	ALS	RG_MI5_SE-4_2022-09-14_N
SE	RG_MI5	659565	5496335	2022	4	2022-09-16	12:00	Acenaphthene	<0.05	mg/kg	ALS	RG_MI5_SE-4_2022-09-14_N
SE	RG_MI5	659565	5496335	2022	4	2022-09-16	12:00	Acenaphthylene	<0.05	mg/kg	ALS	RG_MI5_SE-4_2022-09-14_N
SE	RG_MI5	659565	5496335	2022	4	2022-09-16	12:00	Acridine	<0.05	mg/kg	ALS	RG_MI5_SE-4_2022-09-14_N
SE	RG_MI5	659565	5496335	2022	4	2022-09-16	12:00	Anthracene	<0.05	mg/kg	ALS	RG_MI5_SE-4_2022-09-14_N
SE	RG_MI5	659565	5496335	2022	4	2022-09-16	12:00	Benz(a)anthracene	<0.05	mg/kg	ALS	RG_MI5_SE-4_2022-09-14_N
SE	RG_MI5	659565	5496335	2022	4	2022-09-16	12:00	Benzo(a)pyrene	<0.05	mg/kg	ALS	RG_MI5_SE-4_2022-09-14_N
SE	RG_MI5	659565	5496335	2022	4	2022-09-16	12:00	Benzo(b&j)fluoranthene	<0.05	mg/kg	ALS	RG_MI5_SE-4_2022-09-14_N
SE	RG_MI5	659565	5496335	2022	4	2022-09-16	12:00	Benzo(b+j+k)fluoranthene	<0.075	mg/kg	ALS	RG_MI5_SE-4_2022-09-14_N
SE	RG_MI5	659565	5496335	2022	4	2022-09-16	12:00	Benzo(g_h_i)perylene	<0.05	mg/kg	ALS	RG_MI5_SE-4_2022-09-14_N
SE	RG_MI5	659565	5496335	2022	4	2022-09-16	12:00	Benzo(k)fluoranthene	<0.05	mg/kg	ALS	RG_MI5_SE-4_2022-09-14_N

WSP Canada Inc. Page 322 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	Ctation	Location	(UTMs) ^(a)	Vaar	Donlingto	Dete	Time	Analysis	Docult	Heit		Laboratory Information
ype	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	RG MI5	659565	5496335	2022	4	2022-09-16	12:00	Chrysene	0.053	mg/kg	ALS	RG MI5 SE-4 2022-09-14 N
SE.	RG MI5	659565	5496335	2022	4	2022-09-16	12:00	Dibenz(a h)anthracene	<0.05	mg/kg	ALS	RG MI5 SE-4 2022-09-14 N
SE	RG MI5	659565	5496335	2022	4	2022-09-16	12:00	Fluoranthene	<0.05	mg/kg	ALS	RG MI5 SE-4 2022-09-14 N
SE	RG MI5	659565	5496335	2022	4	2022-09-16	12:00	Fluorene	<0.05	mg/kg	ALS	RG MI5 SE-4 2022-09-14 N
SE.	RG MI5	659565	5496335	2022	4	2022-09-16	12:00	Indeno(1,2,3-c,d)pyrene	<0.05	mg/kg	ALS	RG_MI5_SE-4_2022-09-14_N
SE.	RG MI5	659565	5496335	2022	4	2022-09-16	12:00	1+2-Methylnaphthalene	0.192	mg/kg	ALS	RG MI5 SE-4 2022-09-14 N
SE.	RG MI5	659565	5496335	2022	4	2022-09-16	12:00	1-Methylnaphthalene	0.084	mg/kg	ALS	RG MI5 SE-4 2022-09-14 N
Ε	RG MI5	659565	5496335	2022	4	2022-09-16	12:00	2-Methylnaphthalene	0.108	mg/kg	ALS	RG MI5 SE-4 2022-09-14 N
ŝΕ	RG MI5	659565	5496335	2022	4	2022-09-16	12:00	Naphthalene	0.057	mg/kg	ALS	RG MI5 SE-4 2022-09-14 N
E	RG MI5	659565	5496335	2022	4	2022-09-16	12:00	Phenanthrene	0.141	mg/kg	ALS	RG MI5 SE-4 2022-09-14 N
Ε	RG MI5	659565	5496335	2022	4	2022-09-16	12:00	Pyrene	<0.05	mg/kg	ALS	RG MI5 SE-4 2022-09-14 N
Е	RG MI5	659565	5496335	2022	4	2022-09-16	12:00	Quinoline	<0.05	mg/kg	ALS	RG MI5 SE-4 2022-09-14 N
Ε	RG MI5	659565	5496335	2022	4	2022-09-16	12:00	B(a)P Total Potency Equivalent	<0.065	mg/kg	ALS	RG MI5 SE-4 2022-09-14 N
Е	RG MI5	659565	5496335	2022	4	2022-09-16	12:00	PAHs, total (BC Sched 3.4)	0.36	mg/kg	ALS	RG MI5 SE-4 2022-09-14 N
Е	RG MI5	659565	5496335	2022	4	2022-09-16	12:00	PAHs, total	0.25	mg/kg	ALS	RG MI5 SE-4 2022-09-14 N
E	RG MI5	659565	5496335	2022	4	2022-09-16	12:00	d9-Acridine	118	%	ALS	RG MI5 SE-4 2022-09-14 N
E	RG MI5	659565	5496335	2022	4	2022-09-16	12:00	d12-Chrysene	112	%	ALS	RG MI5 SE-4 2022-09-14 N
E	RG MI5	659565	5496335	2022	4	2022-09-16	12:00	d8-Naphthalene	126	%	ALS	RG_MI5_SE-4_2022-09-14_N
E	RG MI5	659565	5496335	2022	4	2022-09-16	12:00	d10-Phenanthrene	126	%	ALS	RG MI5 SE-4 2022-09-14 N
Ξ	RG MI5	659553	5496289	2022	5	2022-09-16	12:15	Moisture	81.2	%	ALS	RG MI5 SE-5 2022-09-14 N
Ξ	RG_MI5	659553	5496289	2022	5	2022-09-16	12:15	pH (1:2 soil:water)	7.61	рН	ALS	RG MI5 SE-5 2022-09-14 N
E	RG MI5	659553	5496289	2022	5	2022-09-16	12:15	% Clay (<4 μm)	7.5	%	ALS	RG MI5 SE-5 2022-09-14 N
E	RG MI5	659553	5496289	2022	5	2022-09-16	12:15	% Silt (0.063 mm - 0.0312 mm)	32.7	%	ALS	RG MI5 SE-5 2022-09-14 N
E	RG MI5	659553	5496289	2022	5	2022-09-16	12:15	% Silt (0.031 mm - 0.004 mm)	35.2	%	ALS	RG MI5 SE-5 2022-09-14 N
E	RG MI5	659553	5496289	2022	5	2022-09-16	12:15	% Sand (0.125 mm - 0.063 mm)	9.1	%	ALS	RG MI5 SE-5 2022-09-14 N
Ε	RG MI5	659553	5496289	2022	5	2022-09-16	12:15	% Sand (0.25 mm - 0.125 mm)	4.3	%	ALS	RG MI5 SE-5 2022-09-14 N
Ε	RG MI5	659553	5496289	2022	5	2022-09-16	12:15	% Sand (0.50 mm - 0.25 mm)	1.8	%	ALS	RG MI5 SE-5 2022-09-14 N
Ε	RG MI5	659553	5496289	2022	5	2022-09-16	12:15	% Sand (1.00 mm - 0.50 mm)	1.1	%	ALS	RG MI5 SE-5 2022-09-14 N
ŝΕ	RG MI5	659553	5496289	2022	5	2022-09-16	12:15	% Sand (2.00 mm - 1.00 mm)	1.9	%	ALS	RG MI5 SE-5 2022-09-14 N
Ε	RG MI5	659553	5496289	2022	5	2022-09-16	12:15	% Gravel (>2 mm)	6.4	%	ALS	RG MI5 SE-5 2022-09-14 N
Έ	RG MI5	659553	5496289	2022	5	2022-09-16	12:15	Inorganic Carbon <63 µm	2.88	%	ALS	RG MI5 SE-5 2022-09-14 N
ŝΕ	RG MI5	659553	5496289	2022	5	2022-09-16	12:15	Total Carbon <63 µm	9.81	%	ALS	RG MI5 SE-5 2022-09-14 N
Ε	RG MI5	659553	5496289	2022	5	2022-09-16	12:15	Total Organic Carbon	6.93	%	ALS	RG MI5 SE-5 2022-09-14 N
ŝΕ	RG MI5	659553	5496289	2022	5	2022-09-16	12:15	Inorganic Carbon (as CaCO3 equivalent)	24	%	ALS	RG MI5 SE-5 2022-09-14 N
Ε	RG MI5	659553	5496289	2022	5	2022-09-16	12:15	Aluminum (AI)	4520	mg/kg	ALS	RG MI5 SE-5 2022-09-14 N
ŝΕ	RG MI5	659553	5496289	2022	5	2022-09-16	12:15	Antimony (Sb)	0.52	mg/kg	ALS	RG MI5 SE-5 2022-09-14 N
Ε	RG MI5	659553	5496289	2022	5	2022-09-16	12:15	Arsenic (As)	4.16	mg/kg	ALS	RG MI5 SE-5 2022-09-14 N
Е	RG MI5	659553	5496289	2022	5	2022-09-16	12:15	Barium (Ba)	238	mg/kg	ALS	RG MI5 SE-5 2022-09-14 N
Ē	RG MI5	659553	5496289	2022	5	2022-09-16	12:15	Beryllium (Be)	0.35	mg/kg	ALS	RG MI5 SE-5 2022-09-14 N
<u>=</u> Е	RG MI5	659553	5496289	2022	5	2022-09-16	12:15	Bismuth (Bi)	<0.2	mg/kg	ALS	RG MI5 SE-5 2022-09-14 N
E	RG MI5	659553	5496289	2022	5	2022-09-16	12:15	Boron (B)	7.6	mg/kg	ALS	RG MI5 SE-5 2022-09-14 N
E	RG MI5	659553	5496289	2022	5	2022-09-16	12:15	Cadmium (Cd)	1.61	mg/kg	ALS	RG MI5 SE-5 2022-09-14 N
E	RG MI5	659553	5496289	2022	5	2022-09-16	12:15	Calcium (Ca)	92200	mg/kg	ALS	RG MI5 SE-5 2022-09-14 N
<u> </u>	RG MI5	659553	5496289	2022	5	2022-09-16	12:15	Chromium (Cr)	8.9	mg/kg	ALS	RG MI5 SE-5 2022-09-14 N
<u>=</u> Е	RG MI5	659553	5496289	2022	5	2022-09-16	12:15	Cobalt (Co)	7	mg/kg	ALS	RG MI5 SE-5 2022-09-14 N
E	RG MI5	659553	5496289	2022	5	2022-09-16	12:15	Copper (Cu)	9.99	mg/kg	ALS	RG MI5 SE-5 2022-09-14 N
	- · · ·				1			1 1 1 7				

WSP Canada Inc. Page 323 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	25 Sealment Chem	•	(UTMs) ^(a)					Analda	Beerli	1124		Laboratory Information
Type	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	RG_MI5	659553	5496289	2022	5	2022-09-16	12:15	Lead (Pb)	6.23	mg/kg	ALS	RG_MI5_SE-5_2022-09-14_N
SE	RG_MI5	659553	5496289	2022	5	2022-09-16	12:15	Lithium (Li)	5.6	mg/kg	ALS	RG_MI5_SE-5_2022-09-14_N
SE	RG_MI5	659553	5496289	2022	5	2022-09-16	12:15	Magnesium (Mg)	5450	mg/kg	ALS	RG_MI5_SE-5_2022-09-14_N
SE	RG_MI5	659553	5496289	2022	5	2022-09-16	12:15	Manganese (Mn)	198	mg/kg	ALS	RG_MI5_SE-5_2022-09-14_N
SE	RG_MI5	659553	5496289	2022	5	2022-09-16	12:15	Mercury (Hg)	0.0375	mg/kg	ALS	RG_MI5_SE-5_2022-09-14_N
SE	RG_MI5	659553	5496289	2022	5	2022-09-16	12:15	Molybdenum (Mo)	1.04	mg/kg	ALS	RG_MI5_SE-5_2022-09-14_N
SE	RG_MI5	659553	5496289	2022	5	2022-09-16	12:15	Nickel (Ni)	33.6	mg/kg	ALS	RG_MI5_SE-5_2022-09-14_N
SE	RG_MI5	659553	5496289	2022	5	2022-09-16	12:15	Phosphorus (P)	1140	mg/kg	ALS	RG_MI5_SE-5_2022-09-14_N
SE	RG_MI5	659553	5496289	2022	5	2022-09-16	12:15	Potassium (K)	950	mg/kg	ALS	RG_MI5_SE-5_2022-09-14_N
SE	RG_MI5	659553	5496289	2022	5	2022-09-16	12:15	Selenium (Se)	2.59	mg/kg	ALS	RG_MI5_SE-5_2022-09-14_N
SE	RG_MI5	659553	5496289	2022	5	2022-09-16	12:15	Silver (Ag)	0.16	mg/kg	ALS	RG_MI5_SE-5_2022-09-14_N
SE	RG_MI5	659553	5496289	2022	5	2022-09-16	12:15	Sodium (Na)	140	mg/kg	ALS	RG_MI5_SE-5_2022-09-14_N
SE	RG_MI5	659553	5496289	2022	5	2022-09-16	12:15	Strontium (Sr)	125	mg/kg	ALS	RG_MI5_SE-5_2022-09-14_N
SE	RG_MI5	659553	5496289	2022	5	2022-09-16	12:15	Sulfur (S)	1100	mg/kg	ALS	RG_MI5_SE-5_2022-09-14_N
SE	RG_MI5	659553	5496289	2022	5	2022-09-16	12:15	Thallium (TI)	0.191	mg/kg	ALS	RG_MI5_SE-5_2022-09-14_N
SE	RG_MI5	659553	5496289	2022	5	2022-09-16	12:15	Tin (Sn)	<2	mg/kg	ALS	RG_MI5_SE-5_2022-09-14_N
SE	RG_MI5	659553	5496289	2022	5	2022-09-16	12:15	Titanium (Ti)	14.4	mg/kg	ALS	RG_MI5_SE-5_2022-09-14_N
SE	RG_MI5	659553	5496289	2022	5	2022-09-16	12:15	Tungsten (W)	<0.5	mg/kg	ALS	RG_MI5_SE-5_2022-09-14_N
SE	RG_MI5	659553	5496289	2022	5	2022-09-16	12:15	Uranium (U)	0.827	mg/kg	ALS	RG_MI5_SE-5_2022-09-14_N
SE	RG_MI5	659553	5496289	2022	5	2022-09-16	12:15	Vanadium (V)	20.5	mg/kg	ALS	RG_MI5_SE-5_2022-09-14_N
SE	RG_MI5	659553	5496289	2022	5	2022-09-16	12:15	Zinc (Zn)	102	mg/kg	ALS	RG_MI5_SE-5_2022-09-14_N
SE	RG_MI5	659553	5496289	2022	5	2022-09-16	12:15	Zirconium (Zr)	<1	mg/kg	ALS	RG_MI5_SE-5_2022-09-14_N
SE	RG_MI5	659553	5496289	2022	5	2022-09-16	12:15	Acenaphthene	<0.068	mg/kg	ALS	RG_MI5_SE-5_2022-09-14_N
SE	RG_MI5	659553	5496289	2022	5	2022-09-16	12:15	Acenaphthylene	<0.068	mg/kg	ALS	RG MI5 SE-5 2022-09-14 N
SE	RG_MI5	659553	5496289	2022	5	2022-09-16	12:15	Acridine	<0.068	mg/kg	ALS	RG MI5 SE-5 2022-09-14 N
SE	RG_MI5	659553	5496289	2022	5	2022-09-16	12:15	Anthracene	<0.068	mg/kg	ALS	RG MI5 SE-5 2022-09-14 N
SE	RG_MI5	659553	5496289	2022	5	2022-09-16	12:15	Benz(a)anthracene	<0.068	mg/kg	ALS	RG_MI5_SE-5_2022-09-14_N
SE	RG_MI5	659553	5496289	2022	5	2022-09-16	12:15	Benzo(a)pyrene	<0.068	mg/kg	ALS	RG_MI5_SE-5_2022-09-14_N
SE	RG_MI5	659553	5496289	2022	5	2022-09-16	12:15	Benzo(b&j)fluoranthene	<0.068	mg/kg	ALS	RG_MI5_SE-5_2022-09-14_N
SE	RG_MI5	659553	5496289	2022	5	2022-09-16	12:15	Benzo(b+j+k)fluoranthene	<0.096	mg/kg	ALS	RG_MI5_SE-5_2022-09-14_N
SE	RG_MI5	659553	5496289	2022	5	2022-09-16	12:15	Benzo(g_h_i)perylene	<0.068	mg/kg	ALS	RG_MI5_SE-5_2022-09-14_N
SE	RG_MI5	659553	5496289	2022	5	2022-09-16	12:15	Benzo(k)fluoranthene	<0.068	mg/kg	ALS	RG_MI5_SE-5_2022-09-14_N
SE	RG_MI5	659553	5496289	2022	5	2022-09-16	12:15	Chrysene	0.084	mg/kg	ALS	RG_MI5_SE-5_2022-09-14_N
SE	RG_MI5	659553	5496289	2022	5	2022-09-16	12:15	Dibenz(a_h)anthracene	<0.068	mg/kg	ALS	RG_MI5_SE-5_2022-09-14_N
SE	RG_MI5	659553	5496289	2022	5	2022-09-16	12:15	Fluoranthene	<0.068	mg/kg	ALS	RG_MI5_SE-5_2022-09-14_N
SE	RG_MI5	659553	5496289	2022	5	2022-09-16	12:15	Fluorene	<0.068	mg/kg	ALS	RG_MI5_SE-5_2022-09-14_N
SE	RG_MI5	659553	5496289	2022	5	2022-09-16	12:15	Indeno(1,2,3-c,d)pyrene	<0.068	mg/kg	ALS	RG_MI5_SE-5_2022-09-14_N
SE	RG_MI5	659553	5496289	2022	5	2022-09-16	12:15	1+2-Methylnaphthalene	0.297	mg/kg	ALS	RG_MI5_SE-5_2022-09-14_N
SE	RG_MI5	659553	5496289	2022	5	2022-09-16	12:15	1-Methylnaphthalene	0.13	mg/kg	ALS	RG_MI5_SE-5_2022-09-14_N
SE	RG_MI5	659553	5496289	2022	5	2022-09-16	12:15	2-Methylnaphthalene	0.167	mg/kg	ALS	RG_MI5_SE-5_2022-09-14_N
SE	RG_MI5	659553	5496289	2022	5	2022-09-16	12:15	Naphthalene	0.084	mg/kg	ALS	RG_MI5_SE-5_2022-09-14_N
SE	RG_MI5	659553	5496289	2022	5	2022-09-16	12:15	Phenanthrene	0.188	mg/kg	ALS	RG_MI5_SE-5_2022-09-14_N
SE	RG_MI5	659553	5496289	2022	5	2022-09-16	12:15	Pyrene	<0.068	mg/kg	ALS	RG_MI5_SE-5_2022-09-14_N
SE	RG_MI5	659553	5496289	2022	5	2022-09-16	12:15	Quinoline	<0.068	mg/kg	ALS	RG_MI5_SE-5_2022-09-14_N
SE	RG_MI5	659553	5496289	2022	5	2022-09-16	12:15	B(a)P Total Potency Equivalent	0.083	mg/kg	ALS	RG_MI5_SE-5_2022-09-14_N
SE	RG_MI5	659553	5496289	2022	5	2022-09-16	12:15	PAHs, total (BC Sched 3.4)	0.52	mg/kg	ALS	RG_MI5_SE-5_2022-09-14_N
SE	RG_MI5	659553	5496289	2022	5	2022-09-16	12:15	PAHs, total	0.36	mg/kg	ALS	RG_MI5_SE-5_2022-09-14_N

WSP Canada Inc. Page 324 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Table I-1	I: Sediment Chem	istry Data Coll	lected from the	CMm LAEMP S	Sampling Sta	ations, 2012 to	2022					
Туре	Station	Location	ı (UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
Type	Station	Easting	Northing	i cai	Replicate	Date	Tille	Allalyte	Result	Oilit	Lab	Sample ID
SE	RG_MI5	659553	5496289	2022	5	2022-09-16	12:15	d9-Acridine	121	%	ALS	RG_MI5_SE-5_2022-09-14_N
SE	RG_MI5	659553	5496289	2022	5	2022-09-16	12:15	d12-Chrysene	117	%	ALS	RG_MI5_SE-5_2022-09-14_N
SE	RG_MI5	659553	5496289	2022	5	2022-09-16	12:15	d8-Naphthalene	122	%	ALS	RG_MI5_SE-5_2022-09-14_N
SE	RG_MI5	659553	5496289	2022	5	2022-09-16	12:15	d10-Phenanthrene	129	%	ALS	RG_MI5_SE-5_2022-09-14_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	Moisture	33.9	%	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	pH (1:2 soil:water)	8.33	рН	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	% Clay (<4 μm)	5.9	%	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	% Silt (0.063 mm - 0.0312 mm)	10.3	%	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	% Silt (0.031 mm - 0.004 mm)	11.2	%	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	% Sand (0.125 mm - 0.063 mm)	16.2	%	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	% Sand (0.25 mm - 0.125 mm)	20.7	%	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	% Sand (0.50 mm - 0.25 mm)	14.1	%	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	% Sand (1.00 mm - 0.50 mm)	10.9	%	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	% Sand (2.00 mm - 1.00 mm)	7.7	%	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	% Gravel (>2 mm)	3	%	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	Inorganic Carbon <63 µm	0.405	%	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	Total Carbon <63 μm	2.65	%	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	Total Organic Carbon	2.24	%	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	Inorganic Carbon (as CaCO3 equivalent)	3.38	%	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	Aluminum (AI)	12600	mg/kg	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	Antimony (Sb)	0.33	mg/kg	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	Arsenic (As)	8.01	mg/kg	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	Barium (Ba)	156	mg/kg	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	Beryllium (Be)	0.87	mg/kg	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	Bismuth (Bi)	0.22	mg/kg	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	Boron (B)	10.1	mg/kg	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	Cadmium (Cd)	0.583	mg/kg	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	Calcium (Ca)	14800	mg/kg	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	Chromium (Cr)	14.7	mg/kg	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	Cobalt (Co)	7.09	mg/kg	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	Copper (Cu)	16.8	mg/kg	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	Iron (Fe)	20200	mg/kg	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	Lead (Pb)	12.3	mg/kg	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	Lithium (Li)	24.6	mg/kg	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	Magnesium (Mg)	6120	mg/kg	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	Manganese (Mn)	431	mg/kg	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	Mercury (Hg)	0.0193	mg/kg	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	Molybdenum (Mo)	1.94	mg/kg		RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	Nickel (Ni)	19.7	mg/kg	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	Phosphorus (P)	1260	mg/kg	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	Potassium (K)	2260	mg/kg	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	Selenium (Se)	0.48	mg/kg	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	Silver (Ag)	<0.1	mg/kg	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	Sodium (Na)	86	mg/kg	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	Strontium (Sr)	37.9	mg/kg	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	Sulfur (S)	<1000	mg/kg	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	Thallium (TI)	0.304	mg/kg	ALS	RG_MIUCO_SE-1_2022-10-22_N

WSP Canada Inc. Page 325 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Table I-	1: Sediment Chem			CMM LAEMP	Sampling St	ations, 2012 to	2022					
Туре	Station	Location	(UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
Type	Station	Easting	Northing	i cai	Replicate	Date	Tille	Allalyte	Result	Oilit	Lab	Sample ID
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	Tin (Sn)	<2	mg/kg	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	Titanium (Ti)	7.6	mg/kg	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	Tungsten (W)	<0.5	mg/kg	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	Uranium (U)	0.579	mg/kg	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	Vanadium (V)	24.7	mg/kg	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	Zinc (Zn)	88.4	mg/kg	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	Zirconium (Zr)	1	mg/kg	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	Acenaphthene	<0.05	mg/kg	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	Acenaphthylene	<0.05	mg/kg	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	Acridine	<0.05	mg/kg	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	Anthracene	<0.05	mg/kg	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	Benz(a)anthracene	<0.05	mg/kg	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	Benzo(a)pyrene	<0.05	mg/kg	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	Benzo(b&j)fluoranthene	<0.05	mg/kg	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	Benzo(b+j+k)fluoranthene	<0.075	mg/kg	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	Benzo(g_h_i)perylene	<0.05	mg/kg	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	Benzo(k)fluoranthene	<0.05	mg/kg	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	Chrysene	< 0.05	mg/kg	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	Dibenz(a_h)anthracene	< 0.05	mg/kg	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	Fluoranthene	< 0.05	mg/kg	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	Fluorene	< 0.05	mg/kg	ALS	RG MIUCO SE-1 2022-10-22 N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	Indeno(1,2,3-c,d)pyrene	< 0.05	mg/kg	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	1+2-Methylnaphthalene	< 0.05	mg/kg	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	1-Methylnaphthalene	< 0.03	mg/kg	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	2-Methylnaphthalene	< 0.03	mg/kg	ALS	RG MIUCO SE-1 2022-10-22 N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	Naphthalene	<0.01	mg/kg	ALS	RG MIUCO SE-1 2022-10-22 N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	Phenanthrene	< 0.05	mg/kg	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	Pyrene	< 0.05	mg/kg	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	Quinoline	< 0.05	mg/kg	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	B(a)P Total Potency Equivalent	<0.065	mg/kg	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	PAHs, total (BC Sched 3.4)	<0.2	mg/kg	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	PAHs, total	<0.2	mg/kg	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	d9-Acridine	97.4	%	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	d12-Chrysene	99.4	%	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	d8-Naphthalene	102	%	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1	2022-10-22	12:53	d10-Phenanthrene	111	%	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668215	5486651	2022	2	2022-10-22	12:59	Moisture	41.6	%	ALS	RG_MIUCO_SE-2_2022-10-22_N
SE	RG_MIUCO	668215	5486651	2022	2	2022-10-22	12:59	pH (1:2 soil:water)	8.23	рН	ALS	RG_MIUCO_SE-2_2022-10-22_N
SE	RG_MIUCO	668215	5486651	2022	2	2022-10-22	12:59	% Clay (<4 μm)	6.4	%	ALS	RG_MIUCO_SE-2_2022-10-22_N
SE	RG_MIUCO	668215	5486651	2022	2	2022-10-22	12:59	% Silt (0.063 mm - 0.0312 mm)	11	%	ALS	RG_MIUCO_SE-2_2022-10-22_N
SE	RG_MIUCO	668215	5486651	2022	2	2022-10-22	12:59	% Silt (0.031 mm - 0.004 mm)	14.6	%	ALS	RG_MIUCO_SE-2_2022-10-22_N
SE	RG_MIUCO	668215	5486651	2022	2	2022-10-22	12:59	% Sand (0.125 mm - 0.063 mm)	10.6	%	ALS	RG_MIUCO_SE-2_2022-10-22_N
SE	RG_MIUCO	668215	5486651	2022	2	2022-10-22	12:59	% Sand (0.25 mm - 0.125 mm)	14.8	%	ALS	RG_MIUCO_SE-2_2022-10-22_N
SE	RG_MIUCO	668215	5486651	2022	2	2022-10-22	12:59	% Sand (0.50 mm - 0.25 mm)	15.6	%	ALS	RG_MIUCO_SE-2_2022-10-22_N
SE	RG_MIUCO	668215	5486651	2022	2	2022-10-22	12:59	% Sand (1.00 mm - 0.50 mm)	16.4	%	ALS	RG_MIUCO_SE-2_2022-10-22_N
SE	RG_MIUCO	668215	5486651	2022	2	2022-10-22	12:59	% Sand (2.00 mm - 1.00 mm)	8.4	%	ALS	RG_MIUCO_SE-2_2022-10-22_N
SE	RG_MIUCO	668215	5486651	2022	2	2022-10-22	12:59	% Gravel (>2 mm)	2.2	%	ALS	RG MIUCO SE-2 2022-10-22 N

WSP Canada Inc. Page 326 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Туре	Station	Location	(UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
ype	Station	Easting	Northing	rear	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	RG_MIUCO	668215	5486651	2022	2	2022-10-22	12:59	Inorganic Carbon <63 µm	0.357	%	ALS	RG MIUCO SE-2 2022-10-22 N
SE	RG_MIUCO	668215	5486651	2022	2	2022-10-22	12:59	Total Carbon <63 µm	6.74	%	ALS	RG MIUCO SE-2 2022-10-22 N
SE	RG MIUCO	668215	5486651	2022	2	2022-10-22	12:59	Total Organic Carbon	6.38	%	ALS	RG MIUCO SE-2 2022-10-22 N
SE	RG MIUCO	668215	5486651	2022	2	2022-10-22	12:59	Inorganic Carbon (as CaCO3 equivalent)	2.98	%	ALS	RG MIUCO SE-2 2022-10-22 N
SE	RG MIUCO	668215	5486651	2022	2	2022-10-22	12:59	Aluminum (AI)	11700	mg/kg	ALS	RG MIUCO SE-2 2022-10-22 N
SE	RG MIUCO	668215	5486651	2022	2	2022-10-22	12:59	Antimony (Sb)	0.35	mg/kg	ALS	RG MIUCO SE-2 2022-10-22 N
SE	RG MIUCO	668215	5486651	2022	2	2022-10-22	12:59	Arsenic (As)	6.41	mg/kg	ALS	RG MIUCO SE-2 2022-10-22 N
SE	RG MIUCO	668215	5486651	2022	2	2022-10-22	12:59	Barium (Ba)	148	mg/kg	ALS	RG_MIUCO_SE-2_2022-10-22_N
SE	RG MIUCO	668215	5486651	2022	2	2022-10-22	12:59	Beryllium (Be)	0.84	mg/kg	ALS	RG MIUCO SE-2 2022-10-22 N
SE	RG MIUCO	668215	5486651	2022	2	2022-10-22	12:59	Bismuth (Bi)	0.21	mg/kg	ALS	RG MIUCO SE-2 2022-10-22 N
SE	RG MIUCO	668215	5486651	2022	2	2022-10-22	12:59	Boron (B)	8.7	mg/kg	ALS	RG_MIUCO_SE-2_2022-10-22_N
SE	RG MIUCO	668215	5486651	2022	2	2022-10-22	12:59	Cadmium (Cd)	0.695	mg/kg	ALS	RG MIUCO SE-2 2022-10-22 N
SE	RG MIUCO	668215	5486651	2022	2	2022-10-22	12:59	Calcium (Ca)	13900	mg/kg	ALS	RG MIUCO SE-2 2022-10-22 N
SE	RG MIUCO	668215	5486651	2022	2	2022-10-22	12:59	Chromium (Cr)	14.1	mg/kg	ALS	RG MIUCO SE-2 2022-10-22 N
SE	RG MIUCO	668215	5486651	2022	2	2022-10-22	12:59	Cobalt (Co)	6.97	mg/kg	ALS	RG MIUCO SE-2 2022-10-22 N
SE	RG MIUCO	668215	5486651	2022	2	2022-10-22	12:59	Copper (Cu)	18	mg/kg	ALS	RG MIUCO SE-2 2022-10-22 N
SE	RG MIUCO	668215	5486651	2022	2	2022-10-22	12:59	Iron (Fe)	17600	mg/kg	ALS	RG_MIUCO_SE-2_2022-10-22_N
SE	RG MIUCO	668215	5486651	2022	2	2022-10-22	12:59	Lead (Pb)	12.5	mg/kg	ALS	RG_MIUCO_SE-2_2022-10-22_N
SE	RG MIUCO	668215	5486651	2022	2	2022-10-22	12:59	Lithium (Li)	23.5	mg/kg	ALS	RG MIUCO SE-2 2022-10-22 N
SE	RG MIUCO	668215	5486651	2022	2	2022-10-22	12:59	Magnesium (Mg)	5490	mg/kg	ALS	RG MIUCO SE-2 2022-10-22 N
SE	RG MIUCO	668215	5486651	2022	2	2022-10-22	12:59	Manganese (Mn)	298	mg/kg	ALS	RG MIUCO SE-2 2022-10-22 N
SE	RG MIUCO	668215	5486651	2022	2	2022-10-22	12:59	Mercury (Hg)	0.0275	mg/kg	ALS	RG MIUCO SE-2 2022-10-22 N
SE	RG MIUCO	668215	5486651	2022	2	2022-10-22	12:59	Molybdenum (Mo)	1.72	mg/kg	ALS	RG MIUCO SE-2 2022-10-22 N
SE	RG MIUCO	668215	5486651	2022	2	2022-10-22	12:59	Nickel (Ni)	20.4	mg/kg	ALS	RG MIUCO SE-2 2022-10-22 N
SE	RG MIUCO	668215	5486651	2022	2	2022-10-22	12:59	Phosphorus (P)	1140	mg/kg	ALS	RG MIUCO SE-2 2022-10-22 N
SE	RG MIUCO	668215	5486651	2022	2	2022-10-22	12:59	Potassium (K)	2030	mg/kg	ALS	RG MIUCO SE-2 2022-10-22 N
SE	RG MIUCO	668215	5486651	2022	2	2022-10-22	12:59	Selenium (Se)	0.55	mg/kg	ALS	RG MIUCO SE-2 2022-10-22 N
SE	RG MIUCO	668215	5486651	2022	2	2022-10-22	12:59	Silver (Ag)	<0.1	mg/kg	ALS	RG MIUCO SE-2 2022-10-22 N
SE	RG MIUCO	668215	5486651	2022	2	2022-10-22	12:59	Sodium (Na)	74	mg/kg	ALS	RG MIUCO SE-2 2022-10-22 N
SE	RG MIUCO	668215	5486651	2022	2	2022-10-22	12:59	Strontium (Sr)	44.8	mg/kg	ALS	RG MIUCO SE-2 2022-10-22 N
SE	RG MIUCO	668215	5486651	2022	2	2022-10-22	12:59	Sulfur (S)	<1000	mg/kg	ALS	RG MIUCO SE-2 2022-10-22 N
SE	RG MIUCO	668215	5486651	2022	2	2022-10-22	12:59	Thallium (TI)	0.283	mg/kg	ALS	RG MIUCO SE-2 2022-10-22 N
SE	RG MIUCO	668215	5486651	2022	2	2022-10-22	12:59	Tin (Sn)	<2	mg/kg	ALS	RG MIUCO SE-2 2022-10-22 N
SE	RG MIUCO	668215	5486651	2022	2	2022-10-22	12:59	Titanium (Ti)	7.8	mg/kg	ALS	RG MIUCO SE-2 2022-10-22 N
SE	RG MIUCO	668215	5486651	2022	2	2022-10-22	12:59	Tungsten (W)	<0.5	mg/kg	ALS	RG MIUCO SE-2 2022-10-22 N
SE	RG MIUCO	668215	5486651	2022	2	2022-10-22	12:59	Uranium (U)	0.534	mg/kg	ALS	RG MIUCO SE-2 2022-10-22 N
SE	RG_MIUCO	668215	5486651	2022	2	2022-10-22	12:59	Vanadium (V)	22.4	mg/kg	ALS	RG MIUCO SE-2 2022-10-22 N
SE	RG MIUCO	668215	5486651	2022	2	2022-10-22	12:59	Zinc (Zn)	92.3	mg/kg	ALS	RG MIUCO SE-2 2022-10-22 N
SE	RG MIUCO	668215	5486651	2022	2	2022-10-22	12:59	Zirconium (Zr)	1.2	mg/kg	ALS	RG MIUCO SE-2 2022-10-22 N
SE	RG MIUCO	668215	5486651	2022	2	2022-10-22	12:59	Acenaphthene	<0.05	mg/kg	ALS	RG MIUCO SE-2 2022-10-22 N
SE	RG MIUCO	668215	5486651	2022	2	2022-10-22	12:59	Acenaphthylene	<0.05	mg/kg	ALS	RG MIUCO SE-2 2022-10-22 N
SE	RG MIUCO	668215	5486651	2022	2	2022-10-22	12:59	Acridine	<0.05	mg/kg	ALS	RG MIUCO SE-2 2022-10-22 N
SE	RG MIUCO	668215	5486651	2022	2	2022-10-22	12:59	Anthracene	<0.05	mg/kg	ALS	RG MIUCO SE-2 2022-10-22 N
SE	RG MIUCO	668215	5486651	2022	2	2022-10-22	12:59	Benz(a)anthracene	<0.05	mg/kg	ALS	RG MIUCO SE-2 2022-10-22 N
	RG MIUCO	668215	5486651	2022	2	2022-10-22	12:59	Benzo(a)pyrene	<0.05	mg/kg	ALS	RG MIUCO SE-2 2022-10-22 N
SE !	ING INIUUU	000210	0 7 00001	2022							ALO	
SE SE	RG MIUCO	668215	5486651	2022	2	2022-10-22	12:59	Benzo(b&j)fluoranthene	< 0.05	mg/kg	ALS	RG MIUCO SE-2 2022-10-22 N

WSP Canada Inc. Page 327 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

wno	Station	Location	(UTMs) ^(a)	Year	Poplicate	Data	Time	Apolyto	Pagult	Unit		Laboratory Information
ype	Station	Easting	Northing	rear	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE.	RG MIUCO	668215	5486651	2022	2	2022-10-22	12:59	Benzo(g_h_i)perylene	<0.05	mg/kg	ALS	RG MIUCO SE-2 2022-10-22 N
E	RG MIUCO	668215	5486651	2022	2	2022-10-22	12:59	Benzo(k)fluoranthene	<0.05	mg/kg	ALS	RG MIUCO SE-2 2022-10-22 N
Е	RG MIUCO	668215	5486651	2022	2	2022-10-22	12:59	Chrysene	0.06	mg/kg	ALS	RG MIUCO SE-2 2022-10-22 N
Е	RG MIUCO	668215	5486651	2022	2	2022-10-22	12:59	Dibenz(a h)anthracene	<0.05	mg/kg	ALS	RG_MIUCO_SE-2_2022-10-22_N
Е	RG MIUCO	668215	5486651	2022	2	2022-10-22	12:59	Fluoranthene	<0.05	mg/kg	ALS	RG_MIUCO_SE-2_2022-10-22_N
E	RG MIUCO	668215	5486651	2022	2	2022-10-22	12:59	Fluorene	<0.05	mg/kg	ALS	RG MIUCO SE-2 2022-10-22 N
E	RG MIUCO	668215	5486651	2022	2	2022-10-22	12:59	Indeno(1,2,3-c,d)pyrene	<0.05	mg/kg	ALS	RG MIUCO SE-2 2022-10-22 N
E	RG MIUCO	668215	5486651	2022	2	2022-10-22	12:59	1+2-Methylnaphthalene	0.181	mg/kg	ALS	RG MIUCO SE-2 2022-10-22 N
Е	RG MIUCO	668215	5486651	2022	2	2022-10-22	12:59	1-Methylnaphthalene	0.078	mg/kg	ALS	RG_MIUCO_SE-2_2022-10-22_N
Ε	RG MIUCO	668215	5486651	2022	2	2022-10-22	12:59	2-Methylnaphthalene	0.103	mg/kg	ALS	RG MIUCO SE-2 2022-10-22 N
SE.	RG MIUCO	668215	5486651	2022	2	2022-10-22	12:59	Naphthalene	0.029	mg/kg	ALS	RG MIUCO SE-2 2022-10-22 N
ŝΕ	RG MIUCO	668215	5486651	2022	2	2022-10-22	12:59	Phenanthrene	0.132	mg/kg	ALS	RG MIUCO SE-2 2022-10-22 N
SE.	RG MIUCO	668215	5486651	2022	2	2022-10-22	12:59	Pyrene	<0.05	mg/kg	ALS	RG MIUCO SE-2 2022-10-22 N
ŝΕ	RG MIUCO	668215	5486651	2022	2	2022-10-22	12:59	Quinoline	<0.05	mg/kg	ALS	RG MIUCO SE-2 2022-10-22 N
SE.	RG MIUCO	668215	5486651	2022	2	2022-10-22	12:59	B(a)P Total Potency Equivalent	<0.065	mg/kg	ALS	RG MIUCO SE-2 2022-10-22 N
E	RG MIUCO	668215	5486651	2022	2	2022-10-22	12:59	PAHs, total (BC Sched 3.4)	0.32	mg/kg	ALS	RG MIUCO SE-2 2022-10-22 N
ŝΕ	RG MIUCO	668215	5486651	2022	2	2022-10-22	12:59	PAHs, total	0.22	mg/kg	ALS	RG MIUCO SE-2 2022-10-22 N
SE.	RG_MIUCO	668215	5486651	2022	2	2022-10-22	12:59	d9-Acridine	86.9	%	ALS	RG MIUCO SE-2 2022-10-22 N
SE.	RG MIUCO	668215	5486651	2022	2	2022-10-22	12:59	d12-Chrysene	90.4	%	ALS	RG_MIUCO_SE-2_2022-10-22_N
Έ	RG MIUCO	668215	5486651	2022	2	2022-10-22	12:59	d8-Naphthalene	94.3	%	ALS	RG MIUCO SE-2 2022-10-22 N
E	RG MIUCO	668215	5486651	2022	2	2022-10-22	12:59	d10-Phenanthrene	99.9	%	ALS	RG MIUCO SE-2 2022-10-22 N
E	RG MIUCO	668236	5486617	2022	3	2022-10-22	13:02	Moisture	45.8	%	ALS	RG MIUCO SE-3 2022-10-22 N
SE	RG MIUCO	668236	5486617	2022	3	2022-10-22	13:02	pH (1:2 soil:water)	8.57	рН	ALS	RG_MIUCO_SE-3_2022-10-22_N
E SE	RG MIUCO	668236	5486617	2022	3	2022-10-22	13:02	% Clay (<4 μm)	7	%	ALS	RG MIUCO SE-3 2022-10-22 N
SE	RG MIUCO	668236	5486617	2022	3	2022-10-22	13:02	% Silt (0.063 mm - 0.0312 mm)	19.1	%	ALS	RG MIUCO SE-3 2022-10-22 N
SE	RG MIUCO	668236	5486617	2022	3	2022-10-22	13:02	% Silt (0.031 mm - 0.004 mm)	22.1	%	ALS	RG MIUCO SE-3 2022-10-22 N
SE	RG MIUCO	668236	5486617	2022	3	2022-10-22	13:02	% Sand (0.125 mm - 0.063 mm)	20.5	%	ALS	RG MIUCO SE-3 2022-10-22 N
SE.	RG MIUCO	668236	5486617	2022	3	2022-10-22	13:02	% Sand (0.25 mm - 0.125 mm)	13.6	%	ALS	RG MIUCO SE-3 2022-10-22 N
SE	RG MIUCO	668236	5486617	2022	3	2022-10-22	13:02	% Sand (0.50 mm - 0.25 mm)	6.6	%	ALS	RG MIUCO SE-3 2022-10-22 N
SE.	RG MIUCO	668236	5486617	2022	3	2022-10-22	13:02	% Sand (1.00 mm - 0.50 mm)	3.3	%	ALS	RG MIUCO SE-3 2022-10-22 N
SE	RG MIUCO	668236	5486617	2022	3	2022-10-22	13:02	% Sand (2.00 mm - 1.00 mm)	3.2	%	ALS	RG MIUCO SE-3 2022-10-22 N
SE	RG MIUCO	668236	5486617	2022	3	2022-10-22	13:02	% Gravel (>2 mm)	4.6	%	ALS	RG MIUCO SE-3 2022-10-22 N
SE	RG MIUCO	668236	5486617	2022	3	2022-10-22	13:02	Inorganic Carbon <63 µm	0.904	%	ALS	RG MIUCO SE-3 2022-10-22 N
SE	RG MIUCO	668236	5486617	2022	3	2022-10-22	13:02	Total Carbon <63 µm	3.4	%	ALS	RG MIUCO SE-3 2022-10-22 N
SE.	RG MIUCO	668236	5486617	2022	3	2022-10-22	13:02	Total Organic Carbon	2.5	%	ALS	RG MIUCO SE-3 2022-10-22 N
SE	RG MIUCO	668236	5486617	2022		2022-10-22	13:02	Inorganic Carbon (as CaCO3 equivalent)	7.53	%	ALS	RG MIUCO SE-3 2022-10-22 N
SE	RG_MIUCO	668236	5486617	2022	3	2022-10-22	13:02	Aluminum (AI)	9320	mg/kg	ALS	RG MIUCO SE-3 2022-10-22 N
E	RG MIUCO	668236	5486617	2022	3	2022-10-22	13:02	Antimony (Sb)	0.32	mg/kg	ALS	RG MIUCO SE-3 2022-10-22 N
SE	RG MIUCO	668236	5486617	2022	3	2022-10-22	13:02	Arsenic (As)	6.51	mg/kg	ALS	RG MIUCO SE-3 2022-10-22 N
E	RG MIUCO	668236	5486617	2022	3	2022-10-22	13:02	Barium (Ba)	610	mg/kg	ALS	RG MIUCO SE-3 2022-10-22 N
E	RG_MIUCO	668236	5486617	2022	3	2022-10-22	13:02	Beryllium (Be)	0.66	mg/kg	ALS	RG MIUCO SE-3 2022-10-22 N
E	RG MIUCO	668236	5486617	2022	3	2022-10-22	13:02	Bismuth (Bi)	<0.2	mg/kg	ALS	RG MIUCO SE-3 2022-10-22 N
E	RG MIUCO	668236	5486617	2022	3	2022-10-22	13:02	Boron (B)	9.2	mg/kg	ALS	RG MIUCO SE-3 2022-10-22 N
E	RG MIUCO	668236	5486617	2022	3	2022-10-22	13:02	Cadmium (Cd)	0.65	mg/kg	ALS	RG MIUCO SE-3 2022-10-22 N
	RG MIUCO	668236	5486617	2022	3	2022-10-22	13:02	Calcium (Ca)	26500	mg/kg	ALS	RG MIUCO SE-3 2022-10-22 N
F 1		000230	J -1 00011	2022	J		10.02	` /	20000	mg/kg	ALO	NO_WIIOOO_OL-3_2022-10-22_IV
SE SE	RG MIUCO	668236	5486617	2022	3	2022-10-22	13:02	Chromium (Cr)	11.7	mg/kg	ALS	RG MIUCO SE-3 2022-10-22 N

WSP Canada Inc. Page 328 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Type	Station	Location	(UTMs) ^(a)	Year	Poplicate	Dete	Time	Analyta	Popult	Unit		Laboratory Information
уре	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	RG MIUCO	668236	5486617	2022	3	2022-10-22	13:02	Copper (Cu)	14.4	mg/kg	ALS	RG MIUCO SE-3 2022-10-22 N
SE.	RG_MIUCO	668236	5486617	2022	3	2022-10-22	13:02	Iron (Fe)	16900	mg/kg	ALS	RG MIUCO SE-3 2022-10-22 N
SE	RG_MIUCO	668236	5486617	2022	3	2022-10-22	13:02	Lead (Pb)	10.3	mg/kg	ALS	RG_MIUCO_SE-3_2022-10-22_N
SE.	RG_MIUCO	668236	5486617	2022	3	2022-10-22	13:02	Lithium (Li)	19.8	mg/kg	ALS	RG MIUCO SE-3 2022-10-22 N
SE	RG MIUCO	668236	5486617	2022	3	2022-10-22	13:02	Magnesium (Mg)	6620	mg/kg	ALS	RG_MIUCO_SE-3_2022-10-22_N
SE	RG MIUCO	668236	5486617	2022	3	2022-10-22	13:02	Manganese (Mn)	213	mg/kg	ALS	RG MIUCO SE-3 2022-10-22 N
SE	RG MIUCO	668236	5486617	2022	3	2022-10-22	13:02	Mercury (Hg)	0.0217	mg/kg	ALS	RG MIUCO SE-3 2022-10-22 N
SE	RG MIUCO	668236	5486617	2022	3	2022-10-22	13:02	Molybdenum (Mo)	1.67	mg/kg	ALS	RG MIUCO SE-3 2022-10-22 N
SE	RG_MIUCO	668236	5486617	2022	3	2022-10-22	13:02	Nickel (Ni)	16	mg/kg	ALS	RG MIUCO SE-3 2022-10-22 N
SE	RG_MIUCO	668236	5486617	2022	3	2022-10-22	13:02	Phosphorus (P)	1080	mg/kg	ALS	RG MIUCO SE-3 2022-10-22 N
SE	RG_MIUCO	668236	5486617	2022	3	2022-10-22	13:02	Potassium (K)	1710	mg/kg	ALS	RG MIUCO SE-3 2022-10-22 N
SE	RG MIUCO	668236	5486617	2022	3	2022-10-22	13:02	Selenium (Se)	0.42	mg/kg	ALS	RG MIUCO SE-3 2022-10-22 N
SE	RG MIUCO	668236	5486617	2022	3	2022-10-22	13:02	Silver (Ag)	<0.1	mg/kg	ALS	RG MIUCO SE-3 2022-10-22 N
SE	RG MIUCO	668236	5486617	2022	3	2022-10-22	13:02	Sodium (Na)	170	mg/kg	ALS	RG MIUCO SE-3 2022-10-22 N
SE	RG_MIUCO	668236	5486617	2022	3	2022-10-22	13:02	Strontium (Sr)	89.6	mg/kg	ALS	RG MIUCO SE-3 2022-10-22 N
SE	RG_MIUCO	668236	5486617	2022	3	2022-10-22	13:02	Sulfur (S)	<1000	mg/kg	ALS	RG MIUCO SE-3 2022-10-22 N
SE	RG_MIUCO	668236	5486617	2022	3	2022-10-22	13:02	Thallium (TI)	0.269	mg/kg	ALS	RG MIUCO SE-3 2022-10-22 N
SE	RG MIUCO	668236	5486617	2022	3	2022-10-22	13:02	Tin (Sn)	<2	mg/kg	ALS	RG MIUCO SE-3 2022-10-22 N
SE	RG MIUCO	668236	5486617	2022	3	2022-10-22	13:02	Titanium (Ti)	9.2	mg/kg	ALS	RG MIUCO SE-3 2022-10-22 N
SE	RG_MIUCO	668236	5486617	2022	3	2022-10-22	13:02	Tungsten (W)	<0.5	mg/kg	ALS	RG MIUCO SE-3 2022-10-22 N
SE	RG_MIUCO	668236	5486617	2022	3	2022-10-22	13:02	Uranium (U)	0.504	mg/kg	ALS	RG MIUCO SE-3 2022-10-22 N
SE	RG_MIUCO	668236	5486617	2022	3	2022-10-22	13:02	Vanadium (V)	19.8	mg/kg	ALS	RG MIUCO SE-3 2022-10-22 N
SE	RG_MIUCO	668236	5486617	2022	3	2022-10-22	13:02	Zinc (Zn)	77.9	mg/kg	ALS	RG MIUCO SE-3 2022-10-22 N
SE	RG_MIUCO	668236	5486617	2022	3	2022-10-22	13:02	Zirconium (Zr)	<1	mg/kg	ALS	RG MIUCO SE-3 2022-10-22 N
SE	RG_MIUCO	668236	5486617	2022	3	2022-10-22	13:02	Acenaphthene	<0.05	mg/kg	ALS	RG MIUCO SE-3 2022-10-22 N
SE	RG_MIUCO	668236	5486617	2022	3	2022-10-22	13:02	Acenaphthylene	<0.05	mg/kg	ALS	RG MIUCO SE-3 2022-10-22 N
SE	RG_MIUCO	668236	5486617	2022	3	2022-10-22	13:02	Acridine	<0.05	mg/kg	ALS	RG MIUCO SE-3 2022-10-22 N
SE	RG_MIUCO	668236	5486617	2022	3	2022-10-22	13:02	Anthracene	<0.05	mg/kg	ALS	RG MIUCO SE-3 2022-10-22 N
SE	RG_MIUCO	668236	5486617	2022	3	2022-10-22	13:02	Benz(a)anthracene	<0.05	mg/kg	ALS	RG_MIUCO_SE-3_2022-10-22_N
SE	RG_MIUCO	668236	5486617	2022	3	2022-10-22	13:02	Benzo(a)pyrene	<0.05	mg/kg	ALS	RG_MIUCO_SE-3_2022-10-22_N
SE	RG_MIUCO	668236	5486617	2022	3	2022-10-22	13:02	Benzo(b&j)fluoranthene	<0.05	mg/kg	ALS	RG MIUCO SE-3 2022-10-22 N
SE	RG_MIUCO	668236	5486617	2022	3	2022-10-22	13:02	Benzo(b+j+k)fluoranthene	< 0.075	mg/kg	ALS	RG MIUCO SE-3 2022-10-22 N
SE	RG_MIUCO	668236	5486617	2022	3	2022-10-22	13:02	Benzo(g_h_i)perylene	< 0.05	mg/kg	ALS	RG_MIUCO_SE-3_2022-10-22_N
SE	RG_MIUCO	668236	5486617	2022	3	2022-10-22	13:02	Benzo(k)fluoranthene	<0.05	mg/kg	ALS	RG_MIUCO_SE-3_2022-10-22_N
SE	RG_MIUCO	668236	5486617	2022	3	2022-10-22	13:02	Chrysene	<0.05	mg/kg	ALS	RG_MIUCO_SE-3_2022-10-22_N
SE	RG_MIUCO	668236	5486617	2022	3	2022-10-22	13:02	Dibenz(a_h)anthracene	<0.05	mg/kg	ALS	RG_MIUCO_SE-3_2022-10-22_N
SE	RG_MIUCO	668236	5486617	2022	3	2022-10-22	13:02	Fluoranthene	< 0.05	mg/kg	ALS	RG_MIUCO_SE-3_2022-10-22_N
SE	RG_MIUCO	668236	5486617	2022	3	2022-10-22	13:02	Fluorene	<0.05	mg/kg	ALS	RG_MIUCO_SE-3_2022-10-22_N
SE	RG_MIUCO	668236	5486617	2022	3	2022-10-22	13:02	Indeno(1,2,3-c,d)pyrene	<0.05	mg/kg	ALS	RG_MIUCO_SE-3_2022-10-22_N
SE	RG_MIUCO	668236	5486617	2022	3	2022-10-22	13:02	1+2-Methylnaphthalene	<0.05	mg/kg	ALS	RG MIUCO SE-3 2022-10-22 N
SE	RG_MIUCO	668236	5486617	2022	3	2022-10-22	13:02	1-Methylnaphthalene	< 0.03	mg/kg	ALS	RG_MIUCO_SE-3_2022-10-22_N
SE	RG_MIUCO	668236	5486617	2022	3	2022-10-22	13:02	2-Methylnaphthalene	< 0.03	mg/kg	ALS	RG_MIUCO_SE-3_2022-10-22_N
SE	RG_MIUCO	668236	5486617	2022	3	2022-10-22	13:02	Naphthalene	<0.01	mg/kg	ALS	RG_MIUCO_SE-3_2022-10-22_N
SE	RG_MIUCO	668236	5486617	2022	3	2022-10-22	13:02	Phenanthrene	< 0.05	mg/kg	ALS	RG_MIUCO_SE-3_2022-10-22_N
SE	RG_MIUCO	668236	5486617	2022	3	2022-10-22	13:02	Pyrene	< 0.05	mg/kg	ALS	RG_MIUCO_SE-3_2022-10-22_N
SE	RG_MIUCO	668236	5486617	2022	3	2022-10-22	13:02	Quinoline	< 0.05	mg/kg	ALS	RG_MIUCO_SE-3_2022-10-22_N
SE	RG MIUCO	668236	5486617	2022	3	2022-10-22	13:02	B(a)P Total Potency Equivalent	< 0.065	mg/kg	ALS	RG MIUCO SE-3 2022-10-22 N

WSP Canada Inc. Page 329 of 337

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

SE R SE R SE R SE R SE R SE R SE R SE R SE R SE R SE R SE R SE R SE R SE R SE R SE R SE R SE R SE R	RG_MIUCO RG_MIUCO	Easting 668236 668236 668236 668236 668236 668236 668236 668214 668214 668214 668214 668214 668214 668214 668214 668214 668214	Northing 5486617 5486617 5486617 5486617 5486617 5486617 5486617 5486583 5486583 5486583 5486583 5486583 5486583 5486583 5486583 5486583 5486583 5486583	Year 2022 2022 2022 2022 2022 2022 2022 2	3 3 3 3 3 4 4 4 4 4 4 4	Date 2022-10-22 2022-10-22 2022-10-22 2022-10-22 2022-10-22 2022-10-22 2022-10-22 2022-10-22 2022-10-22 2022-10-22 2022-10-22 2022-10-22 2022-10-22 2022-10-22 2022-10-22	Time 13:02 13:02 13:02 13:02 13:02 13:02 13:13 13:13 13:13 13:13 13:13	Analyte PAHs, total (BC Sched 3.4) PAHs, total d9-Acridine d12-Chrysene d8-Naphthalene d10-Phenanthrene Moisture pH (1:2 soil:water) % Clay (<4 µm) % Silt (0.063 mm - 0.0312 mm) % Silt (0.031 mm - 0.004 mm) % Sand (0.125 mm - 0.063 mm)	<0.2 <0.2 85.4 92.7 95.1 99.6 37.6 8.29 6.3 11.6 12.3	mg/kg mg/kg % % % % % pH % %	Lab ALS ALS ALS ALS ALS ALS ALS ALS ALS ALS	Sample ID
SE R SE R SE R SE R SE R SE R SE R SE R SE R SE R SE R SE R SE R SE R SE R SE R SE R SE R SE R SE R	RG_MIUCO RG_MIUCO	668236 668236 668236 668236 668236 668214 668214 668214 668214 668214 668214 668214 668214 668214 668214	5486617 5486617 5486617 5486617 5486617 5486583 5486583 5486583 5486583 5486583 5486583 5486583 5486583 5486583 5486583	2022 2022 2022 2022 2022 2022 2022 202	3 3 3 3 3 4 4 4 4 4 4 4	2022-10-22 2022-10-22 2022-10-22 2022-10-22 2022-10-22 2022-10-22 2022-10-22 2022-10-22 2022-10-22 2022-10-22 2022-10-22	13:02 13:02 13:02 13:02 13:02 13:13 13:13 13:13 13:13 13:13	PAHs, total d9-Acridine d12-Chrysene d8-Naphthalene d10-Phenanthrene Moisture pH (1:2 soil:water) % Clay (<4 µm) % Silt (0.063 mm - 0.0312 mm) % Silt (0.031 mm - 0.004 mm)	<0.2 85.4 92.7 95.1 99.6 37.6 8.29 6.3 11.6 12.3	mg/kg % % % % % pH %	ALS ALS ALS ALS ALS ALS ALS ALS ALS ALS	RG_MIUCO_SE-3_2022-10-22_N RG_MIUCO_SE-3_2022-10-22_N RG_MIUCO_SE-3_2022-10-22_N RG_MIUCO_SE-3_2022-10-22_N RG_MIUCO_SE-3_2022-10-22_N RG_MIUCO_SE-4_2022-10-22_N RG_MIUCO_SE-4_2022-10-22_N RG_MIUCO_SE-4_2022-10-22_N RG_MIUCO_SE-4_2022-10-22_N RG_MIUCO_SE-4_2022-10-22_N
SE R SE R SE R SE R SE R SE R SE R SE R SE R SE R SE R SE R SE R SE R SE R SE R SE R SE R SE R SE R	RG_MIUCO RG_MIUCO	668236 668236 668236 668236 668214 668214 668214 668214 668214 668214 668214 668214 668214 668214	5486617 5486617 5486617 5486617 5486583 5486583 5486583 5486583 5486583 5486583 5486583 5486583 5486583	2022 2022 2022 2022 2022 2022 2022 202	3 3 3 3 4 4 4 4 4 4 4	2022-10-22 2022-10-22 2022-10-22 2022-10-22 2022-10-22 2022-10-22 2022-10-22 2022-10-22 2022-10-22 2022-10-22	13:02 13:02 13:02 13:02 13:13 13:13 13:13 13:13 13:13	PAHs, total d9-Acridine d12-Chrysene d8-Naphthalene d10-Phenanthrene Moisture pH (1:2 soil:water) % Clay (<4 µm) % Silt (0.063 mm - 0.0312 mm) % Silt (0.031 mm - 0.004 mm)	85.4 92.7 95.1 99.6 37.6 8.29 6.3 11.6 12.3	mg/kg % % % % % pH %	ALS ALS ALS ALS ALS ALS ALS ALS ALS	RG_MIUCO_SE-3_2022-10-22_N RG_MIUCO_SE-3_2022-10-22_N RG_MIUCO_SE-3_2022-10-22_N RG_MIUCO_SE-3_2022-10-22_N RG_MIUCO_SE-3_2022-10-22_N RG_MIUCO_SE-4_2022-10-22_N RG_MIUCO_SE-4_2022-10-22_N RG_MIUCO_SE-4_2022-10-22_N RG_MIUCO_SE-4_2022-10-22_N RG_MIUCO_SE-4_2022-10-22_N
SE R SE R SE R SE R SE R SE R SE R SE R	RG_MIUCO RG_MIUCO	668236 668236 668236 668214 668214 668214 668214 668214 668214 668214 668214 668214 668214	5486617 5486617 5486617 5486583 5486583 5486583 5486583 5486583 5486583 5486583 5486583 5486583	2022 2022 2022 2022 2022 2022 2022 202	3 3 3 4 4 4 4 4 4 4	2022-10-22 2022-10-22 2022-10-22 2022-10-22 2022-10-22 2022-10-22 2022-10-22 2022-10-22 2022-10-22	13:02 13:02 13:02 13:13 13:13 13:13 13:13 13:13	d12-Chrysene d8-Naphthalene d10-Phenanthrene Moisture pH (1:2 soil:water) % Clay (<4 µm) % Silt (0.063 mm - 0.0312 mm) % Silt (0.031 mm - 0.004 mm)	92.7 95.1 99.6 37.6 8.29 6.3 11.6 12.3	% % % % % pH %	ALS ALS ALS ALS ALS ALS ALS ALS	RG_MIUCO_SE-3_2022-10-22_N RG_MIUCO_SE-3_2022-10-22_N RG_MIUCO_SE-3_2022-10-22_N RG_MIUCO_SE-3_2022-10-22_N RG_MIUCO_SE-4_2022-10-22_N RG_MIUCO_SE-4_2022-10-22_N RG_MIUCO_SE-4_2022-10-22_N RG_MIUCO_SE-4_2022-10-22_N RG_MIUCO_SE-4_2022-10-22_N
SE RI SE RI	RG_MIUCO RG_MIUCO	668236 668236 668236 668214 668214 668214 668214 668214 668214 668214 668214 668214 668214	5486617 5486617 5486617 5486583 5486583 5486583 5486583 5486583 5486583 5486583 5486583 5486583	2022 2022 2022 2022 2022 2022 2022 202	3 3 4 4 4 4 4 4 4	2022-10-22 2022-10-22 2022-10-22 2022-10-22 2022-10-22 2022-10-22 2022-10-22 2022-10-22 2022-10-22	13:02 13:02 13:02 13:13 13:13 13:13 13:13 13:13	d12-Chrysene d8-Naphthalene d10-Phenanthrene Moisture pH (1:2 soil:water) % Clay (<4 µm) % Silt (0.063 mm - 0.0312 mm) % Silt (0.031 mm - 0.004 mm)	92.7 95.1 99.6 37.6 8.29 6.3 11.6 12.3	% % % % pH %	ALS ALS ALS ALS ALS	RG_MIUCO_SE-3_2022-10-22_N RG_MIUCO_SE-3_2022-10-22_N RG_MIUCO_SE-3_2022-10-22_N RG_MIUCO_SE-4_2022-10-22_N RG_MIUCO_SE-4_2022-10-22_N RG_MIUCO_SE-4_2022-10-22_N RG_MIUCO_SE-4_2022-10-22_N RG_MIUCO_SE-4_2022-10-22_N
SE RI SE RI	RG_MIUCO RG_MIUCO	668236 668236 668214 668214 668214 668214 668214 668214 668214 668214 668214 668214	5486617 5486617 5486583 5486583 5486583 5486583 5486583 5486583 5486583 5486583 5486583	2022 2022 2022 2022 2022 2022 2022 202	3 4 4 4 4 4 4 4	2022-10-22 2022-10-22 2022-10-22 2022-10-22 2022-10-22 2022-10-22 2022-10-22 2022-10-22	13:02 13:02 13:13 13:13 13:13 13:13 13:13	d8-Naphthalene d10-Phenanthrene Moisture pH (1:2 soil:water) % Clay (<4 µm) % Silt (0.063 mm - 0.0312 mm) % Silt (0.031 mm - 0.004 mm)	95.1 99.6 37.6 8.29 6.3 11.6 12.3	% % % pH %	ALS ALS ALS ALS ALS	RG_MIUCO_SE-3_2022-10-22_N RG_MIUCO_SE-3_2022-10-22_N RG_MIUCO_SE-4_2022-10-22_N RG_MIUCO_SE-4_2022-10-22_N RG_MIUCO_SE-4_2022-10-22_N RG_MIUCO_SE-4_2022-10-22_N
SE RI SE RI SE RI SE RI SE RI SE RI SE RI SE RI SE RI SE RI SE RI SE RI SE RI SE RI SE RI SE RI SE RI SE RI SE RI SE RI	RG_MIUCO RG_MIUCO	668236 668214 668214 668214 668214 668214 668214 668214 668214 668214 668214	5486617 5486583 5486583 5486583 5486583 5486583 5486583 5486583 5486583	2022 2022 2022 2022 2022 2022 2022 202	4 4 4 4 4 4 4	2022-10-22 2022-10-22 2022-10-22 2022-10-22 2022-10-22 2022-10-22 2022-10-22	13:02 13:13 13:13 13:13 13:13 13:13 13:13	d10-Phenanthrene Moisture pH (1:2 soil:water) % Clay (<4 μm) % Silt (0.063 mm - 0.0312 mm) % Silt (0.031 mm - 0.004 mm)	99.6 37.6 8.29 6.3 11.6 12.3	% % pH %	ALS ALS ALS	RG_MIUCO_SE-3_2022-10-22_N RG_MIUCO_SE-4_2022-10-22_N RG_MIUCO_SE-4_2022-10-22_N RG_MIUCO_SE-4_2022-10-22_N RG_MIUCO_SE-4_2022-10-22_N
SE RI SE RI SE RI SE RI SE RI SE RI SE RI SE RI SE RI SE RI SE RI SE RI SE RI SE RI SE RI SE RI SE RI SE RI SE RI	RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO	668214 668214 668214 668214 668214 668214 668214 668214 668214 668214	5486583 5486583 5486583 5486583 5486583 5486583 5486583 5486583	2022 2022 2022 2022 2022 2022 2022 202	4 4 4 4 4 4 4	2022-10-22 2022-10-22 2022-10-22 2022-10-22 2022-10-22 2022-10-22	13:13 13:13 13:13 13:13 13:13 13:13	Moisture pH (1:2 soil:water) % Clay (<4 μm) % Silt (0.063 mm - 0.0312 mm) % Silt (0.031 mm - 0.004 mm)	37.6 8.29 6.3 11.6 12.3	% pH % %	ALS ALS ALS	RG_MIUCO_SE-4_2022-10-22_N RG_MIUCO_SE-4_2022-10-22_N RG_MIUCO_SE-4_2022-10-22_N RG_MIUCO_SE-4_2022-10-22_N
SE RI SE RI SE RI SE RI SE RI SE RI SE RI SE RI SE RI SE RI SE RI SE RI SE RI SE RI SE RI SE RI	RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO	668214 668214 668214 668214 668214 668214 668214 668214 668214	5486583 5486583 5486583 5486583 5486583 5486583 5486583 5486583	2022 2022 2022 2022 2022 2022 2022 202	4 4 4 4 4 4	2022-10-22 2022-10-22 2022-10-22 2022-10-22 2022-10-22	13:13 13:13 13:13 13:13 13:13	pH (1:2 soil:water) % Clay (<4 μm) % Silt (0.063 mm - 0.0312 mm) % Silt (0.031 mm - 0.004 mm)	8.29 6.3 11.6 12.3	pH % %	ALS ALS	RG_MIUCO_SE-4_2022-10-22_N RG_MIUCO_SE-4_2022-10-22_N RG_MIUCO_SE-4_2022-10-22_N
SE RI SE RI SE RI SE RI SE RI SE RI SE RI SE RI SE RI SE RI SE RI SE RI SE RI SE RI	RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO	668214 668214 668214 668214 668214 668214 668214 668214	5486583 5486583 5486583 5486583 5486583 5486583	2022 2022 2022 2022 2022 2022	4 4 4 4	2022-10-22 2022-10-22 2022-10-22 2022-10-22	13:13 13:13 13:13 13:13	% Clay (<4 μm) % Silt (0.063 mm - 0.0312 mm) % Silt (0.031 mm - 0.004 mm)	6.3 11.6 12.3	% %	ALS ALS	RG_MIUCO_SE-4_2022-10-22_N RG_MIUCO_SE-4_2022-10-22_N
SE RI SE RI SE RI SE RI SE RI SE RI SE RI SE RI SE RI SE RI SE RI SE RI SE RI	RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO	668214 668214 668214 668214 668214 668214 668214	5486583 5486583 5486583 5486583 5486583 5486583	2022 2022 2022 2022 2022	4 4 4 4	2022-10-22 2022-10-22 2022-10-22	13:13 13:13 13:13	% Silt (0.063 mm - 0.0312 mm) % Silt (0.031 mm - 0.004 mm)	11.6 12.3	%	ALS	RG_MIUCO_SE-4_2022-10-22_N
SE RI SE RI SE RI SE RI SE RI SE RI SE RI SE RI SE RI SE RI SE RI SE RI	RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO	668214 668214 668214 668214 668214 668214	5486583 5486583 5486583 5486583 5486583	2022 2022 2022 2022	4 4 4	2022-10-22 2022-10-22	13:13 13:13	% Silt (0.031 mm - 0.004 mm)	12.3			
SE RI SE RI SE RI SE RI SE RI SE RI SE RI SE RI SE RI SE RI SE RI	RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO	668214 668214 668214 668214 668214	5486583 5486583 5486583 5486583	2022 2022 2022	4 4	2022-10-22	13:13	,				
SE RI SE RI SE RI SE RI SE RI SE RI SE RI SE RI SE RI	RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO	668214 668214 668214 668214 668214	5486583 5486583 5486583	2022 2022	4			170 SANG (V. 123 MM) = V.V03 MM)	20	%	ALS	RG MIUCO SE-4 2022-10-22 N
SE RI SE RI SE RI SE RI SE RI SE RI SE RI SE RI	RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO	668214 668214 668214 668214	5486583 5486583	2022	1		13:13	% Sand (0.25 mm - 0.125 mm)	24.6	%	ALS	RG MIUCO SE-4 2022-10-22 N
SE RI SE RI SE RI SE RI SE RI SE RI SE RI	RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO	668214 668214 668214	5486583		, →	2022-10-22	13:13	% Sand (0.50 mm - 0.25 mm)	14.9	%	ALS	RG MIUCO SE-4 2022-10-22 N
SE RI SE RI SE RI SE RI SE RI SE RI	RG_MIUCO RG_MIUCO RG_MIUCO RG_MIUCO	668214 668214			4	2022-10-22	13:13	% Sand (1.00 mm - 0.50 mm)	6.8	%	ALS	RG MIUCO SE-4 2022-10-22 N
SE RI SE RI SE RI SE RI	RG_MIUCO RG_MIUCO RG_MIUCO	668214		2022	4	2022-10-22	13:13	% Sand (2.00 mm - 1.00 mm)	2.8	%	ALS	RG MIUCO SE-4 2022-10-22 N
SE RI SE RI SE RI	RG_MIUCO RG_MIUCO		5486583	2022	4	2022-10-22	13:13	% Gravel (>2 mm)	<1	%	ALS	RG MIUCO SE-4 2022-10-22 N
SE R	RG_MIUCO		5486583	2022	4	2022-10-22	13:13	Inorganic Carbon <63 µm	0.334	%	ALS	RG MIUCO SE-4 2022-10-22 N
SE R		668214	5486583	2022	4	2022-10-22	13:13	Total Carbon <63 µm	2.35	%	ALS	RG MIUCO SE-4 2022-10-22 N
SE R		668214	5486583	2022	4	2022-10-22	13:13	Total Organic Carbon	2.02	%	ALS	RG MIUCO SE-4 2022-10-22 N
	RG MIUCO	668214	5486583	2022	4	2022-10-22	13:13	Inorganic Carbon (as CaCO3 equivalent)	2.79	%	ALS	RG MIUCO SE-4 2022-10-22 N
/ _ '\	RG MIUCO	668214	5486583	2022	4	2022-10-22	13:13	Aluminum (Al)	11800	mg/kg	ALS	RG MIUCO SE-4 2022-10-22 N
SE R	RG MIUCO	668214	5486583	2022	4	2022-10-22	13:13	Antimony (Sb)	0.38	mg/kg	ALS	RG MIUCO SE-4 2022-10-22 N
	RG MIUCO	668214	5486583	2022	4	2022-10-22	13:13	Arsenic (As)	8.04	mg/kg	ALS	RG MIUCO SE-4 2022-10-22 N
	RG MIUCO	668214	5486583	2022	4	2022-10-22	13:13	Barium (Ba)	191	mg/kg	ALS	RG MIUCO SE-4 2022-10-22 N
	RG MIUCO	668214	5486583	2022	4	2022-10-22	13:13	Beryllium (Be)	0.81	mg/kg	ALS	RG MIUCO SE-4 2022-10-22 N
	RG MIUCO	668214	5486583	2022	4	2022-10-22	13:13	Bismuth (Bi)	<0.2	mg/kg	ALS	RG MIUCO SE-4 2022-10-22 N
	RG MIUCO	668214	5486583	2022	4	2022-10-22	13:13	Boron (B)	9	mg/kg	ALS	RG MIUCO SE-4 2022-10-22 N
	RG MIUCO	668214	5486583	2022	4	2022-10-22	13:13	Cadmium (Cd)	0.692	mg/kg	ALS	RG MIUCO SE-4 2022-10-22 N
	RG MIUCO	668214	5486583	2022	4	2022-10-22	13:13	Calcium (Ca)	13000	mg/kg	ALS	RG MIUCO SE-4 2022-10-22 N
	RG MIUCO	668214	5486583	2022	4	2022-10-22	13:13	Chromium (Cr)	14.7	mg/kg		RG MIUCO SE-4 2022-10-22 N
	RG MIUCO	668214	5486583	2022	4	2022-10-22	13:13	Cobalt (Co)	7.15	mg/kg	ALS	RG MIUCO SE-4 2022-10-22 N
	RG MIUCO	668214	5486583	2022	4	2022-10-22	13:13	Copper (Cu)	17.4	mg/kg	ALS	RG MIUCO SE-4 2022-10-22 N
	RG MIUCO	668214	5486583	2022	4	2022-10-22	13:13	Iron (Fe)	19400	mg/kg	ALS	RG MIUCO SE-4 2022-10-22 N
	RG MIUCO	668214	5486583	2022	4	2022-10-22	13:13	Lead (Pb)	12.4	mg/kg	ALS	RG MIUCO SE-4 2022-10-22 N
	RG MIUCO	668214	5486583	2022	4	2022-10-22	13:13	Lithium (Li)	22.3	mg/kg	ALS	RG MIUCO SE-4 2022-10-22 N
	RG_MIUCO	668214	5486583	2022	4	2022-10-22	13:13	Magnesium (Mg)	5580	mg/kg	ALS	RG MIUCO SE-4 2022-10-22 N
	RG MIUCO	668214	5486583	2022	4	2022-10-22	13:13	Manganese (Mn)	420	mg/kg	ALS	RG MIUCO SE-4 2022-10-22 N
	RG MIUCO	668214	5486583	2022	4	2022-10-22	13:13	Mercury (Hg)	0.0215	mg/kg	ALS	RG MIUCO SE-4 2022-10-22 N
	RG MIUCO	668214	5486583	2022	4	2022-10-22	13:13	Molybdenum (Mo)	2.35	mg/kg	ALS	RG MIUCO SE-4 2022-10-22 N
	RG MIUCO	668214	5486583	2022	4	2022-10-22	13:13	Nickel (Ni)	20.7	mg/kg	ALS	RG MIUCO SE-4 2022-10-22 N
	RG MIUCO	668214	5486583	2022	4	2022-10-22	13:13	Phosphorus (P)	1360	mg/kg	ALS	RG MIUCO SE-4 2022-10-22 N
	RG MIUCO	668214	5486583	2022	1	2022-10-22	13:13	Potassium (K)	2130	mg/kg	ALS	RG MIUCO SE-4 2022-10-22 N
	RG_MIUCO	668214	5486583	2022	1	2022-10-22	13:13	Selenium (Se)	0.55	mg/kg	ALS	RG MIUCO SE-4 2022-10-22 N
	RG_MIUCO	668214	5486583	2022	1 4	2022-10-22	13:13	Silver (Ag)	<0.1	mg/kg	ALS	RG MIUCO SE-4 2022-10-22 N
	RG_MIUCO	668214	5486583	2022	4	2022-10-22	13:13	Sodium (Na)	67		ALS	RG MIUCO SE-4 2022-10-22 N
ישני ביי	VQ_MIOCO	668214	5486583	2022	4	2022-10-22	13:13	Strontium (Sr)	37.9	mg/kg mg/kg	ALS	RG MIUCO SE-4 2022-10-22 N

WSP Canada Inc. Page 330 of 337

Sediment Screening

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Trend	Ctation	Location	າ (UTMs) ^(a)	Vacu	Donlingto	Dete	Time	Analyta	Docult	Heit		Laboratory Information
уре	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	RG MIUCO	668214	5486583	2022	4	2022-10-22	13:13	Sulfur (S)	<1000	mg/kg	ALS	RG MIUCO SE-4 2022-10-22 N
SE	RG MIUCO	668214	5486583	2022	4	2022-10-22	13:13	Thallium (TI)	0.342	mg/kg	ALS	RG MIUCO SE-4 2022-10-22 N
SE	RG MIUCO	668214	5486583	2022	4	2022-10-22	13:13	Tin (Sn)	<2	mg/kg	ALS	RG MIUCO SE-4 2022-10-22 N
SE	RG MIUCO	668214	5486583	2022	4	2022-10-22	13:13	Titanium (Ti)	8.3	mg/kg	ALS	RG MIUCO SE-4 2022-10-22 N
SE	RG MIUCO	668214	5486583	2022	4	2022-10-22	13:13	Tungsten (W)	<0.5	mg/kg	ALS	RG MIUCO SE-4 2022-10-22 N
SE	RG MIUCO	668214	5486583	2022	4	2022-10-22	13:13	Uranium (U)	0.603	mg/kg	ALS	RG MIUCO SE-4 2022-10-22 N
SE	RG MIUCO	668214	5486583	2022	4	2022-10-22	13:13	Vanadium (V)	24.4	mg/kg	ALS	RG MIUCO SE-4 2022-10-22 N
SE	RG MIUCO	668214	5486583	2022	4	2022-10-22	13:13	Zinc (Zn)	91.9	mg/kg	ALS	RG MIUCO SE-4 2022-10-22 N
SE	RG MIUCO	668214	5486583	2022	4	2022-10-22	13:13	Zirconium (Zr)	1.2	mg/kg	ALS	RG_MIUCO_SE-4_2022-10-22_N
SE	RG MIUCO	668214	5486583	2022	4	2022-10-22	13:13	Acenaphthene	<0.05	mg/kg	ALS	RG MIUCO SE-4 2022-10-22 N
SE	RG MIUCO	668214	5486583	2022	4	2022-10-22	13:13	Acenaphthylene	<0.05	mg/kg	ALS	RG MIUCO SE-4 2022-10-22 N
SE	RG MIUCO	668214	5486583	2022	4	2022-10-22	13:13	Acridine	<0.05	mg/kg	ALS	RG MIUCO SE-4 2022-10-22 N
SE	RG MIUCO	668214	5486583	2022	4	2022-10-22	13:13	Anthracene	<0.05	mg/kg	ALS	RG MIUCO SE-4 2022-10-22 N
SE	RG MIUCO	668214	5486583	2022	4	2022-10-22	13:13	Benz(a)anthracene	<0.05	mg/kg	ALS	RG MIUCO SE-4 2022-10-22 N
SE	RG MIUCO	668214	5486583	2022	4	2022-10-22	13:13	Benzo(a)pyrene	<0.05	mg/kg	ALS	RG MIUCO SE-4 2022-10-22 N
SE	RG MIUCO	668214	5486583	2022	4	2022-10-22	13:13	Benzo(b&j)fluoranthene	<0.05	mg/kg	ALS	RG MIUCO SE-4 2022-10-22 N
SE	RG MIUCO	668214	5486583	2022	4	2022-10-22	13:13	Benzo(b+j+k)fluoranthene	<0.075	mg/kg	ALS	RG MIUCO SE-4 2022-10-22 N
SE	RG MIUCO	668214	5486583	2022	4	2022-10-22	13:13	Benzo(g_h_i)perylene	<0.05	mg/kg	ALS	RG MIUCO SE-4 2022-10-22 N
SE	RG MIUCO	668214	5486583	2022	4	2022-10-22	13:13	Benzo(k)fluoranthene	<0.05	mg/kg	ALS	RG MIUCO SE-4 2022-10-22 N
SE	RG MIUCO	668214	5486583	2022	4	2022-10-22	13:13	Chrysene	<0.05	mg/kg	ALS	RG_MIUCO_SE-4_2022-10-22_N
E	RG MIUCO	668214	5486583	2022	4	2022-10-22	13:13	Dibenz(a_h)anthracene	<0.05	mg/kg	ALS	RG MIUCO SE-4 2022-10-22 N
E	RG MIUCO	668214	5486583	2022	4	2022-10-22	13:13	Fluoranthene	<0.05	mg/kg	ALS	RG MIUCO SE-4 2022-10-22 N
SE	RG MIUCO	668214	5486583	2022	4	2022-10-22	13:13	Fluorene	<0.05	mg/kg	ALS	RG MIUCO SE-4 2022-10-22 N
SE	RG MIUCO	668214	5486583	2022	4	2022-10-22	13:13	Indeno(1,2,3-c,d)pyrene	<0.05	mg/kg	ALS	RG MIUCO SE-4 2022-10-22 N
SE	RG MIUCO	668214	5486583	2022	4	2022-10-22	13:13	1+2-Methylnaphthalene	<0.05	mg/kg	ALS	RG MIUCO SE-4 2022-10-22 N
SE	RG_MIUCO	668214	5486583	2022	4	2022-10-22	13:13	1-Methylnaphthalene	<0.03	mg/kg	ALS	RG MIUCO SE-4 2022-10-22 N
SE	RG MIUCO	668214	5486583	2022	4	2022-10-22	13:13	2-Methylnaphthalene	<0.03	mg/kg	ALS	RG MIUCO SE-4 2022-10-22 N
SE	RG MIUCO	668214	5486583	2022	4	2022-10-22	13:13	Naphthalene	<0.03	mg/kg	ALS	RG MIUCO SE-4 2022-10-22 N
SE	RG_MIUCO	668214	5486583	2022	4	2022-10-22	13:13	Phenanthrene	<0.05	mg/kg	ALS	RG MIUCO SE-4 2022-10-22 N
SE	RG MIUCO	668214	5486583	2022	4	2022-10-22	13:13	Pyrene	<0.05	mg/kg	ALS	RG MIUCO SE-4 2022-10-22 N
SE	RG MIUCO	668214	5486583	2022	4	2022-10-22	13:13		<0.05	mg/kg	ALS	RG MIUCO SE-4 2022-10-22 N
SE	RG_MIUCO	668214	5486583	2022	4	2022-10-22	13:13	Quinoline B(a)P Total Potency Equivalent	<0.065	mg/kg	ALS	RG MIUCO SE-4 2022-10-22 N
SE	RG_MIUCO	668214	5486583	2022	4	2022-10-22	13:13	PAHs, total (BC Sched 3.4)	<0.003	mg/kg	ALS	RG MIUCO SE-4 2022-10-22 N
SE	RG MIUCO	668214	5486583	2022	4	2022-10-22	13:13	PAHs, total	<0.2	mg/kg	ALS	RG MIUCO SE-4 2022-10-22 N
SE	RG MIUCO	668214	5486583	2022	4	2022-10-22	13:13	d9-Acridine	90	%	ALS	RG MIUCO SE-4 2022-10-22 N
SE	RG MIUCO	668214	5486583	2022	4	2022-10-22	13:13	d12-Chrysene	93.3	%	ALS	RG MIUCO SE-4 2022-10-22 N
SE	RG MIUCO	668214	5486583	2022	4	2022-10-22	13:13	d8-Naphthalene	96.5	%	ALS	RG MIUCO SE-4 2022-10-22 N
SE	RG_MIUCO	668214	5486583	2022	4	2022-10-22	13:13	d10-Phenanthrene	100	%	ALS	RG MIUCO SE-4 2022-10-22 N
SE SE	RG MI5	659559	5496348	2022	1 1	2022-10-22	09:30	IACR (CCME)	0.61	-	ALS	RG MI5 SE-1 2022-10-22 N
SE SE	RG_MI5	659559	5496348	2022	1 1	2022-09-12	09:30	IACR:(CCIME)	<0.10	-	ALS	RG MI5 SE-1 2022-09-12 N
SE SE	RG_MI5	659559	5496346	2022	1 1	2022-09-12	09:30	IACR:Coarse	<0.10	 	ALS	RG MI5 SE-1 2022-09-12 N
SE SE	RG_MI5	659503	5496521	2022	2	2022-09-12	10:00	IACR (CCME)	0.8	 	ALS	RG MI5 SE-1 2022-09-12 N
SE SE		ļ	5496521		2			,		-		
SE SE	RG_MI5	659503		2022		2022-09-12	10:00	IACR:Coarse	<0.10	-	ALS	RG_MI5_SE-2_2022-09-12_N
SE SE	RG_MI5	659503	5496521	2022	2	2022-09-12	10:00	IACR: (CCME)	<0.10	-	ALS	RG_MI5_SE-2_2022-09-12_N
	RG_MI5	659499	5496580	2022	3	2022-09-12	10:30	IACR (CCME)	<0.60	-	ALS	RG_MI5_SE-3_2022-09-12_N
SE	RG_MI5	659499	5496580	2022	3	2022-09-12	10:30	IACR:Coarse	<0.10	-	ALS	RG_MI5_SE-3_2022-09-12_N
SE	RG_MI5	659499	5496580	2022	3	2022-09-12	10:30	IACR:Fine	<0.10	-	ALS	RG_MI5_SE-3_2022-09-12_N

WSP Canada Inc. Page 331 of 337

Sediment Screening

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

	Ctation	Location	ı (UTMs) ^(a)	Vacu	Doublest	Dete	Time	Amalut	Dog 16	LL		Laboratory Information
ype	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
SE	RG MIULE	660482	5493070	2022	1	2022-09-12	15:41	IACR (CCME)	0.9	-	ALS	RG MIULE SE-1 2022-09-12 N
SE	RG MIULE	660482	5493070	2022	1	2022-09-12	15:41	IACR:Coarse	<0.10	-	ALS	RG MIULE SE-1 2022-09-12 N
SE.	RG MIULE	660482	5493070	2022	1	2022-09-12	15:41	IACR:Fine	<0.10	_	ALS	RG MIULE SE-1 2022-09-12 N
SE.	RG MIULE	660563	5493002	2022	2	2022-09-12	14:31	IACR (CCME)	0.84	_	ALS	RG MIULE SE-2 2022-09-12 N
E SE	RG MIULE	660563	5493002	2022	2	2022-09-12	14:31	IACR:Coarse	<0.10	_	ALS	RG MIULE SE-2 2022-09-12 N
E SE	RG MIULE	660563	5493002	2022	2	2022-09-12	14:31	IACR:Fine	<0.10	_	ALS	RG MIULE SE-2 2022-09-12 N
SE	RG MIULE	660633	5492985	2022	3	2022-09-12	13:40	IACR (CCME)	1.0	_	ALS	RG MIULE SE-3 2022-09-12 N
E	RG MIULE	660633	5492985	2022	3	2022-09-12	13:40	IACR:Coarse	<0.10	_	ALS	RG MIULE SE-3 2022-09-12 N
E	RG MIULE	660633	5492985	2022	3	2022-09-12	13:40	IACR:Fine	<0.10	_	ALS	RG MIULE SE-3 2022-09-12 N
E	RG MIULE	660593	5492990	2022	4	2022-09-12	16:25	IACR (CCME)	1.2	_	ALS	RG MIULE SE-4 2022-09-12 N
E	RG MIULE	660593	5492990	2022	4	2022-09-12	16:25	IACR:Coarse	<0.10	_	ALS	RG MIULE SE-4 2022-09-12 N
E	RG MIULE	660593	5492990	2022	4	2022-09-12	16:25	IACR:Fine	0.1	_	ALS	RG MIULE SE-4 2022-09-12 N
E	RG MIULE	660469	5493098	2022	5	2022-09-12	15:00	IACR (CCME)	0.61	_	ALS	RG MIULE SE-5 2022-09-12 N
E	RG MIULE	660469	5493098	2022	5	2022-09-12	15:00	IACR:Coarse	<0.10	-	ALS	RG MIULE SE-5 2022-09-12 N
E	RG MIULE	660469	5493098	2022	5	2022-09-12	15:00	IACR:Fine	<0.10	_	ALS	RG MIULE SE-5 2022-09-12 N
E	RG MIDAG	665217	5489528	2022	1	2022-09-13	11:07	IACR (CCME)	1.5	-	ALS	RG MIDAG SE-1_2022-09-13_N
E	RG MIDAG	665217	5489528	2022	1	2022-09-13	11:07	IACR:Coarse	<0.10	-	ALS	RG MIDAG SE-1 2022-09-13 N
E	RG MIDAG	665217	5489528	2022	1 1	2022-09-13	11:07	IACR:Fine	0.12		ALS	RG MIDAG SE-1 2022-09-13 N
E	RG MIDAG	665266	5489463	2022	2	2022-09-13	10:17	IACR (CCME)	1.3	-	ALS	RG MIDAG SE-2 2022-09-13 N
<u> </u>	RG MIDAG	665266	5489463	2022	2	2022-09-13	10:17	IACR:Coarse	<0.10		ALS	RG MIDAG SE-2 2022-09-13 N
<u>-</u> E	RG MIDAG	665266	5489463	2022	2	2022-09-13	10:17	IACR:Fine	0.11	-	ALS	RG MIDAG SE-2 2022-09-13 N
<u>-</u> E	RG_MIDAG	665217	5489528	2022		2022-09-13	09:20	IACR (CCME)	1.4	_	ALS	RG MIDAG SE-3 2022-09-13 N
<u>-</u> Е	RG_MIDAG	665217	5489528	2022	3	2022-09-13	09.20	IACR:(CGME)	<0.10	-	ALS	RG_MIDAG_SE-3_2022-09-13_N
E E	RG_MIDAG				3			IACR:Coarse		-	ALS	
	_	665217	5489528	2022	3	2022-09-13	09:20		0.11	-		RG_MIDAG_SE-3_2022-09-13_N
E	RG_MIDAG	665246	5489483	2022	4	2022-09-13	10:37	IACR (CCME)	2.6	-	ALS	RG_MIDAG_SE-4_2022-09-13_N
E	RG_MIDAG	665246	5489483	2022	4	2022-09-13	10:37	IACR:Coarse	<0.14	-	ALS	RG_MIDAG_SE-4_2022-09-13_N
E	RG_MIDAG	665246	5489483	2022	4	2022-09-13	10:37	IACR:Fine	0.22	-	ALS	RG_MIDAG_SE-4_2022-09-13_N
SE	RG_MIDAG	665189	5489543	2022	5	2022-09-13	09:10	IACR (CCME)	1.2	-	ALS	RG_MIDAG_SE-5_2022-09-13_N
E	RG_MIDAG	665189	5489543	2022	5	2022-09-13	09:10	IACR:Coarse	<0.10	-	ALS	RG_MIDAG_SE-5_2022-09-13_N
E	RG_MIDAG	665189	5489543	2022	5	2022-09-13	09:10	IACR:Fine	0.11	-	ALS	RG_MIDAG_SE-5_2022-09-13_N
E	RG_MIDCO	667769	5487592	2022	1	2022-09-13	14:07	IACR (CCME)	1.6	-		RG_MIDCO_SE-1_2022-09-13_N
E	RG_MIDCO	667769	5487592	2022	1	2022-09-13	14:07	IACR:Coarse	<0.10	-	ALS	RG_MIDCO_SE-1_2022-09-13_N
E	RG_MIDCO	667769	5487592	2022	1	2022-09-13	14:07	IACR:Fine	0.12	-	ALS	RG_MIDCO_SE-1_2022-09-13_N
E	RG_MIDCO	667734	5487613	2022	2	2022-09-13	15:23	IACR (CCME)	1.1	-	ALS	RG_MIDCO_SE-2_2022-09-13_N
E	RG_MIDCO	667734	5487613	2022	2	2022-09-13	15:23	IACR:Coarse	<0.10	-	ALS	RG_MIDCO_SE-2_2022-09-13_N
Ε	RG_MIDCO	667734	5487613	2022		2022-09-13	15:23	IACR:Fine	<0.10	-	ALS	RG_MIDCO_SE-2_2022-09-13_N
E	RG_MIDCO	667706	5487633	2022	3	2022-09-13	14:34	IACR (CCME)	1.6	-	ALS	RG_MIDCO_SE-3_2022-09-13_N
ĚΕ	RG_MIDCO	667706	5487633	2022	3	2022-09-13	14:34	IACR:Coarse	<0.10	-	ALS	RG_MIDCO_SE-3_2022-09-13_N
E	RG_MIDCO	667706	5487633	2022	3	2022-09-13	14:34	IACR:Fine	0.12	-	ALS	RG_MIDCO_SE-3_2022-09-13_N
E	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	IACR (CCME)	2.1	-	ALS	RG_MIDCO_SE-4_2022-09-13_N
E	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	IACR:Coarse	<0.10	-	ALS	RG_MIDCO_SE-4_2022-09-13_N
E	RG_MIDCO	667682	5487632	2022	4	2022-09-13	13:54	IACR:Fine	0.18	-	ALS	RG_MIDCO_SE-4_2022-09-13_N
SE	RG_MIDCO	667666	5487664	2022	5	2022-09-13	13:13	IACR (CCME)	1.6	-	ALS	RG_MIDCO_SE-5_2022-09-13_N
SE	RG_MIDCO	667666	5487664	2022	5	2022-09-13	13:13	IACR:Coarse	<0.10	-	ALS	RG_MIDCO_SE-5_2022-09-13_N
Ë	RG_MIDCO	667666	5487664	2022	5	2022-09-13	13:13	IACR:Fine	0.12	-	ALS	RG_MIDCO_SE-5_2022-09-13_N
SE.	RG_MIUCO	668187	5486695	2022	5	2022-09-14	09:22	IACR (CCME)	<0.60	-	ALS	RG_MIUCO_SE-5_2022-09-14_N
SE	RG MIUCO	668187	5486695	2022	5	2022-09-14	09:22	IACR:Coarse	<0.10	_	ALS	RG MIUCO SE-5 2022-09-14 N

WSP Canada Inc. Page 332 of 337

Sediment Screening

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

T. un	Ctation	Location	า (UTMs) ^(a)	Vecu	Doubleste	Doto	Time	Analysis	Beaut	Hest		Laboratory Information
ре	Station	Easting	Northing	Year	Replicate	Date	Time	Analyte	Result	Unit	Lab	Sample ID
Ε	RG MIUCO	668187	5486695	2022	5	2022-09-14	09:22	IACR:Fine	<0.10	-	ALS	RG MIUCO SE-5 2022-09-14 N
E	RG CORCK	668529	5487366	2022	1	2022-09-14	14:24	IACR (CCME)	1.3	-	ALS	RG CORCK SE-1 2022-09-14 N
Ξ	RG CORCK	668529	5487366	2022	1	2022-09-14	14:24	IACR:Coarse	<0.10	-	ALS	RG CORCK SE-1 2022-09-14 N
E	RG CORCK	668529	5487366	2022	1	2022-09-14	14:24	IACR:Fine	<0.10	-	ALS	RG CORCK SE-1 2022-09-14 N
E	RG_CORCK	668477	5487346	2022	2	2022-09-14	14:03	IACR (CCME)	0	_	ALS	RG CORCK SE-2 2022-09-14 N
 E	RG CORCK	668477	5487346	2022	2	2022-09-14	14:03	IACR:Coarse	0	_	ALS	RG CORCK SE-2 2022-09-14 N
SE	RG CORCK	668477	5487346	2022	2	2022-09-14	14:03	IACR:Fine	0	_	ALS	RG CORCK SE-2 2022-09-14 N
E E	RG CORCK	668482	5487337	2022	3	2022-09-14	13:13	IACR (CCME)	2.2	_	ALS	RG CORCK SE-3 2022-09-14 N
SE	RG_CORCK	668482	5487337	2022	3	2022-09-14	13:13	IACR:Coarse	<0.10	_	ALS	RG_CORCK_SE-3_2022-09-14_N
SE	RG CORCK	668482	5487337	2022	3	2022-09-14	13:13	IACR:Fine	0.15	_	ALS	RG CORCK SE-3 2022-09-14 N
SE	RG CORCK	668482	5487346	2022	4	2022-09-14	13:45	IACR (CCME)	2.5	_	ALS	RG CORCK SE-4 2022-09-14 N
SE	RG CORCK	668482	5487346	2022	4	2022-09-14	13:45	IACR:Coarse	<0.10		ALS	RG CORCK SE-4 2022-09-14 N
E	RG CORCK	668482	5487346	2022	4	2022-09-14	13:45	IACR:Fine	0.16		ALS	RG CORCK SE-4 2022-09-14 N
E	RG_CORCK	668485	5487324	2022	5	2022-09-14	13:02	IACR (CCME)	1.8	_	ALS	RG CORCK SE-5 2022-09-14 N
SE	RG CORCK	668485	5487324	2022	5	2022-09-14	13:02	IACR:Coarse	<0.10	_	ALS	RG CORCK SE-5 2022-09-14 N
SE	RG_CORCK	668485	5487324	2022	5	2022-09-14	13:02	IACR:Fine	0.12	_	ALS	RG CORCK SE-5 2022-09-14 N
SE	RG MI25	668209	5482811	2022	1	2022-09-15	11:25	IACR (CCME)	<0.60	_	ALS	RG MI25 SE-1 2022-09-14 N
SE	RG MI25	668209	5482811	2022	1 1	2022-09-15	11:25	IACR:Coarse	<0.10	_	ALS	RG MI25 SE-1 2022-09-14 N
SE	RG MI25	668209	5482811	2022	1 1	2022-09-15	11:25	IACR:Fine	<0.10	_	ALS	RG MI25 SE-1 2022-09-14 N
E E	RG MI25	668190	5482833	2022	2	2022-09-15	10:50	IACR (CCME)	<0.60	_	ALS	RG MI25 SE-2 2022-09-14 N
E E	RG MI25	668190	5482833	2022	2	2022-09-15	10:50	IACR:Coarse	<0.10	_	ALS	RG MI25 SE-2 2022-09-14 N
SE	RG MI25	668190	5482833	2022	2	2022-09-15	10:50	IACR:Fine	<0.10		ALS	RG MI25 SE-2 2022-09-14 N
SE	RG MI25	668170	5482853	2022	3	2022-09-15	09:50	IACR (CCME)	<0.60	-	ALS	RG MI25 SE-3 2022-09-14 N
SE	RG MI25	668170	5482853	2022	3	2022-09-15	09:50	IACR:Coarse	<0.10		ALS	RG MI25 SE-3 2022-09-14 N
SE	RG_MI25	668170	5482853	2022	3	2022-09-15	09.50	IACR:Fine	<0.10	<u> </u>	ALS	RG MI25 SE-3 2022-09-14 N
SE	RG AGCK	667627	5488726	2022	1	2022-09-15	16:48	IACR (CCME)	0.8	<u> </u>	ALS	RG AGCK SE-1 2022-09-14 N
SE	RG_AGCK	667627	5488726	2022	1 1	2022-09-15	16:48	IACR:Coarse	<0.10	-	ALS	RG AGCK SE-1 2022-09-14 N
SE	RG_AGCK	667627	5488726	2022	1 1	2022-09-15	16:48	IACR:Fine	<0.10	-	ALS	RG AGCK SE-1 2022-09-14 N
SE	RG LE1	659639	5494121	2022	1 1	2022-09-13	10:48	IACR (CCME)	0.62	<u> </u>	ALS	RG LE1 SE-1 2022-09-14 N
SE	RG LE1	659639	5494121	2022	1 1	2022-09-10	10:48	IACR:(COME)	<0.10	<u> </u>	ALS	RG LE1 SE-1 2022-09-14 N
	_		5494121		1 1		+			-	 	RG LE1 SE-1 2022-09-14 N
SE SE	RG_LE1 RG_LE1	659639 659554	5494121	2022 2022	2	2022-09-16 2022-09-16	10:48 09:58	IACR:Fine IACR (CCME)	<0.10 0.61	-	ALS ALS	
SE SE	RG_LE1	659554	5494114	2022	2	2022-09-16	09.58	IACR (CCME)	<0.10	-	ALS	RG_LE1_SE-2_2022-09-14_N RG_LE1_SE-2_2022-09-14_N
SE SE	RG_LE1	659554	5494114	2022	2	2022-09-16		IACR:Coarse IACR:Fine	<0.10	-	1	RG LE1 SE-2 2022-09-14 N
SE SE	_				_		09:58			-	ALS	
SE SE	RG_LE1 RG_LE1	659588 659588	5494017	2022 2022	3	2022-09-16	09:12	IACR (CCME)	0.61 <0.10	-	ALS	RG_LE1_SE-3_2022-09-14_N
	-		5494017		+	2022-09-16	09:12	IACR:Coarse		-	ALS	RG_LE1_SE-3_2022-09-14_N
SE	RG_LE1	659588	5494017	2022	3	2022-09-16	09:12	IACR:Fine	<0.10	-	ALS	RG_LE1_SE-3_2022-09-14_N
SE	RG_MI5	659565	5496335	2022	4	2022-09-16	12:00	IACR (CCME)	0.6	-	ALS	RG_MI5_SE-4_2022-09-14_N
E	RG_MI5	659565	5496335	2022	4	2022-09-16	12:00	IACR:Coarse	<0.10	-	ALS	RG_MI5_SE-4_2022-09-14_N
SE	RG_MI5	659565	5496335	2022	4	2022-09-16	12:00	IACR:Fine	<0.10	-	ALS	RG_MI5_SE-4_2022-09-14_N
E	RG_MI5	659553	5496289	2022	5	2022-09-16	12:15	IACR (CCME)	0.82	-	ALS	RG_MI5_SE-5_2022-09-14_N
SE	RG_MI5	659553	5496289	2022	5	2022-09-16	12:15	IACR:Coarse	<0.10	-	ALS	RG_MI5_SE-5_2022-09-14_N
SE	RG_MI5	659553	5496289	2022	5	2022-09-16	12:15	IACR:Fine	<0.10	-	ALS	RG_MI5_SE-5_2022-09-14_N
SE	RG_MIUCO	668201	5486681	2022	1 1	2022-10-22	12:53	IACR (CCME)	<0.60	-	ALS	RG_MIUCO_SE-1_2022-10-22_N
E	RG_MIUCO	668201	5486681	2022	1 1	2022-10-22	12:53	IACR:Coarse	<0.10	-	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668201	5486681	2022	1 1	2022-10-22	12:53	IACR:Fine	<0.10	-	ALS	RG_MIUCO_SE-1_2022-10-22_N
SE	RG_MIUCO	668215	5486651	2022	2	2022-10-22	12:59	IACR (CCME)	0.61	-	ALS	RG_MIUCO_SE-2_2022-10-22_N

WSP Canada Inc. Page 333 of 337 June 2023 Appendix I: Reference No. 22574542-001-R-Rev0-1000
Sediment Screening

Table I-1: Sediment Chemistry Data Collected from the CMm LAEMP Sampling Stations, 2012 to 2022

Typo	Station	Location	(UTMs) ^(a)	Year	Replicate	Date	Time	Analyte	Result	Unit		Laboratory Information
Type	Station	Easting	Northing	i eai	Replicate	Date	Tille	Analyte	Result	Oill	Lab	Sample ID
SE	RG_MIUCO	668215	5486651	2022	2	2022-10-22	12:59	IACR:Coarse	<0.10	ı	ALS	RG_MIUCO_SE-2_2022-10-22_N
SE	RG_MIUCO	668215	5486651	2022	2	2022-10-22	12:59	IACR:Fine	<0.10	•	ALS	RG_MIUCO_SE-2_2022-10-22_N

Study.

WSP Canada Inc. Page 334 of 337

^{- =} no guideline or no data; % = percent; mg/kg = milligrams per kilogram.

Table I-2: Sediment Quality Data Screening, 2022

June 2023

Table I-2: Sediment Quality Data Screening, 202	22										1							
Location Watercourse					Michel Creek		Reference Sites Andy Good Creek		Leach Creek						uenced Sites el Creek			
Station			iment Quality Guidelines ction of Aquatic Life		MI25		AGCK		LE1					M	IUCO			
Sample ID				RG_MI25_SE-1_2022-09			RG_AGCK_SE-1_2022-09	- RG_LE1_SE-1_2022-09	- RG_LE1_SE-2_2022-09	9- RG_LE1_SE-3_2022-09	- RG_MIUCO_SE-1_2022	- RG_MIUCO_SE-3_2022-		RG_MIUCO_SE-5_2022	2- RG_MIUCO_SE-1_2022	2- RG_MIUCO_SE-2_2022		RG_MIUCO_SE-4_2022
Replicate		Lower WSQG	Upper WSQG (mg/kg	14_N 1	14_N 2	14_N 3	14_N 1	14_N 1	14_N 2	14_N 3	09-14_N 1	09-14_N 3	09-14_N 4	09-14_N 5	10-22_N 1	10-22_N 2	10-22_N 3	10-22_N 4
Date		(mg/kg dw)	dw)	15-Sep-22	15-Sep-22	15-Sep-22	15-Sep-22	16-Sep-22	16-Sep-22	16-Sep-22	14-Sep-22	14-Sep-22	14-Sep-22	14-Sep-22	22-Oct-22	22-Oct-22	22-Oct-22	22-Oct-22
Parameter	Unit																	
Physical Tests Moisture	%		1 -	8.1	41.9	43.5	81.0	44.5	46.9	33.9	_	_	_	37.9	33.9	41.6	45.8	37.6
pH (1:2 soil:water)	pH	-	-	8.1	8.3	8.2	7.5	8.1	8.0	8.0	8.2	7.9	8.0	8.1	8.3	8.2	8.6	8.3
Particle Size Distribution			1	-							1			-				
% Gravel (>2 mm)	%	-	-	32.6	4.8	-	-	11.3	5.3	2.9	5.0	2.7	2.0	4.9	3.0	2.2	4.6	<1
% Sand (0.125 mm - 0.063 mm) % Sand (0.25 mm - 0.125 mm)	%	<u> </u>	-	6.8 8.6	10.2 15.5	-	-	13.6 16.1	21.2 24.6	10.0 21.3	19.3 8.7	12.2 13.8	19.1 18.5	12.3 11.7	16.2 20.7	10.6 14.8	20.5 13.6	20.0 24.6
% Sand (0.50 mm - 0.25 mm)	%	-	-	12.6	21.4	-	-	18.9	14.5	29.6	3.7	11.6	12.8	8.8	14.1	15.6	6.6	14.9
% Sand (1.00 mm - 0.50 mm)	%	-	-	8.7	12.7	-	-	9.5	5.8	14.9	1.2	5.8	6.1	10.9	10.9	16.4	3.3	6.8
% Sand (2.00 mm - 1.00 mm) % Silt (0.063 mm - 0.0312 mm)	%	-	-	3.2	8.0	-	-	7.1	2.5	2.9	1.4	3.5	2.1 17.7	8.9	7.7	8.4	3.2	2.8
% Silt (0.003 mm - 0.0012 mm) % Silt (0.031 mm - 0.004 mm)	%	-	-	9.2 12.9	10.1 12.9			10.1	12.6 10.9	6.9 8.3	25.5 28.8	17.2 24.0	17.1	16.3 20.7	10.3 11.2	11.0 14.6	19.1 22.1	11.6 12.3
% Clay (<4 μm)	%	-	-	5.4	4.4	-	-	3.1	2.6	3.2	6.4	9.2	4.6	5.5	5.9	6.4	7.0	6.3
Organic Carbon			1	T	_	T	Т	1	T	T	T	T		ı	_	_	T	T
Inorganic Carbon <63 µm Total Carbon <63 µm	%		-	0.5	0.5 2.3	0.5 2.5	3.8 13.6	0.2 1.6	0.1 1.8	0.1 2.6	0.8 3.5	0.4 7.1	0.4 2.0	0.6 3.4	0.4	0.4 6.7	0.9 3.4	0.3 2.4
Total Organic Carbon	%	-	-	2.6	1.8	2.0	9.8	1.4	1.6	2.4	2.7	6.8	1.6	2.8	2.2	6.4	2.5	2.0
Inorganic Carbon (as CaCQ equivalent)	%	-	-	4.0	4.5	4.2	31.9	1.5	1.1	1.0	6.4	3.1	3.0	4.8	3.4	3.0	7.5	2.8
Total Metals																		1
Aluminum (AI) Antimony (Sb)	mg/kg mg/kg		-	13200	12900 0.6	15200 0.6	2780 0.9	7700 1.3	7780 1.3	8320 1.7	9400 0.4	9830 0.4	10300 0.4	13200 0.5	12600	11700 0.4	9320 0.3	11800 0.4
Arsenic (As)	mg/kg	5.9	17	12.1	11.1	11.7	7.0	6.3	6.5	9.0	7.2	5.9	7.7	9.5	8.0	6.4	6.5	8.0
Barium (Ba)	mg/kg		-	150.0	135.0	149.0	50.2	248.0	267.0	267.0	558.0	176.0	209.0	156.0	156.0	148.0	610.0	191.0
Beryllium (Be)	mg/kg	-	-	0.8	0.8	0.9	0.4	0.5	0.6	0.8	0.7	0.8	0.8	0.9	0.9	0.8	0.7	0.8
Bismuth (Bi) Boron (B)	mg/kg mg/kg	-	-	0.3 6.5	0.2 9.0	0.2 9.6	<0.2 <5	<0.2 <5	<0.2 <5	<0.2 <5	<0.2 8.3	0.2 6.7	0.2 6.1	0.3 8.1	0.2 10.1	0.2 8.7	<0.2 9.2	<0.2 9.0
Cadmium (Cd)	mg/kg	0.6	3.5	1.5	1.3	1.5	1.3	1.7	1.6	2.1	0.8	0.9	0.7	0.7	0.6	0.7	0.7	0.7
Calcium (Ca)	mg/kg		-	18300	31400	27600	137000	7400	5960	5350	25300	14400	13200	17300	14800	13900	26500	13000
Chromium (Cr) Cobalt (Co)	mg/kg mg/kg	37	90	17.5 10.1	18.2 8.4	20.2 9.5	10.8 2.8	14.5 6.4	15.0 6.5	16.5 7.1	12.8 7.2	14.4 7.4	14.1 8.8	16.8 9.8	14.7 7.1	14.1 7.0	11.7 5.4	14.7 7.2
Copper (Cu)	mg/kg mg/kg	36	197	30.0	25.7	28.2	9.1	17.2	15.4	17.6	17.9	18.8	18.3	20.4	16.8	18.0	14.4	17.4
Iron (Fe)	mg/kg	21200	43766	26600	22700	27400	7250	16400	15900	20000	21000	18200	23200	31300	20200	17600	16900	19400
Lead (Pb)	mg/kg	35	91	16.4	15.2	19.2	4.6	9.6	9.1	10.5	12.4	12.8	14.6	14.9	12.3	12.5	10.3	12.4
Lithium (Li) Magnesium (Mg)	mg/kg mg/kg	-	-	21.0 6390	18.7 6290	21.9 6840	4.0	8.2 3090	8.6 2450	8.9 2250	19.4 6470	19.6 5350	20.5 6020	21.7 6390	24.6 6120	23.5 5490	19.8 6620	22.3 5580
Manganese (Mn)	mg/kg	460	1100	568.0	523.0	708.0	138.0	272.0	240.0	312.0	302.0	289.0	576.0	700.0	431.0	298.0	213.0	420.0
Mercury (Hg)	mg/kg	0.17	0.49	0.032	0.029	0.027	0.040	0.044	0.046	0.046	0.028	0.035	0.022	0.020	0.019	0.028	0.022	0.022
Molybdenum (Mo)	mg/kg	25	23000	5.3	5.0	5.2	1.4	1.5	1.5	2.2	2.1	1.6	2.3	1.9	1.9	1.7	1.7	2.4
Nickel (Ni) Phosphorus (P)	mg/kg mg/kg	16	75	36.1 1390	31.4 1250	35.1 1320	24.6 1050	27.5 1230	26.5 1220	31.4 1320	21.3 1320	22.5 1310	24.3 1370	26.9 1400	19.7 1260	20.4 1140	16.0 1080	20.7 1360
Potassium (K)	mg/kg	-	-	1970	2320	2720	880	1220	1160	1320	1630	1790	1620	2170	2260	2030	1710	2130
Selenium (Se)	mg/kg	2.0	-	0.9	0.7	1.0	2.1	0.7	0.7	0.7	0.7	1.0	0.6	0.4	0.5	0.6	0.4	0.6
Silver (Ag) Sodium (Na)	mg/kg	0.5	-	0.1	0.1	0.3	0.3 109.0	0.2	0.2	0.2	0.1 244.0	0.1 97.0	<0.1 81.0	<0.1 73.0	<0.1	<0.1 74.0	<0.1 170.0	<0.1 67.0
Strontium (Sr)	mg/kg mg/kg	-	-	72.0 49.7	79.0 60.4	80.0 76.9	140.0	<50 36.5	<50 36.6	<50 41.5	98.5	55.8	39.8	55.5	86.0 37.9	44.8	89.6	37.9
Sulfur (S)	mg/kg	-	-	<1000	<1000	<1000	<1000	<1000	<1000	<1000	1000	<1000	<1000	<1000	<1000	<1000	<1000	<1000
Thallium (TI)	mg/kg	-	-	0.7	0.6	0.7	0.7	0.2	0.2	0.2	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
Tin (Sn) Titanium (Ti)	mg/kg mg/kg		-	<2 8.3	<2 11.2	<2 10.4	<2 10.9	<2 34.0	<2 30.6	<2 40.4	<2 29.1	<2 31.2	2.5 28.5	<2 12.1	<2 7.6	<2 7.8	<2 9.2	<2 8.3
Tungsten (W)	mg/kg	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Uranium (U)	mg/kg	-	-	0.8	0.8	0.8	1.0	1.3	1.2	1.3	0.6	0.9	0.6	0.6	0.6	0.5	0.5	0.6
Vanadium (V)	mg/kg	-	-	30.2	31.4	34.0	20.1	46.9	46.0	56.8	20.8	23.1	21.9	25.9	24.7	22.4	19.8	24.4
Zinc (Zn) Zirconium (Zr)	mg/kg mg/kg	123	315	155.0 1.1	132.0 <1	156.0 <1	147.0 <1	119.0	115.0	133.0 <1	88.4 1.7	96.0 1.8	93.6 1.3	96.1 <1	88.4 1.0	92.3 1.2	77.9 <1	91.9 1.2
Polycyclic Aromatic Hydrocarbons (PAHs)	3 3		1	1							1	1.0	1.0		1.0	1.2		1.6
Acenaphthene	mg/kg	0.0067	0.089	<0.05	<0.05	<0.05	<0.068	<0.05	<0.05	<0.05	-	-	-	<0.05	<0.05	<0.05	<0.05	<0.05
Acenaphthylene Acridine	mg/kg	0.0059	0.13	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.068 <0.068	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	-	-	-	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05
Anthracene	mg/kg mg/kg	0.047	0.25	<0.05	<0.05	<0.05	<0.068	<0.05	<0.05	<0.05	-	-	-	<0.05	<0.05	<0.05	<0.05	<0.05
Benz(a)anthracene	mg/kg	0.032	0.39	<0.05	<0.05	<0.05	<0.068	<0.05	<0.05	<0.05	-	-		<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene	mg/kg	0.032	0.78	<0.05	<0.05	<0.05	<0.068	<0.05	<0.05	<0.05	-	-	-	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(b&j)fluoranthene Benzo(b+j+k)fluoranthene	mg/kg mg/kg	<u> </u>	-	<0.05 <0.075	<0.05 <0.075	<0.05 <0.075	<0.068 <0.096	<0.05 <0.075	<0.05 <0.075	<0.05 <0.075	-	-	-	<0.05 <0.075	<0.05 <0.075	<0.05 <0.075	<0.05 <0.075	<0.05 <0.075
Benzo(g_h_i)perylene	mg/kg mg/kg	0.17	3.2	<0.05	<0.075	<0.075	<0.096	<0.05	<0.075	<0.05	-	-	-	<0.075	<0.075	<0.075	<0.075	<0.075
Benzo(k)fluoranthene	mg/kg	0.24	13.40	<0.05	<0.05	<0.05	<0.068	< 0.05	<0.05	<0.05	-	-	-	<0.05	<0.05	<0.05	<0.05	< 0.05
Chrysene	mg/kg	0.057	0.86	<0.05	<0.05	<0.05	<0.068	0.1	0.1	0.1	-	-	-	<0.05	<0.05	0.1	<0.05	<0.05
Dibenz(a_h)anthracene Fluoranthene	mg/kg mg/kg	0.0062	0.14 2.4	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.068 <0.068	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	-	-	-	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05
Fluorene	mg/kg	0.021	0.14	<0.05	<0.05	<0.05	<0.068	<0.05	<0.05	<0.05	-	-		<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	0.2	3.2	<0.05	<0.05	<0.05	<0.068	<0.05	<0.05	<0.05	-	-		<0.05	<0.05	<0.05	<0.05	<0.05
1-Methylnaphthalene 2-Methylnaphthalene	mg/kg	0.02	0.2	<0.03	<0.03	<0.03	0.07	0.140	0.1	0.1	-	-	-	0.1	<0.03	0.1	<0.03	<0.03
2-Metnyinapnthalene 1+2-Methylnaphthalene	mg/kg mg/kg	U.UZ -	U.Z -	<0.03 <0.05	<0.03 <0.05	<0.03 <0.05	0.1 0.2	0.1 0.3	0.1 0.1	0.1 0.2	-	-	-	0.1 0.1	<0.03 <0.05	0.1 0.2	<0.03 <0.05	<0.03 <0.05
Naphthalene	mg/kg	0.035	0.39	0.0	<0.01	<0.01	0.04	0.1	0.0	0.0	-	-	-	0.0	<0.01	0.0	<0.01	<0.01
Phenanthrene	mg/kg	0.042	0.52	<0.05	<0.05	<0.05	0.1	0.3	0.1	0.2	-	-		0.1	<0.05	0.1	<0.05	<0.05
Pyrene Quinoline	mg/kg	0.053	0.88	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.068 <0.068	<0.05 <0.05	<0.05 <0.05	<0.05	-	-	-	<0.05 <0.05	<0.05	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05
d9-Acridine	mg/kg %	· ·	-	<0.05 112.0	<0.05 105.0	<0.05 119.0	<0.068 122.0	<0.05 106.0	<0.05 108.0	<0.05 105.0	-	-	-	<0.05 107.0	<0.05 97.4	<0.05 86.9	<0.05 85.4	<0.05 90.0
d12-Chrysene	%		-	116.0	126.0	123.0	123.0	129.0	116.0	127.0	-	-		129.0	99.4	90.4	92.7	93.3
d8-Naphthalene	%	-	-	121.0	113.0	120.0	125.0	119.0	120.0	119.0	-	-		114.0	102.0	94.3	95.1	96.5
d10-Phenanthrene B(a)P Total Potency Equivalent	% ma/ka	-	-	123.0 <0.065	116.0 <0.065	119.0 <0.065	127.0 0.1	118.0 <0.065	118.0 <0.065	115.0 <0.065	-	-	-	117.0 <0.065	111.0 <0.065	99.9 <0.065	99.6 <0.065	100.0 <0.065
LMW PAH ^a	mg/kg mg/kg	0.10	-	<0.065	<0.065	<0.065	0.1	<0.065	<0.065	<0.065	-	-	-	<0.065 0.6	<0.065	<0.065 0.6	<0.065	<0.065
HMW PAH ^{b)}	mg/kg	1.00	-	0.6	0.6	0.6	0.8	0.6	0.6	0.6	-	-		0.6	0.6	0.6	0.6	0.6
Total PAH ^{c)}	mg/kg	4.00	35.00	1.0	1.0	1.0	1.5	1.5	1.2	1.2	-	-		1.1	1.0	1.2	1.0	1.0
PAHs, total PAHs, total (BC Sched 3.4)	mg/kg	4.00 4.00	35.00 35.00	<0.2	<0.2	<0.2	<0.26	0.4	0.2	0.3	-	-	-	<0.2	<0.2	0.2	<0.2	<0.2
IACR: Coarse	mg/kg -	4.00	-	<0.2 <0.10	<0.2 <0.10	<0.2 <0.10	<0.23 <0.10	0.6 <0.10	0.3 <0.10	0.3 <0.10	-	-	-	0.2 <0.10	<0.2 <0.10	0.3 <0.10	<0.2	<0.2
IACR:Fine	-			<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	-	-		<0.10	<0.10	<0.10	-	-
IACR (CCME)	-	-	-	<0.60	<0.60	<0.60	0.8	0.6	0.6	0.6	-	-	-	<0.60	<0.60	0.6	-	-
Note: Data were screened against BC working sediment of	quality quidelines (W	SOGs) for the protect	ion of Aquatic Life (BC ENV 2	2021) where available														

Table 1.0: Cadimant Coulity Data Coursing 2000																		
Table I-2: Sediment Quality Data Screening, 2022 Location											Mine-Influenced Sites							
Watercourse Station			ment Quality Guidelines			Corbin Creek CORCK					Michel Creek MIDCO					Michel Creek MIDAG		
Sample ID		for the Protec	tion of Aquatic Life		22 RG_CORCK_SE-2_2022	RG_CORCK_SE-3_2022					RG_MIDCO_SE-3_2022					- RG_MIDAG_SE-3_2022		
Replicate		Lower WSQG	Upper WSQG (mg/kg	09-14_N 1	09-14_N 2	09-14_N 3	09-14_N 4	09-14_N 5	09-13_N 1	09-13_N 2	09-13_N 3	09-13_N 4	09-13_N 5	09-13_N 1	09-13_N 2	09-13_N 3	09-13_N 4	09-13_N 5
Date		(mg/kg dw)	dw)	14-Sep-22	14-Sep-22	14-Sep-22	14-Sep-22	14-Sep-22	13-Sep-22	13-Sep-22	13-Sep-22	13-Sep-22	13-Sep-22	13-Sep-22	13-Sep-22	13-Sep-22	13-Sep-22	13-Sep-22
Parameter Physical Tests	Unit																	
Moisture	%	-	-	57.0	-	60.7	59.0	54.7	75.7	67.6	78.4	76.6	73.8	82.8	85.9	83.9	90.0	88.0
pH (1:2 soil:water) Particle Size Distribution	pН	-	-	8.1	8.0	7.9	8.2	8.2	7.9	7.9	7.8	8.0	8.1	7.6	7.4	7.3	7.4	7.7
% Gravel (>2 mm)	%	-	-	16.1	2.2	1.2	5.3	3.5	1.2	2.4	3.4	4.0	2.3	19.2	<1	<1	<1	3.5
% Sand (0.125 mm - 0.063 mm)	%	-	-	14.8	16.2	15.1	15.4	15.6	7.2	8.9	6.6	4.5	5.2	9.5	7.4	10.6	8.1	6.4
% Sand (0.25 mm - 0.125 mm) % Sand (0.50 mm - 0.25 mm)	%	-	-	13.6	17.3 7.4	18.4 14.5	13.3 7.1	15.0 10.2	4.0 2.5	5.6 6.2	5.8 7.1	3.9 6.0	3.4 3.9	4.6 1.6	3.0 1.4	5.4 1.6	4.4 1.6	3.4 1.3
% Sand (1.00 mm - 0.50 mm)	%	-	-	1.9	3.8	6.2	4.2	6.2	2.6	15.5	9.6	11.0	7.0	3.1	1.0	<1	<1	<1
% Sand (2.00 mm - 1.00 mm) % Silt (0.063 mm - 0.0312 mm)	%		-	3.3 18.3	2.9 18.9	2.5 15.9	4.8 17.8	4.3 16.4	3.4 28.8	10.0 18.7	6.4 22.2	13.0 21.0	4.5 26.5	7.3 23.6	<1 36.8	<1 35.2	<1 35.5	<1 36.3
% Silt (0.031 mm - 0.004 mm)	%	-	-	23.8	25.3	21.1	25.7	22.8	39.4	25.6	30.6	29.3	37.2	25.5	41.1	36.7	39.8	39.4
% Clay (<4 µm) Organic Carbon	%	-	-	4.9	6.0	5.1	6.4	6.0	10.9	7.1	8.3	7.3	10.0	5.6	9.1	8.5	9.7	8.1
Inorganic Carbon <63 µm	%	-	-	7.4	6.9	7.0	6.7	7.9	2.3	1.7	2.1	2.4	2.2	2.6	2.5	2.7	2.2	3.0
Total Carbon <63 μm Total Organic Carbon	%	-	-	13.0	13.4	13.7 6.7	13.2	13.4 5.5	9.3	6.0 4.3	8.0	8.3	9.5	10.2 7.7	12.9 10.4	13.0	11.9 9.7	15.5 12.5
Inorganic Carbon (as CaCQ equivalent)	%	-	-	5.6 61.6	6.5 57.3	58.4	6.5 55.9	66.0	7.0 19.4	14.0	5.9 17.4	5.9 20.2	7.3 18.5	21.2	20.7	10.3 22.8	18.2	24.7
Total Metals	malka			1050	1670	2400	2470	2100	7430	10900	8370	0000	11400	6400	6500	5000	6000	6000
Aluminum (AI) Antimony (Sb)	mg/kg mg/kg		-	1950 0.3	0.3	2180 0.3	2470 0.3	0.3	7430 0.3	0.4	0.3	9290 0.3	0.3	6160 0.4	6530 0.5	5800 0.4	6920 0.5	6680 0.5
Arsenic (As)	mg/kg	5.9	17	2.7	2.0	2.6	3.4	3.3	5.3	6.8	5.9	6.7	6.4	4.9	5.5	4.3	5.1	4.7
Barium (Ba) Beryllium (Be)	mg/kg mg/kg	-	-	146.0 0.3	146.0 0.3	190.0 0.4	143.0 0.4	154.0 0.4	142.0 0.7	150.0 0.8	142.0 0.7	161.0 0.7	110.0 0.7	107.0 0.6	111.0 0.6	111.0 0.6	123.0 0.6	117.0 0.6
Bismuth (Bi)	mg/kg		-	<0.2	<0.48	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Boron (B) Cadmium (Cd)	mg/kg mg/kg	0.6	3.5	6.5 9.1	<12 7.8	7.9 10.7	5.6 7.5	6.8 9.2	10.3	12.8 2.1	10.1 1.8	9.9 2.2	9.9 1.3	8.3 1.5	8.7 1.7	8.0 1.6	10.0 1.7	10.2 1.6
Calcium (Ca)	mg/kg	-	-	340000	284000	357000	253000	309000	75500	66200	80000	73300	46400	73400	76400	81500	67600	92000
Chromium (Cr) Cobalt (Co)	mg/kg	37	90	3.4	2.9	3.5	4.6 188.0	4.2	9.3	13.6 64.0	10.5 65.9	11.8	13.3 48.8	9.4 16.1	10.1 17.5	9.0	10.4	10.4 14.2
Copper (Cu)	mg/kg mg/kg	36	197	230.0 6.6	193.0 5.9	279.0 8.0	7.0	283.0 7.6	81.0 13.6	16.7	14.8	82.6 16.4	16.4	11.0	11.7	15.2 10.9	20.2 12.6	10.6
Iron (Fe)	mg/kg	21200 35	43766 91	4980	3180	4160	5280	4950	13200	17800	15400	16100	21200	10300	10400	9360	10400	9640
Lead (Pb) Lithium (Li)	mg/kg mg/kg	-	-	3.3	2.5 <4.8	3.0 3.6	3.8	3.0 2.8	9.4 13.8	10.9 19.1	10.1 16.1	10.4 15.7	10.1 21.6	7.4 10.8	7.3 11.3	7.0 11.1	7.8 11.1	6.8 11.3
Magnesium (Mg)	mg/kg	-	-	6420	5720	7170	6590	6510	5720	6680	6930	6670	7570	7670	7770	7200	7190	7290
Manganese (Mn) Mercury (Hg)	mg/kg mg/kg	460 0.17	1100 0.49	1950.0 0.030	1590.0 0.024	2200.0 0.029	1480.0 0.027	2170.0 0.028	751.0 0.034	584.0 0.032	629.0 0.031	684.0 0.033	605.0 0.023	156.0 0.040	194.0 0.035	132.0 0.033	282.0 0.044	148.0 0.033
Molybdenum (Mo)	mg/kg	25	23000	0.6	0.5	0.8	0.6	0.7	1.5	1.7	1.6	1.6	1.4	1.2	1.2	1.1	1.3	1.2
Nickel (Ni) Phosphorus (P)	mg/kg mg/kg	16	75 -	227.0 266	199.0 172	284.0 343	201.0 440	267.0 295	119.0 1040	114.0 1230	109.0 1150	134.0 1300	89.4 1220	57.7 955	62.7 1100	57.9 984	64.4 1020	57.2 1010
Potassium (K)	mg/kg	-	-	580	560	600	630	590	1320	2010	1410	1550	1920	1160	1280	1110	1390	1390
Selenium (Se) Silver (Ag)	mg/kg mg/kg	2.0 0.5	-	2.1 <0.1	2.0 <0.24	4.6 <0.1	2.2 <0.1	2.9 <0.1	3.5 0.1	4.0 0.1	3.4 0.1	4.2 0.1	2.3 <0.1	3.3 0.2	4.7 0.2	3.7 0.2	6.2 0.2	5.2 0.2
Sodium (Na)	mg/kg	-	-	348.0	365.0	409.0	263.0	326.0	160.0	181.0	163.0	186.0	151.0	116.0	175.0	145.0	149.0	162.0
Strontium (Sr) Sulfur (S)	mg/kg mg/kg	-	-	403.0 4900	365.0 4200	426.0 5000	300.0 3400	372.0 4300	133.0 1800	120.0 2000	137.0 1900	132.0 2100	91.9 <1000	106.0 1700	114.0 1800	116.0 1900	102.0 2100	129.0 2400
Thallium (TI)	mg/kg	-	-	0.2	0.2	0.3	0.2	0.3	0.3	0.3	0.3	0.3	0.3	0.4	0.4	0.4	0.4	0.4
Tin (Sn) Titanium (Ti)	mg/kg	-	-	<2 7.2	<4.8	<2 7.2	<2 7.7	<2	<2 19.1	<2	<2	<2	<2 26.9	<2 17.3	<2	<2 14.1	<2	<2 17.9
Tungsten (W)	mg/kg mg/kg	-	-	<0.5	25.9 <1.2	<0.5	<0.5	8.4 <0.5	<0.5	26.6 <0.5	21.2 <0.5	22.8 <0.5	<0.5	<0.5	13.7 <0.5	<0.5	14.2 <0.5	<0.5
Uranium (U)	mg/kg	-	-	2.2	2.0	3.0	1.9	2.2	1.0	1.0	0.9	1.0	0.7	0.9	1.0	0.9	1.0	1.0
Vanadium (V) Zinc (Zn)	mg/kg mg/kg	123	315	6.4 703.0	5.5 <u>667.0</u>	7.5 <u>831.0</u>	9.0 <u>593.0</u>	7.8 724.0	15.0 152.0	21.0 169.0	16.5 147.0	18.4 176.0	20.5 128.0	16.3 116.0	17.7 123.0	15.2 115.0	18.9 125.0	18.1 117.0
Zirconium (Zr)	mg/kg	-	-	<1	<2.4	<1	<1	<1	1.0	1.3	1.1	1.1	1.2	1.3	1.5	1.3	1.4	1.7
Polycyclic Aromatic Hydrocarbons (PAHs) Acenaphthene	mg/kg	0.0067	0.089	<0.05	-	0.1	0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.071	<0.069	<0.07	<0.14	<0.073
Acenaphthylene	mg/kg	0.0059	0.13	<0.05	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.071	<0.069	<0.07	<0.14	<0.073
Acridine Anthracene	mg/kg mg/kg	0.047	0.25	0.1 <0.05	-	0.1 <0.05	0.1 <0.05	0.1 <0.05	0.1 <0.05	<0.05 <0.05	0.1 <0.05	0.1 <0.05	0.1 <0.05	<0.071 <0.071	<0.069 <0.069	<0.07 <0.07	<0.14 <0.14	<0.073 <0.073
Benz(a)anthracene	mg/kg	0.032	0.39	<0.05	-	0.1	0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.071	<0.069	<0.07	<0.14	<0.073
Benzo(a)pyrene Benzo(b&j)fluoranthene	mg/kg mg/kg	0.032	0.78	<0.05 0.1	-	0.1 0.2	0.1 0.3	<0.05 0.2	<0.05 0.2	<0.05 0.1	<0.05 0.2	0.1 0.2	<0.05 0.2	<0.071 0.1	<0.069 0.1	<0.07 0.1	<0.14 0.2	<0.073 0.1
Benzo(b+j+k)fluoranthene	mg/kg	-	-	0.1	-	0.2	0.3	0.2	0.2	0.1	0.2	0.3	0.2	0.1	0.1	0.1	0.2	<0.103
Benzo(g_h_i)perylene Benzo(k)fluoranthene	mg/kg	0.17	3.2 13.40	0.1 <0.05	-	0.1 <0.05	0.1 <0.05	0.1 <0.05	0.1 <0.05	0.1 <0.05	0.1 <0.05	0.1	0.1 <0.05	<0.071 <0.071	<0.069	<0.07 <0.07	<0.14 <0.14	<0.073 <0.073
Chrysene	mg/kg mg/kg	0.057	0.86	0.2	-	0.3	0.4	0.3	0.3	0.2	0.3	0.3	0.3	0.2	0.1	0.2	0.2	0.1
Dibenz(a_h)anthracene Fluoranthene	mg/kg mg/kg	0.0062	0.14 2.4	<0.05 <0.05	-	<0.05 0.1	<0.05 0.1	<0.05 0.1	<0.05 0.1	<0.05 <0.05	<0.05 0.1	<0.05 0.1	<0.05 0.1	<0.071 <0.071	<0.069 0.1	<0.07 0.1	<0.14 <0.14	<0.073 <0.073
Fluorene	mg/kg mg/kg	0.021	0.14	0.1	-	0.2	0.2	0.1	0.1	0.1	0.1	0.1	0.1	<0.071	<0.069	<0.07	<0.14	<0.073
Indeno(1,2,3-c,d)pyrene 1-Methylnaphthalene	mg/kg	0.2	3.2	<0.05 0.6	-	<0.05 1.1	<0.05 1.4	<0.05 0.8	<0.05 0.7	<0.05 0.5	<0.05 0.7	<0.05 0.9	<0.05 0.7	<0.071 0.5	<0.069 0.3	<0.07 0.4	<0.14 0.4	<0.073 0.3
2-Methylnaphthalene	mg/kg mg/kg	0.02	0.2	1.0	-	1.8	2.4	1.3	1.2	0.8	1.2	1.4	1.1	0.5	0.5	0.4	0.4	0.3 0.4
1+2-Methylnaphthalene	mg/kg	- 0.035	-	1.6	-	2.9	3.8	2.2	1.9	1.3	1.9	2.3	1.8	1.1	0.8	0.9	1.0	0.7
Naphthalene Phenanthrene	mg/kg mg/kg	0.035	0.39 0.52	0.3 <u>0.5</u>	-	0.7 1.1	0.9 1.1	0.5 0.7	0.5 0.7	0.3 0.4	0.5 0.7	0.6 0.8	0.4 0.6	0.3 0.5	0.2	0.3	0.3 0.5	0.2
Pyrene	mg/kg	0.053	0.88	0.1	-	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	<0.071	0.1	0.1	<0.14	< 0.073
Quinoline d9-Acridine	mg/kg %	- :	-	<0.05 114.0	-	<0.05 115.0	<0.05 123.0	<0.05 110.0	<0.05 98.1	<0.05 90.3	<0.05 94.8	<0.05 92.3	<0.05 91.8	<0.071 105.0	<0.069 92.7	<0.07 99.5	<0.14 99.8	<0.073 99.3
d12-Chrysene	%	-	-	126.0	-	126.0	112.0	127.0	110.0	104.0	108.0	106.0	106.0	123.0	105.0	114.0	114.0	115.0
d8-Naphthalene d10-Phenanthrene	%	-	-	122.0 121.0	-	125.0 121.0	122.0 124.0	118.0 116.0	100.0 104.0	68.4 95.4	76.8 100.0	83.1 97.9	78.7 97.1	84.1 111.0	70.0 96.7	78.8 102.0	74.5 102.0	77.5 103.0
B(a)P Total Potency Equivalent	mg/kg	-	-	0.1	-	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.1
LMW PAH ^{a)} HMW PAH ^{b)}	mg/kg	0.10 1.00	-	2.8	-	5.1	6.2	3.7	3.4	2.4	3.5	4.0	3.2	2.4	1.9	2.0	2.7	1.7
Total PAH ^{C)}	mg/kg mg/kg	4.00	35.00	0.9 3.6	-	1.3 6.4	1.6 7.8	1.1 4.9	1.1 4.5	0.8 3.2	1.1 4.6	1.3 5.3	1.1 4.3	1.0 3.4	0.9 2.8	1.0 3.0	1.8 4.5	0.9 2.5
PAHs, total	mg/kg	4.00	35.00	1.4	-	2.9	3.3	2.0	1.9	1.3	2.0	2.4	1.8	1.2	1.1	1.2	1.3	0.8
PAHs, total (BC Sched 3.4) IACR:Coarse	mg/kg -	4.00	35.00	2.2 <0.10	0.0	4.4 <0.10	5.3 <0.10	3.0 <0.10	2.8 <0.10	1.9 <0.10	2.9 <0.10	3.4 <0.10	2.6 <0.10	1.7 <0.10	1.4	1.6 <0.10	1.7 <0.14	1.1 <0.10
IACR:Fine	-			<0.10	0.0	0.2	0.2	0.1	0.1	<0.10	0.1	0.2	0.1	0.1	0.1	0.1	0.2	0.1

IACR Fine

IACR (CCME)

Note: Data were screened against BC working sediment quality guidelines (WSQGs) for the protection of Aquatic Life (BC ENV 2t (a) = Low molecular weight PAHs are comprised of scenaphthlene, acenaphthlyene, acridine, anthracene, fluorene, 1-methylnapht (b) = High molecular weight PAHs are comprised of benz(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(b+j+k)fluu (c) = Sum of all compounds analyzed in the chemical class, values below the method detection limit were assigned a value of the to value = concentration exceeds the BC Lower Sediment Water Qual = concentration exceeds the BC Upper Sediment Water Qual CCME = Canadian Council of the Minsters of the Environment; LNW = low molecular weight; HMW = high molecular weight; WSQ - en og guideline or no data; % = percent, mg/kg = milligrams per kilogram; dw = dry weight; < = less than; > = greater than; mm = n

WSP Canada Inc.

Table I-2: Sediment Quality Data Screening, Location	-744							Mine-Influ	uenced Sites				
Watercourse Station			ment Quality Guidelines	S		Michel Creek MUILE					Michel Creek		
Sample ID		for the Protec	ction of Aquatic Life			RG_MIULE_SE-3_2022		2- RG_MIULE_SE-5_2022					
Replicate		Lower WSQG	Upper WSQG (mg/kg	09-12_N 1	09-12_N 2	09-12_N 3	09-12_N 4	09-12_N 5	12_N 1	12_N 2	12_N 3	14_N 4	14_N 5
Date Parameter	Unit	(mg/kg dw)	dw)	12-Sep-22	12-Sep-22	12-Sep-22	12-Sep-22	12-Sep-22	12-Sep-22	12-Sep-22	12-Sep-22	16-Sep-22	16-Sep-22
Physical Tests													
Moisture pH (1:2 soil:water)	% pH	-	-	77.0 7.3	73.2 7.5	79.0 7.3	85.5 7.2	69.2 7.6	66.5 7.7	82.1 7.6	50.5 7.7	72.4 7.6	81.2 7.6
Particle Size Distribution			1										
% Gravel (>2 mm) % Sand (0.125 mm - 0.063 mm)	%	-	-	15.1 14.4	5.6 7.8	12.7 6.7	4.7 6.1	3.0 8.2	1.4 17.4	9.0 7.5	2.5 11.0	13.1 4.7	6.4 9.1
% Sand (0.25 mm - 0.125 mm) % Sand (0.50 mm - 0.25 mm)	%	-	-	15.0 6.5	8.0 13.1	5.5 5.0	5.1 7.0	10.1 19.7	27.8 16.9	4.7 3.4	13.1 14.2	3.1 3.5	4.3 1.8
% Sand (1.00 mm - 0.50 mm)	%	-	-	2.4	10.9	7.2	4.3	13.3	2.6	4.4	10.5	9.6	1.1
% Sand (2.00 mm - 1.00 mm) % Silt (0.063 mm - 0.0312 mm)	%	-	-	2.4	5.0 20.9	4.6 24.7	2.9 30.3	4.0 17.4	<1 14.6	6.2 27.3	3.3 18.2	16.6 21.1	1.9 32.7
% Silt (0.031 mm - 0.004 mm)	%	-	-	20.0	23.8	27.5	33.1	19.4	14.6	30.0	21.1	23.3	35.2
% Clay (<4 µm) Organic Carbon	%	-	-	4.0	4.9	6.1	6.5	4.9	4.2	7.5	6.1	5.0	7.5
Inorganic Carbon <63 µm	%	-	-	1.7	2.1	2.5	2.5	1.9	1.1	2.2	1.4	1.7	2.9
Total Carbon <63 µm Total Organic Carbon	%	-	-	7.6 5.9	7.8 5.7	9.5 7.0	10.0 7.5	6.9 5.0	4.9 3.8	8.9 6.6	6.0 4.6	7.1 5.4	9.8 6.9
Inorganic Carbon (as CaCQ equivalent) Total Metals	%	-	-	14.3	17.4	20.7	20.8	15.8	9.4	18.6	11.8	13.8	24.0
Aluminum (AI)	mg/kg		-	7070	6350	5290	5410	6830	7640	6310	6050	6040	4520
Antimony (Sb) Arsenic (As)	mg/kg mg/kg	5.9	17	0.6 5.6	0.6 6.0	0.5 4.7	0.4 4.3	0.5 5.9	0.7 5.1	0.5 4.9	0.7 5.0	0.7 5.7	0.5 4.2
Barium (Ba)	mg/kg	-	-	166.0	147.0	149.0	153.0	133.0	190.0	200.0	204.0	182.0	238.0
Beryllium (Be) Bismuth (Bi)	mg/kg mg/kg		-	0.6 <0.2	0.6 <0.2	0.5 <0.2	0.5 <0.2	0.6 <0.2	0.6 <0.2	0.4 <0.2	0.5 <0.2	0.5 <0.2	0.4 <0.2
Boron (B) Cadmium (Cd)	mg/kg mg/kg	- 0.6	3.5	8.8	8.5	7.4 1.4	10.6 1.4	8.4	7.9 1.4	9.1 1.7	7.9 1.7	6.9 2.4	7.6 1.6
Calcium (Ca)	mg/kg	-	-	1.2 55400	1.4 57900	79400	83400	1.2 56000	38700	65200	46100	54300	92200
Chromium (Cr) Cobalt (Co)	mg/kg mg/kg	37	90	10.2 9.0	10.3 9.9	8.5 9.5	8.2 10.9	9.7 9.5	11.6 6.1	10.1 6.3	10.0 6.0	12.0 6.8	8.9 7.0
Copper (Cu)	mg/kg	36	197	11.3	13.4	10.2	10.0	11.4	11.2	10.2	10.7	12.7	10.0
Iron (Fe) Lead (Pb)	mg/kg mg/kg	21200 35	43766 91	11900 8.3	15400 8.0	11000 6.9	9640 6.6	13300 8.2	11900 8.1	10300 6.5	13900 7.5	13200 7.0	10100 6.2
Lithium (Li)	mg/kg	-	-	10.7	10.7	9.8	10.0	11.0	10.1	8.4	8.8	7.4	5.6
Magnesium (Mg) Manganese (Mn)	mg/kg mg/kg	460	1100	6520 198.0	5460 217.0	6430 212.0	5850 213.0	5770 182.0	4550 147.0	5450 191.0	4240 202.0	5490 196.0	5450 198.0
Mercury (Hg)	mg/kg	0.17 25	0.49 23000	0.033	0.027	0.028	0.034	0.032	0.037	0.028	0.034	0.042	0.038
Molybdenum (Mo) Nickel (Ni)	mg/kg mg/kg	16	75	1.4 37.8	1.8 <u>427.0</u>	1.3 36.6	1.2 39.3	1.4 35.8	1.3 27.5	0.9 29.9	1.2 27.8	1.2 35.1	1.0 33.6
Phosphorus (P) Potassium (K)	mg/kg mg/kg	-	-	1080 1370	1160 1220	1020 950	955 1360	1080 1280	1220 1380	1210 1130	1190 1040	1210 1140	1140 950
Selenium (Se)	mg/kg	2.0	-	2.0	2.4	3.2	3.9	2.1	1.7	2.8	2.1	2.6	2.6
Silver (Ag) Sodium (Na)	mg/kg mg/kg	0.5	-	0.2 103.0	0.1 105.0	0.2 125.0	0.2 158.0	0.1 90.0	0.2 87.0	0.2 123.0	0.2 79.0	0.2 132.0	0.2 140.0
Strontium (Sr)	mg/kg	-	-	86.1	93.4	114.0	114.0	85.5	73.3	107.0	93.2	92.2	125.0
Sulfur (S) Thallium (TI)	mg/kg mg/kg	-	-	1000 0.3	<1000 0.3	1400 0.3	1600 0.3	1100 0.3	<1000 0.3	<1000 0.2	<1000 0.2	<1000 0.2	1100 0.2
Tin (Sn) Titanium (Ti)	mg/kg mg/kg	-	-	<2 20.0	<2 21.6	<2 14.7	<2 15.8	<2 16.3	<2 41.5	<2 25.7	<2 30.3	<2 30.4	<2 14.4
Tungsten (W)	mg/kg		-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Uranium (U) Vanadium (V)	mg/kg mg/kg	-	-	0.9 22.2	0.9 23.7	0.8 17.6	0.8 15.9	0.8 21.3	1.3 30.9	0.9 24.1	1.0 25.1	1.0 29.4	0.8 20.5
Zinc (Zn)	mg/kg	123	315	96.5	121.0	100.0	99.3	99.6	94.6	94.9	91.8	117.0	102.0
Zirconium (Zr) Polycyclic Aromatic Hydrocarbons (PAHs)	mg/kg	-	-	1.2	<1	1.2	1.1	1.1	1.1	<1	<1	1.2	<1
Acenaphthene Acenaphthylene	mg/kg	0.0067 0.0059	0.089 0.13	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.068 <0.068	<0.05 <0.05	<0.05 <0.05	<0.066 <0.066	<0.05 <0.05	<0.05 <0.05	<0.068 <0.068
Acridine	mg/kg mg/kg	-	-	<0.05	<0.05	<0.05	<0.068	<0.05	<0.05	<0.066	<0.05	<0.05	<0.068
Anthracene Benz(a)anthracene	mg/kg mg/kg	0.047	0.25 0.39	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<u>0.4</u> <0.068	<0.05 <0.05	<0.05 <0.05	0.2 <0.066	0.1 <0.05	<0.05 <0.05	<0.068 <0.068
Benzo(a)pyrene	mg/kg	0.032	0.78	<0.05	<0.05	<0.05	<0.068	<0.05	<0.05	<0.066	<0.05	<0.05	<0.068
Benzo(b&j)fluoranthene Benzo(b+j+k)fluoranthene	mg/kg mg/kg	-	-	0.1 <0.075	0.1 <0.075	0.1 0.1	0.1 <0.096	<0.05 <0.075	<0.05 <0.075	<0.066 <0.093	<0.05 <0.075	<0.05 <0.075	<0.068 <0.096
Benzo(g_h_i)perylene Benzo(k)fluoranthene	mg/kg	0.17 0.24	3.2 13.40	<0.05	<0.05	<0.05	<0.068	<0.05	<0.05	<0.066	<0.05	<0.05	<0.068
Chrysene	mg/kg mg/kg	0.24	0.86	<0.05 0.1	<0.05 0.1	<0.05 0.1	<0.068 0.2	<0.05 0.1	<0.05 0.1	<0.066 0.1	<0.05 <0.05	<0.05 0.1	<0.068 0.1
Dibenz(a_h)anthracene Fluoranthene	mg/kg	0.0062 0.11	0.14 2.4	<0.05 <0.05	<0.05 <0.05	<0.05 0.1	<0.068	<0.05 <0.05	<0.05 <0.05	<0.066 <0.066	<0.05 <0.05	<0.05 <0.05	<0.068 <0.068
Fluorene	mg/kg mg/kg	0.021	0.14	<0.05	<0.05	<0.05	<0.068	<0.05	<0.05	<0.066	<0.05	<0.05	<0.068
Indeno(1,2,3-c,d)pyrene 1-Methylnaphthalene	mg/kg mg/kg	0.2	3.2	<0.05 0.2	<0.05 0.2	<0.05 0.2	<0.068	<0.05 0.1	<0.05 0.1	<0.066 0.1	<0.05 0.1	<0.05 0.1	<0.068
2-Methylnaphthalene	mg/kg	0.02	0.2	0.3	0.2	0.3	0.4	0.2	0.1	0.2	0.1	0.1	0.2
1+2-Methylnaphthalene Naphthalene	mg/kg mg/kg	0.035	0.39	0.5 0.2	0.4 0.1	0.4 0.1	0.7 0.2	0.3 0.1	0.3 0.1	0.3 0.1	0.2	0.2 0.1	0.3 0.1
Phenanthrene Pyrene	mg/kg	0.042 0.053	0.52 0.88	0.3	0.2	0.2	0.4	0.2	0.2	0.2	0.1	0.1	0.2
Quinoline	mg/kg mg/kg	0.053	-	<0.05 <0.05	<0.05 <0.05	<0.05 <0.05	<0.068 <0.068	<0.05 <0.05	<0.05 <0.05	<0.066 <0.066	<0.05 <0.05	<0.05 <0.05	<0.068 <0.068
d9-Acridine d12-Chrysene	%	-	-	98.5 112.0	95.9 109.0	109.0 124.0	122.0 126.0	102.0 117.0	90.9 104.0	105.0 119.0	96.7 112.0	118.0 112.0	121.0 117.0
d8-Naphthalene	%	-	-	63.6	80.4	102.0	81.9	83.5	73.1	73.5	84.5	126.0	122.0
d10-Phenanthrene B(a)P Total Potency Equivalent	% mg/kg	-	-	101.0 0.1	101.0 <0.065	115.0 0.1	124.0 0.1	106.0 <0.065	92.8 <0.065	109.0 0.1	102.0 <0.065	126.0 <0.065	129.0 0.1
LMW PAH ^{a)}	mg/kg	0.10	-	1.2	1.0	1.1	1.9	0.9	0.8	1.2	0.6	0.7	1.0
HMW PAH ^{b)} Total PAH ^{c)}	mg/kg mg/kg	1.00 4.00	35.00	0.6 1.9	0.6 1.7	0.7 1.8	0.9 2.8	0.6 1.5	0.6 1.4	0.8 1.9	0.6 1.2	0.6 1.3	0.8 1.8
PAHs, total	mg/kg	4.00	35.00 35.00	0.6	0.5	0.6	1.2	0.3	0.3	0.6	0.2	0.3	0.4
PAHs, total (BC Sched 3.4) IACR:Coarse	mg/kg -	4.00	35.00	0.8 <0.10	0.7 <0.10	0.8 <0.10	1.5 <0.10	0.5 <0.10	0.5 <0.10	0.8 <0.10	0.3 <0.10	0.4 <0.10	0.5 <0.10
IACR: Eine				+0.40	-0.40	+0.40	1		0.40			1	0.40

IACR Coarse

IACR Coarse

IACR Come

IACR COME

Note: Data were screened against BC working sediment quality guidelines (WSQGs) for the protection of Aquatic Life (BC ENV 2X (a) = Low molecular weight PAHs are comprised of benz() and the protection of Aquatic Life (BC ENV 2X (a) = Low molecular weight PAHs are comprised of benz() and the penzo(a) prene, benzo(b) [Invanite, benzo(b)+]-Highliu (c) = Sum of all compounds analyzed in the chemical class, values below the method detection limit were assigned a value of the c Value

— concentration exceeds the BC Lower Sediment Water Qual COME = Canadian Council of the Minsters of the Environment, LMW = low molecular weight; HMW = high molecular weight; WSQ = no guideline or no data, % = percent, mg/kg = milligrams per kilogram; dw = dry weight; < = less than; > = greater than; mm = n

APPENDIX J

Field and Habitat Data

Table J-1: Supporting Habitat Data at CMm LAEMP Sampling Stations, 2022

Station ID			Reference				Mine-inf	luenced		
Station iD		MI25	AGCK	LE1	MIUCO	CORCK	MIDCO	MIDAG	MIULE	MI5
Watercourse		Michel Creek	Andy Good Creek	Leach Creek	Michel Creek	Corbin Creek		Miche	l Creek	
Date Sampled		15-Sep-22	15-Sep-22	16-Sep-22	14-Sep-22	14-Sep-22	13-Sep-22	13-Sep-22	12-Sep-22	12-Sep-22
UTMs: NAD 83, Zone 11 - Easti	ng	668184	667557	659635	668135	668539	667616	665220	660503	659496
UTMs: NAD 83, Zone 11 - North	ing	5482818	5488648	5494108	5486767	5487366	5487621	5489324	5493048	5496774
Habitat Characteristics										
Surrounding Land Use and Area	Description	Forest, logging	Forest	Forest	Mining, logging, and forest	Mining, logging, and forest	Mining, logging, and forest	Mining, logging, and forest	Mining, logging, and forest	Mining and forest
Anthropogenic Influences		-	-	-	CMm downstream	CMm upstream	CMm upstream	CMm upstream	CMm upstream	CMm upstream
Length of Reach Assessed (m)		30	100	100	50	-	50	50	100	100
	% Bedrock	0	0	0	0	0	0	5	0	0
ā	% Boulder	10	20	10	5	90 ^(a)	10	40	20	30
tra	% Cobble	70	60	50	80	0	50	30	30	30
sqr	% Gravel	10	20	20	10	0	20	20	30	30
Sub	% Sand	5	0	10	0	5 ^(a)	10	0	10	0
	% Finer	5	0	10	5	5 ^(a)	10	5	10	10
Bank Stability	•	stable, no erosion	stable, no erosion	unstable, erosion	unstable, erosion	moderate	stable, no erosion	moderate	unstable, erosion	moderate
Water Colour and Clarity		colourless/clear		colourless/clear	colourless/clear	colourless/clear	colourless/clear	colourless/clear	colourless/clear	colourless/clear
Channel Measurements		•		•		•			•	
Bankfull Width (m)		5.8	12.0	26.1	_	4.6	10.5	9.5	18.5	43.6
Wetted Width (m)		5.8	6.8	14.8	-	4.6	8.2	8.1	11.4	9.9

Note: Stations are ordered upstream to downstream.

WSP Canada Inc. Page 1 of 3

a) Calcite covered most of the substrate.

^{- =} data not available or data not recorded; % = percent; cm = centimetre; m = metre; u/s = upstream; CMm = Coal Mountain Mine; LAEMP = local aquatic effects monitoring program.

Appendix J: Field and Habitat Data

Table J-2: Kick and Sweep Net Data for Samples Collected at CMm LAEMP Stations, 2022

June 2023

	Reference				1011110-1111	luenced		
RG_MI25	RG_AGCK	RG_LE1	RG_MIUCO	RG_CORCK	RG_MIDCO	RG_MIDAG	RG_MIULE	RG_MI5
15-Sep-22	15-Sep-22	16-Sep-22	14-Sep-22	14-Sep-22	13-Sep-22	13-Sep-22	12-Sep-22	12-Sep-22
668209	667627	659588	668232	668529	667769	665267	660633	659559
5482811	5488726	5494017	5486599	5487366	5487592	5489368	5492985	5496348
CNE, KMI,	CNE, KMI,	CNE, KMI,	CNE, KMI,	CNE, KMI,	CNE, KMI,	CNE, KMI,	CNE, KMI,	CNE, KMI, KHI
1	1	1						1
9	21	30						15
Yes			_	_		_		No
						1.5		-
								659503
								5496524
								12-Sep-22
								CNE, KMI,
	, ,							KHI
1	1			2	1			1
8	19			40	30			25
				_				No
								1.0
_			_					659499
								5496580
								12-Sep-22
								CNE, KMI,
	, ,	, ,			, ,	, ,		KHI
								1
	•	•		-	· ·			20
					_			No
								1.0
_						_	_	-
-	-	_	-	-		-	-	-
-	-	_	-	-		-	-	-
-	-	-	-	-		-	-	-
-	-	=	-	-	KHI	-	=	-
-	-	-	-	-			-	-
-	-	-	-	-		-	-	-
-	-	-	-	-		=	-	-
-	-	-	-	-		-	-	-
-	ı	ı	-	-	667666	ı	1	ı
-	-	-	-	-	5487664	ı	-	-
-	-	-	-	-	13-Sep-22	-	-	-
-	-	-	-	-	CNE, KMI, KHI	-	-	=
-	-	-	-	-	1	-	-	-
-	-	-	-	-	30	-	-	-
-	-	-	-	-	Yes	-	-	-
	_	_	_	_	4.0	_	_	_
	15-Sep-22 668209 5482811 CNE, KMI, KHI 1 9 Yes 5.0 668190 5482833 15-Sep-22 CNE, KMI, KHI 1 8 Yes 4.0 668170 5482853 15-Sep-22 CNE, KMI, KHI 1 1 5 Yes 4.0	15-Sep-22 15-Sep-22 668209 667627 5482811 5488726 CNE, KMI, KHI 1 1 1 9 21 Yes Yes 5.0 5.0 668190 667565 5482833 5488691 15-Sep-22 15-Sep-22 CNE, KMI, KHI 1 1 1 8 19 Yes Yes 4.0 4.0 668170 667541 5482853 5488612 15-Sep-22 15-Sep-22 CNE, KMI, KHI 1 1 1 1 1 1 5 20 CNE, KMI, KHI 1 1 1 1 5 20 Yes Yes 4.0 5.0	15-Sep-22 15-Sep-22 16-Sep-22 668209 667627 659588 5482811 5488726 5494017 CNE, KMI, KHI CNE, KMI, KHI CNE, KMI, KHI 1 1 1 9 21 30 Yes Yes Yes 5.0 5.0 2.5 668190 667565 659554 5482833 5488691 5494114 15-Sep-22 15-Sep-22 16-Sep-22 CNE, KMI, KHI KHI KHI KHI KHI KHI KHI KHI KHI Yes Yes Yes 4.0 4.0 3.0 668170 667541 659639 5482853 5488612 5494121 15-Sep-22 15-Sep-22 16-Sep-22 CNE, KMI, KHI KHI KHI H 1 1 1 1 1 1 1 15-Sep-22 16-Sep-22	15-Sep-22	15-Sep-22	15-Sep-22	15-Sep-22	15-Sep-22

^{- =} data not available or data not recorded; m = metre; CMm = Coal Mountain Mine; LAEMP = local aquatic effects monitoring program.

WSP Canada Inc. Page: 2 of 3

Appendix J: Field and Habitat Data

Table J-3: Channel Measurements of Sampling Stations at CMm LAEMP, 2022

MilzS		Re	eplicate	Location (UTMs) ^(a) Easting Northing	Α	В	С	D	E	Mean
Tolerotyclims			MI25							
Velocity (m/s)				1	11.00	5.00	13.00	5.00	14.00	9.60
2		1								
Velocity (m/s)										
Second S		2								
Secondary (1985) 0.40										
### AGCK 667557 5488648 20.00 24.00 13.00 24.00 21.00 20.40 20.00 24.00 13.00 24.00 21.00 20.40 20.00 20.40 20.00 20.40 20.00 20.40 20.00		3								
LE1	SU			667557 5488648	91.10					
LE1	iţi	_	Depth (cm)	•	20.00	24.00	13.00	24.00	21.00	20.40
LE1	Sta	1	Velocity (m/s)							0.54
LE1	Ö	_	Depth (cm)		16.00	17.00	15.00	10.00	19.00	15.40
LE1	l Si		Velocity (m/s)		0.24	0.62	0.28	0.49	0.69	0.46
LE1	Ę.	_	Depth (cm)		15.00	21.00		12.00	14.00	16.00
Depth (cm)	Se.	3	Velocity (m/s)		0.66	0.44	0.19	0.20	0.64	0.43
Velocity (m/s)			LE1	659635 5494108		•	•			•
Velocity (m/s) 0.24		-1	Depth (cm)		9.00	8.00	18.00	14.00	10.00	11.80
Velocity (m/s)		'	Velocity (m/s)		0.24	0.16	0.55	0.59	0.31	0.37
Velocity (m/s) 0.17 0.37 0.46 0.50 0.54 0.41		2			12.00	15.00	14.00	13.00	17.00	14.20
Velocity (m/s)			Velocity (m/s)		0.17	0.37	0.46	0.50	0.54	0.41
Velocity (m/s) 0.07 0.27 0.75 0.58 0.36 0.40		2			12.00	24.00	26.00	21.00	13.00	19.20
1		3	Velocity (m/s)		0.07	0.27	0.75	0.58	0.35	0.40
Velocity (m/s)			MIUCO	668135 5486767						
Velocity (m/s)		1			12.00		25.00	15.00	17.00	15.20
Velocity (m/s)					0.39	0.15	0.34	0.20	0.21	0.26
Velocity (m/s)		2	Depth (cm)		16.00	16.00	11.00	12.00	20.00	15.00
Velocity (m/s)			Velocity (m/s)		0.50	0.57	0.15	0.06	0.05	0.27
Velocity (m/s)		3			17.00	16.00	7.00	15.00	22.00	15.40
Depth (cm)		3	Velocity (m/s)		0.13	0.61	0.19	0.11	0.13	0.24
Velocity (m/s)				668539 5487366						
Velocity (m/s)		1	Depth (cm)							
Velocity (m/s)						0.20			0.26	
Velocity (m/s)		2								
Section Sect		_	, , ,							
Velocity (m/s) 0.16 0.26 0.47 0.31 0.21 0.28		3								
Depth (cm)				1	0.16	0.26	0.47	0.31	0.21	0.28
Velocity (m/s)				667616 5487621						
Part Part		1	_ ` ` '							
Velocity (m/s)										
Depth (cm)		2	_ ` ` '							
Page Page	ns									
Page Page	E i	3								
Page Page	Ste									
Page Page	헍	4								
Page Page	ğ									
Page Page	ne	5								
Page Page	į		MIDAC	665220 5480324	0.50	0.40	0.11	0.10	0.43	0.40
Page Page	je.			000220 0408024	10.00	40.00	41 00	35.00	25.00	30.20
2 Depth (cm) Velocity (m/s) 25.00 20.00 32.00 30.00 12.00 23.80 3 Depth (cm) Depth (cm) 19.00 24.00 15.00 34.00 35.00 25.40 Velocity (m/s) Velocity (m/s) 0.38 0.39 0.49 0.57 0.40 0.45 1 Depth (cm) Depth (cm) Pelocity (m/s) 23.00 22.00 27.00 27.00 21.00 24.00 2 Depth (cm) Depth (cm) Depth (cm) Pelocity (m/s) 0.31 0.59 0.63 0.41 0.30 0.45 3 Depth (cm) Depth		1								
Velocity (m/s)	I									
Depth (cm) 19.00 24.00 15.00 34.00 35.00 25.40 Velocity (m/s) 0.38 0.39 0.49 0.57 0.40 0.45 MIULE		2	_ ` ` /							
Velocity (m/s)		_								
MIULE 660503 5493048 1 Depth (cm) 23.00 22.00 27.00 27.00 21.00 24.00 2 Depth (cm) 36.00 34.00 21.00 24.00 16.00 26.20 3 Depth (cm) 24.00 36.00 33.00 30.00 21.00 28.80 4 Depth (cm) 24.00 36.00 33.00 30.00 21.00 28.80 8 MI5 659496 5496774		3								
1 Depth (cm) Velocity (m/s) 23.00 22.00 27.00 27.00 21.00 24.00 2 Depth (cm) Velocity (m/s) 36.00 34.00 21.00 24.00 16.00 26.20 3 Depth (cm) Depth (cm) 24.00 36.00 33.00 30.00 21.00 24.00 26.20 4 Depth (cm) Depth (cm) 24.00 36.00 33.00 30.00 21.00 28.80 MI5 659496 5496774				660503 5493048						
Velocity (m/s)	Ī				23.00	22.00	27.00	27.00	21.00	24.00
2 Depth (cm) Velocity (m/s) 36.00 34.00 21.00 24.00 16.00 26.20 3 Depth (cm) Velocity (m/s) 24.00 36.00 33.00 30.00 21.00 28.80 MIS 659496 5496774		1								
Velocity (m/s)		_	, ,							
Depth (cm) 24.00 36.00 33.00 30.00 21.00 28.80 Velocity (m/s) 0.12 0.26 0.46 0.49 0.49 0.36 MI5 659496 5496774 <t< td=""><td></td><td> 2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		2								
Velocity (m/s) 0.12 0.26 0.46 0.49 0.49 0.36 MI5 659496 5496774 22.00 25.00 26.00 18.00 17.00 21.60 Velocity (m/s) 0.27 0.75 0.39 0.45 0.29 0.43 Depth (cm) 22.00 13.00 15.00 21.00 27.00 19.60 Velocity (m/s) 0.25 0.22 0.46 0.31 0.48 0.34 Depth (cm) 21.00 25.00 29.00 19.00 24.00 23.60		2	Depth (cm)		24.00	36.00	33.00	30.00	21.00	28.80
MI5	I	ل ع	_ ` ` '		0.12					
Velocity (m/s) 0.27 0.75 0.39 0.45 0.29 0.43 2 Depth (cm) 22.00 13.00 15.00 21.00 27.00 19.60 Velocity (m/s) 0.25 0.22 0.46 0.31 0.48 0.34 Depth (cm) 21.00 25.00 29.00 19.00 24.00 23.60			MI5	659496 5496774				•		
Velocity (m/s) 0.27 0.75 0.39 0.45 0.29 0.43 2 Depth (cm) 22.00 13.00 15.00 21.00 27.00 19.60 Velocity (m/s) 0.25 0.22 0.46 0.31 0.48 0.34 Depth (cm) 21.00 25.00 29.00 19.00 24.00 23.60		1	Depth (cm)		22.00	25.00	26.00	18.00	17.00	21.60
Velocity (m/s) 0.25 0.22 0.46 0.31 0.48 0.34 Depth (cm) 21.00 25.00 29.00 19.00 24.00 23.60			Velocity (m/s)		0.27	0.75	0.39	0.45	0.29	0.43
Velocity (m/s) 0.25 0.22 0.46 0.31 0.48 0.34 3 Depth (cm) 21.00 25.00 29.00 19.00 24.00 23.60		2	Depth (cm)		22.00	13.00	15.00	21.00	27.00	19.60
			Velocity (m/s)		0.25	0.22	0.46	0.31	0.48	0.34
Velocity (m/s) 0.50 0.37 0.46 0.57 0.28 0.43		2	Depth (cm)		21.00	25.00	29.00	19.00	24.00	23.60
Notes: Stations are ordered upstream to downstream. Velocity measurements were taken at five randomly chosen locations throughout the kick sample										

Notes: Stations are ordered upstream to downstream. Velocity measurements were taken at five randomly chosen locations throughout the kick sample area. Velocity was measured at the bottom of the water column.

a) UTM coordinates (NAD = 83, Zone = 11) represent the station coordinates.

^{- =} data not available or data not recorded; % = percent; cm = centimetre; m/s = metres per second; CMm = Coal Mountain Mine; LAEMP = local aquatic effects monitoring program.

APPENDIX K

Benthic Invertebrate Community Data

June 2023

Table K-1: Raw Benthio	c Invertebrate Community Ab	bundance Data at CMm LAEMP Sampling Stat	ions, 2022																	
			Sample Name:	RG_AGCK_	BIC-	RG_AGCK_BIC-	RG_AGCK_BIC	- RG_C	ORCK_B	IC- RO	G_CORCK_B	BIC- RO	G_CORCK_BIC-	RG_MI25_BIC-	RG_MI25_BIC-	RG_MI25_BIC-	RG_MI5_BIC-	RG_MI5_I		5_BIC-
				1_2022-09-1	_	2_2022-09-15_N	3_2022-09-15_N			N 2	_2022-09-14_	_	_2022-09-14_N	1_2022-09-15_N	2_2022-09-15_N	3_2022-09-15_N	1_2022-09-12_N			
			Sample Collection Date: Chain of Custody Identification Number:	15-Sep-2 CC23092		15-Sep-22 CC230923	15-Sep-22 CC230924		Sep-22 C230925	_	14-Sep-22 CC230926		14-Sep-22 CC230927	15-Sep-22 CC230928	15-Sep-22 CC230929	15-Sep-22 CC230930	12-Sep-22 CC230931	12-Sep- CC2309		
			Sieve Size (µm):	400	2.2	400	400		400	-	400	_	400	400	400	400	400	400	400	
			Subsample proportion (%):	5		5	5		20		6		5	5	5	5	5	5	5	
Phylum (sub-phylum)	Order/Class	Family (sub-family/tribe)	Genus/Species			- 1			-		-			-			- 1	1	1 1 -	لبلا
Arthropoda Arthropoda	Collembola Collembola	- Sminthuridae	-	0	-	0 -	0 -		0	-	0	-	0 -	0 -	0 -	0 -	0 -	0	- 0	 -
Arthropoda (Hexapoda)	Ephermeroptera	- Sminthundae	-	0	-	0 -	0 -	_	0	-	0	-	0 -	0 -	0 -	0 -	0 -	0	- 0	+
Arthropoda (Hexapoda)	Ephermeroptera	Ameletidae	Ameletus sp.	8	-	19 -	6 -	-	0	-	0	-	0 -	4 -	4 -	1 -	1 -	0	- 0	
Arthropoda (Hexapoda)	Ephermeroptera	Baetidae	-	1	-	2 -	2 N	_	-	-	0	-	0 -	82 -	114 -	271 ND	12 NE		ND 25	N
Arthropoda (Hexapoda)	Ephermeroptera	Baetidae	Baetis sp.	0	-	0 -	2 -		•	-	0	-	0 -	0 -	2 -	1 -	9 -	7	- 1	
Arthropoda (Hexapoda) Arthropoda (Hexapoda)	Ephermeroptera Ephermeroptera	Baetidae Baetidae	Baetis fuscatus group Baetis rhodani group	<u>0</u> 8	-	2 -	6 -		0	-	0	-	0 -	0 -	0 -	0 -	115 -	0 122	- 0 - 59	-
Arthropoda (Hexapoda)	Ephermeroptera	Baetidae	Baetis bicaudatus	0		0 -	0 -		-	-	0	-	0 -	0 -	0 -	0 -	0 -	1	- 0	
Arthropoda (Hexapoda)	Ephermeroptera	Baetidae	Diphetor hageni	0	-	0 -	0 -	- (0	-	0	-	0 -	0 -	0 -	0 -	0 -	0	- 0	
Arthropoda (Hexapoda)	Ephermeroptera	Ephemerellidae	-	114	-	154 -	132 -		0	-	0	-	0 -	27 -	38 -	35 -	43 NE		ND 39	N
Arthropoda (Hexapoda) Arthropoda (Hexapoda)	Ephermeroptera Ephermeroptera	Ephemerellidae Ephemerellidae	Caudatella sp. Drunella sp.	0	-	0 -	0 -		0	-	0	-	0 -	0 -	0 -	0 -	0 -	0	- 0	N
Arthropoda (Hexapoda)	Ephermeroptera	Ephemerellidae	Drunella grandis group	0	+-+	0 -	0 -	_	_	-	0	-	0 -	0 -	0 -	0 -	2 -	5	- 1	- 1
Arthropoda (Hexapoda)	Ephermeroptera	Ephemerellidae	Drunella coloradensis	1	-	0 -	0 -	_	0	-	0	-	0 -	0 -	0 -	0 -	0 -	0	- 0	
Arthropoda (Hexapoda)	Ephermeroptera	Ephemerellidae	Drunella doddsii	6	-	7 -	4 -	_	•	-	0	-	0 -	5 -	3 -	3 -	28 -	13	- 16	\perp
Arthropoda (Hexapoda)	Ephermeroptera	Ephemerellidae	Ephemerella sp.	0	1	0 -	0 -	_	•	-	0	-	0 -	0 -	0 -	2 -	4 -	16	- 5	
Arthropoda (Hexapoda) Arthropoda (Hexapoda)	Ephermeroptera Ephermeroptera	Ephemerellidae Heptageniidae	Ephemerella tibialis	0 13	+-+	0 -	0 -		0	-	0	-	0 -	0 - 7 -	0 -	0 - 3 -	0 -	0	- 0	\dashv
Arthropoda (Hexapoda)	Ephermeroptera	Heptageniidae Heptageniidae	Cinygmula sp.	375	-	340 -	324 -	_		-	0	-	0 -	69 -	86 -	67 -	10 -	3	- 16	-
Arthropoda (Hexapoda)	Ephermeroptera	Heptageniidae	Epeorus sp.	15	-	10 -	14 -		0	-	0	-	0 -	2 -	2 -	1 -	1 -	4	- 3	
Arthropoda (Hexapoda)	Ephermeroptera	Heptageniidae	Rhithrogena sp.	14	-	12 -	21 -		0	-	0	-	0 -	4 -	0 -	1 -	3 -	7	- 10	
Arthropoda (Hexapoda)	Ephermeroptera	Leptophlebiidae	- Noolontonklobia	0	-	0 -	0 -	_	0	-	0	-	0 -	0 -	0 -	0 -	0 -	0	- 0	+
Arthropoda (Hexapoda) Arthropoda (Hexapoda)	Ephermeroptera Plecoptera	Leptophlebiidae	Neoleptophlebia sp.	0	+-+	0 - 1 ND	, ,		0	-	0	-	0 -	0 -	0 -	0 -	0 -	0	- 0	+
Arthropoda (Hexapoda)	Plecoptera	Capniidae	-	1	1-1	0 -	0 -		0	-	0	-	0 -	0 -	1 -	0 -	1 -	3	- 2	+
Arthropoda (Hexapoda)	Plecoptera	Capniidae	Eucapnopsis brevicauda	0	-	0 -	0 -	_	0	-	0	-	0 -	0 -	0 -	0 -	0 -	0	- 0	二
Arthropoda (Hexapoda)	Plecoptera	Chloroperlidae	-	0	 - 	0 -	2 -		0	-	0	-	0 -	3 -	1 -	3 -	0 -	0	- 1	
Arthropoda (Hexapoda) Arthropoda (Hexapoda)	Plecoptera Plecoptera	Chloroperlidae Chloroperlidae	Haploperla sp. Plumiperla sp.	0	+-+	1 -	0 -	_	0	-	0	-	0 -	0 -	0 -	0 -	0 -	0	- 0	+
Arthropoda (Hexapoda)	Plecoptera	Chloroperlidae	Sweltsa sp.	2	+-+	6 -	7 -		-	-	1	-	0 -	4 -	6 -	11 -	2 -	3	- 7	-
Arthropoda (Hexapoda)	Plecoptera	Leuctridae	-	0	-	0 -	0 -		0	-	0	-	0 -	1 -	0 -	0 -	0 -	0	- 1	
Arthropoda (Hexapoda)	Plecoptera	Leuctridae	Paraleuctra sp.	0	-	0 -	0 -		•	-	0	- [0 -	1 -	0 -	0 -	0 -	0	- 0	$\perp \Gamma$
Arthropoda (Hexapoda)	Plecoptera	Nemouridae	-	0	ND	2 ND	2 NI)	1 1	ND	0	-	9 -	0 -	0 -	1 ND -	0 -	0	ND 2	١
Arthropoda (Hexapoda) Arthropoda (Hexapoda)	Plecoptera Plecoptera	Nemouridae Nemouridae	Malenka sp. Zapada sp.	27	ND	32 -	16 N)	1	-	2	-	4 -	19 ND	8 -	20 -	8 -	9	- 11	N
Arthropoda (Hexapoda)	Plecoptera	Nemouridae	Zapada oregonensis group	6	-	0 -	1 -		0	-	1	-	3 -	2 -	2 -	9 -	2 -	2	- 3	
Arthropoda (Hexapoda)	Plecoptera	Nemouridae	Zapada cinctipes	3	-	1 -	3 -		,,	-	42	-	36 -	1 -	0 -	0 -	25 -	12	- 26	
Arthropoda (Hexapoda)	Plecoptera	Nemouridae	Zapada columbiana	4	-	2 -	2 -	_	0	-	0	-	0 -	11 -	10 -	2 -	0 -	0	- 1	
Arthropoda (Hexapoda) Arthropoda (Hexapoda)	Plecoptera Plecoptera	Peltoperlidae Perlidae	Yoraperla sp.	0	-	0 -	0 -	_	-	-	0	-	0 -	2 -	0 -	0 -	0 -	0	- 0 ND 1	-
Arthropoda (Hexapoda)	Plecoptera	Perlidae	Doroneuria sp.	0	-	0 -	0 -	_	0	-	0	-	0 -	0 -	0 -	0 -	2 -	1	- 0	-
Arthropoda (Hexapoda)	Plecoptera	Perlodidae	-	0	-	1 -	1 -		1	-	0	-	0 -	4 -	1 -	1 -	0 -	0	- 0	
Arthropoda (Hexapoda)	Plecoptera	Perlodidae	Kogotus sp.	4	-	0 -	5 -	_		-		-	0 -	3 -	6 -	6 -	4 -	2	- 2	
Arthropoda (Hexapoda)	Plecoptera	Perlodidae Perlodidae	Megarcys sp.	8	+-+	0 -	2 -			-	0	-	0 -	5 -	3 -	2 -	0 -	1	- 1	-
Arthropoda (Hexapoda) Arthropoda (Hexapoda)	Plecoptera Plecoptera	Perlodidae Taeniopterygidae	Skwala sp.	130	+-+	91 -	106 -	_	3	-	0	-	0 -	0 - 35 -	0 - 19 -	0 - 39 -	0 - 5 -	0 28	- 0 - 19	-+
Arthropoda (Hexapoda)	Plecoptera	Taeniopterygidae	Taenionema sp.	0	1 - 1	0 -	0 -			-	0	-	0 -	0 -	0 -	0 -	0 -	0	- 0	\neg
Arthropoda (Hexapoda)	Trichoptera	-	-	7	ND	2 -	0 -	-	0	-	1	-	0 -	1 -	0 -	0 -	0 -	0	- 1	工
Arthropoda (Hexapoda)	Trichoptera	Apataniidae	Apatania sp.	0	-	2 -	2 -	_	0	-	0	-	0 -	0 -	0 -	0 -	3 -	1	- 0	_
Arthropoda (Hexapoda) Arthropoda (Hexapoda)	Trichoptera Trichoptera	Brachycentridae Brachycentridae	- Brachycentrus sp.	0	+-+	0 -	0 -			ND -	0	ND -	2 ND -	0 -	0 -	0 -	0 -	0	- 0	+
Arthropoda (Hexapoda)	Trichoptera	Brachycentridae Brachycentridae	Brachycentrus sp. Brachycentrus americanus	0	+-+	0 -	0 -			-	0	-	0 -	0 -	0 -	0 -	0 -	0	- 0	+
Arthropoda (Hexapoda)	Trichoptera	Brachycentridae	Micrasema sp.	0	1-1	0 -	0 -			-	2		1 -	0 -	0 -	0 -	0 -	0	- 0	皿
Arthropoda (Hexapoda)	Trichoptera	Glossosomatidae	-	0	- T	0 -	0 -		-	-	0	-	0 -	0 -	0 -	0 -	0 -	0	- 0	\bot
Arthropoda (Hexapoda)	Trichoptera	Glossosomatidae	Glossosoma sp.	0	+-+	1 -	0 -		0	-	0	-	0 -	0 -	1 -	0 -	21 -	5	- 7	+
Arthropoda (Hexapoda) Arthropoda (Hexapoda)	Trichoptera Trichoptera	Hydropsychidae Hydropsychidae	- Arctopsyche sp.	<u>2</u> 0	+ - +	0 -	8 -		-	-	0	-	0 -	2 -	0 -	10 - 0 -	0 -	2	- 0	-+
Arthropoda (Hexapoda)	Trichoptera	Hydropsychidae	Parapsyche sp.	0	1-1	0 -	0 -			-	0	-	0 -	1 -	0 -	2 ND	0 -	0	- 0	+
Arthropoda (Hexapoda)	Trichoptera	Hydropsychidae	Parapsyche elsis	0	-	0 -	0 -	_	0	-	0	-	0 -	1 -	0 -	2 -	0 -	0	- 0	
Arthropoda (Hexapoda)	Trichoptera	Hydroptilidae	- Under 19	0	-	0 -	0 -			ND	0	-	0 -	0 -	0 -	0 -	0 -	0	- 0	_
Arthropoda (Hexapoda)	Trichoptera	Hydroptilidae	Hydroptila sp.	0	1-	0 -	0 -			-	0	-	7 -	0 -	0 -	0 -	0 -	0	- 0	+
Arthropoda (Hexapoda) Arthropoda (Hexapoda)	Trichoptera Trichoptera	Hydroptilidae Lepidostomatidae	Metrichia sp. Lepidostoma sp.	0	+-+	0 -	0 -	_	0	-	0	-	0 -	0 -	0 -	0 -	0 -	1	- 0	+
Arthropoda (Hexapoda)	Trichoptera	Limnephilidae	-	1	<u> </u>	0 -	0 -		-	-	0	-	2 -	0 -	0 -	0 -	0 -	0	- 0	
Arthropoda (Hexapoda)	Trichoptera	Limnephilidae	Dicosmoecus sp.	0	-	0 -	0 -	_	•	-	0	-	0 -	0 -	0 -	0 -	0 -	0	- 0	\Box
Arthropoda (Hexapoda)	Trichoptera	Rhyacophilidae	Rhyacophila sp.	6	1	1 -	1 N		,,	-	9	-	14 -	13 -	7 -	58 -	3 -	0	- 14	\dashv
Arthropoda (Hexapoda) Arthropoda (Hexapoda)	Trichoptera Trichoptera	Rhyacophilidae Rhyacophilidae	Rhyacophila betteni group Rhyacophila brunnea/vemna sp. group	1	+ - +	1 - 0 -	1 -		-	-	2	-	0 -	7 - 5 -	2 -	2 -	0 -	1	- 0	+
Arthropoda (Hexapoda)	Trichoptera	Rhyacophilidae	Rhyacophila brutillea/vertifia sp. group Rhyacophila hyalinata group	0	+-+	0 -	0 -	_		-	0	-	0 -	1 -	0 -	0 -	0 -	0	- 0	+
Arthropoda (Hexapoda)	Trichoptera	Rhyacophilidae	Rhyacophila vofixa group	0	-	0 -	0 -		_	-	0	-	0 -	2 -	0 -	3 -	1 -	0	- 0	1
Arthropoda (Hexapoda)	Trichoptera	Rhyacophilidae	Rhyacophila atrata complex	0	↓- Ţ	0 -	3 -		-	-	0	- [0 -	1 -	0 -	1 -	0 -	0	- 0	$\perp \!\!\!\!\perp$
Arthropoda (Hexapoda)	Trichoptera	Rhyacophilidae	Rhyacophila narvae	0	-	0 -	0 -	(0	-	0	-	0 -	15 -	9 -	8 -	0 -	0	- 0	

Table K-1: Raw Benthic Invertebrate Community Abundance Data at CMm LAEMP Sampling Stations, 2022

		dance Data at CMm LAEMP Sampling Stations, 2022																				
			Sample Name:	RG_AGCK	BIC-	RG AGCK BIC	RG AGC	K BIC	RG CORCK	BIC.	RG CORCK	BIC.	RG_CORC	K BIC	RG_MI25_BIC-	RG MI25 BIC-	RG MI25 BIC-	RG MI5 BI	IC-	RG MI5 BI	C- RG	MI5 I
				1_2022-09-	15_N 2	2_2022-09-15_N	3_2022-09	9-15_N	1_2022-09-1	14_N	2_2022-09-1	14_N	3_2022-0	9-14_N	1_2022-09-15_N	2_2022-09-15_N	3_2022-09-15_N	1_2022-09-12	2_N :	2_2022-09-12	2_N 3_202	
			Sample Collection Date:	15-Sep-2		15-Sep-22	15-Sep		14-Sep-2		14-Sep-2	_	14-Sep		15-Sep-22	15-Sep-22	15-Sep-22	12-Sep-22		12-Sep-22		2-Sep-
			Chain of Custody Identification Number: Sieve Size (µm):	CC23092 400	22	CC230923 400	CC230 400		CC23092 400	25	CC23092 400	26	CC230 400		CC230928 400	CC230929 400	CC230930 400	CC230931 400	1	CC230932 400		C2309 400
			Subsample proportion (%):	5		5	5		20		6		5		5	5	5	5		5		5
nylum (sub-phylum)	Order/Class	Family (sub-family/tribe)	Genus/Species						_								1					
thropoda (Hexapoda)	Trichoptera Coleoptera	Thremmatidae	Oligophlebodes sp.	<u>1</u>	-	2 -	0		0	-	0		0	-	0 -	0 -	0 -	0	-	<u>1</u>	 - - 	0
thropoda (Hexapoda) thropoda (Hexapoda)	Coleoptera	Elmidae		0	1-	0 -	0		0	+-	1	ND	0	-	0 -	0 -	1 NC) 0	-	1	1 1	0
thropoda (Hexapoda)	Coleoptera	Elmidae	Heterlimnius sp.	0	-	0 -	0	-	3	-	1	-	0	-	7 -	0 -	1 -	1	-	4	-	2
thropoda (Hexapoda)	Coleoptera	Haliplidae	Brychius sp.	0	-	0 -	0	-	0	-	1	-	0	-	0 -	0 -	0 -	0	-	0		0
thropoda (Hexapoda)	Diptera	Ceratopogonidae	Bezzia sp./ Palpomyia sp.	0	-	0 -	0	-	0	-	0		0	-	0 -	0 -	0 -	0	-	0		0
thropoda (Hexapoda) thropoda (Hexapoda)	Diptera Diptera	Ceratopogonidae Chironomidae	Mallochohelea sp.	3	- ND	1 - 2 ND	0	- ND	0 25	- ND	0 14	- ND	0 11	- ND	1 - 1 ND	0 - 2 ND	0 -	1	- ND	0	- '	0
thropoda (Hexapoda)	Diptera	Chironomidae (Chironominae/Chironomini)	-	0	-	0 -	0	-	0	-	0	-	0	-	0 -	0 -	0 -	0	-	1		0
thropoda (Hexapoda)	Diptera	Chironomidae (Chironominae/Chironomini)	Cryptochironomus sp.	0	-	0 -	0	-	0	-	0	-	0	-	0 -	0 -	0 -	0	-	0	- '	0
thropoda (Hexapoda)	Diptera	Chironomidae (Chironominae/Chironomini)	Stictochironomus sp.	0	-	0 -	0	-	0	-	0	-	0	-	0 -	0 -	0 -	0	-	0		0
thropoda (Hexapoda)	Diptera	Chironomidae (Chironominae/Tanytarsini)	-	0	-	0 -	0	-	0	-	1	ND	0	-	0 -	0 -	0 -	0	-		· · · · · ·	3
thropoda (Hexapoda) thropoda (Hexapoda)	Diptera Diptera	Chironomidae (Chironominae/Tanytarsini) Chironomidae (Chironominae/Tanytarsini)	Constempellina sp. Micropsectra sp.	<u>0</u>	1-	0 -	0		0 24	-	0 17	+ - +	<u>0</u> 5		0 -	0 -	0 -	1	-	0		1
thropoda (Hexapoda)	Diptera	Chironomidae (Chironominae/Tanytaisini) Chironomidae (Diamesinae/Diamesini)	Diamesa sp.	17	+-+	21 -	26		0	-	0	+-+	0	+-	0 -	0 -	1 -	0		0		1
thropoda (Hexapoda)	Diptera	Chironomidae (Diamesinae/Diamesini)	Pagastia sp.	2	-	3 -	3	-	57	-	85	-	47		2 -	0 -	12 -	1	-	1		0
thropoda (Hexapoda)	Diptera	Chironomidae (Orthocladiinae)	-	0	-	0 -	0	-	0	-	1	ND	0	-	0 -	0 -	2 NE	0	-	1		0
thropoda (Hexapoda)	Diptera	Chironomidae (Orthocladiinae)	Brillia sp.	0	-	0 -	0		0	-	0	-	0	-	0 -	0 -	0 -	0	-	0	 	1
thropoda (Hexapoda) thropoda (Hexapoda)	Diptera Diptera	Chironomidae (Orthocladiinae) Chironomidae (Orthocladiinae)	Corynoneura sp. Cricotopus sp. (Nostococladius sp.)	0	+-+	0 -	0	-	0	-	0	+-+	0	+ -	0 -	0 -	0 -	0	+ - +	0		0
thropoda (Hexapoda)	Diptera	Chironomidae (Orthocladiinae)	Eukiefferiella sp.	1	-	2 -	5	-	23	-	27	T - 1	46	-	0 -	0 -	3 -	1	-	1		0
thropoda (Hexapoda)	Diptera	Chironomidae (Orthocladiinae)	Hydrobaenus sp.	1	-	1 -	0	-	0	-	0	-	0	-	0 -	1 -	0 -	0	-	0	[-	1
thropoda (Hexapoda)	Diptera	Chironomidae (Orthocladiinae)	Orthocladius sp. complex	19	-	40 -	42	-	30	-	26	-	76	-	1 -	2 -	13 -	0	-	1		0
thropoda (Hexapoda) thropoda (Hexapoda)	Diptera Diptera	Chironomidae (Orthocladiinae) Chironomidae (Orthocladiinae)	Orthocladius lignicola Parorthocladius sp.	<u>0</u>	+	2 -	0		0	-	0	+-+	0		0 -	0 -	0 -	0		0		0
thropoda (Hexapoda)	Diptera	Chironomidae (Orthocladiinae)	Rheocricotopus sp.	0	+ - +	2 -	0		0	+-	1	+-+	0	-	0 -	0 -	0 -	0	-	0		1
thropoda (Hexapoda)	Diptera	Chironomidae (Orthocladiinae)	Tvetenia sp.	3	-	6 -	0	-	0	-	0	-	0	-	0 -	0 -	0 -	3	-	0	-	7
thropoda (Hexapoda)	Diptera	Chironomidae (Tanypodinae/Pentaneurini)	Thienemannimyia sp. group	0	-	0 -	0	-	2	-	0	-	2	-	0 -	0 -	0 -	0	-	0		0
thropoda (Hexapoda)	Diptera	Empididae	- Obelifere en l' Metable le co	0	-	0 -	0	-	0	-	1	+-+	1	-	0 -	0 -	0 -	0		0	1 1	0
thropoda (Hexapoda) thropoda (Hexapoda)	Diptera Diptera	Empididae Empididae	Chelifera sp./ Metachela sp. Neoplasta sp.	0	+ -	0 -	0		1	-	1 0	+:+	<u>1</u> 3		0 -	0 -	1 -	0	-	0		0
thropoda (Hexapoda)	Diptera	Empididae	Roederiodes sp.	0	1-1	0 -	0	-	0	T-	0	1-1	0	-	0 -	0 -	0 -	0	-	0		0
thropoda (Hexapoda)	Diptera	Empididae	Trichoclinocera sp.	0	-	0 -	0	-	1	-	1	-	0	-	0 -	0 -	0 -	0	-	0	- !	0
thropoda (Hexapoda)	Diptera	Pelecorhynchidae	Glutops sp.	0	-	0 -	0	-	3	-	1	-	0	-	0 -	0 -	0 -	0	-	0		0
thropoda (Hexapoda)	Diptera Diptera	Psychodidae Simuliidae	Pericoma sp./ Telmatoscopus sp.	0	-	2 -	0		60 0	-	44 0		29 1	-	4 - 0 -	0 -	3 -	28	-	0		12
thropoda (Hexapoda) thropoda (Hexapoda)	Diptera	Simuliidae	Simulium sp.	1	+	8 -	1		1	+-	2	+-+	5	-	0 -	0 -	1 -	3	-	3		9
thropoda (Hexapoda)	Diptera	Tipulidae	-	0	-	0 -	0	-	1	-	0	-	0	-	0 -	0 -	0 -	0	-	0	- 7	0
thropoda (Hexapoda)	Diptera	Tipulidae	Antocha sp.	0	-	0 -	0	-	0	-	1	-	0	-	0 -	0 -	0 -	0	-	0		0
thropoda (Hexapoda)	Diptera	Tipulidae	Dicranota sp.	0	-	0 -	0		0	-	0	-	0	-	0 -	0 -	0 -	1	-	0		2
thropoda (Hexapoda) thropoda (Hexapoda)	Diptera Diptera	Tipulidae Tipulidae	Gonomyia sp. Hexatoma sp.	0	+ -	0 -	0		0	-	0	+:+	0		0 -	0 -	0 -	0	-	1	+	1
thropoda (Hexapoda)	Diptera	Tipulidae	Tipula sp.	0	1 - 1	0 -	0	-	0	-	0	1-1	0	1-1	0 -	0 -	0 -	0	-	0	<u> </u>	0
thropoda (Hexapoda)	Thysanoptera	-	-	0	L -	0 -	0	-	0	-	0	-	0	_ [-]	0 -	0 -	0 -	0	-	0		0
thropoda (Chelicerata)	Trombidiformes	- About to -	-	0	1 -	0 -	0	-	1	-	0	-	0	-	0 -	0 -	0 -	0	-	0		0
thropoda (Chelicerata) thropoda (Chelicerata)	Trombidiformes Trombidiformes	Aturidae Aturidae	- Aturus sp.	0	-	0 -	0	-	0	-	0	+ - +	6 2		0 -	0 -	0 -	0	-	0		0
thropoda (Chelicerata)	Trombidiformes	Feltriidae	Feltria sp.	0	+-	0 -	0	-	0	-	0	+-+	1	-	0 -	0 -	0 -	0	-	0		0
thropoda (Chelicerata)	Trombidiformes	Hydryphantidae	Protzia sp.	0	-	0 -	0	-	0	-	0	-	0	-	0 -	0 -	0 -	0	-	0	- /	0
thropoda (Chelicerata)	Trombidiformes	Hygrobatidae	Atractides sp.	0	↓- Ţ	0 -	0	-	0	-	0	↓- Ţ	0	4-7	0 -	0 -	0 -	0	- T	0		0
thropoda (Chelicerata) thropoda (Chelicerata)	Trombidiformes Trombidiformes	Hygrobatidae Lebertiidae	Hygrobates sp. Lebertia sp.	0	+-+	0 -	0		0 5	-	3	-	3		0 -	0 -	0 -	0	-	0		0
thropoda (Chelicerata)	Trombidiformes	Sperchontidae	Sperchon sp.	0	1-	0 -	2		0	-	0	1-	0		0 -	0 -	0 -	0	-	0	1 1	0
thropoda (Chelicerata)	Trombidiformes	Torrenticolidae	Testudacarus sp.	0	1-	0 -	0	-	0	-	0	<u> </u>	0		0 -	0 -	0 -	0	<u> </u>	0		0
thropoda (Chelicerata)	Trombidiformes	Torrenticolidae	Torrenticola sp.	0	-	0 -	0	-	0	-	0	-	0	-	0 -	0 -	0 -	1	-	2		0
thropoda (Chelicerata)	Trombidiformes - Prostigmata	Stygothrombidiidae Enghytrosidae	Stygothrombium sp.	0	-	0 -	0	-	0	-	0	-	0	- -	0 -	0 -	0 -	1	-	0		0
nelida (Clitelata) nelida (Clitelata)	Tubificida Tubificida	Enchytraeidae Naididae	Enchytraeus sp. Nais sp.	0	-	0 -	0	-	11 0	-	50 0	+ - +	36 0	-	0 -	0 -	0 -	0	-	0		0
nelida (Clitelata)	Tubificida	Naididae (Subfamily: Tubificinae without hair chaetae)	.тало ор.	0	1-1	0 -	0	-	0	-	0	1-1	0	1-1	0 -	0 -	0 -	0	-	0		0
hropoda (Hexapoda)	Diptera	Cecidomyiidae	-	0	-	0 -	0	-	0	-	0	-	0	-	0 -	0 -	0 -	0	-	0		0
thropoda (Hexapoda)	Hemiptera	Cicadellidae	-	0	-	0 -	0	-	0	-	0	-	0	-	0 -	0 -	0 -	0	-	0		0
thropoda (Crustacea)	Class: Ostracoda	-	-	1	+-+	1 -	1	-	1	-	1	-	1	-	0 -	1 -	1 -	0	-	0		0
thropoda (Crustacea) thropoda (Crustacea)	Order: Cladocera Class: Copepoda	-	-	0		0 -	0		0		0		0		0 -	0 -	0 -	0		1 0		0
ematoda	-	-	-	0	1-1	0 -	0		0		1		1	-	1 -	1 -	0 -	1		1		1
atyhelminthes	Class: Turbellaria	-		1	-	0 -	1	-	1	-	1	-	0	-	1 -	1 -	1 -	1	-	1	-	1
tal Benthic Invertebrate	Abundance:			812	1 - 1	803 -	766	-	364	-	372	-	361	-	365 -	338 -	630 -	361	-	334	- 3	329

WSP Canada Inc. Page 2 of 31

Total Benthic Invertebrate Abundance:

Notes: Grey cells represent taxa that were present in the samples but were not included in the calculations because they are non-benthic taxa. The ND designation represents a non-distinct taxa.

- = no data; CMm = Coal Mountain Mine; LAEMP = local aquatic effects monitoring program.

Samples collected by Minnow Environmental (BC) and submitted to Cordillera Consulting Inc. for taxonomic identification and enumeration. Taxonomist contact information: Scott Finlayson; scottfinlayson@cordilleraconsulting.ca; +1-250-494-7553.

Phylum (sub-phylum) Arthropoda Arthropoda Arthropoda (Hexapoda) Ar	poola - poola Smin peroptera - peroptera Amel peroptera Baeti peroptera Baeti peroptera Baeti peroptera Baeti peroptera Baeti peroptera Baeti peroptera Baeti peroptera Baeti peroptera Baeti peroptera Baeti peroptera Baeti peroptera Ephe peroptera Ephe peroptera Ephe peroptera Ephe peroptera Ephe peroptera Ephe peroptera Ephe peroptera Ephe peroptera Ephe peroptera Ephe peroptera Ephe peroptera Ephe peroptera Ephe peroptera Ephe peroptera Hept peroptera Hept peroptera Hept peroptera Hept peroptera Hept peroptera Lept peroptera	thuridae etidae dae dae dae dae dae dae dae dae dae	Sample Name: Sample Collection Date: Chain of Custody Identification Number: Sieve Size (µm): Subsample proportion (%): Genus/Species Ameletus sp Baetis sp. Baetis fuscatus group Baetis fuscatus group Baetis bicaudatus Diphetor hageni - Caudatella sp. Drunella sp. Drunella grandis group Drunella coloradensis Drunella grandis Ephemerella sp. Ephemerella tibialis - Cinygmula sp. Eperus sp. Rhithrogena sp Neoleptophlebia sp	1_2022-09-	13_N 22	RG_MIDA0 2_2022-09 13-Sep CC230: 400 5 0 0 0 0 12 2 0 37 4 1 0 0 11 2 2 0 41 0 0 1 2 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0	-13_N -22 935	RG_MIDAG 3_2022-09- 13-Sep-: CC2309: 400 5 0 0 1 22 2 0 47 1 1 96 0 0 15 0 2 32 0 4 0	 13_N 22	RG_MIDCO_BIC-1_2022-09-13_N 13-Sep-22 CC230937 400 5 0 - 0 - 0 - 0 - 0 - 16 - 0 - 16 - 0 - 16 - 0 - 16 - 0 - 16 - 0 - 16 - 0 - 16 - 0 - 16 - 0 - 16 - 16 - 0 - 16 - 17 - 18 - 18 - 18 - 18 - 18 - 18 - 18 - 18	RG_MIDCO_BIO 2_2022-09-13_N 13-Sep-22 CC230938 400 5 0 0 0 0 0 0 0	13-Sep-22 CC230939 400 5 1	RG_MIDCO_ 4_2022-09-1 13-Sep-2 CC23094 4000 5 0 0 0 0 0 9 11 0 0 14 0 0 0 14 0 0 0 14 0 0 0 11 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3_N 5_2022-09 2 13-Sep	9-13_N 1_202: 0-22 14- 0-22 14- 0-24	12-09-14 N	RG_MIUCO_1 2_2022-09-12 14-Sep-22 CC230943 400 111	4_N 3_2/ 2 1 3 C	MIUCO_BIO 022-09-14_N 4-Sep-22 0230944 400 20 0 0 0 0 0 0 0	
Arthropoda Arthropoda Arthropoda Arthropoda (Hexapoda) Arthropoda	poola - poola Smin peroptera - peroptera Amel peroptera Baeti peroptera Baeti peroptera Baeti peroptera Baeti peroptera Baeti peroptera Baeti peroptera Baeti peroptera Baeti peroptera Baeti peroptera Baeti peroptera Baeti peroptera Ephe peroptera Ephe peroptera Ephe peroptera Ephe peroptera Ephe peroptera Ephe peroptera Ephe peroptera Ephe peroptera Ephe peroptera Ephe peroptera Ephe peroptera Ephe peroptera Ephe peroptera Ephe peroptera Hept peroptera Hept peroptera Hept peroptera Hept peroptera Hept peroptera Lept peroptera	thuridae etidae dae dae dae dae dae dae dae dae dae	Chain of Custody Identification Number: Sieve Size (µm): Subsample proportion (%): Genus/Species	13-Sep- CC2309: 400 5 0 0 0 0 24 4 0 61 2 0 0 48 0 0 16 1 1 1 2 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	222 334 	13-Sep CC230: 400 5 0 0 0 0 12 2 0 4 0 4 1 0 0 2 1 2 0 4 0 0 4 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		13-Sep- CC2309: 400 5 0 0 0 1 1 22 2 0 47 1 1 1 96 0 0 0 0 1 1 1 96 0 0 0 0 1 1 1 2 2 2 0 0 0 0 0 0 0 0 0 0	22 36	13-Sep-22 CC230937 400 5 0 - 0 - 0 - 0 - 0 - 0 - 16 - 0 - 16 - 0 - 17 - 0 - 18 - 0 - 0 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	13-Sep-22 CC230938 400 5 0 0 0 0 0 15 0 37 0 17 12 0 0 12 0 0 12 0 0 0 0 12 0 0 0 0 0 0 0	13-Sep-22 CC230939 400 5 1	13-Sep-2 CC23094 400 5 0 0 0 0 9 11 0 0 14 0 0 8 0 0 11 3 0 0	2 13-Seg 0 CC230 400 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	- 00 - 00 - 00 - 00 ND 00 - 00 - 10 - 10 - 10 - 10 - 10 - 10 -	-Sep-22 1230942 400 12 10 10 10 10 10 10 10 10 10 10 10 10 10	14-Sep-22 CC230943 400 11 0 0 0 0 29 1 0 14 0 3 29 0 0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 0 0	2 1 1 3 3 C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4-Sep-22 CC230944 400 20 0 0 0 6 25 0 0 0 0 0 0 0	12-Sep-22 CC230945 400 5 0 0 0 1 1 136 111 86 NI 4 0 0 15 15 15 15 15 15 17 18 18 19 10 11
Arthropoda Arthropoda	poola - poola Smin peroptera - peroptera Amel peroptera Baeti peroptera Baeti peroptera Baeti peroptera Baeti peroptera Baeti peroptera Baeti peroptera Baeti peroptera Baeti peroptera Baeti peroptera Baeti peroptera Baeti peroptera Ephe peroptera Ephe peroptera Ephe peroptera Ephe peroptera Ephe peroptera Ephe peroptera Ephe peroptera Ephe peroptera Ephe peroptera Ephe peroptera Ephe peroptera Ephe peroptera Ephe peroptera Ephe peroptera Hept peroptera Hept peroptera Hept peroptera Hept peroptera Hept peroptera Lept peroptera	thuridae etidae dae dae dae dae dae dae dae dae dae	Sieve Size (µm): Subsample proportion (%): Genus/Species	400 5 0 0 0 0 0 24 4 0 61 2 0 0 3 0 0 16 1 1 2 9 0 0 0 0 0 0 0 0 0 0 0 0 0		400 5 0 0 0 0 12 2 0 37 4 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0		400 5 0 0 0 1 22 2 0 47 1 1 96 0 0 0 1 5 0 0 47 1 1 2 2 2 0 47 1 1 2 3 6 6 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9		400 5 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	400 5 0 0 0 0 15 0 0 0 15 0 15 0 0 17 0 12 0 0 0 17 0 0 0 0 0 0 0	400 5 1	400 5 0 0 0 0 0 9 1 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0	- 0 - 0 - 1 - 0 ND 2 - 1 - 0 - 10 - 0 - 11 - 0 - 11 - 0 - 11 - 0 - 11 - 0 - 0 - 10 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	- 00 - 00 ND 00 - 11 ND 56 - 00 - 13 - 11 - 11 - 1 - 00 - 00 - 00 - 00 - 00	400 12 0 - 0 0 - 0 1 -	400 11 0 0 0 0 0 0 0 14 0 3 29 0 0 0 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0		400 20 0 0 0 0 0 0 0 -	400 5 0
Arthropoda Arthropoda	poola - poola Smin peroptera - peroptera Amel peroptera Baeti peroptera Baeti peroptera Baeti peroptera Baeti peroptera Baeti peroptera Baeti peroptera Baeti peroptera Baeti peroptera Baeti peroptera Baeti peroptera Baeti peroptera Ephe peroptera Ephe peroptera Ephe peroptera Ephe peroptera Ephe peroptera Ephe peroptera Ephe peroptera Ephe peroptera Ephe peroptera Ephe peroptera Ephe peroptera Ephe peroptera Ephe peroptera Ephe peroptera Hept peroptera Hept peroptera Hept peroptera Hept peroptera Hept peroptera Lept peroptera	thuridae etidae dae dae dae dae dae dae dae dae dae	Subsample proportion (%): Genus/Species	5 0 0 0 0 0 24 4 0 61 2 0 48 0 0 3 0 16 1 1 2 9 0 0 0 0 0 0 0 0 0 0 0 0 0	- ND	0 0 0 0 12 2 0 37 4 0 41 0 0 21 2 0 0 4 3 7		5 0 0 0 1 22 2 0 47 1 1 96 0 0 0 1 1 96 0 0 1 1 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0		5 0	5 0	5 1	5 0 0 0 0 0 9 1 1 0 0 0 14 0 0 4 0 0 0 0 0 0 0 0 0 0	5 - 0 - 0 - 1 - 0 ND 2 - 1 - 0 - 10 - 0 - 10 - 0 - 11 - 0 - 0 - 0 - 11 - 0 - 0 - 1 - 0 - 0 - 1 - 0 - 0 - 1 - 0 - 0 - 1 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	- 00 ND 00 - 11 ND 56 - 00 - 13 - 13 - 14 - 15 - 16 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 0	12 10 - 1 10 - 1 11 - 1 16 - 1 10 - 1 11 - 1 10	0 0 0 0 29 1 0 14 0 3 29 0 0 0 0 0 0 14 0 0 0 14 0 0 0 0 0 0 0 0	- ND	0 0 0 0 0 0 0 0	5 0
Arthropoda Arthropoda	poola - poola Smin peroptera - peroptera Amel peroptera Baeti peroptera Baeti peroptera Baeti peroptera Baeti peroptera Baeti peroptera Baeti peroptera Baeti peroptera Baeti peroptera Baeti peroptera Baeti peroptera Baeti peroptera Ephe peroptera Ephe peroptera Ephe peroptera Ephe peroptera Ephe peroptera Ephe peroptera Ephe peroptera Ephe peroptera Ephe peroptera Ephe peroptera Ephe peroptera Ephe peroptera Ephe peroptera Ephe peroptera Hept peroptera Hept peroptera Hept peroptera Hept peroptera Hept peroptera Lept peroptera	thuridae etidae dae dae dae dae dae dae dae dae dae	- Ameletus sp Baetis sp. Baetis fuscatus group Baetis rhodani group Baetis rhodani group Baetis bicaudatus Diphetor hageni - Caudatella sp. Drunella sp. Drunella grandis group Drunella coloradensis Drunella coloradensis Drunella doddsii Ephemerella sp. Ephemerella tibialis - Cinygmula sp. Epeorus sp. Rhithrogena sp Neoleptophlebia sp Eucapnopsis brevicauda - Eucapnopsis brevicauda	0 0 0 0 24 4 4 0 61 2 0 0 48 0 0 0 3 0 0 16 1 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- ND	0 0 0 12 2 0 37 4 0 4 1 0 0 2 1 2 0 0 37 4 0 0 4 37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ND	0 0 0 1 22 2 0 47 1 1 96 0 0 0 1 5 0 0 2 3 2 0 47 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 - 0 - 0 - 0 - 0 - 16 - 0 - 16 - 0 - 17 - 0 - 18 - 0 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 0 - 1 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	0 0 0 0 9 1 1 0 5 0 0 0 14 0 0 4 0 0 8 0 0	- 0 - 1 - 0 ND 2 - 1 - 0 - 10 - 0 - 10 - 0 - 11 - 0 - 11 - 0 - 0 - 11 - 0 - 0 - 10 - 0 - 10 - 0 - 10 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	- 00 ND 00 - 11 ND 56 - 00 - 13 - 11 - 1 - 1 - 0 - 00 - 00 - 00 - 00 -	0	0 0 0 29 1 0 14 0 3 29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- ND	0 0 0 0 0 0 0 0	0
Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera	neroptera - neroptera Amel neroptera Baeti neroptera Baeti neroptera Baeti neroptera Baeti neroptera Baeti neroptera Baeti neroptera Baeti neroptera Baeti neroptera Baeti neroptera Baeti neroptera Baeti neroptera Baeti neroptera Baeti neroptera Ephe neroptera Ephe neroptera Ephe neroptera Ephe neroptera Ephe neroptera Hepti neroptera Hepti neroptera Hepti neroptera Hepti neroptera Hepti neroptera Lepte neropter	etidae dae dae dae dae dae dae dae dae dae	Baetis sp. Baetis fuscatus group Baetis fuscatus group Baetis rhodani group Baetis bicaudatus Diphetor hageni - Caudatella sp. Drunella sp. Drunella grandis group Drunella coloradensis Drunella doddsii Ephemerella sp. Ephemerella tibialis - Cinygmula sp. Epeorus sp. Rhithrogena sp Neoleptophlebia sp Eucapnopsis brevicauda	0 0 0 24 4 0 61 2 0 48 0 0 3 0 16 1 1 1 2 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- ND	0 0 0 12 2 0 0 37 4 0 41 0 0 21 2 0 0 4 37 4 0 0 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ND	0 1 22 2 0 47 1 1 1 96 0 0 1 1 0 15 0 0 2 3 2		0 - 0 - 0 - 0 - 0 - 16 - 0 - 0 - 16 - 0 - 0 - 1 - 0 - 0 - 1 - 0 - 1 - 0 - 1 - 2 -	0 - 0 - 0 - 15 - 0 - 0 - 0 - 15 - 0 - 0 - 0 - 15 - 0 - 0 - 12 - 0 - 0 - 7 - 0 - 0 - 7 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	0 0 0 9 1 0 5 0 0 0 14 0 0 4 0 0 4 0 0 0 1 1 0 0 0 0	- 1 - 0 ND 2 - 1 - 0 - 10 - 0 - 0 - 11 - 0 - 0 - 11 - 0 - 0 - 11 - 0 - 0 - 0 - 11 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	ND 00 - 11 ND 56 - 00 - 11 - 11 - 11 - 9 - 00 - 00 - 00 - 11 - 10 - 00 - 00 - 00	0 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	0 0 0 29 1 0 14 0 3 29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- ND	0 6 25 0 0 7 2 90 0 0 0 0 8 0 2 52 0 0 0 0 0 0 0	0 - 1 - 31 NI
Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera	Amel Amel	dae dae dae dae dae dae dae dae dae dae	Baetis sp. Baetis fuscatus group Baetis fuscatus group Baetis rhodani group Baetis bicaudatus Diphetor hageni - Caudatella sp. Drunella sp. Drunella grandis group Drunella coloradensis Drunella doddsii Ephemerella sp. Ephemerella tibialis - Cinygmula sp. Epeorus sp. Rhithrogena sp Neoleptophlebia sp Eucapnopsis brevicauda	24 4 0 61 2 0 48 0 0 3 0 16 1 1 2 9 0 0 2 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0	- ND	0 12 2 0 37 4 0 41 0 0 21 2 0 4 31 2 0 0	ND	1 22 2 0 47 1 1 96 0 0 0 1 1 0 15 0 0 2 32 0 47		0 - 6 - 0 - 16 - 16 - 0 - 16 - 0 - 17 - 0 - 18 - 0 - 0 - 1 - 2 -	0 - 3 - 15 - 15 - 15 - 10 - 12 - 12 - 10 - 17 - 10 - 17 - 10 - 10 - 10 - 10	0 - 6 - 0 - 0 - 20 - 0 - 0 - 0 - 71 - 0 - 0 - 3 - 11 - 0 - 0 - 0 - 8 - 0 -	0 9 1 0 0 5 0 0 14 0 0 4 0 0 8 0 0	- 0 ND 2 - 1 - 0 - 10 - 0 - 10 - 0 - 11 - 0 - 1 - 0 - 0 - 11 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	- 10 ND 56 - 00 - 13 - 00 - 00 - 00 - 00 - 00 - 00	1	0 29 1 0 14 0 3 29 0 0 0 0 0 0 0 0 0 4 27 3	- ND	6 - 25 0 0 0 8 0 2 52 - 0	1
Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera	neroptera Baeti neroptera Baeti neroptera Baeti neroptera Baeti neroptera Baeti neroptera Baeti neroptera Baeti neroptera Baeti neroptera Baeti neroptera Ephe neroptera Ephe neroptera Ephe neroptera Ephe neroptera Ephe neroptera Ephe neroptera Ephe neroptera Ephe neroptera Ephe neroptera Ephe neroptera Ephe neroptera Hepti neroptera Hepti neroptera Hepti neroptera Hepti neroptera Lepto neroptera	dae dae dae dae dae dae dae dae dae dae	Baetis sp. Baetis fuscatus group Baetis fuscatus group Baetis rhodani group Baetis bicaudatus Diphetor hageni - Caudatella sp. Drunella sp. Drunella grandis group Drunella coloradensis Drunella doddsii Ephemerella sp. Ephemerella tibialis - Cinygmula sp. Epeorus sp. Rhithrogena sp Neoleptophlebia sp Eucapnopsis brevicauda	4 0 61 2 0 48 0 0 0 3 3 0 16 1 1 1 2 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		2 0 37 4 0 41 0 1 0 0 21 2 2 0 4 31 2 0 0 0 0	ND	2 0 47 1 1 96 0 0 1 0 15 0 0 2 32 0	ND	0 - 0 - 16 - 0 - 47 - 0 - 1 - 1 - 0 - 8 - 0 - 0 - 1 - 2 -	0 - 0 - 15 - 0 - 37 - 0 - 0 - 12 - 0 - 0 - 12 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	1 0 5 0 0 0 14 0 0 4 0 8 0 0 0 14 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- 1 - 0 - 10 - 0 - 0 - 0 - 11 - 0 - 0 - 11 - 0 - 0 - 11 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	- 00 - 11 - 11 - 9 - 00 - 00 - 00 - 00 - 00 - 00 - 00	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	1 0 14 0 3 29 0 0 0 0 0 0 0 0 0 0 4 27 3		0 0 7 0 90 0 0 0 0 2 52 0 0 0 0 0 0 0	2 NI 1 - 136 - 111 - 0 - 86 NI 4 - 0 - 2 - 0 0 - 15 - 15 - 1 3 - 1 NI 13 - 1 NI 13 - 3 -
Arthropoda (Hexapoda) Arthropoda (Hexapoda)	Baeti	dae dae dae dae dae dae merellidae Baetis fuscatus group Baetis rhodani group Baetis bicaudatus Diphetor hageni Caudatella sp. Drunella sp. Drunella grandis group Drunella coloradensis Drunella doddsii Ephemerella sp. Ephemerella tibialis - Cinygmula sp. Epeorus sp. Rhithrogena sp	0 61 2 0 48 0 0 0 3 0 16 1 1 2 9 0 2 0 0 2 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0	- ND	0 37 4 0 41 0 0 1 0 0 2 1 2 0 4 31 2 1 2	ND	47 1 1 96 0 0 1 0 15 0 0 2 32 0		0 - 16 - 0 - 0 - 47 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 0 - 1 - 0 -	0 - 15 - 0 - 37 - 0 - 0 - 7 - 12 - 0 - 0 - 7 - 0 - 0 - 12 - 0 - 7 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	0 - 20 - 0 - 0 - 71 - 0 - 0 - 3 - 11 - 0 - 0 - 11 - 0 - 0 - 0 - 0 -	5 0 0 14 0 0 4 0 8 0 0 1 1 3 0	- 0 - 10 - 0 - 0 - 11 - 0 - 11 - 0 - 1 - 0 - 1 - 0 - 0 - 1 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	- 00 - 13 - 1 - 1 - 9 - 00 - 00 - 00 - 00 - 00 - 00 - 00	0 - 3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	0 14 0 3 29 0 0 0 0 0 0 10 0 4 27 3		0 7 0 2 90 0 0 0 0 0 2 52 0 0 0 0 0 0 0	1 1 - 136 - 111 - 1	
Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera	Baeti	dae dae dae dae dae merellidae me	Baetis rhodani group Baetis bicaudatus Diphetor hageni Caudatella sp. Drunella sp. Drunella grandis group Drunella coloradensis Drunella doddsii Ephemerella sp. Ephemerella tibialis - Cinygmula sp. Epeorus sp. Rhithrogena sp Neoleptophlebia sp Eucapnopsis brevicauda	61 2 0 48 0 0 3 0 16 1 1 2 9 0 2 0 0 4 0 0	- ND	37 4 0 41 0 1 0 0 0 21 2 0 4 31 2 12 0 0	- ND	47 1 1 96 0 0 1 0 15 0 0 2 32 0		0 - 0 - 47 - 0 - 1 - 0 - 8 - 0 - 0 - 1 - 2 -	15 - 0 - 0 - 37 - 0 - 7 - 0 - 12 - 0 - 0 - 7 - 0 - 17 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	20 - 0 - 0 - 71 - 0 - 3 - 11 - 0 - 11 - 0 - 0 - 8 -	0 0 14 0 0 4 0 8 0 0 1 1 3 0	- 10 - 0 - 11 - 0 - 11 - 0 - 1 - 0 - 1 - 0 - 0 - 1 - 0 - 0 - 1 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	- 13 - 1 - 9 - 00 - 00 - 00 - 1 - 00 - 33 - 1	3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	14 0 3 29 0 0 0 0 0 10 0 4 27 3		7	11 - 0 - 86 NI - 4 - 0 - 2 - 0 - 15 - 0 - 1 NI - 1 NI - 13 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -
Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Plecoptera	Baeti	dae merellidae ageniidae	Diphetor hageni - Caudatella sp. Drunella sp. Drunella sp. Drunella grandis group Drunella coloradensis Drunella doddsii Ephemerella sp. Ephemerella tibialis	0 48 0 0 3 0 16 1 1 2 9 0 2 0 0 2		0 41 0 1 0 0 0 21 2 0 4 31 2 12 0	- - - -	0 0 1 0 15 0 0 2 32 0 4		0 - 47 - 0 - 1 - 1 - 0 - 8 - 0 - 1 - 1 - 2 -	0 - 37 - 0 - 12 - 0 - 0 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7	0 - 71 - 0 - 0 - 3 - 11 - 0 - 0 - 11 - 0 - 0 - 8 - 0 -	0 14 0 0 4 0 8 0 0 1 1 3	- 0 - 11 - 0 - 0 - 1 - 0 - 9 - 0 - 0 - 0 - 0 - 0 - 9 - 0 - 0 - 9 - 0 - 0 - 9 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	- 9 - 0 - 0 - 0 - 0 - 0 - 9 - 1 - 0 - 6 - 33	ND	3 29 0 0 0 0 0 10 0 0 4 27 3		2 90 0 0 0 8 0 2 52 0	0 - 86 NI 4 - 0 - 2 - 0 - 15 - 15 - 1 NI 13 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -
Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Plecoptera	Ephe Ephe	merellidae merellidae merellidae merellidae merellidae merellidae merellidae merellidae merellidae merellidae merellidae merellidae ageniidae ageniidae ageniidae ageniidae ageniidae ageniidae idae idae idae ophlebiidae idae idae idae opperlidae opperlidae opperlidae	- Caudatella sp. Drunella sp. Drunella sp. Drunella sp. Drunella grandis group Drunella coloradensis Drunella doddsii Ephemerella sp. Ephemerella tibialis - Cinygmula sp. Epeorus sp. Rhithrogena sp Neoleptophlebia sp.	0 0 3 0 16 1 1 2 9 0 2 0 0 0 4		0 1 0 0 21 2 0 4 31 2 12 0	- - - -	0 0 1 0 15 0 0 2 32 0 4		0 - 0 - 1 - 0 - 8 - 0 - 0 - 1 - 1 - 2 -	0 - 0 - 7 - 12 - 0 - 0 - 7 - 12 - 0 - 0 - 0 - 0 - 7 - 0 -	0 - 0 - 3 - 11 - 0 - 0 - 0 - 15 - 0 - 0 - 0 - 0 -	0 0 4 0 8 0 0 0 1 1 3	- 0 - 0 - 1 - 0 - 9 - 0 - 0 - 0 - 9 - 0	- 00 - 00 - 00 - 00 - 9 - 1 - 0 - 6 - 33	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	0 0 0 0 10 0 0 4 27 3		0 - 0 - 0 - 0 - 8 - 0 - 0 - 2 - 52 -	4 - 0 - 2 - 0 - 15 - 3 - 0 - 1 NII - 13 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -
Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Plecoptera	Ephe Ephe	merellidae merellidae merellidae merellidae merellidae merellidae merellidae merellidae merellidae ageniidae ageniidae ageniidae ageniidae ageniidae ageniidae ageniidae ophlebiidae ophlebiidae ophlebiidae ophlebiidae operiidae operiidae	Drunella sp. Drunella grandis group Drunella coloradensis Drunella coloradensis Drunella doddsii Ephemerella sp. Ephemerella tibialis - Cinygmula sp. Epeorus sp. Rhithrogena sp Neoleptophlebia sp Eucapnopsis brevicauda	0 3 0 16 1 1 2 9 0 2 0 0 0 4		1 0 0 21 2 0 4 31 2 12 0	-	0 1 0 15 0 0 2 32 0 4		0 - 1 - 0 - 8 - 0 - 0 - 1 - 2 -	0 - 7 - 0 - 12 - 0 - 0 - 7 - 7 - 0 - 0 - 0 - 7 - 0 -	0 - 3 - 0 - 11 - 0 - 0 - 0 - 8 - 0 -	0 4 0 8 0 0 0 1 1 3	- 0 - 1 - 0 - 9 - 0 - 0 - 0 - 0 - 0	- 00 - 00 - 9 - 1 - 0 - 6 - 33	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	0 0 0 10 0 0 4 27 3	- - -	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	0 - 2 - 0 - 15 - 0 - 0 - 1 NII 13 - 3 - 3 - 0 - 1 NII 15 - 1 NII 1
Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Plecoptera	Ephe Ephe	merellidae merellidae merellidae merellidae merellidae merellidae ageniidae ageniidae ageniidae ageniidae ageniidae apeniidae	Drunella grandis group Drunella coloradensis Drunella doddsii Ephemerella sp. Ephemerella tibialis - Cinygmula sp. Epeorus sp. Rhithrogena sp Neoleptophlebia sp Eucapnopsis brevicauda	3 0 16 1 1 2 9 0 2 0 0 0 4	-	0 21 2 0 4 31 2 12 0	-	1 0 15 0 0 0 2 32 0 4		1 - 0 - 8 - 0 - 0 - 0 - 1 - 2	7 - 0 - 12 - 0 - 0 - 0 - 7 - 0 - 0 - 0 - 7 -	3 - 0 - 111 - 0 - 0 - 0 - 8 - 0 -	4 0 8 0 0 1 1 3	- 1 - 0 - 9 - 0 - 0 - 0 - 0 - 0	- 00 - 09 - 1 - 00 - 66 - 33	0 - 0 - 1 - 1 - 0 - 6 - 3 - 1 - 5 -	0 0 10 0 0 0 4 27	- - -	0 - 0 - 8 - 0 - 0 - 2 - 52 -	2 - 0 - 15 - 3 - 0 - 1 NII - 13 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -
Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Plecoptera	Ephe Ephe	merellidae merellidae merellidae ageniidae ageniidae ageniidae ageniidae ageniidae ageniidae ageniidae iidae iiidae iiidae opelidae opelidae operiidae	Drunella doddsii Ephemerella sp. Ephemerella tibialis Cinygmula sp. Epeorus sp. Rhithrogena sp Neoleptophlebia sp	16 1 1 2 9 0 2 0 0 0 0 4	-	21 2 0 4 31 2 12 0	-	15 0 0 2 32 0 4		8 - 0 - 0 - 0 - 1 - 2 -	12 - 0 - 0 - 0 - 7 - 0 -	111 - 0 - 0 - 0 - 0 - 8 - 0 -	8 0 0 1 3 0	- 9 - 0 - 0 - 0 - 9 - 0	- 9 - 1 - 0 - 6 - 3:	9 - 1 - 0 - 6 - 3 - 1 - 5 -	10 0 0 4 27 3	- - -	8 - 0 - 0 - 2 - 52 - 0 -	15 - 3 - 0 - 1 NI 13 - 3 - 3
Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Plecoptera	Ephe Ephe	merellidae merellidae ageniidae ageniidae ageniidae ageniidae ageniidae ageniidae ageniidae ageniidae ageniidae ophlebiidae ophlebiidae ophlebiidae coperlidae operlidae operlidae	Ephemerella sp. Ephemerella tibialis - Cinygmula sp. Epeorus sp. Rhithrogena sp Neoleptophlebia sp Eucapnopsis brevicauda	1 1 2 9 0 2 0 0 0 0 4	-	2 0 4 31 2 12 0		0 0 2 32 0 4		0 - 0 - 1 - 2 -	0 - 0 - 0 - 7 - 0 -	0 - 0 - 0 - 8 - 0 -	0 1 3 0	- 0 - 0 - 0 - 9 - 0	- 1 - 0 - 6 - 33	1 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	0 0 4 27 3	- - -	2 - 52 - 0 -	3 - 0 - 1 NI 13 - 3 -
Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Plecoptera	Heptineroptera	ageniidae ageniidae ageniidae ageniidae ageniidae apphlebiidae	Cinygmula sp. Epeorus sp. Rhithrogena sp. Neoleptophlebia sp	2 9 0 2 0 0 0 0 4	-	4 31 2 12 0 0		2 32 0 4	-	0 - 1 - 2 -	0 - 7 - 0 -	0 - 8 - 0 -	1 3 0	- 0 - 9 - 0	- 6 - 30 - 1	3 - 1 - 5 -	4 27 3	- - -	2 - 52 - 0 -	1 NI 13 - 3 -
Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Plecoptera	Heptineroptera	ageniidae ageniidae ageniidae ageniidae aphlebiidae pphlebiidae iiidae iidae roperlidae opperlidae	Epeorus sp. Rhithrogena sp. Neoleptophlebia sp. Eucapnopsis brevicauda	9 0 2 0 0 0 0 4	-	31 2 12 0 0	- - - -	32 0 4		1 - 2 -	7 -	8 -	0	- 9 - 0	- 30 - 1	3 - 1 -	27 3	-	52 - 0 -	13 -
Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Plecoptera	Heptineroptera	ageniidae ageniidae ophlebiidae ophlebiidae iiidae iiidae operlidae operlidae operlidae	Epeorus sp. Rhithrogena sp. Neoleptophlebia sp. Eucapnopsis brevicauda	2 0 0 0 0 4		12 0 0	- - -	4	-							5 -		-		
Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Plecoptera	Lepto	ophlebildae ophlebildae iiidae iiidae roperlidae operlidae	- Neoleptophlebia sp	0 0 0 0 4 0		0	-		+ - +			1 1 -	1 0	- 3	- 5		13	-	11 -	16 -
Arthropoda (Hexapoda) Ephermeroj Arthropoda (Hexapoda) Plecoptera	leroptera Lepto era - era Capr era Capr era Chlor era Chlor era Chlor era Chlor era Chlor	phlebildae iiidae iiidae operlidae operlidae operlidae	- - Eucapnopsis brevicauda	0 0 4 0		0				0 -	0 -	0 -	0	- 0	- 0	, , - 1	1	- 1	0 -	0 -
Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera	era Capr era Capr era Chlor era Chlor era Chlor era Chlor	iidae roperlidae roperlidae roperlidae	-	4 0	-	0	-	0	- 1	0 -	0 -	0 -	0	- 0	- 0) -	0	-	1 -	0 -
Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera	era Capr era Chlor era Chlor era Chlor era Chlor	iidae roperlidae roperlidae roperlidae	-	0		0		<u>0</u>		0 -	1 NI 3 -	D 0 -	2	- 0	- 0	2 -	0	ND -	0 - 6 -	0 -
Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera	era Chlor era Chlor era Chlor	operlidae operlidae	- Haploperla sp.	Ω	-	4	-	5	-	1 -	1 -		0	- 4	- 0		0	-	1 -	1 -
Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera	era Chlor era Chlor	operlidae	наріорегіа sp.		-	0	-	1	-	1 -	0 -	2 -	0	- 1	- 1		0	-	1 -	2 -
Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera	era Chlor		Plumiperla sp.	0	-	0	-	0	-	0 -	0 -	0 -	0	- 0	- 0		0	-	0 -	0 -
Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera	era [Leuc		Sweltsa sp.	4	-	4	-	3	-	1 -	1 -	1 -	1	- 4	- 7		1	-	9 -	2 -
Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera			- Paraleuctra sp.	0	-	0	-	0	-	0 -	0 -	0 -	0	- 0 - 0	- 0		0	-	1 -	0 -
Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera	era Nem	ouridae	-	6	-	0	-	7	-	9 -	1 -	13 -	1	- 2	- 0		0	-	0 -	3 -
Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera			Malenka sp. Zapada sp.	0 24	- ND	7	- ND	0 22		0 -	0 -	0 -	1 13	- 0 ND 31	- 0 ND 16	6 ND	0 16	- ND	0 -	0 -
Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera			Zapada oregonensis group	6	-	4	-	3	-	0 -	1 -	4 -	3	- 2	- 3		2	-	2 -	2 -
Arthropoda (Hexapoda) Plecoptera			Zapada cinctipes Zapada columbiana	40	-	15	-	12 0	-	16 - 0 -	21 -	12 -	39	- 46	- 3 ⁻		12	-	4 - 0 -	37 -
Arthropoda (Hexapoda) Plecoptera			Yoraperla sp.	0	-	0	-	0	-	0 -	0 -	0 -	0	- 0	- 0		0	-	0 -	0 -
			- D	1	-	2	-	1	-	1 -	1 -	1 -	0	- 1	- 1	-	0	-	1 N	
Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera		dae didae	Doroneuria sp.	0	-	0	-	0	-	0 -	0 -	0 -	0	- 0	- 1	·	0	-	0 -	1 -
Arthropoda (Hexapoda) Plecoptera	era Perlo		Kogotus sp.	11	-	10	-	9	1-1	4 -	2 -	3 -	1	- 4	- 6	3 -	8	-	6 -	5 -
Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Plecoptera	i one		Megarcys sp. Skwala sp.	5 0	-	<u>1</u> 1		<u>1</u>	-	0 -	2 -	2 -	0	- 0	- 1	1 -	0	-	0 -	1 -
Arthropoda (Hexapoda) Plecoptera	era Taen	iopterygidae	-	65	-	30	-	48	-	21 -	9 -	6 -	15	- 41	- 22	2 -	31	-	24 -	49 -
Arthropoda (Hexapoda) Plecoptera Arthropoda (Hexapoda) Trichoptera		iopterygidae	Taenionema sp.	1 0	-	0	-	<u>0</u>	- ND	0 -	0 -	0 -	0	- 0	- 0) -	0	-	0 -	0 -
Arthropoda (Hexapoda) Trichoptera Arthropoda (Hexapoda) Trichoptera		aniidae	- Apatania sp.	1	-	0	-	2	-	0 -	0 -	0 -	1	- 0) -	0		0 -	0 -
Arthropoda (Hexapoda) Trichoptera		nycentridae	- Prochyoantrus co	0	-	0	-	0	-	0 -	0 -	1 -	0	- 0	- 0		0	-	0 -	0 -
Arthropoda (Hexapoda) Trichoptera Arthropoda (Hexapoda) Trichoptera			Brachycentrus sp. Brachycentrus americanus	0	-	0	-	0	1-1	0 -	0 -	0 -	0	- 0	') -	0	-	0 -	0 -
Arthropoda (Hexapoda) Trichoptera	tera Brack	nycentridae	Micrasema sp.	0	-	0	1-1	1	-	0 -	1 -	0 -	2	- 1	- 0		0	-	0 -	0 -
Arthropoda (Hexapoda) Trichoptera Arthropoda (Hexapoda) Trichoptera		sosomatidae sosomatidae	- Glossosoma sp.	1 16	ND -	20		0 15		0 -	0 -	0 -	0 2	- 0	- 0		2	-	0 -	0 -
Arthropoda (Hexapoda) Trichoptera	tera Hydro	opsychidae	-	2	-	1	- 1	0	-	0 -	1 -	1 -	0	- 2	- 1	. + +	0		0 -	0 -
Arthropoda (Hexapoda) Trichoptera Arthropoda (Hexapoda) Trichoptera			Arctopsyche sp. Parapsyche sp.	3		2	 - 	0	-	0 - 8 -	2 -	0 -	0	- 0 ND 13	- 0 ND 1		2	- ND	0 -	0 -
Arthropoda (Hexapoda) Trichoptera			Parapsyche elsis	0	-	0	-	0	-	0 -	0 -	0 -	1	- 1	- 0		1		0 -	0 -
Arthropoda (Hexapoda) Trichoptera		pptilidae	- Hudrontilo on	0	-	0	-	0	-	1 -	0 -		1	- 1		-	0	-	0 -	0 -
Arthropoda (Hexapoda) Trichoptera Arthropoda (Hexapoda) Trichoptera			Hydroptila sp. Metrichia sp.	0		0	-	0	-	0 -	0 -	0 -	5	- 0 - 1	- 0 - 0		0	-	0 -	0 -
Arthropoda (Hexapoda) Trichoptera	tera Lepic	lostomatidae	Lepidostoma sp.	0	-	0	- 1	1	-	0 -	0 -	0 -	0	- 0	- 0) -	0	-	0 -	0 -
Arthropoda (Hexapoda) Trichoptera Arthropoda (Hexapoda) Trichoptera		ephilidae ephilidae	- Dicosmoecus sp.	0		0		0	 - 	0 -	0 -	0 -	0	- 0	- 0) -	0	-	0 -	0 -
Arthropoda (Hexapoda) Trichoptera Trichoptera			Rhyacophila sp.	5	-	6	-	5	-	11 -	9 -	4 -	26	- 14		3 -	25	-	45 -	64 -
Arthropoda (Hexapoda) Trichoptera			Rhyacophila betteni group	1	-	1	-	1	<u> </u>	4 -	3 -	0 -	0	- 1	- 5		3	-	1 -	0 -
Arthropoda (Hexapoda) Trichoptera Arthropoda (Hexapoda) Trichoptera			Rhyacophila brunnea/vemna sp. group Rhyacophila hyalinata group	0	-	0	-	0	-	0 -	0 -	0 -	0	- 2	- 1	1 - <u>-</u>	0	-	0 -	6 -
Arthropoda (Hexapoda) Trichoptera	tera IRhva	cophilidae	Rhyacophila vofixa group	0	-	1	 -	0	-	1 -	0 -	0 -	1	- 0	- 4	1 -	1	-	1 -	0 -
Arthropoda (Hexapoda) Trichoptera Arthropoda (Hexapoda) Trichoptera	tera Rhya	cophilidae	Rhyacophila atrata complex Rhyacophila narvae	0	+-+	2	-	0	-	0 -	1 -	3 -	0	- 0	- 1	1 -	5 0	-	3 -	6 -

Table K-1: Raw Benthic Invertebrate Community Abundance Data at CMm LAEMP Sampling Stations, 2022

			Sample Name:	RG MIDAG	BIC- RO	MIDAG BIC-	RG MID	AG BIC-	RG MIDCO	BIC	RG MIDCO	BIC- E	RG MIDCO	BIC- RG	MIDCO B	SIC- RG-M	MDCO BIO	C- RG M	IIUCO BIC	RG MILI	CO BIC	- RG MIII	ICO BIC	RG MILL
			Sample Collection Date:	1_2022-09-13 13-Sep-22	3_N 2_	2022-09-13_N 13-Sep-22	3_2022-0 13-Se	09-13_N	1_2022-09-2	13_N	2_2022-09-13 13-Sep-22	3_N :	3_2022-09-2 13-Sep-2	13_N 4_2	.022-09-13 13-Sep-22	_N 5_20	22-09-13_I 3-Sep-22	N 1_202	22-09-14_N -Sep-22	2_2022-0	09-14_N ep-22	3_2022	-09-14_N ep-22	1_2022- 12-Se
			Chain of Custody Identification Number:	CC230934		CC230935	CC23		CC23093		CC230938		CC23093		CC230940		C230941		C230942	CC23			30944	CC23
			Sieve Size (μm):	400		400	40	00	400		400		400		400		400		400	40			00	40
valence (and a brillian)	Ouder/Class	Family (such family (with a)	Subsample proportion (%):	5		5	5	5	5		5		5		5		5		12	1	11		20	!
nylum (sub-phylum) thropoda (Hexapoda)	Order/Class Trichoptera	Family (sub-family/tribe) Thremmatidae	Genus/Species Oligophlebodes sp.	42	- 1	52 -	44	1 - 1	10	-	7	_	5	1.1	6	_	8	- 1	0 -	1	7	0	—	1
thropoda (Hexapoda)	Coleoptera	-	Oligophiebodes sp.	0	-	0 -	0		0	-	18	-	0	+-+-	0		12 -	-	0 -	1 0	+	1	- -	0
thropoda (Hexapoda)	Coleoptera	Elmidae	-	0	-	0 -	2	ND	2	ND	2	ND	4	ND	0	-	1 N	ID	2 ND) 3	ND) 6	ND	
rthropoda (Hexapoda)	Coleoptera	Elmidae	Heterlimnius sp.	8	- 1	8 -	6	- -	14	-	17	-	15	-	7	- '	11 -	- 2	25 -	22	T -	38	-	14
rthropoda (Hexapoda)	Coleoptera	Haliplidae	Brychius sp.	0	-	0 -	0	-	0	-	0	-	0	-	0	-	0 -	-	0 -	0		0		0
rthropoda (Hexapoda)	Diptera	Ceratopogonidae	Bezzia sp./ Palpomyia sp.	1	-	1 -	1	-	0	-	0	-	0	-	0	-	0 -	-	0 -	1		2		0
thropoda (Hexapoda)	Diptera	Ceratopogonidae	Mallochohelea sp.	0	-	0 -	2	-	3	-	1	-	5	-	3		3 -		0 -	1	- -	3		0
rthropoda (Hexapoda)	Diptera	Chironomidae	-		ND	0 -	3	ND	9	ND	6	ND	3	ND		_			2 ND		- -	0	ND	
rthropoda (Hexapoda) rthropoda (Hexapoda)	Diptera Diptera	Chironomidae (Chironominae/Chironomini) Chironomidae (Chironominae/Chironomini)	- Cryptochironomus sp.	0	-	0 -	0		0	-	0	-	0	+-+-	0		0 -	_	0 -	0	+-	0		0
rthropoda (Hexapoda)	Diptera	Chironomidae (Chironominae/Chironomini)	Stictochironomus sp.	0	-	0 -	0	+-	2	-	0	-	0	+	0		0 -	_	0 -	0	+	0		0
rthropoda (Hexapoda)	Diptera	Chironomidae (Chironominae/Tanytarsini)	-	0		0 -	0		1	-	0	-	3	1-	0		0 -		0 -	0	- -	4		0
rthropoda (Hexapoda)	Diptera	Chironomidae (Chironominae/Tanytarsini)	Constempellina sp.	0	-	0 -	0	-	0	-	0	-	0	-	1	-	0 -	-	0 -	1	<u> </u>	1		0
rthropoda (Hexapoda)	Diptera	Chironomidae (Chironominae/Tanytarsini)	Micropsectra sp.	1	-	0 -	0	-	7	-	0	-	3	-	2	-	1 -	-	0 -	0	T -	0	-	3
rthropoda (Hexapoda)	Diptera	Chironomidae (Diamesinae/Diamesini)	Diamesa sp.	1	-	0 -	0	-	0	Ţ-	1	-	1	-	0	-	0 -	-	0 -	0		0		0
rthropoda (Hexapoda)	Diptera	Chironomidae (Diamesinae/Diamesini)	Pagastia sp.	1	-	0 -	0	_ -	5	-	1	-	7	1-1	3	-	2 -	-	0 -	2		0	<u> </u>	0
thropoda (Hexapoda)	Diptera	Chironomidae (Orthocladiinae)	-	0	-	0 -	0	- -	11	ND	0	-	0	1-1	0		0 -		0 -	0		0	- -	0
rthropoda (Hexapoda)	Diptera	Chironomidae (Orthocladiinae)	Brillia sp.	1	-	0 -	0	-	0	-	0	-	0	1-	0	_	0 -	-	0 -	0		1	\perp	0
thropoda (Hexapoda)	Diptera	Chironomidae (Orthocladiinae)	Corynoneura sp.	0	-	0 -	0	-	0	-	0	-	0	+-	0		0 -		0 -	0	- -	0		0
thropoda (Hexapoda)	Diptera	Chironomidae (Orthocladiinae)	Cricotopus sp. (Nostococladius sp.)	0 11	-	0 -	0	-	2	+-	0 4	-	2	+-+-	3		0 -		0 -	0	- -	0	+	10
thropoda (Hexapoda) thropoda (Hexapoda)	Diptera Diptera	Chironomidae (Orthocladiinae) Chironomidae (Orthocladiinae)	Eukiefferiella sp. Hydrobaenus sp.	11 0	-	0 -	0	+-	2	-	0	+-+	0	+:+-	0		10 - 0 -		0 -	0	+-	0		10
thropoda (Hexapoda)	Diptera	Chironomidae (Orthocladiinae)	Orthocladius sp. complex	13	-	0 -	1		75	-	57		65	+-+-	38		41 -		1 -	1	- -	2	- -	7
thropoda (Hexapoda)	Diptera	Chironomidae (Orthocladiinae)	Orthocladius lignicola	0	-	0 -	0		0	-	0	-	0	+-+-	1		0 -	_	0 -	0	- -	0	-	0
thropoda (Hexapoda)	Diptera	Chironomidae (Orthocladiinae)	Parorthocladius sp.	0		0 -	0		0	-	0	-	0	 - - - - - - - - - -	0		0 -	_	0 -	0	- -	0		0
thropoda (Hexapoda)	Diptera	Chironomidae (Orthocladiinae)	Rheocricotopus sp.	0	-	0 -	0	-	0	-	0	-	0	-	0	-	0 -	-	0 -	0		0		0
thropoda (Hexapoda)	Diptera	Chironomidae (Orthocladiinae)	Tvetenia sp.	0	-	0 -	0	-	0	-	1	-	0	-	0	-	1 -	-	0 -	0	T -	0	-	0
thropoda (Hexapoda)	Diptera	Chironomidae (Tanypodinae/Pentaneurini)	Thienemannimyia sp. group	0	-	1 -	3	-	2	-	3	-	7	-	2	-	4 -	-	7 -	1		7		0
thropoda (Hexapoda)	Diptera	Empididae	-	0	-	0 -	0	-	0	-	0	-	0	-	0	-	0 -	-	0 -	0		0		1
thropoda (Hexapoda)	Diptera	Empididae	Chelifera sp./ Metachela sp.	0	-	0 -	0	-	0	-	0	-	0	-	0	-	0 -	_	0 -	0	<u> </u>	0		0
thropoda (Hexapoda)	Diptera	Empididae	Neoplasta sp.	0	-	0 -	0	- -	0	-	0	-	0		0		1 .	-	0 -	0	- -	0		0
thropoda (Hexapoda)	Diptera	Empididae	Roederiodes sp.	0	-	0 -	0		0	-	0	-	0	+	0		0 -		0 -	0	—	0		0
thropoda (Hexapoda) thropoda (Hexapoda)	Diptera Diptera	Empididae Pelecorhynchidae	Trichoclinocera sp. Glutops sp.	0	-	0 -	0		0	-	0	-	0	+-+-	0		0 -	_	0 -	0	-	0		0
thropoda (Hexapoda)	Diptera	Psychodidae Psychodidae	Pericoma sp./ Telmatoscopus sp.	22	-	53 -	44	- 1	129	+-	92	-	188	+:+-	109		95 -	_	38 -	69	+	89		22
rthropoda (Hexapoda)	Diptera	Simuliidae		1	-	0 -	0		2	-	1	-	0	+-+-	0		0 -	_	0 -	0	- -	0.0	-	0
rthropoda (Hexapoda)	Diptera	Simuliidae	Simulium sp.	6	-	1 -	0		1	-	0	-	0	1-1	3		2 -		1 -	0	- -	0		5
rthropoda (Hexapoda)	Diptera	Tipulidae	-	0	-	0 -	0	-	0	-	0	-	0	1-	0	-	0 -	-	0 -	0	—	0		0
rthropoda (Hexapoda)	Diptera	Tipulidae	Antocha sp.	0	-	0 -	0	-	1	-	2	-	2	-	3	-	0 -	-	0 -	0	-	0		2
rthropoda (Hexapoda)	Diptera	Tipulidae	Dicranota sp.	0	-	0 -	0	-	0	-	0	-	0	-	0	-	0 -	-	0 -	0		0		0
thropoda (Hexapoda)	Diptera	Tipulidae	Gonomyia sp.	0	-	0 -	0	-	0	-	0	-	0	<u> </u>	0	-	0 -	-	0 -	0		0		0
thropoda (Hexapoda)	Diptera	Tipulidae	Hexatoma sp.	1	-	0 -	0	-	0	-	2	-	0	1-	0	-	1 -	-	1 -	0		3	- -	1
rthropoda (Hexapoda)	Diptera	Tipulidae	Tipula sp.	0	-	0 -	0	-	0	-	0	-	1	+-	0	-	0 -	-	0 -	0	- -	0	- -	0
thropoda (Hexapoda)	Thysanoptera Trombidiformes	 	+	0	-	0 -	0	- -	0	-	0	-	<u>0</u>	+	0		0 -	_	2 -	0	- -	0	+	0
thropoda (Chelicerata) thropoda (Chelicerata)	Trombidiformes Trombidiformes	- Aturidae	+	0	 	0 -	0		0	-	0	 	0	+ - + -	0		0 -	-	0 -	0	- -	0		0
thropoda (Chelicerata)	Trombidiformes	Aturidae	- Aturus sp.	0	-	0 -	0	+-	0	+-	0	+	1	+-+-	0		0 -	-	0 -	0	一	0	+	0
thropoda (Chelicerata)	Trombidiformes	Feltriidae	Feltria sp.	0	-	0 -	1		0	-	0	 - 	1	1 - 1	0		0 -		0 -	0	- -	0		0
thropoda (Chelicerata)	Trombidiformes	Hydryphantidae	Protzia sp.	1	-	0 -	0	-	0	1 -	1	-	0	1 - 1	0		0 -		0 -	0	-	0		1
thropoda (Chelicerata)	Trombidiformes	Hygrobatidae	Atractides sp.	0	-	0 -	0	-	0		0		0	1-1	1		0 -		0 -	0		1		0
thropoda (Chelicerata)	Trombidiformes	Hygrobatidae	Hygrobates sp.	0	-	0 -	0	-	0	_	2	-	0	-	0	-	2 -	-	1 -	1		2		0
thropoda (Chelicerata)	Trombidiformes	Lebertiidae	Lebertia sp.	6	-	4 -	10	-	8	-	15	-]	12	-	6	-	5 -	-	7 -	1		3		8
thropoda (Chelicerata)	Trombidiformes	Sperchontidae	Sperchon sp.	1	-	3 -	4	-	2	-	2	-	3	-	3	_	2 -		2 -	1	<u> </u>	0		3
thropoda (Chelicerata)	Trombidiformes	Torrenticolidae	Testudacarus sp.	0	-	0 -	0	-	0	-	0	-	1	1-	0	_	0 -		0 -	1		1		0
hropoda (Chelicerata)	Trombidiformes	Torrenticolidae	Torrenticola sp.	0	- -	0 -	0	-	0	-	0	-	0	1-1	0	_	0 -	_	1 -	0	- -	0		0
nropoda (Chelicerata)	Trombidiformes - Prostigmata	Stygothrombidiidae	Stygothrombium sp.	0	-	0 -	0	-	0	-	0	-	0	+	0		0 -		0 -	0	- -	0		0
nelida (Clitelata) nelida (Clitelata)	Tubificida Tubificida	Enchytraeidae Naididae	Enchytraeus sp.	0	-	0 -	0	- -	26 0	-	0 13	-	0 47	+	0 12		0 - 14 -	_	0 -	0	- -	1 0		0 4
nelida (Clitelata) nelida (Clitelata)	Tubificida	Naididae Naididae (Subfamily: Tubificinae without hair chaetae)	Nais sp.	0	 	0 -	0	+-	0	+-	13	+-+	0	+:+-	0		0 -		6	0	-	0		0
hropoda (Hexapoda)	Diptera	Cecidomyiidae Cecidomyiidae		0	-	0 -	0		0	Ė	0		0		0		0 -	-	1 -	0	÷	0		0
hropoda (Hexapoda)	Hemiptera	Cicadellidae	-	0		0 -	0		0		0		0		0		0 -		0 -	0		0		0
thropoda (Crustacea)	Class: Ostracoda	-	-	0	-	0 -	1	-	1		0	- 1	0		0		0 -		1 -	1		1		0
thropoda (Crustacea)	Order: Cladocera	-	-	0	-	0 -	0	-	1	-	0	- 1	0	1-1	0	-	0 -	-	0 -	0		0		0
thropoda (Crustacea)	Class: Copepoda	-	-	-	-	0 -	0	-	0	-	0	-	0	1-1	0	-	0 -	-	0 -	0		0		0
ematoda	-	-	-	0	-	1 -	0	-	1	-	0	_	1	-	0	-	0 -	-	1 -	1	-	0		0
atyhelminthes	Class: Turbellaria	-	-	1	-	1 -	1	-	1	-	1	-	1		1	-	1 -	-	1 -	1		1		1
							491		502	_	410		578		382		51 -		72 -	359		503		630

WSP Canada Inc. Page 4 of 31

Total Benthic Invertebrate Abundance:

Notes: Grey cells represent taxa that were present in the samples but were not included in the calculations because they are non-benthic taxa. The ND designation represents a non-distinct taxa.

- = no data; CMm = Coal Mountain Mine; LAEMP = local aquatic effects monitoring program

Samples collected by Minnow Environmental (BC) and submitted to Cordillera Consulting Inc. for taxonomic identification and enumeration. Taxonomist contact information: Scott Finlayson; scottfinlayson@cordilleraconsulting.ca; +1-250-494-7553.

Table K-1: Raw Benthic Invertebrate Community Abundance Data at CMm LAEMP Sampling Stations, 2022

June 2023

Arthropoda Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda)	Order/Class Collembola Collembola Ephermeroptera	Family (sub-family/tribe) - Sminthuridae Ameletidae Baetidae	Genus/Species	0 0 0 0 16 4 0 103 6 0 133	- - - - ND - - - -	0 0 0 0 16 7 0 69 5	- - - - ND - - -	0 0 0 0 15 0 2	-	0 0 0 0 31 0		0 0 0 3 37 2	- - -
Arthropoda Arthropoda (Hexapoda)	Collembola Ephermeroptera	- Ameletidae Baetidae Baetidae Baetidae Baetidae Baetidae Baetidae Baetidae Baetidae Baetidae Ephemerellidae Ephemerellidae Ephemerellidae	Baetis sp. Baetis fuscatus group Baetis rhodani group Baetis bicaudatus Diphetor hageni - Caudatella sp.	0 0 0 16 4 0 103 6 0	ND	0 0 0 16 7 0 69	- - - ND - - -	0 0 0 15 0	- - - - -	0 0 0 31		0 0 3 37	- - -
Arthropoda (Hexapoda) Arthropoda (Hexapoda)	Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera	- Ameletidae Baetidae Baetidae Baetidae Baetidae Baetidae Baetidae Baetidae Baetidae Baetidae Ephemerellidae Ephemerellidae Ephemerellidae	Baetis sp. Baetis fuscatus group Baetis rhodani group Baetis bicaudatus Diphetor hageni - Caudatella sp.	0 0 16 4 0 103 6 0	- - - -	0 0 16 7 0 69 5	- - ND - - -	0 0 15 0 2	-	0 0 31 0		0 3 37	=
Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda)	Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera	Baetidae Baetidae Baetidae Baetidae Baetidae Baetidae Baetidae Baetidae Ephemerellidae Ephemerellidae Ephemerellidae	Baetis sp. Baetis fuscatus group Baetis rhodani group Baetis bicaudatus Diphetor hageni - Caudatella sp.	0 16 4 0 103 6 0	- - - -	0 16 7 0 69 5	- ND	0 15 0 2	-	0 31 0	- - - -	3 37	亡
Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda)	Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera	Baetidae Baetidae Baetidae Baetidae Baetidae Baetidae Baetidae Baetidae Ephemerellidae Ephemerellidae Ephemerellidae	Baetis sp. Baetis fuscatus group Baetis rhodani group Baetis bicaudatus Diphetor hageni - Caudatella sp.	16 4 0 103 6 0	- - - -	16 7 0 69 5	ND - - -	15 0 2		31 0	- -	37	-
Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda)	Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera	Baetidae Baetidae Baetidae Baetidae Baetidae Baetidae Ephemerellidae Ephemerellidae Ephemerellidae	Baetis fuscatus group Baetis rhodani group Baetis bicaudatus Diphetor hageni - Caudatella sp.	4 0 103 6 0 133	- - - -	7 0 69 5	-	0 2	-	0	-		ND
Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda)	Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera	Baetidae Baetidae Baetidae Baetidae Baetidae Ephemerellidae Ephemerellidae Ephemerellidae	Baetis fuscatus group Baetis rhodani group Baetis bicaudatus Diphetor hageni - Caudatella sp.	0 103 6 0 133	-	0 69 5	-	2	-		- 1	_	-
Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda)	Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera	Baetidae Baetidae Ephemerellidae Ephemerellidae Ephemerellidae	Baetis rhodani group Baetis bicaudatus Diphetor hageni	6 0 133	-	5	-		-			0	T-
Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda)	Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera	Baetidae Ephemerellidae Ephemerellidae Ephemerellidae	Baetis bicaudatus Diphetor hageni - Caudatella sp.	0 133	-		-			19	-	26	T -
Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda)	Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera	Ephemerellidae Ephemerellidae Ephemerellidae	- Caudatella sp.	133	- ND	0		0	-	1	-	4	-
Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda)	Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera	Ephemerellidae Ephemerellidae			ND		-	0	-	1	-	3	-
Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda)	Ephermeroptera Ephermeroptera Ephermeroptera Ephermeroptera	Ephemerellidae		0		100	ND	60	ND	20	-	12	
Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda)	Ephermeroptera Ephermeroptera Ephermeroptera		Drunella sp.		-	0	-	0	-	2	-	1	-
Arthropoda (Hexapoda) Arthropoda (Hexapoda) Arthropoda (Hexapoda)	Ephermeroptera Ephermeroptera	Ephemerellidae	= 1411-141 - FF	0	-	0	-	0	-	0	-	0	<u> </u>
Arthropoda (Hexapoda) Arthropoda (Hexapoda)	Ephermeroptera		Drunella grandis group	1	-	1	-	0	-	1	-	1	
Arthropoda (Hexapoda)		Ephemerellidae	Drunella coloradensis	0	+-	1	-	0	↓- ↓	0	-	1	 -
		Ephemerellidae	Drunella doddsii	28	-	15	-	11	1-	28	-	13	ᆣ
Arthropoda (Hexapoda)	Ephermeroptera	Ephemerellidae	Ephemerella sp.	12	-	5	-	1	1-	0	-	0	
	Ephermeroptera	Ephemerellidae	Ephemerella tibialis	0	-	0	-	0	<u> - </u>	1 10	-	1	+-
Arthropoda (Hexapoda)	Ephermeroptera	Heptageniidae	- Circu	2		1 10	<u> </u>	2		10	-	14	+-
	Ephermeroptera	Heptageniidae	Cinygmula sp.	10	-	13	-	43	1-	66	-	69	 -
	Ephermeroptera	Heptageniidae	Epeorus sp.	0	-	1	-	3	-	2	-	1	<u> </u>
Arthropoda (Hexapoda)	Ephermeroptera	Heptageniidae	Rhithrogena sp.	7	+-	2	<u> </u>	1	1-	15	1-1	22	 -
Arthropoda (Hexapoda)	Ephermeroptera	Leptophlebiidae	-	0	-	0	-	0	-	0	-	1	ND
	Ephermeroptera	Leptophlebiidae	Neoleptophlebia sp.	0	-	0	-	0	-	0	-	3	<u> </u>
	Plecoptera	-	-	2	ND	0	-	0	-	0	<u> </u>	0	<u> </u>
	Plecoptera	Capniidae	-	1	-	0	-	2	-	4	-	1	
	Plecoptera	Capniidae	Eucapnopsis brevicauda	3	-	4	-	2	-	10	-	3	 -
	Plecoptera	Chloroperlidae	<u>-</u>	0	-	0	-	0	-	0	-	1	ND
	Plecoptera	Chloroperlidae	Haploperla sp.	0	-	0	-	0	-	2	-	1	+-
	Plecoptera	Chloroperlidae	Plumiperla sp.	0	-	1	-	0	-	0	-	0	+-
	Plecoptera	Chloroperlidae	Sweltsa sp.	3		0	 -	5	+-	14 0	-	10	ᅷ
	Plecoptera	Leuctridae	- Paralouetra an		+-	0	-	0	-	0	+ -	0	Ť
	Plecoptera	Leuctridae	Paraleuctra sp.	0 4		3	<u> </u>		+-	4	+	0	ᅷ
	Plecoptera Plecoptera	Nemouridae Nemouridae		0	+-	0	+-	0	+-	0		0	一
	Plecoptera	Nemouridae	Zapada sp.	13	+-	4	-	6	+-	14	-	6	ND
	Plecoptera	Nemouridae	Zapada oregonensis group	0	+-	0	╁╌	0	÷	0	+	3	HID
	Plecoptera	Nemouridae	Zapada circtipes	17	+-	15	Ė	10	t	31	+-	11	+÷
	Plecoptera	Nemouridae	Zapada cilictipes Zapada columbiana	0	+-	0	Ė	0	t	1	+-	1	+÷
	Plecoptera	Peltoperlidae	Yoraperla sp.	0	-	0	-	0	+-1	0	-	0	+-
	Plecoptera	Perlidae	-	1	-	1	ND	2	+-	5	1 -	1	+-
	Plecoptera	Perlidae	Doroneuria sp.	0	-	1	-	0	+-	0	1 -	2	+-
	Plecoptera	Perlodidae	-	0	-	0	١.	0	1 -	1	-	0	+-
	Plecoptera	Perlodidae	Kogotus sp.	2	-	1	-	17	-	23	-	6	+-
	Plecoptera	Perlodidae	Megarcys sp.	0		0	-	0	1 - 1	6	- 1	1	† -
	Plecoptera	Perlodidae	Skwala sp.	1	-	1	-	2	1 - 1	1	1 - 1	2	1-
	Plecoptera	Taeniopterygidae	-	25	-	12	-	55	-	129	-	26	1 -
	Plecoptera	Taeniopterygidae	Taenionema sp.	0	- 1	0	-	0	-	0	1 - 1	0	T -
Arthropoda (Hexapoda)	Trichoptera	-	-	0	-	0	-	0	T -	1	ND	1	-
Arthropoda (Hexapoda)	Trichoptera	Apataniidae	Apatania sp.	0		0	L-	0		1	1 - 1	0	
Arthropoda (Hexapoda)	Trichoptera	Brachycentridae	-	0	-	0	<u> </u>	0	Ŀ	0	-	0	
Arthropoda (Hexapoda)	Trichoptera	Brachycentridae	Brachycentrus sp.	0	Ţ-	2	-	0	-	3	ND	2	I
Arthropoda (Hexapoda)	Trichoptera	Brachycentridae	Brachycentrus americanus	0	<u> </u> -	0	-	0	[-]	1	<u> - </u>	0	4-
	Trichoptera	Brachycentridae	Micrasema sp.	0	<u> </u> -	0	-	0	<u>[-</u>]	0	<u> - </u>	0	4-
Arthropoda (Hexapoda)	Trichoptera	Glossosomatidae	-	0	_ -	3	ND	0	-	1	ND	0	
Arthropoda (Hexapoda)	Trichoptera	Glossosomatidae	Glossosoma sp.	35	<u> </u> -	5	-	1	<u>[-</u>]	15	<u> - </u>	4	4-
Arthropoda (Hexapoda)	Trichoptera	Hydropsychidae	-	1	-	0	-	0	-	0	-	0	<u> </u>
	Trichoptera	Hydropsychidae	Arctopsyche sp.	0	_ -	0	-	0	1 -	0	-	0	<u> </u>
Arthropoda (Hexapoda)	Trichoptera	Hydropsychidae	Parapsyche sp.	0	-	0	-	0	-	1	-	1	ND
Arthropoda (Hexapoda)	Trichoptera	Hydropsychidae	Parapsyche elsis	0	-	0	<u> - </u>	0	1-	0	-	1	ᆣ
Arthropoda (Hexapoda)	Trichoptera	Hydroptilidae		0	-	0	-	0	-	0	 -	0	 -
	Trichoptera	Hydroptilidae	Hydroptila sp.	0	-	0	-	0	-	0	 -	0	 -
Arthropoda (Hexapoda)	Trichoptera	Hydroptilidae	Metrichia sp.	0	-	0	-	0	1 -	0	1-1	0	 -
Arthropoda (Hexapoda)	Trichoptera	Lepidostomatidae	Lepidostoma sp.	0	+-	0	-	0	+-	1	-	0	 -
Arthropoda (Hexapoda)	Trichoptera	Limnephilidae	-	0		0	-	0	1 -	0	-	0	+-
	Trichoptera	Limnephilidae	Dicosmoecus sp.	0		0	-	0	-	0	-	0	+-
Arthropoda (Hexapoda)	Trichoptera	Rhyacophilidae	Rhyacophila sp.	49	+-	7	-	17	+	40	+	33	+-
Arthropoda (Hexapoda)	Trichoptera	Rhyacophilidae	Rhyacophila betteni group	0	+-	0	<u> </u>	0	1-	2	+-	1	一
Arthropoda (Hexapoda)	Trichoptera	Rhyacophilidae	Rhyacophila brunnea/vemna sp. group	0	+-	2	-	1	+-	10	+-+	1	+-
	Trichoptera	Rhyacophilidae	Rhyacophila hyalinata group	0	-	0	-	0	1-	1	+-+	1	一
Arthropoda (Hexapoda)	Trichoptera	Rhyacophilidae	Rhyacophila vofixa group	0	+-	0	<u> </u>	0	+-	0	+-+	0	+-
Arthropoda (Hexapoda) Arthropoda (Hexapoda)	Trichoptera Trichoptera	Rhyacophilidae Rhyacophilidae	Rhyacophila atrata complex Rhyacophila narvae	1	-	<u>2</u> 1	-	0 2	-	2	-	0 4	 -

Table K-1: Raw Benthic Invertebrate Community Abundance Data at CMm LAEMP Sampling Stations, 2022

Table K-1: Raw Benthic II	nvertebrate Community Abunda	ance Data at CMm LAEMP Sampling Stations, 2022											_
			Sample Name:	RG MIULE	BIC-	RG_MIULE_I	BIC-	RG_LE1_B	IC-	RG_LE1_BI	IC-	RG_LE1_B	IC-
						3_2022-09-1		1_2022-09-1		2_2022-09-10		3_2022-09-1	
			Sample Collection Date:	12-Sep-2	2	12-Sep-2	2	16-Sep-2	2	16-Sep-22	2	16-Sep-2	2
			Chain of Custody Identification Number:	CC23094	6	CC23094	7	CC23094	В	CC230949	9	CC23095	0
			Sieve Size (µm):	400		400		400		400		400	
			Subsample proportion (%):	5		5		5		5		9	
Phylum (sub-phylum)	Order/Class	Family (sub-family/tribe)	Genus/Species										
Arthropoda (Hexapoda)	Trichoptera	Thremmatidae	Oligophlebodes sp.	4	-	1	-	0	-	3	-	2	-
Arthropoda (Hexapoda)	Coleoptera	-	-	0	-	0	-	0	-	0	-	0	-
Arthropoda (Hexapoda)	Coleoptera	Elmidae	-	4	ND	3	ND	0	-	0	-	0	-
Arthropoda (Hexapoda)	Coleoptera	Elmidae	Heterlimnius sp.	9	-	11	-	8	-	25	-	15	-
Arthropoda (Hexapoda)	Coleoptera	Haliplidae	Brychius sp.	0	-	0	-	0	-	0	-	0	-
Arthropoda (Hexapoda)	Diptera	Ceratopogonidae	Bezzia sp./ Palpomyia sp.	0	-	0	-	0	-	1	-	0	-
Arthropoda (Hexapoda)	Diptera	Ceratopogonidae	Mallochohelea sp.	1	-	2	-	0	-	0	-	3	-
Arthropoda (Hexapoda)	Diptera	Chironomidae	-	4	ND	4	ND	0	-	0	-	0	-
Arthropoda (Hexapoda)	Diptera	Chironomidae (Chironominae/Chironomini)	-	0	-	0	-	0	-	0	-	0	-
Arthropoda (Hexapoda)	Diptera	Chironomidae (Chironominae/Chironomini)	Cryptochironomus sp.	0	-	0	-	0	-	0	-	0	-
Arthropoda (Hexapoda)	Diptera	Chironomidae (Chironominae/Chironomini)	Stictochironomus sp.	0	-	6	-	0	-	0	-	0	-
Arthropoda (Hexapoda)	Diptera	Chironomidae (Chironominae/Tanytarsini)	-	0	-	0	L-	0	L-	0	-	0	<u> </u> -
Arthropoda (Hexapoda)	Diptera	Chironomidae (Chironominae/Tanytarsini)	Constempellina sp.	0	-	1	L-	0	L-	0	-	0	- <u> </u>
Arthropoda (Hexapoda)	Diptera	Chironomidae (Chironominae/Tanytarsini)	Micropsectra sp.	0	-	0	L-	0	L-	1	-	0	- <u> </u>
Arthropoda (Hexapoda)	Diptera	Chironomidae (Diamesinae/Diamesini)	Diamesa sp.	0	-	0	<u> </u>	0	-	0	- <u> </u>	0	<u> </u>
Arthropoda (Hexapoda)	Diptera	Chironomidae (Diamesinae/Diamesini)	Pagastia sp.	2	-	0	-	0	-	0	-	0	<u> - </u>
Arthropoda (Hexapoda)	Diptera	Chironomidae (Orthocladiinae)	-	0	-	0	-	0	-	0	[-]	0	<u> - </u>
Arthropoda (Hexapoda)	Diptera	Chironomidae (Orthocladiinae)	Brillia sp.	0	-	0	-	0	-	0	-]	0	-
Arthropoda (Hexapoda)	Diptera	Chironomidae (Orthocladiinae)	Corynoneura sp.	0	-	0	-	0	-	0	-	0	-
Arthropoda (Hexapoda)	Diptera	Chironomidae (Orthocladiinae)	Cricotopus sp. (Nostococladius sp.)	0	-	0	<u> </u>	1	-	0	-	1	-
Arthropoda (Hexapoda)	Diptera	Chironomidae (Orthocladiinae)	Eukiefferiella sp.	10	-	11	-	0	-	0	-	0	-
Arthropoda (Hexapoda)	Diptera	Chironomidae (Orthocladiinae)	Hydrobaenus sp.	0	-	4	-	0	-	0	-	0	-
Arthropoda (Hexapoda)	Diptera	Chironomidae (Orthocladiinae)	Orthocladius sp. complex	1	-	4	-	0	-	0	-	2	-
Arthropoda (Hexapoda)	Diptera	Chironomidae (Orthocladiinae)	Orthocladius lignicola	0	-	0	-	0	-	0	-	0	-
Arthropoda (Hexapoda)	Diptera	Chironomidae (Orthocladiinae)	Parorthocladius sp.	0	-	0	-	0	-	1	-	0	-
Arthropoda (Hexapoda)	Diptera	Chironomidae (Orthocladiinae)	Rheocricotopus sp.	0	-	0	-	0	-	1	-	0	-
Arthropoda (Hexapoda)	Diptera	Chironomidae (Orthocladiinae)	Tvetenia sp.	0	-	0	-	0	-	0	-	0	-
Arthropoda (Hexapoda)	Diptera	Chironomidae (Tanypodinae/Pentaneurini)	Thienemannimyia sp. group	3	-	5	-	1	-	3	-	1	-
Arthropoda (Hexapoda)	Diptera	Empididae	-	1	-	3	-	0	-	0	-	0	-
Arthropoda (Hexapoda)	Diptera	Empididae	Chelifera sp./ Metachela sp.	0	-	0	-	0	-	0	-	0	-
Arthropoda (Hexapoda)	Diptera	Empididae	Neoplasta sp.	0	-	0	-	0	-	0	-	0	-
Arthropoda (Hexapoda)	Diptera	Empididae	Roederiodes sp.	0	-	0	-	1	-	0	-	0	-
Arthropoda (Hexapoda)	Diptera	Empididae	Trichoclinocera sp.	0	-	0	-	0	-	0	-	0	-
Arthropoda (Hexapoda)	Diptera	Pelecorhynchidae	Glutops sp.	0	-	0	-	0	-	0	-	0	-
Arthropoda (Hexapoda)	Diptera	Psychodidae	Pericoma sp./ Telmatoscopus sp.	85	-	32	-	34	-	18	-	9	-
Arthropoda (Hexapoda)	Diptera	Simuliidae	-	0	-	1	-	0	-	0	-	0	-
Arthropoda (Hexapoda)	Diptera	Simuliidae	Simulium sp.	1	-	0	-	0	-	0	-	0	-
Arthropoda (Hexapoda)	Diptera	Tipulidae	-	0	-	1	-	0	-	0	-	0	-
Arthropoda (Hexapoda)	Diptera	Tipulidae	Antocha sp.	0	-	0	-	0	-	0	-	0	-
Arthropoda (Hexapoda)	Diptera	Tipulidae	Dicranota sp.	1	-	2	-	0	-	0	-	0	-
Arthropoda (Hexapoda)	Diptera	Tipulidae	Gonomyia sp.	0	-	0	-	0	-	0	-	0	-
Arthropoda (Hexapoda)	Diptera	Tipulidae	Hexatoma sp.	0	-	2	-	2	-	2	-	1	-
Arthropoda (Hexapoda)	Diptera	Tipulidae	Tipula sp.	0	-	0	<u> </u>	0	-	0	-	0	<u>↓-</u>
Arthropoda (Hexapoda)	Thysanoptera	-	-	0	<u> -</u>	0	<u> </u>	0	-	0	<u> - </u>	0	<u>↓-</u> ↓
Arthropoda (Chelicerata)	Trombidiformes	-	-	0	<u> -</u>	0	<u> </u>	0	-	0	<u> - </u>	0	<u>↓-</u> ↓
Arthropoda (Chelicerata)	Trombidiformes	Aturidae	-	0	<u> -</u>	0	<u> </u>	0	-	0	<u> - </u>	0	<u>↓-</u> ↓
Arthropoda (Chelicerata)	Trombidiformes	Aturidae	Aturus sp.	0	<u> </u>	0	-	0	-	0	-	0	↓- ↓
Arthropoda (Chelicerata)	Trombidiformes	Feltriidae	Feltria sp.	1	<u> </u>	0	-	0	-	0	-	0	↓ -
Arthropoda (Chelicerata)	Trombidiformes	Hydryphantidae	Protzia sp.	1	-	0	-	0	-	1	-	0	-
Arthropoda (Chelicerata)	Trombidiformes	Hygrobatidae	Atractides sp.	0	-	0	-	0	-	0	-	0	-
Arthropoda (Chelicerata)	Trombidiformes	Hygrobatidae	Hygrobates sp.	0	-	0	-	0	-	0	-	0	-
Arthropoda (Chelicerata)	Trombidiformes	Lebertiidae	Lebertia sp.	19	<u> </u>	5	-	2	<u> </u>	0	-	1	╀
Arthropoda (Chelicerata)	Trombidiformes	Sperchontidae	Sperchon sp.	2	-	6	<u> </u>	0	-	0	-	0	↓ -
Arthropoda (Chelicerata)	Trombidiformes	Torrenticolidae	Testudacarus sp.	0	-	0	<u> </u>	0	-	0	-	0	⊢⊢
Arthropoda (Chelicerata)	Trombidiformes	Torrenticolidae	Torrenticola sp.	0	-	0	<u> </u>	1	-	0	-	0	⊢⊢
Arthropoda (Chelicerata)	Trombidiformes - Prostigmata	Stygothrombidiidae	Stygothrombium sp.	0	<u> </u>	0	-	0	-	0	-	0	ᆂ
Annelida (Clitelata)	Tubificida	Enchytraeidae	Enchytraeus sp.	0	-	0	-	0	-	0	┝╌╢	2	ᆂ
Annelida (Clitelata)	Tubificida	Naididae	Nais sp.	6	-	0	<u> </u>	0	-	0	-	0	╀
Annelida (Clitelata)	Tubificida	Naididae (Subfamily: Tubificinae without hair chaetae)		0	-	0	-	0	-	0	-	0	_
Arthropoda (Hexapoda)	Diptera	Cecidomyiidae	-	0	-	0	-	0	-	0	-	1	-
Arthropoda (Hexapoda)	Hemiptera	Cicadellidae	-	0	-	0	-	0		1		0	
Arthropoda (Crustacea)	Class: Ostracoda	-	-	1	-	1	-	0	-	1	-	1	-
Arthropoda (Crustacea)	Order: Cladocera	-	-	0		0	-	0	-	0	-	0	-
Arthropoda (Crustacea)	Class: Copepoda			0	-	0	-	0	-	0	-	0	
Nematoda	Class Turkellerie			· ·	-	1	-	0		0		0	
Platyhelminthes	Class: Turbellaria	l ^a	-	1 620	-	1 100	-	1	-	1 500	-	1 270	
Total Benthic Invertebrate A	Apundance:			639	-	408	ı -	327	ı -	580	ı - I	378	-

Table K-2: Benthic Invertebrate Community Data at CMm LAEMP Sampling Stations, 2012 to 2021

March Marc	Table K-2: Benthic	Invertebrate (Community Data at C	Mm LAEM	P Sampling	Stations,	2012 to 2021	l								
Control Cont	Watercourse	Station			<u> </u>	Year	Replicate	Sample				Simpson's Diversity	Shannon's Diversity	Simpson's Dominance	Simpson's Eveness	
FOR STATE 1.52 September 1.52 1.55	Mishal Caralla	MIOF		Ŭ		0040	4	DO MIOS DIO 4 0040 00 45	, ,		` '				2.2	, ,
Field Services 100 Services 100							1							***		
Property	Michel Creek						1									
Charles Char	Michel Creek		Reference	668184			1	RG_MI25_BIC-1_2016-09-13	45	16,160		0.9	2.6	1.2		26
Property Mode Property	Michel Creek						1									
Main							1 1									
THE CHAIN SECTION AND SECTION CONTROL OF SECTION CO							1									
Per	Michel Creek						1			- /						
PRINCIPAL PRIN	Michel Creek						1									
PROCESSON PROC	Michel Creek						2			- /						
Professor Prof										,						
Text										- / -						
The Chem 1985	Michel Creek									,						
New Control Micro September Addition	Michel Creek						_									
Section Proceeding Proceeding Proceeding Proceeding Proceeding Proceeding Proceeding Procedure Procedure Procedure Procedure Procedure Procedure Procedure Proceeding Procedure	Michel Creek															
The Grant Carlot Med Research																
Section Sect	Michel Creek									- /						
Read Carlot March Read Carlot Read C	Michel Creek	MI25					_	RG_MI25_BIC-3_2019-09-04								
Triange Process 1965	Michel Creek				5482818											
Table Special Control (ACC)	Michel Creek															
THE GOAD CLOUD. FOR COLOUR. F							1			,						
and Good Carden AGOC. Pelements 68759. 548868 2013 AGOC RD 12015-2012 7.789 99.8 6.6 13 1.7 3.1 22 1.799 1	Andy Good Creek						1									
Part Confeder April Confederal April Co	Andy Good Creek	_					1						***	_	• • • • • • • • • • • • • • • • • • • •	
ruy Good Corde ACCC Reference 67767 688044 2000 1 ACCC 862-1, 2000.05 9 33 0,400 36.5 0.3 2.5 1.2 0.2 24	Andy Good Creek						1									
ruy Good Clarks ACCC. September Control	, -	_					1									
Proc. Cont. ACCC. Reference 697567 5489848 2002 1 RC ACCC. RC 1.700 2 1.700							1									
And Good Cleek AGCK Selection (1975) 498864 2718 2 AGCK BC2 2079-2050 33 11,200 37.3 0.8 2.0 1.3 0.1 17 (1975) (1986) (19	•	_					1									
ng/ Good Cries (AGC) Reference (67597) 948948 200 2 ACCC, RIG-2 2020-09-19 32 11-19 39.9 0.8 2.1 1.3 0.1 22 22 22 22 23 23 23 2	Andy Good Creek						2									
ruly Good Cross M. GOK. Reference 667575 5468648 2271 2 R6 AGCK BEC-2021-09-11 23 5.850 0.3 0.8 2.3 1.2 0.3 1.7 rd. Good Cross M. GOK. Reference 667575 5468649 2272 2 R6 AGCK BEC-2022-09-15 N. 31 10.040 0.4 0.8 2.2 0.1 1.3 0.1 1.20 0.1 1	Andy Good Creek	_														
200 Good Creek GCK Reference 697557 549846 2022 2 RG ACK BEC 2024-09-18 31 15,040 0.4 0.8 2.0 1.3 0.1 20							2								_	
not Good Crosk ACCK Reference 69757 5488648 2018 3 ACCK BC-32016-04-05 32 13,760 37.5 0.8 2.1 1.3 0.1 20 20 20 20 20 20 20 20 20 20 20 20 20	•	_					2									• • • • • • • • • • • • • • • • • • • •
Arch Good Creek ACK Reference 66757 5488640 2019 3 ACCK BICS 2019-0-0-0 31 1220 57.3 0.6 1.8 1.6 0.1 27. 27. 19. Good Creek ACK Reference 66757 5488640 2000 3 ACCK BICS 2019-0-0-0 34 10.2 4.4 0.8 2.2 1.3 0.1 2.7 27. 19. Good Creek ACK Reference 66757 557 5488640 2000 3 ACCK BICS 2019-0-0 34 10.2 4.4 0.8 2.2 1.3 0.1 2.7 27. 19. Good Creek ACK Reference 66758 7 5488640 2012 3 R.5 ACK BICK BICK BICK BICK BICK BICK BICK BI	Andy Good Creek															
noy Good Creek ACCK Reference 897577 588948 2021 3 RG AGCK BICS 2021-09-11 20 5,657 0.2 0.9 2.5 1.1 0.3 19 noy Good Creek ACCK Reference 897577 588948 2022 3 RG AGCK BICS 2022-09-18 20 1.5200 0.4 0.8 2.0 1.3 0.2 22 neach Creek LET Reference 89583 5844-09 2009 1 LEF BICS 2022-09-18 46 173,300 14.0 0.9 3 3 1 1.1 0.0 3 22 neach Creek LET Reference 89583 5844-09 2009 1 LEF BICS 2022-09-18 46 173,300 14.0 0.9 3 3 1 1.1 0.0 3 22 neach Creek LET Reference 89583 5844-09 2009 1 LEF BICS 2022-09-18 47 10 20 20 2 0.9 3 1 1.1 0.3 22 neach Creek LET Reference 89583 5844-09 2009 1 REF BICS 2022-09-18 49 20 20 2 0.9 2.7 1.1 0.3 22 neach Creek LET Reference 89583 5844-09 2021 1 RG LEF BICS 2022-09-18 49 29 6.520 0.2 0.9 2.7 1.1 0.3 22 neach Creek LET Reference 89583 5844-09 2022 1 RG LEF BICS 2022-09-18 39 0.4 0.0 2 2 0.9 2.7 1.1 0.3 22 neach Creek LET Reference 89583 5844-09 2022 1 RG LEF BICS 2022-09-18 39 0.4 0.0 2 2 0.9 2.7 1.1 0.3 22 neach Creek LET Reference 89583 5844-09 2022 1 RG LEF BICS 2022-09-18 39 0.4 0.0 2 2 0.9 2.7 1.1 0.3 22 neach Creek LET Reference 89583 5844-09 2022 1 RG LEF BICS 2022-09-18 39 0.4 0.0 2 2 0.9 2.5 1.1 0.3 22 neach Creek LET Reference 89583 5844-09 2012 2 RG LEF BICS 2022-09-18 39 0.4 0.0 2 2 0.9 2.5 1.1 0.3 2.2 1.1 0.0 2 2 0.0 0.0 2.2 0.0 0.0 2.2 0.0 0.0	Andy Good Creek					2019	3	AGCK_BIC-3_2019-09-06					1.8	_		
AGOK Reference 697597 Sel86418 2022 3 RG AGOK BIGA 2022-0915 N 22 15,280 0.4 0.8 2.0 1.3 0.2 22 22 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Andy Good Creek						·									
seach Creek E.E.I. Reference 699835 5494108 2019 1 LET BIC-1 2019-09-05 41 17,300 14:0 0.9 3.1 1.1 0.3 23 seach Creek E.E.I. Reference 699855 5494108 2020 1 LET BIC-1 2019-09-05 41 7,300 14:0 0.9 2.9 1.1 0.3 23 seach Creek E.E.I. Reference 699855 5494108 2020 1 LET BIC-1 2019-09-05 41 7,300 14:2 0.9 3.1 1.1 0.3 23 seach Creek E.E.I. Reference 699855 5494108 2021 1 RET BIC-1 2019-09-05 41 7,300 14:2 0.9 3.1 1.1 0.3 23 seach Creek E.E.I. Reference 699855 5494108 2021 1 RET BIC-1 2019-09-05 41 7,700 14:2 0.9 3.1 1.1 0.3 23 seach Creek E.E.I. Reference 699855 5494108 2021 1 RET BIC-1 2019-09-05 41 7,700 14:2 0.9 3.1 1.1 0.3 23 seach Creek E.E.I. Reference 699855 5494108 2021 2 RET BIC-2 2019-05-05 2 8 9.480 22.1 0.0 0.0 2.2 6 12.2 0.2 22 seach Creek E.E.I. Reference 699955 5494108 2020 2 LET BIC-2 2019-05-05 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	, -						ŭ					***		***		
seach Creenk LE1 Reference 659635 5494109 2020 1 LE1 BIC-1 2019-09-05 41 7,360 19.0 0.9 2.9 1.1 0.3 23 23 25 25 25 25 25 25 25 25 25 25 25 25 25							· · · · · · · · · · · · · · · · · · ·									
seach Creek LET Reference 659635 5494108 2021 1 RG LET BIC-1 2021-09-16 N 29 6.520 0.2 0.9 2.7 1.1 0.3 23 21 each Creek LET Reference 659635 5494108 2019 2 LET BIC-2 2021-09-16 N 29 6.520 0.2 0.9 2.5 1.1 0.3 21 each Creek LET Reference 659635 5494108 2019 2 LET BIC-2 2021-09-16 N 29 6.520 0.2 0.9 2.5 1.1 0.9 2.6 1.2 0.2 22 each Creek LET Reference 659635 5494108 2020 2 LET BIC-2 2021-09-17 42 4.2 30 13.7 0.9 3.1 1 1.1 0.4 22 22 each Creek LET Reference 659635 5494108 2020 2 LET BIC-2 2021-09-17 42 4.2 30 13.7 0.9 3.1 1 1.1 0.4 22 22 each Creek LET Reference 659635 5494108 2020 2 LET BIC-2 2021-09-17 42 4.2 30 13.7 0.9 3.1 1 1.1 0.4 22 22 each Creek LET Reference 659635 5494108 2020 3 LET BIC-2 2021-09-16 N 42 6.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3	Leach Creek						1									
seach Creek LET Reference 659635 5494108 2022 1 1 RG LET BIC-7 2072-09-16 N 29 6.520 0.2 0.9 2.5 1.1 0.3 21 seach Creek LET Reference 659635 5494108 2010 2 LET BIC-2 2019-09-5 36 9.480 29.1 0.9 2.6 1.2 0.2 22 seach Creek LET Reference 659635 5494108 2010 2 LET BIC-2 2019-09-17 42 4.290 13.7 0.9 3.1 1.1 0.4 27 seach Creek LET Reference 659635 5494108 2012 2 RG LET BIC-2 2019-09-17 42 4.290 13.7 0.9 3.1 1.1 0.3 25 seach Creek LET Reference 659635 5494108 2012 2 RG LET BIC-2 2019-09-18 4 2 8.520 0.2 0.9 9 3.0 0 1.1 0.3 25 seach Creek LET Reference 659635 5494108 2012 2 RG LET BIC-2 2019-09-14 4 2 8.520 0.2 0.9 9 2.8 1.1 0.3 25 seach Creek LET Reference 659635 5494108 2012 2 RG LET BIC-2 2019-09-14 4 2 8.520 0.2 0.9 9 2.8 1.1 0.3 25 seach Creek LET Reference 659635 5494108 2012 2 RG LET BIC-2 2019-09-16 4 3 8.640 28.6 0.9 0.2 0.9 2.8 1.1 0.2 2.2 2 seach Creek LET Reference 659635 5494108 2012 2 RG LET BIC-2 2019-09-16 4 3 8.640 28.6 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Leach Creek	LE1	Reference	659635	5494108		1		43	7,020		0.9		1.1	0.3	
aech Creek LE1 Reference 659635 5494108 2019 2 LE1 BIC-2 2019-09-05 36 9.480 29.1 0.9 2.6 1.1.2 0.2 22. aeach Creek LE1 Reference 659635 5494108 2021 2 RG LEI BIC-2 2019-09-14 42 4.230 13.7 0.9 3.1 1.1 1.0 0.4 27. aeach Creek LE1 Reference 659635 5494108 2021 2 RG LEI BIC-2 2019-09-16 42 4.2 6.520 0.2 0.9 3.0 1.1 1.0 0.3 25. aeach Creek LE1 Reference 659635 5494108 2021 2 RG LEI BIC-2 2019-09-16 42 1.1.540 0.2 0.9 2.8 1.1 0.3 33. aeach Creek LE1 Reference 659635 5494108 2019 3 LEI BIC-2 2019-09-16 43 8.640 26.6 0.9 2.6 1.1 0.2 26. aeach Creek LE1 Reference 659635 5494108 2019 3 LEI BIC-3 2019-09-05 43 8.640 26.6 0.9 2.6 1.1 0.2 26. aeach Creek LE1 Reference 659635 5494108 2019 3 LEI BIC-3 2019-09-17 43 6.600 13.0 0.9 3.1 1.1 1.0 0.4 34. aeach Creek LE1 Reference 659635 5494108 2019 3 LEI BIC-3 2019-09-17 43 6.600 13.0 0.9 3.1 1.1 1.0 0.2 25. aeach Creek LEI Reference 659635 5494108 2019 3 RG LEI BIC-3 2019-09-17 43 6.600 13.0 0.9 2.6 1.1 1.0 0.2 25. aeach Creek LEI Reference 659635 5494108 2019 3 RG LEI BIC-3 2019-09-18 45 4.167 0.2 0.9 2.2 8 1.1 1.0 0.2 27. aeach Creek LEI Reference 659635 5494108 2019 3 RG LEI BIC-3 2019-09-18 45 4.167 0.2 0.9 2.2 8 1.1 1.0 0.2 2.3 3. aeach Creek LEI Reference 659635 5494108 2019 3 RG LEI BIC-3 2019-09-18 45 4.167 0.2 0.9 2.2 8 1.1 1.0 0.2 2.3 3. aeach Creek LEI Reference 659635 5494108 2019 3 RG LEI BIC-3 2019-09-18 45 4.167 0.2 0.9 2.9 1.1 1.0 0.2 2.3 3. aeach Creek MUICO Mine-influenced 68155 549677 2015 1 RG MUICO BIC-1 2019-09-19 3.7 4.175 20.1 0.9 2.9 1.1 1.0 0.2 2.2 3.3 3.1 1.1 1.0 0.2	Leach Creek						1									
each Creek LE1 Reference 659935 5404108 2020 2 LE1 BIC-2 2002-09-17 42 42.30 13.7 0.9 3.1 1.1 0.4 277 each Creek LE1 Reference 659935 5404108 2021 2 RG LE1 BIC-2 2012-09-14 42 8.520 0.2 0.9 3.0 1.1 0.3 25 each Creek LE1 Reference 659935 5404108 2022 2 RG LE1 BIC-2 2012-09-16 M 42 8.520 0.2 0.9 9 2.8 1.1 0.3 33 33 each Creek LE1 Reference 659935 5404108 2022 2 RG LE1 BIC-2 2012-09-16 M 42 8.640 0.2 0.9 9 2.8 1.1 0.3 33 33 each Creek LE1 Reference 659935 5404108 2022 2 RG LE1 BIC-2 2012-09-16 M 42 8.640 0.2 0.9 9 2.8 1.1 0.3 33 33 each Creek LE1 Reference 659935 5404108 2020 3 LE1 BIC-3 2010-09-16 M 42 8.640 0.9 2.6 1.1 0.3 33 33 each Creek LE1 Reference 659935 5404108 2020 3 LE1 BIC-3 2010-09-17 43 6.600 1.3 0 0.9 2.6 1.1 0.2 2 26 6.0 0.9 2.6 1.1 0.2 2 20 20 20 20 20 20 20 20 20 20 20 20		_					1									
each Creek LE1 Reference 659935 594108 2021 2 RG LET BIC-2 2022-016 N 42 B,520 0.2 0.9 3.0 1.1 0.3 25 seach Creek LE1 Reference 659935 594108 2019 3 LET BIC-2 2022-016 N 42 11,540 0.2 0.9 2.6 1.1 0.3 33 seach Creek LE1 Reference 659935 594108 2019 3 LET BIC-2 2022-016 N 42 11,540 0.2 0.9 2.6 1.1 0.3 33 seach Creek LE1 Reference 659935 594108 2019 3 LET BIC-3 2021-00-05 43 8,640 26.6 0.9 2.6 1.1 0.2 2.2 26 seach Creek LE1 Reference 659935 594108 2019 3 LET BIC-3 2021-00-017 43 6,600 13.0 0.9 3.1 1.1 1.0 0.4 34 seach Creek LE1 Reference 659935 594108 2021 3 RC LET BIC-3 2021-00-017 43 6,600 0.3 0.9 2.7 1.1 0.2 2.27 seach Creek LE1 Reference 659935 594108 2021 3 RC LET BIC-3 2021-00-16 N 45 4,167 0.2 0.9 2.7 1.1 0.2 2.27 seach Creek LE1 Reference 659935 594108 2021 3 RC LET BIC-3 2021-00-16 N 45 4,167 0.2 0.9 2.2 1.1 0.2 2.27 seach Creek MIUCO Mine-influenced 668135 5466767 2012 1 RC MIUCO BIC-1 2012-09-16 N 45 4,167 0.2 0.9 2.2 9 1.1 0.2 2.3 Seach Creek MIUCO Mine-influenced 668135 5466767 2012 1 RC MIUCO BIC-1 2012-09-16 N 45 4,167 0.0 2 2.2 3 Seach Creek MIUCO Mine-influenced 668135 5466767 2012 1 RC MIUCO BIC-1 2012-09-16 N 45 4,167 0.0 2 2.2 3 Seach Creek MIUCO Mine-influenced 668135 5466767 2017 1 RC MIUCO BIC-1 2012-09-16 N 45 4,167 0.0 2 2.2 3 Seach Creek MIUCO Mine-influenced 668135 5466767 2017 1 RC MIUCO BIC-1 2012-09-16 N 45 4,167 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.							2			-,				1.2		
Beach Creek LET Reference 659835 6494108 2019 3 LET BIG-3 2019-09-05 43 8,640 26,6 0.9 2,6 1.1 0.2 26	Leach Creek						2			-,		***		1.1	***	
Beach Creek LE1 Reference 659635 5494108 2020 3 LE1 BIG-3 2020-09-17 43 6,600 13.0 0.9 3.1 1.1 0.4 34	Leach Creek	LE1	Reference	659635	5494108	2022	2	RG_LE1_BIC-2_2022-09-16_N	42	11,540	0.2	0.9	2.8	1.1	0.3	33
Seach Creek LE1 Reference 659635 5494108 2021 3 RG LE1 BIC3 2021-09-14 45 12,080 0.3 0.9 2.7 1.1 0.2 2.7	Leach Creek	_								- /						
each Creek		_								-,						
	Leach Creek									, , , , ,						
Ideal Creek MIUCO Mine-influenced 668135 5486767 2016 1 RG MIUCO BICI-1 2015-09-10 37 7.820 24.0 0.9 2.6 1.1 0.2 2.5	Michel Creek						1									
	Michel Creek									,						
Ilichel Creek MIUCO Mine-influenced 668135 5486767 2018 1 RG MIUCO BIC-1 2019-09-10 39 8,400 13.1 0.9 3.0 1.1 0.4 27	Michel Creek						1									
Ideal Creek MIUCO Mine-influenced 688135 5486767 2019 1 RG MIUCO BIC-1 2019-09-09 47 10,280 20.9 0.9 0.9 3.2 1.1 0.3 32		_					1 1									
Ideal Creek MIUCO Mine-influenced 668135 5486767 2020 1 RG MIUCO BIC-1 2020-09-12 46 3,190 23.8 0.9 3.0 1.1 0.2 31	Michel Creek						1									
Sichel Creek MIUCO Mine-influenced 668135 5486767 2022 1 RG MIUCO BIC-2 2022-09-14 N 44 3,050 0.2 0.9 3.0 1.1 0.3 32	Michel Creek	_					1	RG MIUCO BIC-1 2020-09-12						***		
Second Processes Milor Mine-influenced Milor	Michel Creek	MIUCO	Mine-influenced	668135	5486767	2021	1	RG_MIUCO_BIC-1_2021-09-12		5,130	0.2	0.9	3.0		0.2	35
Second Column Col	Michel Creek	_					1			- /						
dichel Creek MIUCO Mine-influenced 668135 5486767 2020 2 RG MIUCO BIC-2 2020-09-12 47 3,136 21.2 0.9 3.1 1.1 0.3 33 dichel Creek MIUCO Mine-influenced 668135 5486767 2021 2 RG MIUCO BIC-2 2021-09-12 38 4,063 0.2 0.9 2.7 1.1 0.2 26 dichel Creek MIUCO Mine-influenced 668135 5486767 2022 2 RG MIUCO BIC-2 2022-09-14 N 36 3,236 0.2 0.9 2.8 1.1 0.3 24 dichel Creek MIUCO Mine-influenced 668135 5486767 2018 3 RG MIUCO BIC-3 2018-09-10 35 7,680 18.0 0.9 2.8 1.1 0.3 23 dichel Creek MIUCO Mine-influenced 668135 5486767 2019 3 RG MIUCO BIC-3 2019-09-09 44 5,200 16.5 0.9 3.0 1.1 0.3 26							2									
Section Creek MIUCO Mine-influenced 668135 5486767 2021 2 RG MIUCO BIC-2 2021-09-12 38 4,063 0.2 0.9 0.9 2.7 1.1 0.2 26	Michel Creek	_					2			-, -		***		***		
Milloo Mine-influenced 668135 5486767 2022 2 RG_MIUCO_BIC-2_2022-09-14_N 36 3,236 0.2 0.9 0.9 2.8 1.1 0.3 24 Milloo Mine-influenced 668135 5486767 2018 3 RG_MIUCO_BIC-3_2018-09-10 35 7,680 18.0 0.9 2.8 1.1 0.3 23 Milloo Mine-influenced 668135 5486767 2019 3 RG_MIUCO_BIC-3_2019-09-09 44 5,200 16.5 0.9 3.0 3.0 3.0 Milloo Mine-influenced 668135 5486767 2020 3 RG_MIUCO_BIC-3_2019-09-09 44 5,200 16.5 0.9 3.0 3.0 3.0 Milloo Mine-influenced 668135 5486767 2020 3 RG_MIUCO_BIC-3_2020-09-12 42 2,508 16.0 0.9 3.1 1.1 0.3 3.0 Milloo Mine-influenced 668135 5486767 2021 3 RG_MIUCO_BIC-3_2021-09-12 48 4,530 0.2 0.9 3.1 1.1 0.2 3.0 Milloo Mine-influenced 668135 5486767 2022 3 RG_MIUCO_BIC-3_2022-09-14_N 45 2,505 0.2 0.9 2.8 1.1 0.2 3.0 Milloo Mine-influenced 668135 5486767 2022 3 RG_MIUCO_BIC-3_2022-09-14_N 45 2,505 0.2 0.9 2.8 1.1 0.2 3.0 Milloo Mine-influenced 668539 5487366 2012 1 RG_CORCK_BIC-1_2012-09-15 30 1,230 28.3 0.9 2.5 1.2 0.2 18 Milloo Mine-influenced 668539 5487366 2012 1 RG_CORCK_BIC-1_2012-09-15 30 1,230 28.3 0.9 2.5 1.2 0.2 18 Milloo Mine-influenced 668539 5487366 2012 1 RG_CORCK_BIC-1_2012-09-15 30 1,230 28.3 0.9 2.5 1.2 0.2 18 Milloo Mine-influenced 668539 5487366 2012 1 RG_CORCK_BIC-1_2012-09-15 30 1,230 28.3 0.9 2.5 1.2 0.2 18 Milloo Mine-influenced 668539 5487366 2012 1 RG_CORCK_BIC-1_2012-09-15 30 1,230 28.3 0.9 2.5 1.2 0.2 18 Milloo Mine-influenced 668539 5487366 2012 1 RG_CORCK_BIC-1_2012-09-15 30 1,230 28.3 0.9 2.5 1.2 0.2 18 Milloo Mine-influenced 668539 5487366 2012 1 RG_CORCK_BIC-1_2012-09-15 30 1,230 28.3 0.9 2.5 1.2 0.2 18 Mi	Michel Creek									-,						
MIUCO Mine-influenced 668135 5486767 2019 3 RG_MIUCO_BIC-3_2019-09-09 44 5,200 16.5 0.9 3.0 1.1 0.3 26 dichel Creek MIUCO Mine-influenced 668135 5486767 2020 3 RG_MIUCO_BIC-3_2020-09-12 42 2,508 16.0 0.9 3.1 1.1 0.3 30 dichel Creek MIUCO Mine-influenced 668135 5486767 2021 3 RG_MIUCO_BIC-3_2021-09-12 48 4,530 0.2 0.9 2.9 1.1 0.2 31 dichel Creek MIUCO Mine-influenced 668135 5486767 2022 3 RG_MIUCO_BIC-3_2022-09-14_N 45 2,505 0.2 0.9 2.8 1.1 0.2 31 dichel Creek MIUCO Mine-influenced 668135 5486767 2022 3 RG_MIUCO_BIC-3_2022-09-14_N 45 2,505 0.2 0.9 2.8 1.1 0.2 30 storbin Creek <td>Michel Creek</td> <td></td> <td></td> <td>668135</td> <td>5486767</td> <td></td> <td></td> <td></td> <td></td> <td>3,236</td> <td></td> <td></td> <td>2.8</td> <td></td> <td>0.3</td> <td>24</td>	Michel Creek			668135	5486767					3,236			2.8		0.3	24
Milor Milor Mine-influenced 668135 5486767 2020 3 RG MIUCO BIC-3 2020-09-12 42 2,508 16.0 0.9 3.1 1.1 0.3 30 dichel Creek MIUCO Mine-influenced 668135 5486767 2021 3 RG MIUCO BIC-3 2021-09-12 48 4,530 0.2 0.9 2.9 1.1 0.2 31 dichel Creek MIUCO Mine-influenced 668135 5486767 2022 3 RG MIUCO BIC-3 2022-09-14 N 45 2,505 0.2 0.9 2.8 1.1 0.2 30 Gorbin Creek CORCK Mine-influenced 668539 5487366 2012 1 RG_CORCK_BIC-1_2012-09-15 30 1,230 28.3 0.9 2.5 1.2 0.2 18	Michel Creek															
MIUCO Mine-influenced 668135 5486767 2021 3 RG_MIUCO_BIC-3_2021-09-12 48 4,530 0.2 0.9 2.9 1.1 0.2 31 dichel Creek MIUCO Mine-influenced 668135 5486767 2022 3 RG_MIUCO_BIC-3_2022-09-14_N 45 2,505 0.2 0.9 2.8 1.1 0.2 30 corbin Creek CORCK Mine-influenced 668539 5487366 2012 1 RG_CORCK_BIC-1_2012-09-15 30 1,230 28.3 0.9 2.5 1.2 0.2 18														***		
Millor Mine-influenced 668135 5486767 2022 3 RG_MIUCO_BIC-3_2022-09-14_N 45 2,505 0.2 0.9 2.8 1.1 0.2 30 Forbin Creek CORCK Mine-influenced 668539 5487366 2012 1 RG_CORCK_BIC-1_2012-09-15 30 1,230 28.3 0.9 2.5 1.2 0.2 18	Michel Creek									,						
	Michel Creek															
Orbin Creek CORCK Mine-influenced 668539 5487366 2015 1 RG_CORCK_BIC-1_2015-09-11 36 29,180 53.1 0.7 1.9 1.4 0.1 13	Corbin Creek						1									
	Corbin Creek	CORCK	Mine-influenced	668539	5487366	2015	<u> </u>	RG_CORCK_BIC-1_2015-09-11	36	29,180	53.1	0.7	1.9	1.4	0.1	13

Table K-2: Benthic Invertebrate Community Data at CMm LAEMP Sampling Stations, 2012 to 2021

Control Cont	Table K-2: Benthic	Invertebrate C	ommunity Data at C	Mm LAEM	P Sampling	Stations,	2012 to 2021									
Manual Content Manu			Reference or	Location	า (UTMs) ^(a)				Richness	Abundance	Percent					EPT Richness
Section Control Cont	Watercourse	Station		Easting	Northing	Year	Replicate	Sample				Simpson's Diversity	Shannon's Diversity	Simpson's Dominance	Simpson's Eveness	
## Company Control Con	Carbin Crook	CORCK		Ŭ	·		1	PC COPCK PIC 1 2016 00 12	, ,	,	` '	0.0	2.7	1 1	0.2	, ,
Company Comp							1									
## 2500 SECTION March Process March 1997 SECTION March 1997 SECTIO	Corbin Creek						1			-,						-
March Color Colo	Corbin Creek	CORCK	Mine-influenced			2019	1	RG_CORCK_BIC-1_2019-09-07						1.1		
Control Cont	Corbin Creek						1									
April		_					1									
Control Cont							1		+							-
Company Conference Confer	Corbin Creek						2			- /						8
Septiment Configuration (Configuration Configuration Confi	Corbin Creek	CORCK	Mine-influenced	668539		2020	2	RG_CORCK_BIC-2_2020-09-12	21	6,300	35.1	0.8		1.2	0.3	8
Sept. Company Compan	Corbin Creek	_					2			- /		***		***		
Company Comp										-,						•
Section Confess Conf																•
Color Conference Conference Color Co										, , , , ,						
Section March Ma	Corbin Creek		Mine-influenced				3									7
Section Color Co	Corbin Creek						3		+	,						
The Green Micro Micro Marchane and Strip 1 545591 700 1 1 RC, MICRO MICRO STRIP 1 1 0 3 2 2 1 1 0 3 2 2 1 1 0 3 2 2 1 1 0 3 2 2 1 1 0 3 2 2 1 1 0 3 2 2 1 1 0 3 2 2 1 1 1 0 3 2 1 1 1 0 3 2 1 1 1 0 3 2 1 1 1 0 3 2 1 1 1 0 3 2 1 1 1 0 3 2 1 1 1 0 3 2 1 1 1 0 3 2 1 1 1 0 3 2 1 1 1 0 3 2 1 1 1 0 3 2 1 1 1 0 3 2 1 1 1 0 3 2 1 1 1 0 3 2 1 1 1 0 3 2 1 1 1 0 3 2 1 1 1 1 1 0 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Michel Creek						1									
NEED COME MISCO		_					1									
Note Control							1									
Rest Content March March Rest Re	Michel Creek						1			, , , , ,				***		
George MECO Mine Phonese 1877 A4477 202 1 80 MINE DE PLAN 1 1 2 7 7 1 2 7 7 7 7 7 7 7 7 7	Michel Creek						1			,						
Mod Cases MOCO Printment Moco	Michel Creek		Mine-influenced	667616			1								0.2	
Index Cests MICCO Mr. reflerenced. 6870 148702 1211 2 16 MiCCO Sci. 25010-65 May 1, 6650 222 10 10 27 11 1 0.3 19 17 18 18 18 18 18 18 18 18 18 18 18 18 18	Michel Creek						1									
Index Control MIDCO Manufactured 1971 1971 2 2 2 2 2 2 2 2 2							1			- /		***		***		
Total Capes MICCO Microfillements 60716 647221 2020 2 5 MICCO 6572 240 2										.,						
Read Contact MIDCO Manufactured 67710 487071 2011 2 2 80 MIDCO 812 2071 2011 2 4 5 5 5 5 5 5 5 5 5	Michel Creek															
Find Company Min Company C	Michel Creek															
Indeed Create MIDCO Minerialization of (1976) 6487621 2019 3 RG MIDCO BC-2 2026-691 40 12,040 208 0.9 2.7 1.1 0.2 2.1 1.1 0.2 2.1 1.1 0.2 1.1 1.1 0.2	Michel Creek	MIDCO	Mine-influenced			2022	2	RG_MIDCO_BIC-2_2022-09-13_N	44	8,180	0.2	0.9	2.8	1.1	0.2	26
kiele Cerekt MDCO Mee-elfemented 697816 5487671 2023 3 R MDCO 80-200-90-13 40 17.400 33.3 0.9 2.7 1.2 0.1 32.4 32.4	Michel Creek								+							
Intelle Creek NUCCO Mine-Inflamend 687916 5497821 2021 3 R. MUCCO BC-3 2021-09-12 48 12.450 0.3 0.9 2.6 1.2 0.1 27 Intellection Company Co																
hish Coreal MDCO Mine-inhermood (ed.) 5487621 5202 3 R6 MDCO BC-2 2022-09-13 N 41 11,550 0.3 0.8 2.5 1.2 0.2 23 think Coreal MDCO Mine-inhermood (ed.) 5487621 5202 4 R6 MDCO BC-2 2022-09-13 N 41 11,550 0.3 0.8 2.7 1 1.1 0.2 2 24 1 1.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0									+							
Intell Corest MIDCO Mine-Influenced 697616 5467621 2018 4 RG MIDCO BIC4 2019-0-90 38 7,000 24:1 0.9 2.7 1.1 0.2 24 1.1 0.1 27 1.1 0.1							3									
Index Ceresk MDCO Mine-influenced 667616 5487871 2020 4 R. G. MDCO BIC-2023-99-13 54 19,780 26.1 19,780 25.3 11,780 26.2 23.3	Michel Creek						4									
Inched Creek M MDCO Mon-influenced e87616 S487871 2021 4 R6 MDCO 81.4 2011.91 9 11.300 0.3 0.8 2.4 1.2 0.2 23	Michel Creek		Mine-influenced			2019	4	RG_MIDCO_BIC-4_2019-09-09	46	30,340		0.7	2.1	1.3	0.1	27
Inchel Creek MDCO Mine-influenced 867816 5487621 2018 5 RG MDCO BIC-4 2022-09-13 N 42 7,820 0.3 0.9 2.7 1.1 0.2 28 (Inchel Creek MDCO Mine-influenced 667815 5487621 2018 5 RG MDCO BIC-5 2018-09-18 38 6.850 47.0 0.8 2.3 1.3 0.1 20 0.1 25 (Inchel Creek MDCO Mine-influenced 667815 5487621 2019 5 RG MDCO BIC-5 2018-09-18 44 25.500 34.0 0.8 2.3 1.3 0.1 2.0 0.1 2.5 (Inchel Creek MDCO Mine-influenced 667815 5487621 2019 5 RG MDCO BIC-5 2018-09-18 44 25.500 34.0 0.8 2.3 1.2 0.0 1 2.5 (Inchel Creek MDCO Mine-influenced 678766 5487621 2019 5 RG MDCO BIC-5 2018-09-18 44 25.500 34.0 0.8 2.3 1.2 0.0 1 2.5 (Inchel Creek MDCO Mine-influenced 687816 5487621 2011 5 RG MDCO BIC-5 2018-09-18 4 4 9.5 (Inchel Creek MDCO MIne-influenced 687816 5487621 2011 5 RG MDCO BIC-5 2018-09-18 4 4 9.5 (Inchel Creek MDCO MINE-influenced 687816 5487621 2011 5 RG MDCO BIC-5 2018-09-18 4 4 9.5 (Inchel Creek MDCO MINE-influenced 687816 5487621 548144 2000 1 CM MC2 BIC-1 2009-19 1 RG MDCO BIC-5 2018-09-18 4 4 9.5 (Inchel Creek MDCO MDCO MINE-influenced 68728 548144 2000 1 CM MC2 BIC-1 2009-19 1 RG MDCO BIC-5 2018-09-18 4 9 11,0 0.3 3.7 7 B.8 2.6 1.2 0.1 2.6 (Inchel Creek MDCO MDCO MDCO BIC-1 2018-09-18 4 9 11,0 0.3 3.7 7 B.8 2.6 1.2 0.1 1.0 0.3 2.2 (Inchel Creek MDCO MDCO BIC-1 2018-09-18 1 P.5 (Inchel Creek MDCO BIC-1 2018-09-18 1 P.5 (Inchel Creek MDCO BIC-1 2018-09-18 1 P.5 (Inchel Creek MDCO BIC-1 2018-09-18 1 P.5 (Inchel Creek MDCO BIC-1 2018-09-18 1 P.5 (Inchel Creek MDCO BIC-1 2018-09-18 1 P.5 (Inchel Creek MDCO BIC-1 2018-09-18 1 P.5 (Inchel Creek MDCO BIC-1 2018-09-18 1 P.5 (Inchel Creek MDCO BIC-1 2018-09-18 1 P.5 (Inchel Creek MDCO BIC-1 2018-09-18 1 P.5 (Inchel Creek MDCO BIC-1 2018-09-18 1 P.5 (Inchel Creek MDCO BIC-1 2018-09-18 1 P.5 (Inchel Creek MDCO BIC-1 2018-09-18 1 P.5 (Inchel Creek MDCO BIC-1 2018-09-18 1 P.5 (Inchel Creek MDCO BIC-1 2018-09-18 1 P.5 (Inchel Creek MDCO BIC-1 2018-09-18 1 P.5 (Inchel Creek MDCO BIC-1 2018-09-18 2011 P.5 (Inchel Creek MDCO BIC-1 2018-09-18 2011 P.5 (Inchel Creek MDCO BIC-1 2018-09-18 2011 P.5 (Inc	Michel Creek															
Inched Creak MIDCO Min-influenced 687616 5487621 2018 5 RS MIDCO BICS 2018-09-09 38 6,350 47.0 0.8 2.3 1.3 0.1 20 to the Creak MIDCO Min-influenced 687616 5487621 2018 5 RG MIDCO BICS 2018-09-09 38 4 25.20 3.1 2 0.1 2.5 to the Creak MIDCO Min-influenced 687616 5487621 2009 5 RG MIDCO BICS 2018-09-09 34 4 25.20 3.1 2 0.1 2.5 to the Creak MIDCO Min-influenced 687616 5487621 2000 5 RG MIDCO BICS 2018-09-09 34 4 25.20 3.1 2 0.1 2.5 to the Creak MIDCO Min-influenced 687616 5487621 2000 5 RG MIDCO BICS 2018-09-09 3 8 4 25.20 3.1 2 0.1 2.5 to the Creak MIDCO Min-influenced 687616 5487621 2000 5 RG MIDCO BICS 2018-09-09 3 8 4 25.20 3.1 2 0.1 3.2 5 to the Creak MIDCO Min-influenced 687616 5487621 2000 5 RG MIDCO BICS 2018-09-09 3 8 4 25.20 3.1 1 2 0.1 1 2.5 to the Creak MIDCO Min-influenced 687629 5488144 2000 2 C MIDCO BICS 2018-09-19 4 RG MIDCO BICS 201	Michel Creek															
Inched Creek MIDCO Mine-influenced 697616 5487621 2019 5 RG MIDCO BIOLE 2010-99-99 44 25,920 34.0 0.8 2.3 1.2 0.1 28 to the Creek MIDCO Mine-influenced 697616 5487621 2020 5 RG MIDCO BIOLE 2010-99-12 38 11.760 0.3 0.8 2.5 1.2 0.1 28 to the Creek MIDCO Mine-influenced 697616 5487621 2021 5 RG MIDCO BIOLE 2010-99-12 38 11.760 0.3 0.8 2.5 1.2 0.1 2.2 44 to the Creek MIDCO Mine-influenced 697616 5487621 2021 5 RG MIDCO BIOLE 2010-99-12 38 11.760 0.3 0.8 2.3 1.2 0.1 2.2 44 to the Creek MIDCO Mine-influenced 697616 5487621 2022 5 RG MIDCO BIOLE 2010-99-12 38 11.760 0.3 0.8 2.3 1.2 0.1 0.2 2.4 to the Creek MIDCO Mine-influenced 697616 5487621 2022 5 RG MIDCO BIOLE 2010-99-18 45 1.0 0.00 0.2 2.8 1.1 0.2 2.4 to the Creek MIDCO MIDCO MINE-influenced 697616 5487621 2022 5 RG MIDCO BIOLE 2010-99-18 45 1.0 0.0 0.0 0.2 2.0 0.0 0.2 2.0 0.0 0.2 2.0 0.0 0										1		***		***		
whele Creek MIDCO Mine-influenced 687616 5487621 2020 5 RG MIDCO BIG-\$2020-09-12 44 12,180 88.1 0.8 2.5 1.2 0.1 28 to the Creek MIDCO Mine-influenced 687616 5487621 2021 5 RG MIDCO BIG-\$2020-09-13 88 11,760 0.3 0.8 2.3 1.1.2 0.1 22 to the Creek MIDCO Mine-influenced 687616 5487621 2021 5 RG MIDCO BIG-\$2020-09-13 8 11,760 0.3 0.8 2.3 1.1.2 0.1 22 to the Creek MIDCO Mine-influenced 687616 5487621 2021 5 RG MIDCO BIG-\$2020-09-13 8 11,760 0.3 0.8 2.3 1.1.2 0.1 2.2 1.1 0.2 2.4 1.1 0.2 2							_			.,						
Inched Creek MIDCO Mine-influenced 68676 648721 2022 5 RG MIDCO BICS-20220-913 N 40 9,000 0.2 0.9 2.8 1.1 0.2 22 kicked Creek MIDCO Mine-influenced 68676 648721 2022 5 RG MIDCO BICS-20220-913 N 40 9,000 0.2 0.9 9 2.8 1.1 0.2 2.4 1.2 0.1 2.2 2.4 1.2 0.2 2	Michel Creek															
Inched Crossek CMM CQ2 Mine-influenced 667249 5488144 2020 1 CM MCZ BICH 2020-09-16 46 13,100 37.7 0.8 2.6 1.2 0.1 26	Michel Creek	MIDCO	Mine-influenced			2021	5	RG_MIDCO_BIC-5_2021-09-12	38			0.8		1.2	0.1	
Inched Creek CMM C2 Mine-influenced 667249 5488144 2020 2 CM MC2 BIG-2 2020-09-19 45 11,060 18.0 0.9 2.9 1.1 0.3 28	Michel Creek						5									
Inchel Creek MDG-49 Mine-influenced 66729 4848144 2020 3 CM MCZ BIG-3 2020-09-19 40 6.380 27.9 0.9 2.7 1.1 0.2 24 Hickel Creek MDG-6-51 Mine-influenced 66620 4848507 2020 1 RG MDG-651 BIG-2 2020-09-18 49 20.20 27.2 0.9 2.9 1.1 0.2 32 Hickel Creek MDG-6-51 Mine-influenced 66620 4848507 2020 2 RG MDG-6-51 BIG-2 2020-09-18 50 28.800 45.4 0.8 2.4 1.3 0.1 3.4 Hickel Creek MDG-6-51 Mine-influenced 66620 4848507 2020 3 RG MDG-6-51 BIG-2 2020-09-18 50 28.800 45.4 0.8 2.4 1.3 0.1 1.3 0.1 3.4 Hickel Creek MDG-6-51 Mine-influenced 66620 4848507 2020 3 RG MDG-6-51 BIG-2 2020-09-18 50 28.800 45.4 0.8 2.4 1.3 0.1 1.3 0.1 3.4 Hickel Creek MDG-6-52 Mine-influenced 66620 4848507 2020 3 RG MDG-6-51 BIG-2 2020-09-18 50 28.800 45.4 0.8 2.4 1.1 0.9 3.0 1.1 0.2 37 Hickel Creek MDG-6-52 Mine-influenced 66620 4848507 2020 1 RG MDG-6-52 BIG-1 2020-09-17 50 37.000 25.4 0.9 2.8 1.1 0.2 2 37 Hickel Creek MDG-6-52 Mine-influenced 66620 484854 2020 1 RG MDG-6-52 BIG-1 2020-09-17 50 37.000 25.4 0.9 2.8 1.1 0.2 2 37 Hickel Creek MDG-6-52 Mine-influenced 666220 4848524 2012 1 RG MDG-6-52 BIG-1 2020-09-18 3 10.067 25 25.3 3.000 25.4 0.9 2.8 1.1 0.2 2 38 Hickel Creek MDG-6-52 Mine-influenced 666220 4848924 2012 1 RG MDG-6-52 BIG-1 2012-09-16 33 10.067 25 25.3 3.000 2.4 4 1.2 0.2 2.2 3 Hickel Creek MDG-6-52 Mine-influenced 666220 4848924 2012 1 RG MDG-6-52 BIG-1 2012-09-16 33 10.067 25 25.3 3.000 2.2 4 4 1.2 0.2 2.2 3 Hickel Creek MDG-6-52 Mine-influenced 666220 4848924 2018 1 RG MDG-6-52 BIG-1 2012-09-16 42 6.160 16.6 0.9 2.7 1.1 0.2 2 31 Hickel Creek MDG-6-52 Mine-influenced 666220 5488924 2018 1 RG MDG-6-52 BIG-1 2020-09-15 4 7 1.3 860 22.7 0.9 3.0 1.1 0.2 2 31 Hickel Creek MDG-6-52 Mine-influenced 666220 5488924 2018 1 RG MDG-6-52 BIG-1 2020-09-15 4 7 1.3 860 22.7 0.9 3.0 1.1 0.2 2 31 Hickel Creek MDG-6-52 Mine-influenced 666220 5488924 2020 1 RG MDG-6-62 BIG-1 2020-09-15 5 3 5 0.9 2 2.6 1.1 0.0 2 2.7 Hickel Creek MDG-6-52 Mine-influenced 666220 5488924 2020 1 RG MDG-6-62 BIG-1 2020-09-15 5 3 5 0.9 0.9 2.9 1.1 0.0 2 2.7 Hickel Creek MDG-6-52	Michel Creek						1									
Inche Creek MIDAG-St Mine-influenced 668290 5488507 2020 1 RG MIDAG-St BIC-1 2020-09-18 49 29,200 27.2 0.9 2.9 1.1 0.2 32 1.1 0.2 32 1.1 0.2 32 1.1 0.2 32 1.1 0.2 32 1.1 0.2 32 1.1 0.2 32 1.1 0.2 32 1.1 0.3 3.1 1.1 0.3 3.1 1.1 0.3 3.1 1.1 0.3 3.1 1.1 0.3 3.1 1.1 0.3 3.1 1.1 0.3 3.1 1.1 0.3 3.1 1.1 0.3 3.1 1.1 0.3 3.1 1.1 0.3 3.1 1.1 0.3 3.1 1.1 0.3 3.1 1.1 0.3 3.1 1.1 0.2 3.7 1.1 0.2 3.7 1.1 0.2 3.7 1.1 0.2 3.7 1.1 0.2 3.7 1.1 0.2 3.7 1.1 0.2 3.7 1.1 0.2 3.1 1.1							2			,				1.1		
Michel Creek MIDAG-S1 Mine-influenced 666290 5488597 2020 3 RG MIDAG-S1 862 2020 94.8 4 1.3 0.1 34 1 1 1 1 1 1 1 1 1							1			-,		***		1.1	*	
MIDAG-St Mine-influenced 666209 5488507 2020 3 RG MIDAG-St BIG-3 2020-09-18 46 21,320 14.1 0.9 3.0 1.1 0.3 31	Michel Creek						2									
Michel Creek MIDAG-S2 Mine-influenced 665770 548854 2020 2 R.G. MIDAG-S2 BiC-2 2020-09-17 49 24,240 26,6 0.9 2.7 1.1 0.2 34	Michel Creek	MIDAG-S1	Mine-influenced	666290	5488507	2020	3	RG MIDAG-S1 BIC-3 2020-09-18	46	21,320	14.1	0.9	3.0	1.1		
	Michel Creek									. ,						
	Michel Creek															* ·
							1									
	Michel Creek						1		+	-,						
Ilichel Creek MIDAG Mine-influenced 66520 5489324 2020 1 RG MIDAG BIC-1 2020-09-15 47 13,860 22.7 0.9 3.0 1.1 0.2 31	Michel Creek	MIDAG				_	1	RG_MIDAG_BIC-1_2018-09-08								
Inchel Creek MIDAG Mine-influenced 665220 5489324 2021 1 RG MIDAG BIC-1 2021-09-11 39 11,940 0.3 0.9 2.7 1.1 0.2 27	Michel Creek						1									
Sinchel Creek MIDAG Mine-influenced 665220 5489324 2022 1 RG MIDAG BIC-1 2022-09-13 N 39 9,820 0.2 0.9 2.8 1.1 0.3 25	Michel Creek						1									
Sichel Creek MIDAG Mine-influenced 66520 5489324 2018 2 RG MIDAG BIC-2 2019-09-10 54 26,120 12.1 0.9 3.0 1.1 0.4 27							1		+					***		
Sichel Creek MIDAG Mine-influenced 665220 5489324 2019 2 RG MIDAG BIC-2 2019-09-10 54 26,120 18.9 0.9 2.8 1.1 0.2 31							2									
Sichel Creek MIDAG Mine-influenced MIDAG MID	Michel Creek															
Second Creek MIDAG Mine-influenced 66520 5489324 2022 2 RG MIDAG BIC-2 2022-09-13 N 35 8,200 0.1 0.9 0.9 2.8 1.1 0.3 28	Michel Creek															
Sichel Creek MIDAG Mine-influenced 665220 5489324 2018 3 RG MIDAG BIC-3 2018-09-08 31 7,220 14.2 0.9 2.9 1.1 0.4 19	Michel Creek						2			.,		***		***		
Michel Creek MIDAG Mine-influenced 665220 5489324 2019 3 RG_MIDAG_BIC-3_2019-09-10 37 3,489 46.1 0.8 2.3 1.3 0.1 16 dichel Creek MIDAG Mine-influenced 665220 5489324 2020 3 RG_MIDAG_BIC-3_2020-09-15 58 24,760 22.1 0.9 3.0 1.1 0.2 37 lichel Creek MIDAG Mine-influenced 665220 5489324 2021 3 RG_MIDAG_BIC-3_2021-09-11 35 3,940 0.2 0.9 2.6 1.1 0.2 24 lichel Creek MIDAG Mine-influenced 665220 5489324 2022 3 RG_MIDAG_BIC-3_2022-09-13 N 38 9,780 0.2 0.9 2.6 1.1 0.2 24 lichel Creek MIDAG Mine-influenced 660503 5493048 2018 1 RG_MIDAG_BIC-3_2022-09-13 N 38 9,780 0.2 0.9 2.7 1.1 0.3	Michel Creek					_				-,						-
Michel Creek MIDAG Mine-influenced 665220 5489324 2020 3 RG_MIDAG_BIC-3_2020-09-15 58 24,760 22.1 0.9 3.0 1.1 0.2 37 flichel Creek MIDAG_Mine-influenced 665220 5489324 2021 3 RG_MIDAG_BIC-3_2021-09-11 35 3,940 0.2 0.9 2.6 1.1 0.2 24 dichel Creek MIDAG_Mine-influenced 665220 5489324 2022 3 RG_MIDAG_BIC-3_2022-09-13 N 38 9,780 0.2 0.9 2.7 1.1 0.3 28 dichel Creek MIULE Mine-influenced 660503 5493048 2018 1 RG_MIULE_BIC-1_2018-09-11 31 7,080 19.0 0.9 2.8 1.1 0.4 17 dichel Creek MIULE Mine-influenced 660503 5493048 2019 1 RG_MIULE_BIC-1_2019-09-06 41 12,940 19.8 0.9 3.0 1.1 0.3 25 dichel Creek	Michel Creek															
Michel Creek MIDAG Mine-influenced 665220 5489324 2021 3 RG_MIDAG_BIC-3_2021-09-11 35 3,940 0.2 0.9 2.6 1.1 0.2 24 dichel Creek MIDAG_Mine-influenced 665220 5489324 2022 3 RG_MIDAG_BIC-3_2022-09-13 N 38 9,780 0.2 0.9 2.7 1.1 0.3 28 dichel Creek MIULE Mine-influenced 660503 5493048 2018 1 RG_MIULE_BIC-1_2018-09-11 31 7,080 19.0 0.9 2.8 1.1 0.4 17 dichel Creek MIULE Mine-influenced 660503 5493048 2019 1 RG_MIULE_BIC-1_2019-09-06 41 12,940 19.8 0.9 3.0 1.1 0.3 25 dichel Creek MIULE Mine-influenced 660503 5493048 2020 1 RG_MIULE_BIC-1_2020-09-16 55 18,180 15.5 0.9 3.0 1.1 0.2 32							_			-,						
Michel Creek MIDAG Mine-influenced 665220 5489324 2022 3 RG MIDAG BIC-3 2022-09-13 N 38 9,780 0.2 0.9 2.7 1.1 0.3 28 flichel Creek MIULE Mine-influenced 660503 5493048 2018 1 RG_MIULE_BIC-1_2018-09-11 31 7,080 19.0 0.9 2.8 1.1 0.4 17 flichel Creek MIULE Mine-influenced 660503 5493048 2019 1 RG_MIULE_BIC-1_2019-09-06 41 12,940 19.8 0.9 3.0 1.1 0.3 25 flichel Creek MIULE Mine-influenced 660503 5493048 2020 1 RG_MIULE_BIC-1_2020-09-16 55 18,180 15.5 0.9 3.0 1.1 0.2 32	Michel Creek															
flichel Creek MIULE Mine-influenced 660503 5493048 2018 1 RG_MIULE_BIC-1_2018-09-11 31 7,080 19.0 0.9 2.8 1.1 0.4 17 flichel Creek MIULE Mine-influenced 660503 5493048 2019 1 RG_MIULE_BIC-1_2019-09-06 41 12,940 19.8 0.9 3.0 1.1 0.3 25 flichel Creek MIULE Mine-influenced 660503 5493048 2020 1 RG_MIULE_BIC-1_2020-09-16 55 18,180 15.5 0.9 3.0 1.1 0.2 32	Michel Creek						, ,		+					***		
flichel Creek MIULE Mine-influenced 660503 5493048 2020 1 RG_MIULE_BIC-1_2020-09-16 55 18,180 15.5 0.9 3.0 1.1 0.2 32	Michel Creek	MIULE				_				-,						
	Michel Creek	_					1									
inchei Greek MIOLE Mine-Initidenced 660503 5493048 2021 1 RG_MIOLE_BIG-1_2021-09-14 42 12,240 0.3 0.9 2.6 1.2 0.2 25	Michel Creek						1									
	iviichei Greek	IMIULE	iviine-iniiuencea	660503	5493048	2021	1	RG_MIULE_BIC-1_2021-09-14	42	12,240	0.3	0.9	2.6	1.2	0.2	25

Table K-2: Benthic Invertebrate Community Data at CMm LAEMP Sampling Stations, 2012 to 2021

rubic It-2. Dentino	Invertebrate	Community Data at C			otations,	2012 (0 2021									
	A	Reference or	Location	ı (UTMs) ^(a)				Richness	Abundance	Percent	61 1 51 11	o	a:	a: . =	EPT Richness
Watercourse	Station	Mine-influenced	Easting	Northing	Year	Replicate	Sample	(# of taxa)	(# of individuals)	Dominance (%)	Simpson's Diversity	Shannon's Diversity	Simpson's Dominance	Simpson's Eveness	(# of taxa)
Michel Creek	MIULE	Mine-influenced	660503	5493048	2022	1	RG_MIULE_BIC-1_2022-09-12_N	44	12,580	0.3	0.9	2.6	1.1	0.2	30
Michel Creek	MIULE	Mine-influenced	660503	5493048	2018	2	RG_MIULE_BIC-2_2018-09-11	41	16,420	16.7	0.9	2.9	1.1	0.3	24
Michel Creek	MIULE	Mine-influenced	660503	5493048	2019	2	RG_MIULE_BIC-2_2019-09-06	48	17,800	23.3	0.9	2.8	1.1	0.2	26
Michel Creek	MIULE	Mine-influenced	660503	5493048	2020	2	RG_MIULE_BIC-2_2020-09-16	48	15,480	15.4	0.9	3.0	1.1	0.3	32
Michel Creek	MIULE	Mine-influenced	660503	5493048	2021	2	RG_MIULE_BIC-2_2021-09-14	37	10,580	0.4	0.8	2.5	1.2	0.2	22
Michel Creek	MIULE	Mine-influenced	660503	5493048	2022	2	RG_MIULE_BIC-2_2022-09-12_N	37	12,720	0.2	0.9	2.5	1.1	0.2	22
Michel Creek	MIULE	Mine-influenced	660503	5493048	2018	3	RG_MIULE_BIC-3_2019-09-06	40	17,740	27.2	0.9	2.6	1.1	0.2	21
Michel Creek	MIULE	Mine-influenced	660503	5493048	2019	3	RG_MIULE_BIC-3_2018-09-11	40	8,160	15.9	0.9	2.9	1.1	0.3	23
Michel Creek	MIULE	Mine-influenced	660503	5493048	2020	3	RG_MIULE_BIC-3_2020-09-16	41	11,520	18.6	0.9	2.7	1.1	0.2	25
Michel Creek	MIULE	Mine-influenced	660503	5493048	2021	3	RG_MIULE_BIC-3_2021-09-14	40	10,120	0.3	0.9	2.6	1.2	0.2	27
Michel Creek	MIULE	Mine-influenced	660503	5493048	2022	3	RG_MIULE_BIC-3_2022-09-12_N	40	8,100	0.2	0.9	2.6	1.2	0.2	25
Michel Creek	MI5	Mine-influenced	659496	5496774	2012	1	RG MI5 BIC-1 2012-09-16	38	7,600	10.9	0.9	3.1	1.1	0.4	26
Michel Creek	MI5	Mine-influenced	659496	5496774	2015	1	RG_MI5_BIC-1_2015-09-13	26	7,120	37.3	0.8	2.2	1.2	0.2	18
Michel Creek	MI5	Mine-influenced	659496	5496774	2018	1	RG_MI5_BIC-1_2018-09-11	42	14,040	20.2	0.9	2.8	1.1	0.3	28
Michel Creek	MI5	Mine-influenced	659496	5496774	2019	1	RG_MI5_BIC-1_2019-09-05	37	14,560	30.9	0.8	2.3	1.2	0.2	19
Michel Creek	MI5	Mine-influenced	659496	5496774	2020	1	RG_MI5_BIC-1_2020-09-17	44	12,260	19.4	0.9	2.9	1.1	0.2	27
Michel Creek	MI5	Mine-influenced	659496	5496774	2021	1	RG_MI5_BIC-1_2021-09-16 ^(D)	-	-	-	-	-	-	-	-
Michel Creek	MI5	Mine-influenced	659496	5496774	2022	1	RG_MI5_BIC-1_2022-09-12_N	36	7,180	0.4	0.8	2.3	1.2	0.2	26
Michel Creek	MI5	Mine-influenced	659496	5496774	2018	2	RG_MI5_BIC-2_2018-09-11	35	6,480	15.7	0.9	2.8	1.1	0.3	20
Michel Creek	MI5	Mine-influenced	659496	5496774	2019	2	RG_MI5_BIC-2_2019-09-05	43	16,220	24.4	0.9	2.7	1.1	0.2	23
Michel Creek	MI5	Mine-influenced	659496	5496774	2020	2	RG_MI5_BIC-2_2020-09-17	44	16,720	16.5	0.9	2.9	1.1	0.3	29
Michel Creek	MI5	Mine-influenced	659496	5496774	2021	2	RG_MI5_BIC-2_2021-09-16	43	21,620	0.3	0.8	2.4	1.2	0.1	28
Michel Creek	MI5	Mine-influenced	659496	5496774	2022	2	RG_MI5_BIC-2_2022-09-12_N	35	6,620	0.4	0.8	2.3	1.3	0.1	24
Michel Creek	MI5	Mine-influenced	659496	5496774	2018	3	RG_MI5_BIC-3_2018-09-11	30	8,880	20.1	0.9	2.7	1.1	0.4	20
Michel Creek	MI5	Mine-influenced	659496	5496774	2019	3	RG_MI5_BIC-3_2019-09-05	35	7,960	24.4	0.9	2.5	1.1	0.2	18
Michel Creek	MI5	Mine-influenced	659496	5496774	2020	3	RG_MI5_BIC-3_2020-09-17	45	10,140	24.2	0.9	2.8	1.1	0.2	31
Michel Creek	MI5	Mine-influenced	659496	5496774	2021	3	RG_MI5_BIC-3_2021-09-16	34	6,640	0.4	0.8	2.4	1.2	0.2	25
Michel Creek	MI5	Mine-influenced	659496	5496774	2022	3	RG_MI5_BIC-3_2022-09-12_N	33	6,540	0.3	0.9	2.7	1.1	0.3	22

a) UTM coordinates represent the station coordinates. Stations CM-MC2, MIDAG-S1, and MIDAG-S2 were only sampled in 2020 as part of the Nickel Benchmark Study.

b) In 2021, the MI5, replicate 1 sample was inadequately preserved and data were excluded.

^{- =} data not available; % = percent; EPT = Ephemeroptera, Plecoptera, Trichoptera; CMm = Coal Mountain Mine; LAEMP = local aquatic effects monitoring program.

Table K-2: Benthic Invertebrate Community Data at CMm LAEMP Sampling Stations, 2012 to 2021

Table K-2: Benthic I	Invertebrate (Community Data at (CMm LAEMF	P Sampling	Stations,	, 2012 to 2021											
		Reference or	Location	ı (UTMs) ^(a)				Percent	Ephemeroptera	Percent	Trichoptera	Percent	Plecoptera	Percent	Chironomidae	Percent	Percent
Watercourse	Station	Mine-influenced	Fasting	Northing	Year	Replicate	Sample	EPT (%)	Richness	Ephemeroptera (%)	Richness	Trichoptera (%)	Richness	Plecoptera (%)	Richness	Chironomidae (%)	Oligochaeta (%)
			Ŭ	Ŭ					(# of taxa)		(# of taxa)	. , ,	(# of taxa)	. , ,	(# of taxa)	` '	Oligochaeta (70)
Michel Creek	MI25	Reference	668184	5482818		1	RG_MI25_BIC-1_2012-09-15	91.8	9	12.2	7	23.8	13	55.8	3	3.4	1
Michel Creek	MI25	Reference	668184	5482818		1	RG_MI25_BIC-1_2013-09-15	97.6	7	49.0	5	1.5	8	47.2	2	1.3	0
Michel Creek Michel Creek	MI25 MI25	Reference Reference	668184	5482818		1	RG_MI25_BIC-1_2015-09-10 RG_MI25_BIC-1_2016-09-13	83.8	8 7	47.1 50.4	6	5.0	9	31.7	10	14.3 30.0	0
Michel Creek	MI25	Reference	668184 668184	5482818 5482818	2016	1	RG MI25 BIC-1 2017-09-14	68.1 77.6	7	53.4	7	5.1 4.3	10 8	12.6 19.9	13	19.8	0
Michel Creek	MI25	Reference	668184	5482818	2018	1	RG MI25 BIC-1 2018-09-10	85.9	<u> </u>	62.2	7	9.6	9	14.0	9	12.5	0
Michel Creek	MI25	Reference	668184	5482818		1	RG MI25 BIC-1 2019-09-04	80.1	8	49.5	8	10.3	11	20.2	8	18.7	1
Michel Creek	MI25	Reference	668184	5482818		1	RG MI25 BIC-1 2020-09-11	90.5	8	60.6	9	8.6	11	21.3	8	7.3	0
Michel Creek	MI25	Reference	668184	5482818	2021	1	RG_MI25_BIC-1_2021-09-13	0.9	8	0.5	9	0.1	9	0.2	8	0.1	0
Michel Creek	MI25	Reference	668184	5482818	2022	1	RG_MI25_BIC-1_2022-09-15_N	1.0	8	0.6	9	0.1	11	0.3	3	0.0	0
Michel Creek	MI25	Reference	668184	5482818	2013	2	RG_MI25_BIC-2_2013-09-15	99.0	8	44.8	9	3.8	8	50.5	2	0.4	0
Michel Creek	MI25	Reference	668184	5482818		2	RG_MI25_BIC-2_2015-09-10	79.7	8	49.7	4	5.0	7	25.0	7	17.5	0
Michel Creek Michel Creek	MI25 MI25	Reference Reference	668184 668184	5482818		2	RG_MI25_BIC-2_2018-09-10 RG_MI25_BIC-2_2019-09-04	63.2 60.1	7	23.1 33.6	7 4	21.4 11.0	8	18.8 15.5	10 10	30.2 30.4	2
Michel Creek	MI25	Reference	668184	5482818 5482818		2	RG MI25 BIC-2 2020-09-11	84.2		19.1	9	33.4	12	31.6	6	10.9	0
Michel Creek	MI25	Reference	668184	5482818	2021	2	RG MI25 BIC-2 2021-09-13	0.9	0	0.5	8	0.1	10	0.2	6	0.1	0
Michel Creek	MI25	Reference	668184	5482818		2	RG MI25 BIC-2 2022-09-15 N	1.0	7	0.7	5	0.1	8	0.2	3	0.0	0
Michel Creek	MI25	Reference	668184	5482818		3	RG MI25 BIC-3 2013-09-15	97.6	8	44.5	4	0.9	8	52.1	5	1.3	0
Michel Creek	MI25	Reference	668184	5482818		3	RG_MI25_BIC-3_2015-09-10	69.3	8	42.8	7	5.4	8	21.1	9	27.1	0
Michel Creek	MI25	Reference	668184	5482818		3	RG_MI25_BIC-3_2018-09-10	86.2	10	44.2	7	18.3	11	23.7	13	9.2	1
Michel Creek	MI25	Reference	668184	5482818	2019	3	RG_MI25_BIC-3_2019-09-04	83.9	8	46.0	6	18.0	9	19.9	10	11.8	1
Michel Creek	MI25	Reference	668184	5482818		3	RG_MI25_BIC-3_2020-09-11	85.8	9	35.7	8	17.3	11	32.8	7	9.4	0
Michel Creek	MI25 MI25	Reference	668184	5482818	2021	3	RG_MI25_BIC-3_2021-09-13	0.9	5	0.5	9	0.2	12	0.2	6	0.1	0
Michel Creek Andy Good Creek	AGCK	Reference Reference	668184 667557	5482818 5488648		3	RG_MI25_BIC-3_2022-09-15_N AGCK_BIC-1_2012-09-16	0.9 89.0	9 0	0.6 80.8	3	0.1 1.0	7	0.2 7.2	5	0.1 10.4	0
Andy Good Creek Andy Good Creek	AGCK	Reference	667557	5488648		1	AGCK_BIC-1_2012-09-10	95.1	9	76.4	6	1.3	9	17.4	1	1.7	3
Andy Good Creek Andy Good Creek	AGCK	Reference	667557	5488648		1	AGCK_BIC-1_2015-09-13	97.2	9	68.2	4	4.5	7	24.5	5	1.7	0
Andy Good Creek	AGCK	Reference	667557	5488648		1	AGCK BIC-1 2018-09-08	96.0	10	88.6	2	0.4	6	7.0	6	3.0	0
Andy Good Creek	AGCK	Reference	667557	5488648	2019	1	AGCK_BIC-1_2019-09-06	92.6	9	86.4	2	3.4	4	2.8	8	4.7	0
Andy Good Creek	AGCK	Reference	667557	5488648	2020	1	AGCK_BIC-1_2020-09-10	86.4	9	66.2	4	5.5	11	14.7	5	11.5	0
Andy Good Creek	AGCK	Reference	667557	5488648		1	RG_AGCK_BIC-1_2021-09-11	0.8	7	0.6	4	0.0	9	0.2	7	0.2	0
Andy Good Creek	AGCK	Reference	667557	5488648		1	RG_AGCK_BIC-1_2022-09-15_N	0.9	9	0.7	6	0.0	8	0.2	8	0.1	0
Andy Good Creek	AGCK	Reference	667557	5488648		2	AGCK_BIC-2_2018-09-08	88.9	9	81.4	2	1.4	6	6.1	12	9.1	0
Andy Good Creek Andy Good Creek	AGCK AGCK	Reference Reference	667557 667557	5488648 5488648	2019	2	AGCK_BIC-2_2019-09-06 AGCK_BIC-2_2020-09-10	89.6 86.4	9	83.9 75.5	5	2.8 4.8	8	2.8 6.1	8	8.3 11.3	0
Andy Good Creek Andy Good Creek	AGCK	Reference	667557	5488648	2020	2	RG AGCK BIC-2 2021-09-10	0.9	<u>9</u>	0.6	2	0.0	6	0.2	4	0.1	0
Andy Good Creek	AGCK	Reference	667557	5488648		2	RG AGCK BIC-2 2022-09-15 N	0.9	8	0.7	6	0.0	6	0.2	8	0.1	0
Andy Good Creek	AGCK	Reference	667557	5488648	_	3	AGCK BIC-3 2018-09-08	85.2	9	69.0	3	2.0	8	14.1	7	13.5	0
Andy Good Creek	AGCK	Reference	667557	5488648		3	AGCK_BIC-3_2019-09-06	87.6	10	76.6	3	3.9	7	7.0	5	6.5	1
Andy Good Creek	AGCK	Reference	667557	5488648	2020	3	AGCK_BIC-3_2020-09-10	84.4	7	65.8	9	5.9	11	12.7	5	14.8	0
Andy Good Creek	AGCK	Reference	667557	5488648		3	RG_AGCK_BIC-3_2021-09-11	0.8	9	0.6	5	0.0	5	0.2	6	0.2	0
Andy Good Creek	AGCK	Reference	667557	5488648	_	3	RG_AGCK_BIC-3_2022-09-15_N	0.9	8	0.7	6	0.0	8	0.2	4	0.1	0
Leach Creek	LE1	Reference	659635	5494108		1	LE1_BIC-1_2018-09-13 LE1_BIC-1_2019-09-05	75.7	7	39.3	7	11.3	11	25.1	10	11.0	0
Leach Creek Leach Creek	LE1 LE1	Reference Reference	659635 659635	5494108 5494108		1	LE1_BIC-1_2019-09-05 LE1_BIC-1_2020-09-17	71.5 86.3	5	28.8 43.9	10 11	29.9 10.3	8 9	12.8 32.2	5	6.0 3.1	0
Leach Creek	LE1	Reference	659635	5494108		1	RG LE1 BIC-1 2021-09-14	0.9	8	0.5	8	0.1	7	0.3	5	0.0	0
Leach Creek	LE1	Reference	659635	5494108	_	1	RG LE1 BIC-1 2022-09-16 N	0.8	9	0.5	4	0.1	8	0.3	2	0.0	0
Leach Creek	LE1	Reference	659635	5494108	_	2	LE1 BIC-2 2019-09-05	81.4	7	35.0	6	34.0	9	12.4	6	7.8	0
Leach Creek	LE1	Reference	659635	5494108		2	LE1_BIC-2_2020-09-17	81.8	9	37.8	9	12.8	9	31.2	4	3.8	0
Leach Creek	LE1	Reference	659635	5494108		2	RG_LE1_BIC-2_2021-09-14	0.7	8	0.4	8	0.1	9	0.2	8	0.1	0
Leach Creek	LE1	Reference	659635		2022	2	RG_LE1_BIC-2_2022-09-16_N	0.9	11	0.3	11	0.1	11	0.4	4	0.0	0
Leach Creek	LE1	Reference	659635		2019	3	LE1_BIC-3_2019-09-05	78.2	8	32.4	7	33.1	11	12.7	9	7.6	0
Leach Creek	LE1	Reference	659635		2020	3	LE1_BIC-3_2020-09-17	75.8	9	28.5	11	11.8	14	35.5	2	1.5	0
Leach Creek Leach Creek	LE1 LE1	Reference Reference	659635 659635		2021	3	RG_LE1_BIC-3_2021-09-14 RG_LE1_BIC-3_2022-09-16_N	0.8	10 14	0.5 0.6	8 9	0.1 0.1	9	0.3 0.2	8 3	0.1 0.0	0
Michel Creek	MIUCO	Mine-influenced	668135		2022	1	RG_LET_BIC-3_2022-09-16_N RG_MIUCO_BIC-1_2012-09-15	87.4	2 2	46.2	10	12.0	13	29.2	1	0.0	0
Michel Creek	MIUCO	Mine-influenced	668135		2012	1	RG MIUCO BIC-1 2015-09-10	72.4	9	53.2	8	7.2	6	12.0	8	4.3	0
Michel Creek	MIUCO	Mine-influenced	668135	5486767	_	1	RG MIUCO BIC-1 2016-09-13	80.5	9	45.8	8	19.2	8	15.6	3	4.8	0
Michel Creek	MIUCO	Mine-influenced	668135		2017	1	RG_MIUCO_BIC-1_2017-09-14	81.7	7	43.5	9	26.1	10	12.1	4	3.4	1
Michel Creek	MIUCO	Mine-influenced	668135	5486767	2018	1	RG_MIUCO_BIC-1_2018-09-10	69.3	8	42.6	10	9.5	9	17.1	4	4.3	0
Michel Creek	MIUCO	Mine-influenced	668135	5486767		1	RG_MIUCO_BIC-1_2019-09-09	54.7	9	26.8	11	11.3	12	16.5	6	12.1	1
Michel Creek	MIUCO	Mine-influenced	668135		2020	1	RG_MIUCO_BIC-1_2020-09-12	58.6	10	24.1	8	17.6	13	16.9	4	2.5	0
Michel Creek	MIUCO	Mine-influenced	668135	5486767		1	RG_MIUCO_BIC-1_2021-09-12	0.7	15	0.4	7	0.0	13	0.3	6	0.0	0
Michel Creek	MIUCO	Mine-influenced	668135		2022	1	RG_MIUCO_BIC-1_2022-09-14_N	0.7	10	0.4	11	0.1	11	0.3	3	0.0	0
Michel Creek Michel Creek	MIUCO	Mine-influenced Mine-influenced	668135 668135	5486767	2018	2	RG_MIUCO_BIC-2_2018-09-10 RG_MIUCO_BIC-2_2019-09-09	71.3 61.2	<u>8</u>	50.9 33.1	9	6.9 18.9	9	13.4 9.3	5	5.9 9.1	1
Michel Creek	MIUCO	Mine-influenced	668135		2019	2	RG MIUCO BIC-2 2020-09-12	62.0	<u>9</u> 10	36.5	9	11.0	14	9.3	3	2.9	1
Michel Creek	MIUCO	Mine-influenced	668135	5486767	_	2	RG MIUCO BIC-2 2021-09-12	0.7	11	0.5	8	0.0	7	0.2	8	0.1	0
Michel Creek	MIUCO	Mine-influenced	668135		2022	2	RG MIUCO BIC-2 2022-09-14 N	0.7	9	0.4	8	0.0	7	0.2	4	0.0	0
Michel Creek	MIUCO	Mine-influenced	668135	5486767	_	3	RG_MIUCO_BIC-3_2018-09-10	66.1	9	38.8	7	10.9	7	16.4	3	2.1	1
Michel Creek	MIUCO	Mine-influenced	668135	5486767	2019	3	RG_MIUCO_BIC-3_2019-09-09	56.2	11	30.2	6	11.0	9	15.0	8	7.3	0
Michel Creek	MIUCO	Mine-influenced	668135		2020	3	RG MIUCO BIC-3 2020-09-12	65.6	11	28.5	8	17.8	11	19.3	3	1.5	0
Michel Creek	MIUCO	Mine-influenced	668135		2021	3	RG_MIUCO_BIC-3_2021-09-12	0.7	10	0.4	10	0.1	11	0.2	8	0.1	0
Michel Creek	MIUCO	Mine-influenced	668135		2022	3	RG_MIUCO_BIC-3_2022-09-14_N	0.7	9	0.4	8	0.1	13	0.1	5	0.0	0
Corbin Creek	CORCK	Mine-influenced	668539	5487366		1	RG_CORCK_BIC-1_2012-09-15	44.0	4	3.3	8	25.6	6	15.1	5	23.2	2
Corbin Creek	CORCK	Mine-influenced	668539	548/366	2015	1	RG_CORCK_BIC-1_2015-09-11	17.0	0	0.0	5	8.1	8	8.9	10	24.5	2

Table K-2: Benthic Invertebrate Community Data at CMm LAEMP Sampling Stations, 2012 to 2021

AST CORD CASC March Professor CASC	Table K-2: Benthic I	Invertebrate (Community Data at	CMm LAEN	IP Sampling	Stations	, 2012 to 2021	1										
No. Control			Poforonco or	Locatio	n (UTMs) ^(a)				Porcont	Ephemeroptera	Porcont	Trichoptera	Porcont	Plecoptera	Porcont	Chironomidae	Porcont	Porcont
March Marc	Watercourse	Station		Easting	Northing	Year	Replicate	Sample		Richness		Richness		Richness		Richness		
Section Sect					·				LF1 (70)	(# of taxa)	Epitemeroptera (78)	(# of taxa)	. , ,	(# of taxa)	Fiecoptera (70)	(# of taxa)	Cilifoliolilidae (70)	Oligochaeta (78)
Add Control	Corbin Creek						1			3		· · · · · · · · · · · · · · · · · · ·				10		
Services Out. Corbin Creek						1			1						9		_	
Control Cont							1							-		5		
## CASE OF CASE OF STREET WAS ALL AND ADDRESS OF STREET WAS ALL AN							1							· · · · · · · · · · · · · · · · · · ·		6		
Company Comp							1			•						5		
Control Cont							1 1			2				<u> </u>	-	6		
Continue Continue							1			0		· · · · · · · · · · · · · · · · · · ·		4		5		•
SPECIMEN Control Con										1				1		7		
200.000 201.										0						1		
Section Company Comp										1						·		-
Selection Conference C										0		5		·	-	5		
Section Control Cont										0		5		· · · · · · · · · · · · · · · · · · ·		1		
## CASE OF SPECK MEMBERS (1997) ## CASE OF SPECK MEMBERS (1997										1				· · · · · · · · · · · · · · · · · · ·		5		·
Selection Conference Conf										n						5		
Self-Order Confessor Confe										0						-		
Selection 1960 Marie Anterior 1970 Marie Anterior 1970 1971 197										0					-	5		•
Section March Ma										6		6				3		-
Seed Seed	Michel Creek						1			7		7		8		7		
Edit Com	Michel Creek						1			6		9		11		7		6
History Method Method Manager (1978) 56767 (1978) 1 Proposed (1978	Michel Creek						1			6		10				7		15
NOTE COME MINISTER 1987	Michel Creek		Mine-influenced				1			5						8		
New Colon 1950 Mine fluxes 1978 59	Michel Creek			_				RG_MIDCO_BIC-1_2019-09-09		5		9		-		9		11
Final Creek MECO Micro ethnosoid	Michel Creek		Mine-influenced			2020	1			7		10		10		8		
Hand Care MSCO Mart Information 40701 40701 2010 2 8 MSCO 8072	Michel Creek	MIDCO	Mine-influenced	667616	5487621	2021	1	RG_MIDCO_BIC-1_2021-09-13	0.5	5	0.1	8	0.0	6	0.4	6	0.2	0
Field Ceek MiCCO Mr. refinered: Grove 1, 1977 1, 219 2 0 0 0 0 111 7 1 4.6 19 10 10 10 10 10 10 10 10 10 10 10 10 10	Michel Creek						1			7		7		8		7		0
Hiller Cares. MIDCO Misconfiguracide. 667481 6407251 2020 2 7 MIDCO 61072 7 7 13.0 1 1 0.0 0 1.2 8 14.1 1 1 1 1 1 1 1 1 1	Michel Creek			_						4				,		6		
INDICO Micro MIDCO Micro Michel Creek									6	_	7				8		49	
REFOLDS MINCO Mon-Philoscope SEPTIS Michel Creek									7						8		1	
whele Creat MIDCO Mine-efficienced (APPRI) 2019 3 S. C. MIDCO (E.C. 2018-000) 74 7 134 8 171 8 362 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Michel Creek									5	-					7		0
Find Corest MICCO Mine influenced (FFRE 54792) 2019 3 RG MICCO (SC 2009-2019) 4 (3) 7 7 794 7 7 7 8 8 8 115 21 MICCO Mine influenced (FFRE 54792) 3 RG MICCO (SC 2009-2019) 3										5						6		Ů
Index Centex MINCO Mine influenced 69718 647671 2020 3 RQ MINCO BIOL 2020 6173 9.0 8 8.0 13 13 13.0 10 18.1 0 991 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1										2						8		
Intell Creek MDCO Minerthreed 68769 48982 2021 3 RC MDCO RC 3871-0-12 0.4 8 0.1 10 0.1 9 0.2 7 0.2 0										7		· · · · · · · · · · · · · · · · · · ·				8		
Interfed Corat MIDCO Mine-influenced 67769 648721 2012 3 80 MOCO BICS 2002-00-13 N 0.4 6 0.2 9 0.0 8 0.1 6 0.2 0										8						6		0
Inched Coresk MDDCD Mino-influenced (987816 548782) 1918 4 RS MDDCD BEC-2016-0900 38.0 6 4.3 9 7.1 9 26.0 6 281 12 2 MDCDC Mino-influenced (987816 548782) 1914 4 RS MDDCD BEC-2016-0900 18.0 6 6.0 9.1 12 3.9 8 4.9 9 18.9 47 MDCDC Mino-influenced (987816 548782) 1914 4 RS MDCD BEC-2016-0900 18.0 6 6.0 11 18 10 19 2.0 8 8 4.4 1.0 0 MDCDC Mino-influenced (987816 548782) 1914 4 RS MDCD BEC-2016-0900 18.0 6 6.0 11 18 10 19 2.0 8 8 4.4 1.0 0 MDCDC Mino-influenced (987816 548782) 1914 5 RS MDCD BEC-2016-0900 1914 1915 1915 1914 1914 1914 1914 1914							3			8	-			9		7		0
Inches Corporal, MDCO, Mino-embranced, e67816 5457821 2010 4 NG MICCO BGC 2010-99-00 15.8 6 8.9 12 3.9 9 4.9 9 18.9 4.7 18.9 18.9 18.9 18.9 18.9 18.9 18.9 18.9							3			6				8	-	6		•
teched Coreals MICCO Mon-influenced of 687816 5487872 2020 4 8 R. MIDCO BLOS 2014-032 4 8 R. MIDCO BLOS 2014-032 4 8 R. MIDCO BLOS 2014-032 4 8 R. MIDCO BLOS 2014-032 4 8 R. MIDCO BLOS 2014-032 4 8 R. MIDCO BLOS 2014-032 4 8 R. MIDCO BLOS 2014-032 4 8 R. MIDCO BLOS 2014-032 4 8 R. MIDCO BLOS 2014-032 4 8 R. MIDCO BLOS 2014-032 4 8 R. MIDCO BLOS 2014-032 4 R. MIDCO BLOS										6		3				6		
Siehel Creek MDCO Miles-influenced 67916 S487871 2021 4 RG MDCO BLC 2021-0912 0.4 6 0.1 8 0.0 9 0.3 6 0.2 0 1										6						9		
schell Creek MIDCO Mine-influenced 67616 5487621 3022 4 A RG MIDCO BIC-4 2022-04-3 N 0.5 6 0.1 10 0.1 10 0.2 7 0.1 0.1 0.1 to the Cleek MIDCO Mine-influenced 67616 5487621 3018 5 RG MIDCO BIC-5 2018-05-08 20.5 6 3.9 7 8.1 7 8.4 8 18.6 4 8 18.6 4 8 18.6 4 18.6 4 18.6 4 18.6 4 18.6 4 18.6 4 18.6 4 18.6 4 18.6 4 18.6 4 18.6 5										8		14				8		•
Sichel Crosk MDCO Mine-influenced 6976 5487621 2018 5 RG MDCO BIC-5 2018-06-09 20.5 6 3.9 7 8.1 7 8.4 8 18.8 4 4 4 4 4 4 4 4 4										6		10		-		7		, and the second
Richel Creek MIDCO Mine-influenced 66781 5487621 2019 5 R6 MIDCO BIC-5 20194969 202 7 16.5 8 3.0 10 5.9 9 14.7 34 Michael Creek MIDCO Mine-influenced 66781 5487621 2020 5 R6 MIDCO BIC-5 20194969 37.8 5 13.5 10 4.9 11 19.4 6 10.8 0 0 Kinel Creek MIDCO Mine-influenced 66781 5487621 2020 5 R6 MIDCO BIC-5 2019497 37.8 5 13.5 10 4.9 11 19.4 6 10.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0										6		7		7	-	ν γ		•
Richel Creek MIDCO Mine-influenced 667616 5487621 2021 5 RG MIDCO BIG-5 2020-09-13 37.8 5 13.5 10 4.9 11 19.4 6 10.8 0 chieful Croek MIDCO Mine-influenced 667616 5487621 2021 5 RG MIDCO BIG-5 2020-09-13 0.5 5 0.1 11 0.0 1 6 0.3 7 0.2 0 chieful Croek MIDCO Mine-influenced 667616 5487621 2021 5 RG MIDCO BIG-5 2020-09-13 N 0.5 6 0.1 1 9 0.0 1 9 0.3 6 0.0 1 0 0 chieful Croek MIDCO Mine-influenced 667616 5487621 2021 5 RG MIDCO BIG-5 2020-09-13 N 0.5 6 0.1 1 9 0.0 1 9 0.3 6 0.0 1 0 0 chieful Croek MIDCO Mine-influenced 667616 5487621 2020 2 Chieful Croek MIDCO BIG-5 2020-09-13 N 0.5 6 0.1 1 9 0.0 1 9 0.3 6 0.0 1 0 0 chieful Croek Chieful Croek MIDCO BIG-5 2020-09-13 N 0.5 6 0.1 1 9 0.0 1 9 0.3 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0										7		Ω		10		0		· ·
Richel Creek MIDCO Mine-influenced 687816 648721 2021 5 RG MIDCC Bit-S 2021-09-12 0.5 5 0.1 11 0.1 6 0.3 7 0.2 0 0 (stelled Creek MIDCO Mine-influenced 67246 548714 2020 1 (RC MIDCO MINE-influenced 672471 2020 548714 2020 1 (RC MIDCO MINE-influenced 672471 2020 548714 2020 1 (RC MIDCO MINE-influenced 672471 2020 548714 2020 1 (RC MIDCO MINE-influenced 672471 2020 548714 2020 1 (RC MIDCO MINE-influenced 672471 2020 548714 2020 1 (RC MIDCO MINE-influenced 672471 2020 548714 2020 1 (RC MIDCO MINE-influenced 672471 2020 548714 2020 1 (RC MIDCO MINE-influenced 672471 2020 548714 2020 1 (RC MIDCO MINE-influenced 672471 2020 548714 2020 1 (RC MIDCO MINE-influenced 672471 2020 548714 2020 1 (RC MIDCO MINE-influenced 672471 2020 548714 2020 1 (RC MIDCO MINE-influenced 672471 2020 548714 2020 1 (RC MIDCO MINE-influenced 672471 2020 548714 2020 1 (RC MIDCO MINE-influenced 672471 2020 548714 202										5						6		
Richell Creek MIDCO Mine-influenced 697249 588724 2022 5 RG MIDCO Bit-S 2022-09-13 N 0.5 6 0.1 9 0.1 9 0.3 6 0.1 0 Highel Creek CM MC2 Mine-influenced 697249 5888144 2020 2 CM MC2 Bit-S 2020-09-18 34.2 5 7.9 11 7.8 10 18.5 5 12.4 1 Highel Creek CM MC2 Mine-influenced 697249 5888144 2020 2 CM MC2 Bit-S 2020-09-18 34.2 5 7.9 11 7.8 10 18.5 5 12.4 1 Highel Creek CM MC2 Mine-influenced 697240 5888144 2020 2 CM MC2 Bit-S 2020-09-18 32.2 4 8.1 12 9.8 8 20.3 5 10.3 0 Highel Creek CM MC2 Mine-influenced 697240 5888144 2020 2 CM MC2 Bit-S 2020-09-18 32.2 4 8.1 12 9.8 8 8 20.3 5 10.3 0 Highel Creek MIDAS-S1 Mine-influenced 66620 666										5						7		•
No. Michael Crosek CMM CZ Mine-influenced 667249 5488144 2020 1 CMM CZ BiC-1 2020-09-19 34.2 5 7.9 11 7.8 10 18.5 5 12.4 1										6				<u> </u>		6		ŭ
Richel Creek CM MCZ Mine-influenced 667249 5488144 2020 2 CM MCZ BICA 2020-0-18 47.0 5 4.9 12 12.7 11 29.5 6 13.1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1										5				•		5		1
Richel Creek CM MC2 Mino-influenced 66729 5488144 2020 3 CM MC2 BIGS 2020-06-18 79.5 7 7 18.0 12 11.6 13 49.9 7 8.6 0	Michel Creek			_			2			5						6		0
Richel Creek MIDAG-St Mine-Influenced 686290 5488507 2020 1 RG MIDAG-St BiC-1 2020-09-18 79.5 7 18.0 12 11.6 13 40.9 7 8.6 0 10.1 10.0	Michel Creek									4						5		0
Michel Creek MiDAG-ST Mine-influenced 666929 5488597 2020 2 R6 MiDAG-ST Ricz 2020-09-18 92.0 9 19.4 13 9.5 12 63.1 7 1.0 0	Michel Creek			_			1			7						7		0
Michel Creek MiDAG-S1 Mine-influenced 66570 548854 2020 1 RG MIDAG-S2 Co. 2020-09-17 80.7 10 37.1 13 9.3 14 34.3 8 8.8 0	Michel Creek						2			9						7		0
	Michel Creek									9						6		0
Ilichel Creek MDAG-S2 Mine-influenced 666770 5488684 2020 2 R.S. MIDAG-S2 BIG-2 2020-09-17 71.5 12 41.9 10 7.2 12 32.0 7 10.5 0	Michel Creek			665770			1	RG_MIDAG-S2_BIC-1_2020-09-17		10	37.1	13	9.3	14	34.3	8	8.8	0
Itichel Creek MIDAG-SIZ Mine-influenced 665270 5488854 2020 3 RG MIDAG-SIZ BICS 2020-09-17 77.5 12 40.3 12 7.0 12 30.2 7 10.6 10	Michel Creek	MIDAG-S2	Mine-influenced	665770			2		81.1	12			7.2	12	32.0	7		0
Michel Creek MIDAG Mine-influenced 665220 5489324 2018 1 RG MIDAG BIC-1 2015-09-12 72.2 10 42.8 5 13.4 6 16.0 7 2.2 0	Michel Creek		Mine-influenced	665770					77.5	12	40.3	12	7.0		30.2	7	10.6	0
Richel Creek MIDAG Mine-influenced 665220 5489324 2018 1 RG MIDAG BIC-1 2018-09-08 64.6 9 38.3 4 12.3 10 14.0 9 8.1 8.1 2.5	Michel Creek	_					1			8		8		7		4		0
Inche Creek MIDAG Mine-influenced 665220 5489324 2019 1 RG MIDAG BIC-1 2019-09-10 37.3 7 23.9 4 4.7 8 8.7 9 24.8 5	Michel Creek			_			1			10		5			16.0	7		0
Inchel Creek MIDAG Mine-influenced 665220 5489324 2020 1 RG MIDAG BIC-1 2020-09-15 80.2 10 42.7 10 17.2 11 20.3 6 8.4 0	Michel Creek									9						9		
Inchel Creek MIDAG Mine-influenced 665220 5489324 2021 1 RG MIDAG BIC-1 2021-09-11 0.7 8 0.5 9 0.1 10 0.2 6 0.1 0	Michel Creek							 		7					-	9		5
Sinchel Creek MIDAG Mine-influenced 665220 5489324 2022 1 RG MIDAG BIC-1 2022-09-13 N 0.8 9 0.4 7 0.1 9 0.3 6 0.1 0	Michel Creek									10						6		0
Michel Creek MIDAG Mine-influenced 665220 5489324 2018 2 RG MIDAG BIC-2 2018-09-08 70.0 8 34.5 7 7.5 12 28.0 6 11.8 0	Michel Creek	_								8		Ŭ				6	• • • • • • • • • • • • • • • • • • • •	Ů
Michel Creek MIDAG Mine-influenced 66520 5489324 2019 2 RG MIDAG BIC-2 2019-09-10 60.4 10 37.8 11 11.0 10 11.6 12 13.5 3	Michel Creek			_						9		· · · · · · · · · · · · · · · · · · ·						
Mine Mine	Michel Creek											· · · · · · · · · · · · · · · · · · ·				-		The state of the s
Michel Creek MIDAG Mine-influenced MIDAG	Michel Creek															12		
Michel Creek MIDAG Mine-influenced 665220 5489324 2022 2 RG MIDAG BIC-2 2022-09-13 N 0.8 8 0.4 9 0.2 11 0.2 1 0.0 0 Michel Creek MIDAG Mine-influenced 665220 5489324 2018 3 RG MIDAG BIC-3 2018-09-08 74.8 6 37.4 5 24.1 8 13.3 5 14.4 0 Michel Creek MIDAG Mine-influenced 665220 5489324 2019 3 RG MIDAG BIC-3 2019-09-10 34.1 7 20.4 4 7.0 5 6.7 9 9.3 4 Michel Creek MIDAG Mine-influenced 665220 5489324 2020 3 RG MIDAG BIC-3 2019-09-10 34.1 7 20.4 4 7.0 5 6.7 9 9.3 4 Michel Creek MIDAG Mine-influenced 665220 5489324 2020 3 RG MIDAG BIC-3 2020-09-15 79.2 11 43.2 12 14.4 14 21.6 8 11.3 0 Michel Creek MIDAG Mine-influenced 665220 5489324 2021 3 RG MIDAG BIC-3 2021-09-11 0.8 9 0.5 6 0.1 9 0.1 5 0.0 0 Michel Creek MIDAG Mine-influenced 665220 5489324 2022 3 RG MIDAG BIC-3 2021-09-11 0.8 9 0.5 9 0.1 10 0.2 3 0.0 0 Michel Creek MIDAG Mine-influenced 665220 5489324 2022 3 RG MIDAG BIC-3 2022-09-13 N 0.8 9 0.5 9 0.1 10 0.2 3 0.0 0 Michel Creek MIDAG Mine-influenced 66520 5489324 2022 3 RG MIDAG BIC-3 2022-09-13 N 0.8 9 0.5 9 0.1 10 0.2 3 0.0 0 Michel Creek MIULE Mine-influenced 660503 5493048 2018 1 RG MIULE BIC-1 2018-09-11 62.1 6 29.9 4 22.3 7 9.9 6 15.5 1 Michel Creek MIULE Mine-influenced 660503 5493048 2018 1 RG MIULE BIC-1 2019-09-06 63.7 7 33.1 9 21.8 9 8.8 7 18.4 1 Michel Creek MIULE Mine-influenced 660503 5493048 2020 1 RG MIULE BIC-1 2019-09-06 60.7 11 36.4 9 9.5 12 14.9 9 9 16.2 0										12						8		ŭ
Michel Creek MIDAG Mine-influenced 66520 5489324 2018 3 RG_MIDAG_BIC-3_2018-09-08 74.8 6 37.4 5 24.1 8 13.3 5 14.4 0 0 Michel Creek MIDAG Mine-influenced 66520 5489324 2019 3 RG_MIDAG_BIC-3_2019-09-10 34.1 7 20.4 4 7.0 5 6.7 9 9.3 4 Michel Creek MIDAG Mine-influenced 66520 5489324 2020 3 RG_MIDAG_BIC-3_2020-09-15 79.2 11 43.2 12 14.4 14 21.6 8 11.3 0 0 Mine-influenced 66520 5489324 2020 3 RG_MIDAG_BIC-3_2020-09-15 79.2 11 43.2 12 14.4 14 21.6 8 11.3 0 0 Mine-influenced 66520 5489324 2021 3 RG_MIDAG_BIC-3_2020-09-15 79.2 11 43.2 12 14.4 14 21.6 8 11.3 0 0 Mine-influenced 66520 5489324 2021 3 RG_MIDAG_BIC-3_2020-09-11 0.8 9 0.5 6 0.1 9 0.1 5 0.0 0 0 Michel Creek MIDAG_MINE-influenced 66520 5489324 2022 3 RG_MIDAG_BIC-3_2022-09-13 N 0.8 9 0.5 9 0.1 10 0.2 3 0.0 0 0 Michel Creek MIULE Mine-influenced 660503 5493048 2018 1 RG_MIULE_BIC-1_2018-09-11 62.1 6 29.9 4 22.3 7 9.9 6 15.5 1 Michel Creek MIULE Mine-influenced 660503 5493048 2019 1 RG_MIULE_BIC-1_2019-09-06 63.7 7 33.1 9 21.8 9 8.8 7 18.4 1 Michel Creek MIULE Mine-influenced 660503 5493048 2020 1 RG_MIULE_BIC-1_2020-09-16 60.7 11 36.4 9 9.5 12 14.9 9 16.2 0		_								9						6	• • • • • • • • • • • • • • • • • • • •	
Michel Creek MIDAG Mine-influenced 66520 5489324 2019 3 RG_MIDAG_BIC-3_2019-09-10 34.1 7 20.4 4 7.0 5 6.7 9 9.3 4 4 4 6.6 6.7 9 9.3 4 6 6.7 9 9.3 4 6 6.7 9 9.3 4 6 6.7 9 9.3 4 6 6.7 9 9.3 4 6 6.7 9 9.9 9 9.3 4 6 6.7 9 9.9 9 9.3 4 9.2 9 9.3				_						8		3				1 -		, , ,
Michel Creek MIDAG Mine-influenced 66520 5489324 2020 3 RG_MIDAG_BIC-3_2020-09-15 79.2 11 43.2 12 14.4 14 21.6 8 11.3 0 Michel Creek MIDAG Mine-influenced 66520 5489324 2021 3 RG_MIDAG_BIC-3_2021-09-11 0.8 9 0.5 6 0.1 9 0.1 5 0.0 0 Michel Creek MIDAG Mine-influenced 66520 5489324 2022 3 RG_MIDAG_BIC-3_2022-09-13 N 0.8 9 0.5 9 0.5 9 0.1 10 0.2 3 0.0 0 Michel Creek MIDAG Mine-influenced 66520 5489324 2022 3 RG_MIDAG_BIC-3_2022-09-13 N 0.8 9 0.5 9 0.5 9 0.1 10 0.2 3 0.0 0 Michel Creek MIDAG_MINE-influenced 660503 5493048 2018 1 RG_MIDAG_BIC-1_2018-09-11 62.1 6 29.9 4 22.3 7 9.9 6 15.5 1 Michel Creek MIDAG_MIDAG_MINE-influenced 660503 5493048 2019 1 RG_MIDAG_BIC-1_2019-09-06 63.7 7 33.1 9 21.8 9 8.8 7 18.4 1 Michel Creek MIDAG_MIDAG_MINE-influenced 660503 5493048 2020 1 RG_MIDAG_BIC-1_2020-09-16 60.7 11 36.4 9 9.5 12 14.9 9 16.2 0														-		· ·		
Michel Creek MIDAG Mine-influenced 66520 5489324 2021 3 RG MIDAG BIC-3 2021-09-11 0.8 9 0.5 6 0.1 9 0.1 5 0.0 0 Michel Creek MIDAG Mine-influenced 66520 5489324 2022 3 RG MIDAG BIC-3 2022-09-13 N 0.8 9 0.5 9 0.1 10 0.2 3 0.0 0 Michel Creek MIULE Mine-influenced 660503 5493048 2018 1 RG MIULE BIC-1 2018-09-11 62.1 6 29.9 4 22.3 7 9.9 6 15.5 1 Michel Creek MIULE Mine-influenced 660503 5493048 2019 1 RG MIULE BIC-1 2019-09-06 63.7 7 33.1 9 21.8 9 8.8 7 18.4 1 Michel Creek MIULE Mine-influenced 660503 5493048 2020 1 RG MIULE BIC-1 2020-09-16 60.7 11 36.4 9 9.5 12 14.9 9 16.2 0																9		·
Michel Creek MIDAG Mine-influenced 66520 5489324 2022 3 RG MIDAG BIC-3 2022-09-13 N 0.8 9 0.5 9 0.1 10 0.2 3 0.0 0 Michel Creek MIULE Mine-influenced 660503 5493048 2018 1 RG MIULE BIC-1 2018-09-11 62.1 6 29.9 4 22.3 7 9.9 6 15.5 1 Michel Creek MIULE Mine-influenced 660503 5493048 2019 1 RG MIULE BIC-1 2019-09-06 63.7 7 33.1 9 21.8 9 8.8 7 18.4 1 Michel Creek MIULE Mine-influenced 660503 5493048 2020 1 RG MIULE BIC-1 2020-09-16 60.7 11 36.4 9 9.5 12 14.9 9 16.2 0										11	_					δ		
Michel Creek MIULE Mine-influenced 660503 5493048 2018 1 RG_MIULE_BIC-1_2018-09-11 62.1 6 29.9 4 22.3 7 9.9 6 15.5 1 Michel Creek MIULE Mine-influenced 660503 5493048 2019 1 RG_MIULE_BIC-1_2019-09-06 63.7 7 33.1 9 21.8 9 8.8 7 18.4 1 Michel Creek MIULE Mine-influenced 660503 5493048 2020 1 RG_MIULE_BIC-1_2020-09-16 60.7 11 36.4 9 9.5 12 14.9 9 16.2 0										9						5		•
Michel Creek MIULE Mine-influenced 660503 5493048 2019 1 RG_MIULE_BIC-1_2019-09-06 63.7 7 33.1 9 21.8 9 8.8 7 18.4 1 Michel Creek MIULE Mine-influenced 660503 5493048 2020 1 RG_MIULE_BIC-1_2020-09-16 60.7 11 36.4 9 9.5 12 14.9 9 16.2 0				_						9						3		
Michel Creek MIULE Mine-influenced 660503 5493048 2020 1 RG_MIULE_BIC-1_2020-09-16 60.7 11 36.4 9 9.5 12 14.9 9 16.2 0		_										· · · · · · · · · · · · · · · · · · ·		<u> </u>		6 7		
																/		
INSTRUCTION INSTRUCTION 1000 10																•		
	IVIICITEI CIEEK	INIIOLE	Iviii ie-ii iiiuei icea	500000	5493048	2021	1 1	NG_WIIULE_DIG-1_2021-09-14	υ.δ	9	U.4	Į δ	U.1	Į δ	0.3	δ	U. I	U

Table K-2: Benthic Invertebrate Community Data at CMm LAEMP Sampling Stations, 2012 to 2021

		Bufarrana at C		n (UTMs) ^(a)				Demonst	Ephemeroptera	Dt	Trichoptera	Banant	Plecoptera	Barrant	Chironomidae	B	Bernand
Watercourse	Station	Reference or Mine-influenced	Easting	Northing	Year	Replicate	Sample	Percent EPT (%)	Richness (# of taxa)	Percent Ephemeroptera (%)	Richness (# of taxa)	Percent Trichoptera (%)	Richness (# of taxa)	Percent Plecoptera (%)	Richness (# of taxa)	Percent Chironomidae (%)	Percent Oligochaeta (%)
Michel Creek	MIULE	Mine-influenced	660503	5493048	2022	1	RG_MIULE_BIC-1_2022-09-12_N	0.9	12	0.5	8	0.2	10	0.2	4	0.0	0
Michel Creek	MIULE	Mine-influenced	660503	5493048	2018	2	RG_MIULE_BIC-2_2018-09-11	70.5	8	42.4	6	10.1	10	18.0	7	9.4	1
Michel Creek	MIULE	Mine-influenced	660503	5493048	2019	2	RG_MIULE_BIC-2_2019-09-06	61.3	9	41.9	8	11.5	9	8.0	10	15.2	3
Michel Creek	MIULE	Mine-influenced	660503	5493048	2020	2	RG_MIULE_BIC-2_2020-09-16	71.3	12	37.2	10	11.6	10	22.5	4	14.7	0
Michel Creek	MIULE	Mine-influenced	660503	5493048	2021	2	RG_MIULE_BIC-2_2021-09-14	0.8	8	0.5	7	0.1	7	0.2	6	0.1	0
Michel Creek	MIULE	Mine-influenced	660503	5493048	2022	2	RG_MIULE_BIC-2_2022-09-12_N	8.0	8	0.5	6	0.1	8	0.1	4	0.0	0
Michel Creek	MIULE	Mine-influenced	660503	5493048	2018	3	RG_MIULE_BIC-3_2019-09-06	69.9	8	41.0	6	24.8	7	4.1	8	10.6	3
Michel Creek	MIULE	Mine-influenced	660503	5493048	2019	3	RG_MIULE_BIC-3_2018-09-11	72.3	7	41.9	7	15.4	9	15.0	6	7.8	2
Michel Creek	MIULE	Mine-influenced	660503	5493048	2020	3	RG_MIULE_BIC-3_2020-09-16	66.0	10	38.9	8	12.2	7	14.9	5	9.9	0
Michel Creek	MIULE	Mine-influenced	660503	5493048	2021	3	RG_MIULE_BIC-3_2021-09-14	8.0	10	0.5	8	0.1	9	0.2	6	0.1	0
Michel Creek	MIULE	Mine-influenced	660503	5493048	2022	3	RG MIULE BIC-3 2022-09-12 N	0.7	10	0.6	7	0.1	8	0.1	6	0.1	0
Michel Creek	MI5	Mine-influenced	659496	5496774	2012	1	RG MI5 BIC-1 2012-09-16	71.4	10	42.8	6	10.9	10	17.8	3	8.6	0
Michel Creek	MI5	Mine-influenced	659496	5496774	2015	1	RG_MI5_BIC-1_2015-09-13	86.5	8	30.1	3	49.7	7	6.7	3	5.1	0
Michel Creek	MI5	Mine-influenced	659496	5496774	2018	1	RG_MI5_BIC-1_2018-09-11	78.6	8	42.9	9	10.0	11	25.8	5	4.1	0
Michel Creek	MI5	Mine-influenced	659496	5496774	2019	1	RG_MI5_BIC-1_2019-09-05	81.0	6	33.8	7	44.0	6	3.3	9	5.5	1
Michel Creek	MI5	Mine-influenced	659496	5496774	2020	1	RG_MI5_BIC-1_2020-09-17	69.8	10	34.9	9	15.3	8	19.6	7	3.4	0
Michel Creek	MI5	Mine-influenced	659496	5496774	2021	1	RG_MI5_BIC-1_2021-09-16 ^(b)	-	-	-	-	-	-	-	-	-	-
Michel Creek	MI5	Mine-influenced	659496	5496774	2022	1	RG_MI5_BIC-1_2022-09-12_N	0.9	11	0.6	7	0.1	8	0.1	4	0.0	0
Michel Creek	MI5	Mine-influenced	659496	5496774	2018	2	RG_MI5_BIC-2_2018-09-11	68.2	6	44.4	4	14.5	10	9.3	6	4.9	2
Michel Creek	MI5	Mine-influenced	659496	5496774	2019	2	RG_MI5_BIC-2_2019-09-05	77.1	8	31.4	8	38.2	7	7.4	8	6.5	2
Michel Creek	MI5	Mine-influenced	659496	5496774	2020	2	RG MI5 BIC-2 2020-09-17	74.6	9	41.3	11	12.2	9	21.2	3	1.4	0
Michel Creek	MI5	Mine-influenced	659496	5496774	2021	2	RG_MI5_BIC-2_2021-09-16	0.9	9	0.4	8	0.1	11	0.4	5	0.0	0
Michel Creek	MI5	Mine-influenced	659496	5496774	2022	2	RG_MI5_BIC-2_2022-09-12_N	0.9	9	0.7	6	0.0	9	0.2	5	0.0	0
Michel Creek	MI5	Mine-influenced	659496	5496774	2018	3	RG_MI5_BIC-3_2018-09-11	87.2	9	47.7	5	18.7	6	20.7	2	2.7	0
Michel Creek	MI5	Mine-influenced	659496	5496774	2019	3	RG_MI5_BIC-3_2019-09-05	75.4	7	35.7	7	35.2	4	4.5	7	5.0	1
Michel Creek	MI5	Mine-influenced	659496	5496774	2020	3	RG_MI5_BIC-3_2020-09-17	86.8	10	46.5	10	14.4	11	25.8	3	1.2	0
Michel Creek	MI5	Mine-influenced	659496	5496774	2021	3	RG MI5 BIC-3 2021-09-16	0.9	9	0.5	7	0.2	9	0.2	2	0.0	0
Michel Creek	MI5	Mine-influenced	659496	5496774	2022	3	RG_MI5_BIC-3_2022-09-12_N	0.9	9	0.5	3	0.1	10	0.2	6	0.0	0

a) UTM coordinates represent the station coordinates. Stations CM-MC2, MIDAG-S1, and MIDAG-S2 were only sampled in 2020 as part of the Nickel Benchmark Study.

b) In 2021, the MI5, replicate 1 sample was inadequately preserved and data were excluded.

^{- =} data not available; % = percent; EPT = Ephemeroptera, Plecoptera, Trichoptera; CMm = Coal Mountain Mine; LAEMP = local aquatic effects monitoring program.

Table K-2: Benthic Invertebrate Community Data at CMm LAEMP Sampling Stations, 2012 to 2021

Table R-2. Delitille	invertebrate C	Community Data at C		(UTMs) ^(a)	stations,	2012 (0 2021		Dintoro Biohnoco	Dovoont	Dovoont	Davaget	Doroont
Watercourse	Station	Reference or Mine-influenced	Easting	Northing	Year	Replicate	Sample	Diptera Richness (# of taxa)	Percent Diptera (%)	Percent Acari (%)	Percent Mollusca (%)	Percent Bivalvia (%)
Michel Creek	MI25	Reference	668184	5482818	2012	1	RG_MI25_BIC-1_2012-09-15	6	5	2	0	0
Michel Creek	MI25	Reference	668184	5482818	2013	1	RG MI25 BIC-1 2013-09-15	6	2	0	0	0
Michel Creek	MI25 MI25	Reference	668184	5482818	2015	1	RG_MI25_BIC-1_2015-09-10	13	16	1	0	0
Michel Creek Michel Creek	MI25	Reference Reference	668184 668184	5482818 5482818	2016 2017	1	RG_MI25_BIC-1_2016-09-13 RG_MI25_BIC-1_2017-09-14	16 13	31 21	0	0	0
Michel Creek	MI25	Reference	668184	5482818	2018	1	RG MI25 BIC-1 2018-09-10	14	13	1	0	0
Michel Creek	MI25	Reference	668184	5482818	2019	1	RG MI25 BIC-1 2019-09-04	8	19	0	0	0
Michel Creek	MI25	Reference	668184	5482818	2020	1	RG_MI25_BIC-1_2020-09-11	9	8	1	0	0
Michel Creek	MI25	Reference	668184	5482818	2021	1	RG_MI25_BIC-1_2021-09-13	13	0	0	0	0
Michel Creek Michel Creek	MI25 MI25	Reference Reference	668184 668184	5482818 5482818	2022 2013	2	RG_MI25_BIC-1_2022-09-15_N RG_MI25_BIC-2_2013-09-15	5 3	<u> </u>	0	0	0
Michel Creek	MI25	Reference	668184	5482818	2015	2	RG MI25 BIC-2 2015-09-10	11	19	0	0	0
Michel Creek	MI25	Reference	668184	5482818	2018	2	RG_MI25_BIC-2_2018-09-10	13	33	1	0	0
Michel Creek	MI25	Reference	668184	5482818	2019	2	RG_MI25_BIC-2_2019-09-04	15	34	3	0	0
Michel Creek	MI25	Reference	668184	5482818	2020	2	RG_MI25_BIC-2_2020-09-11	10	13	0	0	0
Michel Creek	MI25	Reference	668184	5482818	2021	2	RG_MI25_BIC-2_2021-09-13	9	0	0	0	0
Michel Creek Michel Creek	MI25 MI25	Reference Reference	668184 668184	5482818 5482818	2022 2013	3	RG MI25 BIC-2 2022-09-15 N RG MI25 BIC-3 2013-09-15	3 6	2	0	0	0
Michel Creek	MI25	Reference	668184	5482818	2015	3	RG MI25 BIC-3 2015-09-10	11	31	0	0	0
Michel Creek	MI25	Reference	668184	5482818	2018	3	RG_MI25_BIC-3_2018-09-10	18	11	1	0	0
Michel Creek	MI25	Reference	668184	5482818	2019	3	RG_MI25_BIC-3_2019-09-04	14	14	0	0	0
Michel Creek	MI25	Reference	668184	5482818	2020	3	RG MI25 BIC-3 2020-09-11	13	12	0	0	0
Michel Creek Michel Creek	MI25 MI25	Reference Reference	668184 668184	5482818 5482818	2021 2022	3	RG_MI25_BIC-3_2021-09-13 RG_MI25_BIC-3_2022-09-15_N	7 9	0	0	0	0
Andy Good Creek	AGCK	Reference	667557	5482818	2022	1	AGCK BIC-1 2012-09-16	6	11	0	0	0
Andy Good Creek	AGCK	Reference	667557	5488648	2013	1	AGCK_BIC-1_2012-09-10	2	2	0	0	0
Andy Good Creek	AGCK	Reference	667557	5488648	2015	1	AGCK BIC-1 2015-09-12	6	3	0	0	0
Andy Good Creek	AGCK	Reference	667557	5488648	2018	1	AGCK_BIC-1_2018-09-08	8	4	0	0	0
Andy Good Creek	AGCK	Reference	667557	5488648	2019	1	AGCK_BIC-1_2019-09-06	10	7	0	0	0
Andy Good Creek	AGCK	Reference	667557	5488648	2020	1	AGCK_BIC-1_2020-09-10	7	13	1	0	0
Andy Good Creek	AGCK AGCK	Reference	667557 667557	5488648 5488648	2021 2022	1	RG_AGCK_BIC-1_2021-09-11 RG_AGCK_BIC-1_2022-09-15_N	11 9	0	0	0	0
Andy Good Creek Andy Good Creek	AGCK	Reference Reference	667557	5488648	2022	2	AGCK BIC-1 2022-09-15 N	14	11	0	0	0
Andy Good Creek	AGCK	Reference	667557	5488648	2019	2	AGCK BIC-2 2019-09-06	11	10	0	0	0
Andy Good Creek	AGCK	Reference	667557	5488648	2020	2	AGCK_BIC-2_2020-09-10	9	13	0	0	0
Andy Good Creek	AGCK	Reference	667557	5488648	2021	2	RG_AGCK_BIC-2_2021-09-11	4	0	0	0	0
Andy Good Creek	AGCK	Reference	667557	5488648	2022	2	RG_AGCK_BIC-2_2022-09-15_N	11	0	0	0	0
Andy Good Creek Andy Good Creek	AGCK AGCK	Reference Reference	667557	5488648 5488648	2018 2019	3	AGCK_BIC-3_2018-09-08 AGCK_BIC-3_2019-09-06	10	14	0	0	0
Andy Good Creek	AGCK	Reference	667557 667557	5488648	2019	3	AGCK_BIC-3_2019-09-00 AGCK_BIC-3_2020-09-10	8 7	11 16	0	0	0
Andy Good Creek	AGCK	Reference	667557	5488648	2021	3	RG AGCK BIC-3 2021-09-11	7	0	0	0	0
Andy Good Creek	AGCK	Reference	667557	5488648	2022	3	RG_AGCK_BIC-3_2022-09-15_N	5	0	0	0	0
Leach Creek	LE1	Reference	659635	5494108	2018	1	LE1_BIC-1_2018-09-13	16	19	1	0	0
Leach Creek	LE1	Reference	659635	5494108	2019	1	LE1_BIC-1_2019-09-05	10	21	3	0	0
Leach Creek	LE1	Reference	659635	5494108	2020 2021	1	LE1_BIC-1_2020-09-17	11	9	3	0	0
Leach Creek Leach Creek	LE1 LE1	Reference Reference	659635 659635	5494108 5494108	2021	1	RG_LE1_BIC-1_2021-09-14 RG_LE1_BIC-1_2022-09-16_N	12 5	0	0	0	0
Leach Creek	LE1	Reference	659635	5494108	2019	2	LE1 BIC-2 2019-09-05	10	16	1	0	0
Leach Creek	LE1	Reference	659635	5494108	2020	2	LE1_BIC-2_2020-09-17	10	12	3	0	0
Leach Creek	LE1	Reference	659635	5494108	2021	2	RG_LE1_BIC-2_2021-09-14	12	0	0	0	0
Leach Creek	LE1	Reference	659635	5494108	2022	2	RG_LE1_BIC-2_2022-09-16_N	7	0	0	0	0
Leach Creek	LE1 LE1	Reference	659635	5494108	2019	3	LE1_BIC-3_2019-09-05	12	19	1	0	0
Leach Creek Leach Creek	LE1	Reference Reference	659635 659635	5494108 5494108	2020 2021	3	LE1_BIC-3_2020-09-17 RG LE1 BIC-3 2021-09-14	5 13	15 0	0	0	0
Leach Creek	LE1	Reference	659635	5494108	2022	3	RG_LE1_BIC-3_2022-09-16_N	6	0	0	0	0
Michel Creek	MIUCO	Mine-influenced	668135	5486767	2012	1	RG_MIUCO_BIC-1_2012-09-15	5	6	2	0	0
Michel Creek	MIUCO	Mine-influenced	668135	5486767	2015	1	RG MIUCO BIC-1 2015-09-10	12	23	1	0	0
Michel Creek	MIUCO	Mine-influenced	668135	5486767	2016	1	RG_MIUCO_BIC-1_2016-09-13	7	13	1	0	0
Michel Creek	MIUCO	Mine-influenced Mine-influenced	668135	5486767	2017	1	RG_MIUCO_BIC-1_2017-09-14 RG_MIUCO_BIC-1_2018-09-10	7	12 21	<u>3</u> 5	0	0
Michel Creek Michel Creek	MIUCO	Mine-influenced	668135 668135	5486767 5486767	2018 2019	1	RG MIUCO BIC-1 2019-09-10	9	37	3	0	0
Michel Creek	MIUCO	Mine-influenced	668135	5486767	2020	1	RG MIUCO BIC-1 2020-09-12	10	29	3	0	0
Michel Creek	MIUCO	Mine-influenced	668135	5486767	2021	1	RG_MIUCO_BIC-1_2021-09-12	12	0	0	0	0
Michel Creek	MIUCO	Mine-influenced	668135	5486767	2022	1	RG_MIUCO_BIC-1_2022-09-14_N	6	0	0	0	0
Michel Creek	MIUCO	Mine-influenced	668135	5486767	2018	2	RG_MIUCO_BIC-2_2018-09-10	8	19	2	0	0
Michel Creek	MIUCO	Mine-influenced	668135	5486767	2019	2	RG_MIUCO_BIC-2_2019-09-09	10	27	2	0	0
Michel Creek Michel Creek	MIUCO	Mine-influenced Mine-influenced	668135 668135	5486767 5486767	2020 2021	2	RG_MIUCO_BIC-2_2020-09-12 RG_MIUCO_BIC-2_2021-09-12	9 10	26 0	0	0	0
Michel Creek	MIUCO	Mine-influenced	668135	5486767	2021	2	RG MIUCO BIC-2 2021-09-12	7	0	0	0	0
Michel Creek	MIUCO	Mine-influenced	668135	5486767	2018	3	RG_MIUCO_BIC-3_2018-09-10	7	23	4	0	0
Michel Creek	MIUCO	Mine-influenced	668135	5486767	2019	3	RG_MIUCO_BIC-3_2019-09-09	13	27	6	0	0
Michel Creek	MIUCO	Mine-influenced	668135	5486767	2020	3	RG MIUCO BIC-3 2020-09-12	7	19	3	0	0
		Mine-influenced	668135	5486767	2021	3	RG MIUCO BIC-3 2021-09-12	14	0	0	0	0
Michel Creek	MIUCO											
	MIUCO MIUCO CORCK	Mine-influenced Mine-influenced	668135 668539	5486767 5487366	2022 2012	3	RG_MIUCO_BIC-3_2022-09-14_N RG_CORCK_BIC-1_2012-09-15	9	0 24	0 2	0	0

Table K-2: Benthic Invertebrate Community Data at CMm LAEMP Sampling Stations, 2012 to 2021

Table K-2: Benthic	Invertebrate C	Community Data at C			Stations,	2012 to 2021						
Watercourse	Station	Reference or		(UTMs) ^(a)	Year	Replicate	Sample	Diptera Richness	Percent	Percent	Percent	Percent
Water Scarce	J. G.	Mine-influenced	Easting	Northing	i oai	rtopiloato	Sumple	(# of taxa)	Diptera (%)	Acari (%)	Mollusca (%)	Bivalvia (%)
Corbin Creek	CORCK	Mine-influenced	668539	5487366	2016	1	RG_CORCK_BIC-1_2016-09-13	16	57	4	0	0
Corbin Creek Corbin Creek	CORCK	Mine-influenced Mine-influenced	668539 668539	5487366 5487366	2017 2018	1	RG_CORCK_BIC-1_2017-09-14 RG_CORCK_BIC-1_2018-09-08	15 12	61 49	2 4	0	0
Corbin Creek	CORCK	Mine-influenced	668539	5487366	2019	1	RG CORCK BIC-1 2019-09-07	13	76	2	0	0
Corbin Creek	CORCK	Mine-influenced	668539	5487366	2020	1	RG_CORCK_BIC-1_2020-09-12	11	58	0	0	0
Corbin Creek	CORCK	Mine-influenced	668539	5487366	2021	1	RG_CORCK_BIC-1_2021-09-14	11	1	0	0	0
Corbin Creek	CORCK	Mine-influenced	668539	5487366	2022	1	CORCK_BIC-1_2022-09-14_N	12	63	2	0	0
Corbin Creek Corbin Creek	CORCK	Mine-influenced Mine-influenced	668539 668539	5487366 5487366	2018 2019	2	RG_CORCK_BIC-2_2018-09-08 RG_CORCK_BIC-2_2019-09-07	13 13	75 69	1 4	0	0
Corbin Creek	CORCK	Mine-influenced	668539	5487366	2020	2	RG CORCK BIC-2 2020-09-12	12	77	0	0	0
Corbin Creek	CORCK	Mine-influenced	668539	5487366	2021	2	RG_CORCK_BIC-2_2021-09-14	14	1	0	0	0
Corbin Creek	CORCK	Mine-influenced	668539	5487366	2022	2	CORCK BIC-2 2022-09-14 N	11	60	2	0	0
Corbin Creek	CORCK	Mine-influenced	668539	5487366	2018	3	RG_CORCK_BIC-3_2018-09-08	10	61	3	0	0
Corbin Creek Corbin Creek	CORCK	Mine-influenced Mine-influenced	668539 668539	5487366 5487366	2019 2020	3	RG_CORCK_BIC-3_2019-09-07 RG_CORCK_BIC-3_2020-09-12	12 13	67 70	1	0	0
Corbin Creek	CORCK	Mine-influenced	668539	5487366	2020	3	RG_CORCK_BIC-3_2021-09-12	9	1	0	0	0
Corbin Creek	CORCK	Mine-influenced	668539	5487366	2022	3	CORCK BIC-3 2022-09-14 N	9	63	3	0	0
Michel Creek	MIDCO	Mine-influenced	667616	5487621	2012	1	RG_MIDCO_BIC-1_2012-09-15	6	31	1	0	0
Michel Creek	MIDCO	Mine-influenced	667616	5487621	2015	1	RG_MIDCO_BIC-1_2015-09-11	12	45	0	0	0
Michel Creek	MIDCO	Mine-influenced	667616	5487621	2016	1	RG_MIDCO_BIC-1_2016-09-13	13	40	2	0	0
Michel Creek Michel Creek	MIDCO	Mine-influenced Mine-influenced	667616 667616	5487621 5487621	2017 2018	1	RG_MIDCO_BIC-1_2017-09-14 RG_MIDCO_BIC-1_2018-09-09	13 15	32 54	<u>2</u> 6	0	0
Michel Creek	MIDCO	Mine-influenced	667616	5487621	2019	1	RG MIDCO BIC-1 2018-09-09	17	54	7	0	0
Michel Creek	MIDCO	Mine-influenced	667616	5487621	2020	1	RG_MIDCO_BIC-1_2020-09-13	14	46	9	0	0
Michel Creek	MIDCO	Mine-influenced	667616	5487621	2021	1	RG_MIDCO_BIC-1_2021-09-13	9	0	0	0	0
Michel Creek	MIDCO	Mine-influenced	667616	5487621	2022	1	RG_MIDCO_BIC-1_2022-09-13_N	11	0	0	0	0
Michel Creek	MIDCO	Mine-influenced	667616	5487621	2018	2	RG_MIDCO_BIC-2_2018-09-09	11	64	9	0	0
Michel Creek Michel Creek	MIDCO MIDCO	Mine-influenced Mine-influenced	667616 667616	5487621 5487621	2019 2020	2	RG_MIDCO_BIC-2_2019-09-09 RG_MIDCO_BIC-2_2020-09-13	16 15	24 49	4 10	0	0
Michel Creek	MIDCO	Mine-influenced	667616	5487621	2020	2	RG MIDCO BIC-2 2021-09-13	12	0	0	0	0
Michel Creek	MIDCO	Mine-influenced	667616	5487621	2022	2	RG_MIDCO_BIC-2_2022-09-13_N	11	0	0	0	0
Michel Creek	MIDCO	Mine-influenced	667616	5487621	2018	3	RG MIDCO BIC-3 2018-09-09	12	64	7	0	0
Michel Creek	MIDCO	Mine-influenced	667616	5487621	2019	3	RG_MIDCO_BIC-3_2019-09-09	14	28	4	0	0
Michel Creek	MIDCO	Mine-influenced	667616	5487621	2020	3	RG_MIDCO_BIC-3_2020-09-13	11	54	4	0	0
Michel Creek	MIDCO MIDCO	Mine-influenced	667616	5487621	2021 2022	3	RG_MIDCO_BIC-3_2021-09-12 RG_MIDCO_BIC-3_2022-09-13_N	14	1	0	0	0
Michel Creek Michel Creek	MIDCO	Mine-influenced Mine-influenced	667616 667616	5487621 5487621	2018	4	RG MIDCO BIC-3 2022-09-13 N	10 10	0 56	0 4	0	0
Michel Creek	MIDCO	Mine-influenced	667616	5487621	2019	4	RG MIDCO BIC-4 2019-09-09	14	35	2	0	0
Michel Creek	MIDCO	Mine-influenced	667616	5487621	2020	4	RG_MIDCO_BIC-4_2020-09-13	14	44	4	0	0
Michel Creek	MIDCO	Mine-influenced	667616	5487621	2021	4	RG_MIDCO_BIC-4_2021-09-12	11	0	0	0	0
Michel Creek	MIDCO	Mine-influenced	667616	5487621	2022	4	RG_MIDCO_BIC-4_2022-09-13_N	11	0	0	0	0
Michel Creek Michel Creek	MIDCO	Mine-influenced Mine-influenced	667616 667616	5487621 5487621	2018 2019	<u>5</u> 5	RG_MIDCO_BIC-5_2018-09-09 RG_MIDCO_BIC-5_2019-09-09	11 14	67 37	7 2	0	0
Michel Creek	MIDCO	Mine-influenced	667616	5487621	2020	5	RG MIDCO BIC-5 2020-09-13	14	52	8	0	0
Michel Creek	MIDCO	Mine-influenced	667616	5487621	2021	5	RG MIDCO BIC-5 2021-09-12	11	0	0	0	0
Michel Creek	MIDCO	Mine-influenced	667616	5487621	2022	5	RG_MIDCO_BIC-5_2022-09-13_N	11	0	0	0	0
Michel Creek	CM MC2	Mine-influenced	667249	5488144	2020	1	CM_MC2_BIC-1_2020-09-19	12	57	7	0	0
Michel Creek	CM MC2	Mine-influenced	667249	5488144	2020	2	CM_MC2_BIC-2_2020-09-19	12	47	5	0	0
Michel Creek Michel Creek	CM MC2 MIDAG-S1	Mine-influenced Mine-influenced	667249 666290	5488144 5488507	2020 2020	<u>3</u>	CM_MC2_BIC-3_2020-09-19 RG_MIDAG-S1_BIC-1_2020-09-18	11 12	52 17	9	0	0
Michel Creek	MIDAG-S1	Mine-influenced	666290	5488507	2020	2	RG MIDAG-S1 BIC-2 2020-09-18	13	7	1	0	0
Michel Creek	MIDAG-S1	Mine-influenced	666290	5488507	2020	3	RG MIDAG-S1 BIC-3 2020-09-18	11	25	3	0	0
Michel Creek	MIDAG-S2	Mine-influenced	665770	5488854	2020	1	RG_MIDAG-S2_BIC-1_2020-09-17	14	15	3	0	0
Michel Creek	MIDAG-S2	Mine-influenced	665770	5488854	2020	2	RG_MIDAG-S2_BIC-2_2020-09-17	11	15	3	0	0
Michel Creek	MIDAG-S2	Mine-influenced	665770	5488854	2020	3	RG_MIDAG-S2_BIC-3_2020-09-17	13	19	3	0	0
Michel Creek Michel Creek	MIDAG MIDAG	Mine-influenced Mine-influenced	665220 665220	5489324 5489324	2012 2015	1	RG_MIDAG_BIC-1_2012-09-16 RG_MIDAG_BIC-1_2015-09-12	6 11	10 26	3 0	0	0
Michel Creek	MIDAG	Mine-influenced	665220	5489324	2018	1	RG_MIDAG_BIC-1_2018-09-08	14	25	7	0	0
Michel Creek	MIDAG	Mine-influenced	665220	5489324	2019	11	RG_MIDAG_BIC-1_2019-09-10	14	53	3	0	0
Michel Creek	MIDAG	Mine-influenced	665220	5489324	2020	1	RG_MIDAG_BIC-1_2020-09-15	11	15	3	0	0
Michel Creek	MIDAG	Mine-influenced	665220	5489324	2021	1	RG_MIDAG_BIC-1_2021-09-11	8	0	0	0	0
Michel Creek Michel Creek	MIDAG MIDAG	Mine-influenced Mine-influenced	665220 665220	5489324 5489324	2022 2018	1 2	RG_MIDAG_BIC-1_2022-09-13_N RG_MIDAG_BIC-2_2018-09-08	10 10	0 27	0	0	0
Michel Creek	MIDAG	Mine-influenced	665220	5489324	2019	2	RG MIDAG BIC-2 2019-09-10	17	34	2	0	0
Michel Creek	MIDAG	Mine-influenced	665220	5489324	2020	2	RG MIDAG BIC-2 2020-09-15	13	26	2	0	0
Michel Creek	MIDAG	Mine-influenced	665220	5489324	2021	2	RG_MIDAG_BIC-2_2021-09-11	11	0	0	0	0
Michel Creek	MIDAG	Mine-influenced	665220	5489324	2022	2	RG MIDAG BIC-2 2022-09-13 N	4	0	0	0	0
Michel Creek	MIDAG	Mine-influenced	665220	5489324	2018	3	RG_MIDAG_BIC-3_2018-09-08	9	20	4	0	0
Michel Creek Michel Creek	MIDAG MIDAG	Mine-influenced Mine-influenced	665220 665220	5489324 5489324	2019 2020	3	RG_MIDAG_BIC-3_2019-09-10 RG_MIDAG_BIC-3_2020-09-15	15 14	58 18	2	0	0
Michel Creek	MIDAG	Mine-influenced	665220	5489324	2020	3	RG MIDAG_BIC-3_2020-09-15	8	0	0	0	0
Michel Creek	MIDAG	Mine-influenced	665220	5489324	2022	3	RG MIDAG BIC-3 2022-09-13 N	6	0	0	0	0
Michel Creek	MIULE	Mine-influenced	660503	5493048	2018	1	RG_MIULE_BIC-1_2018-09-11	9	28	8	0	0
Michel Creek	MIULE	Mine-influenced	660503	5493048	2019	1	RG_MIULE_BIC-1_2019-09-06	10	29	6	0	0
Michel Creek	MIULE	Mine-influenced	660503	5493048	2020	1	RG_MIULE_BIC-1_2020-09-16	19	31	6	0	0
Michel Creek	MIULE	Mine-influenced	660503	5493048	2021	1	RG_MIULE_BIC-1_2021-09-14	13	0	0	0	0

Table K-2: Benthic Invertebrate Community Data at CMm LAEMP Sampling Stations, 2012 to 2021

		Reference or	Location	(UTMs) ^(a)				Diptera Richness	Percent	Percent	Percent	Percent
Watercourse	Station	Mine-influenced	Easting	Northing	Year	Replicate	Sample	(# of taxa)	Diptera (%)	Acari (%)	Mollusca (%)	Bivalvia (%)
Michel Creek	MIULE	Mine-influenced	660503	5493048	2022	1	RG_MIULE_BIC-1_2022-09-12_N	9	0	0	0	0
Michel Creek	MIULE	Mine-influenced	660503	5493048	2018	2	RG_MIULE_BIC-2_2018-09-11	13	22	5	0	0
Michel Creek	MIULE	Mine-influenced	660503	5493048	2019	2	RG_MIULE_BIC-2_2019-09-06	15	30	4	0	0
Michel Creek	MIULE	Mine-influenced	660503	5493048	2020	2	RG_MIULE_BIC-2_2020-09-16	10	23	3	0	0
Michel Creek	MIULE	Mine-influenced	660503	5493048	2021	2	RG_MIULE_BIC-2_2021-09-14	12	0	0	0	0
Michel Creek	MIULE	Mine-influenced	660503	5493048	2022	2	RG_MIULE_BIC-2_2022-09-12_N	9	0	0	0	0
Michel Creek	MIULE	Mine-influenced	660503	5493048	2018	3	RG_MIULE_BIC-3_2019-09-06	14	22	3	0	0
Michel Creek	MIULE	Mine-influenced	660503	5493048	2019	3	RG_MIULE_BIC-3_2018-09-11	12	21	4	0	0
Michel Creek	MIULE	Mine-influenced	660503	5493048	2020	3	RG_MIULE_BIC-3_2020-09-16	10	29	4	0	0
Michel Creek	MIULE	Mine-influenced	660503	5493048	2021	3	RG_MIULE_BIC-3_2021-09-14	8	0	0	0	0
Michel Creek	MIULE	Mine-influenced	660503	5493048	2022	3	RG MIULE BIC-3 2022-09-12 N	12	0	0	0	0
Michel Creek	MI5	Mine-influenced	659496	5496774	2012	1	RG MI5 BIC-1 2012-09-16	8	22	3	0	0
Michel Creek	MI5	Mine-influenced	659496	5496774	2015	1	RG_MI5_BIC-1_2015-09-13	6	10	0	0	0
Michel Creek	MI5	Mine-influenced	659496	5496774	2018	1	RG_MI5_BIC-1_2018-09-11	11	20	1	0	0
Michel Creek	MI5	Mine-influenced	659496	5496774	2019	1	RG_MI5_BIC-1_2019-09-05	12	15	2	0	0
Michel Creek	MI5	Mine-influenced	659496	5496774	2020	1	RG_MI5_BIC-1_2020-09-17	11	24	5	0	0
Michel Creek	MI5	Mine-influenced	659496	5496774	2021	1	RG_MI5_BIC-1_2021-09-16 ^(D)	-	-	-	-	-
Michel Creek	MI5	Mine-influenced	659496	5496774	2022	1	RG_MI5_BIC-1_2022-09-12_N	7	0	0	0	0
Michel Creek	MI5	Mine-influenced	659496	5496774	2018	2	RG_MI5_BIC-2_2018-09-11	10	25	3	0	0
Michel Creek	MI5	Mine-influenced	659496	5496774	2019	2	RG_MI5_BIC-2_2019-09-05	12	17	3	0	0
Michel Creek	MI5	Mine-influenced	659496	5496774	2020	2	RG_MI5_BIC-2_2020-09-17	9	21	3	0	0
Michel Creek	MI5	Mine-influenced	659496	5496774	2021	2	RG_MI5_BIC-2_2021-09-16	12	0	0	0	0
Michel Creek	MI5	Mine-influenced	659496	5496774	2022	2	RG_MI5_BIC-2_2022-09-12_N	8	0	0	0	0
Michel Creek	MI5	Mine-influenced	659496	5496774	2018	3	RG_MI5_BIC-3_2018-09-11	6	9	2	0	0
Michel Creek	MI5	Mine-influenced	659496	5496774	2019	3	RG_MI5_BIC-3_2019-09-05	11	20	3	0	0
Michel Creek	MI5	Mine-influenced	659496	5496774	2020	3	RG_MI5_BIC-3_2020-09-17	9	8	2	0	0
Michel Creek	MI5	Mine-influenced	659496	5496774	2021	3	RG MI5 BIC-3 2021-09-16	7	0	0	0	0
Michel Creek	MI5	Mine-influenced	659496	5496774	2022	3	RG MI5 BIC-3 2022-09-12 N	10	0	0	0	0

a) UTM coordinates represent the station coordinates. Stations CM-MC2, MIDAG-S1, and MIDAG-S2 were only sampled in 2020 as part of the Nickel Benchmark Study.

b) In 2021, the MI5, replicate 1 sample was inadequately preserved and data were excluded.

^{- =} data not available; % = percent; EPT = Ephemeroptera, Plecoptera, Trichoptera; CMm = Coal Mountain Mine; LAEMP = local aquatic effects monitoring program.

Table K-3: Site-specific Norm	al Ranges at CMm	LAEMP San	npling Station	Reference or		
Variable	Station	Year	Replicate	Mine-influenced	Lower Bound	Upper Bound
Richness	RG_MI25	2012	1	Reference	27	42
Richness	RG_MI25	2013	1	Reference	28	43
Richness	RG_MI25	2013	2	Reference	28	43
Richness	RG_MI25	2013	3	Reference	28	43
Richness Richness	RG_MI25 RG MI25	2015 2015	2	Reference Reference	28 28	42 42
Richness	RG_MI25	2015	3	Reference	28	42
Richness	RG MI25	2016	1	Reference	28	42
Richness	RG_MI25	2017	1	Reference	29	44
Richness	RG_MI25	2018	1	Reference	29	44
Richness	RG_MI25	2018	2	Reference	29	44
Richness	RG_MI25	2018	3	Reference	29	43
Richness Richness	RG_MI25 RG_MI25	2019 2019	2	Reference Reference	29 29	44
Richness	RG_MI25	2019	3	Reference	28	43
Richness	RG MI25	2020	1 1	Reference	28	43
Richness	RG MI25	2020	2	Reference	27	41
Richness	RG_MI25	2020	3	Reference	27	42
Richness	RG_MI25	2021	1	Reference	29	43
Richness	RG_MI25	2021	2	Reference	29	44
Richness	RG_MI25	2021	3	Reference	28	42
Richness	RG_MI25	2022	1	Reference	29	43
Richness	RG_MI25	2022	2	Reference	29	43 44
Richness Richness	RG_MI25 RG_AGCK	2022	3	Reference Reference	30 21	36
Richness	RG_AGCK	2012	1 1	Reference	22	36
Richness	RG_AGCK	2015	1	Reference	22	36
Richness	RG_AGCK	2018	1	Reference	22	37
Richness	RG_AGCK	2018	2	Reference	22	36
Richness	RG_AGCK	2018	3	Reference	23	37
Richness	RG_AGCK	2019	1	Reference	22	36
Richness	RG_AGCK RG_AGCK	2019 2019	3	Reference Reference	21 22	35 36
Richness Richness	RG_AGCK	2019	1	Reference	20	34
Richness	RG_AGCK	2020	2	Reference	23	37
Richness	RG AGCK	2020	3	Reference	21	36
Richness	RG AGCK	2021	1	Reference	21	35
Richness	RG_AGCK	2021	2	Reference	23	37
Richness	RG_AGCK	2021	3	Reference	23	37
Richness	RG_AGCK	2022	1	Reference	23	37
Richness Richness	RG_AGCK RG_AGCK	2022 2022	3	Reference	23 23	37 37
Richness	RG_AGCK RG_LE1	2018	1	Reference Reference	31	45
Richness	RG LE1	2019	1 1	Reference	30	44
Richness	RG LE1	2019	2	Reference	28	43
Richness	RG_LE1	2019	3	Reference	29	43
Richness	RG_LE1	2020	1	Reference	29	43
Richness	RG_LE1	2020	2	Reference	29	44
Richness	RG_LE1	2020	3	Reference	30	44
Richness	RG_LE1 RG_LE1	2021 2021	2	Reference	30 29	45 43
Richness Richness	RG_LE1	2021	3	Reference Reference	30	43
Richness	RG LE1	2021	1 1	Reference	31	46
Richness	RG LE1	2022	2	Reference	31	45
Richness	RG_LE1	2022	3	Reference	28	43
Richness	RG_MIUCO	2012	1	Mine-influenced	27	41
Richness	RG_MIUCO	2015	1 1	Mine-influenced	26	41
Richness	RG_MIUCO	2016	1 1	Mine-influenced	27 26	42 40
Richness	RG_MIUCO	2017	1 1	Mine-influenced	26	
Richness Richness	RG_MIUCO RG MIUCO	2018 2018	2	Mine-influenced Mine-influenced	27	41
Richness	RG_MIUCO	2018	3	Mine-influenced	27	42
Richness	RG MIUCO	2019	1 1	Mine-influenced	25	40
Richness	RG_MIUCO	2019	2	Mine-influenced	25	40
Richness	RG_MIUCO	2019	3	Mine-influenced	25	40
Richness	RG_MIUCO	2020	1	Mine-influenced	26	41
Richness	RG_MIUCO	2020	2	Mine-influenced	26	41
Richness	RG_MIUCO RG MIUCO	2020 2021	3	Mine-influenced	25 27	40
Richness Richness	RG_MIUCO	2021	2	Mine-influenced Mine-influenced	27	41 42
Richness	RG_MIUCO	2021	3	Mine-influenced	27	41
Richness	RG_MIUCO	2022	1	Mine-influenced	27	42
Richness	RG_MIUCO	2022	2	Mine-influenced	27	41
Richness	RG_MIUCO	2022	3	Mine-influenced	27	41
Richness	RG_CORCK	2012	1	Mine-influenced	26	40
Richness	RG_CORCK	2015	1	Mine-influenced	26	40
Richness	RG_CORCK	2016	1 1	Mine-influenced	26	40
Richness	RG_CORCK	2017	1 1	Mine-influenced	25	39
Richness	RG_CORCK RG CORCK	2018 2018	1 2	Mine-influenced Mine-influenced	23 25	37 39
Richness Richness	RG_CORCK	2018	3	Mine-influenced Mine-influenced	25	39
Richness	RG CORCK	2019	1	Mine-influenced	25	39
Richness	RG CORCK	2019	2	Mine-influenced	24	39
Richness	RG_CORCK	2019	3	Mine-influenced	24	38

Table K-3: Site-specific	Normal Ranges at CMm	LAEMP San	npling Station	ns, 2012 to 2022 Reference or		
Variable	Station	Year	Replicate	Mine-influenced	Lower Bound	Upper Bound
Richness	RG CORCK	2020	2	Mine-influenced	23	37
Richness	RG CORCK	2020	3	Mine-influenced	21	36
Richness	RG CORCK	2021	1 1	Mine-influenced	23	37
Richness	RG CORCK	2021	2	Mine-influenced	22	37
Richness	RG CORCK	2021	3	Mine-influenced	21	36
Richness	RG_CORCK	2022	1	Mine-influenced	25	39
Richness	RG_CORCK	2022	2	Mine-influenced	23	37
Richness	RG_CORCK	2022	3	Mine-influenced	23	37
Richness	RG_MIDCO	2012	1	Mine-influenced	26	40
Richness	RG_MIDCO	2015	1	Mine-influenced	26	40
Richness	RG_MIDCO	2016	1	Mine-influenced	26	41
Richness	RG_MIDCO	2017	1	Mine-influenced	25	40
Richness	RG_MIDCO	2018	1	Mine-influenced	26	40
Richness	RG_MIDCO	2018	2	Mine-influenced	25	40
Richness	RG_MIDCO	2018	3	Mine-influenced	23	38
Richness	RG_MIDCO	2018	4	Mine-influenced	25	40
Richness	RG_MIDCO	2018	5	Mine-influenced	27	41
Richness	RG_MIDCO	2019	1	Mine-influenced	26	41
Richness	RG_MIDCO	2019	2	Mine-influenced	24	39
Richness	RG_MIDCO	2019	3	Mine-influenced	25	39
Richness	RG_MIDCO	2019	4	Mine-influenced	25	39
Richness	RG_MIDCO	2019 2020	5	Mine-influenced	26 26	40
Richness	RG_MIDCO		•	Mine-influenced		40 40
Richness	RG_MIDCO RG MIDCO	2020 2020	3	Mine-influenced Mine-influenced	26 24	39
Richness Richness	RG_MIDCO	2020	4	Mine-influenced	24	40
Richness	RG_MIDCO	2020	5	Mine-influenced	26	40
Richness	RG_MIDCO	2020	1	Mine-influenced	26	40
Richness	RG_MIDCO	2021	2	Mine-influenced	26	40
	RG_MIDCO	2021			26	41
Richness Richness	RG_MIDCO	2021	3 4	Mine-influenced Mine-influenced	25	41
Richness	RG_MIDCO	2021	5	Mine-influenced	26	41
Richness	RG MIDCO	2021	1	Mine-influenced	27	41
Richness	RG MIDCO	2022	2	Mine-influenced	26	40
Richness	RG MIDCO	2022	3	Mine-influenced	27	41
Richness	RG MIDCO	2022	4	Mine-influenced	25	40
Richness	RG MIDCO	2022	5	Mine-influenced	27	41
Richness	RG MIDAG	2012	1	Mine-influenced	24	39
Richness	RG MIDAG	2015	1 1	Mine-influenced	25	39
Richness	RG MIDAG	2018	1	Mine-influenced	25	39
Richness	RG MIDAG	2018	2	Mine-influenced	25	39
Richness	RG MIDAG	2018	3	Mine-influenced	25	39
Richness	RG MIDAG	2019	1	Mine-influenced	23	37
Richness	RG MIDAG	2019	2	Mine-influenced	24	39
Richness	RG_MIDAG	2019	3	Mine-influenced	24	39
Richness	RG MIDAG	2020	1	Mine-influenced	22	37
Richness	RG_MIDAG	2020	2	Mine-influenced	25	39
Richness	RG_MIDAG	2020	3	Mine-influenced	24	38
Richness	RG_MIDAG	2021	1	Mine-influenced	25	40
Richness	RG_MIDAG	2021	2	Mine-influenced	25	40
Richness	RG_MIDAG	2021	3	Mine-influenced	26	40
Richness	RG_MIDAG	2022	1	Mine-influenced	25	40
Richness	RG_MIDAG	2022	2	Mine-influenced	26	40
Richness	RG_MIDAG	2022	3	Mine-influenced	26	40
Richness	RG_MIULE	2018	1	Mine-influenced	25	39
Richness	RG_MIULE	2018	2	Mine-influenced	26	41
Richness	RG_MIULE	2018	3	Mine-influenced	26	40
Richness	RG_MIULE	2019	1	Mine-influenced	24	39
Richness	RG_MIULE	2019	2	Mine-influenced	25	40
Richness	RG_MIULE	2019	3	Mine-influenced	25	40
Richness	RG_MIULE	2020	1	Mine-influenced	23	38
Richness	RG_MIULE	2020	2	Mine-influenced	23	38
Richness	RG_MIULE	2020 2021	3	Mine-influenced	25 24	39
Richness	RG_MIULE			Mine-influenced Mine influenced	24 25	39
Richness	RG_MIULE RG MIULE	2021 2021	3	Mine-influenced Mine-influenced	25	39 40
Richness Richness	RG_MIULE RG MIULE	2021	1	Mine-influenced	25	40
Richness Richness	RG_MIULE RG_MIULE	2022	2	Mine-influenced	26	41
Richness	RG_MIULE	2022	3	Mine-influenced	25	41
Richness	RG_MI5	2012	1	Mine-influenced	27	41
Richness	RG_MI5	2012	1	Mine-influenced	26	40
Richness	RG MI5	2018	1	Mine-influenced	28	43
Richness	RG_MI5	2018	2	Mine-influenced	28	42
Richness	RG MI5	2018	3	Mine-influenced	27	41
Richness	RG MI5	2019	1	Mine-influenced	27	41
Richness	RG MI5	2019	2	Mine-influenced	27	41
Richness	RG MI5	2019	3	Mine-influenced	26	40
Richness	RG MI5	2020	1	Mine-influenced	28	42
Richness	RG MI5	2020	2	Mine-influenced	28	42
Richness	RG MI5	2020	3	Mine-influenced	27	41
Richness	RG MI5	2021	1	Mine-influenced	27	42
Richness	RG MI5	2021	2	Mine-influenced	28	42
	_	2021			27	41
Richness	IKG MIS	2071	J 3 I	Mine-influenced	21	41
Richness Richness	RG_MI5 RG MI5	2021	3	Mine-influenced Mine-influenced	29	43

Table K-3: Site-specific Norm	nal Ranges at CMM	LAEMP San	npling Station			
Variable	Station	Year	Replicate	Reference or Mine-influenced	Lower Bound	Upper Bound
Richness	RG MI5	2022	3	Mine-influenced	27	41
Abundance	RG MI25	2012	1 1	Reference	8,776	74,299
Abundance	RG MI25	2013	1	Reference	7,606	65,581
Abundance	RG MI25	2013	2	Reference	7,540	64,657
Abundance	RG MI25	2013	3	Reference	7,677	63,072
Abundance	RG_MI25	2015	1	Reference	7,668	64,415
Abundance	RG_MI25	2015	2	Reference	7,422	65,430
Abundance	RG_MI25	2015	3	Reference	7,492	66,327
Abundance	RG_MI25	2016	1	Reference	7,359	68,096
Abundance	RG_MI25	2017	1	Reference	7,650	64,546
Abundance	RG_MI25	2018	1 1	Reference	7,093	63,579
Abundance	RG_MI25	2018	2	Reference	4,300	62,951
Abundance	RG_MI25 RG_MI25	2018 2019	3	Reference Reference	7,180 8,319	62,952 69,551
Abundance Abundance	RG MI25	2019	2	Reference	7,440	64,504
Abundance	RG MI25	2019	3	Reference	7,301	63,364
Abundance	RG MI25	2020	1	Reference	7,608	65,466
Abundance	RG MI25	2020	2	Reference	7,012	63,731
Abundance	RG MI25	2020	3	Reference	7,586	65,041
Abundance	RG MI25	2021	1	Reference	8,062	67,189
Abundance	RG_MI25	2021	2	Reference	7,508	66,411
Abundance	RG_MI25	2021	3	Reference	8,130	67,706
Abundance	RG_MI25	2022	1	Reference	8,198	67,703
Abundance	RG_MI25	2022	2	Reference	7,863	65,812
Abundance	RG_MI25	2022	3	Reference	7,348	63,731
Abundance	RG_AGCK	2012	1	Reference	2,767	13,955
Abundance	RG_AGCK	2013	1	Reference	2,524	12,378
Abundance	RG_AGCK	2015	1	Reference	2,429	12,179
Abundance	RG_AGCK	2018	1	Reference	2,531	13,531
Abundance	RG_AGCK	2018	2	Reference	2,495	13,264
Abundance Abundance	RG_AGCK RG_AGCK	2018 2019	3	Reference	2,452 2,605	12,882 12,865
Abundance	RG_AGCK	2019	2	Reference Reference	2,444	12,005
Abundance	RG AGCK	2019	3	Reference	2,528	12,720
Abundance	RG AGCK	2020	1	Reference	2,254	11,344
Abundance	RG AGCK	2020	2	Reference	2,550	12,458
Abundance	RG AGCK	2020	3	Reference	2,463	12,214
Abundance	RG_AGCK	2021	1	Reference	2,527	12,423
Abundance	RG_AGCK	2021	2	Reference	2,517	12,586
Abundance	RG_AGCK	2021	3	Reference	2,455	12,145
Abundance	RG_AGCK	2022	1	Reference	2,314	11,320
Abundance	RG_AGCK	2022	2	Reference	2,493	12,124
Abundance	RG_AGCK	2022	3	Reference	2,531	12,099
Abundance	RG_LE1	2018	1	Reference	2,245	11,668
Abundance	RG_LE1	2019	1	Reference	2,192	11,926
Abundance	RG_LE1	2019 2019	3	Reference Reference	2,159 2,132	11,997 11,805
Abundance Abundance	RG_LE1	2019	1	Reference	2,132	12,398
Abundance	RG LE1	2020	2	Reference	2,279	11,897
Abundance	RG LE1	2020	3	Reference	2,209	11,431
Abundance	RG LE1	2021	1	Reference	2,193	11,599
Abundance	RG_LE1	2021	2	Reference	2,293	12,143
Abundance	RG_LE1	2021	3	Reference	2,198	11,406
Abundance	RG_LE1	2022	1	Reference	2,250	12,270
Abundance	RG_LE1	2022	2	Reference	2,235	11,657
Abundance	RG_LE1	2022	3	Reference	2,103	11,581
Abundance	RG_MIUCO	2012	1	Mine-influenced	6,073	52,853
Abundance	RG_MIUCO RG MIUCO	2015 2016	1 1	Mine-influenced	5,342 5,551	46,857 45,637
Abundance Abundance	RG_MIUCO	2016	1	Mine-influenced Mine-influenced	5,512	46,339
Abundance	RG_MIUCO	2017	1 1	Mine-influenced	5,001	47,359
Abundance	RG_MIUCO	2018	2	Mine-influenced	5,316	47,690
Abundance	RG MIUCO	2018	3	Mine-influenced	5,135	49,110
Abundance	RG_MIUCO	2019	1	Mine-influenced	5,077	48,689
Abundance	RG_MIUCO	2019	2	Mine-influenced	5,222	48,037
Abundance	RG_MIUCO	2019	3	Mine-influenced	5,198	46,506
Abundance	RG_MIUCO	2020	1	Mine-influenced	4,899	44,161
Abundance	RG_MIUCO	2020	2	Mine-influenced	5,545	47,853
Abundance	RG_MIUCO	2020	3	Mine-influenced	5,024	43,578
Abundance	RG_MIUCO	2021	1	Mine-influenced	5,458	45,994
Abundance Abundance	RG_MIUCO RG MIUCO	2021	2	Mine-influenced Mine-influenced	5,587 5,450	47,898 46,807
Abundance Abundance	RG_MIUCO	2021	3	Mine-influenced Mine-influenced	5,459 5,487	46,807
Abundance	RG_MIUCO	2022	2	Mine-influenced	5,324	47,698
Abundance	RG MIUCO	2022	3	Mine-influenced	5,624	47,506
Abundance	RG CORCK	2012	1	Mine-influenced	3,833	18,760
Abundance	RG CORCK	2015	1	Mine-influenced	3,561	18,382
Abundance	RG_CORCK	2016	1	Mine-influenced	3,781	18,801
Abundance	RG_CORCK	2017	1	Mine-influenced	3,754	18,034
Abundance	RG_CORCK	2018	1	Mine-influenced	3,632	19,206
Abundance	RG_CORCK	2018	2	Mine-influenced	3,643	17,972
Abundance	RG_CORCK	2018	3	Mine-influenced	3,509	18,908
Abundance	RG_CORCK	2019	1	Mine-influenced	3,582	17,849
Abundance	RG_CORCK	2019	2	Mine-influenced	3,729	19,344
Abundance	RG_CORCK	2019	3	Mine-influenced	3,426	18,341

Table K-3: Site-specific Nor	mal Ranges at CMm	LAEMP San	npling Statio	ns, 2012 to 2022 Reference or		
Variable	Station	Year	Replicate	Mine-influenced	Lower Bound	Upper Bound
Abundance	RG_CORCK	2020	1	Mine-influenced	3,711	18,632
Abundance	RG_CORCK	2020	2	Mine-influenced	3,684	18,284
Abundance	RG_CORCK	2020	3	Mine-influenced	3,483	22,058
Abundance	RG_CORCK	2021	1	Mine-influenced	3,913	19,613
Abundance	RG_CORCK	2021	2	Mine-influenced	3,716	21,875
Abundance	RG_CORCK	2021	3	Mine-influenced	3,682	21,558
Abundance Abundance	RG_CORCK RG CORCK	2022 2022	2	Mine-influenced Mine-influenced	3,674 3,148	18,429 22,366
Abundance	RG CORCK	2022	3	Mine-influenced	3,613	24,289
Abundance	RG MIDCO	2012	1	Mine-influenced	3,584	21,499
Abundance	RG MIDCO	2015	1 1	Mine-influenced	3,521	20,830
Abundance	RG MIDCO	2016	1	Mine-influenced	3,484	20,965
Abundance	RG MIDCO	2017	1	Mine-influenced	3,543	20,879
Abundance	RG MIDCO	2018	1	Mine-influenced	3,227	20,066
Abundance	RG_MIDCO	2018	2	Mine-influenced	3,531	21,196
Abundance	RG_MIDCO	2018	3	Mine-influenced	3,454	21,283
Abundance	RG_MIDCO	2018	4	Mine-influenced	3,638	21,770
Abundance	RG_MIDCO	2018	5	Mine-influenced	3,441	21,225
Abundance	RG_MIDCO	2019	1	Mine-influenced	3,355	20,749
Abundance	RG_MIDCO	2019	2	Mine-influenced	3,489	20,717
Abundance	RG_MIDCO	2019	3	Mine-influenced	3,541	20,432
Abundance	RG_MIDCO	2019	4	Mine-influenced	3,713	21,941
Abundance Abundance	RG_MIDCO RG MIDCO	2019 2020	5	Mine-influenced Mine-influenced	3,643 3,351	21,091 19,948
	RG_MIDCO	2020	2	Mine-influenced	·	20,598
Abundance Abundance	RG_MIDCO	2020	3	Mine-influenced	3,474 3,093	19,614
Abundance Abundance	RG_MIDCO	2020	4	Mine-influenced	3,093	21,190
Abundance Abundance	RG_MIDCO	2020	5	Mine-influenced	3,280	20,613
Abundance	RG_MIDCO	2020	1	Mine-influenced	3,547	21,264
Abundance	RG MIDCO	2021	2	Mine-influenced	3,580	21,461
Abundance	RG MIDCO	2021	3	Mine-influenced	3,301	20,247
Abundance	RG_MIDCO	2021	4	Mine-influenced	3,495	21,187
Abundance	RG_MIDCO	2021	5	Mine-influenced	3,618	21,623
Abundance	RG_MIDCO	2022	1	Mine-influenced	3,792	22,147
Abundance	RG_MIDCO	2022	2	Mine-influenced	3,448	20,925
Abundance	RG_MIDCO	2022	3	Mine-influenced	3,512	20,617
Abundance	RG_MIDCO	2022	4	Mine-influenced	3,324	20,751
Abundance	RG_MIDCO	2022	5	Mine-influenced	3,199	19,923
Abundance	RG_MIDAG	2012	1	Mine-influenced	2,707	16,246
Abundance	RG_MIDAG	2015	1 1	Mine-influenced	2,444	14,899
Abundance Abundance	RG_MIDAG RG MIDAG	2018 2018	2	Mine-influenced Mine-influenced	2,429 2,363	15,651 14,535
Abundance	RG_MIDAG	2018	3	Mine-influenced	2,374	14,645
Abundance	RG MIDAG	2019	1 1	Mine-influenced	2,494	15,335
Abundance	RG MIDAG	2019	2	Mine-influenced	2,396	15,697
Abundance	RG MIDAG	2019	3	Mine-influenced	2,722	15,685
Abundance	RG_MIDAG	2020	1	Mine-influenced	2,089	14,575
Abundance	RG_MIDAG	2020	2	Mine-influenced	2,520	15,613
Abundance	RG_MIDAG	2020	3	Mine-influenced	2,445	15,383
Abundance	RG_MIDAG	2021	1	Mine-influenced	2,349	15,070
Abundance	RG_MIDAG	2021	2	Mine-influenced	2,258	15,110
Abundance	RG_MIDAG	2021	3	Mine-influenced	2,432	15,710
Abundance Abundance	RG_MIDAG RG MIDAG	2022 2022	2	Mine-influenced Mine-influenced	2,288 2,419	14,763 15,143
Abundance	RG_MIDAG	2022	3	Mine-influenced	2,303	14,928
Abundance	RG MIULE	2018	1 1	Mine-influenced	787	6,878
Abundance	RG MIULE	2018	2	Mine-influenced	824	7,224
Abundance	RG MIULE	2018	3	Mine-influenced	820	6,990
Abundance	RG_MIULE	2019	1	Mine-influenced	840	7,057
Abundance	RG_MIULE	2019	2	Mine-influenced	830	7,037
Abundance	RG_MIULE	2019	3	Mine-influenced	913	7,667
Abundance	RG_MIULE	2020	1	Mine-influenced	857	6,645
Abundance	RG_MIULE	2020	2	Mine-influenced	848	6,513
Abundance	RG_MIULE	2020	3	Mine-influenced	872	6,782
Abundance	RG_MIULE	2021	1	Mine-influenced	913	7,074
Abundance	RG_MIULE	2021	2	Mine-influenced	860	6,606
Abundance Abundance	RG_MIULE RG_MIULE	2021 2022	3	Mine-influenced Mine-influenced	841 855	6,581 6,631
Abundance Abundance	RG_MIULE	2022	2	Mine-influenced	824	6,519
Abundance	RG_MIULE	2022	3	Mine-influenced	828	6,496
Abundance	RG MI5	2012	1	Mine-influenced	2,096	11,506
Abundance	RG MI5	2015	1	Mine-influenced	1,982	10,830
Abundance	RG_MI5	2018	1	Mine-influenced	1,795	10,317
Abundance	RG_MI5	2018	2	Mine-influenced	1,894	10,471
Abundance	RG_MI5	2018	3	Mine-influenced	2,025	10,871
Abundance	RG_MI5	2019	1	Mine-influenced	1,884	10,161
Abundance	RG_MI5	2019	2	Mine-influenced	2,186	11,955
Abundance	RG_MI5	2019	3	Mine-influenced	2,000	10,589
Abundance	RG_MI5	2020	1	Mine-influenced	1,744	10,439
Abundance	RG_MI5	2020	2	Mine-influenced	2,043	11,666
	RG_MI5	2020	3	Mine-influenced	1,704	10,286
Abundance	DC MIC	0004	4	Min = : fl	0.440	11710
Abundance	RG_MI5	2021	1	Mine-influenced	2,148	11,743
	RG_MI5 RG_MI5 RG_MI5	2021 2021 2021	1 2 3	Mine-influenced Mine-influenced Mine-influenced	2,148 1,964 1,859	11,743 10,563 10,415

Table K-3: Site-specific No	rmai Ranges at CMM	LAEMP San	npling Statio	Reference or		
Variable	Station	Year	Replicate	Mine-influenced	Lower Bound	Upper Bound
Abundance	RG_MI5	2022	2	Mine-influenced	2,062	10,878
Abundance	RG_MI5	2022	3	Mine-influenced	1,881	10,502
EPT Abundance	RG_MI25	2012	1	Reference	5,531	66,010
EPT Abundance	RG_MI25	2013	1	Reference	4,695	57,943
EPT Abundance	RG_MI25	2013	2	Reference	4,691	57,276
EPT Abundance EPT Abundance	RG_MI25 RG MI25	2013 2015	3	Reference Reference	4,777 4,637	55,899 56,467
EPT Abundance	RG MI25	2015	2	Reference	4,531	57,282
EPT Abundance	RG MI25	2015	3	Reference	4,527	57,974
EPT Abundance	RG_MI25	2016	1	Reference	4,442	59,845
EPT Abundance	RG_MI25	2017	1	Reference	4,872	57,783
EPT Abundance	RG_MI25	2018	1	Reference	4,491	56,770
EPT Abundance	RG_MI25	2018	2	Reference	2,090	54,389
EPT Abundance	RG_MI25	2018	3	Reference	4,422	55,531
EPT Abundance EPT Abundance	RG_MI25 RG MI25	2019 2019	2	Reference Reference	5,468 4,800	63,162 57,748
EPT Abundance	RG MI25	2019	3	Reference	4,553	56,149
EPT Abundance	RG MI25	2020	1	Reference	4,717	58,083
EPT Abundance	RG_MI25	2020	2	Reference	4,029	55,116
EPT Abundance	RG_MI25	2020	3	Reference	4,733	57,591
EPT Abundance	RG_MI25	2021	1	Reference	5,125	60,153
EPT Abundance	RG_MI25	2021	2	Reference	4,736	59,024
EPT Abundance	RG_MI25	2021	3	Reference	5,009	59,713
EPT Abundance EPT Abundance	RG_MI25 RG MI25	2022 2022	1 2	Reference Reference	5,264 5,035	60,783 58,955
EPT Abundance EPT Abundance	RG_MI25	2022	3	Reference Reference	4,677	58,955
EPT Abundance	RG_MI25	2012	1	Reference	2,158	13,280
EPT Abundance	RG AGCK	2013	1	Reference	1,966	11,739
EPT Abundance	RG AGCK	2015	1	Reference	1,877	11,527
EPT Abundance	RG_AGCK	2018	1	Reference	1,966	12,858
EPT Abundance	RG_AGCK	2018	2	Reference	1,956	12,640
EPT Abundance	RG_AGCK	2018	3	Reference	1,931	12,265
EPT Abundance	RG_AGCK	2019	1	Reference	2,042	12,244
EPT Abundance EPT Abundance	RG_AGCK RG_AGCK	2019 2019	3	Reference Reference	1,864 1,976	11,577 12,095
EPT Abundance	RG_AGCK	2019	1	Reference	1,657	10,638
EPT Abundance	RG AGCK	2020	2	Reference	2,003	11,844
EPT Abundance	RG AGCK	2020	3	Reference	1,881	11,528
EPT Abundance	RG_AGCK	2021	1	Reference	1,897	11,678
EPT Abundance	RG_AGCK	2021	2	Reference	1,977	11,987
EPT Abundance	RG_AGCK	2021	3	Reference	1,942	11,596
EPT Abundance EPT Abundance	RG_AGCK RG AGCK	2022 2022	1 2	Reference Reference	1,795 1,926	10,741 11,496
EPT Abundance	RG_AGCK	2022	3	Reference	1,989	11,508
EPT Abundance	RG LE1	2018	1	Reference	1,382	10,292
EPT Abundance	RG LE1	2019	1 1	Reference	1,326	10,446
EPT Abundance	RG LE1	2019	2	Reference	1,242	10,255
EPT Abundance	RG_LE1	2019	3	Reference	1,247	10,153
EPT Abundance	RG_LE1	2020	1	Reference	1,161	10,433
EPT Abundance	RG_LE1	2020	2	Reference	1,355	10,290
EPT Abundance	RG_LE1	2020 2021	3	Reference	1,318	9,932
EPT Abundance EPT Abundance	RG_LE1	2021	2	Reference Reference	1,348 1,360	10,184 10,501
EPT Abundance	RG LE1	2021	3	Reference	1,315	9,898
EPT Abundance	RG LE1	2022	1	Reference	1,402	10,884
EPT Abundance	RG_LE1	2022	2	Reference	1,377	10,252
EPT Abundance	RG_LE1	2022	3	Reference	1,168	9,808
EPT Abundance	RG_MIUCO	2012	1	Mine-influenced	4,022	47,901
EPT Abundance	RG_MIUCO	2015	1	Mine-influenced	3,349	41,510
EPT Abundance EPT Abundance	RG_MIUCO RG MIUCO	2016 2017	1 1	Mine-influenced Mine-influenced	3,540 3,370	40,819 40,767
EPT Abundance	RG_MIUCO	2017	1 1	Mine-influenced	3,070	41,800
EPT Abundance	RG MIUCO	2018	2	Mine-influenced	3,432	42,717
EPT Abundance	RG MIUCO	2018	3	Mine-influenced	3,235	43,769
EPT Abundance	RG_MIUCO	2019	1	Mine-influenced	2,978	42,465
EPT Abundance	RG_MIUCO	2019	2	Mine-influenced	3,088	41,708
EPT Abundance	RG_MIUCO	2019	3	Mine-influenced	3,073	40,656
EPT Abundance	RG_MIUCO	2020	1	Mine-influenced	2,940	38,717
EPT Abundance	RG_MIUCO	2020	2	Mine-influenced	3,522	42,710
EPT Abundance	RG_MIUCO	2020	3	Mine-influenced	3,016	38,092
EPT Abundance EPT Abundance	RG_MIUCO RG MIUCO	2021	2	Mine-influenced Mine-influenced	3,405 3,600	40,750 42,986
EPT Abundance EPT Abundance	RG_MIUCO	2021	3	Mine-influenced	3,461	42,986
EPT Abundance	RG MIUCO	2021	1	Mine-influenced	3,528	41,574
EPT Abundance	RG_MIUCO	2022	2	Mine-influenced	3,383	42,465
EPT Abundance	RG_MIUCO	2022	3	Mine-influenced	3,601	42,629
EPT Abundance	RG_CORCK	2012	1	Mine-influenced	2,776	17,340
EPT Abundance	RG_CORCK	2015	1	Mine-influenced	2,588	17,027
EPT Abundance	RG_CORCK	2016	1	Mine-influenced	2,761	17,379
EPT Abundance	RG_CORCK	2017	1	Mine-influenced	2,731	16,670
EPT Abundance	RG_CORCK	2018	1 2	Mine-influenced Mine influenced	2,478	17,452
EPT Abundance EPT Abundance	RG_CORCK RG CORCK	2018 2018	3	Mine-influenced Mine-influenced	2,551	16,459 17,309
EPT Abundance EPT Abundance	RG_CORCK	2018	1	Mine-influenced Mine-influenced	2,447 2,555	17,309
EPT Abundance	RG_CORCK	2019	2	Mine-influenced	2,622	17,727
/ Walladiloo	1.10_0011011	2018		willo minderioed	۷,022	11,141

				Reference or		
Variable	Station	Year	Replicate	Mine-influenced	Lower Bound	Upper Bound
EPT Abundance	RG_CORCK	2019	3	Mine-influenced	2,288	16,593
EPT Abundance	RG_CORCK	2020	1	Mine-influenced	2,345	16,689
EPT Abundance	RG_CORCK	2020	2	Mine-influenced	2,462	16,535
EPT Abundance	RG_CORCK	2020	3	Mine-influenced	2,140	19,685
EPT Abundance	RG_CORCK	2021	1	Mine-influenced	2,634	17,755
EPT Abundance	RG_CORCK	2021	2	Mine-influenced	2,458	19,793
EPT Abundance	RG_CORCK	2021	3	Mine-influenced	2,272	19,285
EPT Abundance	RG_CORCK	2022	1	Mine-influenced	2,627	16,982
EPT Abundance	RG_CORCK	2022	2	Mine-influenced	2,074	20,173
EPT Abundance	RG_CORCK	2022	3	Mine-influenced	2,411	21,987
EPT Abundance	RG_MIDCO	2012	1 1	Mine-influenced	2,302	19,319
EPT Abundance EPT Abundance	RG_MIDCO RG MIDCO	2015 2016	1 1	Mine-influenced Mine-influenced	2,270 2,301	18,693 18,970
EPT Abundance	RG_MIDCO	2016	1 1	Mine-influenced	2,301	18,628
EPT Abundance	RG_MIDCO	2017	1 1	Mine-influenced	2,065	17,988
EPT Abundance	RG MIDCO	2018	2	Mine-influenced	2,244	18,943
EPT Abundance	RG MIDCO	2018	3	Mine-influenced	2,032	18,629
EPT Abundance	RG MIDCO	2018	4	Mine-influenced	2,335	19,548
EPT Abundance	RG MIDCO	2018	5	Mine-influenced	2,317	19,379
EPT Abundance	RG MIDCO	2019	1	Mine-influenced	2,215	18,759
EPT Abundance	RG MIDCO	2019	2	Mine-influenced	2,130	18,350
EPT Abundance	RG MIDCO	2019	3	Mine-influenced	2,230	18,158
EPT Abundance	RG MIDCO	2019	4	Mine-influenced	2,343	19,580
EPT Abundance	RG MIDCO	2019	5	Mine-influenced	2,370	18,990
EPT Abundance	RG MIDCO	2020	1	Mine-influenced	2,214	18,001
EPT Abundance	RG_MIDCO	2020	2	Mine-influenced	2,292	18,607
EPT Abundance	RG_MIDCO	2020	3	Mine-influenced	1,915	17,321
EPT Abundance	RG_MIDCO	2020	4	Mine-influenced	2,245	18,885
EPT Abundance	RG_MIDCO	2020	5	Mine-influenced	2,092	18,473
EPT Abundance	RG_MIDCO	2021	1	Mine-influenced	2,269	19,057
EPT Abundance	RG_MIDCO	2021	2	Mine-influenced	2,339	19,347
EPT Abundance	RG_MIDCO	2021	3	Mine-influenced	2,176	18,271
EPT Abundance	RG_MIDCO	2021	4	Mine-influenced	2,212	18,922
EPT Abundance	RG_MIDCO	2021	5	Mine-influenced	2,357	19,467
EPT Abundance	RG_MIDCO	2022	1	Mine-influenced	2,592	20,258
EPT Abundance	RG_MIDCO	2022	2	Mine-influenced	2,307	18,964
EPT Abundance	RG_MIDCO	2022	3	Mine-influenced	2,395	18,834
EPT Abundance	RG_MIDCO	2022	4	Mine-influenced	2,104	18,545
EPT Abundance EPT Abundance	RG_MIDCO RG MIDAG	2022 2012	5	Mine-influenced Mine-influenced	2,085 1,823	17,994 14,808
EPT Abundance	RG MIDAG	2012	1 1	Mine-influenced	1,657	13,603
EPT Abundance	RG MIDAG	2013	1 1	Mine-influenced	1,674	14,387
EPT Abundance	RG MIDAG	2018	2	Mine-influenced	1,540	13,155
EPT Abundance	RG MIDAG	2018	3	Mine-influenced	1,573	13,316
EPT Abundance	RG MIDAG	2019	1	Mine-influenced	1,577	13,777
EPT Abundance	RG MIDAG	2019	2	Mine-influenced	1,506	14,126
EPT Abundance	RG MIDAG	2019	3	Mine-influenced	1,805	14,240
EPT Abundance	RG_MIDAG	2020	1	Mine-influenced	1,276	12,969
EPT Abundance	RG_MIDAG	2020	2	Mine-influenced	1,651	14,185
EPT Abundance	RG_MIDAG	2020	3	Mine-influenced	1,584	13,874
EPT Abundance	RG_MIDAG	2021	1	Mine-influenced	1,603	13,812
EPT Abundance	RG_MIDAG	2021	2	Mine-influenced	1,539	13,839
EPT Abundance	RG_MIDAG	2021	3	Mine-influenced	1,700	14,536
EPT Abundance	RG_MIDAG	2022	1	Mine-influenced	1,607	13,647
EPT Abundance	RG_MIDAG	2022	2	Mine-influenced	1,655	13,917
EPT Abundance	RG_MIDAG	2022	3	Mine-influenced	1,570	13,725
EPT Abundance	RG_MIULE	2018	1	Mine-influenced	474	6,084
EPT Abundance	RG_MIULE	2018	2	Mine-influenced	521 510	6,489
EPT Abundance EPT Abundance	RG_MIULE RG MIULE	2018 2019	3 1	Mine-influenced Mine-influenced	519 500	6,282 6,223
EPT Abundance EPT Abundance	RG_MIULE RG MIULE	2019	2	Mine-influenced	521	6,223
EPT Abundance EPT Abundance	RG_MIULE	2019	3	Mine-influenced	579	6,882
EPT Abundance	RG_MIULE	2019	1	Mine-influenced	503	5,842
EPT Abundance	RG MIULE	2020	2	Mine-influenced	470	5,646
EPT Abundance	RG MIULE	2020	3	Mine-influenced	543	6,052
EPT Abundance	RG MIULE	2021	1	Mine-influenced	559	6,286
EPT Abundance	RG_MIULE	2021	2	Mine-influenced	507	5,811
EPT Abundance	RG_MIULE	2021	3	Mine-influenced	532	5,910
EPT Abundance	RG_MIULE	2022	1	Mine-influenced	560	6,033
EPT Abundance	RG_MIULE	2022	2	Mine-influenced	523	5,869
EPT Abundance	RG_MIULE	2022	3	Mine-influenced	526	5,838
EPT Abundance	RG_MI5	2012	1	Mine-influenced	1,244	10,038
EPT Abundance	RG_MI5	2015	1	Mine-influenced	1,126	9,322
EPT Abundance	RG_MI5	2018	1	Mine-influenced	1,065	9,051
EPT Abundance	RG_MI5	2018	2	Mine-influenced	1,157	9,251
EPT Abundance	RG_MI5	2018	3	Mine-influenced	1,190	9,447
EPT Abundance	RG_MI5	2019	1	Mine-influenced	1,082	8,808
EPT Abundance	RG_MI5	2019	2	Mine-influenced	1,365	10,567
EPT Abundance	RG_MI5	2019	3	Mine-influenced	1,143	9,156
EPT Abundance	RG_MI5	2020	1	Mine-influenced	1,025	9,141
EPT Abundance	RG_MI5	2020	2	Mine-influenced	1,242	10,239
EPT Abundance	RG_MI5	2020	3	Mine-influenced	984	8,882
	RG MI5	2021	1 1	Mine-influenced	1,286	10,264
EPT Abundance EPT Abundance	RG MI5	2021	2	Mine-influenced	1,193	9,274

Table K-3: Site-specific Normal Ranges at CMm LAEMP Sampling Stations, 2012 to 2022 Reference or												
Variable	Station	Year	Replicate	Mine-influenced	Lower Bound	Upper Bound						
EPT Abundance	RG_MI5	2022	1	Mine-influenced	1,197	9,397						
EPT Abundance	RG_MI5	2022	2	Mine-influenced	1,266	9,590						
EPT Abundance	RG_MI5	2022	3	Mine-influenced	1,101	9,145						
EPT Percentage	RG_MI25	2012	1 1	Reference	63 62	89						
EPT Percentage EPT Percentage	RG_MI25 RG MI25	2013 2013	2	Reference Reference	62	88 89						
EPT Percentage	RG MI25	2013	3	Reference	62	89						
EPT Percentage	RG MI25	2015	1	Reference	60	88						
EPT Percentage	RG_MI25	2015	2	Reference	61	88						
EPT Percentage	RG_MI25	2015	3	Reference	60	87						
EPT Percentage	RG_MI25	2016	1	Reference	60	88						
EPT Percentage	RG_MI25	2017	1 1	Reference	64	90						
EPT Percentage EPT Percentage	RG_MI25 RG MI25	2018 2018	2	Reference Reference	63 49	89 86						
EPT Percentage	RG MI25	2018	3	Reference	62	88						
EPT Percentage	RG MI25	2019	1	Reference	66	91						
EPT Percentage	RG_MI25	2019	2	Reference	65	90						
EPT Percentage	RG_MI25	2019	3	Reference	62	89						
EPT Percentage	RG_MI25	2020	1	Reference	62	89						
EPT Percentage	RG_MI25	2020	2	Reference	57	86						
EPT Percentage EPT Percentage	RG_MI25 RG MI25	2020 2021	3	Reference Reference	62 64	89 90						
EPT Percentage	RG_MI25	2021	2	Reference	63	89						
EPT Percentage	RG MI25	2021	3	Reference	62	88						
EPT Percentage	RG_MI25	2022	1	Reference	64	90						
EPT Percentage	RG_MI25	2022	2	Reference	64	90						
EPT Percentage	RG_MI25	2022	3	Reference	64	89						
EPT Percentage	RG_AGCK	2012	1	Reference	78	95						
EPT Percentage	RG_AGCK	2013	1	Reference	78	95						
EPT Percentage EPT Percentage	RG_AGCK RG_AGCK	2015 2018	1 1	Reference Reference	77 78	95 95						
EPT Percentage	RG_AGCK	2018	2	Reference	78	95						
EPT Percentage	RG AGCK	2018	3	Reference	79	95						
EPT Percentage	RG AGCK	2019	1	Reference	78	95						
EPT Percentage	RG_AGCK	2019	2	Reference	76	95						
EPT Percentage	RG_AGCK	2019	3	Reference	78	95						
EPT Percentage	RG_AGCK	2020	1	Reference	73	94						
EPT Percentage	RG_AGCK	2020	2	Reference	79	95						
EPT Percentage	RG_AGCK	2020	3	Reference	76	94 94						
EPT Percentage EPT Percentage	RG_AGCK RG AGCK	2021 2021	1 2	Reference Reference	75 79	95						
EPT Percentage	RG AGCK	2021	3	Reference	79	95						
EPT Percentage	RG AGCK	2022	1	Reference	78	95						
EPT Percentage	RG_AGCK	2022	2	Reference	77	95						
EPT Percentage	RG_AGCK	2022	3	Reference	79	95						
EPT Percentage	RG_LE1	2018	1	Reference	62	88						
EPT Percentage	RG_LE1	2019	1	Reference	61	88						
EPT Percentage	RG_LE1	2019	2	Reference	58	85						
EPT Percentage EPT Percentage	RG_LE1	2019 2020	3	Reference Reference	59 55	86 84						
EPT Percentage	RG LE1	2020	2	Reference	59	86						
EPT Percentage	RG LE1	2020	3	Reference	60	87						
EPT Percentage	RG_LE1	2021	1	Reference	61	88						
EPT Percentage	RG_LE1	2021	2	Reference	59	86						
EPT Percentage	RG_LE1	2021	3	Reference	60	87						
EPT Percentage	RG_LE1	2022	1	Reference	62	89						
EPT Percentage	RG_LE1	2022	3	Reference	62	88						
EPT Percentage EPT Percentage	RG_LE1	2022 2012	1	Reference Mine-influenced	56 66	85 91						
EPT Percentage	RG_MIUCO	2012	1 1	Mine-influenced	63	89						
EPT Percentage	RG_MIUCO	2016	1	Mine-influenced	64	89						
EPT Percentage	RG_MIUCO	2017	1	Mine-influenced	61	88						
EPT Percentage	RG_MIUCO	2018	1	Mine-influenced	61	88						
EPT Percentage	RG_MIUCO	2018	2	Mine-influenced	65	90						
EPT Percentage	RG_MIUCO	2018	3	Mine-influenced	63	89						
EPT Percentage	RG_MIUCO RG MIUCO	2019 2019	2	Mine-influenced Mine-influenced	59 59	87 87						
EPT Percentage EPT Percentage	RG_MIUCO	2019	3	Mine-influenced	59	87						
EPT Percentage	RG MIUCO	2020	1	Mine-influenced	60	88						
EPT Percentage	RG_MIUCO	2020	2	Mine-influenced	64	89						
EPT Percentage	RG_MIUCO	2020	3	Mine-influenced	60	87						
EPT Percentage	RG_MIUCO	2021	1	Mine-influenced	62	89						
EPT Percentage	RG_MIUCO	2021	2	Mine-influenced	64	90						
EPT Percentage	RG_MIUCO	2021	3	Mine-influenced	63	89						
EPT Percentage	RG_MIUCO RG MIUCO	2022	1 2	Mine-influenced Mine-influenced	64 64	90						
EPT Percentage EPT Percentage	RG_MIUCO	2022 2022	3	Mine-influenced Mine-influenced	64	89 90						
EPT Percentage	RG_MIDCO	2022	1	Mine-influenced	72	90						
EPT Percentage	RG CORCK	2012	1 1	Mine-influenced	73	93						
EPT Percentage	RG_CORCK	2016	1	Mine-influenced	73	92						
EPT Percentage	RG_CORCK	2017	1	Mine-influenced	73	92						
EPT Percentage	RG_CORCK	2018	1	Mine-influenced	68	91						
EPT Percentage	RG_CORCK	2018	2	Mine-influenced	70	92						
EPT Percentage	RG_CORCK	2018	3	Mine-influenced	70	92						
EPT Percentage	RG_CORCK	2019	1 2	Mine-influenced	71	92						
EPT Percentage	RG_CORCK	2019	2	Mine-influenced	70	92						

Table K-3: Site-specific No	rmai Ranges at CMm	LAEMP Sam	ipling Statio	Reference or			
Variable	Station	Year	Replicate	Mine-influenced	Lower Bound	Upper Bound	
EPT Percentage	RG CORCK	2019	3	Mine-influenced	67	90	
EPT Percentage	RG CORCK	2020	1	Mine-influenced	63	90	
EPT Percentage	RG_CORCK	2020	2	Mine-influenced	67	90	
EPT Percentage	RG_CORCK	2020	3	Mine-influenced	61	89	
EPT Percentage	RG_CORCK	2021	1	Mine-influenced	67	91	
EPT Percentage	RG_CORCK	2021	2	Mine-influenced	66	90	
EPT Percentage	RG_CORCK	2021	3	Mine-influenced	62	89	
EPT Percentage	RG_CORCK	2022	1	Mine-influenced	71	92	
EPT Percentage EPT Percentage	RG_CORCK RG_CORCK	2022 2022	3	Mine-influenced Mine-influenced	66 67	90	
EPT Percentage	RG_CORCR	2012	1	Mine-influenced	64	90	
EPT Percentage	RG MIDCO	2012	1 1	Mine-influenced	64	90	
EPT Percentage	RG MIDCO	2016	1	Mine-influenced	66	90	
EPT Percentage	RG MIDCO	2017	1	Mine-influenced	64	89	
EPT Percentage	RG_MIDCO	2018	1	Mine-influenced	64	90	
EPT Percentage	RG_MIDCO	2018	2	Mine-influenced	64	89	
EPT Percentage	RG_MIDCO	2018	3	Mine-influenced	59	88	
EPT Percentage	RG_MIDCO	2018	4	Mine-influenced	64	90	
EPT Percentage	RG_MIDCO	2018	5	Mine-influenced	67	91	
EPT Percentage	RG_MIDCO	2019	1	Mine-influenced	66	90	
EPT Percentage	RG_MIDCO RG MIDCO	2019 2019	3	Mine-influenced Mine-influenced	61 63	89	
EPT Percentage EPT Percentage	RG_MIDCO	2019	4	Mine-influenced	63	89 89	
EPT Percentage	RG_MIDCO	2019	5	Mine-influenced	65	90	
EPT Percentage	RG MIDCO	2019	1	Mine-influenced	66	90	
EPT Percentage	RG MIDCO	2020	2	Mine-influenced	66	90	
EPT Percentage	RG_MIDCO	2020	3	Mine-influenced	62	88	
EPT Percentage	RG_MIDCO	2020	4	Mine-influenced	63	89	
EPT Percentage	RG_MIDCO	2020	5	Mine-influenced	64	90	
EPT Percentage	RG_MIDCO	2021	1	Mine-influenced	64	90	
EPT Percentage	RG_MIDCO	2021	2	Mine-influenced	65	90	
EPT Percentage	RG_MIDCO	2021	3	Mine-influenced	66	90	
EPT Percentage	RG_MIDCO	2021	4	Mine-influenced	63	89	
EPT Percentage	RG_MIDCO RG MIDCO	2021	5	Mine-influenced Mine-influenced	65 68	90 91	
EPT Percentage EPT Percentage	RG_MIDCO	2022 2022	2	Mine-influenced	67	91	
EPT Percentage	RG MIDCO	2022	3	Mine-influenced	68	91	
EPT Percentage	RG MIDCO	2022	4	Mine-influenced	63	89	
EPT Percentage	RG MIDCO	2022	5	Mine-influenced	65	90	
EPT Percentage	RG MIDAG	2012	1	Mine-influenced	67	91	
EPT Percentage	RG_MIDAG	2015	1	Mine-influenced	68	91	
EPT Percentage	RG_MIDAG	2018	1	Mine-influenced	69	92	
EPT Percentage	RG_MIDAG	2018	2	Mine-influenced	65	91	
EPT Percentage	RG_MIDAG	2018	3	Mine-influenced	66	91	
EPT Percentage	RG_MIDAG	2019	1	Mine-influenced	63	90	
EPT Percentage EPT Percentage	RG_MIDAG RG MIDAG	2019 2019	3	Mine-influenced Mine-influenced	63 66	90	
EPT Percentage	RG MIDAG	2019	1	Mine-influenced	61	89	
EPT Percentage	RG MIDAG	2020	2	Mine-influenced	66	91	
EPT Percentage	RG MIDAG	2020	3	Mine-influenced	65	90	
EPT Percentage	RG_MIDAG	2021	1	Mine-influenced	68	92	
EPT Percentage	RG_MIDAG	2021	2	Mine-influenced	68	92	
EPT Percentage	RG_MIDAG	2021	3	Mine-influenced	70	93	
EPT Percentage	RG_MIDAG	2022	1	Mine-influenced	70	92	
EPT Percentage	RG_MIDAG	2022	2	Mine-influenced	68	92	
EPT Percentage	RG_MIDAG RG MIULE	2022 2018	3	Mine-influenced Mine-influenced	68 60	92 88	
EPT Percentage EPT Percentage	RG_MIULE	2018	2	Mine-influenced	63	90	
EPT Percentage	RG MIULE	2018	3	Mine-influenced	63	90	
EPT Percentage	RG MIULE	2019	1	Mine-influenced	60	88	
EPT Percentage	RG_MIULE	2019	2	Mine-influenced	63	89	
EPT Percentage	RG_MIULE	2019	3	Mine-influenced	63	90	
EPT Percentage	RG_MIULE	2020	1	Mine-influenced	59	88	
EPT Percentage	RG_MIULE	2020	2	Mine-influenced	55	87	
EPT Percentage	RG_MIULE	2020	3	Mine-influenced	62	89	
EPT Percentage	RG_MIULE	2021	1	Mine-influenced	61	89	
EPT Percentage	RG_MIULE RG MIULE	2021 2021	3	Mine-influenced	59 63	88 90	
EPT Percentage	RG_MIULE	2021	1	Mine-influenced Mine-influenced	65	90	
EPT Percentage EPT Percentage	RG_MIULE	2022	2	Mine-influenced	63	90	
EPT Percentage	RG MIULE	2022	3	Mine-influenced	64	90	
EPT Percentage	RG MI5	2012	1	Mine-influenced	59	87	
EPT Percentage	RG_MI5	2015	1	Mine-influenced	57	86	
EPT Percentage	RG_MI5	2018	1	Mine-influenced	59	88	
EPT Percentage	RG_MI5	2018	2	Mine-influenced	61	88	
EPT Percentage	RG_MI5	2018	3	Mine-influenced	59	87	
EPT Percentage	RG_MI5	2019	1	Mine-influenced	57	87	
EPT Percentage	RG_MI5	2019	2	Mine-influenced	62	88	
EPT Percentage	RG_MI5	2019	3	Mine-influenced	57	86	
EPT Percentage	RG_MI5 RG MI5	2020 2020	2	Mine-influenced Mine-influenced	59 61	88 88	
EDT Dercentage	L/G_INID		3	Mine-influenced	58	86	
EPT Percentage	RG MIS	70070					
EPT Percentage	RG_MI5	2020					
EPT Percentage EPT Percentage	RG_MI5	2021	1	Mine-influenced	60	87	
EPT Percentage	_						

Variable	Ctation	Voor	Donlingto	Reference or Mine-influenced	Lower Bound	Upper Bound		
Variable EPT Percentage	Station RG MI5	Year 2022	Replicate	Mine-influenced	Lower Bound 61	88		
EPT Percentage	RG_MI5	2022	3	Mine-influenced	59	87		
Ephemeroptera Abundance	RG MI25	2012	1	Reference	2,688	45,962		
Ephemeroptera Abundance	RG_MI25	2013	1	Reference	2,344	40,398		
Ephemeroptera Abundance	RG_MI25	2013	2	Reference	2,344	40,086		
Ephemeroptera Abundance	RG_MI25	2013	3	Reference	2,341	39,172		
Ephemeroptera Abundance	RG_MI25	2015	1	Reference	2,438	40,431		
Ephemeroptera Abundance Ephemeroptera Abundance	RG_MI25 RG_MI25	2015 2015	3	Reference Reference	2,363 2,383	40,844 41,805		
Ephemeroptera Abundance	RG_MI25	2013	1	Reference	2,383	42,097		
Ephemeroptera Abundance	RG MI25	2017	1	Reference	2,355	39,887		
Ephemeroptera Abundance	RG_MI25	2018	1	Reference	2,219	39,425		
Ephemeroptera Abundance	RG_MI25	2018	2	Reference	1,335	39,008		
Ephemeroptera Abundance	RG_MI25	2018	3	Reference	2,170	38,695		
Ephemeroptera Abundance	RG_MI25	2019	1	Reference	2,524	42,938		
Ephemeroptera Abundance Ephemeroptera Abundance	RG_MI25 RG MI25	2019 2019	3	Reference Reference	2,215 2,265	39,476 39,500		
Ephemeroptera Abundance	RG_MI25	2019	1	Reference	2,323	40,255		
Ephemeroptera Abundance	RG MI25	2020	2	Reference	2,212	39,943		
Ephemeroptera Abundance	RG MI25	2020	3	Reference	2,333	40,449		
Ephemeroptera Abundance	RG_MI25	2021	1	Reference	2,424	41,134		
Ephemeroptera Abundance	RG_MI25	2021	2	Reference	2,281	41,067		
Ephemeroptera Abundance	RG_MI25	2021	3	Reference	2,518	42,014		
Ephemeroptera Abundance	RG_MI25	2022	1	Reference	2,388	41,271		
Ephemeroptera Abundance	RG_MI25 RG MI25	2022 2022	3	Reference	2,254 2,102	39,991		
Ephemeroptera Abundance Ephemeroptera Abundance	RG_MI25	2022	1	Reference Reference	1,252	38,730 10,200		
Ephemeroptera Abundance	RG AGCK	2012	1	Reference	1,127	8,909		
Ephemeroptera Abundance	RG_AGCK	2015	1	Reference	1,086	8,780		
Ephemeroptera Abundance	RG_AGCK	2018	1	Reference	1,132	9,794		
Ephemeroptera Abundance	RG_AGCK	2018	2	Reference	1,112	9,519		
Ephemeroptera Abundance	RG_AGCK	2018	3	Reference	1,072	9,205		
Ephemeroptera Abundance	RG_AGCK	2019	1	Reference	1,171	9,251		
Ephemeroptera Abundance	RG_AGCK RG_AGCK	2019 2019	3	Reference Reference	1,084 1,115	8,793 9,069		
Ephemeroptera Abundance Ephemeroptera Abundance	RG_AGCK	2019	1	Reference	1,019	8,186		
Ephemeroptera Abundance	RG AGCK	2020	2	Reference	1,135	8,934		
Ephemeroptera Abundance	RG_AGCK	2020	3	Reference	1,099	8,792		
Ephemeroptera Abundance	RG_AGCK	2021	1	Reference	1,129	8,972		
Ephemeroptera Abundance	RG_AGCK	2021	2	Reference	1,115	9,023		
Ephemeroptera Abundance	RG_AGCK	2021	3	Reference	1,079	8,663		
Ephemeroptera Abundance	RG_AGCK RG_AGCK	2022 2022	1 2	Reference Reference	1,004 1,157	8,033 9,060		
Ephemeroptera Abundance Ephemeroptera Abundance	RG_AGCK RG_AGCK	2022	3	Reference	1,157	8,537		
Ephemeroptera Abundance	RG LE1	2018	1	Reference	756	7,187		
Ephemeroptera Abundance	RG_LE1	2019	1	Reference	749	7,341		
Ephemeroptera Abundance	RG_LE1	2019	2	Reference	775	7,617		
Ephemeroptera Abundance	RG_LE1	2019	3	Reference	734	7,343		
Ephemeroptera Abundance	RG_LE1	2020	1	Reference	763	7,836		
Ephemeroptera Abundance	RG_LE1 RG_LE1	2020 2020	3	Reference	787 793	7,370		
Ephemeroptera Abundance Ephemeroptera Abundance	RG_LE1	2020	1	Reference Reference	739	7,233 7,115		
Ephemeroptera Abundance	RG LE1	2021	2	Reference	814	7,640		
Ephemeroptera Abundance	RG LE1	2021	3	Reference	767	7,113		
Ephemeroptera Abundance	RG_LE1	2022	1	Reference	727	7,447		
Ephemeroptera Abundance	RG_LE1	2022	2	Reference	729	7,109		
Ephemeroptera Abundance	RG_LE1	2022	3	Reference	733	7,218		
Ephemeroptera Abundance	RG_MIUCO	2012	1	Mine-influenced	1,705	30,885		
Ephemeroptera Abundance Ephemeroptera Abundance	RG_MIUCO RG MIUCO	2015 2016	1 1	Mine-influenced Mine-influenced	1,498 1,462	27,048 25,957		
Ephemeroptera Abundance	RG MIUCO	2017	1	Mine-influenced	1,546	27,015		
Ephemeroptera Abundance	RG_MIUCO	2017	1	Mine-influenced	1,360	26,781		
Ephemeroptera Abundance	RG_MIUCO	2018	2	Mine-influenced	1,412	26,791		
Ephemeroptera Abundance	RG_MIUCO	2018	3	Mine-influenced	1,384	28,003		
Ephemeroptera Abundance	RG_MIUCO	2019	1	Mine-influenced	1,380	27,781		
Ephemeroptera Abundance	RG_MIUCO	2019	2	Mine-influenced	1,454	27,693		
Ephemeroptera Abundance Ephemeroptera Abundance	RG_MIUCO RG MIUCO	2019 2020	3	Mine-influenced Mine-influenced	1,459 1,374	26,987 25,646		
Ephemeroptera Abundance	RG_MIUCO	2020	2	Mine-influenced	1,597	28,226		
Ephemeroptera Abundance	RG_MIUCO	2020	3	Mine-influenced	1,423	25,529		
Ephemeroptera Abundance	RG_MIUCO	2021	1	Mine-influenced	1,482	26,482		
Ephemeroptera Abundance	RG_MIUCO	2021	2	Mine-influenced	1,539	27,632		
Ephemeroptera Abundance	RG_MIUCO	2021	3	Mine-influenced	1,539	27,313		
Ephemeroptera Abundance	RG_MIUCO	2022	1	Mine-influenced	1,480	26,582		
Ephemeroptera Abundance	RG_MIUCO	2022	3	Mine-influenced	1,409	26,771		
Ephemeroptera Abundance Ephemeroptera Abundance	RG_MIUCO RG CORCK	2022 2012	1	Mine-influenced Mine-influenced	1,496 1,507	26,998 12,513		
Ephemeroptera Abundance	RG_CORCK	2012	1 1	Mine-influenced	1,349	12,031		
Ephemeroptera Abundance	RG CORCK	2016	1	Mine-influenced	1,345	12,122		
Ephemeroptera Abundance	RG_CORCK	2017	1	Mine-influenced	1,415	11,750		
Ephemeroptera Abundance	RG_CORCK	2018	1	Mine-influenced	1,401	12,648		
Ephemeroptera Abundance	RG_CORCK	2018	2	Mine-influenced	1,387	11,783		
Ephemeroptera Abundance	RG_CORCK	2018	3	Mine-influenced	1,317	12,296		
Ephemeroptera Abundance	RG_CORCK	2019	1	Mine-influenced	1,384	11,774		
Ephemeroptera Abundance	RG_CORCK RG_CORCK	2019	3	Mine-influenced Mine-influenced	1,425	12,630		
Ephemeroptera Abundance	IVQ_COKCK	2019	J	wille-illilueliced	1,320	12,056		

Table K-3: Site-specific Normal Ranges at CMm LAEMP Sampling Stations, 2012 to 2022 Reference or											
Variable	Station	Year	Replicate	Mine-influenced	Lower Bound	Upper Bound					
Ephemeroptera Abundance	RG CORCK	2020	1	Mine-influenced	1,492	12,617					
Ephemeroptera Abundance	RG CORCK	2020	2	Mine-influenced	1,446	12,191					
Ephemeroptera Abundance	RG_CORCK	2020	3	Mine-influenced	1,381	14,881					
Ephemeroptera Abundance	RG_CORCK	2021	1	Mine-influenced	1,535	13,099					
Ephemeroptera Abundance	RG_CORCK	2021	2	Mine-influenced	1,470	14,780					
Ephemeroptera Abundance	RG_CORCK RG_CORCK	2021	3	Mine-influenced	1,466	14,506					
Ephemeroptera Abundance Ephemeroptera Abundance	RG_CORCK	2022 2022	2	Mine-influenced Mine-influenced	1,409 1,213	12,074 14,735					
Ephemeroptera Abundance	RG CORCK	2022	3	Mine-influenced	1,387	15,967					
Ephemeroptera Abundance	RG MIDCO	2012	1	Mine-influenced	1,132	13,274					
Ephemeroptera Abundance	RG_MIDCO	2015	1	Mine-influenced	1,095	12,601					
Ephemeroptera Abundance	RG_MIDCO	2016	1	Mine-influenced	1,101	12,759					
Ephemeroptera Abundance	RG_MIDCO	2017	1	Mine-influenced	1,124	12,689					
Ephemeroptera Abundance	RG_MIDCO RG MIDCO	2018 2018	2	Mine-influenced Mine-influenced	1,000 1,123	12,108 12,932					
Ephemeroptera Abundance Ephemeroptera Abundance	RG_MIDCO	2018	3	Mine-influenced	1,102	13,174					
Ephemeroptera Abundance	RG MIDCO	2018	4	Mine-influenced	1,146	13,334					
Ephemeroptera Abundance	RG_MIDCO	2018	5	Mine-influenced	1,086	12,878					
Ephemeroptera Abundance	RG_MIDCO	2019	1	Mine-influenced	1,057	12,563					
Ephemeroptera Abundance	RG_MIDCO	2019	2	Mine-influenced	1,096	12,650					
Ephemeroptera Abundance	RG_MIDCO	2019	3	Mine-influenced	1,111	12,532					
Ephemeroptera Abundance	RG_MIDCO RG MIDCO	2019 2019	5	Mine-influenced	1,158	13,415					
Ephemeroptera Abundance Ephemeroptera Abundance	RG_MIDCO	2019	1	Mine-influenced Mine-influenced	1,155 1,074	12,924 12,241					
Ephemeroptera Abundance	RG MIDCO	2020	2	Mine-influenced	1,077	12,422					
Ephemeroptera Abundance	RG_MIDCO	2020	3	Mine-influenced	985	11,968					
Ephemeroptera Abundance	RG_MIDCO	2020	4	Mine-influenced	1,125	12,828					
Ephemeroptera Abundance	RG_MIDCO	2020	5	Mine-influenced	1,050	12,646					
Ephemeroptera Abundance	RG_MIDCO	2021	1	Mine-influenced	1,110	12,991					
Ephemeroptera Abundance Ephemeroptera Abundance	RG_MIDCO RG MIDCO	2021 2021	3	Mine-influenced Mine-influenced	1,126 1,020	13,043 12,165					
Ephemeroptera Abundance	RG_MIDCO	2021	4	Mine-influenced	1,148	13,476					
Ephemeroptera Abundance	RG MIDCO	2021	5	Mine-influenced	1,131	13,159					
Ephemeroptera Abundance	RG_MIDCO	2022	1	Mine-influenced	1,167	13,277					
Ephemeroptera Abundance	RG_MIDCO	2022	2	Mine-influenced	1,054	12,535					
Ephemeroptera Abundance	RG_MIDCO	2022	3	Mine-influenced	988	12,156					
Ephemeroptera Abundance	RG_MIDCO	2022	4	Mine-influenced	1,077	12,989					
Ephemeroptera Abundance	RG_MIDCO	2022 2012	5	Mine-influenced	968 959	11,936					
Ephemeroptera Abundance Ephemeroptera Abundance	RG_MIDAG RG MIDAG	2012	1 1	Mine-influenced Mine-influenced	801	10,654 9,319					
Ephemeroptera Abundance	RG MIDAG	2018	1 1	Mine-influenced	845	10,029					
Ephemeroptera Abundance	RG_MIDAG	2018	2	Mine-influenced	761	9,025					
Ephemeroptera Abundance	RG_MIDAG	2018	3	Mine-influenced	805	9,261					
Ephemeroptera Abundance	RG_MIDAG	2019	1	Mine-influenced	858	9,851					
Ephemeroptera Abundance	RG_MIDAG	2019	2	Mine-influenced	816	10,005					
Ephemeroptera Abundance Ephemeroptera Abundance	RG_MIDAG RG MIDAG	2019 2020	3	Mine-influenced Mine-influenced	888 742	9,731 9,671					
Ephemeroptera Abundance	RG MIDAG	2020	2	Mine-influenced	819	9,748					
Ephemeroptera Abundance	RG MIDAG	2020	3	Mine-influenced	848	9,934					
Ephemeroptera Abundance	RG_MIDAG	2021	1	Mine-influenced	759	9,414					
Ephemeroptera Abundance	RG_MIDAG	2021	2	Mine-influenced	728	9,449					
Ephemeroptera Abundance	RG_MIDAG	2021	3	Mine-influenced	798	9,856					
Ephemeroptera Abundance	RG_MIDAG	2022	1	Mine-influenced	749	9,225					
Ephemeroptera Abundance Ephemeroptera Abundance	RG_MIDAG RG MIDAG	2022 2022	3	Mine-influenced Mine-influenced	761 717	9,372 9,172					
Ephemeroptera Abundance	RG MIULE	2018	1	Mine-influenced	271	4,572					
Ephemeroptera Abundance	RG MIULE	2018	2	Mine-influenced	265	4,673					
Ephemeroptera Abundance	RG_MIULE	2018	3	Mine-influenced	277	4,581					
Ephemeroptera Abundance	RG_MIULE	2019	1	Mine-influenced	293	4,680					
Ephemeroptera Abundance	RG_MIULE	2019	2	Mine-influenced	283	4,644					
Ephemeroptera Abundance	RG_MIULE	2019	3	Mine-influenced	315	5,071					
Ephemeroptera Abundance Ephemeroptera Abundance	RG_MIULE RG MIULE	2020 2020	1 2	Mine-influenced Mine-influenced	305 303	4,504 4,441					
Ephemeroptera Abundance	RG_MIULE	2020	3	Mine-influenced	312	4,552					
Ephemeroptera Abundance	RG MIULE	2021	1	Mine-influenced	322	4,746					
Ephemeroptera Abundance	RG_MIULE	2021	2	Mine-influenced	307	4,476					
Ephemeroptera Abundance	RG_MIULE	2021	3	Mine-influenced	297	4,410					
Ephemeroptera Abundance	RG_MIULE	2022	1	Mine-influenced	286	4,352					
Ephemeroptera Abundance	RG_MIULE	2022	2	Mine-influenced	277	4,265					
Ephemeroptera Abundance Ephemeroptera Abundance	RG_MIULE RG_MI5	2022 2012	3 1	Mine-influenced Mine-influenced	289 662	4,332 7,038					
Ephemeroptera Abundance	RG MI5	2012	1	Mine-influenced	639	6,704					
Ephemeroptera Abundance	RG_MI5	2018	1	Mine-influenced	507	6,100					
Ephemeroptera Abundance	RG_MI5	2018	2	Mine-influenced	550	6,194					
Ephemeroptera Abundance	RG_MI5	2018	3	Mine-influenced	630	6,603					
Ephemeroptera Abundance	RG_MI5	2019	1	Mine-influenced	581	6,141					
Ephemeroptera Abundance	RG_MI5	2019	2	Mine-influenced	675	7,160					
Ephemeroptera Abundance	RG_MI5 RG MI5	2019 2020	3	Mine-influenced	641 511	6,521					
Ephemeroptera Abundance Ephemeroptera Abundance	RG_MI5	2020	2	Mine-influenced Mine-influenced	628	6,208 7,031					
Ephemeroptera Abundance	RG_MI5	2020	3	Mine-influenced	557	6,403					
Ephemeroptera Abundance	RG MI5	2021	1	Mine-influenced	678	7,130					
Ephemeroptera Abundance	RG_MI5	2021	2	Mine-influenced	612	6,409					
Ephemeroptera Abundance	RG_MI5	2021	3	Mine-influenced	601	6,426					
Ephemeroptera Abundance	RG_MI5	2022	1	Mine-influenced	538	6,301					
Ephemeroptera Abundance	RG_MI5	2022	2	Mine-influenced	615	6,503					

Table K-3: Site-specific Normal Ranges at CMm LAEMP Sampling Stations, 2012 to 2022 Reference or												
Variable	Station	Year	Replicate	Mine-influenced	Lower Bound	Upper Bound						
Ephemeroptera Abundance	RG MI5	2022	3	Mine-influenced	616	6,543						
Ephemeroptera Percentage	RG_MI25	2022	2	Reference	29	61						
Ephemeroptera Percentage	RG_MI25	2022	3	Reference	29	61						
Ephemeroptera Percentage	RG_MI25	2022	1	Reference	29	61						
Ephemeroptera Percentage	RG_MI25	2019	2	Reference	30	61						
Ephemeroptera Percentage	RG_MI25 RG_MI25	2021 2018	3	Reference	30 30	61 61						
Ephemeroptera Percentage Ephemeroptera Percentage	RG_MI25	2020	1 1	Reference Reference	31	61						
Ephemeroptera Percentage	RG MI25	2013		Reference	31	62						
Ephemeroptera Percentage	RG MI25	2019	1	Reference	30	62						
Ephemeroptera Percentage	RG_MI25	2017	1	Reference	31	62						
Ephemeroptera Percentage	RG_MI25	2016	1	Reference	30	62						
Ephemeroptera Percentage	RG_MI25	2021	2	Reference	30	62						
Ephemeroptera Percentage	RG_MI25 RG_MI25	2012 2018	2	Reference	31 31	62 62						
Ephemeroptera Percentage Ephemeroptera Percentage	RG_MI25	2013	2	Reference Reference	31	62						
Ephemeroptera Percentage	RG MI25	2018	1	Reference	31	62						
Ephemeroptera Percentage	RG MI25	2021	3	Reference	31	62						
Ephemeroptera Percentage	RG_MI25	2013	3	Reference	30	62						
Ephemeroptera Percentage	RG_MI25	2020	3	Reference	31	62						
Ephemeroptera Percentage	RG_MI25	2019	3	Reference	31	62						
Ephemeroptera Percentage	RG_MI25	2015	2	Reference	32	62						
Ephemeroptera Percentage	RG_MI25	2020	2	Reference	32	63						
Ephemeroptera Percentage Ephemeroptera Percentage	RG_MI25 RG_MI25	2015 2015	3	Reference Reference	32 32	63 63						
Ephemeroptera Percentage	RG_MI25	2013	3	Reference	43	71						
Ephemeroptera Percentage	RG_AGCK	2022	1	Reference	43	71						
Ephemeroptera Percentage	RG_AGCK	2019	3	Reference	44	71						
Ephemeroptera Percentage	RG_AGCK	2021	3	Reference	44	71						
Ephemeroptera Percentage	RG_AGCK	2018	3	Reference	44	71						
Ephemeroptera Percentage	RG_AGCK	2021	2	Reference	44	72						
Ephemeroptera Percentage	RG_AGCK RG_AGCK	2020 2018	2 2	Reference	45 45	72 72						
Ephemeroptera Percentage Ephemeroptera Percentage	RG_AGCK RG_AGCK	2019	2	Reference Reference	45	72						
Ephemeroptera Percentage	RG AGCK	2019	1	Reference	45	72						
Ephemeroptera Percentage	RG AGCK	2013	1	Reference	45	72						
Ephemeroptera Percentage	RG_AGCK	2020	3	Reference	45	72						
Ephemeroptera Percentage	RG_AGCK	2015	1	Reference	45	72						
Ephemeroptera Percentage	RG_AGCK	2020	1	Reference	45	72						
Ephemeroptera Percentage	RG_AGCK	2021	1	Reference	45	72						
Ephemeroptera Percentage Ephemeroptera Percentage	RG_AGCK RG_AGCK	2018 2012	1 1	Reference Reference	45 45	72 73						
Ephemeroptera Percentage	RG AGCK	2022	2	Reference	46	75						
Ephemeroptera Percentage	RG LE1	2022	1	Reference	32	61						
Ephemeroptera Percentage	RG_LE1	2022	2	Reference	33	61						
Ephemeroptera Percentage	RG_LE1	2021	1	Reference	34	61						
Ephemeroptera Percentage	RG_LE1	2019	1	Reference	34	62						
Ephemeroptera Percentage	RG_LE1	2018	1	Reference	34	62						
Ephemeroptera Percentage Ephemeroptera Percentage	RG_LE1	2020 2019	3	Reference Reference	35 34	62 62						
Ephemeroptera Percentage	RG LE1	2019	3	Reference	35	62						
Ephemeroptera Percentage	RG LE1	2021	3	Reference	35	62						
Ephemeroptera Percentage	RG LE1	2021	2	Reference	35	63						
Ephemeroptera Percentage	RG LE1	2020	1	Reference	36	63						
Ephemeroptera Percentage	RG LE1	2020	3	Reference	36	63						
Ephemeroptera Percentage	RG LE1	2019	2	Reference	36	63						
Ephemeroptera Percentage	RG MIUCO	2022	2	Mine-influenced	26	56						
Ephemeroptera Percentage	RG MIUCO	2018	2	Mine-influenced	27	56						
Ephemeroptera Percentage	RG MIUCO	2018	1	Mine-influenced	27	57						
Ephemeroptera Percentage	RG MIUCO	2010	3	Mine-influenced	27	57						
Ephemeroptera Percentage	RG_MIUCO	2016	1	Mine-influenced	26	57						
	RG_MIUCO	2018	3	Mine-influenced	27	57						
Ephemeroptera Percentage	_		1	Mine-influenced Mine-influenced	27	57						
Ephemeroptera Percentage	RG_MIUCO RG MIUCO	2019			27							
Ephemeroptera Percentage	_	2022	1	Mine-influenced		57 50						
Ephemeroptera Percentage	RG_MIUCO	2021	1	Mine-influenced	27	58						
Ephemeroptera Percentage	RG_MIUCO	2019	2	Mine-influenced	28	58						
Ephemeroptera Percentage Ephemeroptera Percentage	RG_MIUCO RG MIUCO	2021 2015	1	Mine-influenced Mine-influenced	28 28	58 58						
Ephemeroptera Percentage	RG_MIUCO	2019	3	Mine-influenced	28	58						
Ephemeroptera Percentage	RG MIUCO	2019	1	Mine-influenced	28	58						
Ephemeroptera Percentage	RG_MIUCO	2017	1	Mine-influenced	28	58						
Ephemeroptera Percentage	RG_MIUCO	2021	3	Mine-influenced	28	58						
Ephemeroptera Percentage	RG_MIUCO	2012	1	Mine-influenced	28	58						
Ephemeroptera Percentage	RG_MIUCO	2020	3	Mine-influenced	28	59						
Ephemeroptera Percentage	RG_MIUCO	2020	2	Mine-influenced	29	59						
	RG_CORCK	2016 2018	1 2	Mine-influenced	36	64						
Ephemeroptera Percentage	DC CCDCIC	1 7018	3	Mine-influenced	38	65						
Ephemeroptera Percentage	RG_CORCK		1	Mine influenced	30	6E						
Ephemeroptera Percentage Ephemeroptera Percentage	RG_CORCK	2017	1 2	Mine-influenced Mine-influenced	38 38	65 65						
Ephemeroptera Percentage Ephemeroptera Percentage Ephemeroptera Percentage	RG_CORCK RG_CORCK	2017 2019	2	Mine-influenced	38	65						
Ephemeroptera Percentage Ephemeroptera Percentage	RG_CORCK	2017										
Ephemeroptera Percentage Ephemeroptera Percentage Ephemeroptera Percentage Ephemeroptera Percentage	RG_CORCK RG_CORCK RG_CORCK	2017 2019 2015	2 1	Mine-influenced Mine-influenced	38 38	65 65						

Table K-3: Site-specific Norma	i Kanges at Civilii i	AEMP San	ipling Statio	Reference or				
Variable	Station	Year	Replicate	Mine-influenced	Lower Bound	Upper Bound		
	RG CORCK	2022		Mine-influenced				
Ephemeroptera Percentage Ephemeroptera Percentage	RG_CORCK	2022	3	Mine-influenced	38 39	66 66		
Ephemeroptera Percentage	RG_CORCK	2018	2	Mine-influenced	39	66		
Ephemeroptera Percentage	RG CORCK	2019	1	Mine-influenced	39	66		
Ephemeroptera Percentage	RG CORCK	2020	2	Mine-influenced	39	67		
Ephemeroptera Percentage	RG CORCK	2012	1	Mine-influenced	39	67		
Ephemeroptera Percentage	RG_CORCK	2021	1	Mine-influenced	39	67		
Ephemeroptera Percentage	RG_CORCK	2021	3	Mine-influenced	40	67		
Ephemeroptera Percentage	RG_CORCK	2020	3	Mine-influenced	40	67		
Ephemeroptera Percentage	RG_CORCK	2021	2	Mine-influenced	40	68		
Ephemeroptera Percentage	RG_CORCK	2020	1	Mine-influenced	40	68		
Ephemeroptera Percentage	RG_MIDCO	2022	3	Mine-influenced	28	59		
Ephemeroptera Percentage	RG_MIDCO	2022	2	Mine-influenced	31	60		
Ephemeroptera Percentage	RG_MIDCO	2022	5	Mine-influenced	30	60		
Ephemeroptera Percentage	RG_MIDCO	2022	1	Mine-influenced Mine-influenced	31 31	60		
Ephemeroptera Percentage Ephemeroptera Percentage	RG_MIDCO RG_MIDCO	2021	3 2	Mine-influenced	31	60 60		
Ephemeroptera Percentage	RG MIDCO	2018	1	Mine-influenced	31	60		
Ephemeroptera Percentage	RG MIDCO	2015	1	Mine-influenced	31	60		
Ephemeroptera Percentage	RG MIDCO	2020	4	Mine-influenced	31	61		
Ephemeroptera Percentage	RG MIDCO	2019	1	Mine-influenced	31	61		
Ephemeroptera Percentage	RG MIDCO	2018	5	Mine-influenced	32	61		
Ephemeroptera Percentage	RG MIDCO	2017	1	Mine-influenced	32	61		
Ephemeroptera Percentage	RG MIDCO	2021	2	Mine-influenced	31	61		
Ephemeroptera Percentage	RG_MIDCO	2021	5	Mine-influenced	31	61		
Ephemeroptera Percentage	RG_MIDCO	2016	1	Mine-influenced	32	61		
Ephemeroptera Percentage	RG_MIDCO	2018	2	Mine-influenced	32	61		
Ephemeroptera Percentage	RG_MIDCO	2020	3	Mine-influenced	32	61		
Ephemeroptera Percentage	RG_MIDCO	2019	2	Mine-influenced	31	61		
Ephemeroptera Percentage	RG_MIDCO	2021	1	Mine-influenced	31	61		
Ephemeroptera Percentage	RG_MIDCO	2019	4	Mine-influenced	31	61		
Ephemeroptera Percentage	RG_MIDCO	2018	4	Mine-influenced	31	61		
Ephemeroptera Percentage	RG_MIDCO	2019	5	Mine-influenced	32	61		
Ephemeroptera Percentage	RG_MIDCO	2019	3	Mine-influenced	31	61		
Ephemeroptera Percentage	RG_MIDCO RG MIDCO	2020 2020	5 1	Mine-influenced Mine-influenced	32 32	61 61		
Ephemeroptera Percentage Ephemeroptera Percentage	RG_MIDCO	2020	1	Mine-influenced	32	62		
Ephemeroptera Percentage	RG MIDCO	2012	3	Mine-influenced	32	62		
Ephemeroptera Percentage	RG MIDCO	2022	4	Mine-influenced	32	63		
Ephemeroptera Percentage	RG MIDCO	2021	4	Mine-influenced	33	64		
Ephemeroptera Percentage	RG MIDAG	2022	3	Mine-influenced	31	61		
Ephemeroptera Percentage	RG MIDAG	2022	2	Mine-influenced	31	62		
Ephemeroptera Percentage	RG MIDAG	2019	3	Mine-influenced	33	62		
Ephemeroptera Percentage	RG_MIDAG	2018	2	Mine-influenced	32	62		
Ephemeroptera Percentage	RG_MIDAG	2020	2	Mine-influenced	33	62		
Ephemeroptera Percentage	RG_MIDAG	2021	1	Mine-influenced	32	62		
Ephemeroptera Percentage	RG_MIDAG	2022	1	Mine-influenced	33	62		
Ephemeroptera Percentage	RG_MIDAG	2021	2	Mine-influenced	32	63		
Ephemeroptera Percentage	RG_MIDAG	2015	1	Mine-influenced	33	63		
Ephemeroptera Percentage	RG_MIDAG	2021	3	Mine-influenced	33	63		
Ephemeroptera Percentage	RG_MIDAG	2018	3	Mine-influenced	34	63		
Ephemeroptera Percentage	RG_MIDAG	2019	2	Mine-influenced	34	64		
Ephemeroptera Percentage	RG_MIDAG	2018	1	Mine-influenced	35	64		
Ephemeroptera Percentage	RG_MIDAG RG MIDAG	2019 2020	3	Mine-influenced Mine-influenced	34 35	64		
Ephemeroptera Percentage Ephemeroptera Percentage	RG_MIDAG	2020	1	Mine-influenced	35	65 66		
Ephemeroptera Percentage	RG MIDAG	2012	1 1	Mine-influenced	36	66		
Ephemeroptera Percentage	RG MIULE	2018	2	Mine-influenced	32	65		
Ephemeroptera Percentage	RG MIULE	2022	2	Mine-influenced	34	65		
Ephemeroptera Percentage	RG MIULE	2018	3	Mine-influenced	34	66		
Ephemeroptera Percentage	RG MIULE	2022	1	Mine-influenced	33	66		
Ephemeroptera Percentage	RG MIULE	2019	2	Mine-influenced	34	66		
Ephemeroptera Percentage	RG_MIULE	2019	3	Mine-influenced	34	66		
Ephemeroptera Percentage	RG_MIULE	2019	1	Mine-influenced	35	66		
Ephemeroptera Percentage	RG_MIULE	2018	1	Mine-influenced	34	66		
Ephemeroptera Percentage	RG_MIULE	2022	3	Mine-influenced	35	67		
Ephemeroptera Percentage	RG_MIULE	2021	3	Mine-influenced	35	67		
Ephemeroptera Percentage	RG_MIULE	2021	1	Mine-influenced	35	67		
Ephemeroptera Percentage	RG_MIULE	2020	3	Mine-influenced	36	67		
Ephemeroptera Percentage	RG_MIULE	2021	2	Mine-influenced	36	68		
Ephemeroptera Percentage	RG_MIULE	2020	1	Mine-influenced	36	68		
Ephemeroptera Percentage	RG_MIULE	2020 2018	2	Mine-influenced	36 28	68 59		
Ephemeroptera Percentage Ephemeroptera Percentage	RG_MI5 RG MI5	2018	2	Mine-influenced Mine-influenced	28	59 59		
Ephemeroptera Percentage	RG_MI5	2018	1	Mine-influenced	29	59 59		
Ephemeroptera Percentage	RG_MI5	2020	1	Mine-influenced	28	60		
Ephemeroptera Percentage	RG MI5	2022	2	Mine-influenced	30	60		
Ephemeroptera Percentage	RG MI5	2019	2	Mine-influenced	31	60		
Ephemeroptera Percentage	RG MI5	2020	2	Mine-influenced	31	60		
Ephemeroptera Percentage	RG_MI5	2019	1	Mine-influenced	31	60		
Ephemeroptera Percentage	RG_MI5	2021	2	Mine-influenced	31	61		
Ephemeroptera Percentage	RG_MI5	2021	1	Mine-influenced	32	61		
Ephemeroptera Percentage	RG_MI5	2018	3	Mine-influenced	31	61		
Ephemeroptera Percentage	RG_MI5	2012	1	Mine-influenced	32	61		
Ephemeroptera Percentage	RG_MI5	2019	3	Mine-influenced	32	62		
Ephemeroptera Percentage	RG MI5	2021	3	Mine-influenced	32	62		

Table K-3: Site-specific Normal Ranges at CMm LAEMP Sampling Stations, 2012 to 2022

Variable	Station	Year	Replicate	Reference or Mine-influenced	Lower Bound	Upper Bound
Ephemeroptera Percentage	RG_MI5	2015	1	Mine-influenced	32	62
Ephemeroptera Percentage	RG_MI5	2020	3	Mine-influenced	33	62
Ephemeroptera Percentage	RG_MI5	2022	3	Mine-influenced	33	62

Note: The average of the replicates was used as the site-specific normal range.

EPT = Ephemeroptera, Plecoptera, Trichoptera; CMm = Coal Mountain Mine; LAEMP = local aquatic effects monitoring program.

Table K-4: Spatial Analysis of Benthic Invertebrate Community Variables at CMm LAEMP Sampling Stations, 2022

			Overall	Mine-Influenced Station Compared to Downstream Stations							
Variable	Year	Transformation	ANOVA	MIUCO ^(a)	CORCK	MIDCO	MIDAG	MIULE	MI5		
			p -value								
Benthic invertebrate taxonomic richness (taxa per 3 min kick)	2022	none	<0.001	0.010 (1.0)	<0.001 (-2.3)	0.015 (1.0)	0.347 (0.4)	0.018 (1.2)	0.554 (0.2)		
Benthic invertebrate abundance (organisms per 3 min kick)	2022	none	<0.001	<0.001 (-1.8)	0.002 (-1.4)	0.572 (-0.2)	0.594 (-0.2)	0.318 (0.3)	0.012 (-0.8)		
Ephemeroptera, Plecoptera, Trichoptera abundance (organisms per 3 min kick)	2022	In(X+1)	<0.001	<0.001 (-1.3)	<0.001 (-4.0)	<0.001 (-1.9)	0.770 (-0.1)	0.733 (0.1)	0.066 (-0.8)		
Percent Ephemeroptera, Plecoptera, Trichoptera (%)	2022	none	<0.001	0.127 (-0.1)	<0.001 (-2.7)	<0.001 (-7.2)	0.101 (-0.8)	0.001 (-3.0)	0.407 (-0.7)		
Emphemeroptera abundance (organisms per 3 min kick)	2022	In(X+1)	<0.001	0.080 (-0.1)	<0.001 (-11.9)	<0.001 (-2.8)	0.038 (-0.8)	0.537 (0.2)	0.104 (-0.5)		
Percent Ephemeroptera (%)	2022	In(X+1)	<0.001	0.356 (0.0)	<0.001 (-2.6)	<0.001 (-3.7)	<0.001 (-1.7)	0.134 (-0.6)	0.399 (0.3)		

Notes: A posteriori comparisons following significant overall tests were considered significant at p < 0.009 after Dunn-Ŝidák correction. The direction and magnitude of difference (expressed as standard deviation) is provided in backets. Magnitude of difference was calculated as [(average at station)-(average of downstream and reference stations)]/standard deviation of downstream and reference stations.

WSP Canada Inc. Page 29 of 31

a) MIUCO is located in Michel Creek upstream of the Corbin Creek confluence.

Grey cells represent magnitude of differences greater than two standard deviations below the mean.

^{% =} percent; min = minute; ANOVA = analysis of variance; Ln = natural logarithm; < = less than; p = probability; CMm = Coal Mountain Mine; LAEMP = local aquatic effects monitoring program.

Table K-5: Temporal Analysis of Benthic Invertebrate Community Variables at CMm LAEMP Sampling Stations, 2012 to 2022

Benthic			·	Overall	Im LAEMP Sampling Stations, 2012 to 2022 Year Compared to Combined Previous Years										
Invertebrate Community Endpoint	Area	Station	Transformation	ANOVA (p -value)	Dunn-Ŝidák corrected level of significance ^(a)	2022 vs. 2012- 2021	2021 vs. 2012- 2020	2020 vs. 2012- 2019	2019 vs. 2012- 2018	2018 vs. 2012- 2017	2017 vs. 2012- 2016	2016 vs. 2012- 2015	2015 vs. 2012- 2014	2014 vs. 2012- 2013	2013 vs. 2012
		MI25	none	0.003	0.006	0.002 (-1.5)	0.934 (0.1)	0.081 (0.9)	0.983 (0.2)	0.022 (1.6)	0.653 (0.8)	0.025 (2.8)	0.959 (0.5)	n/a	0.027 (n/a)
	Reference Stations	AGCK	none	0.369	0.007	0.501 (0.2)	0.382 (-0.9)	0.042 (1.6)	0.658 (0.1)	n/a	n/a	0.208 (2.6)	0.771 (-0.7)	n/a	0.616 (n/a)
		LE1	none	0.725	0.013	0.295 (-1.0)	0.680 (-0.2)	0.938 (0.3)	0.334 (n/a)	n/a	n/a	n/a	n/a	n/a	n/a
Benthic Invertebrate		MIUCO	none	0.210	0.006	0.604 (0.0)	0.046 (1.3)	0.053 (1.5)	0.058 (4.0)	0.669 (-2.6)	0.900 (1.2)	0.929 (-0.7)	0.877 (n/a)	n/a	n/a
Richness		CORCK	none	0.076	0.006	0.024 (-0.9)	0.094 (-0.6)	0.016 (-1.4)	0.288 (-0.3)	0.051 (-1.4)	0.157 (-1.7)	0.384 (0.9)	0.264 (n/a)	n/a	n/a
(taxa per 3 min kick)	Mine-Influenced Stations	MIDCO	none	0.009	0.006	0.514 (-0.3)	0.128 (-0.8)	0.004 (1.7)	0.171 (1.1)	0.172 (-0.8)	0.228 (1.1)	0.094 (12.0)	0.860 (n/a)	n/a	n/a
	Willie-Illilideliced Stations	MIDAG	In(X+1)	0.064	0.009	0.502 (-0.5)	0.647 (-0.5)	0.005 (1.8)	0.089 (1.3)	0.485 (1.4)	n/a	n/a	0.656 (n/a)	n/a	n/a
		MIULE	none	0.152	0.013	0.605 (-0.3)	0.357 (-0.5)	0.045 (1.4)	0.182 (1.0)	n/a	n/a	n/a	n/a	n/a	n/a
		MI5	In(X+1)	0.052	0.009	0.553 (-0.5)	0.48 (0.1)	0.008 (1.4)	0.103 (0.7)	0.282 (0.4)	n/a	n/a	0.04 (n/a)	n/a	n/a
		MI25	In(X+1)	0.009	0.006	0.954 (0.0)	0.398 (0.4)	0.023 (-1)	0.067 (-0.8)	0.951 (0)	0.029 (1.3)	0.067 (0.8)	0.635 (-0.3)	n/a	0.001 (n/a)
	Reference Stations	AGCK	none	<0.001	0.007	0.015 (0.7)	<0.001 (-1.2)	0.003 (-0.6)	0.805 (0.1)	n/a	n/a	0.012 (-0.4)	<0.001 (-1.1)	n/a	<0.001 (n/a)
D 41- 1 4 - 1 4 -		LE1	In(X+1)	0.123	0.013	0.175 (-0.5)	0.897 (0.3)	0.024 (-1.5)	0.090 (n/a)	n/a	n/a	n/a	n/a	n/a	n/a
Benthic Invertebrate Abundance		MIUCO	In(X+1)	0.023	0.006	0.043 (-1.0)	0.915 (-0.1)	0.029 (-1.2)	0.188 (0.4)	0.29 (0.4)	0.125 (0.8)	0.789 (0.1)	0.008 (n/a)	n/a	n/a
(organisms per 3		CORCK	In(X+1)	0.015	0.006	0.095 (-0.7)	0.548 (0.3)	0.878 (0.1)	0.073 (0.9)	0.029 (-0.8)	0.784 (0.1)	0.175 (0.4)	0.002 (n/a)	n/a	n/a
min kick)	Mine-Influenced Stations	MIDCO	In(X+1)	<0.001	0.006	0.021 (-0.7)	0.49 (-0.2)	0.02 (0.5)	<0.001 (2.6)	0.001 (-1.7)	0.052 (2.0)	0.104 (-11.5)	0.858 (n/a)	n/a	n/a
min kioky	Willie-Illilidericed Stations	MIDAG	In(X+1)	0.489	0.009	0.642 (-0.3)	0.349 (-0.6)	0.113 (1.3)	0.612 (-0.4)	0.604 (-1.2)	n/a	n/a	0.681 (n/a)	n/a	n/a
		MIULE	none	0.674	0.013	0.434 (-0.5)	0.285 (-0.7)	0.551 (0.4)	0.812 (-0.1)	n/a	n/a	n/a	n/a	n/a	n/a
		MI5	none	0.519	0.009	0.233 (-1.0)	0.309 (0.8)	0.301 (0.7)	0.227 (1.3)	0.587 (7.2)	n/a	n/a	0.945 (n/a)	n/a	n/a
		MI25	In(X+1)	0.021	0.006	0.677 (0.2)	0.299 (0.5)	0.068 (-0.8)	0.064 (-0.9)	0.924 (-0.1)	0.064 (1.1)	0.228 (0.4)	0.943 (-0.5)	n/a	0.002 (n/a)
	Reference Stations	AGCK	none	<0.001	0.007	0.016 (0.7)	<0.001 (-1.3)	0.001 (-0.7)	0.524 (0.1)	n/a	n/a	0.005 (-0.4)	<0.001 (-1.0)	n/a	<0.001 (n/a)
Ephemeroptera,		LE1	In(X+1)	0.200	0.013	0.393 (-0.2)	0.951 (0.4)	0.041 (-1.3)	0.110 (n/a)	n/a	n/a	n/a	n/a	n/a	n/a
Plecoptera, Trichoptera		MIUCO	In(X+1)	0.022	0.006	0.029 (-1.0)	0.799 (0.0)	0.006 (-1.6)	0.975 (0.0)	0.635 (0.2)	0.102 (1.0)	0.756 (0.1)	0.013 (n/a)	n/a	n/a
Abundance		CORCK	In(X+1)	0.010	0.006	0.067 (-0.6)	0.795 (0.3)	0.505 (0.0)	0.616 (0.4)	0.002 (-1.3)	0.466 (0.3)	0.079 (0.7)	0.005 (n/a)	n/a	n/a
(organisms per 3	Mine-Influenced Stations	MIDCO	In(X+1)	<0.001	0.006	0.034 (-0.3)	0.954 (0.2)	0.021 (0.8)	0.153 (0.9)	<0.001 (-3.6)	0.116 (1.3)	0.057 (-13.7)	0.859 (n/a)	n/a	n/a
min kick)	Willie-Illilidericed Stations	MIDAG	none	0.176	0.009	0.618 (-0.3)	0.292 (-0.6)	0.023 (2.0)	0.577 (-0.5)	0.566 (-2.1)	n/a	n/a	0.799 (n/a)	n/a	n/a
,		MIULE	none	0.952	0.013	0.910 (-0.1)	0.732 (-0.2)	0.618 (0.3)	0.628 (-0.3)	n/a	n/a	n/a	n/a		n/a
		MI5	none	0.576	0.009	0.352 (-0.8)	0.168 (1.4)	0.398 (0.6)	0.279 (1.2)	0.619 (3.7)	n/a	n/a	0.903 (n/a)	n/a	n/a
		MI25	none	0.017	0.006	0.020 (1.1)	0.131 (0.6)	0.254 (0.4)	0.179 (-0.7)	0.444 (-0.5)	0.464 (-0.7)	0.025 (-1.8)	0.015 (-5.9)	n/a	0.489 (n/a)
	Reference Stations	AGCK	none	0.036	0.007	0.736 (0.4)	0.003 (-1.8)	0.022 (-1.3)	0.284 (-0.4)	n/a	n/a	0.221 (-0.9)	0.256 (1.2)	n/a	0.244 (n/a)
Percent		LE1	none	0.154	0.013	0.026 (1.7)	0.351 (0.6)	0.287 (1.1)	0.833 (n/a)	n/a	n/a	n/a	n/a	n/a	n/a
Ephemeroptera,		MIUCO	none	<0.001	0.006	0.277 (0.1)	0.266 (0.2)	<0.001 (-0.7)	<0.001 (-2.3)	0.002 (-1.9)	0.697 (0.2)	0.883 (0.1)	0.014 (n/a)	n/a	n/a
Plecoptera,		CORCK	In(X+1)	0.116	0.006	0.863 (0.4)	0.299 (-0.2)	0.165 (-0.4)	0.015 (-1.2)	0.212 (-0.7)	0.612 (0.3)	0.891 (-0.1)	0.025 (n/a)	n/a	n/a
Trichoptera	Mine-Influenced Stations	MIDCO	In(X+1)	0.001	0.006	0.982 (0.5)	0.652 (0.7)	0.669 (0.5)	<0.001 (-0.9)	<0.001 (-5.8)	0.546 (-1.5)	0.665 (-1.0)	0.601 (n/a)	n/a	n/a
(%)	Willie Hillderload Stations	MIDAG	none	0.002	0.009	0.023 (1.0)	0.593 (0.4)	0.125 (0.8)	<0.001 (-3.7)	0.206 (-0.9)	n/a	n/a	0.222 (n/a)	n/a	n/a
		MIULE	none	0.013	0.013	0.013 (1.4)	0.005 (2.6)	0.859 (-0.1)	0.678 (-0.4)	n/a	n/a	n/a	n/a	n/a	n/a
		MI5	none	0.147	0.009	0.069 (1.2)	0.058 (1.7)	0.777 (-0.2)	0.877 (-0.1)	0.878 (-0.1)	n/a	n/a	0.137 (n/a)	n/a	n/a
		MI25	none	0.034	0.006	0.942 (0.2)	0.860 (0.2)	0.062 (-0.7)	0.042 (-0.8)	0.534 (-0.2)	0.011 (2)	0.174 (0.8)	0.634 (-0.6)	n/a	0.019 (n/a)
	Reference Stations	AGCK	none	<0.001	0.007	0.258 (0.4)	<0.001 (-1.4)	0.002 (-0.8)	0.537 (0.2)	n/a	n/a	0.039 (-0.3)	<0.001 (-1.3)	n/a	<0.001 (n/a)
Ephemeroptera		LE1	In(X+1)	0.032	0.013	0.442 (-0.1)	0.302 (0.9)	0.014 (-1.0)	0.02 (n/a)	n/a	n/a	n/a	n/a	n/a	n/a
Abundance		MIUCO	In(X+1)	0.002	0.006	0.010 (-0.9)	0.807 (0.2)	<0.001 (-1.9)	0.520 (-0.3)	0.348 (0.3)	0.127 (0.6)	0.935 (0)	0.001 (n/a)	n/a	n/a
(organisms per 3		CORCK	In(X+1)	0.222	0.006	0.062 (-1.0)	0.992 (0.2)	0.043 (-1.3)	0.564 (-0.3)	0.818 (-0.2)	0.864 (0.1)	0.241 (1.0)	0.142 (n/a)	n/a	n/a
min kick)	Mine-Influenced Stations	MIDCO	In(X+1)	<0.001	0.006	0.888 (0.2)	0.323 (0.0)	0.179 (0.4)	<0.001 (1.3)	<0.001 (-2.5)	0.288 (0.5)	0.001 (-17.1)	0.790 (n/a)	n/a	n/a
,	Time imagnoca otations	MIDAG	none	0.264	0.009	0.354 (-0.5)	0.352 (-0.5)	0.062 (1.6)	0.569 (-0.3)	0.319 (-34.0)	n/a	n/a	0.978 (n/a)	n/a	n/a
		MIULE	none	0.970	0.013	0.615 (0.4)	0.809 (-0.2)	0.772 (0.2)	0.784 (-0.1)	n/a	n/a	n/a	n/a	n/a	n/a
		MI5	In(X+1)	0.484	0.009	0.723 (0.0)	0.169 (0.9)	0.122 (0.9)	0.323 (0.4)	0.205 (1.6)	n/a	n/a	0.446 (n/a)	n/a	n/a

Table K-5: Temporal Analysis of Benthic Invertebrate Community Variables at CMm LAEMP Sampling Stations, 2012 to 2022

Benthic				Overall	Year Compared to Combined Previous Years										
Invertebrate Community Endpoint	Area	Station	Transformation	ANOVA	Dunn-Ŝidák corrected level of significance ^(a)	2022 vs. 2012- 2021	2021 vs. 2012- 2020	2020 vs. 2012- 2019	2019 vs. 2012- 2018	2018 vs. 2012- 2017	2017 vs. 2012- 2016	2016 vs. 2012- 2015	2015 vs. 2012- 2014	2014 vs. 2012- 2013	2013 vs. 2012
		MI25	none	0.131	0.006	0.013 (1.6)	0.223 (0.7)	0.652 (-0.4)	0.895 (0)	0.865 (0.0)	0.283 (0.9)	0.261 (0.7)	0.101 (0.5)	n/a	0.03 (n/a)
Reference Stations	AGCK	In(X+1)	0.012	0.007	0.177 (-0.5)	0.002 (-2.1)	0.059 (-1.4)	0.185 (0.6)	n/a	n/a	0.367 (0.7)	0.162 (-3.5)	n/a	0.604 (n/a)	
		LE1	none	0.175	0.013	0.159 (1.1)	0.095 (1.9)	0.866 (0.6)	0.414 (n/a)	n/a	n/a	n/a	n/a	n/a	n/a
Percent		MIUCO	In(X+1)	0.005	0.006	0.278 (-0.1)	0.506 (0.6)	0.001 (-1.3)	<0.001 (-3.4)	0.399 (-0.8)	0.389 (-1.2)	0.519 (-0.8)	0.318 (n/a)	n/a	n/a
Ephemeroptera		CORCK	In(X+1)	0.729	0.006	0.585 (-0.4)	0.626 (-0.3)	0.502 (-0.5)	0.480 (-0.5)	0.229 (1.7)	0.744 (-0.6)	0.739 (-0.5)	0.415 (n/a)	n/a	n/a
(%)	Mine-Influenced Stations	MIDCO	In(X+1)	<0.001	0.006	0.357 (0.6)	0.107 (-0.2)	0.211 (0.0)	0.667 (0.7)	<0.001 (-1.6)	0.552 (-0.3)	0.002 (-5.5)	0.437 (n/a)	n/a	n/a
	Mille-Illiluericed Stations	MIDAG	none	0.006	0.009	0.563 (0.1)	0.247 (0.8)	0.714 (0.3)	0.001 (-1.4)	0.010 (-1.1)	n/a	n/a	0.030 (n/a)	n/a	n/a
		MIULE	none	0.005	0.013	0.001 (2.4)	0.019 (1.9)	0.791 (-0.2)	0.757 (0.2)	n/a	n/a	n/a	n/a	n/a	n/a
		MI5	none	0.001	0.009	<0.001 (3.5)	0.064 (1.2)	0.418 (0.3)	0.182 (-1.2)	0.095 (1)	n/a	n/a	0.11 0 (n/a)	n/a	n/a

Notes: **Bold** values indicate *p*-values representing statistically significant differences. Overall comparisons were considered significant at *p*<0.05. The direction and magnitude of difference (expressed as standard deviation) is provided in backets. Magnitude of difference was calculated as [(average at year)-(average of all previous years]/standard deviation of all previous years.

a) A posteriori comparisons following significant overall tests were considered significant at varying levels of significance after Dunnŝidák correction.

Grey cells represent magnitude of differences greater than two standard deviations below the mean.

n/a = not applicable; ANOVA = analysis of variance; Ln = natural logarithm; < = less than;p = probability; vs. = versus; CMm = Coal Mountain Mine; LAEMP = local aquatic effects monitoring program.

APPENDIX L

Benthic Invertebrate Tissue Data

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

T	01-11	Locatio	n (UTMs) ^(a)	V	D. II		0			-11.46		Laboratory Information
Туре	Station	Easting	Northing	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit	Lab	Sample ID
INV	RG CORCK	668556	5487388	2015	1	2015-09-11	Composite	Wet Mass	0.35	a	MURR	RG CORCK INV-1 2015-09-11
INV	RG MI25	668186	5482838	2015	1	2015-09-10	Composite	Wet Mass	0.32	a a	MURR	RG MI25 INV-1 2015-09-10
INV	RG MI25	668186	5482838	2015	1	2015-09-10	EPH	Wet Mass	0.36	a a	MURR	RG MI25 INVEPH-1 2015-09-10
INV	RG MI25	668186	5482838	2015	1	2015-09-10	RHY	Wet Mass	0.13	g G	MURR	RG MI25 INVRHY-1 2015-09-10
INV	RG MI5	659387	5496818	2015	1	2015-09-13	Composite	Wet Mass	0.33	<u>a</u>	MURR	RG MI5 INV-1 2015-09-13
INV	RG MIDAG	665258	5489417	2015	1	2015-09-12	Composite	Wet Mass	0.26	<u>9</u>	MURR	RG MIDAG INV-1 2015-09-12
INV	RG MIDCO	667711	5487625	2015	1	2015-09-11	Composite	Wet Mass	0.21	<u>9</u>	MURR	RG MIDCO INV-1 2015-09-11
INV	RG_MIDCO	667711	5487625	2015	1	2015-09-11	EPH	Wet Mass	0.39	<u>9</u>	MURR	RG MIDCO INVEPH-1 2015-09-11
INV	RG_MIDCO	667711	5487625	2015	1	2015-09-11	RHY	Wet Mass	0.39	<u>9</u>	MURR	RG MIDCO INVRHY-1 2015-09-11
INV	RG MIUCO	668134	5486767	2015	1	2015-09-11	Composite	Wet Mass	0.27	9	MURR	RG MIUCO INV-1 2015-09-10
	_				ļ		•			<u>g</u>		
INV	RG_CORCK	668556	5487388	2015	1	2015-09-12	Composite	Dry Mass	0.093	<u>g</u>	MURR	RG_CORCK_INV-1_2015-09-12
INV	RG_MI25	668186	5482838	2015	1	2015-09-11	Composite	Dry Mass	0.051	g	MURR	RG_MI25_INV-1_2015-09-11
INV	RG_MI25	668186	5482838	2015	1	2015-09-11	EPH	Dry Mass	0.05	g	MURR	RG_MI25_INVEPH-1_2015-09-11
INV	RG_MI25	668186	5482838	2015	1	2015-09-11	RHY	Dry Mass	0.027	g	MURR	RG_MI25_INVRHY-1_2015-09-11
INV	RG_MI5	659387	5496818	2015	1	2015-09-14	Composite	Dry Mass	0.051	g	MURR	RG_MI5_INV-1_2015-09-14
INV	RG_MIDAG	665258	5489417	2015	1	2015-09-13	Composite	Dry Mass	0.05	g	MURR	RG_MIDAG_INV-1_2015-09-13
INV	RG_MIDCO	667711	5487625	2015	1	2015-09-12	Composite	Dry Mass	0.044	g	MURR	RG_MIDCO_INV-1_2015-09-12
INV	RG_MIDCO	667711	5487625	2015	1	2015-09-12	EPH	Dry Mass	0.047	g	MURR	RG_MIDCO_INVEPH-1_2015-09-12
INV	RG_MIDCO	667711	5487625	2015	1	2015-09-12	RHY	Dry Mass	0.049	g	MURR	RG_MIDCO_INVRHY-1_2015-09-12
INV	RG_MIUCO	668134	5486767	2015	1	2015-09-11	Composite	Dry Mass	0.05	g	MURR	RG_MIUCO_INV-1_2015-09-11
INV	RG_CORCK	668556	5487388	2015	1	2015-09-13	Composite	Wet-to-Dry Ratio	3.8	-	MURR	RG_CORCK_INV-1_2015-09-13
INV	RG_MI25	668186	5482838	2015	1	2015-09-12	Composite	Wet-to-Dry Ratio	6.2	-	MURR	RG_MI25_INV-1_2015-09-12
INV	RG_MI25	668186	5482838	2015	1	2015-09-12	EPH	Wet-to-Dry Ratio	7.2	-	MURR	RG_MI25_INVEPH-1_2015-09-12
INV	RG_MI25	668186	5482838	2015	1	2015-09-12	RHY	Wet-to-Dry Ratio	4.8	-	MURR	RG_MI25_INVRHY-1_2015-09-12
INV	RG MI5	659387	5496818	2015	1	2015-09-15	Composite	Wet-to-Dry Ratio	6.4	-	MURR	RG MI5 INV-1 2015-09-15
INV	RG MIDAG	665258	5489417	2015	1	2015-09-14	Composite	Wet-to-Dry Ratio	5.1	-	MURR	RG MIDAG INV-1 2015-09-14
INV	RG MIDCO	667711	5487625	2015	1	2015-09-13	Composite	Wet-to-Dry Ratio	4.9	-	MURR	RG MIDCO INV-1 2015-09-13
INV	RG MIDCO	667711	5487625	2015	1	2015-09-13	EPH	Wet-to-Dry Ratio	8.3	-	MURR	RG MIDCO INVEPH-1 2015-09-13
INV	RG MIDCO	667711	5487625	2015	1	2015-09-13	RHY	Wet-to-Dry Ratio	5.5	-	MURR	RG MIDCO INVRHY-1 2015-09-13
INV	RG MIUCO	668134	5486767	2015	1	2015-09-12	Composite	Wet-to-Dry Ratio	5.8	-	MURR	RG MIUCO INV-1 2015-09-12
INV	RG CORCK	668556	5487388	2015	1	2015-09-14	Composite	% Dry Matter	27	%	MURR	RG CORCK INV-1 2015-09-14
INV	RG MI25	668186	5482838	2015	1	2015-09-13	Composite	% Dry Matter	18	%	MURR	RG MI25 INV-1 2015-09-13
INV	RG MI25	668186	5482838	2015	1	2015-09-13	EPH	% Dry Matter	16	%	MURR	RG MI25 INVEPH-1 2015-09-13
INV	RG MI25	668186	5482838	2015	1	2015-09-13	RHY	% Dry Matter	15	%	MURR	RG MI25 INVRHY-1 2015-09-13
INV	RG MI5	659387	5496818	2015	1	2015-09-16	Composite	% Dry Matter	14	%	MURR	RG MI5 INV-1 2015-09-16
INV	RG MIDAG	665258	5489417	2015	1	2015-09-15	Composite	% Dry Matter	24		MURR	RG MIDAG INV-1 2015-09-15
INV	RG_MIDAG	667711	5487625	2015	1	2015-09-14	Composite	% Dry Matter	16		MURR	RG_MIDCO_INV-1_2015-09-14
INV	RG_MIDCO	667711	5487625	2015	1	2015-09-14	EPH	% Dry Matter			MURR	RG MIDCO_INVEPH-1 2015-09-14
	_				1			•	15			
INV	RG_MIDCO	667711	5487625	2015	1	2015-09-14	RHY	% Dry Matter	14	%	MURR	RG_MIDCO_INVRHY-1_2015-09-14
INV	RG_MIUCO	668134	5486767	2015	1	2015-09-13	Composite	% Dry Matter	14	%	MURR	RG_MIUCO_INV-1_2015-09-13
INV	RG_CORCK	668556	5487388	2015	1	2015-09-15	Composite	Se PPM Dry Mass	3.5	mg/kg dw	MURR	RG_CORCK_INV-1_2015-09-15
INV	RG_MI25	668186	5482838	2015	1	2015-09-14	Composite	Se PPM Dry Mass	4.6	mg/kg dw	MURR	RG_MI25_INV-1_2015-09-14
INV	RG_MI25	668186	5482838	2015	1	2015-09-14	EPH	Se PPM Dry Mass	7.0	mg/kg dw	MURR	RG_MI25_INVEPH-1_2015-09-14
INV	RG_MI25	668186	5482838	2015	1	2015-09-14	RHY	Se PPM Dry Mass	5.6	mg/kg dw	MURR	RG_MI25_INVRHY-1_2015-09-14
INV	RG_MI5	659387	5496818	2015	1	2015-09-17	Composite	Se PPM Dry Mass	5.1	mg/kg dw	MURR	RG_MI5_INV-1_2015-09-17
INV	RG_MIDAG	665258	5489417	2015	1	2015-09-16	Composite	Se PPM Dry Mass	7.6	mg/kg dw	MURR	RG_MIDAG_INV-1_2015-09-16
INV	RG_MIDCO	667711	5487625	2015	1	2015-09-15	Composite	Se PPM Dry Mass	4.4	mg/kg dw	MURR	RG_MIDCO_INV-1_2015-09-15
INV	RG_MIDCO	667711	5487625	2015	1	2015-09-15	EPH	Se PPM Dry Mass	6.0	mg/kg dw	MURR	RG_MIDCO_INVEPH-1_2015-09-15
INV	RG_MIDCO	667711	5487625	2015	1	2015-09-15	RHY	Se PPM Dry Mass	4.8	mg/kg dw	MURR	RG_MIDCO_INVRHY-1_2015-09-15
INV	RG_MIUCO	668134	5486767	2015	1	2015-09-14	Composite	Se PPM Dry Mass	4.8	mg/kg dw	MURR	RG_MIUCO_INV-1_2015-09-14
INV	RG_CORCK	668556	5487388	2015	1	2015-09-16	Composite	Se PPM Wet Mass	0.93	mg/kg ww	MURR	RG_CORCK_INV-1_2015-09-16
INV	RG_MI25	668186	5482838	2015	1	2015-09-15	Composite	Se PPM Wet Mass	0.74	mg/kg ww	MURR	RG_MI25_INV-1_2015-09-15
INV	RG_MI25	668186	5482838	2015	1	2015-09-15	EPH	Se PPM Wet Mass	0.98	mg/kg ww	MURR	RG_MI25_INVEPH-1_2015-09-15
IINV	RG MI25	668186	5482838	2015	1	2015-09-15	RHY	Se PPM Wet Mass	1.2	mg/kg ww	MURR	RG MI25 INVRHY-1 2015-09-15
	RG IVIIZO									J. J		
INV			5496818	2015	1	2015-09-18	Composite	Se PPM Wet Mass	0.8	ma/ka ww	MURR	RG MI5 INV-1 2015-09-18
	RG_MI5 RG_MIDAG	659387 665258	5496818 5489417	2015 2015	1	2015-09-18 2015-09-17	Composite Composite	Se PPM Wet Mass Se PPM Wet Mass	0.8 1.5	mg/kg ww mg/kg ww	MURR MURR	RG_MI5_INV-1_2015-09-18 RG_MIDAG_INV-1_2015-09-17

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

	0	Locatio	n (UTMs) ^(a)	V	D		0					Laboratory Information
Туре	Station	Easting	Northing	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit	Lab	Sample ID
INV	RG MIDCO	667711	5487625	2015	1	2015-09-16	EPH	Se PPM Wet Mass	0.72	mg/kg ww	MURR	RG MIDCO INVEPH-1 2015-09-16
INV	RG MIDCO	667711	5487625	2015	1	2015-09-16	RHY	Se PPM Wet Mass	0.86	mg/kg ww	MURR	RG MIDCO INVRHY-1 2015-09-16
INV	RG MIUCO	668134	5486767	2015	1	2015-09-15	Composite	Se PPM Wet Mass	0.83	mg/kg ww	MURR	RG MIUCO INV-1 2015-09-15
INV	RG_MIDCO	667711	5487625	2016	1	2016-09-13	RHY	Wet Mass	0.33	a a	MURR	RG MIDCO INVRHY-1 2016-09-13
INV	RG MIDCO	667711	5487625	2016	1	2016-09-14	RHY	Dry Mass	0.079	g a	MURR	RG MIDCO INVRHY-1 2016-09-14
INV	RG MIDCO	667711	5487625	2016	1	2016-09-15	RHY	Wet-to-Dry Ratio	4.2	<u>9</u>	MURR	RG MIDCO INVRHY-1 2016-09-15
INV	RG MIDCO	667711	5487625	2016	1	2016-09-16	RHY	% Dry Matter	24	%	MURR	RG MIDCO INVRHY-1 2016-09-16
INV	RG_MIDCO	667711	5487625	2016	1	2016-09-17	RHY	Se PPM Dry Mass	4.7		MURR	RG MIDCO INVRHY-1 2016-09-17
				2016	1		RHY	Se PPM Dry Mass Se PPM Wet Mass		mg/kg dw	_	
INV	RG_MIDCO	667711	5487625		'	2016-09-18			1.1	mg/kg ww	MURR	RG_MIDCO_INVRHY-1_2016-09-18
INV	RG_CORCK	668556	5487388	2012	1	2012-09-15	Composite	Lithium	1.2	mg/kg	-	RG_CORCK_INV-1_2012-09-15
INV	RG_MI25	668186	5482838	2012	1	2012-09-15	Composite	Lithium	2.0	mg/kg	-	RG_MI25_INV-1_2012-09-15
INV	RG_MIUCO	668134	5486767	2012	1	2012-09-15	Composite	Lithium	13	mg/kg	-	RG_MIUCO_INV-1_2012-09-15
INV	RG_MIDCO	667711	5487625	2012	2	2012-09-15	Composite	Lithium	7.8	mg/kg	-	RG_MIDCO_INV-2_2012-09-15
INV	RG_AGCK	667555	5488644	2012	1	2012-09-16	Composite	Lithium	0.63	mg/kg	-	RG_AGCK_INV-1_2012-09-16
INV	RG_MIDCO	667711	5487625	2012	1	2012-09-15	Composite	Lithium	9.1	mg/kg	-	RG_MIDCO_INV-1_2012-09-15
INV	RG_MIDAG	665258	5489417	2012	1	2012-09-16	Composite	Lithium	1.7	mg/kg	-	RG_MIDAG_INV-1_2012-09-16
INV	RG_MI5	659387	5496818	2012	1	2012-09-16	Composite	Lithium	1.4	mg/kg	-	RG_MI5_INV-1_2012-09-16
INV	RG_MIDCO	667711	5487625	2012	3	2012-09-15	Composite	Lithium	2.8	mg/kg	-	RG_MIDCO_INV-3_2012-09-15
INV	RG_CORCK	668556	5487388	2012	1	2012-09-15	Composite	Beryllium	0.11	mg/kg	-	RG_CORCK_INV-1_2012-09-15
INV	RG_MI25	668186	5482838	2012	1	2012-09-15	Composite	Beryllium	0.088	mg/kg	-	RG_MI25_INV-1_2012-09-15
INV	RG_MIUCO	668134	5486767	2012	1	2012-09-15	Composite	Beryllium	0.48	mg/kg	-	RG_MIUCO_INV-1_2012-09-15
INV	RG_MIDCO	667711	5487625	2012	2	2012-09-15	Composite	Beryllium	0.33	mg/kg	-	RG_MIDCO_INV-2_2012-09-15
INV	RG_AGCK	667555	5488644	2012	1	2012-09-16	Composite	Beryllium	0.026	mg/kg	-	RG_AGCK_INV-1_2012-09-16
INV	RG_MIDCO	667711	5487625	2012	1	2012-09-15	Composite	Beryllium	0.35	mg/kg	-	RG_MIDCO_INV-1_2012-09-15
INV	RG_MIDAG	665258	5489417	2012	1	2012-09-16	Composite	Beryllium	0.062	mg/kg	-	RG_MIDAG_INV-1_2012-09-16
INV	RG_MI5	659387	5496818	2012	1	2012-09-16	Composite	Beryllium	0.068	mg/kg	-	RG_MI5_INV-1_2012-09-16
INV	RG_MIDCO	667711	5487625	2012	3	2012-09-15	Composite	Beryllium	0.14	mg/kg	-	RG_MIDCO_INV-3_2012-09-15
INV	RG_CORCK	668556	5487388	2012	1	2012-09-15	Composite	Boron	5.3	mg/kg	-	RG_CORCK_INV-1_2012-09-15
INV	RG_MI25	668186	5482838	2012	1	2012-09-15	Composite	Boron	8.3	mg/kg	-	RG_MI25_INV-1_2012-09-15
INV	RG MIUCO	668134	5486767	2012	1	2012-09-15	Composite	Boron	29	mg/kg	-	RG MIUCO INV-1 2012-09-15
INV	RG MIDCO	667711	5487625	2012	2	2012-09-15	Composite	Boron	19	mg/kg	-	RG MIDCO INV-2 2012-09-15
INV	RG AGCK	667555	5488644	2012	1	2012-09-16	Composite	Boron	1.4	mg/kg	_	RG AGCK INV-1 2012-09-16
INV	RG MIDCO	667711	5487625	2012	1	2012-09-15	Composite	Boron	19	mg/kg	_	RG MIDCO INV-1 2012-09-15
INV	RG MIDAG	665258	5489417	2012	1	2012-09-16	Composite	Boron	3.7	mg/kg	_	RG MIDAG INV-1 2012-09-16
INV	RG MI5	659387	5496818	2012	1	2012-09-16	Composite	Boron	4.0	mg/kg	_	RG MI5 INV-1 2012-09-16
INV	RG MIDCO	667711	5487625	2012	3	2012-09-15	Composite	Boron	8.2	mg/kg	_	RG MIDCO INV-3 2012-09-15
INV	RG CORCK	668556	5487388	2012	1	2012-09-15	Composite	Sodium	2.444	mg/kg	_	RG CORCK INV-1 2012-09-15
INV	RG MI25	668186	5482838	2012	1	2012-09-15	Composite	Sodium	4,070	mg/kg		RG MI25 INV-1 2012-09-15
INV	RG MIUCO	668134	5486767	2012	1	2012-09-15	Composite	Sodium	3,462	mg/kg	_	RG MIUCO INV-1 2012-09-15
INV	RG MIDCO	667711	5487625	2012	2	2012-09-15	Composite	Sodium	2,509	mg/kg	_	RG MIDCO INV-2 2012-09-15
INV	RG AGCK	667555	5488644	2012	1	2012-09-16	Composite	Sodium	3,686	mg/kg	_	RG AGCK INV-1 2012-09-16
INV	RG MIDCO	667711	5487625	2012	1	2012-09-15	Composite	Sodium	3,248	mg/kg	_	RG MIDCO INV-1 2012-09-15
INV	RG MIDAG	665258	5489417	2012	1	2012-09-16	Composite	Sodium	2,957	mg/kg	-	RG MIDAG INV-1 2012-09-16
INV	RG MI5	659387	5496818	2012	1	2012-09-16		Sodium	3,726		- -	
							Composite	Sodium		mg/kg	-	RG_MI5_INV-1_2012-09-16
INV	RG_MIDCO	667711	5487625	2012	3	2012-09-15	Composite		3,106	mg/kg	-	RG_MIDCO_INV-3_2012-09-15
INV	RG_CORCK	668556	5487388	2012	1	2012-09-15	Composite	Magnesium	1,751	mg/kg	-	RG_CORCK_INV-1_2012-09-15
INV	RG_MI25	668186	5482838	2012	1	2012-09-15	Composite	Magnesium	1,256	mg/kg	-	RG_MI25_INV-1_2012-09-15
INV	RG_MIUCO	668134	5486767	2012	1	2012-09-15	Composite	Magnesium	2,518	mg/kg	-	RG_MIUCO_INV-1_2012-09-15
INV	RG_MIDCO	667711	5487625	2012	2	2012-09-15	Composite	Magnesium	2,056	mg/kg	-	RG_MIDCO_INV-2_2012-09-15
INV	RG_AGCK	667555	5488644	2012	1	2012-09-16	Composite	Magnesium	1,263	mg/kg	-	RG_AGCK_INV-1_2012-09-16
INV	RG_MIDCO	667711	5487625	2012	1	2012-09-15	Composite	Magnesium	2,075	mg/kg	-	RG_MIDCO_INV-1_2012-09-15
INV	RG_MIDAG	665258	5489417	2012	1	2012-09-16	Composite	Magnesium	1,578	mg/kg	-	RG_MIDAG_INV-1_2012-09-16
INV	RG_MI5	659387	5496818	2012	1	2012-09-16	Composite	Magnesium	1,393	mg/kg	-	RG_MI5_INV-1_2012-09-16
INV	RG_MIDCO	667711	5487625	2012	3	2012-09-15	Composite	Magnesium	1,869	mg/kg	-	RG_MIDCO_INV-3_2012-09-15
INV	RG_CORCK	668556	5487388	2012	1	2012-09-15	Composite	Aluminum	1,266	mg/kg	-	RG_CORCK_INV-1_2012-09-15
INV	RG MI25	668186	5482838	2012	1	2012-09-15	Composite	Aluminum	1,509	mg/kg	-	RG_MI25_INV-1_2012-09-15
IINV												

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

T	04-41	Locatio	n (UTMs) ^(a)	V	Dan Karat	D-1	0		D	114		Laboratory Information
Туре	Station	Easting	Northing	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit	Lab	Sample ID
INV	RG MIDCO	667711	5487625	2012	2	2012-09-15	Composite	Aluminum	5,133	mg/kg	-	RG MIDCO INV-2 2012-09-15
INV	RG AGCK	667555	5488644	2012	1	2012-09-16	Composite	Aluminum	190	mg/kg	_	RG AGCK INV-1 2012-09-16
INV	RG MIDCO	667711	5487625	2012	1	2012-09-15	Composite	Aluminum	5,187	mg/kg	_	RG MIDCO INV-1 2012-09-15
INV	RG_MIDAG	665258	5489417	2012	1	2012-09-16	Composite	Aluminum	1,106	mg/kg	_	RG MIDAG INV-1 2012-09-16
INV	RG MI5	659387	5496818	2012	1	2012-09-16	Composite	Aluminum	1,113	mg/kg	_	RG MI5 INV-1 2012-09-16
INV	RG MIDCO	667711	5487625	2012	3	2012-09-15	Composite	Aluminum	4,095	mg/kg	_	RG MIDCO INV-3 2012-09-15
INV	RG CORCK	668556	5487388	2012	1	2012-09-15	Composite	Phosphorus	7,415	mg/kg	-	RG CORCK INV-1 2012-09-15
					1		,	•			-	RG_CORCK_INV-1_2012-09-15
INV	RG_MI25	668186	5482838	2012		2012-09-15	Composite	Phosphorus	9,482	mg/kg	-	
INV	RG_MIUCO	668134	5486767	2012	1	2012-09-15	Composite	Phosphorus	8,329	mg/kg	-	RG_MIUCO_INV-1_2012-09-15
INV	RG_MIDCO	667711	5487625	2012	2	2012-09-15	Composite	Phosphorus	6,985	mg/kg	-	RG_MIDCO_INV-2_2012-09-15
INV	RG_AGCK	667555	5488644	2012	1	2012-09-16	Composite	Phosphorus	9,806	mg/kg	-	RG_AGCK_INV-1_2012-09-16
INV	RG_MIDCO	667711	5487625	2012	1	2012-09-15	Composite	Phosphorus	7,044	mg/kg	-	RG_MIDCO_INV-1_2012-09-15
INV	RG_MIDAG	665258	5489417	2012	1	2012-09-16	Composite	Phosphorus	8,698	mg/kg	-	RG_MIDAG_INV-1_2012-09-16
INV	RG_MI5	659387	5496818	2012	1	2012-09-16	Composite	Phosphorus	8,287	mg/kg	-	RG_MI5_INV-1_2012-09-16
INV	RG_MIDCO	667711	5487625	2012	3	2012-09-15	Composite	Phosphorus	7,639	mg/kg	-	RG_MIDCO_INV-3_2012-09-15
INV	RG_CORCK	668556	5487388	2012	1	2012-09-15	Composite	Potassium	6,522	mg/kg	-	RG_CORCK_INV-1_2012-09-15
INV	RG_MI25	668186	5482838	2012	1	2012-09-15	Composite	Potassium	9,919	mg/kg	-	RG_MI25_INV-1_2012-09-15
INV	RG_MIUCO	668134	5486767	2012	1	2012-09-15	Composite	Potassium	11,530	mg/kg	-	RG_MIUCO_INV-1_2012-09-15
INV	RG MIDCO	667711	5487625	2012	2	2012-09-15	Composite	Potassium	8,212	mg/kg	-	RG MIDCO INV-2 2012-09-15
INV	RG AGCK	667555	5488644	2012	1	2012-09-16	Composite	Potassium	10,093	mg/kg	-	RG AGCK INV-1 2012-09-16
INV	RG MIDCO	667711	5487625	2012	1	2012-09-15	Composite	Potassium	9,516	mg/kg	-	RG MIDCO INV-1 2012-09-15
INV	RG MIDAG	665258	5489417	2012	1	2012-09-16	Composite	Potassium	7,706	mg/kg	-	RG MIDAG INV-1 2012-09-16
INV	RG MI5	659387	5496818	2012	1	2012-09-16	Composite	Potassium	7,734	mg/kg	-	RG MI5 INV-1 2012-09-16
INV	RG MIDCO	667711	5487625	2012	3	2012-09-15	Composite	Potassium	9,201	mg/kg	_	RG MIDCO INV-3 2012-09-15
INV	RG CORCK	668556	5487388	2012	1	2012-09-15	Composite	Calcium	39,179	mg/kg	_	RG CORCK INV-1 2012-09-15
INV	RG MI25	668186	5482838	2012	1	2012-09-15	Composite	Calcium	2,058	mg/kg	_	RG MI25 INV-1 2012-09-15
INV	RG MIUCO	668134	5486767	2012	1	2012-09-15	Composite	Calcium	5,078	mg/kg		RG MIUCO INV-1 2012-09-15
INV	_	667711	5487625	2012		2012-09-15	Composite	Calcium	15,074		-	
	RG_MIDCO			_	2					mg/kg	-	RG_MIDCO_INV-2_2012-09-15
INV	RG_AGCK	667555	5488644	2012	1	2012-09-16	Composite	Calcium	4,932	mg/kg	-	RG_AGCK_INV-1_2012-09-16
INV	RG_MIDCO	667711	5487625	2012	1	2012-09-15	Composite	Calcium	21,361	mg/kg	-	RG_MIDCO_INV-1_2012-09-15
INV	RG_MIDAG	665258	5489417	2012	1	2012-09-16	Composite	Calcium	6,115	mg/kg	-	RG_MIDAG_INV-1_2012-09-16
INV	RG_MI5	659387	5496818	2012	1	2012-09-16	Composite	Calcium	10,953	mg/kg	-	RG_MI5_INV-1_2012-09-16
INV	RG_MIDCO	667711	5487625	2012	3	2012-09-15	Composite	Calcium	12,079	mg/kg	-	RG_MIDCO_INV-3_2012-09-15
INV	RG_CORCK	668556	5487388	2012	1	2012-09-15	Composite	Titanium	6.8	mg/kg	-	RG_CORCK_INV-1_2012-09-15
INV	RG_MI25	668186	5482838	2012	1	2012-09-15	Composite	Titanium	13	mg/kg	-	RG_MI25_INV-1_2012-09-15
INV	RG_MIUCO	668134	5486767	2012	1	2012-09-15	Composite	Titanium	31	mg/kg	-	RG_MIUCO_INV-1_2012-09-15
INV	RG_MIDCO	667711	5487625	2012	2	2012-09-15	Composite	Titanium	31	mg/kg	-	RG_MIDCO_INV-2_2012-09-15
INV	RG_AGCK	667555	5488644	2012	1	2012-09-16	Composite	Titanium	2.8	mg/kg	-	RG_AGCK_INV-1_2012-09-16
INV	RG MIDCO	667711	5487625	2012	1	2012-09-15	Composite	Titanium	23	mg/kg	-	RG MIDCO INV-1 2012-09-15
INV	RG MIDAG	665258	5489417	2012	1	2012-09-16	Composite	Titanium	9.6	mg/kg	-	RG MIDAG INV-1 2012-09-16
INV	RG MI5	659387	5496818	2012	1	2012-09-16	Composite	Titanium	12	mg/kg	-	RG MI5 INV-1 2012-09-16
INV	RG MIDCO	667711	5487625	2012	3	2012-09-15	Composite	Titanium	22	mg/kg	-	RG MIDCO INV-3 2012-09-15
INV	RG CORCK	668556	5487388	2012	1	2012-09-15	Composite	Vanadium	3.3	mg/kg	_	RG_CORCK_INV-1_2012-09-15
INV	RG MI25	668186	5482838	2012	1	2012-09-15	Composite	Vanadium	3.6	mg/kg	_	RG MI25 INV-1 2012-09-15
INV	RG MIUCO	668134	5486767	2012	1	2012-09-15	Composite	Vanadium	16	mg/kg	_	RG MIUCO INV-1 2012-09-15
INV	RG MIDCO	667711	5487625	2012	2	2012-09-15	Composite	Vanadium	11	mg/kg	-	RG MIDCO INV-2 2012-09-15
INV	RG AGCK	667555	5488644	2012	1	2012-09-16	Composite	Vanadium	0.89	mg/kg	-	RG_MIDCO_INV-2_2012-09-13
	_				1						-	
INV	RG_MIDCO	667711	5487625	2012	1	2012-09-15	Composite	Vanadium	11	mg/kg	-	RG_MIDCO_INV-1_2012-09-15
INV	RG_MIDAG	665258	5489417	2012	1	2012-09-16	Composite	Vanadium	2.7	mg/kg	-	RG_MIDAG_INV-1_2012-09-16
INV	RG_MI5	659387	5496818	2012	1	2012-09-16	Composite	Vanadium	4.7	mg/kg	-	RG_MI5_INV-1_2012-09-16
INV	RG_MIDCO	667711	5487625	2012	3	2012-09-15	Composite	Vanadium	8.9	mg/kg	-	RG_MIDCO_INV-3_2012-09-15
INV	RG_CORCK	668556	5487388	2012	1	2012-09-15	Composite	Chromium	1.6	mg/kg	-	RG_CORCK_INV-1_2012-09-15
INV	RG_MI25	668186	5482838	2012	1	2012-09-15	Composite	Chromium	1.9	mg/kg	-	RG_MI25_INV-1_2012-09-15
INV	RG_MIUCO	668134	5486767	2012	1	2012-09-15	Composite	Chromium	9.4	mg/kg	-	RG_MIUCO_INV-1_2012-09-15
INV	RG_MIDCO	667711	5487625	2012	2	2012-09-15	Composite	Chromium	5.7	mg/kg	-	RG_MIDCO_INV-2_2012-09-15
INV	RG_AGCK	667555	5488644	2012	1	2012-09-16	Composite	Chromium	0.7	mg/kg	-	RG_AGCK_INV-1_2012-09-16
	RG MIDCO	667711	5487625	2012		2012-09-15	Composite	Chromium	5.8	mg/kg	1	RG MIDCO INV-1 2012-09-15

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Torres	04-45-	Locatio	n (UTMs) ^(a)	V	Donlingt	Data	S-2-2-16	Amalada	Dog 16	1114		Laboratory Information
Туре	Station	Easting	Northing	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit	Lab	Sample ID
INV	RG MIDAG	665258	5489417	2012	1	2012-09-16	Composite	Chromium	1.4	mg/kg	-	RG MIDAG INV-1 2012-09-16
INV	RG MI5	659387	5496818	2012	1	2012-09-16	Composite	Chromium	1.8	mg/kg	_	RG MI5 INV-1 2012-09-16
INV	RG MIDCO	667711	5487625	2012	3	2012-09-15	Composite	Chromium	4.9	mg/kg	_	RG MIDCO INV-3 2012-09-15
INV	RG_CORCK	668556	5487388	2012	1	2012-09-15	Composite	Manganese	362	mg/kg	_	RG_CORCK_INV-1_2012-09-15
INV	RG MI25	668186	5482838	2012	1	2012-09-15	Composite	Manganese	80	mg/kg	_	RG_MI25_INV-1_2012-09-15
INV	RG MIUCO	668134	5486767	2012	1	2012-09-15	Composite	<u> </u>	350	mg/kg	-	RG MIUCO INV-1 2012-09-15
					1			Manganese		0 0	-	
INV	RG_MIDCO	667711	5487625	2012	2	2012-09-15	Composite	Manganese	172	mg/kg	-	RG_MIDCO_INV-2_2012-09-15
INV	RG_AGCK	667555	5488644	2012	1	2012-09-16	Composite	Manganese	13	mg/kg	-	RG_AGCK_INV-1_2012-09-16
INV	RG_MIDCO	667711	5487625	2012	1	2012-09-15	Composite	Manganese	329	mg/kg	-	RG_MIDCO_INV-1_2012-09-15
INV	RG_MIDAG	665258	5489417	2012	1	2012-09-16	Composite	Manganese	90	mg/kg	-	RG_MIDAG_INV-1_2012-09-16
INV	RG_MI5	659387	5496818	2012	1	2012-09-16	Composite	Manganese	57	mg/kg	-	RG_MI5_INV-1_2012-09-16
INV	RG_MIDCO	667711	5487625	2012	3	2012-09-15	Composite	Manganese	225	mg/kg	-	RG_MIDCO_INV-3_2012-09-15
INV	RG_CORCK	668556	5487388	2012	1	2012-09-15	Composite	Iron	632	mg/kg	-	RG_CORCK_INV-1_2012-09-15
INV	RG_MI25	668186	5482838	2012	1	2012-09-15	Composite	Iron	947	mg/kg	-	RG_MI25_INV-1_2012-09-15
INV	RG_MIUCO	668134	5486767	2012	1	2012-09-15	Composite	Iron	5,536	mg/kg	-	RG_MIUCO_INV-1_2012-09-15
INV	RG_MIDCO	667711	5487625	2012	2	2012-09-15	Composite	Iron	3,165	mg/kg	-	RG_MIDCO_INV-2_2012-09-15
INV	RG_AGCK	667555	5488644	2012	1	2012-09-16	Composite	Iron	191	mg/kg	-	RG_AGCK_INV-1_2012-09-16
INV	RG MIDCO	667711	5487625	2012	1	2012-09-15	Composite	Iron	3,433	mg/kg	-	RG MIDCO INV-1 2012-09-15
INV	RG MIDAG	665258	5489417	2012	1	2012-09-16	Composite	Iron	690	mg/kg	_	RG MIDAG INV-1 2012-09-16
INV	RG MI5	659387	5496818	2012	1	2012-09-16	Composite	Iron	679	mg/kg	_	RG MI5 INV-1 2012-09-16
INV	RG MIDCO	667711	5487625	2012	3	2012-09-15	Composite	Iron	2,553	mg/kg	_	RG MIDCO INV-3 2012-09-15
INV	RG CORCK	668556	5487388	2012	1	2012-09-15	Composite	Cobalt	46	mg/kg	-	RG CORCK INV-1 2012-09-15
INV	RG MI25	668186	5482838	2012	1	2012-09-15		Cobalt			-	RG MI25 INV-1 2012-09-15
	_		5486767		1		Composite		0.9	mg/kg	-	
INV	RG_MIUCO	668134		2012		2012-09-15	Composite	Cobalt	3.6	mg/kg	-	RG_MIUCO_INV-1_2012-09-15
INV	RG_MIDCO	667711	5487625	2012	2	2012-09-15	Composite	Cobalt	31	mg/kg	-	RG_MIDCO_INV-2_2012-09-15
INV	RG_AGCK	667555	5488644	2012	1	2012-09-16	Composite	Cobalt	0.19	mg/kg	-	RG_AGCK_INV-1_2012-09-16
INV	RG_MIDCO	667711	5487625	2012	1	2012-09-15	Composite	Cobalt	55	mg/kg	-	RG_MIDCO_INV-1_2012-09-15
INV	RG_MIDAG	665258	5489417	2012	1	2012-09-16	Composite	Cobalt	23	mg/kg	-	RG_MIDAG_INV-1_2012-09-16
INV	RG_MI5	659387	5496818	2012	1	2012-09-16	Composite	Cobalt	4.1	mg/kg	-	RG_MI5_INV-1_2012-09-16
INV	RG_MIDCO	667711	5487625	2012	3	2012-09-15	Composite	Cobalt	48	mg/kg	-	RG_MIDCO_INV-3_2012-09-15
INV	RG_CORCK	668556	5487388	2012	1	2012-09-15	Composite	Nickel	44	mg/kg	-	RG_CORCK_INV-1_2012-09-15
INV	RG_MI25	668186	5482838	2012	1	2012-09-15	Composite	Nickel	3.2	mg/kg	-	RG_MI25_INV-1_2012-09-15
INV	RG MIUCO	668134	5486767	2012	1	2012-09-15	Composite	Nickel	6.9	mg/kg	-	RG MIUCO INV-1 2012-09-15
INV	RG MIDCO	667711	5487625	2012	2	2012-09-15	Composite	Nickel	17	mg/kg	_	RG MIDCO INV-2 2012-09-15
INV	RG AGCK	667555	5488644	2012	1	2012-09-16	Composite	Nickel	3.5	mg/kg	-	RG AGCK INV-1 2012-09-16
INV	RG MIDCO	667711	5487625	2012	1	2012-09-15	Composite	Nickel	33	mg/kg	_	RG MIDCO INV-1 2012-09-15
INV	RG MIDAG	665258	5489417	2012	1	2012-09-16	Composite	Nickel	11	mg/kg	_	RG_MIDAG_INV-1_2012-09-16
INV	RG MI5	659387	5496818	2012	1	2012-09-16	Composite	Nickel	7.3	mg/kg	_	RG MI5 INV-1 2012-09-16
INV	RG MIDCO	667711	5487625	2012	3	2012-09-15	Composite	Nickel	25	mg/kg	-	RG MIDCO INV-3 2012-09-15
INV	RG CORCK	668556	5487388	2012	1	2012-09-15	Composite	Copper	14	mg/kg	-	RG CORCK INV-1 2012-09-15
	_				1			•			-	
INV	RG_MI25	668186	5482838	2012	1	2012-09-15	Composite	Copper	15	mg/kg	-	RG_MI25_INV-1_2012-09-15
INV	RG_MIUCO	668134	5486767	2012	1	2012-09-15	Composite	Copper	16	mg/kg	-	RG_MIUCO_INV-1_2012-09-15
INV	RG_MIDCO	667711	5487625	2012	2	2012-09-15	Composite	Copper	14	mg/kg	-	RG_MIDCO_INV-2_2012-09-15
INV	RG_AGCK	667555	5488644	2012	1	2012-09-16	Composite	Copper	7.0	mg/kg	-	RG_AGCK_INV-1_2012-09-16
INV	RG_MIDCO	667711	5487625	2012	1	2012-09-15	Composite	Copper	11	mg/kg	-	RG_MIDCO_INV-1_2012-09-15
INV	RG_MIDAG	665258	5489417	2012	1	2012-09-16	Composite	Copper	11	mg/kg	-	RG_MIDAG_INV-1_2012-09-16
INV	RG_MI5	659387	5496818	2012	1	2012-09-16	Composite	Copper	11	mg/kg	-	RG_MI5_INV-1_2012-09-16
INV	RG_MIDCO	667711	5487625	2012	3	2012-09-15	Composite	Copper	14	mg/kg		RG_MIDCO_INV-3_2012-09-15
INV	RG_CORCK	668556	5487388	2012	1	2012-09-15	Composite	Zinc	256	mg/kg	-	RG_CORCK_INV-1_2012-09-15
INV	RG MI25	668186	5482838	2012	1	2012-09-15	Composite	Zinc	156	mg/kg	-	RG MI25 INV-1 2012-09-15
INV	RG MIUCO	668134	5486767	2012	1	2012-09-15	Composite	Zinc	139	mg/kg	-	RG_MIUCO_INV-1_2012-09-15
INV	RG MIDCO	667711	5487625	2012	2	2012-09-15	Composite	Zinc	171	mg/kg	_	RG MIDCO INV-2 2012-09-15
INV	RG_AGCK	667555	5488644	2012	1	2012-09-16	Composite	Zinc	171	mg/kg	-	RG AGCK INV-1 2012-09-16
INV	RG_AGCK	667711	5487625	2012	1	2012-09-15	Composite	Zinc	153		 	RG MIDCO INV-1 2012-09-15
	_	_			1		•			mg/kg	-	
INV	RG_MIDAG	665258	5489417	2012	1	2012-09-16	Composite	Zinc	163	mg/kg	-	RG_MIDAG_INV-1_2012-09-16
INV	RG_MI5	659387	5496818	2012	1	2012-09-16	Composite	Zinc	154	mg/kg	-	RG_MI5_INV-1_2012-09-16
I N I N /	RG MIDCO	667711	5487625	2012	3	2012-09-15	Composite	Zinc	169	mg/kg	-	RG MIDCO INV-3 2012-09-15

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Type INV INV INV INV INV INV INV INV INV IN	RG_CORCK RG_MI25 RG_MIUCO RG_MIDCO RG_AGCK RG_MIDCO RG_MIDCO RG_MIDCO RG_MIDAG RG_MIDS RG_MIDCO RG_MIDCO RG_MIDCO RG_MIDCO RG_MIDCO RG_MIDCO	Easting 668556 668186 668134 667711 667555 667711	Northing 5487388 5482838 5486767 5487625	2012 2012 2012 2012	Replicate 1	Date 2012-09-15	Species/Composite Composite	Analyte Gallium	Result 0.33	Unit mg/kg	Lab -	Sample ID RG_CORCK_INV-1_2012-09-15
INV INV INV INV INV INV INV INV INV INV	RG_MI25 RG_MIUCO RG_MIDCO RG_AGCK RG_MIDCO RG_MIDAG RG_MI5 RG_MIDCO	668186 668134 667711 667555 667711	5482838 5486767 5487625	2012	1 1		Composite	Gallium	0.33	mg/kg	-	RG_CORCK_INV-1_2012-09-15
INV INV INV INV INV INV INV INV INV INV	RG_MIUCO RG_MIDCO RG_AGCK RG_MIDCO RG_MIDAG RG_MI5 RG_MIDCO	668134 667711 667555 667711	5486767 5487625		1							
INV INV INV INV INV INV INV INV INV INV	RG_MIDCO RG_AGCK RG_MIDCO RG_MIDAG RG_MI5 RG_MIDCO	667711 667555 667711	5487625	2012		2012-09-15	Composite	Gallium	0.43	mg/kg	-	RG_MI25_INV-1_2012-09-15
INV INV INV INV INV INV INV INV INV INV	RG_MIDCO RG_AGCK RG_MIDCO RG_MIDAG RG_MI5 RG_MIDCO	667555 667711			1	2012-09-15	Composite	Gallium	2.4	mg/kg	-	RG MIUCO INV-1 2012-09-15
INV INV INV INV INV INV INV INV INV INV	RG_AGCK RG_MIDCO RG_MIDAG RG_MI5 RG_MIDCO	667555 667711		2012	2	2012-09-15	Composite	Gallium	1.5	mg/kg	-	RG_MIDCO_INV-2_2012-09-15
INV INV INV INV INV INV INV INV INV INV	RG_MIDCO RG_MIDAG RG_MI5 RG_MIDCO	667711	5488644	2012	1	2012-09-16	Composite	Gallium	0.071	mg/kg	-	RG AGCK INV-1 2012-09-16
INV INV INV INV INV INV INV INV INV	RG_MIDAG RG_MI5 RG_MIDCO		5487625	2012	1	2012-09-15	Composite	Gallium	1.5	mg/kg	_	RG MIDCO INV-1 2012-09-15
INV INV INV INV INV INV INV INV	RG_MI5 RG_MIDCO		5489417	2012	1	2012-09-16	Composite	Gallium	0.32	mg/kg	_	RG MIDAG INV-1 2012-09-16
INV INV INV INV INV INV INV	RG_MIDCO	659387	5496818	2012	1	2012-09-16	Composite	Gallium	0.32	mg/kg	_	RG MI5 INV-1 2012-09-16
INV INV INV INV INV		667711	5487625	2012	3	2012-09-15	Composite	Gallium	1.3	mg/kg	_	RG MIDCO INV-3 2012-09-15
INV INV INV INV		668556	5487388	2012	1	2012-09-15	Composite	Arsenic	0.48	mg/kg		RG CORCK INV-1 2012-09-15
INV INV INV	RG MI25	668186	5482838	2012	1	2012-09-15	Composite	Arsenic	0.43	mg/kg	-	RG MI25 INV-1 2012-09-15
INV INV	RG MIUCO	668134	5486767	2012	1	2012-09-15	Composite	Arsenic	2.1		-	RG MIUCO INV-1 2012-09-15
INV		667711	5487625	2012	2		<u> </u>		1.3	mg/kg	-	
	RG_MIDCO		5488644		4	2012-09-15	Composite	Arsenic		mg/kg	-	RG_MIDCO_INV-2_2012-09-15
IAIN /	RG_AGCK	667555		2012	1	2012-09-16	Composite	Arsenic	1.9	mg/kg	-	RG_AGCK_INV-1_2012-09-16
INV	RG_MIDCO	667711	5487625	2012	1	2012-09-15	Composite	Arsenic	1.4	mg/kg	-	RG_MIDCO_INV-1_2012-09-15
INV	RG_MIDAG	665258	5489417	2012	1	2012-09-16	Composite	Arsenic	0.71	mg/kg	-	RG_MIDAG_INV-1_2012-09-16
INV	RG_MI5	659387	5496818	2012	1	2012-09-16	Composite	Arsenic	0.74	mg/kg	-	RG_MI5_INV-1_2012-09-16
INV	RG_MIDCO	667711	5487625	2012	3	2012-09-15	Composite	Arsenic	1.2	mg/kg	-	RG_MIDCO_INV-3_2012-09-15
INV	RG_CORCK	668556	5487388	2012	1	2012-09-15	Composite	Selenium	3.9	mg/kg	-	RG_CORCK_INV-1_2012-09-15
INV	RG_MI25	668186	5482838	2012	1	2012-09-15	Composite	Selenium	4.6	mg/kg	-	RG_MI25_INV-1_2012-09-15
INV	RG_MIUCO	668134	5486767	2012	1	2012-09-15	Composite	Selenium	7.0	mg/kg	-	RG_MIUCO_INV-1_2012-09-15
INV	RG_MIDCO	667711	5487625	2012	2	2012-09-15	Composite	Selenium	2.9	mg/kg	-	RG_MIDCO_INV-2_2012-09-15
INV	RG_AGCK	667555	5488644	2012	1	2012-09-16	Composite	Selenium	4.9	mg/kg	-	RG_AGCK_INV-1_2012-09-16
INV	RG_MIDCO	667711	5487625	2012	1	2012-09-15	Composite	Selenium	3.8	mg/kg	-	RG_MIDCO_INV-1_2012-09-15
INV	RG MIDAG	665258	5489417	2012	1	2012-09-16	Composite	Selenium	6.4	mg/kg	-	RG MIDAG INV-1 2012-09-16
INV	RG MI5	659387	5496818	2012	1	2012-09-16	Composite	Selenium	5.6	mg/kg	-	RG MI5 INV-1 2012-09-16
INV	RG MIDCO	667711	5487625	2012	3	2012-09-15	Composite	Selenium	4.0	mg/kg	-	RG MIDCO INV-3 2012-09-15
INV	RG_CORCK	668556	5487388	2012	1	2012-09-15	Composite	Rubidium	3.1	mg/kg	-	RG CORCK INV-1 2012-09-15
INV	RG MI25	668186	5482838	2012	1	2012-09-15	Composite	Rubidium	5.3	mg/kg	-	RG MI25 INV-1 2012-09-15
INV	RG MIUCO	668134	5486767	2012	1	2012-09-15	Composite	Rubidium	19	mg/kg	_	RG MIUCO INV-1 2012-09-15
INV	RG MIDCO	667711	5487625	2012	2	2012-09-15	Composite	Rubidium	13	mg/kg	_	RG MIDCO INV-2 2012-09-15
INV	RG AGCK	667555	5488644	2012	1	2012-09-16	Composite	Rubidium	4.1	mg/kg	_	RG AGCK INV-1 2012-09-16
INV	RG MIDCO	667711	5487625	2012	1	2012-09-15	Composite	Rubidium	13	mg/kg		RG MIDCO INV-1 2012-09-15
INV	RG MIDAG	665258	5489417	2012	1	2012-09-16	Composite	Rubidium	4.8		 	RG MIDAG INV-1_2012-09-16
INV	RG MI5	659387	5496818	2012	1	2012-09-16	Composite	Rubidium	3.7	mg/kg	-	RG MI5 INV-1 2012-09-16
					1					mg/kg	-	
INV	RG_MIDCO	667711	5487625	2012	3	2012-09-15	Composite	Rubidium	11	mg/kg	-	RG_MIDCO_INV-3_2012-09-15
INV	RG_CORCK	668556	5487388	2012	1	2012-09-15	Composite	Strontium	38	mg/kg	-	RG_CORCK_INV-1_2012-09-15
INV	RG_MI25	668186	5482838	2012	1	2012-09-15	Composite	Strontium	6.2	mg/kg	-	RG_MI25_INV-1_2012-09-15
INV	RG_MIUCO	668134	5486767	2012	1	2012-09-15	Composite	Strontium	19	mg/kg	-	RG_MIUCO_INV-1_2012-09-15
INV	RG_MIDCO	667711	5487625	2012	2	2012-09-15	Composite	Strontium	33	mg/kg	-	RG_MIDCO_INV-2_2012-09-15
INV	RG_AGCK	667555	5488644	2012	1	2012-09-16	Composite	Strontium	7.7	mg/kg	-	RG_AGCK_INV-1_2012-09-16
INV	RG_MIDCO	667711	5487625	2012	1	2012-09-15	Composite	Strontium	35	mg/kg	-	RG_MIDCO_INV-1_2012-09-15
INV	RG_MIDAG	665258	5489417	2012	1	2012-09-16	Composite	Strontium	10.0	mg/kg	-	RG_MIDAG_INV-1_2012-09-16
INV	RG_MI5	659387	5496818	2012	1	2012-09-16	Composite	Strontium	15	mg/kg	-	RG_MI5_INV-1_2012-09-16
INV	RG_MIDCO	667711	5487625	2012	3	2012-09-15	Composite	Strontium	24	mg/kg	-	RG_MIDCO_INV-3_2012-09-15
INV	RG_CORCK	668556	5487388	2012	1	2012-09-15	Composite	Yttrium	0.95	mg/kg	-	RG_CORCK_INV-1_2012-09-15
INV	RG_MI25	668186	5482838	2012	1	2012-09-15	Composite	Yttrium	0.99	mg/kg	-	RG_MI25_INV-1_2012-09-15
INV	RG_MIUCO	668134	5486767	2012	1	2012-09-15	Composite	Yttrium	3.4	mg/kg	-	RG_MIUCO_INV-1_2012-09-15
INV	RG_MIDCO	667711	5487625	2012	2	2012-09-15	Composite	Yttrium	1.4	mg/kg	-	RG_MIDCO_INV-2_2012-09-15
INV	RG AGCK	667555	5488644	2012	1	2012-09-16	Composite	Yttrium	0.25	mg/kg	-	RG AGCK INV-1 2012-09-16
INV	RG MIDCO	667711	5487625	2012	1	2012-09-15	Composite	Yttrium	1.7	mg/kg	-	RG MIDCO INV-1 2012-09-15
INV	RG MIDAG	665258	5489417	2012	1	2012-09-16	Composite	Yttrium	0.47	mg/kg	_	RG MIDAG INV-1 2012-09-16
INV	RG MI5	659387	5496818	2012	1	2012-09-16	Composite	Yttrium	0.87	mg/kg	 -	RG MI5 INV-1 2012-09-16
INV	RG MIDCO	667711	5487625	2012	3	2012-09-15	Composite	Yttrium	1.2	mg/kg	 -	RG MIDCO INV-3 2012-09-15
INV	RG CORCK	668556	5487388	2012	1	2012-09-15	Composite	Zirconium	0.9	mg/kg	 	RG CORCK INV-1 2012-09-15
INV	RG_CORCK RG MI25		5482838		1	2012-09-15	<u> </u>				+ -	RG MI25 INV-1 2012-09-15
INV	RG_MIUCO	668186 668134	5482838	2012 2012	1	2012-09-15	Composite Composite	Zirconium Zirconium	0.61 1.7	mg/kg mg/kg	-	RG_MIUCO_INV-1_2012-09-15

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Туре	Station	Locatio	n (UTMs) ^(a)	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit		Laboratory Information
Type	Station	Easting	Northing	i cai	Replicate	Date	opecies/composite	Allalyte	Result	Offic	Lab	Sample ID
INV	RG_MIDCO	667711	5487625	2012	2	2012-09-15	Composite	Zirconium	1.3	mg/kg	-	RG_MIDCO_INV-2_2012-09-15
INV	RG_AGCK	667555	5488644	2012	1	2012-09-16	Composite	Zirconium	0.16	mg/kg	-	RG_AGCK_INV-1_2012-09-16
INV	RG_MIDCO	667711	5487625	2012	1	2012-09-15	Composite	Zirconium	1.3	mg/kg	-	RG_MIDCO_INV-1_2012-09-15
INV	RG_MIDAG	665258	5489417	2012	1	2012-09-16	Composite	Zirconium	0.54	mg/kg	-	RG_MIDAG_INV-1_2012-09-16
INV	RG_MI5	659387	5496818	2012	1	2012-09-16	Composite	Zirconium	0.71	mg/kg	-	RG_MI5_INV-1_2012-09-16
INV	RG MIDCO	667711	5487625	2012	3	2012-09-15	Composite	Zirconium	1.2	mg/kg	-	RG MIDCO INV-3 2012-09-15
INV	RG CORCK	668556	5487388	2012	1	2012-09-15	Composite	Molybdenum	0.35	mg/kg	-	RG CORCK INV-1 2012-09-15
INV	RG MI25	668186	5482838	2012	1	2012-09-15	Composite	Molybdenum	0.58	mg/kg	-	RG MI25 INV-1 2012-09-15
INV	RG MIUCO	668134	5486767	2012	1	2012-09-15	Composite	Molybdenum	0.68	mg/kg	-	RG MIUCO INV-1 2012-09-15
INV	RG MIDCO	667711	5487625	2012	2	2012-09-15	Composite	Molybdenum	0.4	mg/kg	_	RG MIDCO INV-2 2012-09-15
INV	RG_AGCK	667555	5488644	2012	1	2012-09-16	Composite	Molybdenum	0.28	mg/kg	_	RG_AGCK_INV-1_2012-09-16
INV	RG MIDCO	667711	5487625	2012	1	2012-09-15	Composite	Molybdenum	0.44	mg/kg	_	RG MIDCO INV-1 2012-09-15
INV	RG_MIDAG	665258	5489417	2012	1	2012-09-16	Composite	Molybdenum	0.27	mg/kg	_	RG_MIDAG_INV-1_2012-09-16
INV	RG MI5	659387	5496818	2012	1	2012-09-16	Composite	Molybdenum	0.34	mg/kg	_	RG MI5 INV-1 2012-09-16
INV	RG MIDCO	667711	5487625	2012	3	2012-09-15	Composite	Molybdenum	0.44	mg/kg	_	RG MIDCO INV-3 2012-09-15
INV	RG CORCK	668556	5487388	2012	1	2012-09-15	Composite	Silver	0.055	mg/kg	_	RG CORCK INV-1 2012-09-15
INV	RG MI25	668186	5482838	2012	1	2012-09-15	Composite	Silver	0.083	mg/kg		RG_MI25_INV-1_2012-09-15
INV	RG MIUCO	668134	5486767	2012	1	2012-09-15	Composite	Silver	0.06	mg/kg		RG MIUCO INV-1 2012-09-15
INV	RG MIDCO	667711	5487625	2012	2	2012-09-15	Composite	Silver	0.075	mg/kg	_	RG MIDCO INV-2 2012-09-15
INV	RG AGCK	667555	5488644	2012	1	2012-09-16	Composite	Silver	0.048		-	RG AGCK INV-1 2012-09-16
	_				1		· · · · · · · · · · · · · · · · · · ·			mg/kg	-	
INV	RG_MIDCO	667711	5487625	2012	1	2012-09-15	Composite	Silver	0.052	mg/kg	-	RG_MIDCO_INV-1_2012-09-15
INV	RG_MIDAG	665258	5489417	2012	1	2012-09-16	Composite	Silver	0.07	mg/kg	-	RG_MIDAG_INV-1_2012-09-16
INV	RG_MI5	659387	5496818	2012	1	2012-09-16	Composite	Silver	0.099	mg/kg	-	RG_MI5_INV-1_2012-09-16
INV	RG_MIDCO	667711	5487625	2012	3	2012-09-15	Composite	Silver	0.065	mg/kg	-	RG_MIDCO_INV-3_2012-09-15
INV	RG_CORCK	668556	5487388	2012	1	2012-09-15	Composite	Cadmium	1.5	mg/kg	-	RG_CORCK_INV-1_2012-09-15
INV	RG_MI25	668186	5482838	2012	1	2012-09-15	Composite	Cadmium	2.3	mg/kg	-	RG_MI25_INV-1_2012-09-15
INV	RG_MIUCO	668134	5486767	2012	1	2012-09-15	Composite	Cadmium	2.9	mg/kg	-	RG_MIUCO_INV-1_2012-09-15
INV	RG_MIDCO	667711	5487625	2012	2	2012-09-15	Composite	Cadmium	0.69	mg/kg	-	RG_MIDCO_INV-2_2012-09-15
INV	RG_AGCK	667555	5488644	2012	1	2012-09-16	Composite	Cadmium	0.72	mg/kg	-	RG_AGCK_INV-1_2012-09-16
INV	RG_MIDCO	667711	5487625	2012	1	2012-09-15	Composite	Cadmium	0.66	mg/kg	-	RG_MIDCO_INV-1_2012-09-15
INV	RG_MIDAG	665258	5489417	2012	1	2012-09-16	Composite	Cadmium	0.93	mg/kg	-	RG_MIDAG_INV-1_2012-09-16
INV	RG_MI5	659387	5496818	2012	1	2012-09-16	Composite	Cadmium	1.4	mg/kg	-	RG_MI5_INV-1_2012-09-16
INV	RG_MIDCO	667711	5487625	2012	3	2012-09-15	Composite	Cadmium	0.66	mg/kg	-	RG_MIDCO_INV-3_2012-09-15
INV	RG_CORCK	668556	5487388	2012	1	2012-09-15	Composite	Tin	0.032	mg/kg	-	RG_CORCK_INV-1_2012-09-15
INV	RG_MI25	668186	5482838	2012	1	2012-09-15	Composite	Tin	0.047	mg/kg	-	RG_MI25_INV-1_2012-09-15
INV	RG_MIUCO	668134	5486767	2012	1	2012-09-15	Composite	Tin	0.12	mg/kg	-	RG_MIUCO_INV-1_2012-09-15
INV	RG_MIDCO	667711	5487625	2012	2	2012-09-15	Composite	Tin	0.12	mg/kg	-	RG_MIDCO_INV-2_2012-09-15
INV	RG_AGCK	667555	5488644	2012	1	2012-09-16	Composite	Tin	0.013	mg/kg	-	RG_AGCK_INV-1_2012-09-16
INV	RG_MIDCO	667711	5487625	2012	1	2012-09-15	Composite	Tin	0.11	mg/kg	-	RG_MIDCO_INV-1_2012-09-15
INV	RG_MIDAG	665258	5489417	2012	1	2012-09-16	Composite	Tin	0.033	mg/kg	-	RG_MIDAG_INV-1_2012-09-16
INV	RG_MI5	659387	5496818	2012	1	2012-09-16	Composite	Tin	0.031	mg/kg	-	RG_MI5_INV-1_2012-09-16
INV	RG_MIDCO	667711	5487625	2012	3	2012-09-15	Composite	Tin	0.10	mg/kg	-	RG_MIDCO_INV-3_2012-09-15
INV	RG CORCK	668556	5487388	2012	1	2012-09-15	Composite	Antimony	0.027	mg/kg	-	RG CORCK INV-1 2012-09-15
INV	RG MI25	668186	5482838	2012	1	2012-09-15	Composite	Antimony	0.018	mg/kg	-	RG MI25 INV-1 2012-09-15
INV	RG MIUCO	668134	5486767	2012	1	2012-09-15	Composite	Antimony	0.009	mg/kg	-	RG MIUCO INV-1 2012-09-15
INV	RG MIDCO	667711	5487625	2012	2	2012-09-15	Composite	Antimony	0.0099	mg/kg	_	RG MIDCO INV-2 2012-09-15
INV	RG AGCK	667555	5488644	2012	1	2012-09-16	Composite	Antimony	0.012	mg/kg	_	RG AGCK INV-1 2012-09-16
INV	RG MIDCO	667711	5487625	2012	1	2012-09-15	Composite	Antimony	0.019	mg/kg	_	RG MIDCO INV-1 2012-09-15
INV	RG MIDAG	665258	5489417	2012	1	2012-09-16	Composite	Antimony	0.013	mg/kg	_	RG MIDAG INV-1 2012-09-16
INV	RG MI5	659387	5496818	2012	1	2012-09-16	Composite	Antimony	0.021	mg/kg	_	RG MI5 INV-1 2012-09-16
INV	RG MIDCO	667711	5487625	2012	3	2012-09-15	Composite	Antimony	0.022	mg/kg	_	RG MIDCO INV-3 2012-09-15
INV	RG CORCK	668556	5487388	2012	1	2012-09-15	Composite	Cesium	0.022	mg/kg	-	RG CORCK INV-1 2012-09-15
INV	RG_CORCK RG_MI25	668186	5482838	2012	1	2012-09-15	Composite	Cesium	0.16		-	RG MI25 INV-1 2012-09-15
INV	_	668134	5486767	2012	1	2012-09-15	<u> </u>	Cesium	0.21	mg/kg	-	
	RG_MIUCO				1		Composite			mg/kg	-	RG_MIUCO_INV-1_2012-09-15
INV	RG_MIDCO	667711	5487625	2012	2	2012-09-15	Composite	Cesium	0.59	mg/kg	-	RG_MIDCO_INV-2_2012-09-15
INV INV	RG_AGCK	667555	5488644	2012	1	2012-09-16	Composite	Cesium	0.035	mg/kg	-	RG_AGCK_INV-1_2012-09-16
1811/	RG MIDCO	667711	5487625	2012	1	2012-09-15	Composite	Cesium	0.57	mg/kg	1 _	RG MIDCO INV-1 2012-09-15

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Туре	Station	Location	n (UTMs) ^(a)	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit		Laboratory Information
Type	Station	Easting	Northing	i eai	Replicate	Date	Species/Composite	Allalyte	Result	Offic	Lab	Sample ID
INV	RG_MIDAG	665258	5489417	2012	1	2012-09-16	Composite	Cesium	0.14	mg/kg	-	RG_MIDAG_INV-1_2012-09-16
INV	RG_MI5	659387	5496818	2012	1	2012-09-16	Composite	Cesium	0.13	mg/kg	-	RG_MI5_INV-1_2012-09-16
INV	RG MIDCO	667711	5487625	2012	3	2012-09-15	Composite	Cesium	0.52	mg/kg	-	RG MIDCO INV-3 2012-09-15
INV	RG_CORCK	668556	5487388	2012	1	2012-09-15	Composite	Barium	43	mg/kg	-	RG_CORCK_INV-1_2012-09-15
INV	RG MI25	668186	5482838	2012	1	2012-09-15	Composite	Barium	25	mg/kg	-	RG MI25 INV-1 2012-09-15
INV	RG MIUCO	668134	5486767	2012	1	2012-09-15	Composite	Barium	61	mg/kg	_	RG MIUCO INV-1 2012-09-15
INV	RG MIDCO	667711	5487625	2012	2	2012-09-15	Composite	Barium	37	mg/kg	_	RG MIDCO INV-2 2012-09-15
INV	RG AGCK	667555	5488644	2012	1	2012-09-16	Composite	Barium	4.3	mg/kg		RG AGCK INV-1 2012-09-16
INV	RG MIDCO	667711	5487625	2012	1	2012-09-15	Composite	Barium	44		-	RG MIDCO INV-1 2012-09-15
INV	RG MIDAG	665258	5489417	2012	1	2012-09-16	Composite	Barium	16	mg/kg	-	RG MIDAG INV-1 2012-09-16
	_				1					mg/kg	-	
INV	RG_MI5	659387	5496818	2012	1	2012-09-16	Composite	Barium	33	mg/kg	-	RG_MI5_INV-1_2012-09-16
INV	RG_MIDCO	667711	5487625	2012	3	2012-09-15	Composite	Barium	44	mg/kg	-	RG_MIDCO_INV-3_2012-09-15
INV	RG_CORCK	668556	5487388	2012	1	2012-09-15	Composite	Rhenium	<lod< td=""><td>mg/kg</td><td>-</td><td>RG_CORCK_INV-1_2012-09-15</td></lod<>	mg/kg	-	RG_CORCK_INV-1_2012-09-15
INV	RG_MI25	668186	5482838	2012	1	2012-09-15	Composite	Rhenium	<lod< td=""><td>mg/kg</td><td>-</td><td>RG_MI25_INV-1_2012-09-15</td></lod<>	mg/kg	-	RG_MI25_INV-1_2012-09-15
INV	RG_MIUCO	668134	5486767	2012	1	2012-09-15	Composite	Rhenium	<lod< td=""><td>mg/kg</td><td>-</td><td>RG_MIUCO_INV-1_2012-09-15</td></lod<>	mg/kg	-	RG_MIUCO_INV-1_2012-09-15
INV	RG_MIDCO	667711	5487625	2012	2	2012-09-15	Composite	Rhenium	<lod< td=""><td>mg/kg</td><td>-</td><td>RG_MIDCO_INV-2_2012-09-15</td></lod<>	mg/kg	-	RG_MIDCO_INV-2_2012-09-15
INV	RG_AGCK	667555	5488644	2012	1	2012-09-16	Composite	Rhenium	<lod< td=""><td>mg/kg</td><td>-</td><td>RG_AGCK_INV-1_2012-09-16</td></lod<>	mg/kg	-	RG_AGCK_INV-1_2012-09-16
INV	RG_MIDCO	667711	5487625	2012	1	2012-09-15	Composite	Rhenium	<lod< td=""><td>mg/kg</td><td>-</td><td>RG_MIDCO_INV-1_2012-09-15</td></lod<>	mg/kg	-	RG_MIDCO_INV-1_2012-09-15
INV	RG MIDAG	665258	5489417	2012	1	2012-09-16	Composite	Rhenium	<lod< td=""><td>mg/kg</td><td>-</td><td>RG MIDAG INV-1 2012-09-16</td></lod<>	mg/kg	-	RG MIDAG INV-1 2012-09-16
INV	RG MI5	659387	5496818	2012	1	2012-09-16	Composite	Rhenium	<lod< td=""><td>mg/kg</td><td>-</td><td>RG MI5 INV-1 2012-09-16</td></lod<>	mg/kg	-	RG MI5 INV-1 2012-09-16
INV	RG MIDCO	667711	5487625	2012	3	2012-09-15	Composite	Rhenium	<lod< td=""><td>mg/kg</td><td>_</td><td>RG MIDCO INV-3 2012-09-15</td></lod<>	mg/kg	_	RG MIDCO INV-3 2012-09-15
INV	RG CORCK	668556	5487388	2012	1	2012-09-15	Composite	Thallium	0.082	mg/kg	_	RG CORCK INV-1 2012-09-15
INV	RG MI25	668186	5482838	2012	1	2012-09-15	Composite	Thallium	0.087	mg/kg	_	RG MI25 INV-1 2012-09-15
INV	RG MIUCO	668134	5486767	2012	1	2012-09-15	Composite	Thallium	0.14	mg/kg	_	RG MIUCO INV-1 2012-09-15
INV	RG MIDCO	667711	5487625	2012	2	2012-09-15	Composite	Thallium	0.11	mg/kg	_	RG_MIDCO_INV-2_2012-09-15
INV	RG_MIDCO	667555	5488644	2012	1	2012-09-16	Composite	Thallium	0.24		-	RG AGCK INV-1 2012-09-16
INV			5487625		1					mg/kg	-	
	RG_MIDCO	667711		2012	1	2012-09-15	Composite	Thallium	0.11	mg/kg	-	RG_MIDCO_INV-1_2012-09-15
INV	RG_MIDAG	665258	5489417	2012	1	2012-09-16	Composite	Thallium	0.076	mg/kg	-	RG_MIDAG_INV-1_2012-09-16
INV	RG_MI5	659387	5496818	2012	1	2012-09-16	Composite	Thallium	0.059	mg/kg	-	RG_MI5_INV-1_2012-09-16
INV	RG_MIDCO	667711	5487625	2012	3	2012-09-15	Composite	Thallium	0.11	mg/kg	-	RG_MIDCO_INV-3_2012-09-15
INV	RG_CORCK	668556	5487388	2012	1	2012-09-15	Composite	Lead	0.47	mg/kg	-	RG_CORCK_INV-1_2012-09-15
INV	RG_MI25	668186	5482838	2012	1	2012-09-15	Composite	Lead	0.53	mg/kg	-	RG_MI25_INV-1_2012-09-15
INV	RG_MIUCO	668134	5486767	2012	1	2012-09-15	Composite	Lead	2.1	mg/kg	-	RG_MIUCO_INV-1_2012-09-15
INV	RG_MIDCO	667711	5487625	2012	2	2012-09-15	Composite	Lead	1.5	mg/kg	-	RG_MIDCO_INV-2_2012-09-15
INV	RG_AGCK	667555	5488644	2012	1	2012-09-16	Composite	Lead	0.12	mg/kg	-	RG_AGCK_INV-1_2012-09-16
INV	RG MIDCO	667711	5487625	2012	1	2012-09-15	Composite	Lead	1.6	mg/kg	-	RG MIDCO INV-1 2012-09-15
INV	RG MIDAG	665258	5489417	2012	1	2012-09-16	Composite	Lead	0.38	mg/kg	-	RG MIDAG INV-1 2012-09-16
INV	RG MI5	659387	5496818	2012	1	2012-09-16	Composite	Lead	0.4	mg/kg	_	RG MI5 INV-1 2012-09-16
INV	RG MIDCO	667711	5487625	2012	3	2012-09-15	Composite	Lead	1.3	mg/kg	_	RG MIDCO INV-3 2012-09-15
INV	RG_CORCK	668556	5487388	2012	1	2012-09-15	Composite	Bismuth	0.0046	mg/kg	-	RG CORCK INV-1 2012-09-15
INV	RG MI25	668186	5482838	2012	1	2012-09-15	Composite	Bismuth	0.0097	mg/kg	 -	RG MI25 INV-1 2012-09-15
INV	RG MIUCO	668134	5486767	2012	1	2012-09-15	Composite	Bismuth	0.042	mg/kg	-	RG MIUCO INV-1 2012-09-15
INV	RG MIDCO	667711	5487625	2012	2	2012-09-15	Composite	Bismuth	0.042		-	RG_MIDCO_INV-1_2012-09-15
INV	_		5487625	_			-			mg/kg	-	
	RG_AGCK	667555		2012	1	2012-09-16	Composite	Bismuth	0.0014	mg/kg	-	RG_AGCK_INV-1_2012-09-16
INV	RG_MIDCO	667711	5487625	2012	1	2012-09-15	Composite	Bismuth	0.025	mg/kg	-	RG_MIDCO_INV-1_2012-09-15
INV	RG_MIDAG	665258	5489417	2012	1	2012-09-16	Composite	Bismuth	0.0058	mg/kg	-	RG_MIDAG_INV-1_2012-09-16
INV	RG_MI5	659387	5496818	2012	1	2012-09-16	Composite	Bismuth	0.0039	mg/kg	-	RG_MI5_INV-1_2012-09-16
INV	RG_MIDCO	667711	5487625	2012	3	2012-09-15	Composite	Bismuth	0.023	mg/kg	-	RG_MIDCO_INV-3_2012-09-15
INV	RG_CORCK	668556	5487388	2012	1	2012-09-15	Composite	Thorium	0.16	mg/kg	-	RG_CORCK_INV-1_2012-09-15
INV	RG_MI25	668186	5482838	2012	1	2012-09-15	Composite	Thorium	0.16	mg/kg	-	RG_MI25_INV-1_2012-09-15
INV	RG_MIUCO	668134	5486767	2012	1	2012-09-15	Composite	Thorium	0.8	mg/kg	-	RG_MIUCO_INV-1_2012-09-15
INV	RG_MIDCO	667711	5487625	2012	2	2012-09-15	Composite	Thorium	0.51	mg/kg	-	RG_MIDCO_INV-2_2012-09-15
INV	RG AGCK	667555	5488644	2012	1	2012-09-16	Composite	Thorium	0.028	mg/kg	-	RG AGCK INV-1 2012-09-16
INV	RG MIDCO	667711	5487625	2012	1	2012-09-15	Composite	Thorium	0.52	mg/kg	-	RG MIDCO INV-1 2012-09-15
INV	RG MIDAG	665258	5489417	2012	1	2012-09-16	Composite	Thorium	0.13	mg/kg	_	RG MIDAG INV-1 2012-09-16
	_		5496818	2012	1	2012-09-16	Composite	Thorium		mg/kg		RG MI5 INV-1 2012-09-16
INV	RG MI5	659387	5/IU6X1X	71117	1	/ /_ U 'I'A '		I norii im	0.13	maika	_	R(= 1/115 101/-1 -)(11/-1 10/15

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Туре	Station		on (UTMs) ^(a)	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit		Laboratory Information
		Easting	Northing								Lab	Sample ID
INV	RG_CORCK	668556	5487388	2012	1	2012-09-15	Composite	Uranium	0.44	mg/kg	-	RG_CORCK_INV-1_2012-09-15
INV	RG_MI25	668186	5482838	2012	1	2012-09-15	Composite	Uranium	0.068	mg/kg	-	RG_MI25_INV-1_2012-09-15
INV	RG_MIUCO	668134	5486767	2012	1	2012-09-15	Composite	Uranium	0.13	mg/kg	-	RG_MIUCO_INV-1_2012-09-15
INV	RG_MIDCO	667711	5487625	2012	2	2012-09-15	Composite	Uranium	0.15	mg/kg	-	RG_MIDCO_INV-2_2012-09-15
INV	RG_AGCK	667555	5488644	2012	1	2012-09-16	Composite	Uranium	0.059	mg/kg	-	RG_AGCK_INV-1_2012-09-16
INV	RG_MIDCO	667711	5487625	2012	1	2012-09-15	Composite	Uranium	0.2	mg/kg	-	RG_MIDCO_INV-1_2012-09-15
INV	RG_MIDAG	665258	5489417	2012	1	2012-09-16	Composite	Uranium	0.066	mg/kg	-	RG_MIDAG_INV-1_2012-09-16
INV	RG_MI5	659387	5496818	2012	1	2012-09-16	Composite	Uranium	0.1	mg/kg	-	RG_MI5_INV-1_2012-09-16
INV	RG_MIDCO	667711	5487625	2012	3	2012-09-15	Composite	Uranium	0.18	mg/kg	-	RG_MIDCO_INV-3_2012-09-15
INV	RG_CORCK	668556	5487388	2012	1	2012-09-15	Composite	Dry Mass	0.51	g	-	RG_CORCK_INV-1_2012-09-15
INV	RG MI25	668186	5482838	2012	1	2012-09-15	Composite	Dry Mass	0.54	g	-	RG_MI25_INV-1_2012-09-15
INV	RG MIUCO	668134	5486767	2012	1	2012-09-15	Composite	Dry Mass	0.62	g	-	RG MIUCO INV-1 2012-09-15
INV	RG MIDCO	667711	5487625	2012	2	2012-09-15	Composite	Dry Mass	0.96	a	_	RG MIDCO INV-2 2012-09-15
INV	RG AGCK	667555	5488644	2012	1	2012-09-16	Composite	Dry Mass	0.58	a	_	RG AGCK INV-1 2012-09-16
INV	RG MIDCO	667711	5487625	2012	1	2012-09-15	Composite	Dry Mass	1.1	a	_	RG MIDCO INV-1 2012-09-15
INV	RG MIDAG	665258	5489417	2012	1	2012-09-16	Composite	Dry Mass	1.1	a	-	RG MIDAG INV-1 2012-09-16
INV	RG MI5	659387	5496818	2012	1	2012-09-16	Composite	Dry Mass	1.9	g	_	RG_MI5_INV-1_2012-09-16
INV	RG MIDCO	667711	5487625	2012	3	2012-09-15	Composite	Dry Mass	0.76	g d	_	RG MIDCO INV-3 2012-09-15
	_				1		'	<u> </u>	_	9	-	
INV	RG_CORCK	668556	5487388	2012	1	2012-09-15	Composite	% Dry Matter	21	%	-	RG_CORCK_INV-1_2012-09-15
INV	RG_MI25	668186	5482838	2012	1	2012-09-15	Composite	% Dry Matter	12	%	-	RG_MI25_INV-1_2012-09-15
INV	RG_MIUCO	668134	5486767	2012	1	2012-09-15	Composite	% Dry Matter	14	%	-	RG_MIUCO_INV-1_2012-09-15
INV	RG_MIDCO	667711	5487625	2012	2	2012-09-15	Composite	% Dry Matter	22	%	-	RG_MIDCO_INV-2_2012-09-15
INV	RG_AGCK	667555	5488644	2012	1	2012-09-16	Composite	% Dry Matter	11	%	-	RG_AGCK_INV-1_2012-09-16
INV	RG_MIDCO	667711	5487625	2012	1	2012-09-15	Composite	% Dry Matter	18	%	-	RG_MIDCO_INV-1_2012-09-15
INV	RG_MIDAG	665258	5489417	2012	1	2012-09-16	Composite	% Dry Matter	18	%	-	RG_MIDAG_INV-1_2012-09-16
INV	RG_MI5	659387	5496818	2012	1	2012-09-16	Composite	% Dry Matter	20	%	-	RG_MI5_INV-1_2012-09-16
INV	RG_MIDCO	667711	5487625	2012	3	2012-09-15	Composite	% Dry Matter	15	%	-	RG_MIDCO_INV-3_2012-09-15
INV	RG_CORCK	668556	5487388	2015	1	2015-09-11	Composite	Wet Mass	0.35	g	MURR	RG_CORCK_INV-1_2015-09-11
INV	RG_MI25	668186	5482838	2015	1	2015-09-10	Composite	Wet Mass	0.32	g	MURR	RG_MI25_INV-1_2015-09-10
INV	RG_MI25	668186	5482838	2015	1	2015-09-10	EPH	Wet Mass	0.36	g	MURR	RG_MI25_INVEPH-1_2015-09-10
INV	RG_MI25	668186	5482838	2015	1	2015-09-10	RHY	Wet Mass	0.13	g	MURR	RG_MI25_INVRHY-1_2015-09-10
INV	RG MI5	659387	5496818	2015	1	2015-09-13	Composite	Wet Mass	0.33	g	MURR	RG MI5 INV-1 2015-09-13
INV	RG MIDAG	665258	5489417	2015	1	2015-09-12	Composite	Wet Mass	0.26	q	MURR	RG MIDAG INV-1 2015-09-12
INV	RG MIDCO	667711	5487625	2015	1	2015-09-11	Composite	Wet Mass	0.21	a	MURR	RG_MIDCO_INV-1_2015-09-11
INV	RG MIDCO	667711	5487625	2015	1	2015-09-11	EPH	Wet Mass	0.39	u g	MURR	RG MIDCO INVEPH-1 2015-09-11
INV	RG MIDCO	667711	5487625	2015	1	2015-09-11	RHY	Wet Mass	0.27		MURR	RG MIDCO INVRHY-1 2015-09-11
INV	RG MIUCO	668134	5486767	2015	1	2015-09-10	Composite	Wet Mass	0.29	g G	MURR	RG MIUCO INV-1 2015-09-10
INV	RG CORCK	668556	5487388	2015	1	2015-09-11	Composite	Dry Mass	0.093	9	MURR	RG CORCK INV-1 2015-09-11
INV	RG MI25		5482838	2015	1	2015-09-11	•	Dry Mass	0.051	g a	MURR	RG MI25 INV-1 2015-09-10
INV	RG_MI25	668186	5482838	2015	1	2015-09-10	Composite EPH	•			MURR	RG_MI25_INV-1_2015-09-10 RG_MI25_INVEPH-1_2015-09-10
INV	_	668186	5482838		· ·			Dry Mass	0.05 0.027	g		
	RG_MI25	668186		2015	1	2015-09-10	RHY	Dry Mass		g	MURR	RG_MI25_INVRHY-1_2015-09-10
INV	RG_MI5	659387	5496818	2015	1	2015-09-13	Composite	Dry Mass	0.051	g	MURR	RG_MI5_INV-1_2015-09-13
INV	RG_MIDAG	665258	5489417	2015	1	2015-09-12	Composite	Dry Mass	0.05	g	MURR	RG_MIDAG_INV-1_2015-09-12
INV	RG_MIDCO	667711	5487625	2015	1	2015-09-11	Composite	Dry Mass	0.044	g	MURR	RG_MIDCO_INV-1_2015-09-11
INV	RG_MIDCO	667711	5487625	2015	1	2015-09-11	EPH	Dry Mass	0.047	g	MURR	RG_MIDCO_INVEPH-1_2015-09-1
INV	RG_MIDCO	667711	5487625	2015	1	2015-09-11	RHY	Dry Mass	0.049	g	MURR	RG_MIDCO_INVRHY-1_2015-09-1
INV	RG_MIUCO	668134	5486767	2015	1	2015-09-10	Composite	Dry Mass	0.05	g	MURR	RG_MIUCO_INV-1_2015-09-10
INV	RG_CORCK	668556	5487388	2015	1	2015-09-11	Composite	Wet-to-Dry Ratio	3.8	-	MURR	RG_CORCK_INV-1_2015-09-11
INV	RG_MI25	668186	5482838	2015	1	2015-09-10	Composite	Wet-to-Dry Ratio	6.2	-	MURR	RG_MI25_INV-1_2015-09-10
INV	RG_MI25	668186	5482838	2015	1	2015-09-10	EPH	Wet-to-Dry Ratio	7.2	=	MURR	RG_MI25_INVEPH-1_2015-09-10
INV	RG_MI25	668186	5482838	2015	1	2015-09-10	RHY	Wet-to-Dry Ratio	4.8	-	MURR	RG_MI25_INVRHY-1_2015-09-10
INV	RG_MI5	659387	5496818	2015	1	2015-09-13	Composite	Wet-to-Dry Ratio	6.4	-	MURR	RG_MI5_INV-1_2015-09-13
INV	RG MIDAG	665258	5489417	2015	1	2015-09-12	Composite	Wet-to-Dry Ratio	5.1	-	MURR	RG MIDAG INV-1 2015-09-12
1147		667711	5487625	2015	1	2015-09-11	Composite	Wet-to-Dry Ratio	4.9	-	MURR	RG MIDCO INV-1 2015-09-11
	RG MIDCO	007711										
INV	RG_MIDCO RG_MIDCO				1			•		-		
	RG_MIDCO RG_MIDCO RG MIDCO	667711 667711	5487625 5487625	2015 2015	1 1	2015-09-11 2015-09-11	EPH RHY	Wet-to-Dry Ratio Wet-to-Dry Ratio	8.3 5.5	-	MURR MURR	RG_MIDCO_INVEPH-1_2015-09-11 RG_MIDCO_INVRHY-1_2015-09-11

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Т	04-45	Locatio	n (UTMs) ^(a)	V	Donliest	Data	Consolina (Community	Analyti	Dec. 11	1111		Laboratory Information
Туре	Station	Easting	Northing	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit	Lab	Sample ID
INV	RG CORCK	668556	5487388	2015	1	2015-09-11	Composite	Dry Matter	27	%	MURR	RG CORCK INV-1 2015-09-11
INV	RG MI25	668186	5482838	2015	1	2015-09-10	Composite	Dry Matter	18	%	MURR	RG MI25 INV-1 2015-09-10
INV	RG MI25	668186	5482838	2015	1	2015-09-10	EPH	Dry Matter	16	%	MURR	RG MI25 INVEPH-1 2015-09-10
INV	RG MI25	668186	5482838	2015	1	2015-09-10	RHY	Dry Matter	15	%	MURR	RG MI25 INVRHY-1 2015-09-10
INV	RG MI5	659387	5496818	2015	1	2015-09-13	Composite	Dry Matter	14	%	MURR	RG MI5 INV-1 2015-09-13
INV	RG MIDAG	665258	5489417	2015	1	2015-09-12	Composite	Dry Matter	24	%	MURR	RG MIDAG INV-1 2015-09-12
	_				1			,				RG_MIDCO_INV-1_2015-09-12
INV	RG_MIDCO	667711	5487625	2015	1	2015-09-11	Composite	Dry Matter	16		MURR	
INV	RG_MIDCO	667711	5487625	2015	1	2015-09-11	EPH	Dry Matter	15	%	MURR	RG_MIDCO_INVEPH-1_2015-09-11
INV	RG_MIDCO	667711	5487625	2015	1	2015-09-11	RHY	Dry Matter	14	%	MURR	RG_MIDCO_INVRHY-1_2015-09-11
INV	RG_MIUCO	668134	5486767	2015	1	2015-09-10	Composite	Dry Matter	14	%	MURR	RG_MIUCO_INV-1_2015-09-10
INV	RG_CORCK	668556	5487388	2015	1	2015-09-11	Composite	Se PPM Dry Mass	3.5	mg/kg	MURR	RG_CORCK_INV-1_2015-09-11
INV	RG_MI25	668186	5482838	2015	1	2015-09-10	Composite	Se PPM Dry Mass	4.6	mg/kg	MURR	RG_MI25_INV-1_2015-09-10
INV	RG_MI25	668186	5482838	2015	1	2015-09-10	EPH	Se PPM Dry Mass	7.0	mg/kg	MURR	RG_MI25_INVEPH-1_2015-09-10
INV	RG_MI25	668186	5482838	2015	1	2015-09-10	RHY	Se PPM Dry Mass	5.6	mg/kg	MURR	RG_MI25_INVRHY-1_2015-09-10
INV	RG_MI5	659387	5496818	2015	1	2015-09-13	Composite	Se PPM Dry Mass	5.1	mg/kg	MURR	RG_MI5_INV-1_2015-09-13
INV	RG_MIDAG	665258	5489417	2015	1	2015-09-12	Composite	Se PPM Dry Mass	7.6	mg/kg	MURR	RG_MIDAG_INV-1_2015-09-12
INV	RG_MIDCO	667711	5487625	2015	1	2015-09-11	Composite	Se PPM Dry Mass	4.4	mg/kg	MURR	RG_MIDCO_INV-1_2015-09-11
INV	RG MIDCO	667711	5487625	2015	1	2015-09-11	EPH	Se PPM Dry Mass	6.0	mg/kg	MURR	RG MIDCO INVEPH-1 2015-09-11
INV	RG MIDCO	667711	5487625	2015	1	2015-09-11	RHY	Se PPM Dry Mass	4.8	mg/kg	MURR	RG MIDCO INVRHY-1 2015-09-11
INV	RG MIUCO	668134	5486767	2015	1	2015-09-10	Composite	Se PPM Dry Mass	4.8	mg/kg	MURR	RG MIUCO INV-1 2015-09-10
INV	RG CORCK	668556	5487388	2015	1	2015-09-11	Composite	Se PPM Wet Mass	0.93	mg/kg	MURR	RG CORCK INV-1 2015-09-11
INV	RG MI25	668186	5482838	2015	1	2015-09-10	Composite	Se PPM Wet Mass	0.74	mg/kg	MURR	RG MI25 INV-1 2015-09-10
INV	RG MI25	668186	5482838	2015	1	2015-09-10	EPH	Se PPM Wet Mass	0.98	mg/kg	MURR	RG MI25 INVEPH-1 2015-09-10
INV	RG MI25	668186	5482838	2015	1	2015-09-10	RHY	Se PPM Wet Mass	1.2	mg/kg	MURR	RG MI25 INVRHY-1 2015-09-10
INV	RG_MI5	659387	5496818	2015	1	2015-09-13	Composite	Se PPM Wet Mass	0.8	mg/kg	MURR	RG_MI5_INV-1_2015-09-13
INV	RG_MIDAG	665258	5489417	2015	1	2015-09-12	Composite	Se PPM Wet Mass	1.5	mg/kg	MURR	RG_MIDAG_INV-1_2015-09-12
INV	RG_MIDCO	667711	5487625	2015	1	2015-09-11	Composite	Se PPM Wet Mass	0.9	mg/kg	MURR	RG_MIDCO_INV-1_2015-09-11
INV	RG_MIDCO	667711	5487625	2015	1	2015-09-11	EPH	Se PPM Wet Mass	0.72	mg/kg	MURR	RG_MIDCO_INVEPH-1_2015-09-1
INV	RG_MIDCO	667711	5487625	2015	1	2015-09-11	RHY	Se PPM Wet Mass	0.86	mg/kg	MURR	RG_MIDCO_INVRHY-1_2015-09-1
INV	RG_MIUCO	668134	5486767	2015	1	2015-09-10	Composite	Se PPM Wet Mass	0.83	mg/kg	MURR	RG_MIUCO_INV-1_2015-09-10
INV	RG_CORCK	668556	5487388	2017	1	2017-09-14	Composite	Selenium	4.3	mg/kg dw	SRC	RG_CORCK_INV-1_2017-09-14
INV	RG_CORCK	668556	5487388	2017	1	2017-09-14	RHY	Selenium	2.6	mg/kg dw	SRC	RG_CORCK_INVRHY-1_2017-09-1
INV	RG_MI25	668186	5482838	2017	1	2017-09-14	Composite	Selenium	2.5	mg/kg dw	SRC	RG_MI25_INV-1_2017-09-14
INV	RG_MI25	668186	5482838	2017	1	2017-09-14	EPH	Selenium	5.4	mg/kg dw	SRC	RG_MI25_INVEPH-1_2017-09-14
INV	RG MI25	668186	5482838	2017	1	2017-09-14	HYD	Selenium	3.2	mg/kg dw	SRC	RG MI25 INVHYD-1 2017-09-14
INV	RG MI25	668186	5482838	2017	1	2017-09-14	RHY	Selenium	5.3	mg/kg dw	SRC	RG MI25 INVRHY-1 2017-09-14
INV	RG MIDCO	667711	5487625	2017	1	2017-09-14	Composite	Selenium	2.9	mg/kg dw	SRC	RG MIDCO INV-1 2017-09-14
INV	RG MIDCO	667711	5487625	2017	1	2017-09-14	EPH	Selenium	6.5	mg/kg dw	SRC	RG MIDCO INVEPH-1 2017-09-1
INV	RG MIDCO	667711	5487625	2017	1	2017-09-14	RHY	Selenium	4.7	mg/kg dw	SRC	RG MIDCO INVRHY-1 2017-09-14
INV	RG MIUCO	668134	5486767	2017	1	2017-09-14	Composite	Selenium	2.8	mg/kg dw	SRC	RG MIUCO INV-1 2017-09-14
INV	RG MIUCO	668134	5486767	2017	1	2017-09-14	EPH	Selenium	6.3	mg/kg dw	SRC	RG MIUCO INVEPH-1 2017-09-14
INV	_	668134	5486767	2017	1	2017-09-14	RHY	Selenium	6.0		SRC	
	RG_MIUCO			_	1					mg/kg dw		RG_MIUCO_INVRHY-1_2017-09-14
INV	RG_CORCK	668556	5487388	2017	1	2017-09-14	Composite	% Moisture	85	%	SRC	RG_CORCK_INV-1_2017-09-14
INV	RG_CORCK	668556	5487388	2017	1	2017-09-14	RHY	% Moisture	80	%	SRC	RG_CORCK_INVRHY-1_2017-09-1
INV	RG_MI25	668186	5482838	2017	1	2017-09-14	Composite	% Moisture	83	%	SRC	RG_MI25_INV-1_2017-09-14
INV	RG_MI25	668186	5482838	2017	1	2017-09-14	EPH	% Moisture	87	%	SRC	RG_MI25_INVEPH-1_2017-09-14
INV	RG_MI25	668186	5482838	2017	1	2017-09-14	HYD	% Moisture	78	%	SRC	RG_MI25_INVHYD-1_2017-09-14
INV	RG_MI25	668186	5482838	2017	1	2017-09-14	RHY	% Moisture	79	%	SRC	RG_MI25_INVRHY-1_2017-09-14
INV	RG_MIDCO	667711	5487625	2017	1	2017-09-14	Composite	% Moisture	72	%	SRC	RG_MIDCO_INV-1_2017-09-14
INV	RG_MIDCO	667711	5487625	2017	1	2017-09-14	EPH	% Moisture	82	%	SRC	RG_MIDCO_INVEPH-1_2017-09-1
INV	RG_MIDCO	667711	5487625	2017	1	2017-09-14	RHY	% Moisture	77	%	SRC	RG_MIDCO_INVRHY-1_2017-09-1
INV	RG MIUCO	668134	5486767	2017	1	2017-09-14	Composite	% Moisture	79	%	SRC	RG MIUCO INV-1 2017-09-14
INV	RG MIUCO	668134	5486767	2017	1	2017-09-14	EPH	% Moisture	87	%	SRC	RG MIUCO INVEPH-1 2017-09-1
INV	RG MIUCO	668134	5486767	2017	1	2017-09-14	RHY	% Moisture	84	%	SRC	RG MIUCO INVRHY-1 2017-09-1
INV	RG MI25	668184	5482818	2017	1	2018-09-10	Composite	Aluminum	3,000	mg/kg dw	SRC	RG MI25 INV-1 2018-09-10
INV	RG MI25	668184	5482818	2018	1	2018-09-10	Composite	Antimony	<0.2	mg/kg dw	SRC	RG MI25 INV-1 2018-09-10
INV	RG_MI25	668184	5482818	2018	1			•				RG_MI25_INV-1_2018-09-10 RG_MI25_INV-1_2018-09-10
		nnx18/1	1 5487818	1 7018	1 1	2018-09-10	Composite	Arsenic	1.4	mg/kg dw	SRC	KG WIZO INV-1 2018-09-10

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Туре	Station	Location	n (UTMs) ^(a)	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit		Laboratory Information
Type	Station	Easting	Northing	I ear	Replicate	Date	Species/Composite	Allalyte	Result	Offic	Lab	Sample ID
INV	RG_MI25	668184	5482818	2018	1	2018-09-10	Composite	Barium	31	mg/kg dw	SRC	RG_MI25_INV-1_2018-09-10
INV	RG_MI25	668184	5482818	2018	1	2018-09-10	Composite	Beryllium	0.11	mg/kg dw	SRC	RG_MI25_INV-1_2018-09-10
INV	RG_MI25	668184	5482818	2018	1	2018-09-10	Composite	Boron	9.0	mg/kg dw	SRC	RG_MI25_INV-1_2018-09-10
INV	RG MI25	668184	5482818	2018	1	2018-09-10	Composite	Cadmium	2.0	mg/kg dw	SRC	RG_MI25_INV-1_2018-09-10
INV	RG MI25	668184	5482818	2018	1	2018-09-10	Composite	Chromium	4.0	mg/kg dw	SRC	RG MI25 INV-1 2018-09-10
INV	RG MI25	668184	5482818	2018	1	2018-09-10	Composite	Cobalt	1.0	mg/kg dw	SRC	RG MI25 INV-1 2018-09-10
INV	RG MI25	668184	5482818	2018	1	2018-09-10	Composite	Copper	16	mg/kg dw	SRC	RG MI25 INV-1 2018-09-10
INV	RG MI25	668184	5482818	2018	1	2018-09-10	Composite	Iron	1,800	mg/kg dw	SRC	RG MI25 INV-1 2018-09-10
INV	RG MI25	668184	5482818	2018	1	2018-09-10	Composite	Lead	1.6	mg/kg dw	SRC	RG MI25 INV-1 2018-09-10
INV	RG MI25	668184	5482818	2018	1	2018-09-10	Composite	Manganese	94	mg/kg dw	SRC	RG MI25 INV-1 2018-09-10
INV	RG MI25	668184	5482818	2018	1	2018-09-10	Composite	Mercury	0.03	mg/kg dw	SRC	RG MI25 INV-1 2018-09-10
INV	RG MI25	668184	5482818	2018	1	2018-09-10	Composite	Molybdenum	0.7	mg/kg dw	SRC	RG MI25 INV-1 2018-09-10
INV	RG MI25	668184	5482818	2018	1	2018-09-10	Composite	Nickel	3.8	mg/kg dw	SRC	RG_MI25_INV-1_2018-09-10
INV	RG_MI25	668184	5482818	2018	1	2018-09-10	Composite	Selenium	3.8		SRC	RG MI25 INV-1 2018-09-10
INV	RG_MI25				1	2018-09-10		Silver	0.05	mg/kg dw	SRC	RG_MI25_INV-1_2018-09-10
		668184	5482818	2018	1		Composite			mg/kg dw		
INV	RG_MI25	668184	5482818	2018		2018-09-10	Composite	Strontium	8.7	mg/kg dw	SRC	RG_MI25_INV-1_2018-09-10
INV	RG_MI25	668184	5482818	2018	1	2018-09-10	Composite	Thallium	0.1	mg/kg dw	SRC	RG_MI25_INV-1_2018-09-10
INV	RG_MI25	668184	5482818	2018	1	2018-09-10	Composite	Tin	<0.1	mg/kg dw	SRC	RG_MI25_INV-1_2018-09-10
INV	RG_MI25	668184	5482818	2018	1	2018-09-10	Composite	Titanium	19	mg/kg dw	SRC	RG_MI25_INV-1_2018-09-10
INV	RG_MI25	668184	5482818	2018	1	2018-09-10	Composite	Uranium	0.1	mg/kg dw	SRC	RG_MI25_INV-1_2018-09-10
INV	RG_MI25	668184	5482818	2018	1	2018-09-10	Composite	Vanadium	7.2	mg/kg dw	SRC	RG_MI25_INV-1_2018-09-10
INV	RG_MI25	668184	5482818	2018	1	2018-09-10	Composite	Zinc	140	mg/kg dw	SRC	RG_MI25_INV-1_2018-09-10
INV	RG_MI25	668184	5482818	2018	1	2018-09-10	Composite	% Moisture	84	%	SRC	RG_MI25_INV-1_2018-09-10
INV	RG_MI25	668184	5482818	2018	2	2018-09-10	Composite	Aluminum	2,100	mg/kg dw	SRC	RG_MI25_INV-2_2018-09-10
INV	RG_MI25	668184	5482818	2018	2	2018-09-10	Composite	Antimony	<0.2	mg/kg dw	SRC	RG_MI25_INV-2_2018-09-10
INV	RG_MI25	668184	5482818	2018	2	2018-09-10	Composite	Arsenic	1.3	mg/kg dw	SRC	RG_MI25_INV-2_2018-09-10
INV	RG MI25	668184	5482818	2018	2	2018-09-10	Composite	Barium	25	mg/kg dw	SRC	RG_MI25_INV-2_2018-09-10
INV	RG MI25	668184	5482818	2018	2	2018-09-10	Composite	Beryllium	0.08	mg/kg dw	SRC	RG_MI25_INV-2_2018-09-10
INV	RG MI25	668184	5482818	2018	2	2018-09-10	Composite	Boron	6.0	mg/kg dw	SRC	RG_MI25_INV-2_2018-09-10
INV	RG MI25	668184	5482818	2018	2	2018-09-10	Composite	Cadmium	3.0	mg/kg dw	SRC	RG_MI25_INV-2_2018-09-10
INV	RG MI25	668184	5482818	2018	2	2018-09-10	Composite	Chromium	3.0	mg/kg dw	SRC	RG MI25 INV-2 2018-09-10
INV	RG MI25	668184	5482818	2018	2	2018-09-10	Composite	Cobalt	0.98	mg/kg dw	SRC	RG MI25 INV-2 2018-09-10
INV	RG MI25	668184	5482818	2018	2	2018-09-10	Composite	Copper	18	mg/kg dw	SRC	RG_MI25_INV-2_2018-09-10
INV	RG MI25	668184	5482818	2018	2	2018-09-10	Composite	Iron	1,800	mg/kg dw	SRC	RG MI25 INV-2 2018-09-10
INV	RG MI25	668184	5482818	2018	2	2018-09-10	Composite	Lead	1.6	mg/kg dw	SRC	RG MI25 INV-2 2018-09-10
INV	RG_MI25	668184	5482818	2018	2	2018-09-10	·		94		SRC	RG_MI25_INV-2_2018-09-10
							Composite	Manganese		mg/kg dw		
INV	RG_MI25	668184	5482818	2018	2	2018-09-10	Composite	Mercury	0.03	mg/kg dw	SRC	RG_MI25_INV-2_2018-09-10
INV	RG_MI25	668184	5482818	2018	2	2018-09-10	Composite	Molybdenum	0.6	mg/kg dw	SRC	RG_MI25_INV-2_2018-09-10
INV	RG_MI25	668184	5482818	2018	2	2018-09-10	Composite	Nickel	3.3	mg/kg dw	SRC	RG_MI25_INV-2_2018-09-10
INV	RG_MI25	668184	5482818	2018	2	2018-09-10	Composite	Selenium	4.5	mg/kg dw	SRC	RG_MI25_INV-2_2018-09-10
INV	RG_MI25	668184	5482818	2018	2	2018-09-10	Composite	Silver	0.05	mg/kg dw	SRC	RG_MI25_INV-2_2018-09-10
INV	RG_MI25	668184	5482818	2018	2	2018-09-10	Composite	Strontium	5.9	mg/kg dw	SRC	RG_MI25_INV-2_2018-09-10
INV	RG_MI25	668184	5482818	2018	2	2018-09-10	Composite	Thallium	0.1	mg/kg dw	SRC	RG_MI25_INV-2_2018-09-10
INV	RG_MI25	668184	5482818	2018	2	2018-09-10	Composite	Tin	<0.1	mg/kg dw	SRC	RG_MI25_INV-2_2018-09-10
INV	RG_MI25	668184	5482818	2018	2	2018-09-10	Composite	Titanium	16	mg/kg dw	SRC	RG_MI25_INV-2_2018-09-10
INV	RG_MI25	668184	5482818	2018	2	2018-09-10	Composite	Uranium	0.08	mg/kg dw	SRC	RG_MI25_INV-2_2018-09-10
INV	RG_MI25	668184	5482818	2018	2	2018-09-10	Composite	Vanadium	4.9	mg/kg dw	SRC	RG_MI25_INV-2_2018-09-10
INV	RG_MI25	668184	5482818	2018	2	2018-09-10	Composite	Zinc	150	mg/kg dw	SRC	RG_MI25_INV-2_2018-09-10
INV	RG_MI25	668184	5482818	2018	2	2018-09-10	Composite	% Moisture	85	%	SRC	RG_MI25_INV-2_2018-09-10
INV	RG MI25	668184	5482818	2018	3	2018-09-10	Composite	Aluminum	1,500	mg/kg dw	SRC	RG MI25 INV-3 2018-09-10
INV	RG MI25	668184	5482818	2018	3	2018-09-10	Composite	Antimony	<2	mg/kg dw	SRC	RG MI25 INV-3 2018-09-10
INV	RG MI25	668184	5482818	2018	3	2018-09-10	Composite	Arsenic	1.0	mg/kg dw	SRC	RG MI25 INV-3 2018-09-10
INV	RG MI25	668184	5482818	2018	3	2018-09-10	Composite	Barium	28	mg/kg dw	SRC	RG MI25 INV-3 2018-09-10
INV	RG MI25	668184	5482818	2018	3	2018-09-10	Composite	Beryllium	<0.2	mg/kg dw	SRC	RG MI25 INV-3 2018-09-10
INV	RG MI25	668184	5482818	2018	3	2018-09-10	Composite	Boron	<20	mg/kg dw	SRC	RG_MI25_INV-3_2018-09-10
INV	RG_MI25	668184	5482818	2018	3	2018-09-10	Composite	Cadmium	2.8	mg/kg dw	SRC	RG_MI25_INV-3_2016-09-10 RG_MI25_INV-3_2018-09-10
		UDO 164	1 04070 ID	- 7010	o .	ZU 10-U9-1U	Composite	Caumuffi	1 7.0	mu/ku aw	i oru	ng iviizə iivv-ə ZUTö-U9-TU

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Туре	Station	Locatio	n (UTMs) ^(a)	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit		Laboratory Information
Type	Station	Easting	Northing	I eai	Replicate	Date	Species/Composite	Allalyte	Result	Offic	Lab	Sample ID
INV	RG_MI25	668184	5482818	2018	3	2018-09-10	Composite	Cobalt	1.3	mg/kg dw	SRC	RG_MI25_INV-3_2018-09-10
INV	RG_MI25	668184	5482818	2018	3	2018-09-10	Composite	Copper	16	mg/kg dw	SRC	RG_MI25_INV-3_2018-09-10
INV	RG_MI25	668184	5482818	2018	3	2018-09-10	Composite	Iron	1,000	mg/kg dw	SRC	RG_MI25_INV-3_2018-09-10
INV	RG MI25	668184	5482818	2018	3	2018-09-10	Composite	Lead	1.2	mg/kg dw	SRC	RG_MI25_INV-3_2018-09-10
INV	RG MI25	668184	5482818	2018	3	2018-09-10	Composite	Manganese	130	mg/kg dw	SRC	RG MI25 INV-3 2018-09-10
INV	RG MI25	668184	5482818	2018	3	2018-09-10	Composite	Mercury	<0.1	mg/kg dw	SRC	RG MI25 INV-3 2018-09-10
INV	RG MI25	668184	5482818	2018	3	2018-09-10	Composite	Molybdenum	<2	mg/kg dw	SRC	RG MI25 INV-3 2018-09-10
INV	RG MI25	668184	5482818	2018	3	2018-09-10	Composite	Nickel	3.0	mg/kg dw	SRC	RG_MI25_INV-3_2018-09-10
INV	RG MI25	668184	5482818	2018	3	2018-09-10	Composite	Selenium	5.0	mg/kg dw	SRC	RG MI25 INV-3 2018-09-10
INV	RG MI25	668184	5482818	2018	3	2018-09-10	Composite	Silver	<0.2	mg/kg dw	SRC	RG MI25 INV-3 2018-09-10
INV	RG MI25	668184	5482818	2018	3	2018-09-10	Composite	Strontium	5.0	mg/kg dw	SRC	RG_MI25_INV-3_2018-09-10
INV	RG MI25	668184	5482818	2018	3	2018-09-10	Composite	Thallium	<1	mg/kg dw	SRC	RG MI25 INV-3 2018-09-10
INV	RG MI25	668184	5482818	2018	3	2018-09-10	Composite	Tin	<1	mg/kg dw	SRC	RG_MI25_INV-3_2018-09-10
INV	RG_MI25	668184	5482818	2018	3	2018-09-10	Composite	Titanium	10		SRC	RG MI25 INV-3 2018-09-10
INV	RG_MI25					2018-09-10	<u>'</u>			mg/kg dw	SRC	RG_MI25_INV-3_2016-09-10 RG_MI25_INV-3_2018-09-10
	_	668184	5482818	2018	3		Composite	Uranium	<0.1	mg/kg dw		
INV	RG_MI25	668184	5482818	2018	3	2018-09-10	Composite	Vanadium	4.0	mg/kg dw	SRC	RG_MI25_INV-3_2018-09-10
INV	RG_MI25	668184	5482818	2018	3	2018-09-10	Composite	Zinc	150	mg/kg dw	SRC	RG_MI25_INV-3_2018-09-10
INV	RG_MI25	668184	5482818	2018	3	2018-09-10	Composite	% Moisture	86	%	SRC	RG_MI25_INV-3_2018-09-10
INV	RG_MIUCO	668135	5486767	2018	1	2018-09-10	Composite	Aluminum	940	mg/kg dw	SRC	RG_MIUCO_INV-1_2018-09-10
INV	RG_MIUCO	668135	5486767	2018	1	2018-09-10	Composite	Antimony	<0.2	mg/kg dw	SRC	RG_MIUCO_INV-1_2018-09-10
INV	RG_MIUCO	668135	5486767	2018	1	2018-09-10	Composite	Arsenic	0.6	mg/kg dw	SRC	RG_MIUCO_INV-1_2018-09-10
INV	RG_MIUCO	668135	5486767	2018	1	2018-09-10	Composite	Barium	16	mg/kg dw	SRC	RG_MIUCO_INV-1_2018-09-10
INV	RG_MIUCO	668135	5486767	2018	1	2018-09-10	Composite	Beryllium	0.03	mg/kg dw	SRC	RG_MIUCO_INV-1_2018-09-10
INV	RG_MIUCO	668135	5486767	2018	1	2018-09-10	Composite	Boron	2.0	mg/kg dw	SRC	RG_MIUCO_INV-1_2018-09-10
INV	RG_MIUCO	668135	5486767	2018	1	2018-09-10	Composite	Cadmium	1.4	mg/kg dw	SRC	RG_MIUCO_INV-1_2018-09-10
INV	RG_MIUCO	668135	5486767	2018	1	2018-09-10	Composite	Chromium	1.0	mg/kg dw	SRC	RG_MIUCO_INV-1_2018-09-10
INV	RG MIUCO	668135	5486767	2018	1	2018-09-10	Composite	Cobalt	0.66	mg/kg dw	SRC	RG MIUCO INV-1 2018-09-10
INV	RG_MIUCO	668135	5486767	2018	1	2018-09-10	Composite	Copper	28	mg/kg dw	SRC	RG MIUCO INV-1 2018-09-10
INV	RG_MIUCO	668135	5486767	2018	1	2018-09-10	Composite	Iron	670	mg/kg dw	SRC	RG_MIUCO_INV-1_2018-09-10
INV	RG MIUCO	668135	5486767	2018	1	2018-09-10	Composite	Lead	0.32	mg/kg dw	SRC	RG MIUCO INV-1 2018-09-10
INV	RG MIUCO	668135	5486767	2018	1	2018-09-10	Composite	Manganese	100	mg/kg dw	SRC	RG MIUCO INV-1 2018-09-10
INV	RG MIUCO	668135	5486767	2018	1	2018-09-10	Composite	Mercury	0.03	mg/kg dw	SRC	RG MIUCO INV-1 2018-09-10
INV	RG MIUCO	668135	5486767	2018	1	2018-09-10	Composite	Molybdenum	0.4	mg/kg dw	SRC	RG MIUCO INV-1 2018-09-10
INV	RG MIUCO	668135	5486767	2018	1	2018-09-10	Composite	Nickel	1.4	mg/kg dw	SRC	RG MIUCO INV-1 2018-09-10
INV	RG MIUCO	668135	5486767	2018	1	2018-09-10	Composite	Selenium	3.2	mg/kg dw	SRC	RG MIUCO INV-1 2018-09-10
INV	RG MIUCO	668135	5486767	2018	1	2018-09-10	Composite	Silver	0.1	mg/kg dw	SRC	RG MIUCO INV-1 2018-09-10
INV	RG MIUCO	668135	5486767	2018	1	2018-09-10	Composite	Strontium	5.7	mg/kg dw	SRC	RG_MIUCO_INV-1_2018-09-10
INV	_				1		<u>'</u>			0 0		
	RG_MIUCO	668135	5486767	2018	1	2018-09-10	Composite	Thallium	<0.1	mg/kg dw	SRC	RG_MIUCO_INV-1_2018-09-10
INV	RG_MIUCO	668135	5486767	2018	1	2018-09-10	Composite	Tin	<0.1	mg/kg dw	SRC	RG_MIUCO_INV-1_2018-09-10
INV	RG_MIUCO	668135	5486767	2018	1	2018-09-10	Composite	Titanium	8.7	mg/kg dw	SRC	RG_MIUCO_INV-1_2018-09-10
INV	RG_MIUCO	668135	5486767	2018	1	2018-09-10	Composite	Uranium	0.03	mg/kg dw	SRC	RG_MIUCO_INV-1_2018-09-10
INV	RG_MIUCO	668135	5486767	2018	1	2018-09-10	Composite	Vanadium	2.0	mg/kg dw	SRC	RG_MIUCO_INV-1_2018-09-10
INV	RG_MIUCO	668135	5486767	2018	1	2018-09-10	Composite	Zinc	130	mg/kg dw	SRC	RG_MIUCO_INV-1_2018-09-10
INV	RG_MIUCO	668135	5486767	2018	1	2018-09-10	Composite	% Moisture	82	%	SRC	RG_MIUCO_INV-1_2018-09-10
INV	RG_MIUCO	668135	5486767	2018	2	2018-09-10	Composite	Aluminum	5,200	mg/kg dw	SRC	RG_MIUCO_INV-2_2018-09-10
INV	RG_MIUCO	668135	5486767	2018	2	2018-09-10	Composite	Antimony	<0.2	mg/kg dw	SRC	RG_MIUCO_INV-2_2018-09-10
INV	RG_MIUCO	668135	5486767	2018	2	2018-09-10	Composite	Arsenic	1.8	mg/kg dw	SRC	RG_MIUCO_INV-2_2018-09-10
INV	RG_MIUCO	668135	5486767	2018	2	2018-09-10	Composite	Barium	34	mg/kg dw	SRC	RG_MIUCO_INV-2_2018-09-10
INV	RG_MIUCO	668135	5486767	2018	2	2018-09-10	Composite	Beryllium	0.19	mg/kg dw	SRC	RG_MIUCO_INV-2_2018-09-10
INV	RG_MIUCO	668135	5486767	2018	2	2018-09-10	Composite	Boron	12	mg/kg dw	SRC	RG_MIUCO_INV-2_2018-09-10
INV	RG MIUCO	668135	5486767	2018	2	2018-09-10	Composite	Cadmium	2.7	mg/kg dw	SRC	RG MIUCO INV-2 2018-09-10
INV	RG MIUCO	668135	5486767	2018	2	2018-09-10	Composite	Chromium	6.0	mg/kg dw	SRC	RG MIUCO INV-2 2018-09-10
INV	RG MIUCO	668135	5486767	2018	2	2018-09-10	Composite	Cobalt	2.8	mg/kg dw	SRC	RG MIUCO INV-2 2018-09-10
INV	RG MIUCO	668135	5486767	2018	2	2018-09-10	Composite	Copper	17	mg/kg dw	SRC	RG MIUCO INV-2 2018-09-10
INV	RG MIUCO	668135	5486767	2018	2	2018-09-10	Composite	Iron	3,600	mg/kg dw	SRC	RG MIUCO INV-2 2018-09-10
INV	RG MIUCO	668135	5486767	2018	2	2018-09-10	Composite	Lead	1.5	mg/kg dw	SRC	RG MIUCO INV-2 2018-09-10
		000 1.33	. J400707	- 7010	/	ZU10-U3-1U	COHIDOSILE	i eau	1 1 3	LLICI/INCLICIVV	OUC	13G 1911UCU 11117-2 2010-09-10

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

			rom the CMm LA n (UTMs) ^(a)									Laboratory Information
Туре	Station	Easting	Northing	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit	Lab	Sample ID
INV	RG MIUCO	668135	5486767	2018	2	2018-09-10	Composite	Mercury	0.03	mg/kg dw	SRC	RG_MIUCO_INV-2_2018-09-10
INV	RG MIUCO	668135	5486767	2018	2	2018-09-10	Composite	Molybdenum	0.6	mg/kg dw	SRC	RG MIUCO INV-2 2018-09-10
INV	RG_MIUCO	668135	5486767	2018	2	2018-09-10	Composite	Nickel	4.5	mg/kg dw	SRC	RG MIUCO INV-2 2018-09-10
INV	RG_MIUCO	668135	5486767	2018	2	2018-09-10	Composite	Selenium	6.7	mg/kg dw	SRC	RG MIUCO INV-2 2018-09-10
INV		668135	5486767			2018-09-10		Silver	0.05		SRC	
	RG_MIUCO			2018	2		Composite			mg/kg dw		RG_MIUCO_INV-2_2018-09-10
INV	RG_MIUCO	668135	5486767	2018	2	2018-09-10	Composite	Strontium	10	mg/kg dw	SRC	RG_MIUCO_INV-2_2018-09-10
INV	RG_MIUCO	668135	5486767	2018	2	2018-09-10	Composite	Thallium	0.1	mg/kg dw	SRC	RG_MIUCO_INV-2_2018-09-10
INV	RG_MIUCO	668135	5486767	2018	2	2018-09-10	Composite	Tin	<0.1	mg/kg dw	SRC	RG_MIUCO_INV-2_2018-09-10
INV	RG_MIUCO	668135	5486767	2018	2	2018-09-10	Composite	Titanium	28	mg/kg dw	SRC	RG_MIUCO_INV-2_2018-09-10
INV	RG_MIUCO	668135	5486767	2018	2	2018-09-10	Composite	Uranium	0.1	mg/kg dw	SRC	RG_MIUCO_INV-2_2018-09-10
INV	RG_MIUCO	668135	5486767	2018	2	2018-09-10	Composite	Vanadium	10	mg/kg dw	SRC	RG_MIUCO_INV-2_2018-09-10
INV	RG_MIUCO	668135	5486767	2018	2	2018-09-10	Composite	Zinc	130	mg/kg dw	SRC	RG_MIUCO_INV-2_2018-09-10
INV	RG_MIUCO	668135	5486767	2018	2	2018-09-10	Composite	% Moisture	86	%	SRC	RG_MIUCO_INV-2_2018-09-10
INV	RG_MIUCO	668135	5486767	2018	3	2018-09-10	Composite	Aluminum	1,300	mg/kg dw	SRC	RG_MIUCO_INV-3_2018-09-10
INV	RG_MIUCO	668135	5486767	2018	3	2018-09-10	Composite	Antimony	<1	mg/kg dw	SRC	RG_MIUCO_INV-3_2018-09-10
INV	RG_MIUCO	668135	5486767	2018	3	2018-09-10	Composite	Arsenic	0.9	mg/kg dw	SRC	RG_MIUCO_INV-3_2018-09-10
INV	RG MIUCO	668135	5486767	2018	3	2018-09-10	Composite	Barium	18	mg/kg dw	SRC	RG MIUCO INV-3 2018-09-10
INV	RG MIUCO	668135	5486767	2018	3	2018-09-10	Composite	Beryllium	<0.1	mg/kg dw	SRC	RG_MIUCO_INV-3_2018-09-10
INV	RG MIUCO	668135	5486767	2018	3	2018-09-10	Composite	Boron	<10	mg/kg dw	SRC	RG_MIUCO_INV-3_2018-09-10
INV	RG MIUCO	668135	5486767	2018	3	2018-09-10	Composite	Cadmium	1.7	mg/kg dw	SRC	RG MIUCO INV-3 2018-09-10
INV	RG_MIUCO	668135	5486767	2018	3	2018-09-10	Composite	Chromium	<5	mg/kg dw	SRC	RG_MIUCO_INV-3_2018-09-10
INV	RG_MIUCO	668135	5486767	2018	3	2018-09-10	Composite	Cobalt	1.2	mg/kg dw	SRC	RG_MIUCO_INV-3_2018-09-10
INV	RG_MIUCO	668135	5486767	2018	3	2018-09-10	Composite	Copper	18	mg/kg dw	SRC	RG_MIUCO_INV-3_2018-09-10
INV	RG MIUCO	668135	5486767	2018		2018-09-10	'	Iron	930		SRC	
					3		Composite			mg/kg dw		RG_MIUCO_INV-3_2018-09-10
INV	RG_MIUCO	668135	5486767	2018	3	2018-09-10	Composite	Lead	0.4	mg/kg dw	SRC	RG_MIUCO_INV-3_2018-09-10
INV	RG_MIUCO	668135	5486767	2018	3	2018-09-10	Composite	Manganese	140	mg/kg dw	SRC	RG_MIUCO_INV-3_2018-09-10
INV	RG_MIUCO	668135	5486767	2018	3	2018-09-10	Composite	Mercury	<0.05	mg/kg dw	SRC	RG_MIUCO_INV-3_2018-09-10
INV	RG_MIUCO	668135	5486767	2018	3	2018-09-10	Composite	Molybdenum	<1	mg/kg dw	SRC	RG_MIUCO_INV-3_2018-09-10
INV	RG_MIUCO	668135	5486767	2018	3	2018-09-10	Composite	Nickel	2.2	mg/kg dw	SRC	RG_MIUCO_INV-3_2018-09-10
INV	RG_MIUCO	668135	5486767	2018	3	2018-09-10	Composite	Selenium	5.5	mg/kg dw	SRC	RG_MIUCO_INV-3_2018-09-10
INV	RG_MIUCO	668135	5486767	2018	3	2018-09-10	Composite	Silver	<0.1	mg/kg dw	SRC	RG_MIUCO_INV-3_2018-09-10
INV	RG_MIUCO	668135	5486767	2018	3	2018-09-10	Composite	Strontium	5.0	mg/kg dw	SRC	RG_MIUCO_INV-3_2018-09-10
INV	RG_MIUCO	668135	5486767	2018	3	2018-09-10	Composite	Thallium	<0.5	mg/kg dw	SRC	RG_MIUCO_INV-3_2018-09-10
INV	RG_MIUCO	668135	5486767	2018	3	2018-09-10	Composite	Tin	<0.5	mg/kg dw	SRC	RG_MIUCO_INV-3_2018-09-10
INV	RG MIUCO	668135	5486767	2018	3	2018-09-10	Composite	Titanium	9.7	mg/kg dw	SRC	RG MIUCO INV-3 2018-09-10
INV	RG_MIUCO	668135	5486767	2018	3	2018-09-10	Composite	Uranium	<0.05	mg/kg dw	SRC	RG_MIUCO_INV-3_2018-09-10
INV	RG MIUCO	668135	5486767	2018	3	2018-09-10	Composite	Vanadium	3.0	mg/kg dw	SRC	RG MIUCO INV-3 2018-09-10
INV	RG_MIUCO	668135	5486767	2018	3	2018-09-10	Composite	Zinc	120	mg/kg dw	SRC	RG MIUCO INV-3 2018-09-10
INV	RG MIUCO	668135	5486767	2018	3	2018-09-10	Composite	% Moisture	87	%	SRC	RG MIUCO INV-3 2018-09-10
INV	RG_MI5	659496	5496774	2018	1	2018-09-11	Composite	Aluminum	880	mg/kg dw	SRC	RG MI5 INV-1 2018-09-11
INV	RG MI5	659496	5496774	2018	1	2018-09-11	Composite	Antimony	<2	mg/kg dw	SRC	RG MI5 INV-1 2018-09-11
INV	RG MI5	659496	5496774	2018	1	2018-09-11	Composite	Arsenic	<1	mg/kg dw	SRC	RG MI5 INV-1 2018-09-11
INV	RG_MI5	659496	5496774	2018	1	2018-09-11	'	Barium	25		SRC	RG MI5 INV-1 2018-09-11
					1		Composite			mg/kg dw		RG_MI5_INV-1_2018-09-11 RG_MI5_INV-1_2018-09-11
INV	RG_MI5	659496	5496774	2018	1	2018-09-11	Composite	Beryllium	<0.2	mg/kg dw	SRC	
INV	RG_MI5	659496	5496774	2018	1	2018-09-11	Composite	Boron	<20	mg/kg dw	SRC	RG_MI5_INV-1_2018-09-11
INV	RG_MI5	659496	5496774	2018	1	2018-09-11	Composite	Cadmium	1.8	mg/kg dw	SRC	RG_MI5_INV-1_2018-09-11
INV	RG_MI5	659496	5496774	2018	1	2018-09-11	Composite	Chromium	<10	mg/kg dw	SRC	RG_MI5_INV-1_2018-09-11
INV	RG_MI5	659496	5496774	2018	1	2018-09-11	Composite	Cobalt	5.0	mg/kg dw	SRC	RG_MI5_INV-1_2018-09-11
INV	RG_MI5	659496	5496774	2018	1	2018-09-11	Composite	Copper	14	mg/kg dw	SRC	RG_MI5_INV-1_2018-09-11
INV	RG_MI5	659496	5496774	2018	1	2018-09-11	Composite	Iron	760	mg/kg dw	SRC	RG_MI5_INV-1_2018-09-11
INV	RG_MI5	659496	5496774	2018	1	2018-09-11	Composite	Lead	0.4	mg/kg dw	SRC	RG_MI5_INV-1_2018-09-11
INV	RG_MI5	659496	5496774	2018	1	2018-09-11	Composite	Manganese	77	mg/kg dw	SRC	RG_MI5_INV-1_2018-09-11
INV	RG MI5	659496	5496774	2018	1	2018-09-11	Composite	Mercury	<0.1	mg/kg dw	SRC	RG MI5 INV-1 2018-09-11
INV	RG MI5	659496	5496774	2018	1	2018-09-11	Composite	Molybdenum	<2	mg/kg dw	SRC	RG MI5 INV-1 2018-09-11
INV	RG MI5	659496	5496774	2018	1	2018-09-11	Composite	Nickel	9.0	mg/kg dw	SRC	RG MI5 INV-1 2018-09-11
INV	RG MI5	659496	5496774	2018	1	2018-09-11	Composite	Selenium	5.0	mg/kg dw	SRC	RG MI5 INV-1 2018-09-11
INV	RG_MI5	659496	5496774	2018	1	2018-09-11	Composite	Silver	<0.2	mg/kg dw	SRC	RG MI5 INV-1 2018-09-11

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Туре	Station	Locatio	n (UTMs) ^(a)	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit		Laboratory Information
туре	Station	Easting	Northing	I ear	Replicate	Date	Species/Composite	Analyte	Result	Offic	Lab	Sample ID
INV	RG_MI5	659496	5496774	2018	1	2018-09-11	Composite	Strontium	10	mg/kg dw	SRC	RG_MI5_INV-1_2018-09-11
INV	RG_MI5	659496	5496774	2018	1	2018-09-11	Composite	Thallium	<1	mg/kg dw	SRC	RG_MI5_INV-1_2018-09-11
INV	RG_MI5	659496	5496774	2018	1	2018-09-11	Composite	Tin	<1	mg/kg dw	SRC	RG_MI5_INV-1_2018-09-11
INV	RG_MI5	659496	5496774	2018	1	2018-09-11	Composite	Titanium	5.0	mg/kg dw	SRC	RG_MI5_INV-1_2018-09-11
INV	RG_MI5	659496	5496774	2018	1	2018-09-11	Composite	Uranium	0.1	mg/kg dw	SRC	RG_MI5_INV-1_2018-09-11
INV	RG MI5	659496	5496774	2018	1	2018-09-11	Composite	Vanadium	4.0	mg/kg dw	SRC	RG MI5 INV-1 2018-09-11
INV	RG MI5	659496	5496774	2018	1	2018-09-11	Composite	Zinc	160	mg/kg dw	SRC	RG MI5 INV-1 2018-09-11
INV	RG MI5	659496	5496774	2018	1	2018-09-11	Composite	% Moisture	82	%	SRC	RG MI5 INV-1 2018-09-11
INV	RG MI5	659496	5496774	2018	2	2018-09-11	Composite	Aluminum	1,500	mg/kg dw	SRC	RG MI5 INV-2 2018-09-11
INV	RG MI5	659496	5496774	2018	2	2018-09-11	Composite	Antimony	<1	mg/kg dw	SRC	RG MI5 INV-2 2018-09-11
INV	RG MI5	659496	5496774	2018	2	2018-09-11	Composite	Arsenic	1.4	mg/kg dw	SRC	RG_MI5_INV-2_2018-09-11
INV	RG MI5	659496	5496774	2018	2	2018-09-11	Composite	Barium	45	mg/kg dw	SRC	RG_MI5_INV-2_2018-09-11
INV	RG MI5	659496	5496774	2018	2	2018-09-11	Composite	Beryllium	<0.1	mg/kg dw	SRC	RG_MI5_INV-2_2018-09-11
INV	RG MI5	659496	5496774	2018	2	2018-09-11	Composite	Boron	<10	mg/kg dw	SRC	RG MI5 INV-2 2018-09-11
INV	RG MI5	659496	5496774	2018	2	2018-09-11	Composite	Cadmium	4.3	mg/kg dw	SRC	RG_MI5_INV-2_2018-09-11
INV	RG MI5	659496	5496774	2018	2	2018-09-11	Composite	Chromium	<5	mg/kg dw	SRC	RG_MI5_INV-2_2018-09-11
INV	RG MI5	659496	5496774	2018	2	2018-09-11	Composite	Cobalt	11	mg/kg dw	SRC	RG_MI5_INV-2_2018-09-11
INV	RG MI5	659496	5496774	2018	2	2018-09-11	Composite	Copper	11	mg/kg dw	SRC	RG MI5 INV-2 2018-09-11
INV	RG MI5	659496	5496774	2018	2	2018-09-11	Composite	Iron	1,400	mg/kg dw	SRC	RG MI5 INV-2 2018-09-11
INV	RG MI5	659496	5496774	2018	2	2018-09-11	Composite	Lead	0.9	mg/kg dw	SRC	RG MI5 INV-2 2018-09-11
INV	RG MI5	659496	5496774	2018	2	2018-09-11	Composite	Manganese	83	mg/kg dw	SRC	RG_MI5_INV-2_2018-09-11
INV	RG_MI5	659496	5496774	2018	2	2018-09-11	Composite	Mercury	<0.05	mg/kg dw	SRC	RG MI5 INV-2 2018-09-11
INV	RG MI5	659496	5496774	2018	2	2018-09-11	Composite	Molybdenum	<1	mg/kg dw	SRC	RG_MI5_INV-2_2018-09-11
INV	RG MI5	659496	5496774	2018	2	2018-09-11	Composite	Nickel	12	mg/kg dw	SRC	RG_MI5_INV-2_2018-09-11
INV	RG_MI5	659496	5496774	2018	2	2018-09-11					SRC	
INV	_						Composite	Selenium Silver	8.1	mg/kg dw	SRC	RG_MI5_INV-2_2018-09-11
	RG_MI5	659496	5496774	2018	2	2018-09-11	Composite		<0.1	mg/kg dw		RG_MI5_INV-2_2018-09-11
INV	RG_MI5	659496	5496774	2018	2	2018-09-11	Composite	Strontium	16	mg/kg dw	SRC	RG_MI5_INV-2_2018-09-11
INV	RG_MI5	659496	5496774	2018	2	2018-09-11	Composite	Thallium	<0.5	mg/kg dw	SRC	RG_MI5_INV-2_2018-09-11
INV	RG_MI5	659496	5496774	2018	2	2018-09-11	Composite	Tin	<0.5	mg/kg dw	SRC	RG_MI5_INV-2_2018-09-11
INV	RG_MI5	659496	5496774	2018	2	2018-09-11	Composite	Titanium	10	mg/kg dw	SRC	RG_MI5_INV-2_2018-09-11
INV	RG_MI5	659496	5496774	2018	2	2018-09-11	Composite	Uranium	0.2	mg/kg dw	SRC	RG_MI5_INV-2_2018-09-11
INV	RG_MI5	659496	5496774	2018	2	2018-09-11	Composite	Vanadium —-	8.0	mg/kg dw	SRC	RG_MI5_INV-2_2018-09-11
INV	RG_MI5	659496	5496774	2018	2	2018-09-11	Composite	Zinc	160	mg/kg dw	SRC	RG_MI5_INV-2_2018-09-11
INV	RG_MI5	659496	5496774	2018	2	2018-09-11	Composite	% Moisture	87	%	SRC	RG_MI5_INV-2_2018-09-11
INV	RG_MI5	659496	5496774	2018	3	2018-09-11	Composite	Aluminum	6,200	mg/kg dw	SRC	RG_MI5_INV-3_2018-09-11
INV	RG_MI5	659496	5496774	2018	3	2018-09-11	Composite	Antimony	<0.2	mg/kg dw	SRC	RG_MI5_INV-3_2018-09-11
INV	RG_MI5	659496	5496774	2018	3	2018-09-11	Composite	Arsenic	2.0	mg/kg dw	SRC	RG_MI5_INV-3_2018-09-11
INV	RG_MI5	659496	5496774	2018	3	2018-09-11	Composite	Barium	72	mg/kg dw	SRC	RG_MI5_INV-3_2018-09-11
INV	RG_MI5	659496	5496774	2018	3	2018-09-11	Composite	Beryllium	0.2	mg/kg dw	SRC	RG_MI5_INV-3_2018-09-11
INV	RG_MI5	659496	5496774	2018	3	2018-09-11	Composite	Boron	10	mg/kg dw	SRC	RG_MI5_INV-3_2018-09-11
INV	RG_MI5	659496	5496774	2018	3	2018-09-11	Composite	Cadmium	2.5	mg/kg dw	SRC	RG_MI5_INV-3_2018-09-11
INV	RG_MI5	659496	5496774	2018	3	2018-09-11	Composite	Chromium	8.0	mg/kg dw	SRC	RG_MI5_INV-3_2018-09-11
INV	RG_MI5	659496	5496774	2018	3	2018-09-11	Composite	Cobalt	5.2	mg/kg dw	SRC	RG_MI5_INV-3_2018-09-11
INV	RG_MI5	659496	5496774	2018	3	2018-09-11	Composite	Copper	12	mg/kg dw	SRC	RG_MI5_INV-3_2018-09-11
INV	RG_MI5	659496	5496774	2018	3	2018-09-11	Composite	Iron	4,400	mg/kg dw	SRC	RG_MI5_INV-3_2018-09-11
INV	RG_MI5	659496	5496774	2018	3	2018-09-11	Composite	Lead	2.1	mg/kg dw	SRC	RG_MI5_INV-3_2018-09-11
INV	RG_MI5	659496	5496774	2018	3	2018-09-11	Composite	Manganese	140	mg/kg dw	SRC	RG_MI5_INV-3_2018-09-11
INV	RG_MI5	659496	5496774	2018	3	2018-09-11	Composite	Mercury	0.04	mg/kg dw	SRC	RG_MI5_INV-3_2018-09-11
INV	RG_MI5	659496	5496774	2018	3	2018-09-11	Composite	Molybdenum	0.6	mg/kg dw	SRC	RG_MI5_INV-3_2018-09-11
INV	RG_MI5	659496	5496774	2018	3	2018-09-11	Composite	Nickel	14	mg/kg dw	SRC	RG_MI5_INV-3_2018-09-11
INV	RG_MI5	659496	5496774	2018	3	2018-09-11	Composite	Selenium	6.6	mg/kg dw	SRC	RG_MI5_INV-3_2018-09-11
INV	RG_MI5	659496	5496774	2018	3	2018-09-11	Composite	Silver	0.11	mg/kg dw	SRC	RG_MI5_INV-3_2018-09-11
INV	RG_MI5	659496	5496774	2018	3	2018-09-11	Composite	Strontium	30	mg/kg dw	SRC	RG_MI5_INV-3_2018-09-11
INV	RG_MI5	659496	5496774	2018	3	2018-09-11	Composite	Thallium	0.2	mg/kg dw	SRC	RG_MI5_INV-3_2018-09-11
INV	RG_MI5	659496	5496774	2018	3	2018-09-11	Composite	Tin	<0.1	mg/kg dw	SRC	RG_MI5_INV-3_2018-09-11
INV	RG_MI5	659496	5496774	2018	3	2018-09-11	Composite	Titanium	32	mg/kg dw	SRC	RG_MI5_INV-3_2018-09-11
INV	RG MI5	659496	5496774	2018	3	2018-09-11	Composite	Uranium	0.32	mg/kg dw	SRC	RG MI5 INV-3 2018-09-11

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Туре	Station	Location	n (UTMs) ^(a)	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit		Laboratory Information
Type	Station	Easting	Northing	I ear	Replicate	Date	Species/Composite	Analyte	Result	Offic	Lab	Sample ID
INV	RG_MI5	659496	5496774	2018	3	2018-09-11	Composite	Vanadium	22	mg/kg dw	SRC	RG_MI5_INV-3_2018-09-11
INV	RG_MI5	659496	5496774	2018	3	2018-09-11	Composite	Zinc	160	mg/kg dw	SRC	RG_MI5_INV-3_2018-09-11
INV	RG_MI5	659496	5496774	2018	3	2018-09-11	Composite	% Moisture	87	%	SRC	RG_MI5_INV-3_2018-09-11
INV	RG_MIULE	660503	5493048	2018	1	2018-09-11	Composite	Aluminum	960	mg/kg dw	SRC	RG_MIULE_INV-1_2018-09-11
INV	RG_MIULE	660503	5493048	2018	1	2018-09-11	Composite	Antimony	<1	mg/kg dw	SRC	RG_MIULE_INV-1_2018-09-11
INV	RG MIULE	660503	5493048	2018	1	2018-09-11	Composite	Arsenic	0.7	mg/kg dw	SRC	RG_MIULE_INV-1_2018-09-11
INV	RG MIULE	660503	5493048	2018	1	2018-09-11	Composite	Barium	26	mg/kg dw	SRC	RG MIULE INV-1 2018-09-11
INV	RG MIULE	660503	5493048	2018	1	2018-09-11	Composite	Beryllium	<0.1	mg/kg dw	SRC	RG_MIULE_INV-1_2018-09-11
INV	RG MIULE	660503	5493048	2018	1	2018-09-11	Composite	Boron	<10	mg/kg dw	SRC	RG MIULE INV-1 2018-09-11
INV	RG MIULE	660503	5493048	2018	1	2018-09-11	Composite	Cadmium	1.3	mg/kg dw	SRC	RG MIULE INV-1 2018-09-11
INV	RG_MIULE	660503	5493048	2018	1	2018-09-11	Composite	Chromium	<5	mg/kg dw	SRC	RG MIULE INV-1 2018-09-11
INV	RG MIULE	660503	5493048	2018	1	2018-09-11	Composite	Cobalt	14	mg/kg dw	SRC	RG MIULE INV-1 2018-09-11
INV	RG_MIULE	660503	5493048	2018	1	2018-09-11	Composite	Copper	11	mg/kg dw	SRC	RG_MIULE_INV-1_2018-09-11
INV	RG MIULE	660503	5493048	2018	1	2018-09-11	Composite	Iron	620	mg/kg dw	SRC	RG MIULE INV-1 2018-09-11
INV	RG MIULE	660503	5493048	2018	1	2018-09-11	Composite	Lead	0.4	mg/kg dw	SRC	RG MIULE INV-1 2018-09-11
INV	RG MIULE	660503	5493048	2018	1	2018-09-11	Composite	Manganese	80	mg/kg dw	SRC	RG_MIULE_INV-1_2018-09-11
INV	RG MIULE	660503	5493048	2018	1	2018-09-11	Composite	Mercury	<0.05	mg/kg dw	SRC	RG MIULE INV-1 2018-09-11
INV	RG MIULE	660503	5493048	2018	1	2018-09-11	Composite	Molybdenum	<1	mg/kg dw	SRC	RG MIULE INV-1 2018-09-11
INV	RG MIULE	660503	5493048	2018	1	2018-09-11	Composite	Nickel	9.2	mg/kg dw	SRC	RG MIULE INV-1 2018-09-11
INV	RG MIULE	660503	5493048	2018	1	2018-09-11	Composite	Selenium	9.0	mg/kg dw	SRC	RG MIULE INV-1 2018-09-11
INV	RG MIULE	660503	5493048	2018	1	2018-09-11	Composite	Silver	<0.1	mg/kg dw	SRC	RG_MIULE_INV-1_2018-09-11
INV	RG MIULE	660503	5493048	2018	1	2018-09-11	•	Strontium	19		SRC	RG MIULE INV-1 2018-09-11
INV	RG_MIULE	660503	5493048		1	2018-09-11	Composite		<0.5	mg/kg dw	SRC	
INV				2018	1		Composite	Thallium		mg/kg dw		RG_MIULE_INV-1_2018-09-11
	RG_MIULE	660503	5493048	2018	1	2018-09-11	Composite	Tin	<0.5	mg/kg dw	SRC	RG_MIULE_INV-1_2018-09-11
INV	RG_MIULE	660503	5493048	2018	1	2018-09-11	Composite	Titanium	9.2	mg/kg dw	SRC	RG_MIULE_INV-1_2018-09-11
INV	RG_MIULE	660503	5493048	2018	1	2018-09-11	Composite	Uranium	0.08	mg/kg dw	SRC	RG_MIULE_INV-1_2018-09-11
INV	RG_MIULE	660503	5493048	2018	1	2018-09-11	Composite	Vanadium	3.0	mg/kg dw	SRC	RG_MIULE_INV-1_2018-09-11
INV	RG_MIULE	660503	5493048	2018	1	2018-09-11	Composite	Zinc	170	mg/kg dw	SRC	RG_MIULE_INV-1_2018-09-11
INV	RG_MIULE	660503	5493048	2018	1	2018-09-11	Composite	% Moisture	84	<u>%</u>	SRC	RG_MIULE_INV-1_2018-09-11
INV	RG_MIULE	660503	5493048	2018	2	2018-09-11	Composite	Aluminum	890	mg/kg dw	SRC	RG_MIULE_INV-2_2018-09-11
INV	RG_MIULE	660503	5493048	2018	2	2018-09-11	Composite	Antimony	<0.2	mg/kg dw	SRC	RG_MIULE_INV-2_2018-09-11
INV	RG_MIULE	660503	5493048	2018	2	2018-09-11	Composite	Arsenic	0.6	mg/kg dw	SRC	RG_MIULE_INV-2_2018-09-11
INV	RG_MIULE	660503	5493048	2018	2	2018-09-11	Composite	Barium	20	mg/kg dw	SRC	RG_MIULE_INV-2_2018-09-11
INV	RG_MIULE	660503	5493048	2018	2	2018-09-11	Composite	Beryllium	0.03	mg/kg dw	SRC	RG_MIULE_INV-2_2018-09-11
INV	RG_MIULE	660503	5493048	2018	2	2018-09-11	Composite	Boron	2.0	mg/kg dw	SRC	RG_MIULE_INV-2_2018-09-11
INV	RG_MIULE	660503	5493048	2018	2	2018-09-11	Composite	Cadmium	1.4	mg/kg dw	SRC	RG_MIULE_INV-2_2018-09-11
INV	RG_MIULE	660503	5493048	2018	2	2018-09-11	Composite	Chromium	1.0	mg/kg dw	SRC	RG_MIULE_INV-2_2018-09-11
INV	RG_MIULE	660503	5493048	2018	2	2018-09-11	Composite	Cobalt	12	mg/kg dw	SRC	RG_MIULE_INV-2_2018-09-11
INV	RG_MIULE	660503	5493048	2018	2	2018-09-11	Composite	Copper	12	mg/kg dw	SRC	RG_MIULE_INV-2_2018-09-11
INV	RG_MIULE	660503	5493048	2018	2	2018-09-11	Composite	Iron	560	mg/kg dw	SRC	RG_MIULE_INV-2_2018-09-11
INV	RG_MIULE	660503	5493048	2018	2	2018-09-11	Composite	Lead	0.35	mg/kg dw	SRC	RG_MIULE_INV-2_2018-09-11
INV	RG_MIULE	660503	5493048	2018	2	2018-09-11	Composite	Manganese	56	mg/kg dw	SRC	RG_MIULE_INV-2_2018-09-11
INV	RG_MIULE	660503	5493048	2018	2	2018-09-11	Composite	Mercury	0.02	mg/kg dw	SRC	RG_MIULE_INV-2_2018-09-11
INV	RG_MIULE	660503	5493048	2018	2	2018-09-11	Composite	Molybdenum	0.3	mg/kg dw	SRC	RG_MIULE_INV-2_2018-09-11
INV	RG_MIULE	660503	5493048	2018	2	2018-09-11	Composite	Nickel	5.6	mg/kg dw	SRC	RG_MIULE_INV-2_2018-09-11
INV	RG_MIULE	660503	5493048	2018	2	2018-09-11	Composite	Selenium	6.8	mg/kg dw	SRC	RG_MIULE_INV-2_2018-09-11
INV	RG_MIULE	660503	5493048	2018	2	2018-09-11	Composite	Silver	0.08	mg/kg dw	SRC	RG_MIULE_INV-2_2018-09-11
INV	RG_MIULE	660503	5493048	2018	2	2018-09-11	Composite	Strontium	14	mg/kg dw	SRC	RG_MIULE_INV-2_2018-09-11
INV	RG_MIULE	660503	5493048	2018	2	2018-09-11	Composite	Thallium	<0.1	mg/kg dw	SRC	RG_MIULE_INV-2_2018-09-11
INV	RG_MIULE	660503	5493048	2018	2	2018-09-11	Composite	Tin	<0.1	mg/kg dw	SRC	RG_MIULE_INV-2_2018-09-11
INV	RG_MIULE	660503	5493048	2018	2	2018-09-11	Composite	Titanium	8.4	mg/kg dw	SRC	RG_MIULE_INV-2_2018-09-11
INV	RG MIULE	660503	5493048	2018	2	2018-09-11	Composite	Uranium	0.06	mg/kg dw	SRC	RG MIULE INV-2 2018-09-11
INV	RG MIULE	660503	5493048	2018	2	2018-09-11	Composite	Vanadium	2.7	mg/kg dw	SRC	RG MIULE INV-2 2018-09-11
INV	RG MIULE	660503	5493048	2018	2	2018-09-11	Composite	Zinc	190	mg/kg dw	SRC	RG MIULE INV-2 2018-09-11
INV	RG MIULE	660503	5493048	2018	2	2018-09-11	Composite	% Moisture	75	%	SRC	RG MIULE INV-2 2018-09-11
INV	RG MIULE	660503	5493048	2018	3	2018-09-11	Composite	Aluminum	2,300	mg/kg dw	SRC	RG MIULE INV-3 2018-09-11
INV	RG MIULE	660503	5493048	2018	3	2018-09-11	Composite	Antimony	<0.2	mg/kg dw	SRC	RG MIULE INV-3 2018-09-11

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Туре	Station	Location	n (UTMs) ^(a)	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit		Laboratory Information
Type	Station	Easting	Northing	I eai	Replicate	Date	Species/Composite	Analyte	Result	Offic	Lab	Sample ID
INV	RG_MIULE	660503	5493048	2018	3	2018-09-11	Composite	Arsenic	1.2	mg/kg dw	SRC	RG_MIULE_INV-3_2018-09-11
INV	RG_MIULE	660503	5493048	2018	3	2018-09-11	Composite	Barium	30	mg/kg dw	SRC	RG_MIULE_INV-3_2018-09-11
INV	RG_MIULE	660503	5493048	2018	3	2018-09-11	Composite	Beryllium	0.1	mg/kg dw	SRC	RG_MIULE_INV-3_2018-09-11
INV	RG_MIULE	660503	5493048	2018	3	2018-09-11	Composite	Boron	4.0	mg/kg dw	SRC	RG_MIULE_INV-3_2018-09-11
INV	RG_MIULE	660503	5493048	2018	3	2018-09-11	Composite	Cadmium	2.1	mg/kg dw	SRC	RG_MIULE_INV-3_2018-09-11
INV	RG_MIULE	660503	5493048	2018	3	2018-09-11	Composite	Chromium	3.0	mg/kg dw	SRC	RG_MIULE_INV-3_2018-09-11
INV	RG_MIULE	660503	5493048	2018	3	2018-09-11	Composite	Cobalt	24	mg/kg dw	SRC	RG_MIULE_INV-3_2018-09-11
INV	RG_MIULE	660503	5493048	2018	3	2018-09-11	Composite	Copper	13	mg/kg dw	SRC	RG_MIULE_INV-3_2018-09-11
INV	RG MIULE	660503	5493048	2018	3	2018-09-11	Composite	Iron	2,000	mg/kg dw	SRC	RG_MIULE_INV-3_2018-09-11
INV	RG MIULE	660503	5493048	2018	3	2018-09-11	Composite	Lead	0.83	mg/kg dw	SRC	RG MIULE INV-3 2018-09-11
INV	RG_MIULE	660503	5493048	2018	3	2018-09-11	Composite	Manganese	69	mg/kg dw	SRC	RG_MIULE_INV-3_2018-09-11
INV	RG MIULE	660503	5493048	2018	3	2018-09-11	Composite	Mercury	0.02	mg/kg dw	SRC	RG MIULE INV-3 2018-09-11
INV	RG_MIULE	660503	5493048	2018	3	2018-09-11	Composite	Molybdenum	0.4	mg/kg dw	SRC	RG_MIULE_INV-3_2018-09-11
INV	RG MIULE	660503	5493048	2018	3	2018-09-11	Composite	Nickel	13	mg/kg dw	SRC	RG MIULE INV-3 2018-09-11
INV	RG MIULE	660503	5493048	2018	3	2018-09-11	Composite	Selenium	11	mg/kg dw	SRC	RG_MIULE_INV-3_2018-09-11
INV	RG MIULE	660503	5493048	2018	3	2018-09-11	Composite	Silver	0.07	mg/kg dw	SRC	RG MIULE INV-3 2018-09-11
INV	RG MIULE	660503	5493048	2018	3	2018-09-11	Composite	Strontium	18	mg/kg dw	SRC	RG_MIULE_INV-3_2018-09-11
INV	RG MIULE	660503	5493048	2018	3	2018-09-11	Composite	Thallium	<0.1	mg/kg dw	SRC	RG MIULE INV-3 2018-09-11
INV	RG MIULE	660503	5493048	2018	3	2018-09-11	Composite	Tin	<0.1	mg/kg dw	SRC	RG MIULE INV-3 2018-09-11
INV	RG MIULE	660503	5493048	2018	3	2018-09-11	Composite	Titanium	17	mg/kg dw	SRC	RG MIULE INV-3 2018-09-11
INV	RG MIULE	660503	5493048	2018	3	2018-09-11	Composite	Uranium	0.12	mg/kg dw	SRC	RG_MIULE_INV-3_2018-09-11
INV	RG MIULE	660503	5493048	2018	3	2018-09-11	Composite	Vanadium	7.2	mg/kg dw	SRC	RG MIULE INV-3 2018-09-11
INV	RG MIULE	660503	5493048	2018	3	2018-09-11	Composite	Zinc	200	mg/kg dw	SRC	RG MIULE INV-3 2018-09-11
INV	RG MIULE	660503	5493048	2018	3	2018-09-11	Composite	% Moisture	82	mg/kg dw	SRC	RG MIULE INV-3 2018-09-11
INV	RG LE1	659635	5494108	2018	1	2018-09-13	Composite	Aluminum	450	mg/kg dw	SRC	RG LE1 INV-1 2018-09-13
INV	RG_LE1	659635	5494108	2018	1	2018-09-13	Composite	Antimony	<1	mg/kg dw	SRC	RG LE1 INV-1 2018-09-13
INV	RG_LE1	659635	5494108	2018	1	2018-09-13	Composite	Arsenic	<0.5	mg/kg dw	SRC	RG LE1 INV-1 2018-09-13
INV	RG_LE1	659635	5494108	2018	1	2018-09-13	Composite	Barium	18	mg/kg dw	SRC	RG LE1 INV-1 2018-09-13
INV	RG_LE1	659635	5494108	2018	1	2018-09-13	Composite	Beryllium	<0.1	mg/kg dw	SRC	RG_LE1_INV-1_2018-09-13
INV	RG_LE1	659635	5494108	2018	1	2018-09-13	Composite	Boron	<10	mg/kg dw	SRC	RG_LE1_INV-1_2018-09-13
INV	RG LE1	659635	5494108		1	2018-09-13	•	Cadmium			SRC	RG LE1 INV-1 2018-09-13
INV	RG_LE1	659635		2018	1	2018-09-13	Composite		3.1	mg/kg dw	SRC	RG_LE1_INV-1_2018-09-13 RG_LE1_INV-1_2018-09-13
INV			5494108 5494108	2018 2018	1		Composite	Cabalt	<5	mg/kg dw		
	RG_LE1	659635			1	2018-09-13	Composite	Cobalt	0.3	mg/kg dw	SRC	RG_LE1_INV-1_2018-09-13
INV	RG_LE1	659635	5494108	2018	1	2018-09-13	Composite	Copper	19	mg/kg dw	SRC	RG_LE1_INV-1_2018-09-13
INV	RG_LE1	659635	5494108	2018	1	2018-09-13	Composite	Iron	540	mg/kg dw	SRC	RG_LE1_INV-1_2018-09-13
INV	RG_LE1	659635	5494108	2018	1	2018-09-13	Composite	Lead	0.2	mg/kg dw	SRC	RG_LE1_INV-1_2018-09-13
INV	RG_LE1	659635	5494108	2018	1	2018-09-13	Composite	Manganese	34	mg/kg dw	SRC	RG_LE1_INV-1_2018-09-13
INV	RG_LE1	659635	5494108	2018	1	2018-09-13	Composite	Mercury	<0.05	mg/kg dw	SRC	RG_LE1_INV-1_2018-09-13
INV	RG_LE1	659635	5494108	2018	1	2018-09-13	Composite	Molybdenum	<1	mg/kg dw	SRC	RG_LE1_INV-1_2018-09-13
INV	RG_LE1	659635	5494108	2018	1	2018-09-13	Composite	Nickel	1.5	mg/kg dw	SRC	RG_LE1_INV-1_2018-09-13
INV	RG_LE1	659635	5494108	2018	1	2018-09-13	Composite	Selenium	3.2	mg/kg dw	SRC	RG_LE1_INV-1_2018-09-13
INV	RG_LE1	659635	5494108	2018	1	2018-09-13	Composite	Silver	0.2	mg/kg dw	SRC	RG_LE1_INV-1_2018-09-13
INV	RG_LE1	659635	5494108	2018	1	2018-09-13	Composite	Strontium	4.0	mg/kg dw	SRC	RG_LE1_INV-1_2018-09-13
INV	RG_LE1	659635	5494108	2018	1	2018-09-13	Composite	Thallium ————————————————————————————————————	<0.5	mg/kg dw	SRC	RG_LE1_INV-1_2018-09-13
INV	RG_LE1	659635	5494108	2018	1	2018-09-13	Composite	Tin	<0.5	mg/kg dw	SRC	RG_LE1_INV-1_2018-09-13
INV	RG_LE1	659635	5494108	2018	1	2018-09-13	Composite	Titanium	4.2	mg/kg dw	SRC	RG_LE1_INV-1_2018-09-13
INV	RG_LE1	659635	5494108	2018	1	2018-09-13	Composite	Uranium	<0.05	mg/kg dw	SRC	RG_LE1_INV-1_2018-09-13
INV	RG_LE1	659635	5494108	2018	1	2018-09-13	Composite	Vanadium	2.0	mg/kg dw	SRC	RG_LE1_INV-1_2018-09-13
INV	RG_LE1	659635	5494108	2018	1	2018-09-13	Composite	Zinc	120	mg/kg dw	SRC	RG_LE1_INV-1_2018-09-13
INV	RG_LE1	659635	5494108	2018	1	2018-09-13	Composite	% Moisture	80	%	SRC	RG_LE1_INV-1_2018-09-13
INV	RG_AGCK	667557	5488648	2018	1	2018-09-08	Composite	Aluminum	270	mg/kg dw	SRC	RG_AGCK_INV-1_2018-09-08
INV	RG_AGCK	667557	5488648	2018	1	2018-09-08	Composite	Antimony	<1	mg/kg dw	SRC	RG_AGCK_INV-1_2018-09-08
INV	RG_AGCK	667557	5488648	2018	1	2018-09-08	Composite	Arsenic	1.9	mg/kg dw	SRC	RG_AGCK_INV-1_2018-09-08
INV	RG_AGCK	667557	5488648	2018	1	2018-09-08	Composite	Barium	14	mg/kg dw	SRC	RG_AGCK_INV-1_2018-09-08
INV	RG_AGCK	667557	5488648	2018	1	2018-09-08	Composite	Beryllium	<0.1	mg/kg dw	SRC	RG_AGCK_INV-1_2018-09-08
INV	RG_AGCK	667557	5488648	2018	1	2018-09-08	Composite	Boron	<10	mg/kg dw	SRC	RG_AGCK_INV-1_2018-09-08
INV	RG AGCK	667557	5488648	2018	1	2018-09-08	Composite	Cadmium	1.1	mg/kg dw	SRC	RG AGCK INV-1 2018-09-08

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Typo	Station	Location	n (UTMs) ^(a)	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit		Laboratory Information
Туре	Station	Easting	Northing	rear	Replicate	Date	Species/Composite	Analyte	Result	Ullit	Lab	Sample ID
INV	RG_AGCK	667557	5488648	2018	1	2018-09-08	Composite	Chromium	<5	mg/kg dw	SRC	RG_AGCK_INV-1_2018-09-08
INV	RG AGCK	667557	5488648	2018	1	2018-09-08	Composite	Cobalt	0.3	mg/kg dw	SRC	RG AGCK INV-1 2018-09-08
INV	RG_AGCK	667557	5488648	2018	1	2018-09-08	Composite	Copper	9.2	mg/kg dw	SRC	RG AGCK INV-1 2018-09-08
INV	RG AGCK	667557	5488648	2018	1	2018-09-08	Composite	Iron	460	mg/kg dw	SRC	RG_AGCK_INV-1_2018-09-08
INV	RG AGCK	667557	5488648	2018	1	2018-09-08	Composite	Lead	0.2	mg/kg dw	SRC	RG AGCK INV-1 2018-09-08
INV	RG AGCK	667557	5488648	2018	1	2018-09-08	Composite	Manganese	22	mg/kg dw	SRC	RG AGCK INV-1 2018-09-08
INV	RG AGCK	667557	5488648	2018	1	2018-09-08	Composite	Mercury	<0.05	mg/kg dw	SRC	RG AGCK INV-1 2018-09-08
INV	RG AGCK	667557	5488648	2018	1	2018-09-08	Composite	Molybdenum	<1	mg/kg dw	SRC	RG AGCK INV-1 2018-09-08
INV		667557	5488648	2018	1	2018-09-08	•	•			SRC	
	RG_AGCK			_	1		Composite	Nickel	4.2	mg/kg dw		RG_AGCK_INV-1_2018-09-08
INV	RG_AGCK	667557	5488648	2018	1	2018-09-08	Composite	Selenium	8.0	mg/kg dw	SRC	RG_AGCK_INV-1_2018-09-08
INV	RG_AGCK	667557	5488648	2018	1	2018-09-08	Composite	Silver	<0.1	mg/kg dw	SRC	RG_AGCK_INV-1_2018-09-08
INV	RG_AGCK	667557	5488648	2018	1	2018-09-08	Composite	Strontium	18	mg/kg dw	SRC	RG_AGCK_INV-1_2018-09-08
INV	RG_AGCK	667557	5488648	2018	1	2018-09-08	Composite	Thallium	<0.5	mg/kg dw	SRC	RG_AGCK_INV-1_2018-09-08
INV	RG_AGCK	667557	5488648	2018	1	2018-09-08	Composite	Tin	<0.5	mg/kg dw	SRC	RG_AGCK_INV-1_2018-09-08
INV	RG_AGCK	667557	5488648	2018	1	2018-09-08	Composite	Titanium	2.4	mg/kg dw	SRC	RG_AGCK_INV-1_2018-09-08
INV	RG_AGCK	667557	5488648	2018	1	2018-09-08	Composite	Uranium	0.14	mg/kg dw	SRC	RG_AGCK_INV-1_2018-09-08
INV	RG_AGCK	667557	5488648	2018	1	2018-09-08	Composite	Vanadium	1.0	mg/kg dw	SRC	RG_AGCK_INV-1_2018-09-08
INV	RG_AGCK	667557	5488648	2018	1	2018-09-08	Composite	Zinc	230	mg/kg dw	SRC	RG_AGCK_INV-1_2018-09-08
INV	RG_AGCK	667557	5488648	2018	1	2018-09-08	Composite	% Moisture	87	%	SRC	RG_AGCK_INV-1_2018-09-08
INV	RG AGCK	667557	5488648	2018	2	2018-09-08	Composite	Aluminum	180	mg/kg dw	SRC	RG AGCK INV-2 2018-09-08
INV	RG AGCK	667557	5488648	2018	2	2018-09-08	Composite	Antimony	<1	mg/kg dw	SRC	RG_AGCK_INV-2_2018-09-08
INV	RG AGCK	667557	5488648	2018	2	2018-09-08	Composite	Arsenic	1.4	mg/kg dw	SRC	RG_AGCK_INV-2_2018-09-08
INV	RG AGCK	667557	5488648	2018	2	2018-09-08	Composite	Barium	3.7	mg/kg dw	SRC	RG AGCK INV-2 2018-09-08
INV	RG AGCK	667557	5488648	2018	2	2018-09-08	Composite	Beryllium	<0.1	mg/kg dw	SRC	RG AGCK INV-2 2018-09-08
INV	RG AGCK	667557	5488648	2018	2	2018-09-08	Composite	Boron	<10	mg/kg dw	SRC	RG_AGCK_INV-2_2018-09-08
INV	RG AGCK	667557	5488648	2018	2	2018-09-08	Composite	Cadmium	1.1	mg/kg dw	SRC	RG_AGCK_INV-2_2018-09-08
INV	RG_AGCK	667557	5488648	2018	2	2018-09-08	Composite	Chromium	<5	mg/kg dw	SRC	RG AGCK INV-2 2018-09-08
INV			5488648								SRC	
	RG_AGCK	667557		2018	2	2018-09-08	Composite	Cobalt	0.2	mg/kg dw		RG_AGCK_INV-2_2018-09-08
INV	RG_AGCK	667557	5488648	2018	2	2018-09-08	Composite	Copper	9.0	mg/kg dw	SRC	RG_AGCK_INV-2_2018-09-08
INV	RG_AGCK	667557	5488648	2018	2	2018-09-08	Composite	Iron	220	mg/kg dw	SRC	RG_AGCK_INV-2_2018-09-08
INV	RG_AGCK	667557	5488648	2018	2	2018-09-08	Composite	Lead	0.1	mg/kg dw	SRC	RG_AGCK_INV-2_2018-09-08
INV	RG_AGCK	667557	5488648	2018	2	2018-09-08	Composite	Manganese	20	mg/kg dw	SRC	RG_AGCK_INV-2_2018-09-08
INV	RG_AGCK	667557	5488648	2018	2	2018-09-08	Composite	Mercury	<0.05	mg/kg dw	SRC	RG_AGCK_INV-2_2018-09-08
INV	RG_AGCK	667557	5488648	2018	2	2018-09-08	Composite	Molybdenum	<1	mg/kg dw	SRC	RG_AGCK_INV-2_2018-09-08
INV	RG_AGCK	667557	5488648	2018	2	2018-09-08	Composite	Nickel	3.6	mg/kg dw	SRC	RG_AGCK_INV-2_2018-09-08
INV	RG_AGCK	667557	5488648	2018	2	2018-09-08	Composite	Selenium	8.6	mg/kg dw	SRC	RG_AGCK_INV-2_2018-09-08
INV	RG_AGCK	667557	5488648	2018	2	2018-09-08	Composite	Silver	<0.1	mg/kg dw	SRC	RG_AGCK_INV-2_2018-09-08
INV	RG_AGCK	667557	5488648	2018	2	2018-09-08	Composite	Strontium	5.0	mg/kg dw	SRC	RG_AGCK_INV-2_2018-09-08
INV	RG AGCK	667557	5488648	2018	2	2018-09-08	Composite	Thallium	<0.5	mg/kg dw	SRC	RG AGCK INV-2 2018-09-08
INV	RG_AGCK	667557	5488648	2018	2	2018-09-08	Composite	Tin	<0.5	mg/kg dw	SRC	RG_AGCK_INV-2_2018-09-08
INV	RG AGCK	667557	5488648	2018	2	2018-09-08	Composite	Titanium	1.8	mg/kg dw	SRC	RG AGCK INV-2 2018-09-08
INV	RG AGCK	667557	5488648	2018	2	2018-09-08	Composite	Uranium	0.22	mg/kg dw	SRC	RG AGCK INV-2 2018-09-08
INV	RG AGCK	667557	5488648	2018	2	2018-09-08	Composite	Vanadium	<1	mg/kg dw	SRC	RG AGCK INV-2 2018-09-08
INV	RG AGCK	667557	5488648	2018	2	2018-09-08	Composite	Zinc	230	mg/kg dw	SRC	RG AGCK INV-2 2018-09-08
INV	RG AGCK	667557	5488648	2018	2	2018-09-08	Composite	% Moisture	89	// // // // // // // // // // // // //	SRC	RG AGCK INV-2 2018-09-08
INV	RG CORCK	668539	5487366	2018	1	2018-09-08	Composite	Aluminum	960	mg/kg dw	SRC	RG CORCK INV-1 2018-09-08
INV	RG CORCK	668539	5487366	2018	1	2018-09-08	Composite	Antimony	<1	mg/kg dw	SRC	RG CORCK INV-1 2018-09-08
	_	668539			1		<u>'</u>	· · · · · · · · · · · · · · · · · · ·			SRC	
INV	RG_CORCK		5487366	2018		2018-09-08	Composite	Arsenic	0.6	mg/kg dw		RG_CORCK_INV-1_2018-09-08
INV	RG_CORCK	668539	5487366	2018	1	2018-09-08	Composite	Barium	46	mg/kg dw	SRC	RG_CORCK_INV-1_2018-09-08
INV	RG_CORCK	668539	5487366	2018	1	2018-09-08	Composite	Beryllium	<0.1	mg/kg dw	SRC	RG_CORCK_INV-1_2018-09-08
INV	RG_CORCK	668539	5487366	2018	1	2018-09-08	Composite	Boron	<10	mg/kg dw	SRC	RG_CORCK_INV-1_2018-09-08
INV	RG_CORCK	668539	5487366	2018	1	2018-09-08	Composite	Cadmium	2.0	mg/kg dw	SRC	RG_CORCK_INV-1_2018-09-08
INV	RG_CORCK	668539	5487366	2018	1	2018-09-08	Composite	Chromium	<5	mg/kg dw	SRC	RG_CORCK_INV-1_2018-09-08
INV	RG_CORCK	668539	5487366	2018	1	2018-09-08	Composite	Cobalt	94	mg/kg dw	SRC	RG_CORCK_INV-1_2018-09-08
INV	RG_CORCK	668539	5487366	2018	1	2018-09-08	Composite	Copper	9.4	mg/kg dw	SRC	RG_CORCK_INV-1_2018-09-08
INV	RG_CORCK	668539	5487366	2018	1	2018-09-08	Composite	Iron	420	mg/kg dw	SRC	RG_CORCK_INV-1_2018-09-08
INV	RG CORCK	668539	5487366	2018		2018-09-08	Composite	Lead	0.3	mg/kg dw	SRC	RG CORCK INV-1 2018-09-08

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Туре	Station	Location	n (UTMs) ^(a)	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit		Laboratory Information
Type	Station	Easting	Northing	I ear	Replicate	Date	Species/Composite	Allalyte	Result	Offic	Lab	Sample ID
INV	RG_CORCK	668539	5487366	2018	1	2018-09-08	Composite	Manganese	720	mg/kg dw	SRC	RG_CORCK_INV-1_2018-09-08
INV	RG_CORCK	668539	5487366	2018	1	2018-09-08	Composite	Mercury	<0.05	mg/kg dw	SRC	RG_CORCK_INV-1_2018-09-08
INV	RG_CORCK	668539	5487366	2018	1	2018-09-08	Composite	Molybdenum	<1	mg/kg dw	SRC	RG_CORCK_INV-1_2018-09-08
INV	RG_CORCK	668539	5487366	2018	1	2018-09-08	Composite	Nickel	86	mg/kg dw	SRC	RG_CORCK_INV-1_2018-09-08
INV	RG_CORCK	668539	5487366	2018	1	2018-09-08	Composite	Selenium	3.4	mg/kg dw	SRC	RG_CORCK_INV-1_2018-09-08
INV	RG CORCK	668539	5487366	2018	1	2018-09-08	Composite	Silver	<0.1	mg/kg dw	SRC	RG CORCK INV-1 2018-09-08
INV	RG CORCK	668539	5487366	2018	1	2018-09-08	Composite	Strontium	150	mg/kg dw	SRC	RG CORCK INV-1 2018-09-08
INV	RG CORCK	668539	5487366	2018	1	2018-09-08	Composite	Thallium	<0.5	mg/kg dw	SRC	RG CORCK INV-1 2018-09-08
INV	RG CORCK	668539	5487366	2018	1	2018-09-08	Composite	Tin	<0.5	mg/kg dw	SRC	RG CORCK INV-1 2018-09-08
INV	RG CORCK	668539	5487366	2018	1	2018-09-08	Composite	Titanium	10	mg/kg dw	SRC	RG CORCK INV-1 2018-09-08
INV	RG_CORCK	668539	5487366	2018	1	2018-09-08	Composite	Uranium	1.0	mg/kg dw	SRC	RG_CORCK_INV-1_2018-09-08
INV	RG CORCK	668539	5487366	2018	1	2018-09-08	Composite	Vanadium	2.0	mg/kg dw	SRC	RG CORCK INV-1 2018-09-08
INV	RG_CORCK	668539	5487366	2018	1	2018-09-08	Composite	Zinc	350	mg/kg dw	SRC	RG_CORCK_INV-1_2018-09-08
INV	RG CORCK	668539	5487366	2018	1	2018-09-08	Composite	% Moisture	80	%	SRC	RG CORCK INV-1 2018-09-08
INV	RG_CORCK	668539	5487366	2018	2	2018-09-08	Composite	Aluminum	880	mg/kg dw	SRC	RG_CORCK_INV-2_2018-09-08
INV	RG CORCK	668539	5487366	2018	2	2018-09-08	Composite	Antimony	<2	mg/kg dw	SRC	RG CORCK INV-2 2018-09-08
INV	RG_CORCK	668539	5487366	2018	2	2018-09-08	Composite	Arsenic	<1	mg/kg dw	SRC	RG_CORCK_INV-2_2018-09-08
INV	RG CORCK	668539	5487366	2018	2	2018-09-08	Composite	Barium	53	mg/kg dw	SRC	RG_CORCK_INV-2_2018-09-08
INV	RG CORCK	668539	5487366	2018	2	2018-09-08	Composite	Beryllium	<0.2	mg/kg dw	SRC	RG CORCK INV-2 2018-09-08
INV	RG CORCK	668539	5487366	2018	2	2018-09-08	Composite	Boron	<20	mg/kg dw	SRC	RG CORCK INV-2 2018-09-08
INV	RG_CORCK	668539	5487366	2018	2	2018-09-08	Composite	Cadmium	2.4	mg/kg dw	SRC	RG_CORCK_INV-2_2018-09-08
INV	RG_CORCK	668539	5487366	2018	2	2018-09-08	Composite	Chromium	<10	mg/kg dw	SRC	RG CORCK INV-2 2018-09-08
INV	RG CORCK	668539	5487366	2018	2	2018-09-08	Composite	Cobalt	100	mg/kg dw	SRC	RG CORCK INV-2 2018-09-08
INV	RG CORCK	668539	5487366	2018	2	2018-09-08					SRC	RG CORCK INV-2 2018-09-08
INV	RG CORCK	668539	5487366	2018	2	2018-09-08	Composite	Copper Iron	9.0 380	mg/kg dw	SRC	
							Composite			mg/kg dw	SRC	RG_CORCK_INV-2_2018-09-08
INV	RG_CORCK	668539	5487366	2018	2	2018-09-08	Composite	Lead	0.3	mg/kg dw		RG_CORCK_INV-2_2018-09-08
INV	RG_CORCK	668539	5487366	2018	2	2018-09-08	Composite	Manganese	780	mg/kg dw	SRC	RG_CORCK_INV-2_2018-09-08
INV	RG_CORCK	668539	5487366	2018	2	2018-09-08	Composite	Mercury	<0.1	mg/kg dw	SRC	RG_CORCK_INV-2_2018-09-08
INV	RG_CORCK	668539	5487366	2018	2	2018-09-08	Composite	Molybdenum	<2	mg/kg dw	SRC	RG_CORCK_INV-2_2018-09-08
INV	RG_CORCK	668539	5487366	2018	2	2018-09-08	Composite	Nickel	88	mg/kg dw	SRC	RG_CORCK_INV-2_2018-09-08
INV	RG_CORCK	668539	5487366	2018	2	2018-09-08	Composite	Selenium	3.0	mg/kg dw	SRC	RG_CORCK_INV-2_2018-09-08
INV	RG_CORCK	668539	5487366	2018	2	2018-09-08	Composite	Silver	<0.2	mg/kg dw	SRC	RG_CORCK_INV-2_2018-09-08
INV	RG_CORCK	668539	5487366	2018	2	2018-09-08	Composite	Strontium	230	mg/kg dw	SRC	RG_CORCK_INV-2_2018-09-08
INV	RG_CORCK	668539	5487366	2018	2	2018-09-08	Composite	Thallium	<1	mg/kg dw	SRC	RG_CORCK_INV-2_2018-09-08
INV	RG_CORCK	668539	5487366	2018	2	2018-09-08	Composite	Tin	<1	mg/kg dw	SRC	RG_CORCK_INV-2_2018-09-08
INV	RG_CORCK	668539	5487366	2018	2	2018-09-08	Composite	Titanium	8.0	mg/kg dw	SRC	RG_CORCK_INV-2_2018-09-08
INV	RG_CORCK	668539	5487366	2018	2	2018-09-08	Composite	Uranium	1.7	mg/kg dw	SRC	RG_CORCK_INV-2_2018-09-08
INV	RG_CORCK	668539	5487366	2018	2	2018-09-08	Composite	Vanadium	<2	mg/kg dw	SRC	RG_CORCK_INV-2_2018-09-08
INV	RG_CORCK	668539	5487366	2018	2	2018-09-08	Composite	Zinc	400	mg/kg dw	SRC	RG_CORCK_INV-2_2018-09-08
INV	RG_CORCK	668539	5487366	2018	2	2018-09-08	Composite	% Moisture	77	%	SRC	RG_CORCK_INV-2_2018-09-08
INV	RG_CORCK	668539	5487366	2018	3	2018-09-08	Composite	Aluminum	400	mg/kg dw	SRC	RG_CORCK_INV-3_2018-09-08
INV	RG_CORCK	668539	5487366	2018	3	2018-09-08	Composite	Antimony	<1	mg/kg dw	SRC	RG_CORCK_INV-3_2018-09-08
INV	RG_CORCK	668539	5487366	2018	3	2018-09-08	Composite	Arsenic	0.8	mg/kg dw	SRC	RG_CORCK_INV-3_2018-09-08
INV	RG_CORCK	668539	5487366	2018	3	2018-09-08	Composite	Barium	17	mg/kg dw	SRC	RG_CORCK_INV-3_2018-09-08
INV	RG_CORCK	668539	5487366	2018	3	2018-09-08	Composite	Beryllium	<0.1	mg/kg dw	SRC	RG_CORCK_INV-3_2018-09-08
INV	RG_CORCK	668539	5487366	2018	3	2018-09-08	Composite	Boron	<10	mg/kg dw	SRC	RG_CORCK_INV-3_2018-09-08
INV	RG_CORCK	668539	5487366	2018	3	2018-09-08	Composite	Cadmium	0.7	mg/kg dw	SRC	RG_CORCK_INV-3_2018-09-08
INV	RG_CORCK	668539	5487366	2018	3	2018-09-08	Composite	Chromium	<5	mg/kg dw	SRC	RG_CORCK_INV-3_2018-09-08
INV	RG_CORCK	668539	5487366	2018	3	2018-09-08	Composite	Cobalt	130	mg/kg dw	SRC	RG_CORCK_INV-3_2018-09-08
INV	RG_CORCK	668539	5487366	2018	3	2018-09-08	Composite	Copper	10	mg/kg dw	SRC	RG_CORCK_INV-3_2018-09-08
INV	RG_CORCK	668539	5487366	2018	3	2018-09-08	Composite	Iron	280	mg/kg dw	SRC	RG_CORCK_INV-3_2018-09-08
INV	RG_CORCK	668539	5487366	2018	3	2018-09-08	Composite	Lead	0.2	mg/kg dw	SRC	RG_CORCK_INV-3_2018-09-08
INV	RG_CORCK	668539	5487366	2018	3	2018-09-08	Composite	Manganese	470	mg/kg dw	SRC	RG_CORCK_INV-3_2018-09-08
INV	RG CORCK	668539	5487366	2018	3	2018-09-08	Composite	Mercury	<0.05	mg/kg dw	SRC	RG CORCK INV-3 2018-09-08
INV	RG CORCK	668539	5487366	2018	3	2018-09-08	Composite	Molybdenum	1.0	mg/kg dw	SRC	RG CORCK INV-3 2018-09-08
INV	RG CORCK	668539	5487366	2018	3	2018-09-08	Composite	Nickel	72	mg/kg dw	SRC	RG CORCK INV-3 2018-09-08
INV	RG CORCK	668539	5487366	2018	3	2018-09-08	Composite	Selenium	4.4	mg/kg dw	SRC	RG CORCK INV-3 2018-09-08

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Туре	Station	Location	n (UTMs) ^(a)	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit		Laboratory Information
туре	Station	Easting	Northing	i eai	Replicate	Date	Species/Composite	Allalyte	Result	Offic	Lab	Sample ID
INV	RG_CORCK	668539	5487366	2018	3	2018-09-08	Composite	Silver	<0.1	mg/kg dw	SRC	RG_CORCK_INV-3_2018-09-08
INV	RG_CORCK	668539	5487366	2018	3	2018-09-08	Composite	Strontium	43	mg/kg dw	SRC	RG_CORCK_INV-3_2018-09-08
INV	RG_CORCK	668539	5487366	2018	3	2018-09-08	Composite	Thallium	<0.5	mg/kg dw	SRC	RG_CORCK_INV-3_2018-09-08
INV	RG_CORCK	668539	5487366	2018	3	2018-09-08	Composite	Tin	<0.5	mg/kg dw	SRC	RG CORCK INV-3 2018-09-08
INV	RG CORCK	668539	5487366	2018	3	2018-09-08	Composite	Titanium	3.3	mg/kg dw	SRC	RG CORCK INV-3 2018-09-08
INV	RG CORCK	668539	5487366	2018	3	2018-09-08	Composite	Uranium	0.39	mg/kg dw	SRC	RG CORCK INV-3 2018-09-08
INV	RG CORCK	668539	5487366	2018	3	2018-09-08	Composite	Vanadium	1.0	mg/kg dw	SRC	RG CORCK INV-3 2018-09-08
INV	RG CORCK	668539	5487366	2018	3	2018-09-08	Composite	Zinc	210	mg/kg dw	SRC	RG CORCK INV-3 2018-09-08
INV	RG CORCK	668539	5487366	2018	3	2018-09-08	Composite	% Moisture	71	<u></u>	SRC	RG CORCK INV-3 2018-09-08
INV	RG MIDAG	665220	5489324	2018	1	2018-09-08	Composite	Aluminum	550	mg/kg dw	SRC	RG MIDAG INV-1 2018-09-08
INV	RG_MIDAG	665220	5489324	2018	1	2018-09-08	Composite	Antimony	<1	mg/kg dw	SRC	RG MIDAG INV-1 2018-09-08
INV	RG MIDAG	665220	5489324	2018	1	2018-09-08	Composite	Arsenic	0.8	mg/kg dw	SRC	RG MIDAG INV-1 2018-09-08
INV	RG_MIDAG	665220	5489324	2018	1	2018-09-08	Composite	Barium	24	mg/kg dw	SRC	RG_MIDAG_INV-1_2018-09-08
INV	RG MIDAG	665220	5489324	2018	1	2018-09-08	Composite		<0.1		SRC	RG MIDAG INV-1 2018-09-08
INV	_	665220			1			Beryllium		mg/kg dw	SRC	RG MIDAG INV-1_2018-09-08
	RG_MIDAG		5489324	2018	1	2018-09-08	Composite	Boron	<10	mg/kg dw		
INV	RG_MIDAG	665220	5489324	2018	1	2018-09-08	Composite	Cadmium	0.7	mg/kg dw	SRC	RG_MIDAG_INV-1_2018-09-08
INV	RG_MIDAG	665220	5489324	2018	1	2018-09-08	Composite	Chromium	<5	mg/kg dw	SRC	RG_MIDAG_INV-1_2018-09-08
INV	RG_MIDAG	665220	5489324	2018	1	2018-09-08	Composite	Cobalt	44	mg/kg dw	SRC	RG_MIDAG_INV-1_2018-09-08
INV	RG_MIDAG	665220	5489324	2018	1	2018-09-08	Composite	Copper	13	mg/kg dw	SRC	RG_MIDAG_INV-1_2018-09-08
INV	RG_MIDAG	665220	5489324	2018	1	2018-09-08	Composite	Iron	430	mg/kg dw	SRC	RG_MIDAG_INV-1_2018-09-08
INV	RG_MIDAG	665220	5489324	2018	1	2018-09-08	Composite	Lead	0.4	mg/kg dw	SRC	RG_MIDAG_INV-1_2018-09-08
INV	RG_MIDAG	665220	5489324	2018	1	2018-09-08	Composite	Manganese	110	mg/kg dw	SRC	RG_MIDAG_INV-1_2018-09-08
INV	RG_MIDAG	665220	5489324	2018	1	2018-09-08	Composite	Mercury	<0.05	mg/kg dw	SRC	RG_MIDAG_INV-1_2018-09-08
INV	RG_MIDAG	665220	5489324	2018	1	2018-09-08	Composite	Molybdenum	<1	mg/kg dw	SRC	RG_MIDAG_INV-1_2018-09-08
INV	RG_MIDAG	665220	5489324	2018	1	2018-09-08	Composite	Nickel	21	mg/kg dw	SRC	RG_MIDAG_INV-1_2018-09-08
INV	RG_MIDAG	665220	5489324	2018	1	2018-09-08	Composite	Selenium	6.2	mg/kg dw	SRC	RG_MIDAG_INV-1_2018-09-08
INV	RG_MIDAG	665220	5489324	2018	1	2018-09-08	Composite	Silver	<0.1	mg/kg dw	SRC	RG_MIDAG_INV-1_2018-09-08
INV	RG_MIDAG	665220	5489324	2018	1	2018-09-08	Composite	Strontium	18	mg/kg dw	SRC	RG_MIDAG_INV-1_2018-09-08
INV	RG_MIDAG	665220	5489324	2018	1	2018-09-08	Composite	Thallium	<0.5	mg/kg dw	SRC	RG_MIDAG_INV-1_2018-09-08
INV	RG MIDAG	665220	5489324	2018	1	2018-09-08	Composite	Tin	<0.5	mg/kg dw	SRC	RG MIDAG INV-1 2018-09-08
INV	RG MIDAG	665220	5489324	2018	1	2018-09-08	Composite	Titanium	4.2	mg/kg dw	SRC	RG MIDAG INV-1 2018-09-08
INV	RG MIDAG	665220	5489324	2018	1	2018-09-08	Composite	Uranium	0.09	mg/kg dw	SRC	RG MIDAG INV-1 2018-09-08
INV	RG MIDAG	665220	5489324	2018	1	2018-09-08	Composite	Vanadium	1.0	mg/kg dw	SRC	RG MIDAG INV-1 2018-09-08
INV	RG MIDAG	665220	5489324	2018	1	2018-09-08	Composite	Zinc	160	mg/kg dw	SRC	RG MIDAG INV-1 2018-09-08
INV	RG MIDAG	665220	5489324	2018	1	2018-09-08	Composite	% Moisture	80	%	SRC	RG MIDAG INV-1 2018-09-08
INV	RG MIDAG	665220	5489324	2018	2	2018-09-08	Composite	Aluminum	970	mg/kg dw	SRC	RG MIDAG INV-2 2018-09-08
INV	RG MIDAG	665220	5489324	2018	2	2018-09-08	Composite	Antimony	<1	mg/kg dw	SRC	RG_MIDAG_INV-2_2018-09-08
INV	RG MIDAG	665220	5489324	2018	2	2018-09-08	Composite	Arsenic	0.6	mg/kg dw	SRC	RG MIDAG INV-2 2018-09-08
INV	RG_MIDAG	665220									SRC	
INV	_	665220	5489324	2018	2	2018-09-08 2018-09-08	Composite	Barium	12 <0.1	mg/kg dw	SRC	RG_MIDAG_INV-2_2018-09-08 RG_MIDAG_INV-2_2018-09-08
INV	RG_MIDAG		5489324	2018	2		Composite	Beryllium		mg/kg dw		
	RG_MIDAG	665220	5489324	2018	2	2018-09-08	Composite	Boron	<10	mg/kg dw	SRC	RG_MIDAG_INV-2_2018-09-08
INV	RG_MIDAG	665220	5489324	2018	2	2018-09-08	Composite	Cadmium	0.5	mg/kg dw	SRC	RG_MIDAG_INV-2_2018-09-08
INV	RG_MIDAG	665220	5489324	2018	2	2018-09-08	Composite	Chromium	<5	mg/kg dw	SRC	RG_MIDAG_INV-2_2018-09-08
INV	RG_MIDAG	665220	5489324	2018	2	2018-09-08	Composite	Cobalt	24	mg/kg dw	SRC	RG_MIDAG_INV-2_2018-09-08
INV	RG_MIDAG	665220	5489324	2018	2	2018-09-08	Composite	Copper	17	mg/kg dw	SRC	RG_MIDAG_INV-2_2018-09-08
INV	RG_MIDAG	665220	5489324	2018	2	2018-09-08	Composite	Iron	890	mg/kg dw	SRC	RG_MIDAG_INV-2_2018-09-08
INV	RG_MIDAG	665220	5489324	2018	2	2018-09-08	Composite	Lead	0.4	mg/kg dw	SRC	RG_MIDAG_INV-2_2018-09-08
INV	RG_MIDAG	665220	5489324	2018	2	2018-09-08	Composite	Manganese	100	mg/kg dw	SRC	RG_MIDAG_INV-2_2018-09-08
INV	RG_MIDAG	665220	5489324	2018	2	2018-09-08	Composite	Mercury	<0.05	mg/kg dw	SRC	RG_MIDAG_INV-2_2018-09-08
INV	RG_MIDAG	665220	5489324	2018	2	2018-09-08	Composite	Molybdenum	<1	mg/kg dw	SRC	RG_MIDAG_INV-2_2018-09-08
INV	RG_MIDAG	665220	5489324	2018	2	2018-09-08	Composite	Nickel	13	mg/kg dw	SRC	RG_MIDAG_INV-2_2018-09-08
INV	RG_MIDAG	665220	5489324	2018	2	2018-09-08	Composite	Selenium	3.5	mg/kg dw	SRC	RG_MIDAG_INV-2_2018-09-08
INV	RG_MIDAG	665220	5489324	2018	2	2018-09-08	Composite	Silver	0.1	mg/kg dw	SRC	RG_MIDAG_INV-2_2018-09-08
INV	RG_MIDAG	665220	5489324	2018	2	2018-09-08	Composite	Strontium	18	mg/kg dw	SRC	RG_MIDAG_INV-2_2018-09-08
INV	RG MIDAG	665220	5489324	2018	2	2018-09-08	Composite	Thallium	<0.5	mg/kg dw	SRC	RG MIDAG INV-2 2018-09-08
INV	RG MIDAG	665220	5489324	2018	2	2018-09-08	Composite	Tin	<0.5	mg/kg dw	SRC	RG MIDAG INV-2 2018-09-08
INV	RG MIDAG	665220	5489324	2018	2	2018-09-08	Composite	Titanium	5.6	mg/kg dw	SRC	RG MIDAG INV-2 2018-09-08

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Туре	Station	Location	n (UTMs) ^(a)	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit		Laboratory Information
Type	Station	Easting	Northing	I ear	Replicate	Date	Species/Composite	Analyte	Result	Offic	Lab	Sample ID
INV	RG_MIDAG	665220	5489324	2018	2	2018-09-08	Composite	Uranium	0.08	mg/kg dw	SRC	RG_MIDAG_INV-2_2018-09-08
INV	RG_MIDAG	665220	5489324	2018	2	2018-09-08	Composite	Vanadium	2.0	mg/kg dw	SRC	RG_MIDAG_INV-2_2018-09-08
INV	RG_MIDAG	665220	5489324	2018	2	2018-09-08	Composite	Zinc	190	mg/kg dw	SRC	RG_MIDAG_INV-2_2018-09-08
INV	RG_MIDAG	665220	5489324	2018	2	2018-09-08	Composite	% Moisture	79	%	SRC	RG_MIDAG_INV-2_2018-09-08
INV	RG AGCK	667557	5488648	2018	3	2018-09-09	Composite	Aluminum	220	mg/kg dw	SRC	RG_AGCK_INV-3_2018-09-09
INV	RG AGCK	667557	5488648	2018	3	2018-09-09	Composite	Antimony	<1	mg/kg dw	SRC	RG AGCK INV-3 2018-09-09
INV	RG AGCK	667557	5488648	2018	3	2018-09-09	Composite	Arsenic	1.0	mg/kg dw	SRC	RG AGCK INV-3 2018-09-09
INV	RG AGCK	667557	5488648	2018	3	2018-09-09	Composite	Barium	6.4	mg/kg dw	SRC	RG AGCK INV-3 2018-09-09
INV	RG AGCK	667557	5488648	2018	3	2018-09-09	Composite	Beryllium	<0.1	mg/kg dw	SRC	RG AGCK INV-3 2018-09-09
INV	RG AGCK	667557	5488648	2018	3	2018-09-09	Composite	Boron	<10	mg/kg dw	SRC	RG AGCK INV-3 2018-09-09
INV	RG_AGCK	667557	5488648	2018	3	2018-09-09	Composite	Cadmium	0.8	mg/kg dw	SRC	RG_AGCK_INV-3_2018-09-09
INV	RG AGCK	667557	5488648	2018	3	2018-09-09	Composite	Chromium	<5	mg/kg dw	SRC	RG AGCK INV-3 2018-09-09
INV	RG_AGCK	667557	5488648	2018	3	2018-09-09	Composite	Cobalt	0.2	mg/kg dw	SRC	RG_AGCK_INV-3_2018-09-09
INV	RG_AGCK	667557	5488648	2018	3	2018-09-09	Composite	Copper	9.2	mg/kg dw	SRC	RG AGCK INV-3 2018-09-09
INV	RG_AGCK	667557	5488648	2018	3	2018-09-09	Composite	Iron	210	mg/kg dw	SRC	RG_AGCK_INV-3_2018-09-09
INV	_	667557	5488648		3	2018-09-09	·				SRC	
	RG_AGCK			2018			Composite	Lead	0.1	mg/kg dw		RG_AGCK_INV-3_2018-09-09
INV	RG_AGCK	667557	5488648	2018	3	2018-09-09	Composite	Manganese	28	mg/kg dw	SRC	RG_AGCK_INV-3_2018-09-09
INV	RG_AGCK	667557	5488648	2018	3	2018-09-09	Composite	Mercury	<0.05	mg/kg dw	SRC	RG_AGCK_INV-3_2018-09-09
INV	RG_AGCK	667557	5488648	2018	3	2018-09-09	Composite	Molybdenum	<1	mg/kg dw	SRC	RG_AGCK_INV-3_2018-09-09
INV	RG_AGCK	667557	5488648	2018	3	2018-09-09	Composite	Nickel	3.3	mg/kg dw	SRC	RG_AGCK_INV-3_2018-09-09
INV	RG_AGCK	667557	5488648	2018	3	2018-09-09	Composite	Selenium	6.2	mg/kg dw	SRC	RG_AGCK_INV-3_2018-09-09
INV	RG_AGCK	667557	5488648	2018	3	2018-09-09	Composite	Silver	<0.1	mg/kg dw	SRC	RG_AGCK_INV-3_2018-09-09
INV	RG_AGCK	667557	5488648	2018	3	2018-09-09	Composite	Strontium	6.0	mg/kg dw	SRC	RG_AGCK_INV-3_2018-09-09
INV	RG_AGCK	667557	5488648	2018	3	2018-09-09	Composite	Thallium	<0.5	mg/kg dw	SRC	RG_AGCK_INV-3_2018-09-09
INV	RG_AGCK	667557	5488648	2018	3	2018-09-09	Composite	Tin	<0.5	mg/kg dw	SRC	RG_AGCK_INV-3_2018-09-09
INV	RG_AGCK	667557	5488648	2018	3	2018-09-09	Composite	Titanium	2.0	mg/kg dw	SRC	RG_AGCK_INV-3_2018-09-09
INV	RG_AGCK	667557	5488648	2018	3	2018-09-09	Composite	Uranium	0.08	mg/kg dw	SRC	RG_AGCK_INV-3_2018-09-09
INV	RG_AGCK	667557	5488648	2018	3	2018-09-09	Composite	Vanadium	<1	mg/kg dw	SRC	RG_AGCK_INV-3_2018-09-09
INV	RG_AGCK	667557	5488648	2018	3	2018-09-09	Composite	Zinc	200	mg/kg dw	SRC	RG_AGCK_INV-3_2018-09-09
INV	RG_AGCK	667557	5488648	2018	3	2018-09-09	Composite	% Moisture	79	%	SRC	RG_AGCK_INV-3_2018-09-09
INV	RG_MIDAG	665220	5489324	2018	3	2018-09-09	Composite	Aluminum	1,800	mg/kg dw	SRC	RG_MIDAG_INV-3_2018-09-09
INV	RG MIDAG	665220	5489324	2018	3	2018-09-09	Composite	Antimony	<1	mg/kg dw	SRC	RG MIDAG INV-3 2018-09-09
INV	RG MIDAG	665220	5489324	2018	3	2018-09-09	Composite	Arsenic	0.8	mg/kg dw	SRC	RG MIDAG INV-3 2018-09-09
INV	RG MIDAG	665220	5489324	2018	3	2018-09-09	Composite	Barium	22	mg/kg dw	SRC	RG MIDAG INV-3 2018-09-09
INV	RG MIDAG	665220	5489324	2018	3	2018-09-09	Composite	Beryllium	<0.1	mg/kg dw	SRC	RG MIDAG INV-3 2018-09-09
INV	RG MIDAG	665220	5489324	2018	3	2018-09-09	Composite	Boron	<10	mg/kg dw	SRC	RG MIDAG INV-3 2018-09-09
INV	RG MIDAG	665220	5489324	2018	3	2018-09-09	Composite	Cadmium	0.5	mg/kg dw	SRC	RG MIDAG INV-3 2018-09-09
INV	RG MIDAG	665220	5489324	2018	3	2018-09-09	Composite	Chromium	<5	mg/kg dw	SRC	RG MIDAG INV-3 2018-09-09
INV	RG MIDAG	665220	5489324	2018	3	2018-09-09	Composite	Cobalt	31	mg/kg dw	SRC	RG MIDAG INV-3 2018-09-09
INV	RG MIDAG	665220	5489324	2018	3	2018-09-09	Composite	Copper	14	mg/kg dw	SRC	RG MIDAG INV-3 2018-09-09
INV	RG MIDAG	665220	5489324	2018	3	2018-09-09	Composite	Iron	1,300	mg/kg dw	SRC	RG MIDAG INV-3 2018-09-09
INV	RG_MIDAG	665220	5489324	2018	3	2018-09-09	Composite	Lead	0.6	mg/kg dw	SRC	RG MIDAG INV-3 2018-09-09
INV	RG_MIDAG	665220	5489324	2018	3	2018-09-09	Composite	Leau Manganese	100		SRC	RG MIDAG INV-3_2018-09-09
INV		665220	5489324		t			0	<0.05	mg/kg dw	SRC	
	RG_MIDAG			2018	3	2018-09-09	Composite	Mercury		mg/kg dw		RG_MIDAG_INV-3_2018-09-09
INV	RG_MIDAG	665220	5489324	2018	3	2018-09-09	Composite	Molybdenum	<1	mg/kg dw	SRC	RG_MIDAG_INV-3_2018-09-09
INV	RG_MIDAG	665220	5489324	2018	3	2018-09-09	Composite	Nickel	10	mg/kg dw	SRC	RG_MIDAG_INV-3_2018-09-09
INV	RG_MIDAG	665220	5489324	2018	3	2018-09-09	Composite	Selenium	3.8	mg/kg dw	SRC	RG_MIDAG_INV-3_2018-09-09
INV	RG_MIDAG	665220	5489324	2018	3	2018-09-09	Composite	Silver	<0.1	mg/kg dw	SRC	RG_MIDAG_INV-3_2018-09-09
INV	RG_MIDAG	665220	5489324	2018	3	2018-09-09	Composite	Strontium	16	mg/kg dw	SRC	RG_MIDAG_INV-3_2018-09-09
INV	RG_MIDAG	665220	5489324	2018	3	2018-09-09	Composite	Thallium	<0.5	mg/kg dw	SRC	RG_MIDAG_INV-3_2018-09-09
INV	RG_MIDAG	665220	5489324	2018	3	2018-09-09	Composite	Tin	<0.5	mg/kg dw	SRC	RG_MIDAG_INV-3_2018-09-09
INV	RG_MIDAG	665220	5489324	2018	3	2018-09-09	Composite	Titanium	8.6	mg/kg dw	SRC	RG_MIDAG_INV-3_2018-09-09
INV	RG_MIDAG	665220	5489324	2018	3	2018-09-09	Composite	Uranium	0.06	mg/kg dw	SRC	RG_MIDAG_INV-3_2018-09-09
INV	RG_MIDAG	665220	5489324	2018	3	2018-09-09	Composite	Vanadium	3.0	mg/kg dw	SRC	RG_MIDAG_INV-3_2018-09-09
INV	RG_MIDAG	665220	5489324	2018	3	2018-09-09	Composite	Zinc	170	mg/kg dw	SRC	RG_MIDAG_INV-3_2018-09-09
INV	RG MIDAG	665220	5489324	2018	3	2018-09-09	Composite	% Moisture	70	%	SRC	RG MIDAG INV-3 2018-09-09
INV	RG MIDCO	667616	5487621	2018		2018-09-09	Composite	Aluminum	3,700	mg/kg dw	SRC	RG MIDCO INV-1 2018-09-09

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

		Locatio	n (UTMs) ^(a)									Laboratory Information
Туре	Station	Easting	Northing	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit	Lab	Sample ID
INV	RG MIDCO	667616	5487621	2018	1	2018-09-09	Composite	Antimony	<1	mg/kg dw	SRC	RG MIDCO INV-1 2018-09-09
INV	RG MIDCO	667616	5487621	2018	1	2018-09-09	Composite	Arsenic	1.1	mg/kg dw	SRC	RG MIDCO INV-1 2018-09-09
INV	RG MIDCO	667616	5487621	2018	1	2018-09-09	Composite	Barium	39	mg/kg dw	SRC	RG MIDCO INV-1 2018-09-09
INV	RG_MIDCO	667616	5487621	2018	1	2018-09-09	Composite	Beryllium	0.2	mg/kg dw	SRC	RG MIDCO INV-1 2018-09-09
INV	RG MIDCO	667616	5487621	2018	1	2018-09-09	Composite	Boron	<10	mg/kg dw	SRC	RG MIDCO INV-1 2018-09-09
INV	RG MIDCO	667616	5487621	2018	1	2018-09-09	Composite	Cadmium	0.5		SRC	RG MIDCO INV-1 2018-09-09
	RG_MIDCO				1					mg/kg dw	SRC	
INV		667616	5487621	2018	1	2018-09-09	Composite	Chromium	<5 70	mg/kg dw		RG_MIDCO_INV-1_2018-09-09
INV	RG_MIDCO	667616	5487621	2018	1	2018-09-09	Composite	Cobalt	70	mg/kg dw	SRC	RG_MIDCO_INV-1_2018-09-09
INV	RG_MIDCO	667616	5487621	2018	1	2018-09-09	Composite	Copper	12	mg/kg dw	SRC	RG_MIDCO_INV-1_2018-09-09
INV	RG_MIDCO	667616	5487621	2018	1	2018-09-09	Composite	Iron	2,500	mg/kg dw	SRC	RG_MIDCO_INV-1_2018-09-09
INV	RG_MIDCO	667616	5487621	2018	1	2018-09-09	Composite	Lead	1.2	mg/kg dw	SRC	RG_MIDCO_INV-1_2018-09-09
INV	RG_MIDCO	667616	5487621	2018	1	2018-09-09	Composite	Manganese	350	mg/kg dw	SRC	RG_MIDCO_INV-1_2018-09-09
INV	RG_MIDCO	667616	5487621	2018	1	2018-09-09	Composite	Mercury	<0.05	mg/kg dw	SRC	RG_MIDCO_INV-1_2018-09-09
INV	RG_MIDCO	667616	5487621	2018	1	2018-09-09	Composite	Molybdenum	<1	mg/kg dw	SRC	RG_MIDCO_INV-1_2018-09-09
INV	RG_MIDCO	667616	5487621	2018	1	2018-09-09	Composite	Nickel	43	mg/kg dw	SRC	RG_MIDCO_INV-1_2018-09-09
INV	RG_MIDCO	667616	5487621	2018	1	2018-09-09	Composite	Selenium	3.8	mg/kg dw	SRC	RG_MIDCO_INV-1_2018-09-09
INV	RG_MIDCO	667616	5487621	2018	1	2018-09-09	Composite	Silver	<0.1	mg/kg dw	SRC	RG_MIDCO_INV-1_2018-09-09
INV	RG_MIDCO	667616	5487621	2018	1	2018-09-09	Composite	Strontium	61	mg/kg dw	SRC	RG_MIDCO_INV-1_2018-09-09
INV	RG_MIDCO	667616	5487621	2018	1	2018-09-09	Composite	Thallium	<0.5	mg/kg dw	SRC	RG_MIDCO_INV-1_2018-09-09
INV	RG_MIDCO	667616	5487621	2018	1	2018-09-09	Composite	Tin	<0.5	mg/kg dw	SRC	RG_MIDCO_INV-1_2018-09-09
INV	RG_MIDCO	667616	5487621	2018	1	2018-09-09	Composite	Titanium	16	mg/kg dw	SRC	RG_MIDCO_INV-1_2018-09-09
INV	RG_MIDCO	667616	5487621	2018	1	2018-09-09	Composite	Uranium	0.32	mg/kg dw	SRC	RG_MIDCO_INV-1_2018-09-09
INV	RG_MIDCO	667616	5487621	2018	1	2018-09-09	Composite	Vanadium	8.0	mg/kg dw	SRC	RG_MIDCO_INV-1_2018-09-09
INV	RG_MIDCO	667616	5487621	2018	1	2018-09-09	Composite	Zinc	140	mg/kg dw	SRC	RG_MIDCO_INV-1_2018-09-09
INV	RG MIDCO	667616	5487621	2018	1	2018-09-09	Composite	% Moisture	75	%	SRC	RG MIDCO INV-1 2018-09-09
INV	RG MIDCO	667616	5487621	2018	2	2018-09-09	Composite	Aluminum	1,700	mg/kg dw	SRC	RG MIDCO INV-2 2018-09-09
INV	RG MIDCO	667616	5487621	2018	2	2018-09-09	Composite	Antimony	<1	mg/kg dw	SRC	RG MIDCO INV-2 2018-09-09
INV	RG MIDCO	667616	5487621	2018	2	2018-09-09	Composite	Arsenic	<0.5	mg/kg dw	SRC	RG MIDCO INV-2 2018-09-09
INV	RG MIDCO	667616	5487621	2018	2	2018-09-09	Composite	Barium	13	mg/kg dw	SRC	RG MIDCO INV-2 2018-09-09
INV	RG MIDCO	667616	5487621	2018	2	2018-09-09	Composite	Beryllium	<0.1	mg/kg dw	SRC	RG MIDCO INV-2 2018-09-09
INV	RG MIDCO	667616	5487621	2018	2	2018-09-09	Composite	Boron	<10	mg/kg dw	SRC	RG MIDCO INV-2 2018-09-09
INV	RG MIDCO	667616	5487621	2018	2	2018-09-09	Composite	Cadmium	0.3	mg/kg dw	SRC	RG MIDCO INV-2 2018-09-09
INV	RG MIDCO	667616	5487621	2018	2	2018-09-09	Composite	Chromium	<5	mg/kg dw	SRC	RG MIDCO INV-2 2018-09-09
INV	RG MIDCO	667616	5487621	2018	2	2018-09-09	Composite	Cobalt	39	mg/kg dw	SRC	RG MIDCO INV-2 2018-09-09
INV	RG MIDCO	667616	5487621	2018	2	2018-09-09	Composite	Copper	13	mg/kg dw	SRC	RG MIDCO INV-2 2018-09-09
INV	RG MIDCO	667616	5487621	2018	2	2018-09-09	Composite	Iron	1,000	mg/kg dw	SRC	RG MIDCO INV-2 2018-09-09
INV	RG MIDCO	667616	5487621	2018	2	2018-09-09	Composite	Lead	0.5	mg/kg dw	SRC	RG MIDCO INV-2 2018-09-09
INV	RG MIDCO	667616	5487621	2018	2	2018-09-09	Composite	Manganese	150		SRC	RG MIDCO INV-2 2018-09-09
INV	RG_MIDCO	667616	5487621	2018	2	2018-09-09	Composite	Mercury	<0.05	mg/kg dw	SRC	RG MIDCO INV-2 2018-09-09
	_							·		mg/kg dw		
INV INV	RG_MIDCO	667616	5487621 5487621	2018	2	2018-09-09	Composite	Molybdenum Nickel	<1	mg/kg dw	SRC	RG_MIDCO_INV-2_2018-09-09 RG_MIDCO_INV-2_2018-09-09
	RG_MIDCO	667616		2018	2	2018-09-09	Composite		19	mg/kg dw	SRC	
INV	RG_MIDCO	667616	5487621	2018	2	2018-09-09	Composite	Selenium	3.1	mg/kg dw	SRC	RG_MIDCO_INV-2_2018-09-09
INV	RG_MIDCO	667616	5487621	2018	2	2018-09-09	Composite	Silver	<0.1	mg/kg dw	SRC	RG_MIDCO_INV-2_2018-09-09
INV	RG_MIDCO	667616	5487621	2018	2	2018-09-09	Composite	Strontium	19	mg/kg dw	SRC	RG_MIDCO_INV-2_2018-09-09
INV	RG_MIDCO	667616	5487621	2018	2	2018-09-09	Composite	Thallium	<0.5	mg/kg dw	SRC	RG_MIDCO_INV-2_2018-09-09
INV	RG_MIDCO	667616	5487621	2018	2	2018-09-09	Composite	Tin	<0.5	mg/kg dw	SRC	RG_MIDCO_INV-2_2018-09-09
INV	RG_MIDCO	667616	5487621	2018	2	2018-09-09	Composite	Titanium	9.7	mg/kg dw	SRC	RG_MIDCO_INV-2_2018-09-09
INV	RG_MIDCO	667616	5487621	2018	2	2018-09-09	Composite	Uranium	0.09	mg/kg dw	SRC	RG_MIDCO_INV-2_2018-09-09
INV	RG_MIDCO	667616	5487621	2018	2	2018-09-09	Composite	Vanadium	4.0	mg/kg dw	SRC	RG_MIDCO_INV-2_2018-09-09
INV	RG_MIDCO	667616	5487621	2018	2	2018-09-09	Composite	Zinc	130	mg/kg dw	SRC	RG_MIDCO_INV-2_2018-09-09
INV	RG_MIDCO	667616	5487621	2018	2	2018-09-09	Composite	% Moisture	79	%	SRC	RG_MIDCO_INV-2_2018-09-09
INV	RG_MIDCO	667616	5487621	2018	3	2018-09-09	Composite	Aluminum	1,500	mg/kg dw	SRC	RG_MIDCO_INV-3_2018-09-09
INV	RG_MIDCO	667616	5487621	2018	3	2018-09-09	Composite	Antimony	<1	mg/kg dw	SRC	RG_MIDCO_INV-3_2018-09-09
INV	RG_MIDCO	667616	5487621	2018	3	2018-09-09	Composite	Arsenic	0.6	mg/kg dw	SRC	RG_MIDCO_INV-3_2018-09-09
INV	RG_MIDCO	667616	5487621	2018	3	2018-09-09	Composite	Barium	22	mg/kg dw	SRC	RG_MIDCO_INV-3_2018-09-09
	RG MIDCO	667616	5487621	2018	3	2018-09-09	Composite	Beryllium	<0.1	mg/kg dw	SRC	RG MIDCO INV-3 2018-09-09
INV	NG MIDCO	001010										

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Туре	Station	Locatio	n (UTMs) ^(a)	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit		Laboratory Information
Type	Station	Easting	Northing	I ear	Replicate	Date	Species/Composite	Analyte	Result	Offic	Lab	Sample ID
INV	RG_MIDCO	667616	5487621	2018	3	2018-09-09	Composite	Cadmium	0.3	mg/kg dw	SRC	RG_MIDCO_INV-3_2018-09-09
INV	RG_MIDCO	667616	5487621	2018	3	2018-09-09	Composite	Chromium	<5	mg/kg dw	SRC	RG_MIDCO_INV-3_2018-09-09
INV	RG_MIDCO	667616	5487621	2018	3	2018-09-09	Composite	Cobalt	49	mg/kg dw	SRC	RG_MIDCO_INV-3_2018-09-09
INV	RG_MIDCO	667616	5487621	2018	3	2018-09-09	Composite	Copper	14	mg/kg dw	SRC	RG_MIDCO_INV-3_2018-09-09
INV	RG_MIDCO	667616	5487621	2018	3	2018-09-09	Composite	Iron	940	mg/kg dw	SRC	RG_MIDCO_INV-3_2018-09-09
INV	RG MIDCO	667616	5487621	2018	3	2018-09-09	Composite	Lead	0.4	mg/kg dw	SRC	RG MIDCO INV-3 2018-09-09
INV	RG MIDCO	667616	5487621	2018	3	2018-09-09	Composite	Manganese	160	mg/kg dw	SRC	RG MIDCO INV-3 2018-09-09
INV	RG MIDCO	667616	5487621	2018	3	2018-09-09	Composite	Mercury	< 0.05	mg/kg dw	SRC	RG MIDCO INV-3 2018-09-09
INV	RG MIDCO	667616	5487621	2018	3	2018-09-09	Composite	Molybdenum	<1	mg/kg dw	SRC	RG MIDCO INV-3 2018-09-09
INV	RG MIDCO	667616	5487621	2018	3	2018-09-09	Composite	Nickel	22	mg/kg dw	SRC	RG MIDCO INV-3 2018-09-09
INV	RG_MIDCO	667616	5487621	2018	3	2018-09-09	Composite	Selenium	3.0	mg/kg dw	SRC	RG_MIDCO_INV-3_2018-09-09
INV	RG MIDCO	667616	5487621	2018	3	2018-09-09	Composite	Silver	<0.1	mg/kg dw	SRC	RG_MIDCO_INV-3_2018-09-09
INV	RG_MIDCO	667616	5487621	2018	3	2018-09-09	Composite	Strontium	48	mg/kg dw	SRC	RG_MIDCO_INV-3_2018-09-09
INV	RG MIDCO	667616	5487621	2018	3	2018-09-09	Composite	Thallium	<0.5	mg/kg dw	SRC	RG MIDCO INV-3 2018-09-09
INV	RG MIDCO	667616	5487621	2018	3	2018-09-09	Composite	Tin	<0.5	mg/kg dw	SRC	RG_MIDCO_INV-3_2018-09-09
INV	RG MIDCO	667616	5487621	2018	3	2018-09-09	Composite	Titanium	11	mg/kg dw	SRC	RG_MIDCO_INV-3_2018-09-09
INV	RG MIDCO	667616	5487621	2018	3	2018-09-09	Composite	Uranium	0.17	mg/kg dw	SRC	RG_MIDCO_INV-3_2018-09-09
INV	RG MIDCO	667616	5487621	2018	3	2018-09-09	Composite	Vanadium	3.0	mg/kg dw	SRC	RG MIDCO INV-3 2018-09-09
INV	RG MIDCO	667616	5487621	2018	3	2018-09-09	Composite	Zinc	130	mg/kg dw	SRC	RG MIDCO INV-3 2018-09-09
INV	RG MIDCO	667616	5487621	2018	3	2018-09-09	Composite	% Moisture	78	mg/kg dw	SRC	RG MIDCO INV-3 2018-09-09
INV	RG MIDCO	667616	5487621	2018	4	2018-09-09	Composite	Aluminum	770	mg/kg dw	SRC	RG_MIDCO_INV-4_2018-09-09
INV	RG MIDCO	667616	5487621	2018	4	2018-09-09	Composite	Antimony	<1	mg/kg dw	SRC	RG MIDCO INV-4 2018-09-09
INV	RG MIDCO	667616	5487621	2018	4	2018-09-09	Composite	Arsenic	0.6	mg/kg dw	SRC	RG MIDCO INV-4 2018-09-09
INV	RG MIDCO	667616	5487621	2018	4	2018-09-09	Composite	Barium	11	mg/kg dw	SRC	RG MIDCO INV-4 2018-09-09
INV	RG MIDCO	667616	5487621	2018	4	2018-09-09	Composite	Beryllium	<0.1	mg/kg dw	SRC	RG_MIDCO_INV-4_2018-09-09
INV	RG MIDCO	667616	5487621	2018	4	2018-09-09	Composite	Boron	<10		SRC	RG MIDCO INV-4 2018-09-09
INV	RG MIDCO	667616	5487621	2018	4	2018-09-09		Cadmium	0.2	mg/kg dw	SRC	RG MIDCO INV-4 2018-09-09
INV	_	667616	5487621	2018	4	2018-09-09	Composite	Chromium	<5	mg/kg dw	SRC	
INV	RG_MIDCO	667616	5487621		4	2018-09-09	Composite	Cobalt	66	mg/kg dw	SRC	RG_MIDCO_INV-4_2018-09-09
INV	RG_MIDCO RG MIDCO	667616	5487621	2018 2018	4		Composite			mg/kg dw	SRC	RG_MIDCO_INV-4_2018-09-09
INV	RG_MIDCO		5487621		4	2018-09-09 2018-09-09	Composite	Copper	8.9	mg/kg dw	SRC	RG_MIDCO_INV-4_2018-09-09 RG_MIDCO_INV-4_2018-09-09
	_	667616		2018	4		Composite	Iron	480	mg/kg dw		
INV	RG_MIDCO	667616	5487621	2018	-	2018-09-09	Composite	Lead	0.2	mg/kg dw	SRC	RG_MIDCO_INV-4_2018-09-09
INV	RG_MIDCO	667616	5487621	2018	4	2018-09-09	Composite	Manganese	200	mg/kg dw	SRC	RG_MIDCO_INV-4_2018-09-09
INV	RG_MIDCO	667616	5487621	2018	4	2018-09-09	Composite	Mercury	<0.05	mg/kg dw	SRC	RG_MIDCO_INV-4_2018-09-09
INV	RG_MIDCO	667616	5487621	2018	4	2018-09-09	Composite	Molybdenum	<1	mg/kg dw	SRC	RG_MIDCO_INV-4_2018-09-09
INV	RG_MIDCO	667616	5487621	2018	4	2018-09-09	Composite	Nickel	22	mg/kg dw	SRC	RG_MIDCO_INV-4_2018-09-09
INV	RG_MIDCO	667616	5487621	2018	4	2018-09-09	Composite	Selenium	3.7	mg/kg dw	SRC	RG_MIDCO_INV-4_2018-09-09
INV	RG_MIDCO	667616	5487621	2018	4	2018-09-09	Composite	Silver	<0.1	mg/kg dw	SRC	RG_MIDCO_INV-4_2018-09-09
INV	RG_MIDCO	667616	5487621	2018	4	2018-09-09	Composite	Strontium	10	mg/kg dw	SRC	RG_MIDCO_INV-4_2018-09-09
INV	RG_MIDCO	667616	5487621	2018	4	2018-09-09	Composite	Thallium —:	<0.5	mg/kg dw	SRC	RG_MIDCO_INV-4_2018-09-09
INV	RG_MIDCO	667616	5487621	2018	4	2018-09-09	Composite	Tin	<0.5	mg/kg dw	SRC	RG_MIDCO_INV-4_2018-09-09
INV	RG_MIDCO	667616	5487621	2018	4	2018-09-09	Composite	Titanium	5.4	mg/kg dw	SRC	RG_MIDCO_INV-4_2018-09-09
INV	RG_MIDCO	667616	5487621	2018	4	2018-09-09	Composite	Uranium	0.07	mg/kg dw	SRC	RG_MIDCO_INV-4_2018-09-09
INV	RG_MIDCO	667616	5487621	2018	4	2018-09-09	Composite	Vanadium —:	2.0	mg/kg dw	SRC	RG_MIDCO_INV-4_2018-09-09
INV	RG_MIDCO	667616	5487621	2018	4	2018-09-09	Composite	Zinc	130	mg/kg dw	SRC	RG_MIDCO_INV-4_2018-09-09
INV	RG_MIDCO	667616	5487621	2018	4	2018-09-09	Composite	% Moisture	73	%	SRC	RG_MIDCO_INV-4_2018-09-09
INV	RG_MIDCO	667616	5487621	2018	5	2018-09-09	Composite	Aluminum	320	mg/kg dw	SRC	RG_MIDCO_INV-5_2018-09-09
INV	RG_MIDCO	667616	5487621	2018	5	2018-09-09	Composite	Antimony	<1	mg/kg dw	SRC	RG_MIDCO_INV-5_2018-09-09
INV	RG_MIDCO	667616	5487621	2018	5	2018-09-09	Composite	Arsenic	<0.5	mg/kg dw	SRC	RG_MIDCO_INV-5_2018-09-09
INV	RG_MIDCO	667616	5487621	2018	5	2018-09-09	Composite	Barium	8.4	mg/kg dw	SRC	RG_MIDCO_INV-5_2018-09-09
INV	RG_MIDCO	667616	5487621	2018	5	2018-09-09	Composite	Beryllium	<0.1	mg/kg dw	SRC	RG_MIDCO_INV-5_2018-09-09
INV	RG_MIDCO	667616	5487621	2018	5	2018-09-09	Composite	Boron	<10	mg/kg dw	SRC	RG_MIDCO_INV-5_2018-09-09
INV	RG_MIDCO	667616	5487621	2018	5	2018-09-09	Composite	Cadmium	0.2	mg/kg dw	SRC	RG_MIDCO_INV-5_2018-09-09
INV	RG_MIDCO	667616	5487621	2018	5	2018-09-09	Composite	Chromium	<5	mg/kg dw	SRC	RG_MIDCO_INV-5_2018-09-09
INV	RG_MIDCO	667616	5487621	2018	5	2018-09-09	Composite	Cobalt	60	mg/kg dw	SRC	RG_MIDCO_INV-5_2018-09-09
INV	RG_MIDCO	667616	5487621	2018	5	2018-09-09	Composite	Copper	9.9	mg/kg dw	SRC	RG_MIDCO_INV-5_2018-09-09
INV	RG MIDCO	667616	5487621	2018	5	2018-09-09	Composite	Iron	210	mg/kg dw	SRC	RG MIDCO INV-5 2018-09-09

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Tyree	Ctation	<u>Location</u>	n (UTMs) ^(a)	Vacu	Donlington	Doto	Species/Commercite	Analyte	Docult	Unit		Laboratory Information
Type	Station	Easting	Northing	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit	Lab	Sample ID
INV	RG MIDCO	667616	5487621	2018	5	2018-09-09	Composite	Lead	0.1	mg/kg dw	SRC	RG MIDCO INV-5 2018-09-09
INV	RG MIDCO	667616	5487621	2018	5	2018-09-09	Composite	Manganese	120	mg/kg dw	SRC	RG MIDCO INV-5 2018-09-09
INV	RG MIDCO	667616	5487621	2018	5	2018-09-09	Composite	Mercury	< 0.05	mg/kg dw	SRC	RG MIDCO INV-5 2018-09-09
INV	RG MIDCO	667616	5487621	2018	5	2018-09-09	Composite	Molybdenum	<1	mg/kg dw	SRC	RG MIDCO INV-5 2018-09-09
INV	RG MIDCO	667616	5487621	2018	5	2018-09-09	Composite	Nickel	16	mg/kg dw	SRC	RG MIDCO INV-5 2018-09-09
INV	RG MIDCO	667616	5487621	2018	5	2018-09-09	Composite	Selenium	3.3	mg/kg dw	SRC	RG MIDCO INV-5 2018-09-09
INV	RG MIDCO	667616	5487621	2018	5	2018-09-09	Composite	Silver	<0.1	mg/kg dw	SRC	RG_MIDCO_INV-5_2018-09-09
INV	RG MIDCO	667616	5487621	2018	5	2018-09-09	Composite	Strontium	8.0	mg/kg dw	SRC	RG MIDCO INV-5 2018-09-09
INV	RG MIDCO	667616	5487621	2018	5	2018-09-09	Composite	Thallium	<0.5	mg/kg dw	SRC	RG MIDCO INV-5 2018-09-09
INV	RG MIDCO	667616	5487621	2018	5	2018-09-09	Composite	Tin	<0.5	mg/kg dw	SRC	RG_MIDCO_INV-5_2018-09-09
INV	RG MIDCO	667616	5487621	2018	5	2018-09-09	Composite	Titanium	3.3	mg/kg dw	SRC	RG_MIDCO_INV-5_2018-09-09
INV	RG MIDCO	667616	5487621	2018	5	2018-09-09	Composite	Uranium	0.06	mg/kg dw	SRC	RG MIDCO INV-5 2018-09-09
INV	RG_MIDCO	667616	5487621	2018	5	2018-09-09	Composite	Vanadium	<1	mg/kg dw	SRC	RG MIDCO INV-5 2018-09-09
INV	RG MIDCO	667616	5487621	2018	5	2018-09-09	Composite	Zinc	130	mg/kg dw	SRC	RG MIDCO INV-5 2018-09-09
INV	RG MIDCO	667616	5487621	2018	5	2018-09-09	Composite	% Moisture	66	%	SRC	RG_MIDCO_INV-5_2018-09-09
INV	RG MIUCO	668134	5486767	2019	1	2019-09-09	Composite	Aluminum	2,800	mg/kg dw	SRC	RG MIUCO INV-1 2019-09-09
INV	RG MIUCO	668134	5486767	2019	2	2019-09-09	Composite	Aluminum	2,100	mg/kg dw	SRC	RG MIUCO INV-2 2019-09-09
INV	RG MIUCO	668134	5486767	2019	3	2019-09-09	Composite	Aluminum	4,100	mg/kg dw	SRC	RG MIUCO INV-3 2019-09-09
INV	RG_MIDCO	667711	5487625	2019	1	2019-09-09	<u> </u>		2,400		SRC	RG_MIDCO_INV-3_2019-09-09 RG_MIDCO_INV-1_2019-09-07
INV	RG_MIDCO	667711	5487625	2019		2019-09-07	Composite Composite	Aluminum Aluminum	1,300	mg/kg dw	SRC	RG_MIDCO_INV-1_2019-09-07 RG_MIDCO_INV-2_2019-09-07
					2					mg/kg dw	SRC	
INV	RG_MIDCO	667711	5487625	2019	3 4	2019-09-09	Composite	Aluminum	1,300	mg/kg dw	SRC	RG_MIDCO_INV-3_2019-09-09
INV	RG_MIDCO	667711	5487625	2019		2019-09-09	Composite	Aluminum	630	mg/kg dw		RG_MIDCO_INV-4_2019-09-09
	RG_MIDCO	667711	5487625	2019	5	2019-09-09	Composite	Aluminum	1,600	mg/kg dw	SRC	RG_MIDCO_INV-5_2019-09-09
INV	RG_LE1	659632	5494112	2019	1	2019-09-05	Composite	Aluminum	2,800	mg/kg dw	SRC	RG_LE1_INV-1_2019-09-05
INV	RG_LE1	659632	5494112	2019	2	2019-09-05	Composite	Aluminum	2,700	mg/kg dw	SRC	RG_LE1_INV-2_2019-09-05
INV	RG_LE1	659632	5494112	2019	3	2019-09-05	Composite	Aluminum	1,800	mg/kg dw	SRC	RG_LE1_INV-3_2019-09-05
INV	RG_MI25	668186	5482838	2019	1	2019-09-04	Composite	Aluminum	3,400	mg/kg dw	SRC	RG_MI25_INV-1_2019-09-04
INV	RG_MI25	668186	5482838	2019	2	2019-09-04	Composite	Aluminum	1,900	mg/kg dw	SRC	RG_MI25_INV-2_2019-09-04
INV	RG_MI25	668186	5482838	2019	3	2019-09-04	Composite	Aluminum	3,200	mg/kg dw	SRC	RG_MI25_INV-3_2019-09-04
INV	RG_MI5	659387	5496818	2019	1	2019-09-05	Composite	Aluminum	2,500	mg/kg dw	SRC	RG_MI5_INV-1_2019-09-05
INV	RG_MI5	659387	5496818	2019	2	2019-09-05	Composite	Aluminum	2,000	mg/kg dw	SRC	RG_MI5_INV-2_2019-09-05
INV	RG_MI5	659387	5496818	2019	3	2019-09-05	Composite	Aluminum	2,500	mg/kg dw	SRC	RG_MI5_INV-3_2019-09-05
INV	RG_AGCK	667555	5488644	2019	1	2019-09-06	Composite	Aluminum	250	mg/kg dw	SRC	RG_AGCK_INV-1_2019-09-06
INV	RG_AGCK	667555	5488644	2019	2	2019-09-06	Composite	Aluminum	110	mg/kg dw	SRC	RG_AGCK_INV-2_2019-09-06
INV	RG_AGCK	667555	5488644	2019	3	2019-09-06	Composite	Aluminum	270	mg/kg dw	SRC	RG_AGCK_INV-3_2019-09-06
INV	RG_CORCK	668556	5487388	2019	1	2019-09-07	Composite	Aluminum	590	mg/kg dw	SRC	RG_CORCK_INV-1_2019-09-07
INV	RG_CORCK	668556	5487388	2019	2	2019-09-07	Composite	Aluminum	190	mg/kg dw	SRC	RG_CORCK_INV-2_2019-09-07
INV	RG_CORCK	668556	5487388	2019	3	2019-09-07	Composite	Aluminum	160	mg/kg dw	SRC	RG_CORCK_INV-3_2019-09-07
INV	RG_MIDAG	665258	5489417	2019	1	2019-09-10	Composite	Aluminum	2,900	mg/kg dw	SRC	RG_MIDAG_INV-1_2019-09-10
INV	RG_MIDAG	665258	5489417	2019	2	2019-09-10	Composite	Aluminum	4,900	mg/kg dw	SRC	RG_MIDAG_INV-2_2019-09-10
INV	RG_MIDAG	665258	5489417	2019	3	2019-09-10	Composite	Aluminum	3,200	mg/kg dw	SRC	RG_MIDAG_INV-3_2019-09-10
INV	RG_MIULE	660502	5493059	2019	1	2019-09-06	Composite	Aluminum	1,400	mg/kg dw	SRC	RG_MIULE_INV-1_2019-09-06
INV	RG_MIULE	660502	5493059	2019	2	2019-09-06	Composite	Aluminum	1,400	mg/kg dw	SRC	RG_MIULE_INV-2_2019-09-06
INV	RG_MIULE	660502	5493059	2019	3	2019-09-06	Composite	Aluminum	3,200	mg/kg dw	SRC	RG_MIULE_INV-3_2019-09-06
INV	RG_MIUCO	668134	5486767	2019	1	2019-09-09	Composite	Antimony	0.02	mg/kg dw	SRC	RG_MIUCO_INV-1_2019-09-09
INV	RG_MIUCO	668134	5486767	2019	2	2019-09-09	Composite	Antimony	0.03	mg/kg dw	SRC	RG_MIUCO_INV-2_2019-09-09
INV	RG_MIUCO	668134	5486767	2019	3	2019-09-09	Composite	Antimony	0.03	mg/kg dw	SRC	RG_MIUCO_INV-3_2019-09-09
INV	RG_MIDCO	667711	5487625	2019	1	2019-09-07	Composite	Antimony	0.02	mg/kg dw	SRC	RG_MIDCO_INV-1_2019-09-07
INV	RG_MIDCO	667711	5487625	2019	2	2019-09-07	Composite	Antimony	0.02	mg/kg dw	SRC	RG_MIDCO_INV-2_2019-09-07
INV	RG_MIDCO	667711	5487625	2019	3	2019-09-09	Composite	Antimony	0.02	mg/kg dw	SRC	RG_MIDCO_INV-3_2019-09-09
INV	RG_MIDCO	667711	5487625	2019	4	2019-09-09	Composite	Antimony	0.02	mg/kg dw	SRC	RG_MIDCO_INV-4_2019-09-09
INV	RG_MIDCO	667711	5487625	2019	5	2019-09-09	Composite	Antimony	0.03	mg/kg dw	SRC	RG_MIDCO_INV-5_2019-09-09
INV	RG_LE1	659632	5494112	2019	1	2019-09-05	Composite	Antimony	0.1	mg/kg dw	SRC	RG_LE1_INV-1_2019-09-05
INV	RG_LE1	659632	5494112	2019	2	2019-09-05	Composite	Antimony	0.11	mg/kg dw	SRC	RG_LE1_INV-2_2019-09-05
INV	RG_LE1	659632	5494112	2019	3	2019-09-05	Composite	Antimony	0.08	mg/kg dw	SRC	RG_LE1_INV-3_2019-09-05
INV	RG_MI25	668186	5482838	2019	1	2019-09-04	Composite	Antimony	0.06	mg/kg dw	SRC	RG_MI25_INV-1_2019-09-04
INV	RG MI25	668186	5482838	2019	2	2019-09-04	Composite	Antimony	0.12	mg/kg dw	SRC	RG MI25 INV-2 2019-09-04

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Turk	0	Locatio	n (UTMs) ^(a)	V	D. II	B. (0			11.16		Laboratory Information
Туре	Station	Easting	Northing	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit	Lab	Sample ID
INV	RG MI25	668186	5482838	2019	3	2019-09-04	Composite	Antimony	0.04	mg/kg dw	SRC	RG MI25 INV-3 2019-09-04
INV	RG MI5	659387	5496818	2019	1	2019-09-05	Composite	Antimony	0.15	mg/kg dw	SRC	RG MI5 INV-1 2019-09-05
INV	RG MI5	659387	5496818	2019	2	2019-09-05	Composite	Antimony	0.06	mg/kg dw	SRC	RG MI5 INV-2 2019-09-05
INV	RG MI5	659387	5496818	2019	3	2019-09-05	Composite	Antimony	0.07	mg/kg dw	SRC	RG MI5 INV-3 2019-09-05
INV	RG AGCK	667555	5488644	2019	1	2019-09-06	Composite	Antimony	0.02	mg/kg dw	SRC	RG AGCK INV-1 2019-09-06
INV	RG AGCK	667555	5488644	2019	2	2019-09-06	Composite	Antimony	0.01	mg/kg dw	SRC	RG AGCK INV-2 2019-09-06
INV	RG AGCK	667555	5488644	2019	3	2019-09-06	Composite	Antimony	0.02	mg/kg dw	SRC	RG AGCK INV-3 2019-09-06
INV	RG_AGCK	668556	5487388	2019	1	2019-09-07	Composite	Antimony	0.02	mg/kg dw	SRC	RG CORCK INV-1 2019-09-07
INV	RG CORCK	668556	5487388	2019	2	2019-09-07	Composite		0.04		SRC	RG CORCK INV-2 2019-09-07
							· · · · · · · · · · · · · · · · · · ·	Antimony		mg/kg dw	SRC	
INV	RG_CORCK	668556	5487388	2019	3	2019-09-07	Composite	Antimony	0.02	mg/kg dw		RG_CORCK_INV-3_2019-09-07
INV	RG_MIDAG	665258	5489417	2019	1	2019-09-10	Composite	Antimony	0.05	mg/kg dw	SRC	RG_MIDAG_INV-1_2019-09-10
INV	RG_MIDAG	665258	5489417	2019	2	2019-09-10	Composite	Antimony	0.06	mg/kg dw	SRC	RG_MIDAG_INV-2_2019-09-10
INV	RG_MIDAG	665258	5489417	2019	3	2019-09-10	Composite	Antimony	0.06	mg/kg dw	SRC	RG_MIDAG_INV-3_2019-09-10
INV	RG_MIULE	660502	5493059	2019	1	2019-09-06	Composite	Antimony	0.04	mg/kg dw	SRC	RG_MIULE_INV-1_2019-09-06
INV	RG_MIULE	660502	5493059	2019	2	2019-09-06	Composite	Antimony	0.03	mg/kg dw	SRC	RG_MIULE_INV-2_2019-09-06
INV	RG_MIULE	660502	5493059	2019	3	2019-09-06	Composite	Antimony	0.06	mg/kg dw	SRC	RG_MIULE_INV-3_2019-09-06
INV	RG_MIUCO	668134	5486767	2019	1	2019-09-09	Composite	Arsenic	1.0	mg/kg dw	SRC	RG_MIUCO_INV-1_2019-09-09
INV	RG_MIUCO	668134	5486767	2019	2	2019-09-09	Composite	Arsenic	0.98	mg/kg dw	SRC	RG_MIUCO_INV-2_2019-09-09
INV	RG_MIUCO	668134	5486767	2019	3	2019-09-09	Composite	Arsenic	1.3	mg/kg dw	SRC	RG_MIUCO_INV-3_2019-09-09
INV	RG_MIDCO	667711	5487625	2019	1	2019-09-07	Composite	Arsenic	0.87	mg/kg dw	SRC	RG_MIDCO_INV-1_2019-09-07
INV	RG_MIDCO	667711	5487625	2019	2	2019-09-07	Composite	Arsenic	0.55	mg/kg dw	SRC	RG_MIDCO_INV-2_2019-09-07
INV	RG_MIDCO	667711	5487625	2019	3	2019-09-09	Composite	Arsenic	0.57	mg/kg dw	SRC	RG_MIDCO_INV-3_2019-09-09
INV	RG MIDCO	667711	5487625	2019	4	2019-09-09	Composite	Arsenic	0.39	mg/kg dw	SRC	RG MIDCO INV-4 2019-09-09
INV	RG MIDCO	667711	5487625	2019	5	2019-09-09	Composite	Arsenic	0.83	mg/kg dw	SRC	RG MIDCO INV-5 2019-09-09
INV	RG LE1	659632	5494112	2019	1	2019-09-05	Composite	Arsenic	1.5	mg/kg dw	SRC	RG LE1 INV-1 2019-09-05
INV	RG LE1	659632	5494112	2019	2	2019-09-05	Composite	Arsenic	1.1	mg/kg dw	SRC	RG LE1 INV-2 2019-09-05
INV	RG LE1	659632	5494112	2019	3	2019-09-05	Composite	Arsenic	0.68	mg/kg dw	SRC	RG LE1 INV-3 2019-09-05
INV	RG MI25	668186	5482838	2019	1	2019-09-04	Composite	Arsenic	1.9	mg/kg dw	SRC	RG MI25 INV-1 2019-09-04
INV	RG MI25	668186	5482838	2019	2	2019-09-04	Composite	Arsenic	1.2	mg/kg dw	SRC	RG_MI25_INV-2_2019-09-04
INV	RG MI25	668186	5482838	2019	3	2019-09-04	Composite	Arsenic	1.4	mg/kg dw	SRC	RG MI25 INV-3 2019-09-04
INV	RG MI5	659387	5496818	2019	1	2019-09-05	Composite	Arsenic	1.1	mg/kg dw	SRC	RG MI5 INV-1 2019-09-05
INV	RG_MI5	659387	5496818	2019	2	2019-09-05	Composite	Arsenic	0.94	mg/kg dw	SRC	RG MI5 INV-2 2019-09-05
INV	RG_MI5	659387	5496818	2019	3	2019-09-05			1.0		SRC	RG MI5 INV-3 2019-09-05
				2019	1		Composite	Arsenic		mg/kg dw		RG_MIS_INV-3_2019-09-05 RG_AGCK_INV-1_2019-09-06
INV	RG_AGCK	667555	5488644			2019-09-06	Composite	Arsenic	1.6	mg/kg dw	SRC	
INV	RG_AGCK	667555	5488644	2019	2	2019-09-06	Composite	Arsenic	1.3	mg/kg dw	SRC	RG_AGCK_INV-2_2019-09-06
INV	RG_AGCK	667555	5488644	2019	3	2019-09-06	Composite	Arsenic	1.2	mg/kg dw	SRC	RG_AGCK_INV-3_2019-09-06
INV	RG_CORCK	668556	5487388	2019	1	2019-09-07	Composite	Arsenic	0.24	mg/kg dw	SRC	RG_CORCK_INV-1_2019-09-07
INV	RG_CORCK	668556	5487388	2019	2	2019-09-07	Composite	Arsenic	0.24	mg/kg dw	SRC	RG_CORCK_INV-2_2019-09-07
INV	RG_CORCK	668556	5487388	2019	3	2019-09-07	Composite	Arsenic	0.22	mg/kg dw	SRC	RG_CORCK_INV-3_2019-09-07
INV	RG_MIDAG	665258	5489417	2019	1	2019-09-10	Composite	Arsenic	1.5	mg/kg dw	SRC	RG_MIDAG_INV-1_2019-09-10
INV	RG_MIDAG	665258	5489417	2019	2	2019-09-10	Composite	Arsenic	2.0	mg/kg dw	SRC	RG_MIDAG_INV-2_2019-09-10
INV	RG_MIDAG	665258	5489417	2019	3	2019-09-10	Composite	Arsenic	2.1	mg/kg dw	SRC	RG_MIDAG_INV-3_2019-09-10
INV	RG_MIULE	660502	5493059	2019	1	2019-09-06	Composite	Arsenic	0.61	mg/kg dw	SRC	RG_MIULE_INV-1_2019-09-06
INV	RG_MIULE	660502	5493059	2019	2	2019-09-06	Composite	Arsenic	0.68	mg/kg dw	SRC	RG_MIULE_INV-2_2019-09-06
INV	RG_MIULE	660502	5493059	2019	3	2019-09-06	Composite	Arsenic	1.4	mg/kg dw	SRC	RG_MIULE_INV-3_2019-09-06
INV	RG_MIUCO	668134	5486767	2019	1	2019-09-09	Composite	Barium	38	mg/kg dw	SRC	RG_MIUCO_INV-1_2019-09-09
INV	RG_MIUCO	668134	5486767	2019	2	2019-09-09	Composite	Barium	20	mg/kg dw	SRC	RG_MIUCO_INV-2_2019-09-09
INV	RG_MIUCO	668134	5486767	2019	3	2019-09-09	Composite	Barium	28	mg/kg dw	SRC	RG_MIUCO_INV-3_2019-09-09
INV	RG_MIDCO	667711	5487625	2019	1	2019-09-07	Composite	Barium	10	mg/kg dw	SRC	RG_MIDCO_INV-1_2019-09-07
INV	RG MIDCO	667711	5487625	2019	2	2019-09-07	Composite	Barium	8.8	mg/kg dw	SRC	RG MIDCO INV-2 2019-09-07
INV	RG MIDCO	667711	5487625	2019	3	2019-09-09	Composite	Barium	8.6	mg/kg dw	SRC	RG MIDCO INV-3 2019-09-09
INV	RG_MIDCO	667711	5487625	2019	4	2019-09-09	Composite	Barium	5.9	mg/kg dw	SRC	RG MIDCO INV-4 2019-09-09
INV	RG_MIDCO	667711	5487625	2019	5	2019-09-09	Composite	Barium	15	mg/kg dw	SRC	RG MIDCO INV-5 2019-09-09
	RG LE1	659632	5494112	2019	1	2019-09-05	Composite	Barium	45	mg/kg dw	SRC	RG LE1 INV-1 2019-09-05
			UTUT 1 12	2010	1 '	2010-00-00	Composite	Danulli	70	mg/ng aw	0110	1.0 1_1111-1
INV				2010	2	2010 <u>-</u> 00 05	Composite	Rarium	30	ma/ka dw	SBC	RG LE1 INI\/_2 2010 00 05
	RG_LE1 RG_LE1	659632 659632	5494112 5494112	2019 2019	2 3	2019-09-05 2019-09-05	Composite Composite	Barium Barium	38	mg/kg dw mg/kg dw	SRC SRC	RG_LE1_INV-2_2019-09-05 RG_LE1_INV-3_2019-09-05

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Туре	Station	Locatio	n (UTMs) ^(a)	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit		Laboratory Information
Type	Station	Easting	Northing	I ear	Replicate	Date	Species/Composite	Analyte	Result	Offic	Lab	Sample ID
INV	RG_MI25	668186	5482838	2019	2	2019-09-04	Composite	Barium	16	mg/kg dw	SRC	RG_MI25_INV-2_2019-09-04
INV	RG_MI25	668186	5482838	2019	3	2019-09-04	Composite	Barium	15	mg/kg dw	SRC	RG_MI25_INV-3_2019-09-04
INV	RG_MI5	659387	5496818	2019	1	2019-09-05	Composite	Barium	44	mg/kg dw	SRC	RG_MI5_INV-1_2019-09-05
INV	RG MI5	659387	5496818	2019	2	2019-09-05	Composite	Barium	34	mg/kg dw	SRC	RG_MI5_INV-2_2019-09-05
INV	RG MI5	659387	5496818	2019	3	2019-09-05	Composite	Barium	32	mg/kg dw	SRC	RG MI5 INV-3 2019-09-05
INV	RG AGCK	667555	5488644	2019	1	2019-09-06	Composite	Barium	3.6	mg/kg dw	SRC	RG AGCK INV-1 2019-09-06
INV	RG AGCK	667555	5488644	2019	2	2019-09-06	Composite	Barium	3.2	mg/kg dw	SRC	RG AGCK INV-2 2019-09-06
INV	RG AGCK	667555	5488644	2019	3	2019-09-06	Composite	Barium	6.6	mg/kg dw	SRC	RG AGCK INV-3 2019-09-06
INV	RG CORCK	668556	5487388	2019	1	2019-09-07	Composite	Barium	23	mg/kg dw	SRC	RG CORCK INV-1 2019-09-07
INV	RG CORCK	668556	5487388	2019	2	2019-09-07	Composite	Barium	6.5	mg/kg dw	SRC	RG CORCK INV-2 2019-09-07
INV	RG_CORCK	668556	5487388	2019	3	2019-09-07	Composite	Barium	9.4	mg/kg dw	SRC	RG_CORCK_INV-3_2019-09-07
INV	RG MIDAG	665258	5489417	2019	1	2019-09-10	Composite	Barium	20	mg/kg dw	SRC	RG MIDAG INV-1 2019-09-10
INV	RG_MIDAG	665258	5489417	2019	2	2019-09-10	Composite	Barium	47	mg/kg dw	SRC	RG_MIDAG_INV-1_2019-09-10
INV	RG MIDAG	665258	5489417	2019	3	2019-09-10	Composite	Barium	34	mg/kg dw	SRC	RG MIDAG_INV-2_2019-09-10
INV	RG MIULE	660502	5493059	2019	1	2019-09-06	Composite	Barium	17	mg/kg dw	SRC	RG MIULE INV-1 2019-09-06
INV	_	660502	5493059			2019-09-06	·				SRC	
	RG_MIULE			2019	2		Composite	Barium	22	mg/kg dw		RG_MIULE_INV-2_2019-09-06
INV	RG_MIULE	660502	5493059	2019	3	2019-09-06	Composite	Barium	31	mg/kg dw	SRC	RG_MIULE_INV-3_2019-09-06
INV	RG_MIUCO	668134	5486767	2019	1	2019-09-09	Composite	Beryllium	0.1	mg/kg dw	SRC	RG_MIUCO_INV-1_2019-09-09
INV	RG_MIUCO	668134	5486767	2019	2	2019-09-09	Composite	Beryllium	0.07	mg/kg dw	SRC	RG_MIUCO_INV-2_2019-09-09
INV	RG_MIUCO	668134	5486767	2019	3	2019-09-09	Composite	Beryllium	0.14	mg/kg dw	SRC	RG_MIUCO_INV-3_2019-09-09
INV	RG_MIDCO	667711	5487625	2019	1	2019-09-07	Composite	Beryllium	0.09	mg/kg dw	SRC	RG_MIDCO_INV-1_2019-09-07
INV	RG_MIDCO	667711	5487625	2019	2	2019-09-07	Composite	Beryllium	0.05	mg/kg dw	SRC	RG_MIDCO_INV-2_2019-09-07
INV	RG_MIDCO	667711	5487625	2019	3	2019-09-09	Composite	Beryllium	0.05	mg/kg dw	SRC	RG_MIDCO_INV-3_2019-09-09
INV	RG_MIDCO	667711	5487625	2019	4	2019-09-09	Composite	Beryllium	0.02	mg/kg dw	SRC	RG_MIDCO_INV-4_2019-09-09
INV	RG_MIDCO	667711	5487625	2019	5	2019-09-09	Composite	Beryllium	0.06	mg/kg dw	SRC	RG_MIDCO_INV-5_2019-09-09
INV	RG_LE1	659632	5494112	2019	1	2019-09-05	Composite	Beryllium	0.11	mg/kg dw	SRC	RG_LE1_INV-1_2019-09-05
INV	RG_LE1	659632	5494112	2019	2	2019-09-05	Composite	Beryllium	0.1	mg/kg dw	SRC	RG_LE1_INV-2_2019-09-05
INV	RG_LE1	659632	5494112	2019	3	2019-09-05	Composite	Beryllium	0.06	mg/kg dw	SRC	RG_LE1_INV-3_2019-09-05
INV	RG_MI25	668186	5482838	2019	1	2019-09-04	Composite	Beryllium	0.11	mg/kg dw	SRC	RG_MI25_INV-1_2019-09-04
INV	RG_MI25	668186	5482838	2019	2	2019-09-04	Composite	Beryllium	0.07	mg/kg dw	SRC	RG_MI25_INV-2_2019-09-04
INV	RG_MI25	668186	5482838	2019	3	2019-09-04	Composite	Beryllium	0.1	mg/kg dw	SRC	RG_MI25_INV-3_2019-09-04
INV	RG MI5	659387	5496818	2019	1	2019-09-05	Composite	Beryllium	0.11	mg/kg dw	SRC	RG MI5 INV-1 2019-09-05
INV	RG MI5	659387	5496818	2019	2	2019-09-05	Composite	Beryllium	0.06	mg/kg dw	SRC	RG MI5 INV-2 2019-09-05
INV	RG MI5	659387	5496818	2019	3	2019-09-05	Composite	Beryllium	0.09	mg/kg dw	SRC	RG MI5 INV-3 2019-09-05
INV	RG AGCK	667555	5488644	2019	1	2019-09-06	Composite	Beryllium	0.02	mg/kg dw	SRC	RG AGCK INV-1 2019-09-06
INV	RG AGCK	667555	5488644	2019	2	2019-09-06	Composite	Beryllium	0.02	mg/kg dw	SRC	RG AGCK INV-2 2019-09-06
INV	RG AGCK	667555	5488644	2019	3	2019-09-06	Composite	Beryllium	0.02	mg/kg dw	SRC	RG AGCK INV-3 2019-09-06
INV	RG CORCK	668556	5487388	2019	1	2019-09-07	Composite	Beryllium	0.03	mg/kg dw	SRC	RG CORCK INV-1 2019-09-07
INV	RG CORCK	668556	5487388	2019	2	2019-09-07	Composite	Beryllium	<0.01	mg/kg dw	SRC	RG CORCK INV-2 2019-09-07
INV	RG CORCK	668556	5487388	2019	3	2019-09-07	Composite	Beryllium	<0.02	mg/kg dw	SRC	RG CORCK INV-3 2019-09-07
INV	RG MIDAG	665258	5489417	2019	1	2019-09-07	Composite	Beryllium	0.02	mg/kg dw	SRC	RG MIDAG INV-1 2019-09-10
INV	RG_MIDAG	665258	5489417	2019	2	2019-09-10	Composite	Beryllium	0.17	mg/kg dw	SRC	RG_MIDAG_INV-1_2019-09-10
INV			5489417				•	·			SRC	
INV	RG_MIDAG RG MIULE	665258	5489417 5493059	2019	3	2019-09-10	Composite	Beryllium	0.12 0.05	mg/kg dw		RG_MIDAG_INV-3_2019-09-10
		660502		2019	1	2019-09-06	Composite	Beryllium		mg/kg dw	SRC	RG_MIULE_INV-1_2019-09-06
INV	RG_MIULE	660502	5493059	2019	2	2019-09-06	Composite	Beryllium	0.05	mg/kg dw	SRC	RG_MIULE_INV-2_2019-09-06
INV	RG_MIULE	660502	5493059	2019	3	2019-09-06	Composite	Beryllium	0.11	mg/kg dw	SRC	RG_MIULE_INV-3_2019-09-06
INV	RG_MIUCO	668134	5486767	2019	1	2019-09-09	Composite	Boron	6.0	mg/kg dw	SRC	RG_MIUCO_INV-1_2019-09-09
INV	RG_MIUCO	668134	5486767	2019	2	2019-09-09	Composite	Boron	5.0	mg/kg dw	SRC	RG_MIUCO_INV-2_2019-09-09
INV	RG_MIUCO	668134	5486767	2019	3	2019-09-09	Composite	Boron	8.0	mg/kg dw	SRC	RG_MIUCO_INV-3_2019-09-09
INV	RG_MIDCO	667711	5487625	2019	1	2019-09-07	Composite	Boron	5.0	mg/kg dw	SRC	RG_MIDCO_INV-1_2019-09-07
INV	RG_MIDCO	667711	5487625	2019	2	2019-09-07	Composite	Boron	3.0	mg/kg dw	SRC	RG_MIDCO_INV-2_2019-09-07
INV	RG_MIDCO	667711	5487625	2019	3	2019-09-09	Composite	Boron	3.0	mg/kg dw	SRC	RG_MIDCO_INV-3_2019-09-09
INV	RG_MIDCO	667711	5487625	2019	4	2019-09-09	Composite	Boron	2.0	mg/kg dw	SRC	RG_MIDCO_INV-4_2019-09-09
INV	RG_MIDCO	667711	5487625	2019	5	2019-09-09	Composite	Boron	4.0	mg/kg dw	SRC	RG_MIDCO_INV-5_2019-09-09
INV	RG_LE1	659632	5494112	2019	1	2019-09-05	Composite	Boron	4.0	mg/kg dw	SRC	RG_LE1_INV-1_2019-09-05
INV	RG LE1	659632	5494112	2019	2	2019-09-05	Composite	Boron	4.0	mg/kg dw	SRC	RG LE1 INV-2 2019-09-05
INV	RG LE1	659632	5494112	2019	3	2019-09-05	Composite	Boron	3.0	mg/kg dw	SRC	RG LE1 INV-3 2019-09-05

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Туре	Station	Location	n (UTMs) ^(a)	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit		Laboratory Information
туре	Station	Easting	Northing	Teal	Replicate	Date	Species/Composite	Allalyte	Result	Offic	Lab	Sample ID
INV	RG_MI25	668186	5482838	2019	1	2019-09-04	Composite	Boron	10	mg/kg dw	SRC	RG_MI25_INV-1_2019-09-04
INV	RG_MI25	668186	5482838	2019	2	2019-09-04	Composite	Boron	5.0	mg/kg dw	SRC	RG_MI25_INV-2_2019-09-04
INV	RG_MI25	668186	5482838	2019	3	2019-09-04	Composite	Boron	7.0	mg/kg dw	SRC	RG_MI25_INV-3_2019-09-04
INV	RG_MI5	659387	5496818	2019	1	2019-09-05	Composite	Boron	6.0	mg/kg dw	SRC	RG_MI5_INV-1_2019-09-05
INV	RG_MI5	659387	5496818	2019	2	2019-09-05	Composite	Boron	6.0	mg/kg dw	SRC	RG_MI5_INV-2_2019-09-05
INV	RG MI5	659387	5496818	2019	3	2019-09-05	Composite	Boron	4.0	mg/kg dw	SRC	RG MI5 INV-3 2019-09-05
INV	RG AGCK	667555	5488644	2019	1	2019-09-06	Composite	Boron	<1	mg/kg dw	SRC	RG AGCK INV-1 2019-09-06
INV	RG AGCK	667555	5488644	2019	2	2019-09-06	Composite	Boron	<1	mg/kg dw	SRC	RG AGCK INV-2 2019-09-06
INV	RG AGCK	667555	5488644	2019	3	2019-09-06	Composite	Boron	<1	mg/kg dw	SRC	RG AGCK INV-3 2019-09-06
INV	RG CORCK	668556	5487388	2019	1	2019-09-07	Composite	Boron	2.0	mg/kg dw	SRC	RG CORCK INV-1 2019-09-07
INV	RG_CORCK	668556	5487388	2019	2	2019-09-07	Composite	Boron	<1	mg/kg dw	SRC	RG_CORCK_INV-2_2019-09-07
INV	RG CORCK	668556	5487388	2019	3	2019-09-07	Composite	Boron	<2	mg/kg dw	SRC	RG CORCK INV-3 2019-09-07
INV	RG_MIDAG	665258	5489417	2019	1	2019-09-10	Composite	Boron	6.0	mg/kg dw	SRC	RG_MIDAG_INV-1_2019-09-10
INV	RG MIDAG	665258	5489417	2019	2	2019-09-10	Composite	Boron	8.0	mg/kg dw	SRC	RG MIDAG INV-2 2019-09-10
INV	RG MIDAG	665258	5489417	2019	3	2019-09-10	Composite	Boron	6.0	mg/kg dw	SRC	RG MIDAG INV-3 2019-09-10
INV	RG MIULE	660502	5493059	2019	1	2019-09-06	Composite	Boron	3.0	mg/kg dw	SRC	RG MIULE INV-1 2019-09-06
INV	RG MIULE	660502	5493059	2019	2	2019-09-06	Composite	Boron	4.0	mg/kg dw	SRC	RG MIULE INV-2 2019-09-06
INV	RG MIULE	660502	5493059	2019	3	2019-09-06	Composite	Boron	6.0	mg/kg dw	SRC	RG MIULE INV-3 2019-09-06
INV	RG MIUCO	668134	5486767	2019	1	2019-09-09	Composite	Cadmium	0.98	mg/kg dw	SRC	RG MIUCO INV-1 2019-09-09
INV	RG MIUCO	668134	5486767	2019	2	2019-09-09	Composite	Cadmium			SRC	RG MIUCO INV-1 2019-09-09
INV		668134	5486767	2019	3	2019-09-09		Cadmium	1.3 3.7	mg/kg dw	SRC	
INV	RG_MIUCO	667711			3	2019-09-07	Composite		0.38	mg/kg dw	SRC	RG_MIUCO_INV-3_2019-09-09
INV	RG_MIDCO		5487625	2019	1		Composite	Cadmium		mg/kg dw	SRC	RG_MIDCO_INV-1_2019-09-07
	RG_MIDCO	667711	5487625	2019	2	2019-09-07	Composite	Cadmium	0.49	mg/kg dw		RG_MIDCO_INV-2_2019-09-07
INV	RG_MIDCO	667711	5487625	2019	3	2019-09-09	Composite	Cadmium	0.37	mg/kg dw	SRC	RG_MIDCO_INV-3_2019-09-09
INV	RG_MIDCO	667711	5487625	2019	4	2019-09-09	Composite	Cadmium	0.3	mg/kg dw	SRC	RG_MIDCO_INV-4_2019-09-09
INV	RG_MIDCO	667711	5487625	2019	5	2019-09-09	Composite	Cadmium	0.27	mg/kg dw	SRC	RG_MIDCO_INV-5_2019-09-09
INV	RG_LE1	659632	5494112	2019	1	2019-09-05	Composite	Cadmium	6.4	mg/kg dw	SRC	RG_LE1_INV-1_2019-09-05
INV	RG_LE1	659632	5494112	2019	2	2019-09-05	Composite	Cadmium	8.4	mg/kg dw	SRC	RG_LE1_INV-2_2019-09-05
INV	RG_LE1	659632	5494112	2019	3	2019-09-05	Composite	Cadmium	11	mg/kg dw	SRC	RG_LE1_INV-3_2019-09-05
INV	RG_MI25	668186	5482838	2019	1	2019-09-04	Composite	Cadmium	4.8	mg/kg dw	SRC	RG_MI25_INV-1_2019-09-04
INV	RG_MI25	668186	5482838	2019	2	2019-09-04	Composite	Cadmium	3.4	mg/kg dw	SRC	RG_MI25_INV-2_2019-09-04
INV	RG_MI25	668186	5482838	2019	3	2019-09-04	Composite	Cadmium	3.2	mg/kg dw	SRC	RG_MI25_INV-3_2019-09-04
INV	RG_MI5	659387	5496818	2019	1	2019-09-05	Composite	Cadmium	2.6	mg/kg dw	SRC	RG_MI5_INV-1_2019-09-05
INV	RG_MI5	659387	5496818	2019	2	2019-09-05	Composite	Cadmium	2.7	mg/kg dw	SRC	RG_MI5_INV-2_2019-09-05
INV	RG_MI5	659387	5496818	2019	3	2019-09-05	Composite	Cadmium	2.5	mg/kg dw	SRC	RG_MI5_INV-3_2019-09-05
INV	RG_AGCK	667555	5488644	2019	1	2019-09-06	Composite	Cadmium	1.3	mg/kg dw	SRC	RG_AGCK_INV-1_2019-09-06
INV	RG_AGCK	667555	5488644	2019	2	2019-09-06	Composite	Cadmium	1.1	mg/kg dw	SRC	RG_AGCK_INV-2_2019-09-06
INV	RG_AGCK	667555	5488644	2019	3	2019-09-06	Composite	Cadmium	1.0	mg/kg dw	SRC	RG_AGCK_INV-3_2019-09-06
INV	RG_CORCK	668556	5487388	2019	1	2019-09-07	Composite	Cadmium	1.1	mg/kg dw	SRC	RG_CORCK_INV-1_2019-09-07
INV	RG_CORCK	668556	5487388	2019	2	2019-09-07	Composite	Cadmium	0.5	mg/kg dw	SRC	RG_CORCK_INV-2_2019-09-07
INV	RG_CORCK	668556	5487388	2019	3	2019-09-07	Composite	Cadmium	0.54	mg/kg dw	SRC	RG_CORCK_INV-3_2019-09-07
INV	RG_MIDAG	665258	5489417	2019	1	2019-09-10	Composite	Cadmium	1.5	mg/kg dw	SRC	RG_MIDAG_INV-1_2019-09-10
INV	RG_MIDAG	665258	5489417	2019	2	2019-09-10	Composite	Cadmium	1.4	mg/kg dw	SRC	RG_MIDAG_INV-2_2019-09-10
INV	RG_MIDAG	665258	5489417	2019	3	2019-09-10	Composite	Cadmium	0.75	mg/kg dw	SRC	RG_MIDAG_INV-3_2019-09-10
INV	RG_MIULE	660502	5493059	2019	1	2019-09-06	Composite	Cadmium	0.72	mg/kg dw	SRC	RG_MIULE_INV-1_2019-09-06
INV	RG_MIULE	660502	5493059	2019	2	2019-09-06	Composite	Cadmium	1.4	mg/kg dw	SRC	RG_MIULE_INV-2_2019-09-06
INV	RG_MIULE	660502	5493059	2019	3	2019-09-06	Composite	Cadmium	0.97	mg/kg dw	SRC	RG_MIULE_INV-3_2019-09-06
INV	RG_MIUCO	668134	5486767	2019	1	2019-09-09	Composite	Chromium	3.0	mg/kg dw	SRC	RG_MIUCO_INV-1_2019-09-09
INV	RG_MIUCO	668134	5486767	2019	2	2019-09-09	Composite	Chromium	2.5	mg/kg dw	SRC	RG_MIUCO_INV-2_2019-09-09
INV	RG MIUCO	668134	5486767	2019	3	2019-09-09	Composite	Chromium	3.8	mg/kg dw	SRC	RG MIUCO INV-3 2019-09-09
INV	RG MIDCO	667711	5487625	2019	1	2019-09-07	Composite	Chromium	2.6	mg/kg dw	SRC	RG MIDCO INV-1 2019-09-07
INV	RG MIDCO	667711	5487625	2019	2	2019-09-07	Composite	Chromium	1.6	mg/kg dw	SRC	RG MIDCO INV-2 2019-09-07
INV	RG MIDCO	667711	5487625	2019	3	2019-09-09	Composite	Chromium	1.5	mg/kg dw	SRC	RG MIDCO INV-3 2019-09-09
INV	RG MIDCO	667711	5487625	2019	4	2019-09-09	Composite	Chromium	0.77	mg/kg dw	SRC	RG MIDCO INV-4 2019-09-09
INV	RG MIDCO	667711	5487625	2019	5	2019-09-09	Composite	Chromium	2.0	mg/kg dw	SRC	RG MIDCO INV-5 2019-09-09
	110_11111111111111111111111111111111111	00,711		2010	,		•					
INV	RG LE1	659632	5494112	2019	1 1	2019-09-05	Composite	Chromium	5.0	mg/kg dw	SRC	RG LE1 INV-1 2019-09-05

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

T	04.45.	Locatio	n (UTMs) ^(a)	V	Doublest	Doto	S	Amalata	Don't a	11		Laboratory Information
Туре	Station	Easting	Northing	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit	Lab	Sample ID
INV	RG LE1	659632	5494112	2019	3	2019-09-05	Composite	Chromium	2.8	mg/kg dw	SRC	RG LE1 INV-3 2019-09-05
INV	RG MI25	668186	5482838	2019	1	2019-09-04	Composite	Chromium	4.0	mg/kg dw	SRC	RG MI25 INV-1 2019-09-04
INV	RG MI25	668186	5482838	2019	2	2019-09-04	Composite	Chromium	2.3	mg/kg dw	SRC	RG MI25 INV-2 2019-09-04
INV	RG MI25	668186	5482838	2019	3	2019-09-04	Composite	Chromium	3.9	mg/kg dw	SRC	RG_MI25_INV-3_2019-09-04
INV	RG MI5	659387	5496818	2019	1	2019-09-05	Composite	Chromium	4.0	mg/kg dw	SRC	RG MI5 INV-1 2019-09-05
INV	RG MI5	659387	5496818	2019	2	2019-09-05	Composite	Chromium	3.0	mg/kg dw	SRC	RG MI5 INV-2 2019-09-05
INV	RG MI5	659387	5496818	2019	3	2019-09-05	Composite	Chromium	3.9	mg/kg dw	SRC	RG MI5 INV-3 2019-09-05
					1		· · · · · · · · · · · · · · · · · · ·				SRC	
INV	RG_AGCK	667555	5488644	2019	· ·	2019-09-06	Composite	Chromium	0.69	mg/kg dw		RG_AGCK_INV-1_2019-09-06
INV	RG_AGCK	667555	5488644	2019	2	2019-09-06	Composite	Chromium	0.33	mg/kg dw	SRC	RG_AGCK_INV-2_2019-09-06
INV	RG_AGCK	667555	5488644	2019	3	2019-09-06	Composite	Chromium	0.59	mg/kg dw	SRC	RG_AGCK_INV-3_2019-09-06
INV	RG_CORCK	668556	5487388	2019	1	2019-09-07	Composite	Chromium	0.56	mg/kg dw	SRC	RG_CORCK_INV-1_2019-09-07
INV	RG_CORCK	668556	5487388	2019	2	2019-09-07	Composite	Chromium	0.3	mg/kg dw	SRC	RG_CORCK_INV-2_2019-09-07
INV	RG_CORCK	668556	5487388	2019	3	2019-09-07	Composite	Chromium	0.2	mg/kg dw	SRC	RG_CORCK_INV-3_2019-09-07
INV	RG_MIDAG	665258	5489417	2019	1	2019-09-10	Composite	Chromium	3.3	mg/kg dw	SRC	RG_MIDAG_INV-1_2019-09-10
INV	RG_MIDAG	665258	5489417	2019	2	2019-09-10	Composite	Chromium	5.2	mg/kg dw	SRC	RG_MIDAG_INV-2_2019-09-10
INV	RG_MIDAG	665258	5489417	2019	3	2019-09-10	Composite	Chromium	3.7	mg/kg dw	SRC	RG_MIDAG_INV-3_2019-09-10
INV	RG_MIULE	660502	5493059	2019	1	2019-09-06	Composite	Chromium	1.8	mg/kg dw	SRC	RG_MIULE_INV-1_2019-09-06
INV	RG_MIULE	660502	5493059	2019	2	2019-09-06	Composite	Chromium	1.6	mg/kg dw	SRC	RG_MIULE_INV-2_2019-09-06
INV	RG MIULE	660502	5493059	2019	3	2019-09-06	Composite	Chromium	3.9	mg/kg dw	SRC	RG MIULE INV-3 2019-09-06
INV	RG MIUCO	668134	5486767	2019	1	2019-09-09	Composite	Cobalt	1.6	mg/kg dw	SRC	RG MIUCO INV-1 2019-09-09
INV	RG MIUCO	668134	5486767	2019	2	2019-09-09	Composite	Cobalt	2.3	mg/kg dw	SRC	RG MIUCO INV-2 2019-09-09
INV	RG MIUCO	668134	5486767	2019	3	2019-09-09	Composite	Cobalt	3.6	mg/kg dw	SRC	RG MIUCO INV-3 2019-09-09
INV	RG MIDCO	667711	5487625	2019	1	2019-09-07	Composite	Cobalt	26	mg/kg dw	SRC	RG MIDCO INV-1 2019-09-07
INV	RG MIDCO	667711	5487625	2019	2	2019-09-07	Composite	Cobalt	27	mg/kg dw	SRC	RG MIDCO INV-2 2019-09-07
INV	RG MIDCO	667711	5487625	2019	3	2019-09-09	Composite	Cobalt	27	mg/kg dw	SRC	RG MIDCO INV-3 2019-09-09
INV	RG MIDCO	667711	5487625	2019	4	2019-09-09	Composite	Cobalt	18	mg/kg dw	SRC	RG MIDCO INV-4 2019-09-09
INV	RG_MIDCO	667711	5487625	2019	5	2019-09-09	Composite	Cobalt	22	mg/kg dw	SRC	RG MIDCO INV-5 2019-09-09
					1						SRC	
INV	RG_LE1	659632	5494112	2019	·	2019-09-05	Composite	Cobalt	1.4	mg/kg dw		RG_LE1_INV-1_2019-09-05
INV	RG_LE1	659632	5494112	2019	2	2019-09-05	Composite	Cobalt	1.6	mg/kg dw	SRC	RG_LE1_INV-2_2019-09-05
INV	RG_LE1	659632	5494112	2019	3	2019-09-05	Composite	Cobalt	1.6	mg/kg dw	SRC	RG_LE1_INV-3_2019-09-05
INV	RG_MI25	668186	5482838	2019	1	2019-09-04	Composite	Cobalt	3.1	mg/kg dw	SRC	RG_MI25_INV-1_2019-09-04
INV	RG_MI25	668186	5482838	2019	2	2019-09-04	Composite	Cobalt	1.3	mg/kg dw	SRC	RG_MI25_INV-2_2019-09-04
INV	RG_MI25	668186	5482838	2019	3	2019-09-04	Composite	Cobalt	1.2	mg/kg dw	SRC	RG_MI25_INV-3_2019-09-04
INV	RG_MI5	659387	5496818	2019	1	2019-09-05	Composite	Cobalt	3.4	mg/kg dw	SRC	RG_MI5_INV-1_2019-09-05
INV	RG_MI5	659387	5496818	2019	2	2019-09-05	Composite	Cobalt	5.3	mg/kg dw	SRC	RG_MI5_INV-2_2019-09-05
INV	RG_MI5	659387	5496818	2019	3	2019-09-05	Composite	Cobalt	3.6	mg/kg dw	SRC	RG_MI5_INV-3_2019-09-05
INV	RG_AGCK	667555	5488644	2019	1	2019-09-06	Composite	Cobalt	0.24	mg/kg dw	SRC	RG_AGCK_INV-1_2019-09-06
INV	RG_AGCK	667555	5488644	2019	2	2019-09-06	Composite	Cobalt	0.18	mg/kg dw	SRC	RG_AGCK_INV-2_2019-09-06
INV	RG AGCK	667555	5488644	2019	3	2019-09-06	Composite	Cobalt	0.18	mg/kg dw	SRC	RG AGCK INV-3 2019-09-06
INV	RG CORCK	668556	5487388	2019	1	2019-09-07	Composite	Cobalt	31	mg/kg dw	SRC	RG CORCK INV-1 2019-09-07
INV	RG CORCK	668556	5487388	2019	2	2019-09-07	Composite	Cobalt	16	mg/kg dw	SRC	RG CORCK INV-2 2019-09-07
INV	RG CORCK	668556	5487388	2019	3	2019-09-07	Composite	Cobalt	14	mg/kg dw	SRC	RG CORCK INV-3 2019-09-07
INV	RG MIDAG	665258	5489417	2019	1	2019-09-10	Composite	Cobalt	24	mg/kg dw	SRC	RG MIDAG INV-1 2019-09-10
INV	RG MIDAG	665258	5489417	2019	2	2019-09-10	Composite	Cobalt	11	mg/kg dw	SRC	RG MIDAG INV-2 2019-09-10
INV	RG MIDAG	665258	5489417	2019	3	2019-09-10	Composite	Cobalt	18	mg/kg dw	SRC	RG MIDAG INV-3 2019-09-10
INV	RG MIULE	660502	5493059	2019	1	2019-09-06	Composite	Cobalt	4.3	mg/kg dw	SRC	RG MIULE INV-1 2019-09-06
INV	RG MIULE	660502	5493059	2019	2	2019-09-06	Composite	Cobalt	13	mg/kg dw	SRC	RG MIULE INV-2 2019-09-06
INV	RG_MIULE	660502	5493059	2019	3	2019-09-06	Composite	Cobalt	6.2	mg/kg dw	SRC	RG_MIULE_INV-2_2019-09-06
INV	RG_MIUCO	668134	5486767	2019	3	2019-09-09			13		SRC	RG_MIUCO INV-1 2019-09-09
	_			_	1		Composite	Copper		mg/kg dw		
INV	RG_MIUCO	668134	5486767	2019	2	2019-09-09	Composite	Copper	17	mg/kg dw	SRC	RG_MIUCO_INV-2_2019-09-09
INV	RG_MIUCO	668134	5486767	2019	3	2019-09-09	Composite	Copper	24	mg/kg dw	SRC	RG_MIUCO_INV-3_2019-09-09
INV	RG_MIDCO	667711	5487625	2019	1	2019-09-07	Composite	Copper	13	mg/kg dw	SRC	RG_MIDCO_INV-1_2019-09-07
INV	RG_MIDCO	667711	5487625	2019	2	2019-09-07	Composite	Copper	10	mg/kg dw	SRC	RG_MIDCO_INV-2_2019-09-07
INV	RG_MIDCO	667711	5487625	2019	3	2019-09-09	Composite	Copper	12	mg/kg dw	SRC	RG_MIDCO_INV-3_2019-09-09
INV	RG_MIDCO	667711	5487625	2019	4	2019-09-09	Composite	Copper	13	mg/kg dw	SRC	RG_MIDCO_INV-4_2019-09-09
INV	RG_MIDCO	667711	5487625	2019	5	2019-09-09	Composite	Copper	12	mg/kg dw	SRC	RG_MIDCO_INV-5_2019-09-09
INV	RG LE1	659632	5494112	2019	1	2019-09-05	Composite	Copper	16	mg/kg dw	SRC	RG LE1 INV-1 2019-09-05

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Туре	Station	Locatio	n (UTMs) ^(a)	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit		Laboratory Information
Type	Station	Easting	Northing	i eai	Replicate	Date	Species/Composite	Analyte	Result	Offic	Lab	Sample ID
INV	RG_LE1	659632	5494112	2019	2	2019-09-05	Composite	Copper	20	mg/kg dw	SRC	RG_LE1_INV-2_2019-09-05
INV	RG_LE1	659632	5494112	2019	3	2019-09-05	Composite	Copper	15	mg/kg dw	SRC	RG_LE1_INV-3_2019-09-05
INV	RG_MI25	668186	5482838	2019	1	2019-09-04	Composite	Copper	20	mg/kg dw	SRC	RG_MI25_INV-1_2019-09-04
INV	RG MI25	668186	5482838	2019	2	2019-09-04	Composite	Copper	21	mg/kg dw	SRC	RG_MI25_INV-2_2019-09-04
INV	RG MI25	668186	5482838	2019	3	2019-09-04	Composite	Copper	27	mg/kg dw	SRC	RG MI25 INV-3 2019-09-04
INV	RG MI5	659387	5496818	2019	1	2019-09-05	Composite	Copper	10	mg/kg dw	SRC	RG MI5 INV-1 2019-09-05
INV	RG MI5	659387	5496818	2019	2	2019-09-05	Composite	Copper	11	mg/kg dw	SRC	RG MI5 INV-2 2019-09-05
INV	RG MI5	659387	5496818	2019	3	2019-09-05	Composite	Copper	10	mg/kg dw	SRC	RG MI5 INV-3 2019-09-05
INV	RG AGCK	667555	5488644	2019	1	2019-09-06	Composite	Copper	7.2	mg/kg dw	SRC	RG AGCK INV-1 2019-09-06
INV	RG AGCK	667555	5488644	2019	2	2019-09-06	Composite	Copper	6.6	mg/kg dw	SRC	RG AGCK INV-2 2019-09-06
INV	RG_AGCK	667555	5488644	2019	3	2019-09-06	Composite	Copper	6.5	mg/kg dw	SRC	RG_AGCK_INV-3_2019-09-06
INV	RG CORCK	668556	5487388	2019	1	2019-09-07	Composite	Copper	8.2	mg/kg dw	SRC	RG CORCK INV-1 2019-09-07
INV	RG_CORCK	668556	5487388	2019	2	2019-09-07	Composite	Copper	10	mg/kg dw	SRC	RG_CORCK_INV-1_2019-09-07
INV	RG CORCK	668556	5487388	2019	3	2019-09-07	Composite		9.6		SRC	RG CORCK INV-3 2019-09-07
INV	RG_CORCK	665258	5489417		1	2019-09-07		Copper		mg/kg dw	SRC	RG MIDAG INV-1 2019-09-10
	_			2019	•		Composite	Copper	11	mg/kg dw		
INV	RG_MIDAG	665258	5489417	2019	2	2019-09-10	Composite	Copper	11	mg/kg dw	SRC	RG_MIDAG_INV-2_2019-09-10
INV	RG_MIDAG	665258	5489417	2019	3	2019-09-10	Composite	Copper	11	mg/kg dw	SRC	RG_MIDAG_INV-3_2019-09-10
INV	RG_MIULE	660502	5493059	2019	1	2019-09-06	Composite	Copper	14	mg/kg dw	SRC	RG_MIULE_INV-1_2019-09-06
INV	RG_MIULE	660502	5493059	2019	2	2019-09-06	Composite	Copper	7.2	mg/kg dw	SRC	RG_MIULE_INV-2_2019-09-06
INV	RG_MIULE	660502	5493059	2019	3	2019-09-06	Composite	Copper	12	mg/kg dw	SRC	RG_MIULE_INV-3_2019-09-06
INV	RG_MIUCO	668134	5486767	2019	1	2019-09-09	Composite	Iron	1,800	mg/kg dw	SRC	RG_MIUCO_INV-1_2019-09-09
INV	RG_MIUCO	668134	5486767	2019	2	2019-09-09	Composite	Iron	1,400	mg/kg dw	SRC	RG_MIUCO_INV-2_2019-09-09
INV	RG_MIUCO	668134	5486767	2019	3	2019-09-09	Composite	Iron	2,900	mg/kg dw	SRC	RG_MIUCO_INV-3_2019-09-09
INV	RG_MIDCO	667711	5487625	2019	1	2019-09-07	Composite	Iron	1,700	mg/kg dw	SRC	RG_MIDCO_INV-1_2019-09-07
INV	RG MIDCO	667711	5487625	2019	2	2019-09-07	Composite	Iron	990	mg/kg dw	SRC	RG_MIDCO_INV-2_2019-09-07
INV	RG MIDCO	667711	5487625	2019	3	2019-09-09	Composite	Iron	840	mg/kg dw	SRC	RG MIDCO INV-3 2019-09-09
INV	RG MIDCO	667711	5487625	2019	4	2019-09-09	Composite	Iron	380	mg/kg dw	SRC	RG MIDCO INV-4 2019-09-09
INV	RG_MIDCO	667711	5487625	2019	5	2019-09-09	Composite	Iron	1,200	mg/kg dw	SRC	RG MIDCO INV-5 2019-09-09
INV	RG LE1	659632	5494112	2019	1	2019-09-05	Composite	Iron	2,100	mg/kg dw	SRC	RG_LE1_INV-1_2019-09-05
INV	RG LE1	659632	5494112	2019	2	2019-09-05	Composite	Iron	1,800	mg/kg dw	SRC	RG_LE1_INV-2_2019-09-05
INV	RG LE1	659632	5494112	2019	3	2019-09-05	Composite	Iron	1,100	mg/kg dw	SRC	RG LE1 INV-3 2019-09-05
INV	RG MI25	668186	5482838	2019	1	2019-09-04	Composite	Iron	2,200	mg/kg dw	SRC	RG MI25 INV-1 2019-09-04
INV	RG MI25	668186	5482838	2019	2	2019-09-04	Composite	Iron	1,300	mg/kg dw	SRC	RG MI25 INV-2 2019-09-04
INV	RG_MI25	668186	5482838	2019	3	2019-09-04			1,500		SRC	RG MI25 INV-3 2019-09-04
	_				3		Composite	Iron		mg/kg dw		
INV	RG_MI5	659387	5496818	2019	1	2019-09-05	Composite	Iron	2,800	mg/kg dw	SRC	RG_MI5_INV-1_2019-09-05
INV	RG_MI5	659387	5496818	2019	2	2019-09-05	Composite	Iron	1,400	mg/kg dw	SRC	RG_MI5_INV-2_2019-09-05
INV	RG_MI5	659387	5496818	2019	3	2019-09-05	Composite	lron .	2,000	mg/kg dw	SRC	RG_MI5_INV-3_2019-09-05
INV	RG_AGCK	667555	5488644	2019	1	2019-09-06	Composite	Iron	260	mg/kg dw	SRC	RG_AGCK_INV-1_2019-09-06
INV	RG_AGCK	667555	5488644	2019	2	2019-09-06	Composite	Iron	200	mg/kg dw	SRC	RG_AGCK_INV-2_2019-09-06
INV	RG_AGCK	667555	5488644	2019	3	2019-09-06	Composite	Iron	240	mg/kg dw	SRC	RG_AGCK_INV-3_2019-09-06
INV	RG_CORCK	668556	5487388	2019	1	2019-09-07	Composite	Iron	160	mg/kg dw	SRC	RG_CORCK_INV-1_2019-09-07
INV	RG_CORCK	668556	5487388	2019	2	2019-09-07	Composite	Iron	100	mg/kg dw	SRC	RG_CORCK_INV-2_2019-09-07
INV	RG_CORCK	668556	5487388	2019	3	2019-09-07	Composite	Iron	89	mg/kg dw	SRC	RG_CORCK_INV-3_2019-09-07
INV	RG_MIDAG	665258	5489417	2019	1	2019-09-10	Composite	Iron	1,700	mg/kg dw	SRC	RG_MIDAG_INV-1_2019-09-10
INV	RG_MIDAG	665258	5489417	2019	2	2019-09-10	Composite	Iron	2,700	mg/kg dw	SRC	RG_MIDAG_INV-2_2019-09-10
INV	RG_MIDAG	665258	5489417	2019	3	2019-09-10	Composite	Iron	1,900	mg/kg dw	SRC	RG_MIDAG_INV-3_2019-09-10
INV	RG_MIULE	660502	5493059	2019	1	2019-09-06	Composite	Iron	990	mg/kg dw	SRC	RG_MIULE_INV-1_2019-09-06
INV	RG_MIULE	660502	5493059	2019	2	2019-09-06	Composite	Iron	960	mg/kg dw	SRC	RG_MIULE_INV-2_2019-09-06
INV	RG MIULE	660502	5493059	2019	3	2019-09-06	Composite	Iron	2,300	mg/kg dw	SRC	RG MIULE INV-3 2019-09-06
INV	RG MIUCO	668134	5486767	2019	1	2019-09-09	Composite	Lead	0.88	mg/kg dw	SRC	RG MIUCO INV-1 2019-09-09
INV	RG MIUCO	668134	5486767	2019	2	2019-09-09	Composite	Lead	0.59	mg/kg dw	SRC	RG MIUCO INV-2 2019-09-09
INV	RG MIUCO	668134	5486767	2019	3	2019-09-09	Composite	Lead	1.2	mg/kg dw	SRC	RG MIUCO INV-3 2019-09-09
INV	RG MIDCO	667711	5487625	2019	1	2019-09-07	Composite	Lead	0.81	mg/kg dw	SRC	RG MIDCO INV-1 2019-09-07
INV	RG MIDCO	667711	5487625	2019	2	2019-09-07	Composite	Lead	0.61	mg/kg dw	SRC	RG MIDCO INV-1 2019-09-07
	_						•					
	DC MIDCO	667711	5/19/205	')(1111)								
INV INV	RG_MIDCO RG MIDCO	667711 667711	5487625 5487625	2019	3 4	2019-09-09 2019-09-09	Composite Composite	Lead Lead	0.43 0.22	mg/kg dw mg/kg dw	SRC SRC	RG_MIDCO_INV-3_2019-09-09 RG_MIDCO_INV-4_2019-09-09

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Туре	Station		n (UTMs) ^(a)	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit		Laboratory Information
		Easting	Northing			22/2 22 27					Lab	Sample ID
INV	RG_LE1	659632	5494112	2019	1	2019-09-05	Composite	Lead	1.3	mg/kg dw	SRC	RG_LE1_INV-1_2019-09-05
INV	RG_LE1	659632	5494112	2019	2	2019-09-05	Composite	Lead	0.96	mg/kg dw	SRC	RG_LE1_INV-2_2019-09-05
INV	RG_LE1	659632	5494112	2019	3	2019-09-05	Composite	Lead	0.63	mg/kg dw	SRC	RG_LE1_INV-3_2019-09-05
INV	RG_MI25	668186	5482838	2019	1	2019-09-04	Composite	Lead	1.6	mg/kg dw	SRC	RG_MI25_INV-1_2019-09-04
INV	RG_MI25	668186	5482838	2019	2	2019-09-04	Composite	Lead	1.0	mg/kg dw	SRC	RG_MI25_INV-2_2019-09-04
INV	RG_MI25	668186	5482838	2019	3	2019-09-04	Composite	Lead	1.2	mg/kg dw	SRC	RG_MI25_INV-3_2019-09-04
INV	RG_MI5	659387	5496818	2019	1	2019-09-05	Composite	Lead	1.0	mg/kg dw	SRC	RG_MI5_INV-1_2019-09-05
INV	RG_MI5	659387	5496818	2019	2	2019-09-05	Composite	Lead	0.59	mg/kg dw	SRC	RG_MI5_INV-2_2019-09-05
INV	RG_MI5	659387	5496818	2019	3	2019-09-05	Composite	Lead	0.97	mg/kg dw	SRC	RG_MI5_INV-3_2019-09-05
INV	RG_AGCK	667555	5488644	2019	1	2019-09-06	Composite	Lead	0.12	mg/kg dw	SRC	RG_AGCK_INV-1_2019-09-06
INV	RG_AGCK	667555	5488644	2019	2	2019-09-06	Composite	Lead	0.05	mg/kg dw	SRC	RG_AGCK_INV-2_2019-09-06
INV	RG_AGCK	667555	5488644	2019	3	2019-09-06	Composite	Lead	0.1	mg/kg dw	SRC	RG_AGCK_INV-3_2019-09-06
INV	RG_CORCK	668556	5487388	2019	1	2019-09-07	Composite	Lead	0.26	mg/kg dw	SRC	RG_CORCK_INV-1_2019-09-07
INV	RG_CORCK	668556	5487388	2019	2	2019-09-07	Composite	Lead	0.07	mg/kg dw	SRC	RG_CORCK_INV-2_2019-09-07
INV	RG_CORCK	668556	5487388	2019	3	2019-09-07	Composite	Lead	0.06	mg/kg dw	SRC	RG_CORCK_INV-3_2019-09-07
INV	RG_MIDAG	665258	5489417	2019	1	2019-09-10	Composite	Lead	0.89	mg/kg dw	SRC	RG_MIDAG_INV-1_2019-09-10
INV	RG_MIDAG	665258	5489417	2019	2	2019-09-10	Composite	Lead	1.4	mg/kg dw	SRC	RG_MIDAG_INV-2_2019-09-10
INV	RG_MIDAG	665258	5489417	2019	3	2019-09-10	Composite	Lead	1.1	mg/kg dw	SRC	RG_MIDAG_INV-3_2019-09-10
INV	RG_MIULE	660502	5493059	2019	1	2019-09-06	Composite	Lead	0.41	mg/kg dw	SRC	RG_MIULE_INV-1_2019-09-06
INV	RG_MIULE	660502	5493059	2019	2	2019-09-06	Composite	Lead	0.48	mg/kg dw	SRC	RG_MIULE_INV-2_2019-09-06
INV	RG_MIULE	660502	5493059	2019	3	2019-09-06	Composite	Lead	1.1	mg/kg dw	SRC	RG_MIULE_INV-3_2019-09-06
INV	RG_MIUCO	668134	5486767	2019	1	2019-09-09	Composite	Manganese	227	mg/kg dw	SRC	RG_MIUCO_INV-1_2019-09-09
INV	RG_MIUCO	668134	5486767	2019	2	2019-09-09	Composite	Manganese	140	mg/kg dw	SRC	RG_MIUCO_INV-2_2019-09-09
INV	RG_MIUCO	668134	5486767	2019	3	2019-09-09	Composite	Manganese	240	mg/kg dw	SRC	RG_MIUCO_INV-3_2019-09-09
INV	RG_MIDCO	667711	5487625	2019	1	2019-09-07	Composite	Manganese	130	mg/kg dw	SRC	RG_MIDCO_INV-1_2019-09-07
INV	RG_MIDCO	667711	5487625	2019	2	2019-09-07	Composite	Manganese	107	mg/kg dw	SRC	RG_MIDCO_INV-2_2019-09-07
INV	RG_MIDCO	667711	5487625	2019	3	2019-09-09	Composite	Manganese	150	mg/kg dw	SRC	RG_MIDCO_INV-3_2019-09-09
INV	RG_MIDCO	667711	5487625	2019	4	2019-09-09	Composite	Manganese	91	mg/kg dw	SRC	RG_MIDCO_INV-4_2019-09-09
INV	RG_MIDCO	667711	5487625	2019	5	2019-09-09	Composite	Manganese	207	mg/kg dw	SRC	RG_MIDCO_INV-5_2019-09-09
INV	RG_LE1	659632	5494112	2019	1	2019-09-05	Composite	Manganese	64	mg/kg dw	SRC	RG_LE1_INV-1_2019-09-05
INV	RG LE1	659632	5494112	2019	2	2019-09-05	Composite	Manganese	64	mg/kg dw	SRC	RG LE1 INV-2 2019-09-05
INV	RG LE1	659632	5494112	2019	3	2019-09-05	Composite	Manganese	73	mg/kg dw	SRC	RG LE1 INV-3 2019-09-05
INV	RG MI25	668186	5482838	2019	1	2019-09-04	Composite	Manganese	64	mg/kg dw	SRC	RG MI25 INV-1 2019-09-04
INV	RG MI25	668186	5482838	2019	2	2019-09-04	Composite	Manganese	51	mg/kg dw	SRC	RG MI25 INV-2 2019-09-04
INV	RG MI25	668186	5482838	2019	3	2019-09-04	Composite	Manganese	50	mg/kg dw	SRC	RG MI25 INV-3 2019-09-04
INV	RG MI5	659387	5496818	2019	1	2019-09-05	Composite	Manganese	65	mg/kg dw	SRC	RG MI5 INV-1 2019-09-05
INV	RG MI5	659387	5496818	2019	2	2019-09-05	Composite	Manganese	48	mg/kg dw	SRC	RG MI5 INV-2 2019-09-05
INV	RG MI5	659387	5496818	2019	3	2019-09-05	Composite	Manganese	60	mg/kg dw	SRC	RG MI5 INV-3 2019-09-05
INV	RG AGCK	667555	5488644	2019	1	2019-09-06	Composite	Manganese	8.4	mg/kg dw	SRC	RG AGCK INV-1 2019-09-06
INV	RG AGCK	667555	5488644	2019	2	2019-09-06	Composite	Manganese	7.3	mg/kg dw	SRC	RG AGCK INV-2 2019-09-06
INV	RG AGCK	667555	5488644	2019	3	2019-09-06	Composite	Manganese	15	mg/kg dw	SRC	RG AGCK INV-3 2019-09-06
INV	RG CORCK	668556	5487388	2019	1	2019-09-07	Composite	Manganese	204	mg/kg dw	SRC	RG CORCK INV-1 2019-09-07
INV	RG CORCK	668556	5487388	2019	2	2019-09-07	Composite	Manganese	99	mg/kg dw	SRC	RG CORCK INV-2 2019-09-07
INV	RG CORCK	668556	5487388	2019	3	2019-09-07	Composite	Manganese	88	mg/kg dw	SRC	RG CORCK INV-3 2019-09-07
INV	RG MIDAG	665258	5489417	2019	1	2019-09-10	Composite	Manganese	120	mg/kg dw	SRC	RG MIDAG INV-1 2019-09-10
INV	RG MIDAG	665258	5489417	2019	2	2019-09-10	Composite	Manganese	138	mg/kg dw	SRC	RG MIDAG INV-2 2019-09-10
INV	RG MIDAG	665258	5489417	2019	3	2019-09-10	Composite	Manganese	190	mg/kg dw	SRC	RG MIDAG INV-3 2019-09-10
INV	RG MIULE	660502	5493059	2019	1	2019-09-06	Composite	Manganese	59	mg/kg dw	SRC	RG MIULE INV-1 2019-09-06
INV	RG MIULE	660502	5493059	2019	2	2019-09-06	Composite	Manganese	109	mg/kg dw	SRC	RG MIULE INV-2 2019-09-06
INV	RG MIULE	660502	5493059	2019	3	2019-09-06	Composite	Manganese	72	mg/kg dw	SRC	RG MIULE INV-3 2019-09-06
INV	RG MIUCO	668134	5486767	2019	1	2019-09-09	Composite	Mercury	0.024	mg/kg dw	SRC	RG MIUCO INV-1 2019-09-09
INV	RG MIUCO	668134	5486767	2019	2	2019-09-09	Composite	Mercury	0.024	mg/kg dw	SRC	RG MIUCO INV-2 2019-09-09
INV	RG MIUCO	668134	5486767	2019	3	2019-09-09	Composite	Mercury	0.02	mg/kg dw	SRC	RG MIUCO INV-3 2019-09-09
INV	RG MIDCO	667711	5487625	2019	1	2019-09-07	Composite	Mercury	0.03	mg/kg dw	SRC	RG MIDCO INV-1 2019-09-07
INV	RG MIDCO	667711	5487625	2019	2	2019-09-07	Composite	Mercury	0.014	mg/kg dw	SRC	RG MIDCO INV-2 2019-09-07
INV	RG MIDCO	667711	5487625	2019	3	2019-09-09	Composite	Mercury	0.014	mg/kg dw	SRC	RG MIDCO INV-3 2019-09-09
INV	_				4						SRC	
IINV	RG_MIDCO	667711	5487625	2019	4	2019-09-09	Composite	Mercury	0.015	mg/kg dw	SKC	RG_MIDCO_INV-4_2019-09-09

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Туре	Station	Location	n (UTMs) ^(a)	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit		Laboratory Information
туре	Station	Easting	Northing	I ear	Replicate	Date	Species/Composite	Analyte	Result	Offic	Lab	Sample ID
INV	RG_MIDCO	667711	5487625	2019	5	2019-09-09	Composite	Mercury	0.016	mg/kg dw	SRC	RG_MIDCO_INV-5_2019-09-09
INV	RG_LE1	659632	5494112	2019	1	2019-09-05	Composite	Mercury	0.041	mg/kg dw	SRC	RG_LE1_INV-1_2019-09-05
INV	RG_LE1	659632	5494112	2019	2	2019-09-05	Composite	Mercury	0.04	mg/kg dw	SRC	RG_LE1_INV-2_2019-09-05
INV	RG_LE1	659632	5494112	2019	3	2019-09-05	Composite	Mercury	0.044	mg/kg dw	SRC	RG_LE1_INV-3_2019-09-05
INV	RG_MI25	668186	5482838	2019	1	2019-09-04	Composite	Mercury	0.03	mg/kg dw	SRC	RG_MI25_INV-1_2019-09-04
INV	RG MI25	668186	5482838	2019	2	2019-09-04	Composite	Mercury	0.04	mg/kg dw	SRC	RG MI25 INV-2 2019-09-04
INV	RG MI25	668186	5482838	2019	3	2019-09-04	Composite	Mercury	0.035	mg/kg dw	SRC	RG MI25 INV-3 2019-09-04
INV	RG MI5	659387	5496818	2019	1	2019-09-05	Composite	Mercury	0.024	mg/kg dw	SRC	RG MI5 INV-1 2019-09-05
INV	RG MI5	659387	5496818	2019	2	2019-09-05	Composite	Mercury	0.02	mg/kg dw	SRC	RG MI5 INV-2 2019-09-05
INV	RG MI5	659387	5496818	2019	3	2019-09-05	Composite	Mercury	0.023	mg/kg dw	SRC	RG MI5 INV-3 2019-09-05
INV	RG_AGCK	667555	5488644	2019	1	2019-09-06	Composite	Mercury	0.014	mg/kg dw	SRC	RG_AGCK_INV-1_2019-09-06
INV	RG AGCK	667555	5488644	2019	2	2019-09-06	Composite	Mercury	0.012	mg/kg dw	SRC	RG AGCK INV-2 2019-09-06
INV	RG_AGCK	667555	5488644	2019	3	2019-09-06	Composite	Mercury	0.017	mg/kg dw	SRC	RG_AGCK_INV-3_2019-09-06
INV	RG CORCK	668556	5487388	2019	1	2019-09-07	Composite	Mercury	0.01	mg/kg dw	SRC	RG CORCK INV-1 2019-09-07
INV	RG_CORCK	668556	5487388	2019	2	2019-09-07	Composite	Mercury	0.008	mg/kg dw	SRC	RG_CORCK_INV-2_2019-09-07
INV	RG CORCK	668556	5487388	2019	3	2019-09-07	Composite	Mercury	<0.01	mg/kg dw	SRC	RG CORCK INV-3 2019-09-07
INV	RG MIDAG	665258	5489417	2019	1	2019-09-10	Composite	Mercury	0.02	mg/kg dw	SRC	RG_MIDAG_INV-1_2019-09-10
INV	RG MIDAG	665258	5489417	2019	2	2019-09-10	Composite	Mercury	0.026	mg/kg dw	SRC	RG MIDAG INV-2 2019-09-10
INV	RG MIDAG	665258	5489417	2019	3	2019-09-10	<u>'</u>		0.020		SRC	RG MIDAG INV-2_2019-09-10
INV				_	1		Composite	Mercury		mg/kg dw		
	RG_MIULE	660502	5493059	2019	· · · · · · · · · · · · · · · · · · ·	2019-09-06	Composite	Mercury	0.015	mg/kg dw	SRC	RG_MIULE_INV-1_2019-09-06
INV	RG_MIULE	660502	5493059	2019	2	2019-09-06	Composite	Mercury	0.018	mg/kg dw	SRC	RG_MIULE_INV-2_2019-09-06
INV	RG_MIULE	660502	5493059	2019	3	2019-09-06	Composite	Mercury	0.019	mg/kg dw	SRC	RG_MIULE_INV-3_2019-09-06
INV	RG_MIUCO	668134	5486767	2019	1	2019-09-09	Composite	Molybdenum	0.66	mg/kg dw	SRC	RG_MIUCO_INV-1_2019-09-09
INV	RG_MIUCO	668134	5486767	2019	2	2019-09-09	Composite	Molybdenum	0.5	mg/kg dw	SRC	RG_MIUCO_INV-2_2019-09-09
INV	RG_MIUCO	668134	5486767	2019	3	2019-09-09	Composite	Molybdenum	0.58	mg/kg dw	SRC	RG_MIUCO_INV-3_2019-09-09
INV	RG_MIDCO	667711	5487625	2019	1	2019-09-07	Composite	Molybdenum	0.26	mg/kg dw	SRC	RG_MIDCO_INV-1_2019-09-07
INV	RG_MIDCO	667711	5487625	2019	2	2019-09-07	Composite	Molybdenum	0.26	mg/kg dw	SRC	RG_MIDCO_INV-2_2019-09-07
INV	RG_MIDCO	667711	5487625	2019	3	2019-09-09	Composite	Molybdenum	0.31	mg/kg dw	SRC	RG_MIDCO_INV-3_2019-09-09
INV	RG_MIDCO	667711	5487625	2019	4	2019-09-09	Composite	Molybdenum	0.22	mg/kg dw	SRC	RG_MIDCO_INV-4_2019-09-09
INV	RG_MIDCO	667711	5487625	2019	5	2019-09-09	Composite	Molybdenum	0.45	mg/kg dw	SRC	RG_MIDCO_INV-5_2019-09-09
INV	RG_LE1	659632	5494112	2019	1	2019-09-05	Composite	Molybdenum	0.72	mg/kg dw	SRC	RG_LE1_INV-1_2019-09-05
INV	RG_LE1	659632	5494112	2019	2	2019-09-05	Composite	Molybdenum	0.55	mg/kg dw	SRC	RG_LE1_INV-2_2019-09-05
INV	RG_LE1	659632	5494112	2019	3	2019-09-05	Composite	Molybdenum	0.6	mg/kg dw	SRC	RG_LE1_INV-3_2019-09-05
INV	RG_MI25	668186	5482838	2019	1	2019-09-04	Composite	Molybdenum	0.8	mg/kg dw	SRC	RG_MI25_INV-1_2019-09-04
INV	RG_MI25	668186	5482838	2019	2	2019-09-04	Composite	Molybdenum	0.65	mg/kg dw	SRC	RG_MI25_INV-2_2019-09-04
INV	RG_MI25	668186	5482838	2019	3	2019-09-04	Composite	Molybdenum	0.54	mg/kg dw	SRC	RG_MI25_INV-3_2019-09-04
INV	RG_MI5	659387	5496818	2019	1	2019-09-05	Composite	Molybdenum	0.56	mg/kg dw	SRC	RG_MI5_INV-1_2019-09-05
INV	RG_MI5	659387	5496818	2019	2	2019-09-05	Composite	Molybdenum	0.45	mg/kg dw	SRC	RG_MI5_INV-2_2019-09-05
INV	RG_MI5	659387	5496818	2019	3	2019-09-05	Composite	Molybdenum	0.44	mg/kg dw	SRC	RG_MI5_INV-3_2019-09-05
INV	RG_AGCK	667555	5488644	2019	1	2019-09-06	Composite	Molybdenum	0.28	mg/kg dw	SRC	RG_AGCK_INV-1_2019-09-06
INV	RG_AGCK	667555	5488644	2019	2	2019-09-06	Composite	Molybdenum	0.27	mg/kg dw	SRC	RG_AGCK_INV-2_2019-09-06
INV	RG_AGCK	667555	5488644	2019	3	2019-09-06	Composite	Molybdenum	0.23	mg/kg dw	SRC	RG_AGCK_INV-3_2019-09-06
INV	RG CORCK	668556	5487388	2019	1	2019-09-07	Composite	Molybdenum	0.16	mg/kg dw	SRC	RG CORCK INV-1 2019-09-07
INV	RG CORCK	668556	5487388	2019	2	2019-09-07	Composite	Molybdenum	0.14	mg/kg dw	SRC	RG CORCK INV-2 2019-09-07
INV	RG CORCK	668556	5487388	2019	3	2019-09-07	Composite	Molybdenum	0.14	mg/kg dw	SRC	RG CORCK INV-3 2019-09-07
INV	RG MIDAG	665258	5489417	2019	1	2019-09-10	Composite	Molybdenum	0.48	mg/kg dw	SRC	RG MIDAG INV-1 2019-09-10
INV	RG MIDAG	665258	5489417	2019	2	2019-09-10	Composite	Molybdenum	0.5	mg/kg dw	SRC	RG MIDAG INV-2 2019-09-10
INV	RG MIDAG	665258	5489417	2019	3	2019-09-10	Composite	Molybdenum	0.71	mg/kg dw	SRC	RG MIDAG INV-3 2019-09-10
INV	RG MIULE	660502	5493059	2019	1	2019-09-06	Composite	Molybdenum	0.28	mg/kg dw	SRC	RG MIULE INV-1 2019-09-06
INV	RG MIULE	660502	5493059	2019	2	2019-09-06	Composite	Molybdenum	0.24	mg/kg dw	SRC	RG MIULE INV-2 2019-09-06
INV	RG MIULE	660502	5493059	2019	3	2019-09-06	Composite	Molybdenum	0.44	mg/kg dw	SRC	RG MIULE INV-3 2019-09-06
INV	RG MIUCO	668134	5486767	2019	1	2019-09-09	Composite	Nickel	3.7	mg/kg dw	SRC	RG MIUCO INV-1 2019-09-09
INV	RG_MIUCO	668134	5486767	2019	2	2019-09-09	Composite	Nickel	2.6		SRC	RG MIUCO INV-2 2019-09-09
IINV	RG_MIUCO	668134	5486767	2019	3	2019-09-09	<u>'</u>	Nickel	3.6	mg/kg dw	SRC	
		UDO 1.54	1 3400707	1 2019	J	∠∪ i Ⴘ-UႸ-UႸ	Composite	NICKEI	ა.0	mg/kg dw	SKU	RG MIUCO INV-3 2019-09-09
INV	_				4	2010 00 07	Composito	Miakal	40	ma/les des		DC MIDCO INIV 4 2040 00 07
	RG_MIDCO RG MIDCO	667711 667711	5487625 5487625	2019	1 2	2019-09-07 2019-09-07	Composite Composite	Nickel Nickel	13 10	mg/kg dw mg/kg dw	SRC SRC	RG_MIDCO_INV-1_2019-09-07 RG_MIDCO_INV-2_2019-09-07

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Туре	Station	Locatio	n (UTMs) ^(a)	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit		Laboratory Information
Type	Station	Easting	Northing	i eai	Replicate	Date	Species/Composite	Analyte	Result	Offic	Lab	Sample ID
INV	RG_MIDCO	667711	5487625	2019	4	2019-09-09	Composite	Nickel	12	mg/kg dw	SRC	RG_MIDCO_INV-4_2019-09-09
INV	RG_MIDCO	667711	5487625	2019	5	2019-09-09	Composite	Nickel	17	mg/kg dw	SRC	RG_MIDCO_INV-5_2019-09-09
INV	RG_LE1	659632	5494112	2019	1	2019-09-05	Composite	Nickel	5.2	mg/kg dw	SRC	RG_LE1_INV-1_2019-09-05
INV	RG_LE1	659632	5494112	2019	2	2019-09-05	Composite	Nickel	3.7	mg/kg dw	SRC	RG_LE1_INV-2_2019-09-05
INV	RG_LE1	659632	5494112	2019	3	2019-09-05	Composite	Nickel	2.8	mg/kg dw	SRC	RG_LE1_INV-3_2019-09-05
INV	RG_MI25	668186	5482838	2019	1	2019-09-04	Composite	Nickel	3.9	mg/kg dw	SRC	RG_MI25_INV-1_2019-09-04
INV	RG_MI25	668186	5482838	2019	2	2019-09-04	Composite	Nickel	2.7	mg/kg dw	SRC	RG_MI25_INV-2_2019-09-04
INV	RG_MI25	668186	5482838	2019	3	2019-09-04	Composite	Nickel	3.8	mg/kg dw	SRC	RG_MI25_INV-3_2019-09-04
INV	RG_MI5	659387	5496818	2019	1	2019-09-05	Composite	Nickel	8.0	mg/kg dw	SRC	RG_MI5_INV-1_2019-09-05
INV	RG_MI5	659387	5496818	2019	2	2019-09-05	Composite	Nickel	7.4	mg/kg dw	SRC	RG_MI5_INV-2_2019-09-05
INV	RG_MI5	659387	5496818	2019	3	2019-09-05	Composite	Nickel	6.9	mg/kg dw	SRC	RG_MI5_INV-3_2019-09-05
INV	RG_AGCK	667555	5488644	2019	1	2019-09-06	Composite	Nickel	3.7	mg/kg dw	SRC	RG_AGCK_INV-1_2019-09-06
INV	RG_AGCK	667555	5488644	2019	2	2019-09-06	Composite	Nickel	2.3	mg/kg dw	SRC	RG_AGCK_INV-2_2019-09-06
INV	RG AGCK	667555	5488644	2019	3	2019-09-06	Composite	Nickel	3.0	mg/kg dw	SRC	RG AGCK INV-3 2019-09-06
INV	RG_CORCK	668556	5487388	2019	1	2019-09-07	Composite	Nickel	26	mg/kg dw	SRC	RG_CORCK_INV-1_2019-09-07
INV	RG CORCK	668556	5487388	2019	2	2019-09-07	Composite	Nickel	10	mg/kg dw	SRC	RG CORCK INV-2 2019-09-07
INV	RG_CORCK	668556	5487388	2019	3	2019-09-07	Composite	Nickel	12	mg/kg dw	SRC	RG_CORCK_INV-3_2019-09-07
INV	RG MIDAG	665258	5489417	2019	1	2019-09-10	Composite	Nickel	11	mg/kg dw	SRC	RG MIDAG INV-1 2019-09-10
INV	RG MIDAG	665258	5489417	2019	2	2019-09-10	Composite	Nickel	15	mg/kg dw	SRC	RG MIDAG INV-2 2019-09-10
INV	RG MIDAG	665258	5489417	2019	3	2019-09-10	Composite	Nickel	33	mg/kg dw	SRC	RG MIDAG INV-3 2019-09-10
INV	RG MIULE	660502	5493059	2019	1	2019-09-06	Composite	Nickel	4.9	mg/kg dw	SRC	RG_MIULE_INV-1_2019-09-06
INV	RG MIULE	660502	5493059	2019	2	2019-09-06	Composite	Nickel	6.9	mg/kg dw	SRC	RG MIULE INV-2 2019-09-06
INV	RG MIULE	660502	5493059	2019	3	2019-09-06	Composite	Nickel	12	mg/kg dw	SRC	RG MIULE INV-3 2019-09-06
INV	RG MIUCO	668134	5486767	2019	1	2019-09-09	Composite	Selenium	5.0	mg/kg dw	SRC	RG MIUCO INV-1 2019-09-09
INV	RG MIUCO	668134	5486767	2019	2	2019-09-09	Composite	Selenium	5.9	mg/kg dw	SRC	RG_MIUCO_INV-2_2019-09-09
INV	RG_MIUCO	668134	5486767	2019	3	2019-09-09	Composite	Selenium	6.1	mg/kg dw	SRC	RG MIUCO INV-3 2019-09-09
INV	RG MIDCO	667711	5487625	2019	1	2019-09-07	Composite	Selenium	2.6	mg/kg dw	SRC	RG MIDCO INV-1 2019-09-07
INV	RG_MIDCO	667711	5487625	2019	2	2019-09-07	Composite	Selenium	3.4	mg/kg dw	SRC	RG MIDCO INV-2 2019-09-07
INV	RG_MIDCO	667711	5487625	2019	3	2019-09-09	Composite	Selenium	3.3	mg/kg dw	SRC	RG_MIDCO_INV-3_2019-09-09
INV	RG MIDCO	667711	5487625	2019	4	2019-09-09	Composite	Selenium	2.9	mg/kg dw	SRC	RG MIDCO INV-4 2019-09-09
INV	RG MIDCO	667711	5487625	2019	5	2019-09-09	Composite	Selenium	3.2	mg/kg dw	SRC	RG MIDCO INV-5 2019-09-09
INV	RG LE1	659632	5494112	2019	1	2019-09-05	Composite	Selenium	5.3	mg/kg dw	SRC	RG LE1 INV-1 2019-09-05
INV	RG_LE1	659632	5494112	2019	2	2019-09-05	Composite	Selenium	6.0	mg/kg dw	SRC	RG LE1 INV-2 2019-09-05
INV	RG_LE1	659632	5494112	2019	3	2019-09-05	Composite	Selenium	6.1	mg/kg dw	SRC	RG LE1 INV-3 2019-09-05
INV	RG MI25	668186	5482838	2019	1	2019-09-04	Composite	Selenium	5.6	mg/kg dw	SRC	RG MI25 INV-1 2019-09-04
INV	RG MI25	668186	5482838	2019	2	2019-09-04	Composite	Selenium	4.4	mg/kg dw	SRC	RG MI25 INV-2 2019-09-04
INV	RG_MI25	668186	5482838	2019	3	2019-09-04	Composite	Selenium	3.9	mg/kg dw	SRC	RG_MI25_INV-2_2019-09-04
INV	RG_MI5	659387	5496818	2019	3	2019-09-05		Selenium	5.7	0	SRC	
INV	RG_MI5	659387	5496818	2019	2	2019-09-05	Composite	Selenium	6.8	mg/kg dw	SRC	RG_MI5_INV-1_2019-09-05 RG_MI5_INV-2_2019-09-05
INV	RG_MI5	659387	5496818	2019	3	2019-09-05	Composite Composite	Selenium	5.8	mg/kg dw mg/kg dw	SRC	RG_MI5_INV-2_2019-09-05 RG_MI5_INV-3_2019-09-05
INV	RG_MIS	667555	5488644	2019	1	2019-09-05	·	Selenium			SRC	RG_MIS_INV-3_2019-09-05 RG_AGCK_INV-1_2019-09-06
INV	_	667555	5488644	2019	•	2019-09-06	Composite	Selenium	8.3	mg/kg dw	SRC	RG_AGCK_INV-1_2019-09-06 RG_AGCK_INV-2_2019-09-06
	RG_AGCK		5488644		2		Composite	Selenium	8.5	mg/kg dw	SRC	
INV	RG_AGCK	667555 668556	5488644	2019	3	2019-09-06	Composite		5.4	mg/kg dw	SRC	RG_AGCK_INV-3_2019-09-06 RG_CORCK_INV-1_2019-09-07
INV	RG_CORCK	668556		2019	1	2019-09-07	Composite	Selenium	2.4	mg/kg dw	SRC	
	RG_CORCK		5487388	2019	2	2019-09-07	Composite	Selenium	2.7	mg/kg dw		RG_CORCK_INV-2_2019-09-07
INV	RG_CORCK	668556	5487388	2019	3	2019-09-07	Composite	Selenium	2.7	mg/kg dw	SRC	RG_CORCK_INV-3_2019-09-07
INV	RG_MIDAG	665258	5489417	2019	1	2019-09-10	Composite	Selenium	8.3	mg/kg dw	SRC	RG_MIDAG_INV-1_2019-09-10
INV	RG_MIDAG	665258	5489417	2019	2	2019-09-10	Composite	Selenium	11	mg/kg dw	SRC	RG_MIDAG_INV-2_2019-09-10
INV	RG_MIDAG	665258	5489417	2019	3	2019-09-10	Composite	Selenium	8.5	mg/kg dw	SRC	RG_MIDAG_INV-3_2019-09-10
INV	RG_MIULE	660502	5493059	2019	1	2019-09-06	Composite	Selenium	5.2	mg/kg dw	SRC	RG_MIULE_INV-1_2019-09-06
INV	RG_MIULE	660502	5493059	2019	2	2019-09-06	Composite	Selenium	5.2	mg/kg dw	SRC	RG_MIULE_INV-2_2019-09-06
INV	RG_MIULE	660502	5493059	2019	3	2019-09-06	Composite	Selenium	5.6	mg/kg dw	SRC	RG_MIULE_INV-3_2019-09-06
INV	RG_MIUCO	668134	5486767	2019	1	2019-09-09	Composite	Silver	0.04	mg/kg dw	SRC	RG_MIUCO_INV-1_2019-09-09
INV	RG_MIUCO	668134	5486767	2019	2	2019-09-09	Composite	Silver	0.06	mg/kg dw	SRC	RG_MIUCO_INV-2_2019-09-09
INV	RG_MIUCO	668134	5486767	2019	3	2019-09-09	Composite	Silver	0.07	mg/kg dw	SRC	RG_MIUCO_INV-3_2019-09-09
INV	RG_MIDCO	667711	5487625	2019	1	2019-09-07	Composite	Silver	0.06	mg/kg dw	SRC	RG_MIDCO_INV-1_2019-09-07
INV	RG MIDCO	667711	5487625	2019	2	2019-09-07	Composite	Silver	0.05	mg/kg dw	SRC	RG MIDCO INV-2 2019-09-07

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Туре	Station	Location	n (UTMs) ^(a)	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit		Laboratory Information
туре	Station	Easting	Northing	i cai	Replicate	Date	opecies/composite	Allalyte	Result	Offic	Lab	Sample ID
INV	RG_MIDCO	667711	5487625	2019	3	2019-09-09	Composite	Silver	0.06	mg/kg dw	SRC	RG_MIDCO_INV-3_2019-09-09
INV	RG_MIDCO	667711	5487625	2019	4	2019-09-09	Composite	Silver	0.07	mg/kg dw	SRC	RG_MIDCO_INV-4_2019-09-09
INV	RG_MIDCO	667711	5487625	2019	5	2019-09-09	Composite	Silver	0.04	mg/kg dw	SRC	RG_MIDCO_INV-5_2019-09-09
INV	RG_LE1	659632	5494112	2019	1	2019-09-05	Composite	Silver	0.17	mg/kg dw	SRC	RG_LE1_INV-1_2019-09-05
INV	RG_LE1	659632	5494112	2019	2	2019-09-05	Composite	Silver	0.22	mg/kg dw	SRC	RG_LE1_INV-2_2019-09-05
INV	RG LE1	659632	5494112	2019	3	2019-09-05	Composite	Silver	0.14	mg/kg dw	SRC	RG LE1 INV-3 2019-09-05
INV	RG MI25	668186	5482838	2019	1	2019-09-04	Composite	Silver	0.06	mg/kg dw	SRC	RG MI25 INV-1 2019-09-04
INV	RG MI25	668186	5482838	2019	2	2019-09-04	Composite	Silver	0.07	mg/kg dw	SRC	RG_MI25_INV-2_2019-09-04
INV	RG MI25	668186	5482838	2019	3	2019-09-04	Composite	Silver	0.11	mg/kg dw	SRC	RG MI25 INV-3 2019-09-04
INV	RG MI5	659387	5496818	2019	1	2019-09-05	Composite	Silver	0.11	mg/kg dw	SRC	RG MI5 INV-1 2019-09-05
INV	RG MI5	659387	5496818	2019	2	2019-09-05	Composite	Silver	0.09	mg/kg dw	SRC	RG_MI5_INV-2_2019-09-05
INV	RG MI5	659387	5496818	2019	3	2019-09-05	Composite	Silver	0.1	mg/kg dw	SRC	RG MI5 INV-3 2019-09-05
INV	RG_AGCK	667555	5488644	2019	1	2019-09-06	Composite	Silver	0.05	mg/kg dw	SRC	RG_AGCK_INV-1_2019-09-06
INV	RG AGCK	667555	5488644	2019	2	2019-09-06	Composite	Silver	0.04	mg/kg dw	SRC	RG AGCK INV-2 2019-09-06
INV	RG AGCK	667555	5488644	2019	3	2019-09-06	Composite	Silver	0.04	mg/kg dw	SRC	RG_AGCK_INV-3_2019-09-06
INV	RG CORCK	668556	5487388	2019	1	2019-09-07	Composite	Silver	0.05	mg/kg dw	SRC	RG CORCK INV-1 2019-09-07
INV	RG_CORCK	668556	5487388	2019	2	2019-09-07	Composite	Silver	0.03	mg/kg dw	SRC	RG_CORCK_INV-1_2019-09-07
INV	RG CORCK	668556	5487388	2019	3	2019-09-07	Composite	Silver	0.04	mg/kg dw	SRC	RG CORCK INV-3 2019-09-07
INV	RG MIDAG	665258	5489417		H	2019-09-07			0.05		SRC	
				2019	1		Composite	Silver		mg/kg dw		RG_MIDAG_INV-1_2019-09-10
INV	RG_MIDAG	665258	5489417	2019	2	2019-09-10	Composite	Silver	0.07	mg/kg dw	SRC	RG_MIDAG_INV-2_2019-09-10
INV	RG_MIDAG	665258	5489417	2019	3	2019-09-10	Composite	Silver	0.06	mg/kg dw	SRC	RG_MIDAG_INV-3_2019-09-10
INV	RG_MIULE	660502	5493059	2019	1	2019-09-06	Composite	Silver	0.11	mg/kg dw	SRC	RG_MIULE_INV-1_2019-09-06
INV	RG_MIULE	660502	5493059	2019	2	2019-09-06	Composite	Silver	0.06	mg/kg dw	SRC	RG_MIULE_INV-2_2019-09-06
INV	RG_MIULE	660502	5493059	2019	3	2019-09-06	Composite	Silver	0.1	mg/kg dw	SRC	RG_MIULE_INV-3_2019-09-06
INV	RG_MIUCO	668134	5486767	2019	1	2019-09-09	Composite	Strontium	4.6	mg/kg dw	SRC	RG_MIUCO_INV-1_2019-09-09
INV	RG_MIUCO	668134	5486767	2019	2	2019-09-09	Composite	Strontium	5.5	mg/kg dw	SRC	RG_MIUCO_INV-2_2019-09-09
INV	RG_MIUCO	668134	5486767	2019	3	2019-09-09	Composite	Strontium	6.5	mg/kg dw	SRC	RG_MIUCO_INV-3_2019-09-09
INV	RG_MIDCO	667711	5487625	2019	1	2019-09-07	Composite	Strontium	17	mg/kg dw	SRC	RG_MIDCO_INV-1_2019-09-07
INV	RG_MIDCO	667711	5487625	2019	2	2019-09-07	Composite	Strontium	6.6	mg/kg dw	SRC	RG_MIDCO_INV-2_2019-09-07
INV	RG_MIDCO	667711	5487625	2019	3	2019-09-09	Composite	Strontium	6.5	mg/kg dw	SRC	RG_MIDCO_INV-3_2019-09-09
INV	RG_MIDCO	667711	5487625	2019	4	2019-09-09	Composite	Strontium	5.5	mg/kg dw	SRC	RG_MIDCO_INV-4_2019-09-09
INV	RG_MIDCO	667711	5487625	2019	5	2019-09-09	Composite	Strontium	9.4	mg/kg dw	SRC	RG_MIDCO_INV-5_2019-09-09
INV	RG_LE1	659632	5494112	2019	1	2019-09-05	Composite	Strontium	10	mg/kg dw	SRC	RG_LE1_INV-1_2019-09-05
INV	RG_LE1	659632	5494112	2019	2	2019-09-05	Composite	Strontium	7.7	mg/kg dw	SRC	RG_LE1_INV-2_2019-09-05
INV	RG_LE1	659632	5494112	2019	3	2019-09-05	Composite	Strontium	5.4	mg/kg dw	SRC	RG_LE1_INV-3_2019-09-05
INV	RG_MI25	668186	5482838	2019	1	2019-09-04	Composite	Strontium	11	mg/kg dw	SRC	RG_MI25_INV-1_2019-09-04
INV	RG_MI25	668186	5482838	2019	2	2019-09-04	Composite	Strontium	8.8	mg/kg dw	SRC	RG_MI25_INV-2_2019-09-04
INV	RG_MI25	668186	5482838	2019	3	2019-09-04	Composite	Strontium	6.8	mg/kg dw	SRC	RG_MI25_INV-3_2019-09-04
INV	RG_MI5	659387	5496818	2019	1	2019-09-05	Composite	Strontium	19	mg/kg dw	SRC	RG_MI5_INV-1_2019-09-05
INV	RG_MI5	659387	5496818	2019	2	2019-09-05	Composite	Strontium	18	mg/kg dw	SRC	RG_MI5_INV-2_2019-09-05
INV	RG MI5	659387	5496818	2019	3	2019-09-05	Composite	Strontium	15	mg/kg dw	SRC	RG MI5 INV-3 2019-09-05
INV	RG_AGCK	667555	5488644	2019	1	2019-09-06	Composite	Strontium	7.2	mg/kg dw	SRC	RG_AGCK_INV-1_2019-09-06
INV	RG AGCK	667555	5488644	2019	2	2019-09-06	Composite	Strontium	4.6	mg/kg dw	SRC	RG AGCK INV-2 2019-09-06
INV	RG AGCK	667555	5488644	2019	3	2019-09-06	Composite	Strontium	7.2	mg/kg dw	SRC	RG AGCK INV-3 2019-09-06
INV	RG CORCK	668556	5487388	2019	1	2019-09-07	Composite	Strontium	52	mg/kg dw	SRC	RG CORCK INV-1 2019-09-07
INV	RG CORCK	668556	5487388	2019	2	2019-09-07	Composite	Strontium	17	mg/kg dw	SRC	RG CORCK INV-2 2019-09-07
INV	RG CORCK	668556	5487388	2019	3	2019-09-07	Composite	Strontium	24	mg/kg dw	SRC	RG CORCK INV-3 2019-09-07
INV	RG MIDAG	665258	5489417	2019	1	2019-09-10	Composite	Strontium	15	mg/kg dw	SRC	RG MIDAG INV-1 2019-09-10
INV	RG MIDAG	665258	5489417	2019	2	2019-09-10	Composite	Strontium	22	mg/kg dw	SRC	RG MIDAG INV-1_2013-03-10
INV	RG MIDAG	665258	5489417	2019	3	2019-09-10	Composite	Strontium	14	mg/kg dw	SRC	RG MIDAG INV-2_2019-09-10
INV	RG MIULE	660502	5493059	2019	1	2019-09-06	Composite	Strontium	10	mg/kg dw	SRC	RG MIULE INV-1 2019-09-06
INV	RG MIULE	660502	5493059	2019	2	2019-09-06	Composite	Strontium	98	mg/kg dw	SRC	RG MIULE INV-2 2019-09-06
INV	RG_MIULE	660502	5493059		3	2019-09-06	Composite	Strontium	19		SRC	
				2019	1					mg/kg dw		RG_MIULE_INV-3_2019-09-06
INV	RG_MIUCO	668134 668134	5486767 5486767	2019 2019	•	2019-09-09	Composite	Thallium	0.068	mg/kg dw	SRC SRC	RG_MIUCO_INV-1_2019-09-09
INIV/		nnx13/1	1 548h/h/	1 70119	2	2019-09-09	Composite	Thallium	0.06	mg/kg dw	i SKC	RG MIUCO INV-2 2019-09-09
INV	RG_MIUCO RG MIUCO	668134	5486767	2019	3	2019-09-09	Composite	Thallium	0.09	mg/kg dw	SRC	RG MIUCO INV-3 2019-09-09

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Туре	Station	Locatio	n (UTMs) ^(a)	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit		Laboratory Information
туре	Station	Easting	Northing	i cai	Replicate	Date	Species/Composite	Analyte	Result	Offic	Lab	Sample ID
INV	RG_MIDCO	667711	5487625	2019	2	2019-09-07	Composite	Thallium	0.05	mg/kg dw	SRC	RG_MIDCO_INV-2_2019-09-07
INV	RG_MIDCO	667711	5487625	2019	3	2019-09-09	Composite	Thallium	0.043	mg/kg dw	SRC	RG_MIDCO_INV-3_2019-09-09
INV	RG_MIDCO	667711	5487625	2019	4	2019-09-09	Composite	Thallium	0.028	mg/kg dw	SRC	RG_MIDCO_INV-4_2019-09-09
INV	RG_MIDCO	667711	5487625	2019	5	2019-09-09	Composite	Thallium	0.053	mg/kg dw	SRC	RG_MIDCO_INV-5_2019-09-09
INV	RG_LE1	659632	5494112	2019	1	2019-09-05	Composite	Thallium	0.087	mg/kg dw	SRC	RG_LE1_INV-1_2019-09-05
INV	RG_LE1	659632	5494112	2019	2	2019-09-05	Composite	Thallium	0.077	mg/kg dw	SRC	RG_LE1_INV-2_2019-09-05
INV	RG_LE1	659632	5494112	2019	3	2019-09-05	Composite	Thallium	0.064	mg/kg dw	SRC	RG_LE1_INV-3_2019-09-05
INV	RG_MI25	668186	5482838	2019	1	2019-09-04	Composite	Thallium	0.16	mg/kg dw	SRC	RG_MI25_INV-1_2019-09-04
INV	RG MI25	668186	5482838	2019	2	2019-09-04	Composite	Thallium	0.11	mg/kg dw	SRC	RG MI25 INV-2 2019-09-04
INV	RG MI25	668186	5482838	2019	3	2019-09-04	Composite	Thallium	0.12	mg/kg dw	SRC	RG MI25 INV-3 2019-09-04
INV	RG MI5	659387	5496818	2019	1	2019-09-05	Composite	Thallium	0.1	mg/kg dw	SRC	RG_MI5_INV-1_2019-09-05
INV	RG MI5	659387	5496818	2019	2	2019-09-05	Composite	Thallium	0.08	mg/kg dw	SRC	RG_MI5_INV-2_2019-09-05
INV	RG MI5	659387	5496818	2019	3	2019-09-05	Composite	Thallium	0.098	mg/kg dw	SRC	RG_MI5_INV-3_2019-09-05
INV	RG AGCK	667555	5488644	2019	1	2019-09-06	Composite	Thallium	0.54	mg/kg dw	SRC	RG AGCK INV-1 2019-09-06
INV	RG AGCK	667555	5488644	2019	2	2019-09-06	Composite	Thallium	0.63	mg/kg dw	SRC	RG_AGCK_INV-2_2019-09-06
INV	RG AGCK	667555	5488644	2019	3	2019-09-06	Composite	Thallium	0.46	mg/kg dw	SRC	RG AGCK INV-3 2019-09-06
INV	RG_CORCK	668556	5487388	2019	1	2019-09-07	Composite	Thallium	0.037	mg/kg dw	SRC	RG_CORCK_INV-1_2019-09-07
INV	RG CORCK	668556	5487388	2019	2	2019-09-07	Composite	Thallium	0.026	mg/kg dw	SRC	RG_CORCK_INV-2_2019-09-07
INV	RG CORCK	668556	5487388	2019	3	2019-09-07	Composite	Thallium	0.03	mg/kg dw	SRC	RG CORCK INV-3 2019-09-07
INV	RG MIDAG	665258	5489417	2019	1	2019-09-10	Composite	Thallium	0.21	mg/kg dw	SRC	RG MIDAG INV-1 2019-09-10
INV	RG MIDAG	665258	5489417	2019	2	2019-09-10	Composite	Thallium	0.26	mg/kg dw	SRC	RG_MIDAG_INV-1_2013-03-10
INV	RG MIDAG	665258	5489417	2019	3	2019-09-10	Composite	Thallium	0.18	mg/kg dw	SRC	RG MIDAG INV-3 2019-09-10
INV	RG MIULE	660502	5493059	2019	1	2019-09-06	Composite	Thallium	0.068	mg/kg dw	SRC	RG MIULE INV-1 2019-09-06
INV	RG MIULE	660502	5493059	2019	2	2019-09-06	Composite	Thallium	0.082	mg/kg dw	SRC	RG MIULE INV-2 2019-09-06
INV	RG MIULE	660502	5493059	2019	3	2019-09-06	Composite	Thallium	0.002	mg/kg dw	SRC	RG_MIULE_INV-3_2019-09-06
INV	RG_MIUCO	668134	5486767	2019	1	2019-09-09	Composite	Tin	0.12		SRC	RG MIUCO INV-1 2019-09-09
INV	RG_MIUCO	668134	5486767	2019	2	2019-09-09		Tin		mg/kg dw	SRC	RG_MIUCO_INV-1_2019-09-09
INV	_	668134	5486767	2019	3	2019-09-09	Composite Composite	Tin	0.2 <0.1	mg/kg dw	SRC	
INV	RG_MIUCO	667711	5487625	2019	3	2019-09-07		Tin	<0.05	mg/kg dw	SRC	RG_MIUCO_INV-3_2019-09-09
INV	RG_MIDCO RG MIDCO	667711	5487625	2019	2	2019-09-07	Composite	Tin	<0.05	mg/kg dw	SRC	RG_MIDCO_INV-1_2019-09-07
INV	RG_MIDCO	667711	5487625		3	2019-09-07	Composite	Tin	<0.05	mg/kg dw	SRC	RG_MIDCO_INV-2_2019-09-07
	_			2019	4		Composite			mg/kg dw		RG_MIDCO_INV-3_2019-09-09
INV	RG_MIDCO	667711	5487625	2019	· ·	2019-09-09	Composite	Tin	<0.05	mg/kg dw	SRC	RG_MIDCO_INV-4_2019-09-09
INV	RG_MIDCO	667711	5487625	2019	5	2019-09-09	Composite	Tin	<0.05	mg/kg dw	SRC	RG_MIDCO_INV-5_2019-09-09
INV	RG_LE1	659632	5494112	2019	1	2019-09-05	Composite	Tin	<0.05	mg/kg dw	SRC	RG_LE1_INV-1_2019-09-05
INV	RG_LE1	659632	5494112	2019	2	2019-09-05	Composite	Tin	<0.05	mg/kg dw	SRC	RG_LE1_INV-2_2019-09-05
INV	RG_LE1	659632	5494112	2019	3	2019-09-05	Composite	Tin	<0.05	mg/kg dw	SRC	RG_LE1_INV-3_2019-09-05
INV	RG_MI25	668186	5482838	2019	1	2019-09-04	Composite	Tin	<0.1	mg/kg dw	SRC	RG_MI25_INV-1_2019-09-04
INV	RG_MI25	668186	5482838	2019	2	2019-09-04	Composite	Tin	<0.1	mg/kg dw	SRC	RG_MI25_INV-2_2019-09-04
INV	RG_MI25	668186	5482838	2019	3	2019-09-04	Composite	Tin	<0.05	mg/kg dw	SRC	RG_MI25_INV-3_2019-09-04
INV	RG_MI5	659387	5496818	2019	1	2019-09-05	Composite	Tin	<0.05	mg/kg dw	SRC	RG_MI5_INV-1_2019-09-05
INV	RG_MI5	659387	5496818	2019	2	2019-09-05	Composite	Tin	<0.1	mg/kg dw	SRC	RG_MI5_INV-2_2019-09-05
INV	RG_MI5	659387	5496818	2019	3	2019-09-05	Composite	Tin	0.06	mg/kg dw	SRC	RG_MI5_INV-3_2019-09-05
INV	RG_AGCK	667555	5488644	2019	1	2019-09-06	Composite	Tin	<0.05	mg/kg dw	SRC	RG_AGCK_INV-1_2019-09-06
INV	RG_AGCK	667555	5488644	2019	2	2019-09-06	Composite	Tin	0.12	mg/kg dw	SRC	RG_AGCK_INV-2_2019-09-06
INV	RG_AGCK	667555	5488644	2019	3	2019-09-06	Composite	Tin	0.19	mg/kg dw	SRC	RG_AGCK_INV-3_2019-09-06
INV	RG_CORCK	668556	5487388	2019	1	2019-09-07	Composite	Tin	<0.05	mg/kg dw	SRC	RG_CORCK_INV-1_2019-09-07
INV	RG_CORCK	668556	5487388	2019	2	2019-09-07	Composite	Tin	0.41	mg/kg dw	SRC	RG_CORCK_INV-2_2019-09-07
INV	RG_CORCK	668556	5487388	2019	3	2019-09-07	Composite	Tin	0.4	mg/kg dw	SRC	RG_CORCK_INV-3_2019-09-07
INV	RG_MIDAG	665258	5489417	2019	1	2019-09-10	Composite	Tin	0.3	mg/kg dw	SRC	RG_MIDAG_INV-1_2019-09-10
INV	RG_MIDAG	665258	5489417	2019	2	2019-09-10	Composite	Tin	0.19	mg/kg dw	SRC	RG_MIDAG_INV-2_2019-09-10
INV	RG_MIDAG	665258	5489417	2019	3	2019-09-10	Composite	Tin	<0.1	mg/kg dw	SRC	RG_MIDAG_INV-3_2019-09-10
INV	RG_MIULE	660502	5493059	2019	1	2019-09-06	Composite	Tin	0.28	mg/kg dw	SRC	RG_MIULE_INV-1_2019-09-06
INV	RG_MIULE	660502	5493059	2019	2	2019-09-06	Composite	Tin	<0.05	mg/kg dw	SRC	RG_MIULE_INV-2_2019-09-06
INV	RG_MIULE	660502	5493059	2019	3	2019-09-06	Composite	Tin	<0.05	mg/kg dw	SRC	RG_MIULE_INV-3_2019-09-06
INV	RG_MIUCO	668134	5486767	2019	1	2019-09-09	Composite	Titanium	13	mg/kg dw	SRC	RG_MIUCO_INV-1_2019-09-09
INV	RG_MIUCO	668134	5486767	2019	2	2019-09-09	Composite	Titanium	12	mg/kg dw	SRC	RG_MIUCO_INV-2_2019-09-09
INV	RG MIUCO	668134	5486767	2019	3	2019-09-09	Composite	Titanium	14	mg/kg dw	SRC	RG MIUCO INV-3 2019-09-09

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Туре	Station		n (UTMs) ^(a)	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit		Laboratory Information
	20.14220	Easting	Northing		•	2212.22					Lab	Sample ID
INV	RG_MIDCO	667711	5487625	2019	1	2019-09-07	Composite	Titanium	8.2	mg/kg dw	SRC	RG_MIDCO_INV-1_2019-09-07
INV	RG_MIDCO	667711	5487625	2019	2	2019-09-07	Composite	Titanium	6.7	mg/kg dw	SRC	RG_MIDCO_INV-2_2019-09-07
INV	RG_MIDCO	667711	5487625	2019	3	2019-09-09	Composite	Titanium	8.3	mg/kg dw	SRC	RG_MIDCO_INV-3_2019-09-09
INV	RG_MIDCO	667711	5487625	2019	4	2019-09-09	Composite	Titanium	5.1	mg/kg dw	SRC	RG_MIDCO_INV-4_2019-09-09
INV	RG_MIDCO	667711	5487625	2019	5	2019-09-09	Composite	Titanium	9.3	mg/kg dw	SRC	RG_MIDCO_INV-5_2019-09-09
INV	RG_LE1	659632	5494112	2019	1	2019-09-05	Composite	Titanium	13	mg/kg dw	SRC	RG_LE1_INV-1_2019-09-05
INV	RG_LE1	659632	5494112	2019	2	2019-09-05	Composite	Titanium	22	mg/kg dw	SRC	RG_LE1_INV-2_2019-09-05
INV	RG_LE1	659632	5494112	2019	3	2019-09-05	Composite	Titanium	16	mg/kg dw	SRC	RG_LE1_INV-3_2019-09-05
INV	RG_MI25	668186	5482838	2019	1	2019-09-04	Composite	Titanium	24	mg/kg dw	SRC	RG_MI25_INV-1_2019-09-04
INV	RG_MI25	668186	5482838	2019	2	2019-09-04	Composite	Titanium	15	mg/kg dw	SRC	RG_MI25_INV-2_2019-09-04
INV	RG_MI25	668186	5482838	2019	3	2019-09-04	Composite	Titanium	20	mg/kg dw	SRC	RG_MI25_INV-3_2019-09-04
INV	RG_MI5	659387	5496818	2019	1	2019-09-05	Composite	Titanium	23	mg/kg dw	SRC	RG_MI5_INV-1_2019-09-05
INV	RG_MI5	659387	5496818	2019	2	2019-09-05	Composite	Titanium	16	mg/kg dw	SRC	RG_MI5_INV-2_2019-09-05
INV	RG_MI5	659387	5496818	2019	3	2019-09-05	Composite	Titanium	16	mg/kg dw	SRC	RG_MI5_INV-3_2019-09-05
INV	RG_AGCK	667555	5488644	2019	1	2019-09-06	Composite	Titanium	3.1	mg/kg dw	SRC	RG_AGCK_INV-1_2019-09-06
INV	RG_AGCK	667555	5488644	2019	2	2019-09-06	Composite	Titanium	1.6	mg/kg dw	SRC	RG_AGCK_INV-2_2019-09-06
INV	RG_AGCK	667555	5488644	2019	3	2019-09-06	Composite	Titanium	2.4	mg/kg dw	SRC	RG_AGCK_INV-3_2019-09-06
INV	RG_CORCK	668556	5487388	2019	1	2019-09-07	Composite	Titanium	12	mg/kg dw	SRC	RG_CORCK_INV-1_2019-09-07
INV	RG CORCK	668556	5487388	2019	2	2019-09-07	Composite	Titanium	2.7	mg/kg dw	SRC	RG CORCK INV-2 2019-09-07
INV	RG CORCK	668556	5487388	2019	3	2019-09-07	Composite	Titanium	2.5	mg/kg dw	SRC	RG CORCK INV-3 2019-09-07
INV	RG MIDAG	665258	5489417	2019	1	2019-09-10	Composite	Titanium	23	mg/kg dw	SRC	RG MIDAG INV-1 2019-09-10
INV	RG MIDAG	665258	5489417	2019	2	2019-09-10	Composite	Titanium	31	mg/kg dw	SRC	RG MIDAG INV-2 2019-09-10
INV	RG MIDAG	665258	5489417	2019	3	2019-09-10	Composite	Titanium	22	mg/kg dw	SRC	RG MIDAG INV-3 2019-09-10
INV	RG MIULE	660502	5493059	2019	1	2019-09-06	Composite	Titanium	9.1	mg/kg dw	SRC	RG MIULE INV-1 2019-09-06
INV	RG MIULE	660502	5493059	2019	2	2019-09-06	Composite	Titanium	9.6	mg/kg dw	SRC	RG_MIULE_INV-2_2019-09-06
INV	RG MIULE	660502	5493059	2019	3	2019-09-06	Composite	Titanium	18	mg/kg dw	SRC	RG MIULE INV-3 2019-09-06
INV	RG MIUCO	668134	5486767	2019	1	2019-09-09	Composite	Uranium	0.059	mg/kg dw	SRC	RG MIUCO INV-1 2019-09-09
INV	RG MIUCO	668134	5486767	2019	2	2019-09-09	Composite	Uranium	0.05	mg/kg dw	SRC	RG MIUCO INV-2 2019-09-09
INV	RG MIUCO	668134	5486767	2019	3	2019-09-09	Composite	Uranium	0.03	mg/kg dw	SRC	RG MIUCO INV-3 2019-09-09
INV	RG MIDCO	667711	5487625	2019	1	2019-09-07	Composite	Uranium	0.07	mg/kg dw	SRC	RG MIDCO INV-1 2019-09-07
INV	RG MIDCO	667711	5487625	2019	2	2019-09-07	•		0.037		SRC	RG MIDCO INV-1 2019-09-07
INV	RG MIDCO	667711	5487625	2019		2019-09-09	Composite Composite	<u>Uranium</u> Uranium	0.047	mg/kg dw	SRC	RG MIDCO INV-2 2019-09-09
			5487625	_	3					mg/kg dw	SRC	
INV	RG_MIDCO	667711		2019	4	2019-09-09	Composite	Uranium	0.034	mg/kg dw		RG_MIDCO_INV-4_2019-09-09
INV	RG_MIDCO	667711	5487625	2019	5	2019-09-09	Composite	Uranium	0.076	mg/kg dw	SRC	RG_MIDCO_INV-5_2019-09-09
INV	RG_LE1	659632	5494112	2019	1	2019-09-05	Composite	Uranium	0.33	mg/kg dw	SRC	RG_LE1_INV-1_2019-09-05
INV	RG_LE1	659632	5494112	2019	2	2019-09-05	Composite	Uranium	0.16	mg/kg dw	SRC	RG_LE1_INV-2_2019-09-05
INV	RG_LE1	659632	5494112	2019	3	2019-09-05	Composite	Uranium	0.14	mg/kg dw	SRC	RG_LE1_INV-3_2019-09-05
INV	RG_MI25	668186	5482838	2019	1	2019-09-04	Composite	Uranium	0.15	mg/kg dw	SRC	RG_MI25_INV-1_2019-09-04
INV	RG_MI25	668186	5482838	2019	2	2019-09-04	Composite	Uranium	0.16	mg/kg dw	SRC	RG_MI25_INV-2_2019-09-04
INV	RG_MI25	668186	5482838	2019	3	2019-09-04	Composite	Uranium	0.07	mg/kg dw	SRC	RG_MI25_INV-3_2019-09-04
INV	RG_MI5	659387	5496818	2019	1	2019-09-05	Composite	Uranium	0.19	mg/kg dw	SRC	RG_MI5_INV-1_2019-09-05
INV	RG_MI5	659387	5496818	2019	2	2019-09-05	Composite	Uranium	0.12	mg/kg dw	SRC	RG_MI5_INV-2_2019-09-05
INV	RG_MI5	659387	5496818	2019	3	2019-09-05	Composite	Uranium	0.18	mg/kg dw	SRC	RG_MI5_INV-3_2019-09-05
INV	RG_AGCK	667555	5488644	2019	1	2019-09-06	Composite	Uranium	0.085	mg/kg dw	SRC	RG_AGCK_INV-1_2019-09-06
INV	RG_AGCK	667555	5488644	2019	2	2019-09-06	Composite	Uranium	0.06	mg/kg dw	SRC	RG_AGCK_INV-2_2019-09-06
INV	RG_AGCK	667555	5488644	2019	3	2019-09-06	Composite	Uranium	0.049	mg/kg dw	SRC	RG_AGCK_INV-3_2019-09-06
INV	RG_CORCK	668556	5487388	2019	1	2019-09-07	Composite	Uranium	0.36	mg/kg dw	SRC	RG_CORCK_INV-1_2019-09-07
INV	RG_CORCK	668556	5487388	2019	2	2019-09-07	Composite	Uranium	0.1	mg/kg dw	SRC	RG_CORCK_INV-2_2019-09-07
INV	RG_CORCK	668556	5487388	2019	3	2019-09-07	Composite	Uranium	0.15	mg/kg dw	SRC	RG_CORCK_INV-3_2019-09-07
INV	RG_MIDAG	665258	5489417	2019	1	2019-09-10	Composite	Uranium	0.12	mg/kg dw	SRC	RG_MIDAG_INV-1_2019-09-10
INV	RG_MIDAG	665258	5489417	2019	2	2019-09-10	Composite	Uranium	0.18	mg/kg dw	SRC	RG_MIDAG_INV-2_2019-09-10
INV	RG_MIDAG	665258	5489417	2019	3	2019-09-10	Composite	Uranium	0.2	mg/kg dw	SRC	RG_MIDAG_INV-3_2019-09-10
INV	RG_MIULE	660502	5493059	2019	1	2019-09-06	Composite	Uranium	0.062	mg/kg dw	SRC	RG_MIULE_INV-1_2019-09-06
INV	RG_MIULE	660502	5493059	2019	2	2019-09-06	Composite	Uranium	0.096	mg/kg dw	SRC	RG_MIULE_INV-2_2019-09-06
INV	RG MIULE	660502	5493059	2019	3	2019-09-06	Composite	Uranium	0.14	mg/kg dw	SRC	RG MIULE INV-3 2019-09-06
	RG MIUCO	668134	5486767	2019	1	2019-09-09	Composite	Vanadium	4.8	mg/kg dw	SRC	RG MIUCO INV-1 2019-09-09
INV	ING MIGGG											

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Туре	Station	Locatio	n (UTMs) ^(a)	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit		Laboratory Information
Type		Easting	Northing	i cai	Replicate	Date	Species/Composite	Allalyte	Result	Offic	Lab	Sample ID
INV	RG_MIUCO	668134	5486767	2019	3	2019-09-09	Composite	Vanadium	6.5	mg/kg dw	SRC	RG_MIUCO_INV-3_2019-09-09
INV	RG_MIDCO	667711	5487625	2019	1	2019-09-07	Composite	Vanadium	4.2	mg/kg dw	SRC	RG_MIDCO_INV-1_2019-09-07
INV	RG_MIDCO	667711	5487625	2019	2	2019-09-07	Composite	Vanadium	2.9	mg/kg dw	SRC	RG_MIDCO_INV-2_2019-09-07
INV	RG_MIDCO	667711	5487625	2019	3	2019-09-09	Composite	Vanadium	2.7	mg/kg dw	SRC	RG_MIDCO_INV-3_2019-09-09
INV	RG_MIDCO	667711	5487625	2019	4	2019-09-09	Composite	Vanadium	1.3	mg/kg dw	SRC	RG_MIDCO_INV-4_2019-09-09
INV	RG_MIDCO	667711	5487625	2019	5	2019-09-09	Composite	Vanadium	3.4	mg/kg dw	SRC	RG_MIDCO_INV-5_2019-09-09
INV	RG LE1	659632	5494112	2019	1	2019-09-05	Composite	Vanadium	16	mg/kg dw	SRC	RG LE1 INV-1 2019-09-05
INV	RG_LE1	659632	5494112	2019	2	2019-09-05	Composite	Vanadium	11	mg/kg dw	SRC	RG_LE1_INV-2_2019-09-05
INV	RG LE1	659632	5494112	2019	3	2019-09-05	Composite	Vanadium	7.2	mg/kg dw	SRC	RG LE1 INV-3 2019-09-05
INV	RG MI25	668186	5482838	2019	1	2019-09-04	Composite	Vanadium	7.0	mg/kg dw	SRC	RG MI25 INV-1 2019-09-04
INV	RG MI25	668186	5482838	2019	2	2019-09-04	Composite	Vanadium	4.6	mg/kg dw	SRC	RG_MI25_INV-2_2019-09-04
INV	RG MI25	668186	5482838	2019	3	2019-09-04	Composite	Vanadium	10	mg/kg dw	SRC	RG MI25 INV-3 2019-09-04
INV	RG MI5	659387	5496818	2019	1	2019-09-05	Composite	Vanadium	11	mg/kg dw	SRC	RG_MI5_INV-1_2019-09-05
INV	RG MI5	659387	5496818	2019	2	2019-09-05	Composite	Vanadium	7.6	mg/kg dw	SRC	RG MI5 INV-2 2019-09-05
INV	RG MI5	659387	5496818	2019	3	2019-09-05	Composite	Vanadium	10	mg/kg dw	SRC	RG_MI5_INV-3_2019-09-05
INV	RG AGCK	667555	5488644	2019	1	2019-09-06	Composite	Vanadium	0.9	mg/kg dw	SRC	RG_AGCK_INV-1_2019-09-06
INV	RG AGCK	667555	5488644	2019	2	2019-09-06	Composite	Vanadium	0.4	mg/kg dw	SRC	RG_AGCK_INV-2_2019-09-06
INV	RG AGCK	667555	5488644	2019	3	2019-09-06	Composite	Vanadium	0.8	mg/kg dw	SRC	RG AGCK INV-3 2019-09-06
INV	RG CORCK	668556	5487388	2019	1	2019-09-07	Composite	Vanadium	1.3	mg/kg dw	SRC	RG CORCK INV-1 2019-09-07
INV	RG CORCK	668556	5487388	2019	2	2019-09-07	Composite	Vanadium	0.5	mg/kg dw	SRC	RG CORCK INV-2 2019-09-07
INV	RG_CORCK	668556	5487388	2019	3	2019-09-07	Composite	Vanadium	0.4	mg/kg dw	SRC	RG CORCK INV-3 2019-09-07
INV	RG MIDAG	665258	5489417	2019	1	2019-09-10	Composite	Vanadium	6.1	mg/kg dw	SRC	RG MIDAG INV-1 2019-09-10
INV	RG MIDAG	665258	5489417	2019	2	2019-09-10	Composite	Vanadium	9.9	mg/kg dw	SRC	RG MIDAG INV-1_2019-09-10
INV	RG MIDAG	665258	5489417	2019	3	2019-09-10	Composite	Vanadium	7.0	mg/kg dw	SRC	RG MIDAG INV-2_2019-09-10
INV	RG MIULE	660502	5493059	2019	1	2019-09-06	Composite	Vanadium	3.7	mg/kg dw	SRC	RG_MIULE_INV-1_2019-09-06
INV	RG MIULE	660502	5493059	2019	2	2019-09-06	Composite	Vanadium	3.4	mg/kg dw	SRC	RG_MIULE_INV-2_2019-09-06
INV	RG MIULE	660502	5493059	2019	3	2019-09-06	Composite	Vanadium	8.6	mg/kg dw	SRC	RG MIULE INV-3 2019-09-06
INV	RG_MIUCO	668134	5486767	2019	1	2019-09-09	Composite	Zinc	130	mg/kg dw	SRC	RG MIUCO INV-1 2019-09-09
INV	RG_MIUCO	668134	5486767	2019	2	2019-09-09	Composite	Zinc	120	mg/kg dw	SRC	RG_MIUCO_INV-1_2019-09-09
INV		668134	5486767	2019	3	2019-09-09		Zinc	200		SRC	
INV	RG_MIUCO RG MIDCO	667711	5487625		3	2019-09-07	Composite	Zinc	120	mg/kg dw	SRC	RG_MIUCO_INV-3_2019-09-09 RG_MIDCO_INV-1_2019-09-07
INV	RG_MIDCO	667711	5487625	2019	1	2019-09-07	Composite	Zinc	110	mg/kg dw	SRC	RG MIDCO INV-1_2019-09-07 RG MIDCO INV-2 2019-09-07
INV				2019	2		Composite		130	mg/kg dw		RG MIDCO INV-3 2019-09-09
	RG_MIDCO	667711	5487625	2019	3	2019-09-09	Composite	Zinc		mg/kg dw	SRC	
INV	RG_MIDCO	667711	5487625	2019	4	2019-09-09	Composite	Zinc	120	mg/kg dw	SRC	RG_MIDCO_INV-4_2019-09-09
INV	RG_MIDCO	667711	5487625	2019	5	2019-09-09	Composite	Zinc	100	mg/kg dw	SRC	RG_MIDCO_INV-5_2019-09-09
INV	RG_LE1	659632	5494112	2019	1	2019-09-05	Composite	Zinc	120	mg/kg dw	SRC	RG_LE1_INV-1_2019-09-05
INV	RG_LE1	659632	5494112	2019	2	2019-09-05	Composite	Zinc	160	mg/kg dw	SRC	RG_LE1_INV-2_2019-09-05
INV	RG_LE1	659632	5494112	2019	3	2019-09-05	Composite	Zinc	150	mg/kg dw	SRC	RG_LE1_INV-3_2019-09-05
INV	RG_MI25	668186	5482838	2019	7	2019-09-04	Composite	Zinc	150	mg/kg dw	SRC	RG_MI25_INV-1_2019-09-04
INV	RG_MI25	668186	5482838	2019	2	2019-09-04	Composite	Zinc	160	mg/kg dw	SRC	RG_MI25_INV-2_2019-09-04
INV	RG_MI25	668186	5482838	2019	3	2019-09-04	Composite	Zinc	180	mg/kg dw	SRC	RG_MI25_INV-3_2019-09-04
INV	RG_MI5	659387	5496818	2019	1	2019-09-05	Composite	Zinc	120	mg/kg dw	SRC	RG_MI5_INV-1_2019-09-05
INV	RG_MI5	659387	5496818	2019	2	2019-09-05	Composite	Zinc	140	mg/kg dw	SRC	RG_MI5_INV-2_2019-09-05
INV	RG_MI5	659387	5496818	2019	3	2019-09-05	Composite	Zinc	120	mg/kg dw	SRC	RG_MI5_INV-3_2019-09-05
INV	RG_AGCK	667555	5488644	2019	1	2019-09-06	Composite	Zinc	270	mg/kg dw	SRC	RG_AGCK_INV-1_2019-09-06
INV	RG_AGCK	667555	5488644	2019	2	2019-09-06	Composite	Zinc	290	mg/kg dw	SRC	RG_AGCK_INV-2_2019-09-06
INV	RG_AGCK	667555	5488644	2019	3	2019-09-06	Composite	Zinc —	190	mg/kg dw	SRC	RG_AGCK_INV-3_2019-09-06
INV	RG_CORCK	668556	5487388	2019	1	2019-09-07	Composite	Zinc —	190	mg/kg dw	SRC	RG_CORCK_INV-1_2019-09-07
INV	RG_CORCK	668556	5487388	2019	2	2019-09-07	Composite	Zinc	170	mg/kg dw	SRC	RG_CORCK_INV-2_2019-09-07
INV	RG_CORCK	668556	5487388	2019	3	2019-09-07	Composite	Zinc	180	mg/kg dw	SRC	RG_CORCK_INV-3_2019-09-07
INV	RG_MIDAG	665258	5489417	2019	1	2019-09-10	Composite	Zinc	190	mg/kg dw	SRC	RG_MIDAG_INV-1_2019-09-10
INV	RG_MIDAG	665258	5489417	2019	2	2019-09-10	Composite	Zinc	150	mg/kg dw	SRC	RG_MIDAG_INV-2_2019-09-10
INV	RG_MIDAG	665258	5489417	2019	3	2019-09-10	Composite	Zinc	150	mg/kg dw	SRC	RG_MIDAG_INV-3_2019-09-10
INV	RG_MIULE	660502	5493059	2019	1	2019-09-06	Composite	Zinc	210	mg/kg dw	SRC	RG_MIULE_INV-1_2019-09-06
INV	RG_MIULE	660502	5493059	2019	2	2019-09-06	Composite	Zinc	100	mg/kg dw	SRC	RG_MIULE_INV-2_2019-09-06
INV	RG_MIULE	660502	5493059	2019	3	2019-09-06	Composite	Zinc	140	mg/kg dw	SRC	RG_MIULE_INV-3_2019-09-06
INV	RG MIUCO	668134	5486767	2019	1	2019-09-09	Composite	% Moisture	81	%	SRC	RG MIUCO INV-1 2019-09-09

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Туре	Station	Location	n (UTMs) ^(a)	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit		Laboratory Information
туре	Station	Easting	Northing	i cai	Replicate	Date	Species/Composite	Allalyte	Nesuit	Offic	Lab	Sample ID
INV	RG_MIUCO	668134	5486767	2019	2	2019-09-09	Composite	% Moisture	85	%	SRC	RG_MIUCO_INV-2_2019-09-09
INV	RG_MIUCO	668134	5486767	2019	3	2019-09-09	Composite	% Moisture	84	%	SRC	RG_MIUCO_INV-3_2019-09-09
INV	RG_MIDCO	667711	5487625	2019	1	2019-09-07	Composite	% Moisture	78	%	SRC	RG_MIDCO_INV-1_2019-09-07
INV	RG MIDCO	667711	5487625	2019	2	2019-09-07	Composite	% Moisture	81	%	SRC	RG MIDCO INV-2 2019-09-07
INV	RG MIDCO	667711	5487625	2019	3	2019-09-09	Composite	% Moisture	83	%	SRC	RG MIDCO INV-3 2019-09-09
INV	RG MIDCO	667711	5487625	2019	4	2019-09-09	Composite	% Moisture	77	%	SRC	RG MIDCO INV-4 2019-09-09
INV	RG MIDCO	667711	5487625	2019	5	2019-09-09	Composite	% Moisture	79	%	SRC	RG MIDCO INV-5 2019-09-09
INV	RG LE1	659632	5494112	2019	1	2019-09-05	Composite	% Moisture	84	%	SRC	RG LE1 INV-1 2019-09-05
INV	RG LE1	659632	5494112	2019	2	2019-09-05	Composite	% Moisture	84	%	SRC	RG LE1 INV-2 2019-09-05
INV	RG LE1	659632	5494112	2019	3	2019-09-05	Composite	% Moisture	84	%	SRC	RG LE1 INV-3 2019-09-05
INV	RG MI25	668186	5482838	2019	1	2019-09-04	Composite	% Moisture	88	%	SRC	RG_MI25_INV-1_2019-09-04
INV	RG MI25	668186	5482838	2019	2	2019-09-04	Composite	% Moisture	85	%	SRC	RG MI25 INV-2 2019-09-04
INV	RG MI25	668186	5482838	2019	3	2019-09-04	Composite	% Moisture	82		SRC	RG_MI25_INV-3_2019-09-04
INV	RG_MI5	659387	5496818	2019	1	2019-09-05	Composite	% Moisture	88	%	SRC	RG MI5 INV-1 2019-09-05
INV	_				1			% Moisture				
	RG_MI5	659387	5496818	2019	2	2019-09-05	Composite		88	%	SRC	RG_MI5_INV-2_2019-09-05
INV	RG_MI5	659387	5496818	2019	3	2019-09-05	Composite	% Moisture	83	%	SRC	RG_MI5_INV-3_2019-09-05
INV	RG_AGCK	667555	5488644	2019	1	2019-09-06	Composite	% Moisture	91	%	SRC	RG_AGCK_INV-1_2019-09-06
INV	RG_AGCK	667555	5488644	2019	2	2019-09-06	Composite	% Moisture	86	%	SRC	RG_AGCK_INV-2_2019-09-06
INV	RG_AGCK	667555	5488644	2019	3	2019-09-06	Composite	% Moisture	84	%	SRC	RG_AGCK_INV-3_2019-09-06
INV	RG_CORCK	668556	5487388	2019	1	2019-09-07	Composite	% Moisture	81	%	SRC	RG_CORCK_INV-1_2019-09-07
INV	RG_CORCK	668556	5487388	2019	2	2019-09-07	Composite	% Moisture	82	%	SRC	RG_CORCK_INV-2_2019-09-07
INV	RG_CORCK	668556	5487388	2019	3	2019-09-07	Composite	% Moisture	81	%	SRC	RG_CORCK_INV-3_2019-09-07
INV	RG_MIDAG	665258	5489417	2019	1	2019-09-10	Composite	% Moisture	90	%	SRC	RG_MIDAG_INV-1_2019-09-10
INV	RG_MIDAG	665258	5489417	2019	2	2019-09-10	Composite	% Moisture	83	%	SRC	RG_MIDAG_INV-2_2019-09-10
INV	RG_MIDAG	665258	5489417	2019	3	2019-09-10	Composite	% Moisture	84	%	SRC	RG_MIDAG_INV-3_2019-09-10
INV	RG_MIULE	660502	5493059	2019	1	2019-09-06	Composite	% Moisture	82	%	SRC	RG_MIULE_INV-1_2019-09-06
INV	RG MIULE	660502	5493059	2019	2	2019-09-06	Composite	% Moisture	81	%	SRC	RG MIULE INV-2 2019-09-06
INV	RG MIULE	660502	5493059	2019	3	2019-09-06	Composite	% Moisture	85	%	SRC	RG MIULE INV-3 2019-09-06
INV	RG_MIUCO	668134	5486767	2019	1	2019-09-09	Composite	Weights	0.28	mg/kg dw	SRC	RG_MIUCO_INV-1_2019-09-09
INV	RG MIUCO	668134	5486767	2019	2	2019-09-09	Composite	Weights	0.21	mg/kg dw	SRC	RG MIUCO INV-2 2019-09-09
INV	RG MIUCO	668134	5486767	2019	3	2019-09-09	Composite	Weights	0.22	mg/kg dw	SRC	RG MIUCO INV-3 2019-09-09
INV	RG MIDCO	667711	5487625	2019	1	2019-09-07	Composite	Weights	0.49	mg/kg dw	SRC	RG MIDCO INV-1 2019-09-07
INV	RG MIDCO	667711	5487625	2019	2	2019-09-07	Composite	Weights	0.5	mg/kg dw	SRC	RG MIDCO INV-2 2019-09-07
INV	RG MIDCO	667711	5487625	2019	3	2019-09-09	Composite	Weights	0.4	mg/kg dw	SRC	RG MIDCO INV-3 2019-09-09
INV	RG MIDCO	667711	5487625	2019	4	2019-09-09	Composite	Weights	0.43	mg/kg dw	SRC	RG MIDCO INV-4 2019-09-09
INV	RG MIDCO	667711	5487625	2019	5	2019-09-09		<u> </u>	0.43		SRC	RG MIDCO INV-5 2019-09-09
	_				3		Composite	Weights		mg/kg dw		
INV	RG_LE1	659632	5494112	2019	1	2019-09-05	Composite	Weights	0.49	mg/kg dw	SRC	RG_LE1_INV-1_2019-09-05
INV	RG_LE1	659632	5494112	2019	2	2019-09-05	Composite	Weights	0.43	mg/kg dw	SRC	RG_LE1_INV-2_2019-09-05
INV	RG_LE1	659632	5494112	2019	3	2019-09-05	Composite	Weights	0.31	mg/kg dw	SRC	RG_LE1_INV-3_2019-09-05
INV	RG_MI25	668186	5482838	2019	1	2019-09-04	Composite	Weights	0.22	mg/kg dw	SRC	RG_MI25_INV-1_2019-09-04
INV	RG_MI25	668186	5482838	2019	2	2019-09-04	Composite	Weights	0.17	mg/kg dw	SRC	RG_MI25_INV-2_2019-09-04
INV	RG_MI25	668186	5482838	2019	3	2019-09-04	Composite	Weights	0.34	mg/kg dw	SRC	RG_MI25_INV-3_2019-09-04
INV	RG_MI5	659387	5496818	2019	1	2019-09-05	Composite	Weights	0.26	mg/kg dw	SRC	RG_MI5_INV-1_2019-09-05
INV	RG_MI5	659387	5496818	2019	2	2019-09-05	Composite	Weights	0.25	mg/kg dw	SRC	RG_MI5_INV-2_2019-09-05
INV	RG_MI5	659387	5496818	2019	3	2019-09-05	Composite	Weights	0.39	mg/kg dw	SRC	RG_MI5_INV-3_2019-09-05
INV	RG_AGCK	667555	5488644	2019	1	2019-09-06	Composite	Weights	0.3	mg/kg dw	SRC	RG_AGCK_INV-1_2019-09-06
INV	RG_AGCK	667555	5488644	2019	2	2019-09-06	Composite	Weights	0.37	mg/kg dw	SRC	RG_AGCK_INV-2_2019-09-06
INV	RG_AGCK	667555	5488644	2019	3	2019-09-06	Composite	Weights	0.43	mg/kg dw	SRC	RG_AGCK_INV-3_2019-09-06
INV	RG_CORCK	668556	5487388	2019	1	2019-09-07	Composite	Weights	0.29	mg/kg dw	SRC	RG_CORCK_INV-1_2019-09-07
INV	RG CORCK	668556	5487388	2019	2	2019-09-07	Composite	Weights	0.26	mg/kg dw	SRC	RG CORCK INV-2 2019-09-07
INV	RG CORCK	668556	5487388	2019	3	2019-09-07	Composite	Weights	0.15	mg/kg dw	SRC	RG CORCK INV-3 2019-09-07
INV	RG MIDAG	665258	5489417	2019	1	2019-09-10	Composite	Weights	0.15	mg/kg dw	SRC	RG MIDAG INV-1 2019-09-10
INV	RG MIDAG	665258	5489417	2019	2	2019-09-10	Composite	Weights	0.10	mg/kg dw	SRC	RG MIDAG INV-2 2019-09-10
INV	RG MIDAG	665258	5489417	2019	3	2019-09-10	Composite	Weights	0.27	mg/kg dw	SRC	RG MIDAG INV-2_2019-09-10
INV	RG MIULE	660502	5493059	2019	1	2019-09-06	Composite	Weights	0.23	mg/kg dw	SRC	RG MIULE INV-1 2019-09-06
INV	RG_MIULE	660502	5493059		1	2019-09-06		•			SRC	
IINV	I NG WILLE	000002	J493U39	2019	2	∠U 19-U9-U0	Composite	Weights	0.45	mg/kg dw	SING	RG_MIULE_INV-2_2019-09-06

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Type	Station	Locatio	n (UTMs) ^(a)	Voor	Poplicate	Data	Special/Composite	Analyte	Popult -	Unit		Laboratory Information
Туре	Station	Easting	Northing	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit	Lab	Sample ID
INV	RG_AGCK	667555	5488644	2020	1	2020-09-10	Composite	Lithium	0.2	mg/kg	Trich	RG_AGCK_INV-1_2020-09-10
INV	RG AGCK	667555	5488644	2020	1	2020-09-10	Composite	Boron	0.51	mg/kg	Trich	RG AGCK INV-1 2020-09-10
INV	RG AGCK	667555	5488644	2020	1	2020-09-10	Composite	Sodium	4,259	mg/kg	Trich	RG_AGCK_INV-1_2020-09-10
INV	RG AGCK	667555	5488644	2020	1	2020-09-10	Composite	Magnesium	1,269	mg/kg	Trich	RG AGCK INV-1 2020-09-10
INV	RG AGCK	667555	5488644	2020	1	2020-09-10	Composite	Aluminum	127	mg/kg	Trich	RG AGCK INV-1 2020-09-10
INV	RG_AGCK	667555	5488644	2020	1	2020-09-10	Composite	Phosphorus	12,105	mg/kg	Trich	RG_AGCK_INV-1_2020-09-10
INV	RG AGCK	667555	5488644	2020	1	2020-09-10	Composite	Potassium	10,646	mg/kg	Trich	RG AGCK INV-1 2020-09-10
INV	RG AGCK	667555	5488644	2020	1	2020-09-10	Composite	Calcium	1,828	mg/kg	Trich	RG AGCK INV-1 2020-09-10
INV	RG AGCK	667555	5488644	2020	1	2020-09-10	Composite	Titanium	6.8	mg/kg	Trich	RG AGCK INV-1 2020-09-10
INV	RG_AGCK	667555	5488644	2020	1	2020-09-10	Composite	Vanadium	0.26	mg/kg	Trich	RG AGCK INV-1 2020-09-10
INV	RG_AGCK	667555	5488644	2020	1	2020-09-10	Composite	Chromium	1.9		Trich	RG AGCK INV-1_2020-09-10
INV		667555	5488644	2020	1	2020-09-10	Composite			mg/kg	Trich	
	RG_AGCK				1		'	Manganese	13	mg/kg		RG_AGCK_INV-1_2020-09-10
INV	RG_AGCK	667555	5488644	2020	1	2020-09-10	Composite	Iron	108	mg/kg	Trich	RG_AGCK_INV-1_2020-09-10
INV	RG_AGCK	667555	5488644	2020	1	2020-09-10	Composite	Cobalt	0.098	mg/kg	Trich	RG_AGCK_INV-1_2020-09-10
INV	RG_AGCK	667555	5488644	2020	1	2020-09-10	Composite	Nickel	4.5	mg/kg	Trich	RG_AGCK_INV-1_2020-09-10
INV	RG_AGCK	667555	5488644	2020	1	2020-09-10	Composite	Copper	9.2	mg/kg	Trich	RG_AGCK_INV-1_2020-09-10
INV	RG_AGCK	667555	5488644	2020	1	2020-09-10	Composite	Zinc	224	mg/kg	Trich	RG_AGCK_INV-1_2020-09-10
INV	RG_AGCK	667555	5488644	2020	1	2020-09-10	Composite	Arsenic	1.7	mg/kg	Trich	RG_AGCK_INV-1_2020-09-10
INV	RG_AGCK	667555	5488644	2020	1	2020-09-10	Composite	Selenium	6.4	mg/kg	Trich	RG_AGCK_INV-1_2020-09-10
INV	RG_AGCK	667555	5488644	2020	1	2020-09-10	Composite	Strontium	4.7	mg/kg	Trich	RG_AGCK_INV-1_2020-09-10
INV	RG_AGCK	667555	5488644	2020	1	2020-09-10	Composite	Molybdenum	0.26	mg/kg	Trich	RG_AGCK_INV-1_2020-09-10
INV	RG_AGCK	667555	5488644	2020	1	2020-09-10	Composite	Silver	0.042	mg/kg	Trich	RG_AGCK_INV-1_2020-09-10
INV	RG_AGCK	667555	5488644	2020	1	2020-09-10	Composite	Cadmium	0.52	mg/kg	Trich	RG_AGCK_INV-1_2020-09-10
INV	RG_AGCK	667555	5488644	2020	1	2020-09-10	Composite	Tin	0.14	mg/kg	Trich	RG_AGCK_INV-1_2020-09-10
INV	RG_AGCK	667555	5488644	2020	1	2020-09-10	Composite	Antimony	0.014	mg/kg	Trich	RG_AGCK_INV-1_2020-09-10
INV	RG_AGCK	667555	5488644	2020	1	2020-09-10	Composite	Barium	13	mg/kg	Trich	RG_AGCK_INV-1_2020-09-10
INV	RG_AGCK	667555	5488644	2020	1	2020-09-10	Composite	Mercury	0.052	mg/kg	Trich	RG_AGCK_INV-1_2020-09-10
INV	RG_AGCK	667555	5488644	2020	1	2020-09-10	Composite	Thallium	0.22	mg/kg	Trich	RG_AGCK_INV-1_2020-09-10
INV	RG AGCK	667555	5488644	2020	1	2020-09-10	Composite	Lead	0.084	mg/kg	Trich	RG_AGCK_INV-1_2020-09-10
INV	RG AGCK	667555	5488644	2020	1	2020-09-10	Composite	Uranium	0.027	mg/kg	Trich	RG_AGCK_INV-1_2020-09-10
INV	RG_AGCK	667555	5488644	2020	2	2020-09-10	Composite	Lithium	0.19	mg/kg	Trich	RG_AGCK_INV-2_2020-09-10
INV	RG AGCK	667555	5488644	2020	2	2020-09-10	Composite	Boron	0.55	mg/kg	Trich	RG AGCK INV-2 2020-09-10
INV	RG_AGCK	667555	5488644	2020	2	2020-09-10	Composite	Sodium	2,920	mg/kg	Trich	RG_AGCK_INV-2_2020-09-10
INV	RG_AGCK	667555	5488644	2020	2	2020-09-10	Composite	Magnesium	1,247	mg/kg	Trich	RG AGCK INV-2 2020-09-10
INV	RG AGCK	667555	5488644	2020	2	2020-09-10	Composite	Aluminum	243	mg/kg	Trich	RG AGCK INV-2 2020-09-10
INV	RG_AGCK	667555	5488644	2020	2	2020-09-10	Composite	Phosphorus	10,154	mg/kg	Trich	RG AGCK INV-2 2020-09-10
INV	RG_AGCK	667555	5488644	2020	2	2020-09-10	Composite	Potassium	9,919	mg/kg	Trich	RG AGCK INV-2 2020-09-10
INV	RG_AGCK	667555	5488644	2020	2	2020-09-10	Composite	Calcium	1,758	mg/kg	Trich	RG AGCK INV-2_2020-09-10
INV	RG_AGCK RG_AGCK	667555	5488644	2020	2	2020-09-10	Composite	Titanium	1,756	mg/kg	Trich	RG_AGCK_INV-2_2020-09-10
INV		667555	5488644	2020		2020-09-10		Vanadium	0.46		Trich	
	RG_AGCK				2		Composite			mg/kg		RG_AGCK_INV-2_2020-09-10
INV	RG_AGCK	667555	5488644	2020	2	2020-09-10	Composite	Chromium	2.9	mg/kg	Trich	RG_AGCK_INV-2_2020-09-10
INV	RG_AGCK	667555	5488644	2020	2	2020-09-10	Composite	Manganese	16	mg/kg	Trich	RG_AGCK_INV-2_2020-09-10
INV	RG_AGCK	667555	5488644	2020	2	2020-09-10	Composite	Iron	182	mg/kg	Trich	RG_AGCK_INV-2_2020-09-10
INV	RG_AGCK	667555	5488644	2020	2	2020-09-10	Composite	Cobalt	0.18	mg/kg	Trich	RG_AGCK_INV-2_2020-09-10
INV	RG_AGCK	667555	5488644	2020	2	2020-09-10	Composite	Nickel	6.0	mg/kg	Trich	RG_AGCK_INV-2_2020-09-10
INV	RG_AGCK	667555	5488644	2020	2	2020-09-10	Composite	Copper	9.3	mg/kg	Trich	RG_AGCK_INV-2_2020-09-10
INV	RG_AGCK	667555	5488644	2020	2	2020-09-10	Composite	Zinc	219	mg/kg	Trich	RG_AGCK_INV-2_2020-09-10
INV	RG_AGCK	667555	5488644	2020	2	2020-09-10	Composite	Arsenic	1.2	mg/kg	Trich	RG_AGCK_INV-2_2020-09-10
INV	RG_AGCK	667555	5488644	2020	2	2020-09-10	Composite	Selenium	4.9	mg/kg	Trich	RG_AGCK_INV-2_2020-09-10
INV	RG_AGCK	667555	5488644	2020	2	2020-09-10	Composite	Strontium	4.4	mg/kg	Trich	RG_AGCK_INV-2_2020-09-10
INV	RG_AGCK	667555	5488644	2020	2	2020-09-10	Composite	Molybdenum	0.26	mg/kg	Trich	RG_AGCK_INV-2_2020-09-10
INV	RG_AGCK	667555	5488644	2020	2	2020-09-10	Composite	Silver	0.036	mg/kg	Trich	RG_AGCK_INV-2_2020-09-10
INV	RG_AGCK	667555	5488644	2020	2	2020-09-10	Composite	Cadmium	0.48	mg/kg	Trich	RG_AGCK_INV-2_2020-09-10
IINV		i										
INV	RG_AGCK	667555	5488644	2020	2	2020-09-10	Composite	Tin	0.18	mg/kg	Trich	RG AGCK INV-2 2020-09-10

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Tura	Ctation	<u>Locatio</u>	on (UTMs) ^(a)	Voca	Doublesto	Dete	Species/Companies	Avaduta	Doords	Heit		Laboratory Information
Туре	Station	Easting	Northing	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit	Lab	Sample ID
INV	RG AGCK	667555	5488644	2020	2	2020-09-10	Composite	Barium	21	mg/kg	Trich	RG_AGCK_INV-2_2020-09-10
INV	RG AGCK	667555	5488644	2020	2	2020-09-10	Composite	Mercury	0.043	mg/kg	Trich	RG AGCK INV-2 2020-09-10
INV	RG AGCK	667555	5488644	2020	2	2020-09-10	Composite	Thallium	0.13	mg/kg	Trich	RG_AGCK_INV-2_2020-09-10
INV	RG AGCK	667555	5488644	2020	2	2020-09-10	Composite	Lead	0.071	mg/kg	Trich	RG_AGCK_INV-2_2020-09-10
INV	RG AGCK	667555	5488644	2020	2	2020-09-10	Composite	Uranium	0.032	mg/kg	Trich	RG AGCK INV-2 2020-09-10
INV	RG AGCK	667555	5488644	2020	3	2020-09-10	Composite	Lithium	0.24	mg/kg	Trich	RG_AGCK_INV-2_2020-09-10
							'					
INV	RG_AGCK	667555	5488644	2020	3	2020-09-10	Composite	Boron	0.62	mg/kg	Trich	RG_AGCK_INV-3_2020-09-10
INV	RG_AGCK	667555	5488644	2020	3	2020-09-10	Composite	Sodium	4,562	mg/kg	Trich	RG_AGCK_INV-3_2020-09-10
INV	RG_AGCK	667555	5488644	2020	3	2020-09-10	Composite	Magnesium	1,404	mg/kg	Trich	RG_AGCK_INV-3_2020-09-10
INV	RG_AGCK	667555	5488644	2020	3	2020-09-10	Composite	Aluminum	263	mg/kg	Trich	RG_AGCK_INV-3_2020-09-10
INV	RG_AGCK	667555	5488644	2020	3	2020-09-10	Composite	Phosphorus	12,821	mg/kg	Trich	RG_AGCK_INV-3_2020-09-10
INV	RG_AGCK	667555	5488644	2020	3	2020-09-10	Composite	Potassium	12,125	mg/kg	Trich	RG_AGCK_INV-3_2020-09-10
INV	RG_AGCK	667555	5488644	2020	3	2020-09-10	Composite	Calcium	1,478	mg/kg	Trich	RG_AGCK_INV-3_2020-09-10
INV	RG_AGCK	667555	5488644	2020	3	2020-09-10	Composite	Titanium	15	mg/kg	Trich	RG_AGCK_INV-3_2020-09-10
INV	RG_AGCK	667555	5488644	2020	3	2020-09-10	Composite	Vanadium	0.41	mg/kg	Trich	RG_AGCK_INV-3_2020-09-10
INV	RG_AGCK	667555	5488644	2020	3	2020-09-10	Composite	Chromium	2.4	mg/kg	Trich	RG_AGCK_INV-3_2020-09-10
INV	RG_AGCK	667555	5488644	2020	3	2020-09-10	Composite	Manganese	19	mg/kg	Trich	RG_AGCK_INV-3_2020-09-10
INV	RG AGCK	667555	5488644	2020	3	2020-09-10	Composite	Iron	175	mg/kg	Trich	RG AGCK INV-3 2020-09-10
INV	RG AGCK	667555	5488644	2020	3	2020-09-10	Composite	Cobalt	0.14	mg/kg	Trich	RG AGCK INV-3 2020-09-10
INV	RG AGCK	667555	5488644	2020	3	2020-09-10	Composite	Nickel	5.7	mg/kg	Trich	RG_AGCK_INV-3_2020-09-10
INV	RG AGCK	667555	5488644	2020	3	2020-09-10	Composite	Copper	8.8	mg/kg	Trich	RG AGCK INV-3 2020-09-10
INV	RG AGCK	667555	5488644	2020	3	2020-09-10	Composite	Zinc	216	mg/kg	Trich	RG AGCK INV-3 2020-09-10
INV	RG AGCK	667555	5488644	2020	3	2020-09-10	Composite	Arsenic	1.5	mg/kg	Trich	RG AGCK INV-3 2020-09-10
INV	RG AGCK	667555	5488644	2020	3	2020-09-10	Composite	Selenium	7.2	= =	Trich	RG AGCK INV-3 2020-09-10
				2020			· · · · · · · · · · · · · · · · · · ·			mg/kg		
INV	RG_AGCK	667555	5488644		3	2020-09-10	Composite	Strontium	3.5	mg/kg	Trich	RG_AGCK_INV-3_2020-09-10
INV	RG_AGCK	667555	5488644	2020	3	2020-09-10	Composite	Molybdenum	0.3	mg/kg	Trich	RG_AGCK_INV-3_2020-09-10
INV	RG_AGCK	667555	5488644	2020	3	2020-09-10	Composite	Silver	0.051	mg/kg	Trich	RG_AGCK_INV-3_2020-09-10
INV	RG_AGCK	667555	5488644	2020	3	2020-09-10	Composite	Cadmium	0.53	mg/kg	Trich	RG_AGCK_INV-3_2020-09-10
INV	RG_AGCK	667555	5488644	2020	3	2020-09-10	Composite	Tin	0.088	mg/kg	Trich	RG_AGCK_INV-3_2020-09-10
INV	RG_AGCK	667555	5488644	2020	3	2020-09-10	Composite	Antimony	0.014	mg/kg	Trich	RG_AGCK_INV-3_2020-09-10
INV	RG_AGCK	667555	5488644	2020	3	2020-09-10	Composite	Barium	26	mg/kg	Trich	RG_AGCK_INV-3_2020-09-10
INV	RG_AGCK	667555	5488644	2020	3	2020-09-10	Composite	Mercury	0.069	mg/kg	Trich	RG_AGCK_INV-3_2020-09-10
INV	RG_AGCK	667555	5488644	2020	3	2020-09-10	Composite	Thallium	0.25	mg/kg	Trich	RG_AGCK_INV-3_2020-09-10
INV	RG_AGCK	667555	5488644	2020	3	2020-09-10	Composite	Lead	0.08	mg/kg	Trich	RG_AGCK_INV-3_2020-09-10
INV	RG_AGCK	667555	5488644	2020	3	2020-09-10	Composite	Uranium	0.037	mg/kg	Trich	RG_AGCK_INV-3_2020-09-10
INV	RG LE1	659635	5494108	2020	1	2020-09-17	Composite	Lithium	0.29	mg/kg	Trich	RG LE1 INV-1 2020-09-17
INV	RG LE1	659635	5494108	2020	1	2020-09-17	Composite	Boron	0.88	mg/kg	Trich	RG LE1 INV-1 2020-09-17
INV	RG LE1	659635	5494108	2020	1	2020-09-17	Composite	Sodium	3,598	mg/kg	Trich	RG LE1 INV-1 2020-09-17
INV	RG LE1	659635	5494108	2020	1	2020-09-17	Composite	Magnesium	1,210	mg/kg	Trich	RG LE1 INV-1 2020-09-17
INV	RG_LE1	659635	5494108	2020	1	2020-09-17	Composite	Aluminum	532	mg/kg	Trich	RG LE1 INV-1 2020-09-17
INV	RG_LE1	659635	5494108	2020	1	2020-09-17	Composite	Phosphorus	10,963	mg/kg	Trich	RG LE1 INV-1 2020-09-17
INV	RG_LE1	659635	5494108	2020	1	2020-09-17	Composite	Potassium	9,577	mg/kg	Trich	RG LE1 INV-1 2020-09-17
INV	RG LE1	659635	5494108	2020	1	2020-09-17	Composite	Calcium	1,159	mg/kg	Trich	RG LE1 INV-1 2020-09-17
INV	RG LE1	659635	5494108	2020	1	2020-09-17	Composite	Titanium	32		Trich	RG LE1 INV-1 2020-09-17
INV	RG_LE1	659635	5494108	2020	1	2020-09-17	•	Vanadium		mg/kg	Trich	RG_LE1_INV-1_2020-09-17 RG_LE1_INV-1_2020-09-17
					•		Composite		1.5	mg/kg		
INV	RG_LE1	659635	5494108	2020	1	2020-09-17	Composite	Chromium	3.3	mg/kg	Trich	RG_LE1_INV-1_2020-09-17
INV	RG_LE1	659635	5494108	2020	1	2020-09-17	Composite	Manganese	57	mg/kg	Trich	RG_LE1_INV-1_2020-09-17
INV	RG_LE1	659635	5494108	2020	1	2020-09-17	Composite	Iron	410	mg/kg	Trich	RG_LE1_INV-1_2020-09-17
INV	RG_LE1	659635	5494108	2020	1	2020-09-17	Composite	Cobalt	0.45	mg/kg	Trich	RG_LE1_INV-1_2020-09-17
INV	RG_LE1	659635	5494108	2020	1	2020-09-17	Composite	Nickel	4.8	mg/kg	Trich	RG_LE1_INV-1_2020-09-17
INV	RG_LE1	659635	5494108	2020	1	2020-09-17	Composite	Copper	18	mg/kg	Trich	RG_LE1_INV-1_2020-09-17
INV	RG_LE1	659635	5494108	2020	1	2020-09-17	Composite	Zinc	164	mg/kg	Trich	RG_LE1_INV-1_2020-09-17
INV	RG_LE1	659635	5494108	2020	1	2020-09-17	Composite	Arsenic	0.46	mg/kg	Trich	RG_LE1_INV-1_2020-09-17
INV	RG LE1	659635	5494108	2020	1	2020-09-17	Composite	Selenium	4.5	mg/kg	Trich	RG LE1 INV-1 2020-09-17
IINV	INO LLI	000000										

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Tuno	Station	Location	n (UTMs) ^(a)	Veer	Donlingto	Doto	Species/Composite	Analysta	Beault	Herit		Laboratory Information
Туре	Station	Easting	Northing	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit	Lab	Sample ID
INV	RG_LE1	659635	5494108	2020	1	2020-09-17	Composite	Molybdenum	0.55	mg/kg	Trich	RG_LE1_INV-1_2020-09-17
INV	RG LE1	659635	5494108	2020	1	2020-09-17	Composite	Silver	0.2	mg/kg	Trich	RG LE1 INV-1 2020-09-17
INV	RG LE1	659635	5494108	2020	1	2020-09-17	Composite	Cadmium	2.2	mg/kg	Trich	RG LE1 INV-1 2020-09-17
INV	RG LE1	659635	5494108	2020	1	2020-09-17	Composite	Tin	0.07	mg/kg	Trich	RG LE1 INV-1 2020-09-17
INV	RG LE1	659635	5494108	2020	1	2020-09-17	Composite	Antimony	0.04	mg/kg	Trich	RG LE1 INV-1 2020-09-17
INV	RG_LE1	659635	5494108	2020	1	2020-09-17	Composite	Barium	65	mg/kg	Trich	RG LE1 INV-1 2020-09-17
INV	RG LE1	659635	5494108	2020	1	2020-09-17	Composite	Mercury	0.15	mg/kg	Trich	RG LE1 INV-1 2020-09-17
INV	RG LE1	659635	5494108	2020	1	2020-09-17	Composite	Thallium	0.03	mg/kg	Trich	RG LE1 INV-1 2020-09-17
INV	RG LE1	659635	5494108	2020	1	2020-09-17	Composite	Lead	0.23	mg/kg	Trich	RG LE1 INV-1 2020-09-17
INV	RG LE1	659635	5494108	2020	1	2020-09-17	Composite	Uranium	0.048	mg/kg	Trich	RG LE1 INV-1 2020-09-17
INV	RG LE1	659635	5494108	2020	2	2020-09-17	Composite	Lithium	0.41	mg/kg	Trich	RG LE1 INV-2 2020-09-17
INV	RG_LE1	659635	5494108	2020	2	2020-09-17	Composite	Boron	0.73	mg/kg	Trich	RG_LE1_INV-2_2020-09-17
INV	RG_LE1	659635	5494108	2020	2	2020-09-17	Composite	Sodium	3,365		Trich	RG_LE1_INV-2_2020-09-17
INV	RG_LE1	659635	5494108	2020	2	2020-09-17	Composite	Magnesium	1,104	mg/kg	Trich	RG_LE1_INV-2_2020-09-17
INV							'	=		mg/kg		
	RG_LE1	659635	5494108	2020	2	2020-09-17	Composite	Aluminum	627	mg/kg	Trich	RG_LE1_INV-2_2020-09-17
INV	RG_LE1	659635	5494108	2020	2	2020-09-17	Composite	Phosphorus	10,267	mg/kg	Trich	RG_LE1_INV-2_2020-09-17
INV	RG_LE1	659635	5494108	2020	2	2020-09-17	Composite	Potassium	8,665	mg/kg	Trich	RG_LE1_INV-2_2020-09-17
INV	RG_LE1	659635	5494108	2020	2	2020-09-17	Composite	Calcium	1,221	mg/kg	Trich	RG_LE1_INV-2_2020-09-17
INV	RG_LE1	659635	5494108	2020	2	2020-09-17	Composite	Titanium	40	mg/kg	Trich	RG_LE1_INV-2_2020-09-17
INV	RG_LE1	659635	5494108	2020	2	2020-09-17	Composite	Vanadium	1.7	mg/kg	Trich	RG_LE1_INV-2_2020-09-17
INV	RG_LE1	659635	5494108	2020	2	2020-09-17	Composite	Chromium	4.7	mg/kg	Trich	RG_LE1_INV-2_2020-09-17
INV	RG_LE1	659635	5494108	2020	2	2020-09-17	Composite	Manganese	87	mg/kg	Trich	RG_LE1_INV-2_2020-09-17
INV	RG_LE1	659635	5494108	2020	2	2020-09-17	Composite	Iron	487	mg/kg	Trich	RG_LE1_INV-2_2020-09-17
INV	RG_LE1	659635	5494108	2020	2	2020-09-17	Composite	Cobalt	0.77	mg/kg	Trich	RG_LE1_INV-2_2020-09-17
INV	RG_LE1	659635	5494108	2020	2	2020-09-17	Composite	Nickel	9.0	mg/kg	Trich	RG_LE1_INV-2_2020-09-17
INV	RG_LE1	659635	5494108	2020	2	2020-09-17	Composite	Copper	17	mg/kg	Trich	RG_LE1_INV-2_2020-09-17
INV	RG_LE1	659635	5494108	2020	2	2020-09-17	Composite	Zinc	161	mg/kg	Trich	RG_LE1_INV-2_2020-09-17
INV	RG_LE1	659635	5494108	2020	2	2020-09-17	Composite	Arsenic	0.51	mg/kg	Trich	RG_LE1_INV-2_2020-09-17
INV	RG_LE1	659635	5494108	2020	2	2020-09-17	Composite	Selenium	5.2	mg/kg	Trich	RG_LE1_INV-2_2020-09-17
INV	RG_LE1	659635	5494108	2020	2	2020-09-17	Composite	Strontium	2.6	mg/kg	Trich	RG_LE1_INV-2_2020-09-17
INV	RG_LE1	659635	5494108	2020	2	2020-09-17	Composite	Molybdenum	0.66	mg/kg	Trich	RG_LE1_INV-2_2020-09-17
INV	RG_LE1	659635	5494108	2020	2	2020-09-17	Composite	Silver	0.15	mg/kg	Trich	RG_LE1_INV-2_2020-09-17
INV	RG_LE1	659635	5494108	2020	2	2020-09-17	Composite	Cadmium	2.7	mg/kg	Trich	RG_LE1_INV-2_2020-09-17
INV	RG LE1	659635	5494108	2020	2	2020-09-17	Composite	Tin	0.14	mg/kg	Trich	RG LE1 INV-2 2020-09-17
INV	RG LE1	659635	5494108	2020	2	2020-09-17	Composite	Antimony	0.033	mg/kg	Trich	RG LE1 INV-2 2020-09-17
INV	RG_LE1	659635	5494108	2020	2	2020-09-17	Composite	Barium	105	mg/kg	Trich	RG LE1 INV-2 2020-09-17
INV	RG_LE1	659635	5494108	2020	2	2020-09-17	Composite	Mercury	0.11	mg/kg	Trich	RG LE1 INV-2 2020-09-17
INV	RG_LE1	659635	5494108	2020	2	2020-09-17	Composite	Thallium	0.035	mg/kg	Trich	RG LE1 INV-2 2020-09-17
INV	RG_LE1	659635	5494108	2020	2	2020-09-17	Composite	Lead	0.29	mg/kg	Trich	RG LE1 INV-2 2020-09-17
INV	RG_LE1	659635	5494108	2020	2	2020-09-17	Composite	Uranium	0.056	mg/kg	Trich	RG LE1 INV-2 2020-09-17
INV	RG_LE1	659635	5494108	2020	3	2020-09-17	Composite	Lithium	0.28	mg/kg	Trich	RG LE1 INV-3 2020-09-17
INV	RG_LE1	659635	5494108	2020	3	2020-09-17	Composite	Boron	0.59	mg/kg	Trich	RG LE1 INV-3 2020-09-17
INV	RG LE1	659635	5494108	2020	3	2020-09-17	Composite	Sodium	3,857	mg/kg	Trich	RG LE1 INV-3 2020-09-17
INV	RG_LE1	659635	5494108	2020	3	2020-09-17	Composite	Magnesium	1,239	mg/kg	Trich	RG LE1 INV-3 2020-09-17
INV	RG_LE1	659635	5494108	2020	3	2020-09-17	Composite	Aluminum	325	mg/kg	Trich	RG_LE1_INV-3_2020-09-17
INV	RG LE1	659635	5494108	2020	3	2020-09-17	Composite	Phosphorus	12,294	mg/kg	Trich	RG LE1 INV-3 2020-09-17
INV	RG_LE1	659635	5494108	2020	3	2020-09-17		Potassium	10,219		Trich	RG_LE1_INV-3_2020-09-17 RG_LE1_INV-3_2020-09-17
	_						Composite			mg/kg		
INV	RG_LE1	659635	5494108	2020	3	2020-09-17	Composite	Calcium	895	mg/kg	Trich	RG_LE1_INV-3_2020-09-17
INV	RG_LE1	659635	5494108	2020	3	2020-09-17	Composite	Titanium	16	mg/kg	Trich	RG_LE1_INV-3_2020-09-17
INV	RG_LE1	659635	5494108	2020	3	2020-09-17	Composite	Vanadium	0.94	mg/kg	Trich	RG_LE1_INV-3_2020-09-17
INV	RG_LE1	659635	5494108	2020	3	2020-09-17	Composite	Chromium	2.5	mg/kg	Trich	RG_LE1_INV-3_2020-09-17
INV	RG_LE1	659635	5494108	2020	3	2020-09-17	Composite	Manganese	63	mg/kg	Trich	RG_LE1_INV-3_2020-09-17
INV	RG_LE1	659635	5494108	2020	3	2020-09-17	Composite	Iron	254	mg/kg	Trich	RG_LE1_INV-3_2020-09-17
INV	RG_LE1	659635	5494108	2020	3	2020-09-17	Composite	Cobalt	0.38	mg/kg	Trich	RG_LE1_INV-3_2020-09-17
INV	RG_LE1	659635	5494108	2020	3	2020-09-17	Composite	Nickel	3.3	mg/kg	Trich	RG LE1 INV-3 2020-09-17

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Туре	Station		n (UTMs) ^(a)	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit		Laboratory Information
		Easting	Northing								Lab	Sample ID
INV	RG_LE1	659635	5494108	2020	3	2020-09-17	Composite	Copper	17	mg/kg	Trich	RG_LE1_INV-3_2020-09-17
INV	RG_LE1	659635	5494108	2020	3	2020-09-17	Composite	Zinc	148	mg/kg	Trich	RG_LE1_INV-3_2020-09-17
INV	RG_LE1	659635	5494108	2020	3	2020-09-17	Composite	Arsenic	0.55	mg/kg	Trich	RG_LE1_INV-3_2020-09-17
INV	RG_LE1	659635	5494108	2020	3	2020-09-17	Composite	Selenium	6.0	mg/kg	Trich	RG_LE1_INV-3_2020-09-17
INV	RG_LE1	659635	5494108	2020	3	2020-09-17	Composite	Strontium	1.8	mg/kg	Trich	RG_LE1_INV-3_2020-09-17
INV	RG_LE1	659635	5494108	2020	3	2020-09-17	Composite	Molybdenum	0.57	mg/kg	Trich	RG_LE1_INV-3_2020-09-17
INV	RG_LE1	659635	5494108	2020	3	2020-09-17	Composite	Silver	0.17	mg/kg	Trich	RG_LE1_INV-3_2020-09-17
INV	RG_LE1	659635	5494108	2020	3	2020-09-17	Composite	Cadmium	2.9	mg/kg	Trich	RG_LE1_INV-3_2020-09-17
INV	RG_LE1	659635	5494108	2020	3	2020-09-17	Composite	Tin	0.094	mg/kg	Trich	RG_LE1_INV-3_2020-09-17
INV	RG_LE1	659635	5494108	2020	3	2020-09-17	Composite	Antimony	0.022	mg/kg	Trich	RG_LE1_INV-3_2020-09-17
INV	RG_LE1	659635	5494108	2020	3	2020-09-17	Composite	Barium	67	mg/kg	Trich	RG_LE1_INV-3_2020-09-17
INV	RG_LE1	659635	5494108	2020	3	2020-09-17	Composite	Mercury	0.14	mg/kg	Trich	RG_LE1_INV-3_2020-09-17
INV	RG_LE1	659635	5494108	2020	3	2020-09-17	Composite	Thallium	0.028	mg/kg	Trich	RG_LE1_INV-3_2020-09-17
INV	RG_LE1	659635	5494108	2020	3	2020-09-17	Composite	Lead	0.13	mg/kg	Trich	RG_LE1_INV-3_2020-09-17
INV	RG_LE1	659635	5494108	2020	3	2020-09-17	Composite	Uranium	0.026	mg/kg	Trich	RG_LE1_INV-3_2020-09-17
INV	RG_MI25	668186	5482838	2020	1	2020-09-11	Composite	Lithium	0.55	mg/kg	Trich	RG_MI25_INV-1_2020-09-11
INV	RG_MI25	668186	5482838	2020	1	2020-09-11	Composite	Boron	2.9	mg/kg	Trich	RG_MI25_INV-1_2020-09-11
INV	RG MI25	668186	5482838	2020	1	2020-09-11	Composite	Sodium	3,075	mg/kg	Trich	RG MI25 INV-1 2020-09-11
INV	RG MI25	668186	5482838	2020	1	2020-09-11	Composite	Magnesium	1,126	mg/kg	Trich	RG MI25 INV-1 2020-09-11
INV	RG MI25	668186	5482838	2020	1	2020-09-11	Composite	Aluminum	1,154	mg/kg	Trich	RG MI25 INV-1 2020-09-11
INV	RG MI25	668186	5482838	2020	1	2020-09-11	Composite	Phosphorus	9,517	mg/kg	Trich	RG MI25 INV-1 2020-09-11
INV	RG MI25	668186	5482838	2020	1	2020-09-11	Composite	Potassium	8,536	mg/kg	Trich	RG MI25 INV-1 2020-09-11
INV	RG MI25	668186	5482838	2020	1	2020-09-11	Composite	Calcium	1,353	mg/kg	Trich	RG MI25 INV-1 2020-09-11
INV	RG MI25	668186	5482838	2020	1	2020-09-11	Composite	Titanium	65	mg/kg	Trich	RG MI25 INV-1 2020-09-11
INV	RG MI25	668186	5482838	2020	1	2020-09-11	Composite	Vanadium	1.3	mg/kg	Trich	RG MI25 INV-1 2020-09-11
INV	RG MI25	668186	5482838	2020	1	2020-09-11	Composite	Chromium	3.7	mg/kg	Trich	RG MI25 INV-1 2020-09-11
INV	RG MI25	668186	5482838	2020	1	2020-09-11	Composite	Manganese	53	mg/kg	Trich	RG MI25 INV-1 2020-09-11
INV	RG MI25	668186	5482838	2020	1	2020-09-11	Composite	Iron	532	mg/kg	Trich	RG MI25 INV-1 2020-09-11
INV	RG_MI25	668186	5482838	2020	1	2020-09-11	Composite	Cobalt	0.75		Trich	RG MI25 INV-1 2020-09-11
INV	RG_MI25	668186	5482838	2020	1	2020-09-11	· ·	Nickel	7.6	mg/kg	Trich	RG_MI25_INV-1_2020-09-11 RG_MI25_INV-1_2020-09-11
INV		668186	5482838	2020	1	2020-09-11	Composite Composite		13	mg/kg	Trich	RG_MI25_INV-1_2020-09-11 RG_MI25_INV-1_2020-09-11
	RG_MI25				1		'	Copper		mg/kg		
INV	RG_MI25	668186	5482838	2020	1	2020-09-11	Composite	Zinc	139	mg/kg	Trich	RG_MI25_INV-1_2020-09-11
INV	RG_MI25	668186	5482838	2020	1	2020-09-11	Composite	Arsenic	0.94	mg/kg	Trich	RG_MI25_INV-1_2020-09-11
INV	RG_MI25	668186	5482838	2020	1	2020-09-11	Composite	Selenium	2.9	mg/kg	Trich	RG_MI25_INV-1_2020-09-11
INV	RG_MI25	668186	5482838	2020	1	2020-09-11	Composite	Strontium	4.1	mg/kg	Trich	RG_MI25_INV-1_2020-09-11
INV	RG_MI25	668186	5482838	2020	1	2020-09-11	Composite	Molybdenum	0.34	mg/kg	Trich	RG_MI25_INV-1_2020-09-11
INV	RG_MI25	668186	5482838	2020	1	2020-09-11	Composite	Silver	0.039	mg/kg	Trich	RG_MI25_INV-1_2020-09-11
INV	RG_MI25	668186	5482838	2020	1	2020-09-11	Composite	Cadmium	1.1	mg/kg	Trich	RG_MI25_INV-1_2020-09-11
INV	RG_MI25	668186	5482838	2020	1	2020-09-11	Composite	Tin	0.14	mg/kg	Trich	RG_MI25_INV-1_2020-09-11
INV	RG_MI25	668186	5482838	2020	1	2020-09-11	Composite	Antimony	0.033	mg/kg	Trich	RG_MI25_INV-1_2020-09-11
INV	RG_MI25	668186	5482838	2020	1	2020-09-11	Composite	Barium	88	mg/kg	Trich	RG_MI25_INV-1_2020-09-11
INV	RG_MI25	668186	5482838	2020	1	2020-09-11	Composite	Mercury	0.052	mg/kg	Trich	RG_MI25_INV-1_2020-09-11
INV	RG_MI25	668186	5482838	2020	1	2020-09-11	Composite	Thallium	0.038	mg/kg	Trich	RG_MI25_INV-1_2020-09-11
INV	RG_MI25	668186	5482838	2020	1	2020-09-11	Composite	Lead	0.63	mg/kg	Trich	RG_MI25_INV-1_2020-09-11
INV	RG_MI25	668186	5482838	2020	1	2020-09-11	Composite	Uranium	0.043	mg/kg	Trich	RG_MI25_INV-1_2020-09-11
INV	RG_MI25	668186	5482838	2020	2	2020-09-11	Composite	Lithium	0.94	mg/kg	Trich	RG_MI25_INV-2_2020-09-11
INV	RG_MI25	668186	5482838	2020	2	2020-09-11	Composite	Boron	5.2	mg/kg	Trich	RG_MI25_INV-2_2020-09-11
INV	RG_MI25	668186	5482838	2020	2	2020-09-11	Composite	Sodium	4,649	mg/kg	Trich	RG_MI25_INV-2_2020-09-11
INV	RG MI25	668186	5482838	2020	2	2020-09-11	Composite	Magnesium	1,797	mg/kg	Trich	RG MI25 INV-2 2020-09-11
INV	RG MI25	668186	5482838	2020	2	2020-09-11	Composite	Aluminum	2,636	mg/kg	Trich	RG MI25 INV-2 2020-09-11
INV	RG MI25	668186	5482838	2020	2	2020-09-11	Composite	Phosphorus	12,438	mg/kg	Trich	RG MI25 INV-2 2020-09-11
INV	RG MI25	668186	5482838	2020	2	2020-09-11	Composite	Potassium	15,405	mg/kg	Trich	RG MI25 INV-2 2020-09-11
INV	RG MI25	668186	5482838	2020	2	2020-09-11	Composite	Calcium	2,105	mg/kg	Trich	RG MI25 INV-2 2020-09-11
INV	RG_MI25	668186	5482838	2020	2	2020-09-11	Composite	Titanium	190	mg/kg	Trich	RG MI25 INV-2 2020-09-11
		1 000100	1 0702000	2020		ZUZU-UJ-11	COLLIDOSILE	HAIHUH	1 1 2 0	HIU/NU	111011	110 191120 1117-2 2020-03-11

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Type	Ctation	Location	n (UTMs) ^(a)	Voor	Poplicate	Doto	Species/Composite	Analyte	Popult	Unit		Laboratory Information
Type	Station	Easting	Northing	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit	Lab	Sample ID
INV	RG MI25	668186	5482838	2020	2	2020-09-11	Composite	Chromium	5.9	mg/kg	Trich	RG_MI25_INV-2_2020-09-11
INV	RG MI25	668186	5482838	2020	2	2020-09-11	Composite	Manganese	95	mg/kg	Trich	RG_MI25_INV-2_2020-09-11
INV	RG MI25	668186	5482838	2020	2	2020-09-11	Composite	Iron	991	mg/kg	Trich	RG_MI25_INV-2_2020-09-11
INV	RG MI25	668186	5482838	2020	2	2020-09-11	Composite	Cobalt	2.1	mg/kg	Trich	RG_MI25_INV-2_2020-09-11
INV	RG MI25	668186	5482838	2020	2	2020-09-11	Composite	Nickel	14	mg/kg	Trich	RG MI25 INV-2 2020-09-11
INV	RG MI25	668186	5482838	2020	2	2020-09-11	Composite	Copper	20	mg/kg	Trich	RG_MI25_INV-2_2020-09-11
							· ·					
INV	RG_MI25	668186	5482838	2020	2	2020-09-11	Composite	Zinc	243	mg/kg	Trich	RG_MI25_INV-2_2020-09-11
INV	RG_MI25	668186	5482838	2020	2	2020-09-11	Composite	Arsenic	2.9	mg/kg	Trich	RG_MI25_INV-2_2020-09-11
INV	RG_MI25	668186	5482838	2020	2	2020-09-11	Composite	Selenium	4.4	mg/kg	Trich	RG_MI25_INV-2_2020-09-11
INV	RG_MI25	668186	5482838	2020	2	2020-09-11	Composite	Strontium	7.5	mg/kg	Trich	RG_MI25_INV-2_2020-09-11
INV	RG_MI25	668186	5482838	2020	2	2020-09-11	Composite	Molybdenum	0.75	mg/kg	Trich	RG_MI25_INV-2_2020-09-11
INV	RG_MI25	668186	5482838	2020	2	2020-09-11	Composite	Silver	0.064	mg/kg	Trich	RG_MI25_INV-2_2020-09-11
INV	RG_MI25	668186	5482838	2020	2	2020-09-11	Composite	Cadmium	3.4	mg/kg	Trich	RG_MI25_INV-2_2020-09-11
INV	RG_MI25	668186	5482838	2020	2	2020-09-11	Composite	Tin	0.37	mg/kg	Trich	RG_MI25_INV-2_2020-09-11
INV	RG_MI25	668186	5482838	2020	2	2020-09-11	Composite	Antimony	0.061	mg/kg	Trich	RG_MI25_INV-2_2020-09-11
INV	RG_MI25	668186	5482838	2020	2	2020-09-11	Composite	Barium	212	mg/kg	Trich	RG_MI25_INV-2_2020-09-11
INV	RG_MI25	668186	5482838	2020	2	2020-09-11	Composite	Mercury	0.086	mg/kg	Trich	RG_MI25_INV-2_2020-09-11
INV	RG MI25	668186	5482838	2020	2	2020-09-11	Composite	Thallium	0.064	mg/kg	Trich	RG MI25 INV-2 2020-09-11
INV	RG_MI25	668186	5482838	2020	2	2020-09-11	Composite	Lead	1.1	mg/kg	Trich	RG_MI25_INV-2_2020-09-11
INV	RG MI25	668186	5482838	2020	2	2020-09-11	Composite	Uranium	0.11	mg/kg	Trich	RG MI25 INV-2 2020-09-11
INV	RG MI25	668186	5482838	2020	3	2020-09-11	Composite	Lithium	0.54	mg/kg	Trich	RG_MI25_INV-3_2020-09-11
INV	RG MI25	668186	5482838	2020	3	2020-09-11	Composite	Boron	3.0	mg/kg	Trich	RG_MI25_INV-3_2020-09-11
INV	RG MI25	668186	5482838	2020	3	2020-09-11	Composite	Sodium	4,682	mg/kg	Trich	RG MI25 INV-3 2020-09-11
INV	RG MI25	668186	5482838	2020	3	2020-09-11	Composite		1,378		Trich	RG MI25 INV-3 2020-09-11
	_							Magnesium		mg/kg	Trich	
INV	RG_MI25	668186	5482838	2020	3	2020-09-11	Composite	Aluminum	1,273	mg/kg		RG_MI25_INV-3_2020-09-11
INV	RG_MI25	668186	5482838	2020	3	2020-09-11	Composite	Phosphorus	11,933	mg/kg	Trich	RG_MI25_INV-3_2020-09-11
INV	RG_MI25	668186	5482838	2020	3	2020-09-11	Composite	Potassium	11,840	mg/kg	Trich	RG_MI25_INV-3_2020-09-11
INV	RG_MI25	668186	5482838	2020	3	2020-09-11	Composite	Calcium	1,804	mg/kg	Trich	RG_MI25_INV-3_2020-09-11
INV	RG_MI25	668186	5482838	2020	3	2020-09-11	Composite	Titanium	83	mg/kg	Trich	RG_MI25_INV-3_2020-09-11
INV	RG_MI25	668186	5482838	2020	3	2020-09-11	Composite	Vanadium	1.6	mg/kg	Trich	RG_MI25_INV-3_2020-09-11
INV	RG_MI25	668186	5482838	2020	3	2020-09-11	Composite	Chromium	4.8	mg/kg	Trich	RG_MI25_INV-3_2020-09-11
INV	RG_MI25	668186	5482838	2020	3	2020-09-11	Composite	Manganese	50	mg/kg	Trich	RG_MI25_INV-3_2020-09-11
INV	RG_MI25	668186	5482838	2020	3	2020-09-11	Composite	Iron	563	mg/kg	Trich	RG_MI25_INV-3_2020-09-11
INV	RG_MI25	668186	5482838	2020	3	2020-09-11	Composite	Cobalt	1.5	mg/kg	Trich	RG_MI25_INV-3_2020-09-11
INV	RG_MI25	668186	5482838	2020	3	2020-09-11	Composite	Nickel	11	mg/kg	Trich	RG_MI25_INV-3_2020-09-11
INV	RG MI25	668186	5482838	2020	3	2020-09-11	Composite	Copper	19	mg/kg	Trich	RG MI25 INV-3 2020-09-11
INV	RG MI25	668186	5482838	2020	3	2020-09-11	Composite	Zinc	190	mg/kg	Trich	RG MI25 INV-3 2020-09-11
INV	RG MI25	668186	5482838	2020	3	2020-09-11	Composite	Arsenic	1.1	mg/kg	Trich	RG MI25 INV-3 2020-09-11
INV	RG MI25	668186	5482838	2020	3	2020-09-11	Composite	Selenium	4.1	mg/kg	Trich	RG MI25 INV-3 2020-09-11
INV	RG MI25	668186	5482838	2020	3	2020-09-11	Composite	Strontium	5.9	mg/kg	Trich	RG MI25 INV-3 2020-09-11
INV	RG MI25	668186	5482838	2020	3	2020-09-11	Composite	Molybdenum	0.47	mg/kg	Trich	RG MI25 INV-3 2020-09-11
INV	RG MI25	668186	5482838	2020	3	2020-09-11	Composite	Silver	0.057	mg/kg	Trich	RG MI25 INV-3 2020-09-11
INV	RG_MI25	668186	5482838	2020	3	2020-09-11	Composite	Cadmium	4.1		Trich	RG_MI25_INV-3_2020-09-11
INV	_	668186	5482838	2020		2020-09-11	'	Tin	0.23	mg/kg	Trich	
	RG_MI25				3		Composite			mg/kg		RG_MI25_INV-3_2020-09-11
INV	RG_MI25	668186	5482838	2020	3	2020-09-11	Composite	Antimony	0.038	mg/kg	Trich	RG_MI25_INV-3_2020-09-11
INV	RG_MI25	668186	5482838	2020	3	2020-09-11	Composite	Barium	70	mg/kg	Trich	RG_MI25_INV-3_2020-09-11
INV	RG_MI25	668186	5482838	2020	3	2020-09-11	Composite	Mercury	0.095	mg/kg	Trich	RG_MI25_INV-3_2020-09-11
INV	RG_MI25	668186	5482838	2020	3	2020-09-11	Composite	Thallium	0.042	mg/kg	Trich	RG_MI25_INV-3_2020-09-11
INV	RG_MI25	668186	5482838	2020	3	2020-09-11	Composite	Lead	0.79	mg/kg	Trich	RG_MI25_INV-3_2020-09-11
INV	RG_MI25	668186	5482838	2020	3	2020-09-11	Composite	Uranium	0.068	mg/kg	Trich	RG_MI25_INV-3_2020-09-11
INV	RG_CORCK	668556	5487388	2020	1	2020-09-12	Composite	Lithium	0.18	mg/kg	Trich	RG_CORCK_INV-1_2020-09-12
	RG_CORCK	668556	5487388	2020	1	2020-09-12	Composite	Boron	0.82	mg/kg	Trich	RG_CORCK_INV-1_2020-09-12
INV		+	1	1		0000 00 40	0 1	0 1:	0.405		T	DO 00001/ INN/ 4 0000 00 40
INV	RG_CORCK	668556	5487388	2020	1	2020-09-12	Composite	Sodium	3,465	mg/kg	Trich	RG_CORCK_INV-1 2020-09-12
	RG_CORCK RG CORCK	668556 668556	5487388 5487388	2020	1	2020-09-12	Composite	Magnesium	1,670	mg/kg mg/kg	Trich	RG_CORCK_INV-1_2020-09-12 RG_CORCK_INV-1_2020-09-12

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Туре	Station	Locatio	n (UTMs) ^(a)	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit		Laboratory Information
		Easting	Northing		Replicate		Species/Composite				Lab	Sample ID
INV	RG_CORCK	668556	5487388	2020	1	2020-09-12	Composite	Phosphorus	8,695	mg/kg	Trich	RG_CORCK_INV-1_2020-09-12
INV	RG_CORCK	668556	5487388	2020	1	2020-09-12	Composite	Potassium	7,504	mg/kg	Trich	RG_CORCK_INV-1_2020-09-12
INV	RG_CORCK	668556	5487388	2020	1	2020-09-12	Composite	Calcium	3,433	mg/kg	Trich	RG_CORCK_INV-1_2020-09-12
INV	RG_CORCK	668556	5487388	2020	1	2020-09-12	Composite	Titanium	2.9	mg/kg	Trich	RG_CORCK_INV-1_2020-09-12
INV	RG_CORCK	668556	5487388	2020	1	2020-09-12	Composite	Vanadium	0.11	mg/kg	Trich	RG_CORCK_INV-1_2020-09-12
INV	RG_CORCK	668556	5487388	2020	1	2020-09-12	Composite	Chromium	2.4	mg/kg	Trich	RG_CORCK_INV-1_2020-09-12
INV	RG_CORCK	668556	5487388	2020	1	2020-09-12	Composite	Manganese	51	mg/kg	Trich	RG_CORCK_INV-1_2020-09-12
INV	RG_CORCK	668556	5487388	2020	1	2020-09-12	Composite	Iron	109	mg/kg	Trich	RG_CORCK_INV-1_2020-09-12
INV	RG_CORCK	668556	5487388	2020	1	2020-09-12	Composite	Cobalt	8.2	mg/kg	Trich	RG_CORCK_INV-1_2020-09-12
INV	RG_CORCK	668556	5487388	2020	1	2020-09-12	Composite	Nickel	11	mg/kg	Trich	RG_CORCK_INV-1_2020-09-12
INV	RG_CORCK	668556	5487388	2020	1	2020-09-12	Composite	Copper	9.9	mg/kg	Trich	RG_CORCK_INV-1_2020-09-12
INV	RG_CORCK	668556	5487388	2020	1	2020-09-12	Composite	Zinc	132	mg/kg	Trich	RG_CORCK_INV-1_2020-09-12
INV	RG_CORCK	668556	5487388	2020	1	2020-09-12	Composite	Arsenic	<0.418	mg/kg	Trich	RG_CORCK_INV-1_2020-09-12
INV	RG CORCK	668556	5487388	2020	1	2020-09-12	Composite	Selenium	2.7	mg/kg	Trich	RG CORCK INV-1 2020-09-12
INV	RG CORCK	668556	5487388	2020	1	2020-09-12	Composite	Strontium	15	mg/kg	Trich	RG CORCK INV-1 2020-09-12
INV	RG CORCK	668556	5487388	2020	1	2020-09-12	Composite	Molybdenum	0.17	mg/kg	Trich	RG CORCK INV-1 2020-09-12
INV	RG CORCK	668556	5487388	2020	1	2020-09-12	Composite	Silver	0.03	mg/kg	Trich	RG CORCK INV-1 2020-09-12
INV	RG_CORCK	668556	5487388	2020	1	2020-09-12	Composite	Cadmium	0.45	mg/kg	Trich	RG CORCK INV-1 2020-09-12
INV	RG CORCK	668556	5487388	2020	1	2020-09-12	Composite	Tin	0.07	mg/kg	Trich	RG CORCK INV-1 2020-09-12
INV	RG_CORCK	668556	5487388	2020	1	2020-09-12	Composite	Antimony	0.019	mg/kg	Trich	RG_CORCK_INV-1_2020-09-12
INV	RG CORCK	668556	5487388	2020	1	2020-09-12	Composite	Barium	6.0	mg/kg	Trich	RG CORCK INV-1 2020-09-12
INV	RG CORCK	668556	5487388	2020	1	2020-09-12	Composite	Mercury	0.034	mg/kg	Trich	RG CORCK INV-1 2020-09-12
INV	RG_CORCK	668556	5487388	2020	1	2020-09-12	Composite	Thallium	0.017	mg/kg	Trich	RG_CORCK_INV-1_2020-09-12
INV	RG_CORCK	668556	5487388	2020	1	2020-09-12	Composite	Lead	0.019	mg/kg	Trich	RG CORCK INV-1 2020-09-12
INV	RG CORCK	668556	5487388	2020	1	2020-09-12	Composite	Uranium	0.031	mg/kg	Trich	RG CORCK INV-1 2020-09-12
INV	RG CORCK	668556	5487388	2020	2	2020-09-12	Composite	Lithium	0.031	mg/kg	Trich	RG_CORCK_INV-2_2020-09-12
INV	RG CORCK	668556	5487388	2020	2	2020-09-12	Composite	Boron	0.2		Trich	RG CORCK INV-2 2020-09-12
INV	RG_CORCK	668556	5487388	2020	2	2020-09-12	'	Sodium	2,794	mg/kg	Trich	RG_CORCK_INV-2_2020-09-12
							Composite			mg/kg		
INV	RG_CORCK	668556	5487388	2020	2	2020-09-12	Composite	Magnesium	1,339	mg/kg	Trich	RG_CORCK_INV-2_2020-09-12
INV	RG_CORCK	668556	5487388	2020	2	2020-09-12	Composite	Aluminum	76	mg/kg	Trich	RG_CORCK_INV-2_2020-09-12
INV	RG_CORCK	668556	5487388	2020	2	2020-09-12	Composite	Phosphorus	7,532	mg/kg	Trich	RG_CORCK_INV-2_2020-09-12
INV	RG_CORCK	668556	5487388	2020	2	2020-09-12	Composite	Potassium	5,615	mg/kg	Trich	RG_CORCK_INV-2_2020-09-12
INV	RG_CORCK	668556	5487388	2020	2	2020-09-12	Composite	Calcium	2,694	mg/kg	Trich	RG_CORCK_INV-2_2020-09-12
INV	RG_CORCK	668556	5487388	2020	2	2020-09-12	Composite	Titanium	3.9	mg/kg	Trich	RG_CORCK_INV-2_2020-09-12
INV	RG_CORCK	668556	5487388	2020	2	2020-09-12	Composite	Vanadium	0.11	mg/kg	Trich	RG_CORCK_INV-2_2020-09-12
INV	RG_CORCK	668556	5487388	2020	2	2020-09-12	Composite	Chromium	2.1	mg/kg	Trich	RG_CORCK_INV-2_2020-09-12
INV	RG_CORCK	668556	5487388	2020	2	2020-09-12	Composite	Manganese	52	mg/kg	Trich	RG_CORCK_INV-2_2020-09-12
INV	RG_CORCK	668556	5487388	2020	2	2020-09-12	Composite	Iron	106	mg/kg	Trich	RG_CORCK_INV-2_2020-09-12
INV	RG_CORCK	668556	5487388	2020	2	2020-09-12	Composite	Cobalt	8.9	mg/kg	Trich	RG_CORCK_INV-2_2020-09-12
INV	RG_CORCK	668556	5487388	2020	2	2020-09-12	Composite	Nickel	8.3	mg/kg	Trich	RG_CORCK_INV-2_2020-09-12
INV	RG_CORCK	668556	5487388	2020	2	2020-09-12	Composite	Copper	9.4	mg/kg	Trich	RG_CORCK_INV-2_2020-09-12
INV	RG_CORCK	668556	5487388	2020	2	2020-09-12	Composite	Zinc	142	mg/kg	Trich	RG_CORCK_INV-2_2020-09-12
INV	RG_CORCK	668556	5487388	2020	2	2020-09-12	Composite	Arsenic	<0.418	mg/kg	Trich	RG_CORCK_INV-2_2020-09-12
INV	RG_CORCK	668556	5487388	2020	2	2020-09-12	Composite	Selenium	2.6	mg/kg	Trich	RG_CORCK_INV-2_2020-09-12
INV	RG_CORCK	668556	5487388	2020	2	2020-09-12	Composite	Strontium	12	mg/kg	Trich	RG_CORCK_INV-2_2020-09-12
INV	RG_CORCK	668556	5487388	2020	2	2020-09-12	Composite	Molybdenum	0.12	mg/kg	Trich	RG_CORCK_INV-2_2020-09-12
INV	RG_CORCK	668556	5487388	2020	2	2020-09-12	Composite	Silver	0.024	mg/kg	Trich	RG_CORCK_INV-2_2020-09-12
INV	RG_CORCK	668556	5487388	2020	2	2020-09-12	Composite	Cadmium	0.27	mg/kg	Trich	RG_CORCK_INV-2_2020-09-12
INV	RG_CORCK	668556	5487388	2020	2	2020-09-12	Composite	Tin	0.07	mg/kg	Trich	RG_CORCK_INV-2_2020-09-12
INV	RG_CORCK	668556	5487388	2020	2	2020-09-12	Composite	Antimony	0.024	mg/kg	Trich	RG_CORCK_INV-2_2020-09-12
INV	RG_CORCK	668556	5487388	2020	2	2020-09-12	Composite	Barium	4.4	mg/kg	Trich	RG_CORCK_INV-2_2020-09-12
INV	RG CORCK	668556	5487388	2020	2	2020-09-12	Composite	Mercury	<0.030	mg/kg	Trich	RG CORCK INV-2 2020-09-12
INV	RG CORCK	668556	5487388	2020	2	2020-09-12	Composite	Thallium	0.013	mg/kg	Trich	RG CORCK INV-2 2020-09-12
INV	RG CORCK	668556	5487388	2020	2	2020-09-12	Composite	Lead	0.026	mg/kg	Trich	RG CORCK INV-2 2020-09-12
INV	RG_CORCK	668556	5487388	2020	2	2020-09-12	Composite	Uranium	0.028	mg/kg	Trich	RG CORCK INV-2 2020-09-12

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Туре	Station		n (UTMs) ^(a)	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit		Laboratory Information
		Easting	Northing								Lab	Sample ID
INV	RG_CORCK	668556	5487388	2020	3	2020-09-12	Composite	Lithium	0.2	mg/kg	Trich	RG_CORCK_INV-3_2020-09-12
INV	RG_CORCK	668556	5487388	2020	3	2020-09-12	Composite	Boron	0.71	mg/kg	Trich	RG_CORCK_INV-3_2020-09-12
INV	RG_CORCK	668556	5487388	2020	3	2020-09-12	Composite	Sodium	2,656	mg/kg	Trich	RG_CORCK_INV-3_2020-09-12
INV	RG_CORCK	668556	5487388	2020	3	2020-09-12	Composite	Magnesium	1,432	mg/kg	Trich	RG_CORCK_INV-3_2020-09-12
INV	RG_CORCK	668556	5487388	2020	3	2020-09-12	Composite	Aluminum	54	mg/kg	Trich	RG_CORCK_INV-3_2020-09-12
INV	RG_CORCK	668556	5487388	2020	3	2020-09-12	Composite	Phosphorus	8,123	mg/kg	Trich	RG_CORCK_INV-3_2020-09-12
INV	RG_CORCK	668556	5487388	2020	3	2020-09-12	Composite	Potassium	7,206	mg/kg	Trich	RG_CORCK_INV-3_2020-09-12
INV	RG_CORCK	668556	5487388	2020	3	2020-09-12	Composite	Calcium	1,989	mg/kg	Trich	RG_CORCK_INV-3_2020-09-12
INV	RG_CORCK	668556	5487388	2020	3	2020-09-12	Composite	Titanium	2.8	mg/kg	Trich	RG_CORCK_INV-3_2020-09-12
INV	RG_CORCK	668556	5487388	2020	3	2020-09-12	Composite	Vanadium	0.085	mg/kg	Trich	RG_CORCK_INV-3_2020-09-12
INV	RG_CORCK	668556	5487388	2020	3	2020-09-12	Composite	Chromium	2.1	mg/kg	Trich	RG_CORCK_INV-3_2020-09-12
INV	RG_CORCK	668556	5487388	2020	3	2020-09-12	Composite	Manganese	49	mg/kg	Trich	RG_CORCK_INV-3_2020-09-12
INV	RG_CORCK	668556	5487388	2020	3	2020-09-12	Composite	Iron	94	mg/kg	Trich	RG_CORCK_INV-3_2020-09-12
INV	RG CORCK	668556	5487388	2020	3	2020-09-12	Composite	Cobalt	7.5	mg/kg	Trich	RG CORCK INV-3 2020-09-12
INV	RG CORCK	668556	5487388	2020	3	2020-09-12	Composite	Nickel	8.0	mg/kg	Trich	RG CORCK INV-3 2020-09-12
INV	RG CORCK	668556	5487388	2020	3	2020-09-12	Composite	Copper	10	mg/kg	Trich	RG CORCK INV-3 2020-09-12
INV	RG CORCK	668556	5487388	2020	3	2020-09-12	Composite	Zinc	176	mg/kg	Trich	RG CORCK INV-3 2020-09-12
INV	RG CORCK	668556	5487388	2020	3	2020-09-12	Composite	Arsenic	<0.418	mg/kg	Trich	RG CORCK INV-3 2020-09-12
INV	RG CORCK	668556	5487388	2020	3	2020-09-12	Composite	Selenium	2.6	mg/kg	Trich	RG CORCK INV-3 2020-09-12
INV	RG CORCK	668556	5487388	2020	3	2020-09-12	Composite	Strontium	13	mg/kg	Trich	RG CORCK INV-3 2020-09-12
INV	RG CORCK	668556	5487388	2020	3	2020-09-12	Composite	Molybdenum	0.14	mg/kg	Trich	RG CORCK INV-3 2020-09-12
INV	RG CORCK	668556	5487388	2020	3	2020-09-12	Composite	Silver	0.033	mg/kg	Trich	RG CORCK INV-3 2020-09-12
INV	RG CORCK	668556	5487388	2020	3	2020-09-12	Composite	Cadmium	0.23	mg/kg	Trich	RG CORCK INV-3 2020-09-12
INV	RG CORCK	668556	5487388	2020	3	2020-09-12	Composite	Tin	0.059	mg/kg	Trich	RG CORCK INV-3 2020-09-12
INV	RG_CORCK	668556	5487388	2020	3	2020-09-12	Composite	Antimony	0.039		Trich	
INV		668556	5487388	2020	3	2020-09-12	Composite	Barium	6.2	mg/kg	Trich	RG_CORCK_INV-3_2020-09-12
	RG_CORCK						'			mg/kg		RG_CORCK_INV-3_2020-09-12
INV	RG_CORCK	668556	5487388	2020	3	2020-09-12	Composite	Mercury	<0.030	mg/kg	Trich	RG_CORCK_INV-3_2020-09-12
INV	RG_CORCK	668556	5487388	2020	3	2020-09-12	Composite	Thallium	0.016	mg/kg	Trich	RG_CORCK_INV-3_2020-09-12
INV	RG_CORCK	668556	5487388	2020	3	2020-09-12	Composite	Lead	0.019	mg/kg	Trich	RG_CORCK_INV-3_2020-09-12
INV	RG_CORCK	668556	5487388	2020	3	2020-09-12	Composite	Uranium	0.027	mg/kg	Trich	RG_CORCK_INV-3_2020-09-12
INV	RG_MIUCO	668134	5486767	2020	1	2020-09-12	Composite	Lithium	0.46	mg/kg	Trich	RG_MIUCO_INV-1_2020-09-12
INV	RG_MIUCO	668134	5486767	2020	1	2020-09-12	Composite	Boron	1.9	mg/kg	Trich	RG_MIUCO_INV-1_2020-09-12
INV	RG_MIUCO	668134	5486767	2020	1	2020-09-12	Composite	Sodium	4,406	mg/kg	Trich	RG_MIUCO_INV-1_2020-09-12
INV	RG_MIUCO	668134	5486767	2020	1	2020-09-12	Composite	Magnesium	1,539	mg/kg	Trich	RG_MIUCO_INV-1_2020-09-12
INV	RG_MIUCO	668134	5486767	2020	1	2020-09-12	Composite	Aluminum	1,006	mg/kg	Trich	RG_MIUCO_INV-1_2020-09-12
INV	RG_MIUCO	668134	5486767	2020	1	2020-09-12	Composite	Phosphorus	11,554	mg/kg	Trich	RG_MIUCO_INV-1_2020-09-12
INV	RG_MIUCO	668134	5486767	2020	1	2020-09-12	Composite	Potassium	9,698	mg/kg	Trich	RG_MIUCO_INV-1_2020-09-12
INV	RG_MIUCO	668134	5486767	2020	1	2020-09-12	Composite	Calcium	2,208	mg/kg	Trich	RG_MIUCO_INV-1_2020-09-12
INV	RG_MIUCO	668134	5486767	2020	1	2020-09-12	Composite	Titanium	62	mg/kg	Trich	RG_MIUCO_INV-1_2020-09-12
INV	RG_MIUCO	668134	5486767	2020	1	2020-09-12	Composite	Vanadium	1.4	mg/kg	Trich	RG_MIUCO_INV-1_2020-09-12
INV	RG_MIUCO	668134	5486767	2020	1	2020-09-12	Composite	Chromium	4.2	mg/kg	Trich	RG_MIUCO_INV-1_2020-09-12
INV	RG_MIUCO	668134	5486767	2020	1	2020-09-12	Composite	Manganese	213	mg/kg	Trich	RG_MIUCO_INV-1_2020-09-12
INV	RG_MIUCO	668134	5486767	2020	1	2020-09-12	Composite	Iron	635	mg/kg	Trich	RG_MIUCO_INV-1_2020-09-12
INV	RG_MIUCO	668134	5486767	2020	1	2020-09-12	Composite	Cobalt	1.2	mg/kg	Trich	RG_MIUCO_INV-1_2020-09-12
INV	RG MIUCO	668134	5486767	2020	1	2020-09-12	Composite	Nickel	10	mg/kg	Trich	RG MIUCO INV-1 2020-09-12
INV	RG MIUCO	668134	5486767	2020	1	2020-09-12	Composite	Copper	18	mg/kg	Trich	RG_MIUCO_INV-1_2020-09-12
INV	RG MIUCO	668134	5486767	2020	1	2020-09-12	Composite	Zinc	171	mg/kg	Trich	RG MIUCO INV-1 2020-09-12
INV	RG MIUCO	668134	5486767	2020	1	2020-09-12	Composite	Arsenic	0.66	mg/kg	Trich	RG MIUCO INV-1 2020-09-12
INV	RG MIUCO	668134	5486767	2020	1	2020-09-12	Composite	Selenium	5.3	mg/kg	Trich	RG MIUCO INV-1 2020-09-12
INV	RG_MIUCO	668134	5486767	2020	1	2020-09-12	Composite	Strontium	5.3	mg/kg	Trich	RG MIUCO INV-1 2020-09-12
INV	RG_MIUCO	668134	5486767	2020	1	2020-09-12	Composite	Molybdenum	0.74		Trich	RG MIUCO INV-1 2020-09-12
	_				1		'	·		mg/kg		
INV	RG_MIUCO	668134	5486767	2020	1	2020-09-12	Composite	Silver	0.054	mg/kg	Trich	RG_MIUCO_INV-1_2020-09-12
INV	RG_MIUCO	668134	5486767	2020	1	2020-09-12 2020-09-12	Composite Composite	Cadmium Tin	1.8 0.29	mg/kg mg/kg	Trich Trich	RG_MIUCO_INV-1_2020-09-12 RG_MIUCO_INV-1_2020-09-12
INV	RG MIUCO	668134	5486767	2020								

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Туре	Station		n (UTMs) ^(a)	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit		Laboratory Information
		Easting	Northing		Hophodio						Lab	Sample ID
INV	RG_MIUCO	668134	5486767	2020	1	2020-09-12	Composite	Barium	116	mg/kg	Trich	RG_MIUCO_INV-1_2020-09-12
INV	RG_MIUCO	668134	5486767	2020	1	2020-09-12	Composite	Mercury	0.051	mg/kg	Trich	RG_MIUCO_INV-1_2020-09-12
INV	RG_MIUCO	668134	5486767	2020	1	2020-09-12	Composite	Thallium	0.036	mg/kg	Trich	RG_MIUCO_INV-1_2020-09-12
INV	RG_MIUCO	668134	5486767	2020	1	2020-09-12	Composite	Lead	0.33	mg/kg	Trich	RG_MIUCO_INV-1_2020-09-12
INV	RG_MIUCO	668134	5486767	2020	1	2020-09-12	Composite	Uranium	0.052	mg/kg	Trich	RG_MIUCO_INV-1_2020-09-12
INV	RG_MIUCO	668134	5486767	2020	2	2020-09-12	Composite	Lithium	0.66	mg/kg	Trich	RG_MIUCO_INV-2_2020-09-12
INV	RG_MIUCO	668134	5486767	2020	2	2020-09-12	Composite	Boron	2.9	mg/kg	Trich	RG_MIUCO_INV-2_2020-09-12
INV	RG_MIUCO	668134	5486767	2020	2	2020-09-12	Composite	Sodium	2,541	mg/kg	Trich	RG_MIUCO_INV-2_2020-09-12
INV	RG_MIUCO	668134	5486767	2020	2	2020-09-12	Composite	Magnesium	1,538	mg/kg	Trich	RG_MIUCO_INV-2_2020-09-12
INV	RG_MIUCO	668134	5486767	2020	2	2020-09-12	Composite	Aluminum	1,986	mg/kg	Trich	RG_MIUCO_INV-2_2020-09-12
INV	RG_MIUCO	668134	5486767	2020	2	2020-09-12	Composite	Phosphorus	10,588	mg/kg	Trich	RG_MIUCO_INV-2_2020-09-12
INV	RG_MIUCO	668134	5486767	2020	2	2020-09-12	Composite	Potassium	8,376	mg/kg	Trich	RG_MIUCO_INV-2_2020-09-12
INV	RG_MIUCO	668134	5486767	2020	2	2020-09-12	Composite	Calcium	2,700	mg/kg	Trich	RG_MIUCO_INV-2_2020-09-12
INV	RG_MIUCO	668134	5486767	2020	2	2020-09-12	Composite	Titanium	129	mg/kg	Trich	RG_MIUCO_INV-2_2020-09-12
INV	RG_MIUCO	668134	5486767	2020	2	2020-09-12	Composite	Vanadium	2.3	mg/kg	Trich	RG_MIUCO_INV-2_2020-09-12
INV	RG_MIUCO	668134	5486767	2020	2	2020-09-12	Composite	Chromium	4.9	mg/kg	Trich	RG_MIUCO_INV-2_2020-09-12
INV	RG_MIUCO	668134	5486767	2020	2	2020-09-12	Composite	Manganese	108	mg/kg	Trich	RG_MIUCO_INV-2_2020-09-12
INV	RG_MIUCO	668134	5486767	2020	2	2020-09-12	Composite	Iron	1,000	mg/kg	Trich	RG_MIUCO_INV-2_2020-09-12
INV	RG_MIUCO	668134	5486767	2020	2	2020-09-12	Composite	Cobalt	1.6	mg/kg	Trich	RG_MIUCO_INV-2_2020-09-12
INV	RG MIUCO	668134	5486767	2020	2	2020-09-12	Composite	Nickel	10	mg/kg	Trich	RG MIUCO INV-2 2020-09-12
INV	RG MIUCO	668134	5486767	2020	2	2020-09-12	Composite	Copper	23	mg/kg	Trich	RG MIUCO INV-2 2020-09-12
INV	RG MIUCO	668134	5486767	2020	2	2020-09-12	Composite	Zinc	207	mg/kg	Trich	RG MIUCO INV-2 2020-09-12
INV	RG MIUCO	668134	5486767	2020	2	2020-09-12	Composite	Arsenic	1.2	mg/kg	Trich	RG MIUCO INV-2 2020-09-12
INV	RG MIUCO	668134	5486767	2020	2	2020-09-12	Composite	Selenium	8.1	mg/kg	Trich	RG MIUCO INV-2 2020-09-12
INV	RG MIUCO	668134	5486767	2020	2	2020-09-12	Composite	Strontium	6.0	mg/kg	Trich	RG_MIUCO_INV-2_2020-09-12
INV	RG MIUCO	668134	5486767	2020	2	2020-09-12	Composite	Molybdenum	0.72	mg/kg	Trich	RG MIUCO INV-2 2020-09-12
INV	RG MIUCO	668134	5486767	2020	2	2020-09-12	Composite	Silver	0.093	mg/kg	Trich	RG MIUCO INV-2 2020-09-12
INV	RG MIUCO	668134	5486767	2020	2	2020-09-12	Composite	Cadmium	4.0	mg/kg	Trich	RG MIUCO INV-2 2020-09-12
INV	RG MIUCO	668134	5486767	2020	2	2020-09-12	Composite	Tin	0.65	mg/kg	Trich	RG MIUCO INV-2 2020-09-12
INV	RG MIUCO	668134	5486767	2020	2	2020-09-12	Composite	Antimony	0.024	mg/kg	Trich	RG MIUCO INV-2 2020-09-12
INV	RG MIUCO	668134	5486767	2020	2	2020-09-12	Composite	Barium	59	mg/kg	Trich	RG MIUCO INV-2 2020-09-12
INV	RG MIUCO	668134	5486767	2020	2	2020-09-12	Composite	Mercury	0.077	mg/kg	Trich	RG MIUCO INV-2 2020-09-12
INV	RG MIUCO	668134	5486767	2020	2	2020-09-12	Composite	Thallium	0.046	mg/kg	Trich	RG MIUCO INV-2 2020-09-12
INV	RG MIUCO	668134	5486767	2020	2	2020-09-12	Composite	Lead	0.46	mg/kg	Trich	RG MIUCO INV-2 2020-09-12
INV	_	668134	5486767	2020			· · · · · · · · · · · · · · · · · · ·	Uranium	0.061		Trich	RG MIUCO INV-2 2020-09-12
INV	RG_MIUCO RG_MIUCO	668134	5486767	2020	3	2020-09-12 2020-09-12	Composite	Lithium	0.36	mg/kg	Trich	RG_MIUCO_INV-3_2020-09-12
INV	RG_MIUCO	668134	5486767	2020		2020-09-12	Composite	Boron	1.4	mg/kg	Trich	RG MIUCO INV-3_2020-09-12
	_				3		Composite			mg/kg		
INV	RG_MIUCO	668134	5486767	2020	3	2020-09-12	Composite	Sodium	4,401	mg/kg	Trich	RG_MIUCO_INV-3_2020-09-12
INV	RG_MIUCO	668134	5486767	2020	3	2020-09-12	Composite	Magnesium	1,254	mg/kg	Trich	RG_MIUCO_INV-3_2020-09-12
INV	RG_MIUCO	668134	5486767	2020	3	2020-09-12	Composite	Aluminum	912	mg/kg	Trich	RG_MIUCO_INV-3_2020-09-12
INV	RG_MIUCO	668134	5486767	2020	3	2020-09-12	Composite	Phosphorus	10,487	mg/kg	Trich	RG_MIUCO_INV-3_2020-09-12
INV	RG_MIUCO	668134	5486767	2020	3	2020-09-12	Composite	Potassium	11,037	mg/kg	Trich	RG_MIUCO_INV-3_2020-09-12
INV	RG_MIUCO	668134	5486767	2020	3	2020-09-12	Composite	Calcium	1,484	mg/kg	Trich	RG_MIUCO_INV-3_2020-09-12
INV	RG_MIUCO	668134	5486767	2020	3	2020-09-12	Composite	Titanium	56	mg/kg	Trich	RG_MIUCO_INV-3_2020-09-12
INV	RG_MIUCO	668134	5486767	2020	3	2020-09-12	Composite	Vanadium	1.0	mg/kg	Trich	RG_MIUCO_INV-3_2020-09-12
INV	RG_MIUCO	668134	5486767	2020	3	2020-09-12	Composite	Chromium	2.7	mg/kg	Trich	RG_MIUCO_INV-3_2020-09-12
INV	RG_MIUCO	668134	5486767	2020	3	2020-09-12	Composite	Manganese	137	mg/kg	Trich	RG_MIUCO_INV-3_2020-09-12
INV	RG_MIUCO	668134	5486767	2020	3	2020-09-12	Composite	Iron	526	mg/kg	Trich	RG_MIUCO_INV-3_2020-09-12
INV	RG_MIUCO	668134	5486767	2020	3	2020-09-12	Composite	Cobalt	0.94	mg/kg	Trich	RG_MIUCO_INV-3_2020-09-12
INV	RG_MIUCO	668134	5486767	2020	3	2020-09-12	Composite	Nickel	5.7	mg/kg	Trich	RG_MIUCO_INV-3_2020-09-12
INV	RG_MIUCO	668134	5486767	2020	3	2020-09-12	Composite	Copper	19	mg/kg	Trich	RG_MIUCO_INV-3_2020-09-12
INV	RG_MIUCO	668134	5486767	2020	3	2020-09-12	Composite	Zinc	191	mg/kg	Trich	RG_MIUCO_INV-3_2020-09-12
INV	RG_MIUCO	668134	5486767	2020	3	2020-09-12	Composite	Arsenic	0.89	mg/kg	Trich	RG_MIUCO_INV-3_2020-09-12
INV	RG_MIUCO	668134	5486767	2020	3	2020-09-12	Composite	Selenium	4.9	mg/kg	Trich	RG_MIUCO_INV-3_2020-09-12
INV	RG MIUCO	668134	5486767	2020	3	2020-09-12	Composite	Strontium	3.4	mg/kg	Trich	RG MIUCO INV-3 2020-09-12

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Туре	Station		n (UTMs) ^(a)	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit		Laboratory Information
		Easting	Northing		rtopiloato						Lab	Sample ID
INV	RG_MIUCO	668134	5486767	2020	3	2020-09-12	Composite	Molybdenum	0.42	mg/kg	Trich	RG_MIUCO_INV-3_2020-09-12
INV	RG_MIUCO	668134	5486767	2020	3	2020-09-12	Composite	Silver	0.059	mg/kg	Trich	RG_MIUCO_INV-3_2020-09-12
INV	RG_MIUCO	668134	5486767	2020	3	2020-09-12	Composite	Cadmium	2.1	mg/kg	Trich	RG_MIUCO_INV-3_2020-09-12
INV	RG_MIUCO	668134	5486767	2020	3	2020-09-12	Composite	Tin	0.23	mg/kg	Trich	RG_MIUCO_INV-3_2020-09-12
INV	RG_MIUCO	668134	5486767	2020	3	2020-09-12	Composite	Antimony	0.017	mg/kg	Trich	RG_MIUCO_INV-3_2020-09-12
INV	RG_MIUCO	668134	5486767	2020	3	2020-09-12	Composite	Barium	41	mg/kg	Trich	RG_MIUCO_INV-3_2020-09-12
INV	RG_MIUCO	668134	5486767	2020	3	2020-09-12	Composite	Mercury	0.07	mg/kg	Trich	RG_MIUCO_INV-3_2020-09-12
INV	RG_MIUCO	668134	5486767	2020	3	2020-09-12	Composite	Thallium	0.029	mg/kg	Trich	RG_MIUCO_INV-3_2020-09-12
INV	RG_MIUCO	668134	5486767	2020	3	2020-09-12	Composite	Lead	0.24	mg/kg	Trich	RG_MIUCO_INV-3_2020-09-12
INV	RG MIUCO	668134	5486767	2020	3	2020-09-12	Composite	Uranium	0.032	mg/kg	Trich	RG MIUCO INV-3 2020-09-12
INV	RG MIDCO	667711	5487625	2020	1	2020-09-15	Composite	Lithium	0.24	mg/kg	Trich	RG MIDCO INV-1 2020-09-15
INV	RG MIDCO	667711	5487625	2020	1	2020-09-15	Composite	Boron	0.98	mg/kg	Trich	RG MIDCO INV-1 2020-09-15
INV	RG MIDCO	667711	5487625	2020	1	2020-09-15	Composite	Sodium	4,630	mg/kg	Trich	RG MIDCO INV-1 2020-09-15
INV	RG MIDCO	667711	5487625	2020	1	2020-09-15	Composite	Magnesium	1,530	mg/kg	Trich	RG MIDCO INV-1 2020-09-15
INV	RG MIDCO	667711	5487625	2020	1	2020-09-15	Composite	Aluminum	252	mg/kg	Trich	RG MIDCO INV-1 2020-09-15
INV	RG MIDCO	667711	5487625	2020	1	2020-09-15	Composite	Phosphorus	10,232	mg/kg	Trich	RG MIDCO INV-1 2020-09-15
INV	RG MIDCO	667711	5487625	2020	1	2020-09-15	Composite	Potassium	9,084	mg/kg	Trich	RG MIDCO INV-1 2020-09-15
INV	RG MIDCO	667711	5487625	2020	1	2020-09-15	Composite	Calcium	2,379	mg/kg	Trich	RG MIDCO INV-1 2020-09-15
INV	RG MIDCO	667711	5487625	2020	1	2020-09-15	Composite	Titanium	16	mg/kg	Trich	RG MIDCO INV-1 2020-09-15
INV	RG MIDCO	667711	5487625	2020	1	2020-09-15	Composite	Vanadium	0.37	mg/kg	Trich	RG_MIDCO_INV-1_2020-09-15
INV	RG MIDCO	667711	5487625	2020	1	2020-09-15	Composite	Chromium	2.2		Trich	RG MIDCO INV-1 2020-09-15
INV	RG_MIDCO	667711	5487625	2020	1	2020-09-15	'		41	mg/kg	Trich	RG MIDCO INV-1 2020-09-15
INV	_		5487625	2020	1	2020-09-15	Composite	Manganese	157	mg/kg	Trich	
	RG_MIDCO	667711			1		Composite	lron		mg/kg		RG_MIDCO_INV-1_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	1	2020-09-15	Composite	Cobalt	25	mg/kg	Trich	RG_MIDCO_INV-1_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	1	2020-09-15	Composite	Nickel	11	mg/kg	Trich	RG_MIDCO_INV-1_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	1	2020-09-15	Composite	Copper	15	mg/kg	Trich	RG_MIDCO_INV-1_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	1	2020-09-15	Composite	Zinc	195	mg/kg	Trich	RG_MIDCO_INV-1_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	1	2020-09-15	Composite	Arsenic	<0.418	mg/kg	Trich	RG_MIDCO_INV-1_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	1	2020-09-15	Composite	Selenium	2.0	mg/kg	Trich	RG_MIDCO_INV-1_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	1	2020-09-15	Composite	Strontium	6.2	mg/kg	Trich	RG_MIDCO_INV-1_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	1	2020-09-15	Composite	Molybdenum	0.18	mg/kg	Trich	RG_MIDCO_INV-1_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	1	2020-09-15	Composite	Silver	0.069	mg/kg	Trich	RG_MIDCO_INV-1_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	1	2020-09-15	Composite	Cadmium	0.37	mg/kg	Trich	RG_MIDCO_INV-1_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	1	2020-09-15	Composite	Tin	0.11	mg/kg	Trich	RG_MIDCO_INV-1_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	1	2020-09-15	Composite	Antimony	0.014	mg/kg	Trich	RG_MIDCO_INV-1_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	1	2020-09-15	Composite	Barium	12	mg/kg	Trich	RG_MIDCO_INV-1_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	1	2020-09-15	Composite	Mercury	0.045	mg/kg	Trich	RG_MIDCO_INV-1_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	1	2020-09-15	Composite	Thallium	0.033	mg/kg	Trich	RG_MIDCO_INV-1_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	1	2020-09-15	Composite	Lead	0.083	mg/kg	Trich	RG_MIDCO_INV-1_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	1	2020-09-15	Composite	Uranium	0.025	mg/kg	Trich	RG_MIDCO_INV-1_2020-09-15
INV	RG MIDCO	667711	5487625	2020	2	2020-09-15	Composite	Lithium	0.51	mg/kg	Trich	RG MIDCO INV-2 2020-09-15
INV	RG MIDCO	667711	5487625	2020	2	2020-09-15	Composite	Boron	2.0	mg/kg	Trich	RG MIDCO INV-2 2020-09-15
INV	RG MIDCO	667711	5487625	2020	2	2020-09-15	Composite	Sodium	3,285	mg/kg	Trich	RG MIDCO INV-2 2020-09-15
INV	RG MIDCO	667711	5487625	2020	2	2020-09-15	Composite	Magnesium	1,190	mg/kg	Trich	RG MIDCO INV-2 2020-09-15
INV	RG MIDCO	667711	5487625	2020	2	2020-09-15	Composite	Aluminum	943	mg/kg	Trich	RG MIDCO INV-2 2020-09-15
INV	RG MIDCO	667711	5487625	2020	2	2020-09-15	Composite	Phosphorus	8,639	mg/kg	Trich	RG_MIDCO_INV-2_2020-09-15
INV	RG MIDCO	667711	5487625	2020	2	2020-09-15	Composite	Potassium	8,290	mg/kg	Trich	RG MIDCO INV-2 2020-09-15
INV	RG MIDCO	667711	5487625	2020	2	2020-09-15	Composite	Calcium	3,434		Trich	RG MIDCO INV-2 2020-09-15
	_						· ·			mg/kg		
INV	RG_MIDCO	667711	5487625	2020	2	2020-09-15	Composite	Titanium	66	mg/kg	Trich	RG_MIDCO_INV-2_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	2	2020-09-15	Composite	Vanadium	1.3	mg/kg	Trich	RG_MIDCO_INV-2_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	2	2020-09-15	Composite	Chromium	2.8	mg/kg	Trich	RG_MIDCO_INV-2_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	2	2020-09-15	Composite	Manganese	166	mg/kg	Trich	RG_MIDCO_INV-2_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	2	2020-09-15	Composite	Iron	483	mg/kg	Trich	RG_MIDCO_INV-2_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	2	2020-09-15	Composite	Cobalt	51	mg/kg	Trich	RG_MIDCO_INV-2_2020-09-15
INV	RG MIDCO	667711	5487625	2020	2	2020-09-15	Composite	Nickel	34	mg/kg	Trich	RG MIDCO INV-2 2020-09-15

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Туре	Station		on (UTMs) ^(a)	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit		Laboratory Information
		Easting	Northing		·						Lab	Sample ID
INV	RG_MIDCO	667711	5487625	2020	2	2020-09-15	Composite	Copper	14	mg/kg	Trich	RG_MIDCO_INV-2_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	2	2020-09-15	Composite	Zinc	185	mg/kg	Trich	RG_MIDCO_INV-2_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	2	2020-09-15	Composite	Arsenic	0.73	mg/kg	Trich	RG_MIDCO_INV-2_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	2	2020-09-15	Composite	Selenium	4.1	mg/kg	Trich	RG_MIDCO_INV-2_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	2	2020-09-15	Composite	Strontium	11	mg/kg	Trich	RG_MIDCO_INV-2_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	2	2020-09-15	Composite	Molybdenum	0.42	mg/kg	Trich	RG_MIDCO_INV-2_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	2	2020-09-15	Composite	Silver	0.054	mg/kg	Trich	RG_MIDCO_INV-2_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	2	2020-09-15	Composite	Cadmium	0.45	mg/kg	Trich	RG_MIDCO_INV-2_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	2	2020-09-15	Composite	Tin	0.15	mg/kg	Trich	RG_MIDCO_INV-2_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	2	2020-09-15	Composite	Antimony	0.042	mg/kg	Trich	RG_MIDCO_INV-2_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	2	2020-09-15	Composite	Barium	32	mg/kg	Trich	RG_MIDCO_INV-2_2020-09-15
INV	RG MIDCO	667711	5487625	2020	2	2020-09-15	Composite	Mercury	0.038	mg/kg	Trich	RG MIDCO INV-2 2020-09-15
INV	RG MIDCO	667711	5487625	2020	2	2020-09-15	Composite	Thallium	0.053	mg/kg	Trich	RG_MIDCO_INV-2_2020-09-15
INV	RG MIDCO	667711	5487625	2020	2	2020-09-15	Composite	Lead	0.29	mg/kg	Trich	RG_MIDCO_INV-2_2020-09-15
INV	RG MIDCO	667711	5487625	2020	2	2020-09-15	Composite	Uranium	0.074	mg/kg	Trich	RG MIDCO INV-2 2020-09-15
INV	RG MIDCO	667711	5487625	2020	3	2020-09-15	Composite	Lithium	0.14	mg/kg	Trich	RG MIDCO INV-3 2020-09-15
INV	RG MIDCO	667711	5487625	2020	3	2020-09-15	Composite	Boron	0.86	mg/kg	Trich	RG MIDCO INV-3 2020-09-15
INV	RG MIDCO	667711	5487625	2020	3	2020-09-15	Composite	Sodium	2,539	mg/kg	Trich	RG MIDCO INV-3 2020-09-15
INV	RG MIDCO	667711	5487625	2020	3	2020-09-15	Composite	Magnesium	1,483	mg/kg	Trich	RG MIDCO INV-3 2020-09-15
INV	RG MIDCO	667711	5487625	2020	3	2020-09-15	Composite	Aluminum	168	mg/kg	Trich	RG_MIDCO_INV-3_2020-09-15
INV	RG MIDCO	667711	5487625	2020	3	2020-09-15	Composite		8,816		Trich	RG MIDCO INV-3 2020-09-15
INV			5487625	2020		2020-09-15	' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	Phosphorus		mg/kg	Trich	
	RG_MIDCO	667711			3		Composite	Potassium	6,208	mg/kg		RG_MIDCO_INV-3_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	3	2020-09-15	Composite	Calcium	1,535	mg/kg	Trich	RG_MIDCO_INV-3_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	3	2020-09-15	Composite	Titanium	8.6	mg/kg	Trich	RG_MIDCO_INV-3_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	3	2020-09-15	Composite	Vanadium	0.24	mg/kg	Trich	RG_MIDCO_INV-3_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	3	2020-09-15	Composite	Chromium	2.0	mg/kg	Trich	RG_MIDCO_INV-3_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	3	2020-09-15	Composite	Manganese	53	mg/kg	Trich	RG_MIDCO_INV-3_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	3	2020-09-15	Composite	Iron	126	mg/kg	Trich	RG_MIDCO_INV-3_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	3	2020-09-15	Composite	Cobalt	30	mg/kg	Trich	RG_MIDCO_INV-3_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	3	2020-09-15	Composite	Nickel	15	mg/kg	Trich	RG_MIDCO_INV-3_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	3	2020-09-15	Composite	Copper	18	mg/kg	Trich	RG_MIDCO_INV-3_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	3	2020-09-15	Composite	Zinc	159	mg/kg	Trich	RG_MIDCO_INV-3_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	3	2020-09-15	Composite	Arsenic	<0.418	mg/kg	Trich	RG_MIDCO_INV-3_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	3	2020-09-15	Composite	Selenium	2.3	mg/kg	Trich	RG_MIDCO_INV-3_2020-09-15
INV	RG MIDCO	667711	5487625	2020	3	2020-09-15	Composite	Strontium	4.0	mg/kg	Trich	RG MIDCO INV-3 2020-09-15
INV	RG_MIDCO	667711	5487625	2020	3	2020-09-15	Composite	Molybdenum	0.27	mg/kg	Trich	RG MIDCO INV-3 2020-09-15
INV	RG MIDCO	667711	5487625	2020	3	2020-09-15	Composite	Silver	0.059	mg/kg	Trich	RG MIDCO INV-3 2020-09-15
INV	RG MIDCO	667711	5487625	2020	3	2020-09-15	Composite	Cadmium	0.14	mg/kg	Trich	RG MIDCO INV-3 2020-09-15
INV	RG MIDCO	667711	5487625	2020	3	2020-09-15	Composite	Tin	<0.025	mg/kg	Trich	RG MIDCO INV-3 2020-09-15
INV	RG MIDCO	667711	5487625	2020	3	2020-09-15	Composite	Antimony	0.014	mg/kg	Trich	RG MIDCO INV-3 2020-09-15
INV	RG MIDCO	667711	5487625	2020	3	2020-09-15	Composite	Barium	5.3	mg/kg	Trich	RG MIDCO INV-3 2020-09-15
INV	RG MIDCO	667711	5487625	2020	3	2020-09-15	Composite	Mercury	<0.030	mg/kg	Trich	RG MIDCO INV-3 2020-09-15
INV	RG MIDCO	667711	5487625	2020	3	2020-09-15	Composite	Thallium	0.014	mg/kg	Trich	RG MIDCO INV-3 2020-09-15
INV	RG MIDCO	667711	5487625	2020	3	2020-09-15	Composite	Lead	0.061	mg/kg	Trich	RG MIDCO INV-3 2020-09-15
INV	RG_MIDCO	667711	5487625	2020	3	2020-09-15	Composite	Uranium	0.001	mg/kg	Trich	RG MIDCO INV-3 2020-09-15
INV	RG_MIDCO	667711	5487625	2020	4	2020-09-15	Composite	Lithium			Trich	
INV	_						' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '		0.3	mg/kg		RG_MIDCO_INV-4_2020-09-15
	RG_MIDCO	667711	5487625	2020	4	2020-09-15	Composite	Boron	1.0	mg/kg	Trich	RG_MIDCO_INV-4_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	4	2020-09-15	Composite	Sodium	2,686	mg/kg	Trich	RG_MIDCO_INV-4_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	4	2020-09-15	Composite	Magnesium	1,255	mg/kg	Trich	RG_MIDCO_INV-4_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	4	2020-09-15	Composite	Aluminum	648	mg/kg	Trich	RG_MIDCO_INV-4_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	4	2020-09-15	Composite	Phosphorus	8,110	mg/kg	Trich	RG_MIDCO_INV-4_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	4	2020-09-15	Composite	Potassium	6,419	mg/kg	Trich	RG_MIDCO_INV-4_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	4	2020-09-15	Composite	Calcium	1,725	mg/kg	Trich	RG_MIDCO_INV-4_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	4	2020-09-15	Composite	Titanium	38	mg/kg	Trich	RG_MIDCO_INV-4_2020-09-15
INV	RG MIDCO	667711	5487625	2020	4	2020-09-15	Composite	Vanadium	0.91	mg/kg	Trich	RG MIDCO INV-4 2020-09-15

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Туре	Station		n (UTMs) ^(a)	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit		Laboratory Information
		Easting	Northing		Liophodio						Lab	Sample ID
INV	RG_MIDCO	667711	5487625	2020	4	2020-09-15	Composite	Chromium	1.8	mg/kg	Trich	RG_MIDCO_INV-4_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	4	2020-09-15	Composite	Manganese	116	mg/kg	Trich	RG_MIDCO_INV-4_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	4	2020-09-15	Composite	Iron	346	mg/kg	Trich	RG_MIDCO_INV-4_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	4	2020-09-15	Composite	Cobalt	21	mg/kg	Trich	RG_MIDCO_INV-4_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	4	2020-09-15	Composite	Nickel	17	mg/kg	Trich	RG_MIDCO_INV-4_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	4	2020-09-15	Composite	Copper	12	mg/kg	Trich	RG_MIDCO_INV-4_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	4	2020-09-15	Composite	Zinc	127	mg/kg	Trich	RG_MIDCO_INV-4_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	4	2020-09-15	Composite	Arsenic	<0.418	mg/kg	Trich	RG_MIDCO_INV-4_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	4	2020-09-15	Composite	Selenium	2.5	mg/kg	Trich	RG_MIDCO_INV-4_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	4	2020-09-15	Composite	Strontium	4.0	mg/kg	Trich	RG_MIDCO_INV-4_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	4	2020-09-15	Composite	Molybdenum	0.21	mg/kg	Trich	RG_MIDCO_INV-4_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	4	2020-09-15	Composite	Silver	0.05	mg/kg	Trich	RG_MIDCO_INV-4_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	4	2020-09-15	Composite	Cadmium	0.14	mg/kg	Trich	RG_MIDCO_INV-4_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	4	2020-09-15	Composite	Tin	0.059	mg/kg	Trich	RG_MIDCO_INV-4_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	4	2020-09-15	Composite	Antimony	0.017	mg/kg	Trich	RG_MIDCO_INV-4_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	4	2020-09-15	Composite	Barium	18	mg/kg	Trich	RG_MIDCO_INV-4_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	4	2020-09-15	Composite	Mercury	0.038	mg/kg	Trich	RG_MIDCO_INV-4_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	4	2020-09-15	Composite	Thallium	0.018	mg/kg	Trich	RG_MIDCO_INV-4_2020-09-15
INV	RG MIDCO	667711	5487625	2020	4	2020-09-15	Composite	Lead	0.21	mg/kg	Trich	RG MIDCO INV-4 2020-09-15
INV	RG MIDCO	667711	5487625	2020	4	2020-09-15	Composite	Uranium	0.031	mg/kg	Trich	RG_MIDCO_INV-4_2020-09-15
INV	RG MIDCO	667711	5487625	2020	5	2020-09-13	Composite	Lithium	0.49	mg/kg	Trich	RG MIDCO INV-5 2020-09-13
INV	RG MIDCO	667711	5487625	2020	5	2020-09-13	Composite	Boron	2.2	mg/kg	Trich	RG MIDCO INV-5 2020-09-13
INV	RG MIDCO	667711	5487625	2020	5	2020-09-13	Composite	Sodium	7,670	mg/kg	Trich	RG MIDCO INV-5 2020-09-13
INV	RG MIDCO	667711	5487625	2020	5	2020-09-13	Composite	Magnesium	1,753	mg/kg	Trich	RG MIDCO INV-5 2020-09-13
INV	RG MIDCO	667711	5487625	2020	5	2020-09-13	Composite	Aluminum	967	mg/kg	Trich	RG MIDCO INV-5 2020-09-13
INV	RG MIDCO	667711	5487625	2020	5	2020-09-13	Composite	Phosphorus	8,330	mg/kg	Trich	RG_MIDCO_INV-5_2020-09-13
INV	RG MIDCO	667711	5487625	2020	5	2020-09-13	Composite	Potassium	6,766	mg/kg	Trich	RG MIDCO INV-5 2020-09-13
INV	RG MIDCO	667711	5487625	2020	5	2020-09-13	Composite	Calcium	3,606	mg/kg	Trich	RG MIDCO INV-5 2020-09-13
INV	RG MIDCO	667711	5487625	2020	5	2020-09-13	Composite	Titanium	61	mg/kg	Trich	RG MIDCO INV-5 2020-09-13
INV	RG_MIDCO	667711	5487625	2020	5	2020-09-13	Composite	Vanadium	1.3		Trich	RG MIDCO INV-5 2020-09-13
INV	RG_MIDCO	667711	5487625	2020	5	2020-09-13	Composite	Chromium	2.9	mg/kg mg/kg	Trich	RG_MIDCO_INV-5_2020-09-13
INV	_	667711	5487625	2020		2020-09-13	'		77		Trich	
	RG_MIDCO				5		Composite	Manganese		mg/kg		RG_MIDCO_INV-5_2020-09-13
INV	RG_MIDCO	667711	5487625	2020	5	2020-09-13	Composite	Iron	501	mg/kg	Trich	RG_MIDCO_INV-5_2020-09-13
INV	RG_MIDCO	667711	5487625	2020	5	2020-09-13	Composite	Cobalt	28	mg/kg	Trich	RG_MIDCO_INV-5_2020-09-13
INV	RG_MIDCO	667711	5487625	2020	5	2020-09-13	Composite	Nickel	43	mg/kg	Trich	RG_MIDCO_INV-5_2020-09-13
INV	RG_MIDCO	667711	5487625	2020	5	2020-09-13	Composite	Copper	13	mg/kg	Trich	RG_MIDCO_INV-5_2020-09-13
INV	RG_MIDCO	667711	5487625	2020	5	2020-09-13	Composite	Zinc	173	mg/kg	Trich	RG_MIDCO_INV-5_2020-09-13
INV	RG_MIDCO	667711	5487625	2020	5	2020-09-13	Composite	Arsenic	0.57	mg/kg	Trich	RG_MIDCO_INV-5_2020-09-13
INV	RG_MIDCO	667711	5487625	2020	5	2020-09-13	Composite	Selenium	3.2	mg/kg	Trich	RG_MIDCO_INV-5_2020-09-13
INV	RG_MIDCO	667711	5487625	2020	5	2020-09-13	Composite	Strontium	8.4	mg/kg	Trich	RG_MIDCO_INV-5_2020-09-13
INV	RG_MIDCO	667711	5487625	2020	5	2020-09-13	Composite	Molybdenum	0.31	mg/kg	Trich	RG_MIDCO_INV-5_2020-09-13
INV	RG_MIDCO	667711	5487625	2020	5	2020-09-13	Composite	Silver	0.066	mg/kg	Trich	RG_MIDCO_INV-5_2020-09-13
INV	RG_MIDCO	667711	5487625	2020	5	2020-09-13	Composite	Cadmium	0.41	mg/kg	Trich	RG_MIDCO_INV-5_2020-09-13
INV	RG_MIDCO	667711	5487625	2020	5	2020-09-13	Composite	Tin	0.16	mg/kg	Trich	RG_MIDCO_INV-5_2020-09-13
INV	RG_MIDCO	667711	5487625	2020	5	2020-09-13	Composite	Antimony	0.028	mg/kg	Trich	RG_MIDCO_INV-5_2020-09-13
INV	RG_MIDCO	667711	5487625	2020	5	2020-09-13	Composite	Barium	16	mg/kg	Trich	RG_MIDCO_INV-5_2020-09-13
INV	RG_MIDCO	667711	5487625	2020	5	2020-09-13	Composite	Mercury	0.051	mg/kg	Trich	RG_MIDCO_INV-5_2020-09-13
INV	RG_MIDCO	667711	5487625	2020	5	2020-09-13	Composite	Thallium	0.047	mg/kg	Trich	RG_MIDCO_INV-5_2020-09-13
INV	RG_MIDCO	667711	5487625	2020	5	2020-09-13	Composite	Lead	0.31	mg/kg	Trich	RG_MIDCO_INV-5_2020-09-13
INV	RG_MIDCO	667711	5487625	2020	5	2020-09-13	Composite	Uranium	0.068	mg/kg	Trich	RG_MIDCO_INV-5_2020-09-13
INV	RG_MIDAG	665258	5489417	2020	1	2020-09-16	Composite	Lithium	1.5	mg/kg	Trich	RG_MIDAG_INV-1_2020-09-16
INV	RG MIDAG	665258	5489417	2020	1	2020-09-16	Composite	Boron	4.3	mg/kg	Trich	RG MIDAG INV-1 2020-09-16
INV	RG MIDAG	665258	5489417	2020	1	2020-09-16	Composite	Sodium	8,633	mg/kg	Trich	RG MIDAG INV-1 2020-09-16
INV	RG MIDAG	665258	5489417	2020	1	2020-09-16	Composite	Magnesium	1,905	mg/kg	Trich	RG MIDAG INV-1 2020-09-16
INV	RG MIDAG	665258	5489417	2020	<u>'</u>	2020-09-16	Composite	Aluminum	2,717	mg/kg	Trich	RG MIDAG INV-1 2020-09-16

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Type	Station		n (UTMs) ^(a)	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit		Laboratory Information
		Easting	Northing								Lab	Sample ID
INV	RG_MIDAG	665258	5489417	2020	1	2020-09-16	Composite	Phosphorus	11,016	mg/kg	Trich	RG_MIDAG_INV-1_2020-09-16
INV	RG_MIDAG	665258	5489417	2020	1	2020-09-16	Composite	Potassium	12,328	mg/kg	Trich	RG_MIDAG_INV-1_2020-09-16
INV	RG_MIDAG	665258	5489417	2020	1	2020-09-16	Composite	Calcium	3,514	mg/kg	Trich	RG_MIDAG_INV-1_2020-09-16
INV	RG_MIDAG	665258	5489417	2020	1	2020-09-16	Composite	Titanium	198	mg/kg	Trich	RG_MIDAG_INV-1_2020-09-16
INV	RG_MIDAG	665258	5489417	2020	1	2020-09-16	Composite	Vanadium	4.2	mg/kg	Trich	RG_MIDAG_INV-1_2020-09-16
INV	RG_MIDAG	665258	5489417	2020	1	2020-09-16	Composite	Chromium	13	mg/kg	Trich	RG_MIDAG_INV-1_2020-09-16
INV	RG_MIDAG	665258	5489417	2020	1	2020-09-16	Composite	Manganese	131	mg/kg	Trich	RG_MIDAG_INV-1_2020-09-16
INV	RG_MIDAG	665258	5489417	2020	1	2020-09-16	Composite	Iron	1,202	mg/kg	Trich	RG_MIDAG_INV-1_2020-09-16
INV	RG_MIDAG	665258	5489417	2020	1	2020-09-16	Composite	Cobalt	37	mg/kg	Trich	RG_MIDAG_INV-1_2020-09-16
INV	RG_MIDAG	665258	5489417	2020	1	2020-09-16	Composite	Nickel	66	mg/kg	Trich	RG_MIDAG_INV-1_2020-09-16
INV	RG MIDAG	665258	5489417	2020	1	2020-09-16	Composite	Copper	17	mg/kg	Trich	RG MIDAG INV-1 2020-09-16
INV	RG MIDAG	665258	5489417	2020	1	2020-09-16	Composite	Zinc	171	mg/kg	Trich	RG MIDAG INV-1 2020-09-16
INV	RG MIDAG	665258	5489417	2020	1	2020-09-16	Composite	Arsenic	1.4	mg/kg	Trich	RG MIDAG INV-1 2020-09-16
INV	RG MIDAG	665258	5489417	2020	1	2020-09-16	Composite	Selenium	7.5	mg/kg	Trich	RG MIDAG INV-1 2020-09-16
INV	RG MIDAG	665258	5489417	2020	1	2020-09-16	Composite	Strontium	9.6	mg/kg	Trich	RG MIDAG INV-1 2020-09-16
INV	RG MIDAG	665258	5489417	2020	1	2020-09-16	Composite	Molybdenum	0.57	mg/kg	Trich	RG MIDAG INV-1 2020-09-16
INV	RG MIDAG	665258	5489417	2020	1	2020-09-16	Composite	Silver	0.097	mg/kg	Trich	RG MIDAG INV-1 2020-09-16
INV				2020	1		· · · · · · · · · · · · · · · · · · ·			= =		
	RG_MIDAG	665258	5489417		1	2020-09-16	Composite	Cadmium	1.1	mg/kg	Trich	RG_MIDAG_INV-1_2020-09-16
INV	RG_MIDAG	665258	5489417	2020	1	2020-09-16	Composite	Tin	0.38	mg/kg	Trich	RG_MIDAG_INV-1_2020-09-16
INV	RG_MIDAG	665258	5489417	2020	1	2020-09-16	Composite	Antimony	0.051	mg/kg	Trich	RG_MIDAG_INV-1_2020-09-16
INV	RG_MIDAG	665258	5489417	2020	1	2020-09-16	Composite	Barium	46	mg/kg	Trich	RG_MIDAG_INV-1_2020-09-16
INV	RG_MIDAG	665258	5489417	2020	1	2020-09-16	Composite	Mercury	0.067	mg/kg	Trich	RG_MIDAG_INV-1_2020-09-16
INV	RG_MIDAG	665258	5489417	2020	1	2020-09-16	Composite	Thallium	0.17	mg/kg	Trich	RG_MIDAG_INV-1_2020-09-16
INV	RG_MIDAG	665258	5489417	2020	1	2020-09-16	Composite	Lead	0.59	mg/kg	Trich	RG_MIDAG_INV-1_2020-09-16
INV	RG_MIDAG	665258	5489417	2020	1	2020-09-16	Composite	Uranium	0.12	mg/kg	Trich	RG_MIDAG_INV-1_2020-09-16
INV	RG_MIDAG	665258	5489417	2020	2	2020-09-16	Composite	Lithium	0.23	mg/kg	Trich	RG_MIDAG_INV-2_2020-09-16
INV	RG_MIDAG	665258	5489417	2020	2	2020-09-16	Composite	Boron	0.78	mg/kg	Trich	RG_MIDAG_INV-2_2020-09-16
INV	RG MIDAG	665258	5489417	2020	2	2020-09-16	Composite	Sodium	3,956	mg/kg	Trich	RG MIDAG INV-2 2020-09-16
INV	RG MIDAG	665258	5489417	2020	2	2020-09-16	Composite	Magnesium	1,218	mg/kg	Trich	RG MIDAG INV-2 2020-09-16
INV	RG MIDAG	665258	5489417	2020	2	2020-09-16	Composite	Aluminum	414	mg/kg	Trich	RG MIDAG INV-2 2020-09-16
INV	RG MIDAG	665258	5489417	2020	2	2020-09-16	Composite	Phosphorus	9,822	mg/kg	Trich	RG MIDAG INV-2 2020-09-16
INV	RG MIDAG	665258	5489417	2020	2	2020-09-16	Composite	Potassium	9,968	mg/kg	Trich	RG_MIDAG_INV-2_2020-09-16
INV	RG MIDAG	665258	5489417	2020	2	2020-09-16	Composite	Calcium	1,926	mg/kg	Trich	RG_MIDAG_INV-2_2020-09-16
INV	RG MIDAG	665258	5489417	2020	2	2020-09-16	Composite	Titanium	24	mg/kg	Trich	RG MIDAG INV-2 2020-09-16
INV	RG MIDAG	665258	5489417	2020	2	2020-09-16	· · · · · · · · · · · · · · · · · · ·	Vanadium	0.6		Trich	RG MIDAG_INV-2_2020-09-16
	_				2		Composite			mg/kg		
INV	RG_MIDAG	665258	5489417	2020	-	2020-09-16	Composite	Chromium	2.7	mg/kg	Trich	RG_MIDAG_INV-2_2020-09-16
INV	RG_MIDAG	665258	5489417	2020	2	2020-09-16	Composite	Manganese	56	mg/kg	Trich	RG_MIDAG_INV-2_2020-09-16
INV	RG_MIDAG	665258	5489417	2020	2	2020-09-16	Composite	Iron	279	mg/kg	Trich	RG_MIDAG_INV-2_2020-09-16
INV	RG_MIDAG	665258	5489417	2020	2	2020-09-16	Composite	Cobalt	21	mg/kg	Trich	RG_MIDAG_INV-2_2020-09-16
INV	RG_MIDAG	665258	5489417	2020	2	2020-09-16	Composite	Nickel	12	mg/kg	Trich	RG_MIDAG_INV-2_2020-09-16
INV	RG_MIDAG	665258	5489417	2020	2	2020-09-16	Composite	Copper	15	mg/kg	Trich	RG_MIDAG_INV-2_2020-09-16
INV	RG_MIDAG	665258	5489417	2020	2	2020-09-16	Composite	Zinc	185	mg/kg	Trich	RG_MIDAG_INV-2_2020-09-16
INV	RG_MIDAG	665258	5489417	2020	2	2020-09-16	Composite	Arsenic	0.55	mg/kg	Trich	RG_MIDAG_INV-2_2020-09-16
INV	RG_MIDAG	665258	5489417	2020	2	2020-09-16	Composite	Selenium	5.6	mg/kg	Trich	RG_MIDAG_INV-2_2020-09-16
INV	RG_MIDAG	665258	5489417	2020	2	2020-09-16	Composite	Strontium	4.6	mg/kg	Trich	RG_MIDAG_INV-2_2020-09-16
INV	RG_MIDAG	665258	5489417	2020	2	2020-09-16	Composite	Molybdenum	0.28	mg/kg	Trich	RG_MIDAG_INV-2_2020-09-16
INV	RG MIDAG	665258	5489417	2020	2	2020-09-16	Composite	Silver	0.078	mg/kg	Trich	RG MIDAG INV-2 2020-09-16
INV	RG MIDAG	665258	5489417	2020	2	2020-09-16	Composite	Cadmium	0.92	mg/kg	Trich	RG MIDAG INV-2 2020-09-16
INV	RG MIDAG	665258	5489417	2020	2	2020-09-16	Composite	Tin	0.16	mg/kg	Trich	RG MIDAG INV-2 2020-09-16
INV	RG MIDAG	665258	5489417	2020	2	2020-09-16	Composite	Antimony	0.015	mg/kg	Trich	RG MIDAG INV-2 2020-09-16
INV	RG MIDAG	665258	5489417	2020	2	2020-09-16	Composite	Barium	16	mg/kg	Trich	RG MIDAG_INV-2_2020-09-16
	_						· · · · · · · · · · · · · · · · · · ·					
INV	RG_MIDAG	665258	5489417	2020	2	2020-09-16	Composite	Mercury	0.034	mg/kg	Trich	RG_MIDAG_INV-2_2020-09-16
INV	RG_MIDAG	665258	5489417	2020	2	2020-09-16	Composite	Thallium	0.081	mg/kg	Trich	RG_MIDAG_INV-2_2020-09-16
INV	RG_MIDAG	665258	5489417	2020	2	2020-09-16	Composite	Lead	0.15	mg/kg	Trich	RG_MIDAG_INV-2_2020-09-16
INV	RG MIDAG	665258	5489417	2020	2	2020-09-16	Composite	Uranium	0.028	mg/kg	Trich	RG MIDAG INV-2 2020-09-16

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Туре	Station		n (UTMs) ^(a)	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit		Laboratory Information
	DO MIDAO	Easting	Northing	0000		2222 22 45		•			Lab	Sample ID
INV	RG_MIDAG	665258	5489417	2020	3	2020-09-15	Composite	Lithium	0.15	mg/kg	Trich	RG_MIDAG_INV-3_2020-09-15
INV	RG_MIDAG	665258	5489417	2020	3	2020-09-15	Composite	Boron	0.6	mg/kg	Trich	RG_MIDAG_INV-3_2020-09-15
INV	RG_MIDAG	665258	5489417	2020	3	2020-09-15	Composite	Sodium	2,685	mg/kg	Trich	RG_MIDAG_INV-3_2020-09-15
INV	RG_MIDAG	665258	5489417	2020	3	2020-09-15	Composite	Magnesium	1,396	mg/kg	Trich	RG_MIDAG_INV-3_2020-09-15
INV	RG_MIDAG	665258	5489417	2020	3	2020-09-15	Composite	Aluminum	192	mg/kg	Trich	RG_MIDAG_INV-3_2020-09-15
INV	RG_MIDAG	665258	5489417	2020	3	2020-09-15	Composite	Phosphorus	8,755	mg/kg	Trich	RG_MIDAG_INV-3_2020-09-15
INV	RG_MIDAG	665258	5489417	2020	3	2020-09-15	Composite	Potassium	8,247	mg/kg	Trich	RG_MIDAG_INV-3_2020-09-15
INV	RG_MIDAG	665258	5489417	2020	3	2020-09-15	Composite	Calcium	1,521	mg/kg	Trich	RG_MIDAG_INV-3_2020-09-15
INV	RG_MIDAG	665258	5489417	2020	3	2020-09-15	Composite	Titanium	8.6	mg/kg	Trich	RG_MIDAG_INV-3_2020-09-15
INV	RG_MIDAG	665258	5489417	2020	3	2020-09-15	Composite	Vanadium	0.29	mg/kg	Trich	RG_MIDAG_INV-3_2020-09-15
INV	RG_MIDAG	665258	5489417	2020	3	2020-09-15	Composite	Chromium	2.3	mg/kg	Trich	RG_MIDAG_INV-3_2020-09-15
INV	RG_MIDAG	665258	5489417	2020	3	2020-09-15	Composite	Manganese	53	mg/kg	Trich	RG_MIDAG_INV-3_2020-09-15
INV	RG MIDAG	665258	5489417	2020	3	2020-09-15	Composite	Iron	173	mg/kg	Trich	RG MIDAG INV-3 2020-09-15
INV	RG MIDAG	665258	5489417	2020	3	2020-09-15	Composite	Cobalt	14	mg/kg	Trich	RG MIDAG INV-3 2020-09-15
INV	RG MIDAG	665258	5489417	2020	3	2020-09-15	Composite	Nickel	9.3	mg/kg	Trich	RG MIDAG INV-3 2020-09-15
INV	RG MIDAG	665258	5489417	2020	3	2020-09-15	Composite	Copper	13	mg/kg	Trich	RG MIDAG INV-3 2020-09-15
INV	RG MIDAG	665258	5489417	2020	3	2020-09-15	Composite	Zinc	154	mg/kg	Trich	RG MIDAG INV-3 2020-09-15
INV	RG MIDAG	665258	5489417	2020	3	2020-09-15	Composite	Arsenic	0.43	mg/kg	Trich	RG MIDAG INV-3 2020-09-15
INV	RG MIDAG	665258	5489417	2020	3	2020-09-15	Composite	Selenium	3.5	mg/kg	Trich	RG MIDAG INV-3 2020-09-15
INV	RG MIDAG	665258	5489417	2020	3	2020-09-15	Composite	Strontium	3.7	mg/kg	Trich	RG MIDAG INV-3 2020-09-15
INV	RG MIDAG	665258	5489417	2020	3	2020-09-15	Composite	Molybdenum	0.3		Trich	RG MIDAG_INV-3_2020-09-15
INV	_	665258	5489417	2020		2020-09-15	' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	Silver	0.078	mg/kg	Trich	
	RG_MIDAG				3		Composite			mg/kg		RG_MIDAG_INV-3_2020-09-15
INV	RG_MIDAG	665258	5489417	2020	3	2020-09-15	Composite	Cadmium	0.54	mg/kg	Trich	RG_MIDAG_INV-3_2020-09-15
INV	RG_MIDAG	665258	5489417	2020	3	2020-09-15	Composite	Tin	0.063	mg/kg	Trich	RG_MIDAG_INV-3_2020-09-15
INV	RG_MIDAG	665258	5489417	2020	3	2020-09-15	Composite	Antimony	0.011	mg/kg	Trich	RG_MIDAG_INV-3_2020-09-15
INV	RG_MIDAG	665258	5489417	2020	3	2020-09-15	Composite	Barium	16	mg/kg	Trich	RG_MIDAG_INV-3_2020-09-15
INV	RG_MIDAG	665258	5489417	2020	3	2020-09-15	Composite	Mercury	<0.030	mg/kg	Trich	RG_MIDAG_INV-3_2020-09-15
INV	RG_MIDAG	665258	5489417	2020	3	2020-09-15	Composite	Thallium	0.038	mg/kg	Trich	RG_MIDAG_INV-3_2020-09-15
INV	RG_MIDAG	665258	5489417	2020	3	2020-09-15	Composite	Lead	0.089	mg/kg	Trich	RG_MIDAG_INV-3_2020-09-15
INV	RG_MIDAG	665258	5489417	2020	3	2020-09-15	Composite	Uranium	0.015	mg/kg	Trich	RG_MIDAG_INV-3_2020-09-15
INV	RG_MIULE	660503	5493048	2020	1	2020-09-16	Composite	Lithium	0.14	mg/kg	Trich	RG_MIULE_INV-1_2020-09-16
INV	RG_MIULE	660503	5493048	2020	1	2020-09-16	Composite	Boron	0.81	mg/kg	Trich	RG_MIULE_INV-1_2020-09-16
INV	RG_MIULE	660503	5493048	2020	1	2020-09-16	Composite	Sodium	3,018	mg/kg	Trich	RG_MIULE_INV-1_2020-09-16
INV	RG MIULE	660503	5493048	2020	1	2020-09-16	Composite	Magnesium	1,316	mg/kg	Trich	RG MIULE INV-1 2020-09-16
INV	RG MIULE	660503	5493048	2020	1	2020-09-16	Composite	Aluminum	107	mg/kg	Trich	RG MIULE INV-1 2020-09-16
INV	RG_MIULE	660503	5493048	2020	1	2020-09-16	Composite	Phosphorus	10,890	mg/kg	Trich	RG_MIULE_INV-1_2020-09-16
INV	RG MIULE	660503	5493048	2020	1	2020-09-16	Composite	Potassium	11,203	mg/kg	Trich	RG MIULE INV-1 2020-09-16
INV	RG MIULE	660503	5493048	2020	1	2020-09-16	Composite	Calcium	2,501	mg/kg	Trich	RG MIULE INV-1 2020-09-16
INV	RG MIULE	660503	5493048	2020	1	2020-09-16	Composite	Titanium	5.7	mg/kg	Trich	RG MIULE INV-1 2020-09-16
INV	RG MIULE	660503	5493048	2020	1	2020-09-16	Composite	Vanadium	0.2	mg/kg	Trich	RG MIULE INV-1 2020-09-16
INV	RG MIULE	660503	5493048	2020	1	2020-09-16	Composite	Chromium	2.6	mg/kg	Trich	RG MIULE INV-1 2020-09-16
INV	RG MIULE	660503	5493048	2020	1	2020-09-16	Composite	Manganese	29	mg/kg	Trich	RG MIULE INV-1 2020-09-16
INV	RG MIULE	660503	5493048	2020	1	2020-09-16	Composite	Iron	130		Trich	RG MIULE INV-1 2020-09-16
INV	RG_MIULE	660503	5493048	2020	1	2020-09-16	Composite	Cobalt	6.6	mg/kg	Trich	RG_MIULE_INV-1_2020-09-16
					1		'			mg/kg		
INV	RG_MIULE	660503	5493048	2020	1	2020-09-16	Composite	Nickel	7.4	mg/kg	Trich	RG_MIULE_INV-1_2020-09-16
INV	RG_MIULE	660503	5493048	2020	1	2020-09-16	Composite	Copper	14	mg/kg	Trich	RG_MIULE_INV-1_2020-09-16
INV	RG_MIULE	660503	5493048	2020	1	2020-09-16	Composite	Zinc	192	mg/kg	Trich	RG_MIULE_INV-1_2020-09-16
INV	RG_MIULE	660503	5493048	2020	1	2020-09-16	Composite	Arsenic	0.61	mg/kg	Trich	RG_MIULE_INV-1_2020-09-16
INV	RG_MIULE	660503	5493048	2020	1	2020-09-16	Composite	Selenium	6.0	mg/kg	Trich	RG_MIULE_INV-1_2020-09-16
INV	RG_MIULE	660503	5493048	2020	1	2020-09-16	Composite	Strontium	6.6	mg/kg	Trich	RG_MIULE_INV-1_2020-09-16
INV	RG_MIULE	660503	5493048	2020	1	2020-09-16	Composite	Molybdenum	0.28	mg/kg	Trich	RG_MIULE_INV-1_2020-09-16
INV	RG_MIULE	660503	5493048	2020	1	2020-09-16	Composite	Silver	0.081	mg/kg	Trich	RG_MIULE_INV-1_2020-09-16
INV	RG_MIULE	660503	5493048	2020	1	2020-09-16	Composite	Cadmium	1.2	mg/kg	Trich	RG_MIULE_INV-1_2020-09-16
INV	RG MIULE	660503	5493048	2020	1	2020-09-16	Composite	Tin	0.25	mg/kg	Trich	RG MIULE INV-1 2020-09-16
INV	RG MIULE	660503	5493048	2020	4	2020-09-16	Composite	Antimony	0.015	mg/kg	Trich	RG MIULE INV-1 2020-09-16

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Туре	Station		n (UTMs) ^(a)	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit		Laboratory Information
	50.141115	Easting	Northing	0000	4	0000 00 40					Lab	Sample ID
INV	RG_MIULE	660503	5493048	2020	1	2020-09-16	Composite	Barium	21	mg/kg	Trich	RG_MIULE_INV-1_2020-09-16
INV	RG_MIULE	660503	5493048	2020	1	2020-09-16	Composite	Mercury	0.037	mg/kg	Trich	RG_MIULE_INV-1_2020-09-16
INV	RG_MIULE	660503	5493048	2020	1	2020-09-16	Composite	Thallium	0.054	mg/kg	Trich	RG_MIULE_INV-1_2020-09-16
INV	RG_MIULE	660503	5493048	2020	1	2020-09-16	Composite	Lead	0.048	mg/kg	Trich	RG_MIULE_INV-1_2020-09-16
INV	RG_MIULE	660503	5493048	2020	1	2020-09-16	Composite	Uranium	0.024	mg/kg	Trich	RG_MIULE_INV-1_2020-09-16
INV	RG_MIULE	660503	5493048	2020	2	2020-09-16	Composite	Lithium	0.15	mg/kg	Trich	RG_MIULE_INV-2_2020-09-16
INV	RG_MIULE	660503	5493048	2020	2	2020-09-16	Composite	Boron	0.61	mg/kg	Trich	RG_MIULE_INV-2_2020-09-16
INV	RG_MIULE	660503	5493048	2020	2	2020-09-16	Composite	Sodium	5,482	mg/kg	Trich	RG_MIULE_INV-2_2020-09-16
INV	RG_MIULE	660503	5493048	2020	2	2020-09-16	Composite	Magnesium	1,394	mg/kg	Trich	RG_MIULE_INV-2_2020-09-16
INV	RG_MIULE	660503	5493048	2020	2	2020-09-16	Composite	Aluminum	61	mg/kg	Trich	RG_MIULE_INV-2_2020-09-16
INV	RG_MIULE	660503	5493048	2020	2	2020-09-16	Composite	Phosphorus	10,965	mg/kg	Trich	RG_MIULE_INV-2_2020-09-16
INV	RG_MIULE	660503	5493048	2020	2	2020-09-16	Composite	Potassium	10,875	mg/kg	Trich	RG_MIULE_INV-2_2020-09-16
INV	RG_MIULE	660503	5493048	2020	2	2020-09-16	Composite	Calcium	2,590	mg/kg	Trich	RG_MIULE_INV-2_2020-09-16
INV	RG_MIULE	660503	5493048	2020	2	2020-09-16	Composite	Titanium	3.3	mg/kg	Trich	RG_MIULE_INV-2_2020-09-16
INV	RG MIULE	660503	5493048	2020	2	2020-09-16	Composite	Vanadium	0.12	mg/kg	Trich	RG MIULE INV-2 2020-09-16
INV	RG MIULE	660503	5493048	2020	2	2020-09-16	Composite	Chromium	2.0	mg/kg	Trich	RG MIULE INV-2 2020-09-16
INV	RG MIULE	660503	5493048	2020	2	2020-09-16	Composite	Manganese	34	mg/kg	Trich	RG MIULE INV-2 2020-09-16
INV	RG MIULE	660503	5493048	2020	2	2020-09-16	Composite	Iron	112	mg/kg	Trich	RG MIULE INV-2 2020-09-16
INV	RG MIULE	660503	5493048	2020	2	2020-09-16	Composite	Cobalt	10	mg/kg	Trich	RG MIULE INV-2 2020-09-16
INV	RG MIULE	660503	5493048	2020	2	2020-09-16	Composite	Nickel	8.0	mg/kg	Trich	RG MIULE INV-2 2020-09-16
INV	RG MIULE	660503	5493048	2020	2	2020-09-16	Composite	Copper	12	mg/kg	Trich	RG MIULE INV-2 2020-09-16
INV	RG MIULE	660503	5493048	2020	2	2020-09-16	Composite	Zinc	249	mg/kg	Trich	RG MIULE INV-2 2020-09-16
INV	RG MIULE	660503	5493048	2020	2	2020-09-16	Composite	Arsenic	0.74	mg/kg	Trich	RG MIULE INV-2 2020-09-16
INV	RG MIULE	660503	5493048	2020	2	2020-09-16	Composite	Selenium	6.7	mg/kg	Trich	RG MIULE INV-2 2020-09-16
INV	RG MIULE	660503	5493048	2020	2	2020-09-16	Composite	Strontium	8.0	mg/kg	Trich	RG MIULE INV-2 2020-09-16
INV	RG MIULE	660503	5493048	2020	2	2020-09-16	Composite	Molybdenum	0.26		Trich	RG MIULE INV-2 2020-09-16
INV	_						'	•		mg/kg		
INV	RG_MIULE	660503	5493048	2020	2	2020-09-16	Composite	Silver	0.1	mg/kg	Trich	RG_MIULE_INV-2_2020-09-16
	RG_MIULE	660503	5493048	2020	2	2020-09-16	Composite	Cadmium	2.0	mg/kg	Trich	RG_MIULE_INV-2_2020-09-16
INV	RG_MIULE	660503	5493048	2020	2	2020-09-16	Composite	Tin	0.18	mg/kg	Trich	RG_MIULE_INV-2_2020-09-16
INV	RG_MIULE	660503	5493048	2020	2	2020-09-16	Composite	Antimony	0.011	mg/kg	Trich	RG_MIULE_INV-2_2020-09-16
INV	RG_MIULE	660503	5493048	2020	2	2020-09-16	Composite	Barium	24	mg/kg	Trich	RG_MIULE_INV-2_2020-09-16
INV	RG_MIULE	660503	5493048	2020	2	2020-09-16	Composite	Mercury	0.061	mg/kg	Trich	RG_MIULE_INV-2_2020-09-16
INV	RG_MIULE	660503	5493048	2020	2	2020-09-16	Composite	Thallium	0.086	mg/kg	Trich	RG_MIULE_INV-2_2020-09-16
INV	RG_MIULE	660503	5493048	2020	2	2020-09-16	Composite	Lead	0.033	mg/kg	Trich	RG_MIULE_INV-2_2020-09-16
INV	RG_MIULE	660503	5493048	2020	2	2020-09-16	Composite	Uranium	0.024	mg/kg	Trich	RG_MIULE_INV-2_2020-09-16
INV	RG_MIULE	660503	5493048	2020	3	2020-09-17	Composite	Lithium	0.2	mg/kg	Trich	RG_MIULE_INV-3_2020-09-17
INV	RG_MIULE	660503	5493048	2020	3	2020-09-17	Composite	Boron	1.4	mg/kg	Trich	RG_MIULE_INV-3_2020-09-17
INV	RG_MIULE	660503	5493048	2020	3	2020-09-17	Composite	Sodium	4,537	mg/kg	Trich	RG_MIULE_INV-3_2020-09-17
INV	RG_MIULE	660503	5493048	2020	3	2020-09-17	Composite	Magnesium	1,437	mg/kg	Trich	RG_MIULE_INV-3_2020-09-17
INV	RG_MIULE	660503	5493048	2020	3	2020-09-17	Composite	Aluminum	166	mg/kg	Trich	RG_MIULE_INV-3_2020-09-17
INV	RG_MIULE	660503	5493048	2020	3	2020-09-17	Composite	Phosphorus	10,985	mg/kg	Trich	RG_MIULE_INV-3_2020-09-17
INV	RG_MIULE	660503	5493048	2020	3	2020-09-17	Composite	Potassium	10,570	mg/kg	Trich	RG_MIULE_INV-3_2020-09-17
INV	RG_MIULE	660503	5493048	2020	3	2020-09-17	Composite	Calcium	2,643	mg/kg	Trich	RG_MIULE_INV-3_2020-09-17
INV	RG MIULE	660503	5493048	2020	3	2020-09-17	Composite	Titanium	8.1	mg/kg	Trich	RG MIULE INV-3 2020-09-17
INV	RG MIULE	660503	5493048	2020	3	2020-09-17	Composite	Vanadium	0.29	mg/kg	Trich	RG MIULE INV-3 2020-09-17
INV	RG MIULE	660503	5493048	2020	3	2020-09-17	Composite	Chromium	2.9	mg/kg	Trich	RG MIULE INV-3 2020-09-17
INV	RG MIULE	660503	5493048	2020	3	2020-09-17	Composite	Manganese	34	mg/kg	Trich	RG MIULE INV-3 2020-09-17
INV	RG MIULE	660503	5493048	2020	3	2020-09-17	Composite	Iron	196	mg/kg	Trich	RG MIULE INV-3 2020-09-17
INV	RG MIULE	660503	5493048	2020	3	2020-09-17	Composite	Cobalt	12	mg/kg	Trich	RG MIULE INV-3 2020-09-17
INV	RG MIULE	660503	5493048	2020	3	2020-09-17	Composite	Nickel	12	mg/kg	Trich	RG MIULE INV-3 2020-09-17
INV	RG MIULE	660503	5493048	2020	3	2020-09-17	Composite	Copper	14		Trich	RG MIULE INV-3 2020-09-17
INV	_	660503	5493048	_	3	2020-09-17		Zinc	231	mg/kg	Trich	
	RG_MIULE			2020			Composite			mg/kg		RG_MIULE_INV-3_2020-09-17
INV	RG_MIULE RG MIULE	660503 660503	5493048 5493048	2020 2020	3	2020-09-17 2020-09-17	Composite	Arsenic Selenium	0.81 7.1	mg/kg mg/kg	Trich Trich	RG_MIULE_INV-3_2020-09-17 RG_MIULE_INV-3_2020-09-17
INV				. 11.1.11	,	2020 NO 17	Composite	Solonium	. /1	malka	Lrich	Dr.: MILLE INIV 2 2020 00 17

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Type Station Location (UTMs) Year Ropillate Date Species/Compositie Analyte Result Lab	RG_MIULE_INV-3_2020-09-17 RG_MIULE_INV-3_2020-09-17 RG_MIULE_INV-3_2020-09-17 RG_MIULE_INV-3_2020-09-17 RG_MIULE_INV-3_2020-09-17 RG_MIULE_INV-3_2020-09-17 RG_MIULE_INV-3_2020-09-17 RG_MIULE_INV-3_2020-09-17 RG_MIULE_INV-3_2020-09-17 RG_MIULE_INV-3_2020-09-17 RG_MIULE_INV-3_2020-09-17 RG_MIULE_INV-3_2020-09-17 RG_MIS_INV-1_2020-09-17
INV RG MIULE 680503 5493048 2020 3 2020-09-17 Composite Silver 0.081 mg/kg Trich INV RG MIULE 680503 5493048 2020 3 2020-09-17 Composite Silver 0.081 mg/kg Trich INV RG MIULE 680503 5493048 2020 3 2020-09-17 Composite Cadmium 1.8 mg/kg Trich INV RG MIULE 680503 5493048 2020 3 2020-09-17 Composite Tim 0.25 mg/kg Trich INV RG MIULE 680503 5493048 2020 3 2020-09-17 Composite Earl Tim 0.25 mg/kg Trich INV RG MIULE 680503 5493048 2020 3 2020-09-17 Composite Earl Mercury 0.015 mg/kg Trich INV RG MIULE 680503 5493048 2020 3 2020-09-17 Composite Earl Mercury 0.04 mg/kg Trich INV RG MIULE 680503 5493048 2020 3 2020-09-17 Composite Mercury 0.04 mg/kg Trich INV RG MIULE 680503 5493048 2020 3 2020-09-17 Composite Thailium 0.07 mg/kg Trich INV RG MIULE 680503 5493048 2020 3 2020-09-17 Composite Lead 0.068 mg/kg Trich INV RG MIULE 680503 5493048 2020 3 2020-09-17 Composite Lead 0.068 mg/kg Trich INV RG MIULE 680503 5493048 2020 3 2020-09-17 Composite Lead 0.068 mg/kg Trich INV RG MIULE 680503 5493048 2020 3 2020-09-17 Composite Lithium 0.032 mg/kg Trich INV RG MIULE 680503 5498618 2020 1 2020-09-17 Composite Lithium 0.032 mg/kg Trich INV RG MIULE 680503 5496818 2020 1 2020-09-17 Composite Boron 0.47 mg/kg Trich INV RG MIULE 680503 5496818 2020 1 2020-09-17 Composite Boron 0.47 mg/kg Trich INV RG MIULE 6805387 5496818 2020 1 2020-09-17 Composite Boron 0.47 mg/kg Trich INV RG MIULE 6803387 5496818 2020 1 2020-09-17 Composite Magnesium 1.148 mg/kg Trich INV RG MIULE 6803387 5496818 2020 1 2020-09-17 Composite Magnesium 1.148 mg/kg Trich INV RG MIULE 6803387 5496818	RG_MIULE_INV-3_2020-09-17 RG_MIULE_INV-3_2020-09-17 RG_MIULE_INV-3_2020-09-17 RG_MIULE_INV-3_2020-09-17 RG_MIULE_INV-3_2020-09-17 RG_MIULE_INV-3_2020-09-17 RG_MIULE_INV-3_2020-09-17 RG_MIULE_INV-3_2020-09-17 RG_MIULE_INV-3_2020-09-17 RG_MIULE_INV-3_2020-09-17 RG_MIULE_INV-1_2020-09-17 RG_MI5_INV-1_2020-09-17
INV RG MIULE 669503	RG_MIULE_INV-3_2020-09-17 RG_MIULE_INV-3_2020-09-17 RG_MIULE_INV-3_2020-09-17 RG_MIULE_INV-3_2020-09-17 RG_MIULE_INV-3_2020-09-17 RG_MIULE_INV-3_2020-09-17 RG_MIULE_INV-3_2020-09-17 RG_MIULE_INV-3_2020-09-17 RG_MIULE_INV-3_2020-09-17 RG_MIS_INV-1_2020-09-17
INV RG_MIULE 660503 5493048 2020 3 2020-09-17 Composite Cadmium 1.8 mg/kg Trich INV RG_MIULE 660503 5493048 2020 3 2020-09-17 Composite Tin 0.25 mg/kg Trich INV RG_MIULE 660503 5493048 2020 3 2020-09-17 Composite Antimony 0.015 mg/kg Trich INV RG_MIULE 660503 5493048 2020 3 2020-09-17 Composite Bartum 25 mg/kg Trich INV RG_MIULE 660503 5493048 2020 3 2020-09-17 Composite Mercury 0.04 mg/kg Trich INV RG_MIULE 660503 5493048 2020 3 2020-09-17 Composite Mercury 0.04 mg/kg Trich INV RG_MIULE 660503 5493048 2020 3 2020-09-17 Composite Lead 0.088 mg/kg Trich INV RG_MIULE 660503 5493048 2020 3 2020-09-17 Composite Lead 0.088 mg/kg Trich INV RG_MIULE 660503 5493048 2020 3 2020-09-17 Composite Lead 0.088 mg/kg Trich INV RG_MIULE 660503 5493048 2020 3 2020-09-17 Composite Lithium 0.032 mg/kg Trich INV RG_MIS 669387 5496818 2020 1 2020-09-17 Composite Lithium 0.087 mg/kg Trich INV RG_MIS 669387 5496818 2020 1 2020-09-17 Composite Boron 0.47 mg/kg Trich INV RG_MIS 669387 5496818 2020 1 2020-09-17 Composite Boron 0.47 mg/kg Trich INV RG_MIS 669387 5496818 2020 1 2020-09-17 Composite Boron 0.47 mg/kg Trich INV RG_MIS 669387 5496818 2020 1 2020-09-17 Composite Magnesium 1.148 mg/kg Trich INV RG_MIS 669387 5496818 2020 1 2020-09-17 Composite Aluminum 97 mg/kg Trich INV RG_MIS 669387 5496818 2020 1 2020-09-17 Composite Aluminum 97 mg/kg Trich INV RG_MIS 669387 5496818 2020 1 2020-09-17 Composite Plassium 1.148 mg/kg Trich INV RG_MIS 669387 5496818 2020 1 2020-09-17 Composite Calcium 1.493 mg/kg Trich INV RG_MIS 669387 5496818 2020 1 2020-09-17 Composite Calcium	RG_MIULE_INV-3_2020-09-17 RG_MIULE_INV-3_2020-09-17 RG_MIULE_INV-3_2020-09-17 RG_MIULE_INV-3_2020-09-17 RG_MIULE_INV-3_2020-09-17 RG_MIULE_INV-3_2020-09-17 RG_MIULE_INV-3_2020-09-17 RG_MIULE_INV-3_2020-09-17 RG_MIS_INV-1_2020-09-17
INV RG_MIULE 660503 5493048 2202 3 2202-09-17 Composite Tin 0.25 mg/kg Trich	RG_MIULE_INV-3_2020-09-17 RG_MIULE_INV-3_2020-09-17 RG_MIULE_INV-3_2020-09-17 RG_MIULE_INV-3_2020-09-17 RG_MIULE_INV-3_2020-09-17 RG_MIULE_INV-3_2020-09-17 RG_MIULE_INV-3_2020-09-17 RG_MIS_INV-1_2020-09-17
INV RG_MULE 660503 5493048 2020 3 2020-09-17 Composite Antimony 0.015 mg/kg Trich	RG_MIULE_INV-3_2020-09-17 RG_MIULE_INV-3_2020-09-17 RG_MIULE_INV-3_2020-09-17 RG_MIULE_INV-3_2020-09-17 RG_MIULE_INV-3_2020-09-17 RG_MIULE_INV-3_2020-09-17 RG_MI5_INV-1_2020-09-17
INV RG MIULE 680503 5493048 2020 3 2020-09-17 Composite Barrum 25 mg/mg Trich	RG_MIULE_INV-3_2020-09-17 RG_MIULE_INV-3_2020-09-17 RG_MIULE_INV-3_2020-09-17 RG_MIULE_INV-3_2020-09-17 RG_MIULE_INV-3_2020-09-17 RG_MIS_INV-1_2020-09-17
INV RG_MIULE 660503 5493048 2020 3 2020-09-17 Composite Mercury 0.04 mg/kg Trich	RG_MIULE_INV-3_2020-09-17 RG_MIULE_INV-3_2020-09-17 RG_MIULE_INV-3_2020-09-17 RG_MIULE_INV-3_2020-09-17 RG_MI5_INV-1_2020-09-17
INV RG_MIULE 660503 5493048 2020 3 2020-09-17 Composite Thallium 0.07 mg/kg Trich INV RG_MIULE 660503 5493048 2020 3 2020-09-17 Composite Lead 0.068 mg/kg Trich INV RG_MIULE 660503 5493048 2020 3 2020-09-17 Composite Uranium 0.032 mg/kg Trich INV RG_MIS 659387 5496818 2020 1 2020-09-17 Composite Lithium 0.087 mg/kg Trich INV RG_MIS 659387 5496818 2020 1 2020-09-17 Composite Boron 0.47 mg/kg Trich INV RG_MIS 659387 5496818 2020 1 2020-09-17 Composite Sodium 3.277 mg/kg Trich INV RG_MIS 659387 5496818 2020 1 2020-09-17 Composite Sodium 3.277 mg/kg Trich INV RG_MIS 659387 5496818 2020 1 2020-09-17 Composite Magnesium 1,148 mg/kg Trich INV RG_MIS 659387 5496818 2020 1 2020-09-17 Composite Aluminum 97 mg/kg Trich INV RG_MIS 659387 5496818 2020 1 2020-09-17 Composite Phosphorus 9,836 mg/kg Trich INV RG_MIS 659387 5496818 2020 1 2020-09-17 Composite Phosphorus 9,836 mg/kg Trich INV RG_MIS 659387 5496818 2020 1 2020-09-17 Composite Phosphorus 9,836 mg/kg Trich INV RG_MIS 659387 5496818 2020 1 2020-09-17 Composite Phosphorus 9,836 mg/kg Trich INV RG_MIS 659387 5496818 2020 1 2020-09-17 Composite Calcium 1,493 mg/kg Trich INV RG_MIS 659387 5496818 2020 1 2020-09-17 Composite Calcium 1,493 mg/kg Trich INV RG_MIS 659387 5496818 2020 1 2020-09-17 Composite Calcium 1,493 mg/kg Trich INV RG_MIS 659387 5496818 2020 1 2020-09-17 Composite Chromium 2,6 mg/kg Trich INV RG_MIS 659387 5496818 2020 1 2020-09-17 Composite Chromium 2,6 mg/kg Trich INV RG_MIS 659387 5496818 2020 1 2020-09-17 Composite Chromium 2,6 mg/kg Trich INV RG_MIS 659387 5496818 2020 1 2020-09-17 Com	RG_MIULE_INV-3_2020-09-17 RG_MIULE_INV-3_2020-09-17 RG_MIULE_INV-3_2020-09-17 RG_MIS_INV-1_2020-09-17
INV	RG_MIULE_INV-3_2020-09-17 RG_MIULE_INV-3_2020-09-17 RG_MI5_INV-1_2020-09-17
INV	RG_MIULE_INV-3_2020-09-17 RG_MI5_INV-1_2020-09-17
INV	RG_MI5_INV-1_2020-09-17 RG_MI5_INV-1_2020-09-17 RG_MI5_INV-1_2020-09-17 RG_MI5_INV-1_2020-09-17 RG_MI5_INV-1_2020-09-17 RG_MI5_INV-1_2020-09-17 RG_MI5_INV-1_2020-09-17 RG_MI5_INV-1_2020-09-17 RG_MI5_INV-1_2020-09-17 RG_MI5_INV-1_2020-09-17 RG_MI5_INV-1_2020-09-17 RG_MI5_INV-1_2020-09-17 RG_MI5_INV-1_2020-09-17
INV	RG_MI5_INV-1_2020-09-17 RG_MI5_INV-1_2020-09-17 RG_MI5_INV-1_2020-09-17 RG_MI5_INV-1_2020-09-17 RG_MI5_INV-1_2020-09-17 RG_MI5_INV-1_2020-09-17 RG_MI5_INV-1_2020-09-17 RG_MI5_INV-1_2020-09-17 RG_MI5_INV-1_2020-09-17 RG_MI5_INV-1_2020-09-17 RG_MI5_INV-1_2020-09-17
INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Sodium 3,277 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Magnesium 1,148 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Aluminum 97 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Phosphorus 9,836 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Phosphorus 9,836 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Phosphorus 10,551 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Calcium 1,493 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Titanium 4,7 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Vanadium 0,25 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Chromium 2,6 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Chromium 2,6 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Manganese 34 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Iron 134 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Cobalt 1,6 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Cobalt 1,6 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Copper 12 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Copper 12 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Copper 12 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Rome Arsenic <0.418 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Stentium	RG_MI5_INV-1_2020-09-17 RG_MI5_INV-1_2020-09-17 RG_MI5_INV-1_2020-09-17 RG_MI5_INV-1_2020-09-17 RG_MI5_INV-1_2020-09-17 RG_MI5_INV-1_2020-09-17 RG_MI5_INV-1_2020-09-17 RG_MI5_INV-1_2020-09-17 RG_MI5_INV-1_2020-09-17 RG_MI5_INV-1_2020-09-17
INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Magnesium 1,148 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Aluminum 97 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Phosphorus 9,836 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Potassium 10,551 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Calcium 1,493 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Calcium 1,493 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Titanium 4.7 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Chromium 0.25 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Chromium 2.6 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Chromium 2.6 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Chromium 2.6 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Iron 134 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Cobalt 1.6 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Cobalt 1.6 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Copper 12 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Copper 12 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Arsenic 40.418 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Arsenic 40.418 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Arsenic 40.418 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Arsenic 40	RG_MI5_INV-1_2020-09-17 RG_MI5_INV-1_2020-09-17 RG_MI5_INV-1_2020-09-17 RG_MI5_INV-1_2020-09-17 RG_MI5_INV-1_2020-09-17 RG_MI5_INV-1_2020-09-17 RG_MI5_INV-1_2020-09-17 RG_MI5_INV-1_2020-09-17 RG_MI5_INV-1_2020-09-17
INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Aluminum 97 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Phosphorus 9,836 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Phosphorus 9,836 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Phosphorus 10,551 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Calcium 1,493 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Titanium 4.7 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Vanadium 0.25 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Chromium 2.6 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Chromium 2.6 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Manganese 34 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Iron 134 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Cobalt 1.6 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Composite Cobalt 1.6 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Composite Copper 12 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Composite Copper 12 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Strontium 4.7 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Strontium 4.8 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Strontium 4.7 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Strontium 4.7 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 20	RG_MI5_INV-1_2020-09-17 RG_MI5_INV-1_2020-09-17 RG_MI5_INV-1_2020-09-17 RG_MI5_INV-1_2020-09-17 RG_MI5_INV-1_2020-09-17 RG_MI5_INV-1_2020-09-17 RG_MI5_INV-1_2020-09-17
INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Phosphorus 9,836 mg/kg Trich	RG_MI5_INV-1_2020-09-17 RG_MI5_INV-1_2020-09-17 RG_MI5_INV-1_2020-09-17 RG_MI5_INV-1_2020-09-17 RG_MI5_INV-1_2020-09-17 RG_MI5_INV-1_2020-09-17
INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Potassium 10,551 mg/kg Trich	RG_MI5_INV-1_2020-09-17 RG_MI5_INV-1_2020-09-17 RG_MI5_INV-1_2020-09-17 RG_MI5_INV-1_2020-09-17 RG_MI5_INV-1_2020-09-17
INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Calcium 1,493 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Titanium 4,7 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Vanadium 0.25 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Chromium 2.6 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Chromium 2.6 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Manganese 34 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Iron 134 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Cobalt 1.6 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Nickel 9.9 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Copper 12 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Copper 12 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Copper 12 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Zinc 216 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Selenium 4.8 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Selenium 4.8 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Selenium 4.8 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Selenium 4.7 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Silver 0.14 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Silver 0.14 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Silver 0.14 mg/kg Trich INV	RG_MI5_INV-1_2020-09-17 RG_MI5_INV-1_2020-09-17 RG_MI5_INV-1_2020-09-17 RG_MI5_INV-1_2020-09-17
INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Titanium 4.7 mg/kg Trich	RG_MI5_INV-1_2020-09-17 RG_MI5_INV-1_2020-09-17 RG_MI5_INV-1_2020-09-17
INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Vanadium 0.25 mg/kg Trich	RG_MI5_INV-1_2020-09-17 RG_MI5_INV-1_2020-09-17
INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Chromium 2.6 mg/kg Trich	RG_MI5_INV-1_2020-09-17
INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Manganese 34 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Iron 134 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Cobalt 1.6 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Nickel 9.9 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Copper 12 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Zinc 216 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Arsenic <0.418	
INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Iron 134 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Cobalt 1.6 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Nickel 9.9 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Copper 12 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Zinc 216 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Arsenic <0.418 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Selenium 4.8 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Strontium 4.7 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Strontium 4.7 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Molybdenum 0.21 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Silver 0.14 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Silver 0.14 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Silver 0.14 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Silver 0.14 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Cadmium 0.72 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Cadmium 0.72 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Cadmium 0.72 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Cadmium 0.72 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Cadmium 0.72 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Cadmium 0.72 mg/kg Tric	RG MI5 INIV-1 2020-09-17
INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Cobalt 1.6 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Nickel 9.9 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Copper 12 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Zinc 216 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Arsenic <0.418	110_1110_1110-1_2020-03-17
INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Nickel 9.9 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Copper 12 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Arsenic <0.418	RG_MI5_INV-1_2020-09-17
INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Nickel 9.9 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Copper 12 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Arsenic <0.418	RG MI5 INV-1 2020-09-17
INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Copper 12 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Zinc 216 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Arsenic <0.418	RG MI5 INV-1 2020-09-17
INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Zinc 216 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Arsenic <0.418	RG_MI5_INV-1_2020-09-17
INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Arsenic <0.418 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Selenium 4.8 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Strontium 4.7 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Molybdenum 0.21 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Silver 0.14 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Cadmium 0.72 mg/kg Trich	RG MI5 INV-1 2020-09-17
INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Selenium 4.8 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Strontium 4.7 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Molybdenum 0.21 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Silver 0.14 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Cadmium 0.72 mg/kg Trich	RG_MI5_INV-1_2020-09-17
INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Strontium 4.7 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Molybdenum 0.21 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Silver 0.14 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Cadmium 0.72 mg/kg Trich	RG MI5 INV-1 2020-09-17
INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Molybdenum 0.21 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Silver 0.14 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Cadmium 0.72 mg/kg Trich	RG MI5 INV-1 2020-09-17
INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Silver 0.14 mg/kg Trich INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Cadmium 0.72 mg/kg Trich	RG MI5 INV-1 2020-09-17
INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Cadmium 0.72 mg/kg Trich	RG MI5 INV-1 2020-09-17
	RG MI5 INV-1 2020-09-17
	RG MI5 INV-1 2020-09-17
	RG_MI5_INV-1_2020-09-17
INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Barium 37 mg/kg Trich	RG_MI5_INV-1_2020-09-17
INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Mercury 0.061 mg/kg Trich	RG_MI5_INV-1_2020-09-17
INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Thallium 0.035 mg/kg Trich	RG_MI5_INV-1_2020-09-17
INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Lead 0.063 mg/kg Trich	RG_MI5_INV-1_2020-09-17
INV RG_MI5 659387 5496818 2020 1 2020-09-17 Composite Uranium 0.023 mg/kg Trich	RG_MI5_INV-1_2020-09-17
INV RG_MI5 659387 5496818 2020 2 2020-09-19 Composite Lithium 0.21 mg/kg Trich	RG_MI5_INV-2_2020-09-19
INV RG_MI5 659387 5496818 2020 2 2020-09-19 Composite Boron 0.83 mg/kg Trich	RG_MI5_INV-2_2020-09-19
INV RG_MI5 659387 5496818 2020 2 2020-09-19 Composite Sodium 5,415 mg/kg Trich	RG_MI5_INV-2_2020-09-19
INV RG_MI5 659387 5496818 2020 2 2020-09-19 Composite Magnesium 1,897 mg/kg Trich	RG_MI5_INV-2_2020-09-19
INV RG_MI5 659387 5496818 2020 2 2020-09-19 Composite Aluminum 258 mg/kg Trich	RG_MI5_INV-2_2020-09-19
INV RG_MI5 659387 5496818 2020 2 2020-09-19 Composite Phosphorus 10,735 mg/kg Trich	RG_MI5_INV-2_2020-09-19
INV RG_MI5 659387 5496818 2020 2 2020-09-19 Composite Potassium 10,611 mg/kg Trich	RG_MI5_INV-2_2020-09-19
INV RG_MI5 659387 5496818 2020 2 2020-09-19 Composite Calcium 2,814 mg/kg Trich	RG_MI5_INV-2_2020-09-19
INV RG_MI5 659387 5496818 2020 2 2020-09-19 Composite Titanium 12 mg/kg Trich	RG_MI5_INV-2_2020-09-19
INV RG_MI5 659387 5496818 2020 2 2020-09-19 Composite Vanadium 0.54 mg/kg Trich	DO MIE INIV O 0000 00 40
INV RG_MI5 659387 5496818 2020 2 2020-09-19 Composite Chromium 3.1 mg/kg Trich	RG_MI5_INV-2_2020-09-19
INV RG_MI5 659387 5496818 2020 2 2020-09-19 Composite Manganese 37 mg/kg Trich	RG_MI5_INV-2_2020-09-19 RG_MI5_INV-2_2020-09-19
INV RG_MI5 659387 5496818 2020 2 2020-09-19 Composite Iron 245 mg/kg Trich	
INV RG_MI5 659387 5496818 2020 2 2020-09-19 Composite Cobalt 4.4 mg/kg Trich	RG_MI5_INV-2_2020-09-19 RG_MI5_INV-2_2020-09-19
	RG_MI5_INV-2_2020-09-19

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Toma	Otation	Location	on (UTMs) ^(a)	V	Dankart	D. C.	San a sia a 16 a mara a mita	Auglida	Boods	11		Laboratory Information
Туре	Station	Easting	Northing	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit	Lab	Sample ID
INV	RG MI5	659387	5496818	2020	2	2020-09-19	Composite	Copper	15	mg/kg	Trich	RG MI5 INV-2 2020-09-19
INV	RG MI5	659387	5496818	2020	2	2020-09-19	Composite	Zinc	201	mg/kg	Trich	RG MI5 INV-2 2020-09-19
INV	RG MI5	659387	5496818	2020	2	2020-09-19	Composite	Arsenic	0.62	mg/kg	Trich	RG MI5 INV-2 2020-09-19
INV	RG MI5	659387	5496818	2020	2	2020-09-19	Composite	Selenium	6.9	mg/kg	Trich	RG MI5 INV-2 2020-09-19
INV	RG MI5	659387	5496818	2020	2	2020-09-19	Composite	Strontium	8.2	mg/kg	Trich	RG_MI5_INV-2_2020-09-19
INV		659387	5496818	2020	2	2020-09-19	-		0.25		Trich	
	RG_MI5						Composite	Molybdenum		mg/kg		RG_MI5_INV-2_2020-09-19
INV	RG_MI5	659387	5496818	2020	2	2020-09-19	Composite	Silver	0.12	mg/kg	Trich	RG_MI5_INV-2_2020-09-19
INV	RG_MI5	659387	5496818	2020	2	2020-09-19	Composite	Cadmium	1.7	mg/kg	Trich	RG_MI5_INV-2_2020-09-19
INV	RG_MI5	659387	5496818	2020	2	2020-09-19	Composite	Tin	0.33	mg/kg	Trich	RG_MI5_INV-2_2020-09-19
INV	RG_MI5	659387	5496818	2020	2	2020-09-19	Composite	Antimony	0.018	mg/kg	Trich	RG_MI5_INV-2_2020-09-19
INV	RG_MI5	659387	5496818	2020	2	2020-09-19	Composite	Barium	37	mg/kg	Trich	RG_MI5_INV-2_2020-09-19
INV	RG_MI5	659387	5496818	2020	2	2020-09-19	Composite	Mercury	0.061	mg/kg	Trich	RG_MI5_INV-2_2020-09-19
INV	RG_MI5	659387	5496818	2020	2	2020-09-19	Composite	Thallium	0.06	mg/kg	Trich	RG_MI5_INV-2_2020-09-19
INV	RG_MI5	659387	5496818	2020	2	2020-09-19	Composite	Lead	0.1	mg/kg	Trich	RG_MI5_INV-2_2020-09-19
INV	RG_MI5	659387	5496818	2020	2	2020-09-19	Composite	Uranium	0.04	mg/kg	Trich	RG MI5 INV-2 2020-09-19
INV	RG MI5	659387	5496818	2020	3	2020-09-19	Composite	Lithium	0.26	mg/kg	Trich	RG MI5 INV-3 2020-09-19
INV	RG_MI5	659387	5496818	2020	3	2020-09-19	Composite	Boron	0.93	mg/kg	Trich	RG MI5 INV-3 2020-09-19
INV	RG MI5	659387	5496818	2020	3	2020-09-19	Composite	Sodium	5,702	mg/kg	Trich	RG MI5 INV-3 2020-09-19
INV	RG MI5	659387	5496818	2020	3	2020-09-19	Composite	Magnesium	1,800	mg/kg	Trich	RG MI5 INV-3 2020-09-19
INV	RG MI5	659387	5496818	2020	3	2020-09-19	Composite	Aluminum	485	mg/kg	Trich	RG_MI5_INV-3_2020-09-19
	_						'					
INV	RG_MI5	659387	5496818	2020	3	2020-09-19	Composite	Phosphorus	11,192	mg/kg	Trich	RG_MI5_INV-3_2020-09-19
INV	RG_MI5	659387	5496818	2020	3	2020-09-19	Composite	Potassium	11,505	mg/kg	Trich	RG_MI5_INV-3_2020-09-19
INV	RG_MI5	659387	5496818	2020	3	2020-09-19	Composite	Calcium	2,426	mg/kg	Trich	RG_MI5_INV-3_2020-09-19
INV	RG_MI5	659387	5496818	2020	3	2020-09-19	Composite	Titanium	29	mg/kg	Trich	RG_MI5_INV-3_2020-09-19
INV	RG_MI5	659387	5496818	2020	3	2020-09-19	Composite	Vanadium	1.2	mg/kg	Trich	RG_MI5_INV-3_2020-09-19
INV	RG_MI5	659387	5496818	2020	3	2020-09-19	Composite	Chromium	6.4	mg/kg	Trich	RG_MI5_INV-3_2020-09-19
INV	RG_MI5	659387	5496818	2020	3	2020-09-19	Composite	Manganese	37	mg/kg	Trich	RG_MI5_INV-3_2020-09-19
INV	RG_MI5	659387	5496818	2020	3	2020-09-19	Composite	Iron	385	mg/kg	Trich	RG_MI5_INV-3_2020-09-19
INV	RG_MI5	659387	5496818	2020	3	2020-09-19	Composite	Cobalt	4.9	mg/kg	Trich	RG_MI5_INV-3_2020-09-19
INV	RG_MI5	659387	5496818	2020	3	2020-09-19	Composite	Nickel	20	mg/kg	Trich	RG_MI5_INV-3_2020-09-19
INV	RG MI5	659387	5496818	2020	3	2020-09-19	Composite	Copper	17	mg/kg	Trich	RG MI5 INV-3 2020-09-19
INV	RG MI5	659387	5496818	2020	3	2020-09-19	Composite	Zinc	193	mg/kg	Trich	RG MI5 INV-3 2020-09-19
INV	RG_MI5	659387	5496818	2020	3	2020-09-19	Composite	Arsenic	0.56	mg/kg	Trich	RG_MI5_INV-3_2020-09-19
INV	RG_MI5	659387	5496818	2020	3	2020-09-19	Composite	Selenium	5.3	mg/kg	Trich	RG MI5 INV-3 2020-09-19
INV	RG MI5	659387	5496818	2020	3	2020-09-19	Composite	Strontium	6.4	mg/kg	Trich	RG MI5 INV-3 2020-09-19
INV	_	659387	5496818	2020	3	2020-09-19	Composite	Molybdenum	0.26		Trich	
INV	RG_MI5 RG MI5	659387	5496818	2020	3	2020-09-19	Composite	Silver	0.15	mg/kg	Trich	RG_MI5_INV-3_2020-09-19 RG_MI5_INV-3_2020-09-19
							-			mg/kg		
INV	RG_MI5	659387	5496818	2020	3	2020-09-19	Composite	Cadmium	2.5	mg/kg	Trich	RG_MI5_INV-3_2020-09-19
INV	RG_MI5	659387	5496818	2020	3	2020-09-19	Composite	Tin	0.37	mg/kg	Trich	RG_MI5_INV-3_2020-09-19
INV	RG_MI5	659387	5496818	2020	3	2020-09-19	Composite	Antimony	0.026	mg/kg	Trich	RG_MI5_INV-3_2020-09-19
INV	RG_MI5	659387	5496818	2020	3	2020-09-19	Composite	Barium	52	mg/kg	Trich	RG_MI5_INV-3_2020-09-19
INV	RG_MI5	659387	5496818	2020	3	2020-09-19	Composite	Mercury	0.054	mg/kg	Trich	RG_MI5_INV-3_2020-09-19
INV	RG_MI5	659387	5496818	2020	3	2020-09-19	Composite	Thallium	0.072	mg/kg	Trich	RG_MI5_INV-3_2020-09-19
INV	RG_MI5	659387	5496818	2020	3	2020-09-19	Composite	Lead	0.15	mg/kg	Trich	RG_MI5_INV-3_2020-09-19
INV	RG_MI5	659387	5496818	2020	3	2020-09-19	Composite	Uranium	0.055	mg/kg	Trich	RG_MI5_INV-3_2020-09-19
INV	RG_AGCK	667555	5488644	2020	1	2020-09-10	Composite	Wet Mass	1.9	g	Trich	RG_AGCK_INV-1_2020-09-10
INV	RG_AGCK	667555	5488644	2020	1	2020-09-10	Composite	Dry Mass	0.32	g	Trich	RG_AGCK_INV-1_2020-09-10
INV	RG_AGCK	667555	5488644	2020	1	2020-09-10	Composite	% Moisture	83	%	Trich	RG_AGCK_INV-1_2020-09-10
INV	RG AGCK	667555	5488644	2020	2	2020-09-10	Composite	Wet Mass	1.1	a	Trich	RG AGCK INV-2 2020-09-10
INV	RG AGCK	667555	5488644	2020	2	2020-09-10	Composite	Dry Mass	0.27	g g	Trich	RG AGCK INV-2 2020-09-10
INV	RG AGCK	667555	5488644	2020	2	2020-09-10	Composite	% Moisture	76	9 %	Trich	RG_AGCK_INV-2_2020-09-10
INV	RG AGCK	667555	5488644	2020	3	2020-09-10	Composite	Wet Mass	1.4	a	Trich	RG AGCK INV-3 2020-09-10
INV	RG_AGCK RG AGCK	667555	5488644	2020	3	2020-09-10	·		0.3		Trich	RG AGCK INV-3 2020-09-10
							Composite	Dry Mass		<u>g</u>		
INV	RG_AGCK	667555	5488644	2020	3	2020-09-10	Composite	% Moisture	78	%	Trich	RG_AGCK_INV-3_2020-09-10
INV	RG_LE1	659635	5494108	2020	1	2020-09-17	Composite	Wet Mass	1.8	g	Trich	RG_LE1_INV-1_2020-09-17

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Туре	Station		n (UTMs) ^(a)	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit		Laboratory Information
• •		Easting	Northing		rtophouto					O.m.c	Lab	Sample ID
INV	RG_LE1	659635	5494108	2020	1	2020-09-17	Composite	Dry Mass	0.44	g	Trich	RG_LE1_INV-1_2020-09-17
INV	RG_LE1	659635	5494108	2020	1	2020-09-17	Composite	% Moisture	75	%	Trich	RG_LE1_INV-1_2020-09-17
INV	RG_LE1	659635	5494108	2020	2	2020-09-17	Composite	Wet Mass	1.5	g	Trich	RG_LE1_INV-2_2020-09-17
INV	RG_LE1	659635	5494108	2020	2	2020-09-17	Composite	Dry Mass	0.36	g	Trich	RG_LE1_INV-2_2020-09-17
INV	RG_LE1	659635	5494108	2020	2	2020-09-17	Composite	% Moisture	77	%	Trich	RG_LE1_INV-2_2020-09-17
INV	RG_LE1	659635	5494108	2020	3	2020-09-17	Composite	Wet Mass	0.94	g	Trich	RG_LE1_INV-3_2020-09-17
INV	RG_LE1	659635	5494108	2020	3	2020-09-17	Composite	Dry Mass	0.19	g	Trich	RG_LE1_INV-3_2020-09-17
INV	RG_LE1	659635	5494108	2020	3	2020-09-17	Composite	% Moisture	80	%	Trich	RG_LE1_INV-3_2020-09-17
INV	RG_MI25	668186	5482838	2020	1	2020-09-11	Composite	Wet Mass	1.6	g	Trich	RG_MI25_INV-1_2020-09-11
INV	RG_MI25	668186	5482838	2020	1	2020-09-11	Composite	Dry Mass	0.32	g	Trich	RG_MI25_INV-1_2020-09-11
INV	RG MI25	668186	5482838	2020	1	2020-09-11	Composite	% Moisture	80	%	Trich	RG MI25 INV-1 2020-09-11
INV	RG MI25	668186	5482838	2020	2	2020-09-11	Composite	Wet Mass	0.77	q	Trich	RG MI25 INV-2 2020-09-11
INV	RG MI25	668186	5482838	2020	2	2020-09-11	Composite	Dry Mass	0.16	a	Trich	RG MI25 INV-2 2020-09-11
INV	RG MI25	668186	5482838	2020	2	2020-09-11	Composite	% Moisture	80	%	Trich	RG_MI25_INV-2_2020-09-11
INV	RG MI25	668186	5482838	2020	3	2020-09-11	Composite	Wet Mass	0.88	ď	Trich	RG MI25 INV-3 2020-09-11
INV	RG MI25	668186	5482838	2020	3	2020-09-11	Composite	Dry Mass	0.18	a a	Trich	RG_MI25_INV-3_2020-09-11
INV	RG MI25	668186	5482838	2020	3	2020-09-11	Composite	% Moisture	80	<u>9</u> %	Trich	RG MI25 INV-3 2020-09-11
INV	RG CORCK	668556	5487388	2020	1	2020-09-11	·	Wet Mass	0.27		Trich	RG CORCK INV-1 2020-09-11
				2020	1		Composite			g		
INV	RG_CORCK	668556	5487388		1	2020-09-12	Composite	Dry Mass	0.082	g	Trich	RG_CORCK_INV-1_2020-09-12
INV	RG_CORCK	668556	5487388	2020	1	2020-09-12	Composite	% Moisture	70	%	Trich	RG_CORCK_INV-1_2020-09-12
INV	RG_CORCK	668556	5487388	2020	2	2020-09-12	Composite	Wet Mass	0.46	g	Trich	RG_CORCK_INV-2_2020-09-12
INV	RG_CORCK	668556	5487388	2020	2	2020-09-12	Composite	Dry Mass	0.13	g	Trich	RG_CORCK_INV-2_2020-09-12
INV	RG_CORCK	668556	5487388	2020	2	2020-09-12	Composite	% Moisture	73	%	Trich	RG_CORCK_INV-2_2020-09-12
INV	RG_CORCK	668556	5487388	2020	3	2020-09-12	Composite	Wet Mass	0.33	g	Trich	RG_CORCK_INV-3_2020-09-12
INV	RG_CORCK	668556	5487388	2020	3	2020-09-12	Composite	Dry Mass	0.099	g	Trich	RG_CORCK_INV-3_2020-09-12
INV	RG_CORCK	668556	5487388	2020	3	2020-09-12	Composite	% Moisture	70	%	Trich	RG_CORCK_INV-3_2020-09-12
INV	RG_MIUCO	668134	5486767	2020	1	2020-09-12	Composite	Wet Mass	0.75	g	Trich	RG_MIUCO_INV-1_2020-09-12
INV	RG_MIUCO	668134	5486767	2020	1	2020-09-12	Composite	Dry Mass	0.12	g	Trich	RG_MIUCO_INV-1_2020-09-12
INV	RG MIUCO	668134	5486767	2020	1	2020-09-12	Composite	% Moisture	84	%	Trich	RG MIUCO INV-1 2020-09-12
INV	RG MIUCO	668134	5486767	2020	2	2020-09-12	Composite	Wet Mass	0.31	q	Trich	RG MIUCO INV-2 2020-09-12
INV	RG MIUCO	668134	5486767	2020	2	2020-09-12	Composite	Dry Mass	0.058	g	Trich	RG MIUCO INV-2 2020-09-12
INV	RG MIUCO	668134	5486767	2020	2	2020-09-12	Composite	% Moisture	81	%	Trich	RG MIUCO INV-2 2020-09-12
INV	RG MIUCO	668134	5486767	2020	3	2020-09-12	Composite	Wet Mass	0.63	g	Trich	RG MIUCO INV-3 2020-09-12
INV	RG MIUCO	668134	5486767	2020	3	2020-09-12	Composite	Dry Mass	0.13	g g	Trich	RG MIUCO INV-3 2020-09-12
INV	RG MIUCO	668134	5486767	2020	3	2020-09-12	Composite	% Moisture	79	<u>9</u> %	Trich	RG MIUCO INV-3 2020-09-12
INV	RG_MIDCO	667711	5487625	2020	1	2020-09-12	-	Wet Mass	0.86		Trich	RG MIDCO INV-1 2020-09-15
INV					1		Composite			g		
	RG_MIDCO	667711	5487625	2020	1	2020-09-15	Composite	Dry Mass	0.22	g	Trich	RG_MIDCO_INV-1_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	1	2020-09-15	Composite	% Moisture	75	%	Trich	RG_MIDCO_INV-1_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	2	2020-09-15	Composite	Wet Mass	0.92	g	Trich	RG_MIDCO_INV-2_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	2	2020-09-15	Composite	Dry Mass	0.26	g	Trich	RG_MIDCO_INV-2_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	2	2020-09-15	Composite	% Moisture	72	%	Trich	RG_MIDCO_INV-2_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	3	2020-09-15	Composite	Wet Mass	0.92	g	Trich	RG_MIDCO_INV-3_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	3	2020-09-15	Composite	Dry Mass	0.29	g	Trich	RG_MIDCO_INV-3_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	3	2020-09-15	Composite	% Moisture	69	%	Trich	RG_MIDCO_INV-3_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	4	2020-09-15	Composite	Wet Mass	2.3	g	Trich	RG_MIDCO_INV-4_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	4	2020-09-15	Composite	Dry Mass	0.69	g	Trich	RG_MIDCO_INV-4_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	4	2020-09-15	Composite	% Moisture	70	%	Trich	RG_MIDCO_INV-4_2020-09-15
INV	RG_MIDCO	667711	5487625	2020	5	2020-09-13	Composite	Wet Mass	1.5	g	Trich	RG_MIDCO_INV-5_2020-09-13
INV	RG MIDCO	667711	5487625	2020	5	2020-09-13	Composite	Dry Mass	0.27	q	Trich	RG MIDCO INV-5 2020-09-13
INV	RG MIDCO	667711	5487625	2020	5	2020-09-13	Composite	% Moisture	82	<u> </u>	Trich	RG MIDCO INV-5 2020-09-13
INV	RG MIDAG	665258	5489417	2020	1	2020-09-16	Composite	Wet Mass	1.2	q	Trich	RG MIDAG INV-1 2020-09-16
INV	RG MIDAG	665258	5489417	2020	1	2020-09-16	Composite	Dry Mass	0.19		Trich	RG MIDAG INV-1 2020-09-16
INV	RG_MIDAG	665258	5489417	2020	1	2020-09-16	Composite	% Moisture	84	<u>g</u> %	Trich	
IINV		665258	5489417	2020	2	2020-09-16	Composite	% Moisture Wet Mass	1.1	% a	Trich	RG_MIDAG_INV-1_2020-09-16 RG_MIDAG_INV-2_2020-09-16
INV	RG MIDAG					711 711 HU 16	i ampoeito					

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Туре	Station		n (UTMs) ^(a)	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit		Laboratory Information
		Easting	Northing		·						Lab	Sample ID
INV	RG_MIDAG	665258	5489417	2020	2	2020-09-16	Composite	% Moisture	75	%	Trich	RG_MIDAG_INV-2_2020-09-16
INV	RG_MIDAG	665258	5489417	2020	3	2020-09-15	Composite	Wet Mass	0.95	g	Trich	RG_MIDAG_INV-3_2020-09-15
INV	RG_MIDAG	665258	5489417	2020	3	2020-09-15	Composite	Dry Mass	0.28	g	Trich	RG_MIDAG_INV-3_2020-09-15
INV	RG_MIDAG	665258	5489417	2020	3	2020-09-15	Composite	% Moisture	70	%	Trich	RG_MIDAG_INV-3_2020-09-15
INV	RG_MIULE	660503	5493048	2020	1	2020-09-16	Composite	Wet Mass	0.51	g	Trich	RG_MIULE_INV-1_2020-09-16
INV	RG_MIULE	660503	5493048	2020	1	2020-09-16	Composite	Dry Mass	0.1	g	Trich	RG_MIULE_INV-1_2020-09-16
INV	RG_MIULE	660503	5493048	2020	1	2020-09-16	Composite	% Moisture	80	%	Trich	RG_MIULE_INV-1_2020-09-16
INV	RG_MIULE	660503	5493048	2020	2	2020-09-16	Composite	Wet Mass	0.53	g	Trich	RG_MIULE_INV-2_2020-09-16
INV	RG_MIULE	660503	5493048	2020	2	2020-09-16	Composite	Dry Mass	0.11	g	Trich	RG_MIULE_INV-2_2020-09-16
INV	RG_MIULE	660503	5493048	2020	2	2020-09-16	Composite	% Moisture	79	%	Trich	RG_MIULE_INV-2_2020-09-16
INV	RG_MIULE	660503	5493048	2020	3	2020-09-17	Composite	Wet Mass	1.3	g	Trich	RG_MIULE_INV-3_2020-09-17
INV	RG_MIULE	660503	5493048	2020	3	2020-09-17	Composite	Dry Mass	0.26	g	Trich	RG_MIULE_INV-3_2020-09-17
INV	RG_MIULE	660503	5493048	2020	3	2020-09-17	Composite	% Moisture	80	%	Trich	RG_MIULE_INV-3_2020-09-17
INV	RG_MI5	659387	5496818	2020	1	2020-09-17	Composite	Wet Mass	0.37	g	Trich	RG_MI5_INV-1_2020-09-17
INV	RG MI5	659387	5496818	2020	1	2020-09-17	Composite	Dry Mass	0.096	g	Trich	RG MI5 INV-1 2020-09-17
INV	RG MI5	659387	5496818	2020	1	2020-09-17	Composite	% Moisture	74	%	Trich	RG MI5 INV-1 2020-09-17
INV	RG MI5	659387	5496818	2020	2	2020-09-19	Composite	Wet Mass	2.1	g	Trich	RG MI5 INV-2 2020-09-19
INV	RG MI5	659387	5496818	2020	2	2020-09-19	Composite	Dry Mass	0.44	g	Trich	RG MI5 INV-2 2020-09-19
INV	RG MI5	659387	5496818	2020	2	2020-09-19	Composite	% Moisture	79	<u> </u>	Trich	RG MI5 INV-2 2020-09-19
INV	RG MI5	659387	5496818	2020	3	2020-09-19	Composite	Wet Mass	2.0	q	Trich	RG MI5 INV-3 2020-09-19
INV	RG MI5	659387	5496818	2020	3	2020-09-19	Composite	Dry Mass	0.4	<u>9</u>	Trich	RG MI5 INV-3 2020-09-19
INV	RG MI5	659387	5496818	2020	3	2020-09-19	Composite	% Moisture	80	<u>9</u> %	Trich	RG MI5 INV-3 2020-09-19
INV	CM MC2	667249	5488144	2020	1	2020-09-18	Composite	Lithium	0.71	mg/kg	Trich	CM MC2 INV-1 2020-09-18
INV	CM MC2	667249	5488144	2020	1	2020-09-18	Composite	Boron	3.0	mg/kg	Trich	CM MC2 INV-1 2020-09-18
INV	CM MC2	667249	5488144	2020	1	2020-09-18	Composite	Sodium	3,869	mg/kg	Trich	CM_MC2_INV-1_2020-09-18
INV	CM MC2	667249	5488144	2020	1	2020-09-18	Composite	Magnesium	1,512	mg/kg	Trich	CM_MC2_INV-1_2020-09-18
INV	CM MC2	667249	5488144	2020	1	2020-09-18	Composite	Aluminum	1,292		Trich	CM_MC2_INV-1_2020-09-18
INV	_				1		'			mg/kg	Trich	
	CM_MC2	667249	5488144	2020		2020-09-18	Composite	Phosphorus	8,756	mg/kg		CM_MC2_INV-1_2020-09-18
INV	CM_MC2	667249	5488144	2020	1	2020-09-18	Composite	Potassium	9,035	mg/kg	Trich	CM_MC2_INV-1_2020-09-18
INV	CM_MC2	667249	5488144	2020	1	2020-09-18	Composite	Calcium	8,420	mg/kg	Trich	CM_MC2_INV-1_2020-09-18
INV	CM_MC2	667249	5488144	2020	1	2020-09-18	Composite	Titanium	89	mg/kg	Trich	CM_MC2_INV-1_2020-09-18
INV	CM_MC2	667249	5488144	2020	1	2020-09-18	Composite	Vanadium	1.7	mg/kg	Trich	CM_MC2_INV-1_2020-09-18
INV	CM_MC2	667249	5488144	2020	1	2020-09-18	Composite	Chromium	5.7	mg/kg	Trich	CM_MC2_INV-1_2020-09-18
INV	CM_MC2	667249	5488144	2020	1	2020-09-18	Composite	Manganese	134	mg/kg	Trich	CM_MC2_INV-1_2020-09-18
INV	CM_MC2	667249	5488144	2020	1	2020-09-18	Composite	Iron	703	mg/kg	Trich	CM_MC2_INV-1_2020-09-18
INV	CM_MC2	667249	5488144	2020	1	2020-09-18	Composite	Cobalt	52	mg/kg	Trich	CM_MC2_INV-1_2020-09-18
INV	CM_MC2	667249	5488144	2020	1	2020-09-18	Composite	Nickel	53	mg/kg	Trich	CM_MC2_INV-1_2020-09-18
INV	CM_MC2	667249	5488144	2020	1	2020-09-18	Composite	Copper	12	mg/kg	Trich	CM_MC2_INV-1_2020-09-18
INV	CM_MC2	667249	5488144	2020	1	2020-09-18	Composite	Zinc	168	mg/kg	Trich	CM_MC2_INV-1_2020-09-18
INV	CM_MC2	667249	5488144	2020	1	2020-09-18	Composite	Arsenic	0.81	mg/kg	Trich	CM_MC2_INV-1_2020-09-18
INV	CM_MC2	667249	5488144	2020	1	2020-09-18	Composite	Selenium	4.0	mg/kg	Trich	CM_MC2_INV-1_2020-09-18
INV	CM_MC2	667249	5488144	2020	1	2020-09-18	Composite	Strontium	16	mg/kg	Trich	CM_MC2_INV-1_2020-09-18
INV	CM_MC2	667249	5488144	2020	1	2020-09-18	Composite	Molybdenum	0.3	mg/kg	Trich	CM_MC2_INV-1_2020-09-18
INV	CM_MC2	667249	5488144	2020	1	2020-09-18	Composite	Silver	0.049	mg/kg	Trich	CM_MC2_INV-1_2020-09-18
INV	CM_MC2	667249	5488144	2020	1	2020-09-18	Composite	Cadmium	0.43	mg/kg	Trich	CM_MC2_INV-1_2020-09-18
INV	CM_MC2	667249	5488144	2020	1	2020-09-18	Composite	Tin	0.14	mg/kg	Trich	CM_MC2_INV-1_2020-09-18
INV	CM_MC2	667249	5488144	2020	1	2020-09-18	Composite	Antimony	0.039	mg/kg	Trich	CM_MC2_INV-1_2020-09-18
INV	CM MC2	667249	5488144	2020	1	2020-09-18	Composite	Barium	42	mg/kg	Trich	CM MC2 INV-1 2020-09-18
INV	CM MC2	667249	5488144	2020	1	2020-09-18	Composite	Mercury	<0.023	mg/kg	Trich	CM MC2 INV-1 2020-09-18
INV	CM MC2	667249	5488144	2020	1	2020-09-18	Composite	Thallium	0.071	mg/kg	Trich	CM_MC2_INV-1_2020-09-18
INV	CM MC2	667249	5488144	2020	1	2020-09-18	Composite	Lead	0.31	mg/kg	Trich	CM MC2 INV-1 2020-09-18
INV	CM MC2	667249	5488144	2020	1	2020-09-18	Composite	Uranium	0.13	mg/kg	Trich	CM_MC2_INV-1_2020-09-18
INV	CM MC2	667249	5488144	2020	2	2020-09-18	Composite	Lithium	0.88	mg/kg	Trich	CM_MC2_INV-1_2020-09-19
INV		667249	5488144	2020			•		4.6		Trich	
IINV	CM_MC2	007249	0400144	2020	2	2020-09-19	Composite	Boron	4.0	mg/kg	HICH	CM_MC2_INV-2_2020-09-19

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Туре	Station		n (UTMs) ^(a)	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit		Laboratory Information
		Easting	Northing		·						Lab	Sample ID
INV	CM_MC2	667249	5488144	2020	2	2020-09-19	Composite	Magnesium	1,590	mg/kg	Trich	CM_MC2_INV-2_2020-09-19
INV	CM_MC2	667249	5488144	2020	2	2020-09-19	Composite	Aluminum	1,621	mg/kg	Trich	CM_MC2_INV-2_2020-09-19
INV	CM_MC2	667249	5488144	2020	2	2020-09-19	Composite	Phosphorus	8,788	mg/kg	Trich	CM_MC2_INV-2_2020-09-19
INV	CM_MC2	667249	5488144	2020	2	2020-09-19	Composite	Potassium	9,895	mg/kg	Trich	CM_MC2_INV-2_2020-09-19
INV	CM_MC2	667249	5488144	2020	2	2020-09-19	Composite	Calcium	4,696	mg/kg	Trich	CM_MC2_INV-2_2020-09-19
INV	CM_MC2	667249	5488144	2020	2	2020-09-19	Composite	Titanium	119	mg/kg	Trich	CM_MC2_INV-2_2020-09-19
INV	CM_MC2	667249	5488144	2020	2	2020-09-19	Composite	Vanadium	2.2	mg/kg	Trich	CM_MC2_INV-2_2020-09-19
INV	CM_MC2	667249	5488144	2020	2	2020-09-19	Composite	Chromium	4.9	mg/kg	Trich	CM_MC2_INV-2_2020-09-19
INV	CM_MC2	667249	5488144	2020	2	2020-09-19	Composite	Manganese	103	mg/kg	Trich	CM_MC2_INV-2_2020-09-19
INV	CM_MC2	667249	5488144	2020	2	2020-09-19	Composite	Iron	813	mg/kg	Trich	CM_MC2_INV-2_2020-09-19
INV	CM MC2	667249	5488144	2020	2	2020-09-19	Composite	Cobalt	44	mg/kg	Trich	CM MC2 INV-2 2020-09-19
INV	CM MC2	667249	5488144	2020	2	2020-09-19	Composite	Nickel	53	mg/kg	Trich	CM_MC2_INV-2_2020-09-19
INV	CM MC2	667249	5488144	2020	2	2020-09-19	Composite	Copper	13	mg/kg	Trich	CM MC2 INV-2 2020-09-19
INV	CM MC2	667249	5488144	2020	2	2020-09-19	Composite	Zinc	174	mg/kg	Trich	CM_MC2_INV-2_2020-09-19
INV	CM MC2	667249	5488144	2020	2	2020-09-19	Composite	Arsenic	0.88	mg/kg	Trich	CM_MC2_INV-2_2020-09-19
INV	CM MC2	667249	5488144	2020	2	2020-09-19	Composite	Selenium	4.0	mg/kg	Trich	CM_MC2_INV-2_2020-09-19
INV	CM MC2	667249	5488144	2020	2	2020-09-19	Composite	Strontium	14	mg/kg	Trich	CM MC2 INV-2 2020-09-19
INV	CM MC2	667249	5488144	2020	2	2020-09-19	Composite	Molybdenum	0.34	mg/kg	Trich	CM_MC2_INV-2_2020-09-19
INV	CM MC2	667249	5488144	2020	2	2020-09-19	Composite	Silver	0.049	mg/kg	Trich	CM MC2 INV-2 2020-09-19
INV	CM MC2	667249	5488144	2020	2	2020-09-19	Composite	Cadmium	0.45	mg/kg	Trich	CM_MC2_INV-2_2020-09-19
INV	CM_MC2	667249	5488144	2020	2	2020-09-19	Composite	Tin	0.43	mg/kg	Trich	CM MC2 INV-2 2020-09-19
INV	CM_MC2	667249	5488144	2020	2	2020-09-19	'	Antimony	0.033		Trich	CM_MC2_INV-2_2020-09-19
INV	=	667249	5488144	2020		2020-09-19	Composite	<u> </u>	34	mg/kg	Trich	
	CM_MC2				2		Composite	Barium	_	mg/kg		CM_MC2_INV-2_2020-09-19
INV	CM_MC2	667249	5488144	2020	2	2020-09-19	Composite	Mercury	0.036	mg/kg	Trich	CM_MC2_INV-2_2020-09-19
INV	CM_MC2	667249	5488144	2020	2	2020-09-19	Composite	Thallium	0.071	mg/kg	Trich	CM_MC2_INV-2_2020-09-19
INV	CM_MC2	667249	5488144	2020	2	2020-09-19	Composite	Lead	0.4	mg/kg	Trich	CM_MC2_INV-2_2020-09-19
INV	CM_MC2	667249	5488144	2020	2	2020-09-19	Composite	Uranium	0.11	mg/kg	Trich	CM_MC2_INV-2_2020-09-19
INV	CM_MC2	667249	5488144	2020	3	2020-09-19	Composite	Lithium	0.23	mg/kg	Trich	CM_MC2_INV-3_2020-09-19
INV	CM_MC2	667249	5488144	2020	3	2020-09-19	Composite	Boron	1.0	mg/kg	Trich	CM_MC2_INV-3_2020-09-19
INV	CM_MC2	667249	5488144	2020	3	2020-09-19	Composite	Sodium	2,583	mg/kg	Trich	CM_MC2_INV-3_2020-09-19
INV	CM_MC2	667249	5488144	2020	3	2020-09-19	Composite	Magnesium	1,536	mg/kg	Trich	CM_MC2_INV-3_2020-09-19
INV	CM_MC2	667249	5488144	2020	3	2020-09-19	Composite	Aluminum	211	mg/kg	Trich	CM_MC2_INV-3_2020-09-19
INV	CM_MC2	667249	5488144	2020	3	2020-09-19	Composite	Phosphorus	9,326	mg/kg	Trich	CM_MC2_INV-3_2020-09-19
INV	CM_MC2	667249	5488144	2020	3	2020-09-19	Composite	Potassium	7,106	mg/kg	Trich	CM_MC2_INV-3_2020-09-19
INV	CM_MC2	667249	5488144	2020	3	2020-09-19	Composite	Calcium	2,496	mg/kg	Trich	CM_MC2_INV-3_2020-09-19
INV	CM_MC2	667249	5488144	2020	3	2020-09-19	Composite	Titanium	12	mg/kg	Trich	CM_MC2_INV-3_2020-09-19
INV	CM_MC2	667249	5488144	2020	3	2020-09-19	Composite	Vanadium	0.32	mg/kg	Trich	CM_MC2_INV-3_2020-09-19
INV	CM_MC2	667249	5488144	2020	3	2020-09-19	Composite	Chromium	2.1	mg/kg	Trich	CM_MC2_INV-3_2020-09-19
INV	CM_MC2	667249	5488144	2020	3	2020-09-19	Composite	Manganese	78	mg/kg	Trich	CM_MC2_INV-3_2020-09-19
INV	CM_MC2	667249	5488144	2020	3	2020-09-19	Composite	Iron	181	mg/kg	Trich	CM_MC2_INV-3_2020-09-19
INV	CM MC2	667249	5488144	2020	3	2020-09-19	Composite	Cobalt	37	mg/kg	Trich	CM MC2 INV-3 2020-09-19
INV	CM MC2	667249	5488144	2020	3	2020-09-19	Composite	Nickel	18	mg/kg	Trich	CM MC2 INV-3 2020-09-19
INV	CM MC2	667249	5488144	2020	3	2020-09-19	Composite	Copper	10	mg/kg	Trich	CM MC2 INV-3 2020-09-19
INV	CM MC2	667249	5488144	2020	3	2020-09-19	Composite	Zinc	156	mg/kg	Trich	CM MC2 INV-3 2020-09-19
INV	CM MC2	667249	5488144	2020	3	2020-09-19	Composite	Arsenic	0.41	mg/kg	Trich	CM MC2 INV-3 2020-09-19
INV	CM MC2	667249	5488144	2020	3	2020-09-19	Composite	Selenium	2.7	mg/kg	Trich	CM MC2 INV-3 2020-09-19
INV	CM_MC2	667249	5488144	2020	3	2020-09-19	Composite	Strontium	7.9	mg/kg	Trich	CM MC2 INV-3 2020-09-19
INV	CM_MC2	667249	5488144	2020	3	2020-09-19	Composite	Molybdenum	0.2	mg/kg	Trich	CM MC2 INV-3 2020-09-19
INV	CM_MC2	667249	5488144	2020		2020-09-19	· ·	Silver	0.2	= =	Trich	CM MC2 INV-3 2020-09-19
	_				3		Composite			mg/kg		
INV	CM_MC2	667249	5488144	2020	3	2020-09-19	Composite	Cadmium	0.31	mg/kg	Trich	CM_MC2_INV-3_2020-09-19
INV	CM_MC2	667249	5488144	2020	3	2020-09-19	Composite	Tin	0.15	mg/kg	Trich	CM_MC2_INV-3_2020-09-19
INV	CM_MC2	667249	5488144	2020	3	2020-09-19	Composite	Antimony	0.019	mg/kg	Trich	CM_MC2_INV-3_2020-09-19
INV	CM_MC2	667249	5488144	2020	3	2020-09-19	Composite	Barium	12	mg/kg	Trich	CM_MC2_INV-3_2020-09-19
INV	CM_MC2	667249	5488144	2020	3	2020-09-19	Composite	Mercury	0.032	mg/kg	Trich	CM_MC2_INV-3_2020-09-19
INV	CM MC2	667249	5488144	2020	3	2020-09-19	Composite	Thallium	0.031	mg/kg	Trich	CM MC2 INV-3 2020-09-19

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Туре	Station		on (UTMs) ^(a)	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit		Laboratory Information
• •		Easting	Northing								Lab	Sample ID
INV	CM_MC2	667249	5488144	2020	3	2020-09-19	Composite	Lead	0.074	mg/kg	Trich	CM_MC2_INV-3_2020-09-19
INV	CM_MC2	667249	5488144	2020	3	2020-09-19	Composite	Uranium	0.035	mg/kg	Trich	CM_MC2_INV-3_2020-09-19
INV	RG_MIDAG-S1	666290	5488507	2020	1	2020-09-18	Composite	Lithium	0.28	mg/kg	Trich	RG_MIDAG-S1_INV-1_2020-09-18
INV	RG_MIDAG-S1	666290	5488507	2020	1	2020-09-18	Composite	Boron	0.97	mg/kg	Trich	RG_MIDAG-S1_INV-1_2020-09-18
INV	RG_MIDAG-S1	666290	5488507	2020	1	2020-09-18	Composite	Sodium	3,247	mg/kg	Trich	RG_MIDAG-S1_INV-1_2020-09-18
INV	RG_MIDAG-S1	666290	5488507	2020	1	2020-09-18	Composite	Magnesium	1,186	mg/kg	Trich	RG_MIDAG-S1_INV-1_2020-09-18
INV	RG_MIDAG-S1	666290	5488507	2020	1	2020-09-18	Composite	Aluminum	427	mg/kg	Trich	RG_MIDAG-S1_INV-1_2020-09-18
INV	RG_MIDAG-S1	666290	5488507	2020	1	2020-09-18	Composite	Phosphorus	7,725	mg/kg	Trich	RG_MIDAG-S1_INV-1_2020-09-18
INV	RG_MIDAG-S1	666290	5488507	2020	1	2020-09-18	Composite	Potassium	7,242	mg/kg	Trich	RG_MIDAG-S1_INV-1_2020-09-18
INV	RG_MIDAG-S1	666290	5488507	2020	1	2020-09-18	Composite	Calcium	1,237	mg/kg	Trich	RG_MIDAG-S1_INV-1_2020-09-18
INV	RG_MIDAG-S1	666290	5488507	2020	1	2020-09-18	Composite	Titanium	34	mg/kg	Trich	RG_MIDAG-S1_INV-1_2020-09-18
INV	RG_MIDAG-S1	666290	5488507	2020	1	2020-09-18	Composite	Vanadium	0.72	mg/kg	Trich	RG_MIDAG-S1_INV-1_2020-09-18
INV	RG_MIDAG-S1	666290	5488507	2020	1	2020-09-18	Composite	Chromium	3.3	mg/kg	Trich	RG_MIDAG-S1_INV-1_2020-09-18
INV	RG_MIDAG-S1	666290	5488507	2020	1	2020-09-18	Composite	Manganese	54	mg/kg	Trich	RG_MIDAG-S1_INV-1_2020-09-18
INV	RG_MIDAG-S1	666290	5488507	2020	1	2020-09-18	Composite	Iron	270	mg/kg	Trich	RG_MIDAG-S1_INV-1_2020-09-18
INV	RG_MIDAG-S1	666290	5488507	2020	1	2020-09-18	Composite	Cobalt	17	mg/kg	Trich	RG_MIDAG-S1_INV-1_2020-09-18
INV	RG_MIDAG-S1	666290	5488507	2020	1	2020-09-18	Composite	Nickel	16	mg/kg	Trich	RG_MIDAG-S1_INV-1_2020-09-18
INV	RG_MIDAG-S1	666290	5488507	2020	1	2020-09-18	Composite	Copper	9.3	mg/kg	Trich	RG_MIDAG-S1_INV-1_2020-09-18
INV	RG_MIDAG-S1	666290	5488507	2020	1	2020-09-18	Composite	Zinc	177	mg/kg	Trich	RG_MIDAG-S1_INV-1_2020-09-18
INV	RG_MIDAG-S1	666290	5488507	2020	1	2020-09-18	Composite	Arsenic	0.56	mg/kg	Trich	RG_MIDAG-S1_INV-1_2020-09-18
INV	RG_MIDAG-S1	666290	5488507	2020	1	2020-09-18	Composite	Selenium	4.0	mg/kg	Trich	RG_MIDAG-S1_INV-1_2020-09-18
INV	RG_MIDAG-S1	666290	5488507	2020	1	2020-09-18	Composite	Strontium	3.7	mg/kg	Trich	RG_MIDAG-S1_INV-1_2020-09-18
INV	RG_MIDAG-S1	666290	5488507	2020	1	2020-09-18	Composite	Molybdenum	0.21	mg/kg	Trich	RG_MIDAG-S1_INV-1_2020-09-18
INV	RG_MIDAG-S1	666290	5488507	2020	1	2020-09-18	Composite	Silver	0.049	mg/kg	Trich	RG_MIDAG-S1_INV-1_2020-09-18
INV	RG MIDAG-S1	666290	5488507	2020	1	2020-09-18	Composite	Cadmium	0.68	mg/kg	Trich	RG MIDAG-S1 INV-1 2020-09-18
INV	RG MIDAG-S1	666290	5488507	2020	1	2020-09-18	Composite	Tin	0.12	mg/kg	Trich	RG MIDAG-S1 INV-1 2020-09-18
INV	RG MIDAG-S1	666290	5488507	2020	1	2020-09-18	Composite	Antimony	0.019	mg/kg	Trich	RG MIDAG-S1 INV-1 2020-09-18
INV	RG MIDAG-S1	666290	5488507	2020	1	2020-09-18	Composite	Barium	17	mg/kg	Trich	RG MIDAG-S1 INV-1 2020-09-18
INV	RG MIDAG-S1	666290	5488507	2020	1	2020-09-18	Composite	Mercury	0.058	mg/kg	Trich	RG MIDAG-S1 INV-1 2020-09-18
INV	RG MIDAG-S1	666290	5488507	2020	1	2020-09-18	Composite	Thallium	0.083	mg/kg	Trich	RG MIDAG-S1 INV-1 2020-09-18
INV	RG MIDAG-S1	666290	5488507	2020	1	2020-09-18	Composite	Lead	0.14	mg/kg	Trich	RG MIDAG-S1 INV-1 2020-09-18
INV	RG MIDAG-S1	666290	5488507	2020	1	2020-09-18	Composite	Uranium	0.025	mg/kg	Trich	RG MIDAG-S1 INV-1 2020-09-18
INV	RG MIDAG-S1	666290	5488507	2020	2	2020-09-18	Composite	Lithium	0.38	mg/kg	Trich	RG MIDAG-S1 INV-2 2020-09-18
INV	RG MIDAG-S1	666290	5488507	2020	2	2020-09-18	Composite	Boron	1.5	mg/kg	Trich	RG MIDAG-S1 INV-2 2020-09-18
INV	RG MIDAG-S1	666290	5488507	2020	2	2020-09-18	Composite	Sodium	2,919	mg/kg	Trich	RG MIDAG-S1 INV-2 2020-09-18
INV	RG_MIDAG-S1	666290	5488507	2020	2	2020-09-18	Composite	Magnesium	971	mg/kg	Trich	RG_MIDAG-S1_INV-2_2020-09-18
INV	RG MIDAG-S1	666290	5488507	2020	2	2020-09-18	Composite	Aluminum	808	mg/kg	Trich	RG_MIDAG-S1_INV-2_2020-09-18
INV	RG MIDAG-S1	666290	5488507	2020	2	2020-09-18	Composite	Phosphorus	9,324	mg/kg	Trich	RG MIDAG-S1 INV-2 2020-09-18
INV	RG MIDAG-S1	666290	5488507	2020	2	2020-09-18	Composite	Potassium	10,076	mg/kg	Trich	RG MIDAG-S1_INV-2_2020-09-16
INV	RG MIDAG-S1	666290	5488507	2020	2	2020-09-18	Composite	Calcium	1,107	mg/kg	Trich	RG MIDAG-S1_INV-2_2020-09-18
INV	RG_MIDAG-S1	666290	5488507	2020	2	2020-09-18	Composite	Titanium	54	mg/kg	Trich	RG_MIDAG-S1_INV-2_2020-09-18
INV	RG MIDAG-S1	666290	5488507	2020	2	2020-09-18	Composite	Vanadium	1.2	mg/kg	Trich	RG MIDAG-S1 INV-2 2020-09-18
INV	RG MIDAG-S1	666290	5488507	2020	2	2020-09-18		Chromium	3.4		Trich	RG MIDAG-S1_INV-2_2020-09-18
	_						Composite		_	mg/kg		
INV	RG_MIDAG-S1	666290 666290	5488507 5488507	2020	2	2020-09-18 2020-09-18	Composite	Manganese	73	mg/kg	Trich	RG_MIDAG-S1_INV-2_2020-09-18
	RG_MIDAG-S1			2020	2		Composite	Iron	392	mg/kg	Trich	RG_MIDAG-S1_INV-2_2020-09-18
INV	RG_MIDAG-S1	666290	5488507	2020	2	2020-09-18	Composite	Cobalt	16	mg/kg	Trich	RG_MIDAG-S1_INV-2_2020-09-18
INV	RG_MIDAG-S1	666290	5488507	2020	2	2020-09-18	Composite	Nickel	21	mg/kg	Trich	RG_MIDAG-S1_INV-2_2020-09-18
INV	RG_MIDAG-S1	666290	5488507	2020	2	2020-09-18	Composite	Copper	11	mg/kg	Trich	RG_MIDAG-S1_INV-2_2020-09-18
INV	RG_MIDAG-S1	666290	5488507	2020	2	2020-09-18	Composite	Zinc	142	mg/kg	Trich	RG_MIDAG-S1_INV-2_2020-09-18
INV	RG_MIDAG-S1	666290	5488507	2020	2	2020-09-18	Composite	Arsenic	0.71	mg/kg	Trich	RG_MIDAG-S1_INV-2_2020-09-18
INV	RG_MIDAG-S1	666290	5488507	2020	2	2020-09-18	Composite	Selenium	3.7	mg/kg	Trich	RG_MIDAG-S1_INV-2_2020-09-18
INV	RG_MIDAG-S1	666290	5488507	2020	2	2020-09-18	Composite	Strontium	3.9	mg/kg	Trich	RG_MIDAG-S1_INV-2_2020-09-18
INV	RG_MIDAG-S1	666290	5488507	2020	2	2020-09-18	Composite	Molybdenum	0.25	mg/kg	Trich	RG_MIDAG-S1_INV-2_2020-09-18
INV	RG_MIDAG-S1	666290	5488507	2020	2	2020-09-18	Composite	Silver	0.068	mg/kg	Trich	RG_MIDAG-S1_INV-2_2020-09-18
INV	RG MIDAG-S1	666290	5488507	2020	2	2020-09-18	Composite	Cadmium	0.42	mg/kg	Trich	RG MIDAG-S1 INV-2 2020-09-18

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Туре	Station		n (UTMs) ^(a)	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit		Laboratory Information
• •		Easting	Northing		·						Lab	Sample ID
INV	RG_MIDAG-S1	666290	5488507	2020	2	2020-09-18	Composite	Tin	0.13	mg/kg	Trich	RG_MIDAG-S1_INV-2_2020-09-18
INV	RG_MIDAG-S1	666290	5488507	2020	2	2020-09-18	Composite	Antimony	0.031	mg/kg	Trich	RG_MIDAG-S1_INV-2_2020-09-18
INV	RG_MIDAG-S1	666290	5488507	2020	2	2020-09-18	Composite	Barium	19	mg/kg	Trich	RG_MIDAG-S1_INV-2_2020-09-18
INV	RG_MIDAG-S1	666290	5488507	2020	2	2020-09-18	Composite	Mercury	0.039	mg/kg	Trich	RG_MIDAG-S1_INV-2_2020-09-18
INV	RG_MIDAG-S1	666290	5488507	2020	2	2020-09-18	Composite	Thallium	0.085	mg/kg	Trich	RG_MIDAG-S1_INV-2_2020-09-18
INV	RG_MIDAG-S1	666290	5488507	2020	2	2020-09-18	Composite	Lead	0.28	mg/kg	Trich	RG_MIDAG-S1_INV-2_2020-09-18
INV	RG_MIDAG-S1	666290	5488507	2020	2	2020-09-18	Composite	Uranium	0.053	mg/kg	Trich	RG_MIDAG-S1_INV-2_2020-09-18
INV	RG_MIDAG-S1	666290	5488507	2020	3	2020-09-18	Composite	Lithium	0.28	mg/kg	Trich	RG_MIDAG-S1_INV-3_2020-09-18
INV	RG_MIDAG-S1	666290	5488507	2020	3	2020-09-18	Composite	Boron	1.0	mg/kg	Trich	RG_MIDAG-S1_INV-3_2020-09-18
INV	RG_MIDAG-S1	666290	5488507	2020	3	2020-09-18	Composite	Sodium	3,268	mg/kg	Trich	RG_MIDAG-S1_INV-3_2020-09-18
INV	RG_MIDAG-S1	666290	5488507	2020	3	2020-09-18	Composite	Magnesium	1,116	mg/kg	Trich	RG_MIDAG-S1_INV-3_2020-09-18
INV	RG_MIDAG-S1	666290	5488507	2020	3	2020-09-18	Composite	Aluminum	452	mg/kg	Trich	RG_MIDAG-S1_INV-3_2020-09-18
INV	RG_MIDAG-S1	666290	5488507	2020	3	2020-09-18	Composite	Phosphorus	8,541	mg/kg	Trich	RG_MIDAG-S1_INV-3_2020-09-18
INV	RG_MIDAG-S1	666290	5488507	2020	3	2020-09-18	Composite	Potassium	7,381	mg/kg	Trich	RG_MIDAG-S1_INV-3_2020-09-18
INV	RG_MIDAG-S1	666290	5488507	2020	3	2020-09-18	Composite	Calcium	1,046	mg/kg	Trich	RG_MIDAG-S1_INV-3_2020-09-18
INV	RG_MIDAG-S1	666290	5488507	2020	3	2020-09-18	Composite	Titanium	29	mg/kg	Trich	RG_MIDAG-S1_INV-3_2020-09-18
INV	RG_MIDAG-S1	666290	5488507	2020	3	2020-09-18	Composite	Vanadium	0.71	mg/kg	Trich	RG_MIDAG-S1_INV-3_2020-09-18
INV	RG_MIDAG-S1	666290	5488507	2020	3	2020-09-18	Composite	Chromium	2.6	mg/kg	Trich	RG_MIDAG-S1_INV-3_2020-09-18
INV	RG MIDAG-S1	666290	5488507	2020	3	2020-09-18	Composite	Manganese	93	mg/kg	Trich	RG MIDAG-S1 INV-3 2020-09-18
INV	RG MIDAG-S1	666290	5488507	2020	3	2020-09-18	Composite	Iron	319	mg/kg	Trich	RG MIDAG-S1 INV-3 2020-09-18
INV	RG MIDAG-S1	666290	5488507	2020	3	2020-09-18	Composite	Cobalt	26	mg/kg	Trich	RG MIDAG-S1 INV-3 2020-09-18
INV	RG MIDAG-S1	666290	5488507	2020	3	2020-09-18	Composite	Nickel	23	mg/kg	Trich	RG MIDAG-S1 INV-3 2020-09-18
INV	RG MIDAG-S1	666290	5488507	2020	3	2020-09-18	Composite	Copper	9.9	mg/kg	Trich	RG MIDAG-S1 INV-3 2020-09-18
INV	RG MIDAG-S1	666290	5488507	2020	3	2020-09-18	Composite	Zinc	161	mg/kg	Trich	RG MIDAG-S1 INV-3 2020-09-18
INV	RG MIDAG-S1	666290	5488507	2020	3	2020-09-18	Composite	Arsenic	0.66	mg/kg	Trich	RG MIDAG-S1 INV-3 2020-09-18
INV	RG MIDAG-S1	666290	5488507	2020	3	2020-09-18	Composite	Selenium	4.2	mg/kg	Trich	RG MIDAG-S1 INV-3 2020-09-18
INV	RG MIDAG-S1	666290	5488507	2020	3	2020-09-18	Composite	Strontium	3.5	mg/kg	Trich	RG MIDAG-S1 INV-3 2020-09-18
INV	RG MIDAG-S1	666290	5488507	2020	3	2020-09-18	Composite	Molybdenum	0.28	mg/kg	Trich	RG MIDAG-S1 INV-3 2020-09-18
INV	RG MIDAG-S1	666290	5488507	2020	3	2020-09-18	Composite	Silver	0.054		Trich	RG MIDAG-S1 INV-3 2020-09-18
INV	RG MIDAG-S1	666290	5488507	2020	3	2020-09-18	Composite	Cadmium	0.034	mg/kg	Trich	RG MIDAG-S1_INV-3_2020-09-16
INV		666290	5488507	2020	3	2020-09-18		Tin	0.41	mg/kg	Trich	
	RG_MIDAG-S1						Composite			mg/kg		RG_MIDAG-S1_INV-3_2020-09-18
INV	RG_MIDAG-S1	666290	5488507	2020	3	2020-09-18	Composite	Antimony	0.027	mg/kg	Trich	RG_MIDAG-S1_INV-3_2020-09-18
INV	RG_MIDAG-S1	666290	5488507	2020	3	2020-09-18	Composite	Barium	24	mg/kg	Trich	RG_MIDAG-S1_INV-3_2020-09-18
INV	RG_MIDAG-S1	666290	5488507	2020	3	2020-09-18	Composite	Mercury	0.052	mg/kg	Trich	RG_MIDAG-S1_INV-3_2020-09-18
INV	RG_MIDAG-S1	666290	5488507	2020	3	2020-09-18	Composite	Thallium	0.072	mg/kg	Trich	RG_MIDAG-S1_INV-3_2020-09-18
INV	RG_MIDAG-S1	666290	5488507	2020	3	2020-09-18	Composite	Lead	0.2	mg/kg	Trich	RG_MIDAG-S1_INV-3_2020-09-18
INV	RG_MIDAG-S1	666290	5488507	2020	3	2020-09-18	Composite	Uranium	0.052	mg/kg	Trich	RG_MIDAG-S1_INV-3_2020-09-18
INV	RG_MIDAG-S2	665770	5488854	2020	1	2020-09-17	Composite	Lithium	0.28	mg/kg	Trich	RG_MIDAG-S2_INV-1_2020-09-17
INV	RG_MIDAG-S2	665770	5488854	2020	1	2020-09-17	Composite	Boron	1.2	mg/kg	Trich	RG_MIDAG-S2_INV-1_2020-09-17
INV	RG_MIDAG-S2	665770	5488854	2020	1	2020-09-17	Composite	Sodium	3,141	mg/kg	Trich	RG_MIDAG-S2_INV-1_2020-09-17
INV	RG_MIDAG-S2	665770	5488854	2020	1	2020-09-17	Composite	Magnesium	1,186	mg/kg	Trich	RG_MIDAG-S2_INV-1_2020-09-17
INV	RG_MIDAG-S2	665770	5488854	2020	1	2020-09-17	Composite	Aluminum	597	mg/kg	Trich	RG_MIDAG-S2_INV-1_2020-09-17
INV	RG_MIDAG-S2	665770	5488854	2020	1	2020-09-17	Composite	Phosphorus	10,502	mg/kg	Trich	RG_MIDAG-S2_INV-1_2020-09-17
INV	RG_MIDAG-S2	665770	5488854	2020	1	2020-09-17	Composite	Potassium	10,601	mg/kg	Trich	RG_MIDAG-S2_INV-1_2020-09-17
INV	RG_MIDAG-S2	665770	5488854	2020	1	2020-09-17	Composite	Calcium	1,289	mg/kg	Trich	RG_MIDAG-S2_INV-1_2020-09-17
INV	RG_MIDAG-S2	665770	5488854	2020	1	2020-09-17	Composite	Titanium	44	mg/kg	Trich	RG_MIDAG-S2_INV-1_2020-09-17
INV	RG_MIDAG-S2	665770	5488854	2020	1	2020-09-17	Composite	Vanadium	0.89	mg/kg	Trich	RG_MIDAG-S2_INV-1_2020-09-17
INV	RG_MIDAG-S2	665770	5488854	2020	1	2020-09-17	Composite	Chromium	3.5	mg/kg	Trich	RG_MIDAG-S2_INV-1_2020-09-17
INV	RG MIDAG-S2	665770	5488854	2020	1	2020-09-17	Composite	Manganese	76	mg/kg	Trich	RG MIDAG-S2 INV-1 2020-09-17
INV	RG MIDAG-S2	665770	5488854	2020	1	2020-09-17	Composite	Iron	355	mg/kg	Trich	RG MIDAG-S2 INV-1 2020-09-17
INV	RG MIDAG-S2	665770	5488854	2020	1	2020-09-17	Composite	Cobalt	18	mg/kg	Trich	RG MIDAG-S2 INV-1 2020-09-17
INV	RG MIDAG-S2	665770	5488854	2020	1	2020-09-17	Composite	Nickel	20	mg/kg	Trich	RG MIDAG-S2 INV-1 2020-09-17
INV	RG MIDAG-S2	665770	5488854	2020	1	2020-09-17	Composite	Copper	13	mg/kg	Trich	RG MIDAG-S2_INV-1_2020-09-17
INV	RG MIDAG-S2	665770	5488854	2020	1	2020-09-17	Composite	Zinc	169	mg/kg	Trich	RG MIDAG-S2_INV-1_2020-09-17
	1 10 1911070-02	1 000110	1 0400004	2020	1	ZUZU-U3-11	COHIDOSILE	LIII∪	108	IIIU/NU	111011	110 IVIIDAG-32 IIVV-1 2020-09-1/

Benthic Invertebrate Tissue Chemistry

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Туре	Station		n (UTMs) ^(a)	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit		Laboratory Information
		Easting	Northing		Hophodio						Lab	Sample ID
INV	RG_MIDAG-S2	665770	5488854	2020	1	2020-09-17	Composite	Selenium	4.5	mg/kg	Trich	RG_MIDAG-S2_INV-1_2020-09-17
INV	RG_MIDAG-S2	665770	5488854	2020	1	2020-09-17	Composite	Strontium	4.8	mg/kg	Trich	RG_MIDAG-S2_INV-1_2020-09-17
INV	RG_MIDAG-S2	665770	5488854	2020	1	2020-09-17	Composite	Molybdenum	0.29	mg/kg	Trich	RG_MIDAG-S2_INV-1_2020-09-17
INV	RG_MIDAG-S2	665770	5488854	2020	1	2020-09-17	Composite	Silver	0.065	mg/kg	Trich	RG_MIDAG-S2_INV-1_2020-09-17
INV	RG_MIDAG-S2	665770	5488854	2020	1	2020-09-17	Composite	Cadmium	0.52	mg/kg	Trich	RG_MIDAG-S2_INV-1_2020-09-17
INV	RG_MIDAG-S2	665770	5488854	2020	1	2020-09-17	Composite	Tin	0.17	mg/kg	Trich	RG_MIDAG-S2_INV-1_2020-09-17
INV	RG_MIDAG-S2	665770	5488854	2020	1	2020-09-17	Composite	Antimony	0.027	mg/kg	Trich	RG_MIDAG-S2_INV-1_2020-09-17
INV	RG_MIDAG-S2	665770	5488854	2020	1	2020-09-17	Composite	Barium	30	mg/kg	Trich	RG_MIDAG-S2_INV-1_2020-09-17
INV	RG_MIDAG-S2	665770	5488854	2020	1	2020-09-17	Composite	Mercury	0.032	mg/kg	Trich	RG_MIDAG-S2_INV-1_2020-09-17
INV	RG_MIDAG-S2	665770	5488854	2020	1	2020-09-17	Composite	Thallium	0.059	mg/kg	Trich	RG_MIDAG-S2_INV-1_2020-09-17
INV	RG_MIDAG-S2	665770	5488854	2020	1	2020-09-17	Composite	Lead	0.21	mg/kg	Trich	RG_MIDAG-S2_INV-1_2020-09-17
INV	RG_MIDAG-S2	665770	5488854	2020	1	2020-09-17	Composite	Uranium	0.047	mg/kg	Trich	RG_MIDAG-S2_INV-1_2020-09-17
INV	RG_MIDAG-S2	665770	5488854	2020	2	2020-09-17	Composite	Lithium	0.31	mg/kg	Trich	RG_MIDAG-S2_INV-2_2020-09-17
INV	RG MIDAG-S2	665770	5488854	2020	2	2020-09-17	Composite	Boron	1.4	mg/kg	Trich	RG MIDAG-S2 INV-2 2020-09-17
INV	RG MIDAG-S2	665770	5488854	2020	2	2020-09-17	Composite	Sodium	3,645	mg/kg	Trich	RG MIDAG-S2 INV-2 2020-09-17
INV	RG MIDAG-S2	665770	5488854	2020	2	2020-09-17	Composite	Magnesium	1,285	mg/kg	Trich	RG MIDAG-S2 INV-2 2020-09-17
INV	RG MIDAG-S2	665770	5488854	2020	2	2020-09-17	Composite	Aluminum	687	mg/kg	Trich	RG MIDAG-S2 INV-2 2020-09-17
INV	RG MIDAG-S2	665770	5488854	2020	2	2020-09-17	Composite	Phosphorus	10,127	mg/kg	Trich	RG_MIDAG-S2_INV-2_2020-09-17
INV	RG MIDAG-S2	665770	5488854	2020	2	2020-09-17	Composite	Potassium	9,670	mg/kg	Trich	RG MIDAG-S2 INV-2 2020-09-17
INV	RG MIDAG-S2	665770	5488854	2020	2	2020-09-17	Composite	Calcium	1,359	mg/kg	Trich	RG MIDAG-S2 INV-2 2020-09-17
INV	RG MIDAG-S2	665770	5488854	2020	2	2020-09-17	Composite	Titanium	43	mg/kg	Trich	RG MIDAG-S2 INV-2 2020-09-17
INV	RG MIDAG-S2	665770	5488854	2020	2	2020-09-17	Composite	Vanadium	0.9	mg/kg	Trich	RG_MIDAG-S2_INV-2_2020-09-17
INV	RG MIDAG-S2	665770	5488854	2020	2	2020-09-17	Composite	Chromium	3.1	mg/kg	Trich	RG MIDAG-S2_INV-2_2020-09-17
INV	RG MIDAG-S2	665770	5488854	2020	2	2020-09-17	Composite		49		Trich	RG MIDAG-S2_INV-2_2020-09-17
INV	RG MIDAG-S2	665770	5488854	2020	2	2020-09-17	Composite	Manganese Iron	322	mg/kg	Trich	
INV		665770	5488854	2020		2020-09-17	Composite	Cobalt		mg/kg	Trich	RG_MIDAG-S2_INV-2_2020-09-17 RG_MIDAG-S2_INV-2_2020-09-17
	RG_MIDAG-S2				2		'		12	mg/kg		
INV	RG_MIDAG-S2	665770	5488854	2020	2	2020-09-17	Composite	Nickel	15	mg/kg	Trich	RG_MIDAG-S2_INV-2_2020-09-17
INV	RG_MIDAG-S2	665770	5488854	2020	2	2020-09-17	Composite	Copper	9.4	mg/kg	Trich	RG_MIDAG-S2_INV-2_2020-09-17
INV	RG_MIDAG-S2	665770	5488854	2020	2	2020-09-17	Composite	Zinc	145	mg/kg	Trich	RG_MIDAG-S2_INV-2_2020-09-17
INV	RG_MIDAG-S2	665770	5488854	2020	2	2020-09-17	Composite	Arsenic	0.77	mg/kg	Trich	RG_MIDAG-S2_INV-2_2020-09-17
INV	RG_MIDAG-S2	665770	5488854	2020	2	2020-09-17	Composite	Selenium	3.2	mg/kg	Trich	RG_MIDAG-S2_INV-2_2020-09-17
INV	RG_MIDAG-S2	665770	5488854	2020	2	2020-09-17	Composite	Strontium	4.1	mg/kg	Trich	RG_MIDAG-S2_INV-2_2020-09-17
INV	RG_MIDAG-S2	665770	5488854	2020	2	2020-09-17	Composite	Molybdenum	0.23	mg/kg	Trich	RG_MIDAG-S2_INV-2_2020-09-17
INV	RG_MIDAG-S2	665770	5488854	2020	2	2020-09-17	Composite	Silver	0.047	mg/kg	Trich	RG_MIDAG-S2_INV-2_2020-09-17
INV	RG_MIDAG-S2	665770	5488854	2020	2	2020-09-17	Composite	Cadmium	0.38	mg/kg	Trich	RG_MIDAG-S2_INV-2_2020-09-17
INV	RG_MIDAG-S2	665770	5488854	2020	2	2020-09-17	Composite	Tin	0.097	mg/kg	Trich	RG_MIDAG-S2_INV-2_2020-09-17
INV	RG_MIDAG-S2	665770	5488854	2020	2	2020-09-17	Composite	Antimony	0.019	mg/kg	Trich	RG_MIDAG-S2_INV-2_2020-09-17
INV	RG_MIDAG-S2	665770	5488854	2020	2	2020-09-17	Composite	Barium	15	mg/kg	Trich	RG_MIDAG-S2_INV-2_2020-09-17
INV	RG_MIDAG-S2	665770	5488854	2020	2	2020-09-17	Composite	Mercury	0.036	mg/kg	Trich	RG_MIDAG-S2_INV-2_2020-09-17
INV	RG_MIDAG-S2	665770	5488854	2020	2	2020-09-17	Composite	Thallium	0.057	mg/kg	Trich	RG_MIDAG-S2_INV-2_2020-09-17
INV	RG_MIDAG-S2	665770	5488854	2020	2	2020-09-17	Composite	Lead	0.2	mg/kg	Trich	RG_MIDAG-S2_INV-2_2020-09-17
INV	RG_MIDAG-S2	665770	5488854	2020	2	2020-09-17	Composite	Uranium	0.035	mg/kg	Trich	RG_MIDAG-S2_INV-2_2020-09-17
INV	RG_MIDAG-S2	665770	5488854	2020	3	2020-09-17	Composite	Lithium	0.79	mg/kg	Trich	RG_MIDAG-S2_INV-3_2020-09-17
INV	RG_MIDAG-S2	665770	5488854	2020	3	2020-09-17	Composite	Boron	3.0	mg/kg	Trich	RG_MIDAG-S2_INV-3_2020-09-17
INV	RG MIDAG-S2	665770	5488854	2020	3	2020-09-17	Composite	Sodium	4,080	mg/kg	Trich	RG MIDAG-S2 INV-3 2020-09-17
INV	RG MIDAG-S2	665770	5488854	2020	3	2020-09-17	Composite	Magnesium	1,643	mg/kg	Trich	RG MIDAG-S2 INV-3 2020-09-17
INV	RG MIDAG-S2	665770	5488854	2020	3	2020-09-17	Composite	Aluminum	2,069	mg/kg	Trich	RG MIDAG-S2 INV-3 2020-09-17
INV	RG MIDAG-S2	665770	5488854	2020	3	2020-09-17	Composite	Phosphorus	10,372	mg/kg	Trich	RG MIDAG-S2_INV-3_2020-09-17
INV	RG MIDAG-S2	665770	5488854	2020	3	2020-09-17	Composite	Potassium	11,142	mg/kg	Trich	RG MIDAG-S2_INV-3_2020-09-17
INV	RG_MIDAG-S2	665770	5488854	2020		2020-09-17		Calcium	2,076		Trich	
	_				3		Composite			mg/kg		RG_MIDAG-S2_INV-3_2020-09-17
INV	RG_MIDAG-S2	665770	5488854	2020	3	2020-09-17	Composite	Titanium	152	mg/kg	Trich	RG_MIDAG-S2_INV-3_2020-09-17
INV	RG_MIDAG-S2	665770	5488854	2020	3	2020-09-17	Composite	Vanadium	3.1	mg/kg	Trich	RG_MIDAG-S2_INV-3_2020-09-17
INV	RG_MIDAG-S2	665770	5488854	2020	3	2020-09-17	Composite	Chromium	7.3	mg/kg	Trich	RG_MIDAG-S2_INV-3_2020-09-17
INV	RG_MIDAG-S2	665770	5488854	2020	3	2020-09-17	Composite	Manganese	86	mg/kg	Trich	RG_MIDAG-S2_INV-3_2020-09-17
INV	RG MIDAG-S2	665770	5488854	2020	3	2020-09-17	Composite	Iron	884	mg/kg	Trich	RG MIDAG-S2 INV-3 2020-09-17

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Туре	Station	Locatio	n (UTMs) ^(a)	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit		Laboratory Information
		Easting	Northing		·						Lab	Sample ID
INV	RG_MIDAG-S2	665770	5488854	2020	3	2020-09-17	Composite	Cobalt	30	mg/kg	Trich	RG_MIDAG-S2_INV-3_2020-09-17
INV	RG_MIDAG-S2	665770	5488854	2020	3	2020-09-17	Composite	Nickel	41	mg/kg	Trich	RG_MIDAG-S2_INV-3_2020-09-17
INV	RG_MIDAG-S2	665770	5488854	2020	3	2020-09-17	Composite	Copper	13	mg/kg	Trich	RG_MIDAG-S2_INV-3_2020-09-17
INV	RG_MIDAG-S2	665770	5488854	2020	3	2020-09-17	Composite	Zinc	181	mg/kg	Trich	RG_MIDAG-S2_INV-3_2020-09-17
INV	RG_MIDAG-S2	665770	5488854	2020	3	2020-09-17	Composite	Arsenic	1.5	mg/kg	Trich	RG_MIDAG-S2_INV-3_2020-09-17
INV	RG_MIDAG-S2	665770	5488854	2020	3	2020-09-17	Composite	Selenium	5.6	mg/kg	Trich	RG_MIDAG-S2_INV-3_2020-09-17
INV	RG_MIDAG-S2	665770	5488854	2020	3	2020-09-17	Composite	Strontium	7.4	mg/kg	Trich	RG_MIDAG-S2_INV-3_2020-09-17
INV	RG_MIDAG-S2	665770	5488854	2020	3	2020-09-17	Composite	Molybdenum	0.37	mg/kg	Trich	RG_MIDAG-S2_INV-3_2020-09-17
INV	RG_MIDAG-S2	665770	5488854	2020	3	2020-09-17	Composite	Silver	0.07	mg/kg	Trich	RG_MIDAG-S2_INV-3_2020-09-17
INV	RG_MIDAG-S2	665770	5488854	2020	3	2020-09-17	Composite	Cadmium	0.93	mg/kg	Trich	RG_MIDAG-S2_INV-3_2020-09-17
INV	RG_MIDAG-S2	665770	5488854	2020	3	2020-09-17	Composite	Tin	0.21	mg/kg	Trich	RG_MIDAG-S2_INV-3_2020-09-17
INV	RG_MIDAG-S2	665770	5488854	2020	3	2020-09-17	Composite	Antimony	0.05	mg/kg	Trich	RG_MIDAG-S2_INV-3_2020-09-17
INV	RG_MIDAG-S2	665770	5488854	2020	3	2020-09-17	Composite	Barium	35	mg/kg	Trich	RG_MIDAG-S2_INV-3_2020-09-17
INV	RG_MIDAG-S2	665770	5488854	2020	3	2020-09-17	Composite	Mercury	0.045	mg/kg	Trich	RG_MIDAG-S2_INV-3_2020-09-17
INV	RG MIDAG-S2	665770	5488854	2020	3	2020-09-17	Composite	Thallium	0.14	mg/kg	Trich	RG MIDAG-S2 INV-3 2020-09-17
INV	RG MIDAG-S2	665770	5488854	2020	3	2020-09-17	Composite	Lead	0.52	mg/kg	Trich	RG MIDAG-S2 INV-3 2020-09-17
INV	RG MIDAG-S2	665770	5488854	2020	3	2020-09-17	Composite	Uranium	0.098	mg/kg	Trich	RG MIDAG-S2 INV-3 2020-09-17
INV	CM MC2	667249	5488144	2020	1	2020-09-18	Composite	Wet Mass	0.95	g	Trich	CM MC2 INV-1 2020-09-18
INV	CM MC2	667249	5488144	2020	1	2020-09-18	Composite	Dry Mass	0.24	g	Trich	CM MC2 INV-1 2020-09-18
INV	CM MC2	667249	5488144	2020	1	2020-09-18	Composite	% Moisture	75	<u> </u>	Trich	CM MC2 INV-1 2020-09-18
INV	CM MC2	667249	5488144	2020	2	2020-09-19	Composite	Wet Mass	1.1	a	Trich	CM MC2 INV-2 2020-09-19
INV	CM MC2	667249	5488144	2020	2	2020-09-19	Composite	Dry Mass	0.21	g g	Trich	CM MC2 INV-2 2020-09-19
INV	CM MC2	667249	5488144	2020	2	2020-09-19	Composite	% Moisture	81		Trich	CM MC2 INV-2 2020-09-19
INV	CM MC2	667249	5488144	2020	3	2020-09-19	Composite	Wet Mass	1.6	a	Trich	CM MC2 INV-3 2020-09-19
INV	CM MC2	667249	5488144	2020	3	2020-09-19	Composite	Dry Mass	0.44	<u>9</u> g	Trich	CM_MC2_NV-3_2020-09-19
INV	CM MC2	667249	5488144	2020	3	2020-09-19	Composite	% Moisture	72	9 %	Trich	CM_MC2_INV-3_2020-09-19
INV	RG MIDAG-S1	666290	5488507	2020	1	2020-09-18	Composite	Wet Mass	2.0		Trich	RG MIDAG-S1 INV-1 2020-09-18
INV	RG_MIDAG-S1	666290	5488507	2020	1	2020-09-18	Composite	Dry Mass	0.43	g	Trich	RG MIDAG-S1_INV-1_2020-09-18
INV	RG MIDAG-S1	666290	5488507	2020	1	2020-09-18	'	% Moisture	78	<u>g</u> %	Trich	RG_MIDAG-S1_INV-1_2020-09-18
INV		666290	5488507	2020	•		Composite		2.0		Trich	
INV	RG_MIDAG-S1 RG_MIDAG-S1	666290	5488507	2020	2	2020-09-18 2020-09-18	Composite	Wet Mass	0.47	<u>g</u>	Trich	RG_MIDAG-S1_INV-2_2020-09-18 RG_MIDAG-S1_INV-2_2020-09-18
	_						Composite	Dry Mass		g		
INV	RG_MIDAG-S1	666290	5488507	2020	2	2020-09-18	Composite	% Moisture	76	%	Trich	RG_MIDAG-S1_INV-2_2020-09-18
INV	RG_MIDAG-S1	666290	5488507	2020	3	2020-09-18	Composite	Wet Mass	2.0	<u>g</u>	Trich	RG_MIDAG-S1_INV-3_2020-09-18
INV	RG_MIDAG-S1	666290	5488507	2020	3	2020-09-18	Composite	Dry Mass	0.49	g	Trich	RG_MIDAG-S1_INV-3_2020-09-18
INV	RG_MIDAG-S1	666290	5488507	2020	3	2020-09-18	Composite	% Moisture	76	%	Trich	RG_MIDAG-S1_INV-3_2020-09-18
INV	RG_MIDAG-S2	665770	5488854	2020	1	2020-09-17	Composite	Wet Mass	1.9	g	Trich	RG_MIDAG-S2_INV-1_2020-09-17
INV	RG_MIDAG-S2	665770	5488854	2020	1	2020-09-17	Composite	Dry Mass	0.46	g	Trich	RG_MIDAG-S2_INV-1_2020-09-17
INV	RG_MIDAG-S2	665770	5488854	2020	1	2020-09-17	Composite	% Moisture	76	%	Trich	RG_MIDAG-S2_INV-1_2020-09-17
INV	RG_MIDAG-S2	665770	5488854	2020	2	2020-09-17	Composite	Wet Mass	1.7	g	Trich	RG_MIDAG-S2_INV-2_2020-09-17
INV	RG_MIDAG-S2	665770	5488854	2020	2	2020-09-17	Composite	Dry Mass	0.41	g	Trich	RG_MIDAG-S2_INV-2_2020-09-17
INV	RG_MIDAG-S2	665770	5488854	2020	2	2020-09-17	Composite	% Moisture	76	%	Trich	RG_MIDAG-S2_INV-2_2020-09-17
INV	RG_MIDAG-S2	665770	5488854	2020	3	2020-09-17	Composite	Wet Mass	1.5	g	Trich	RG_MIDAG-S2_INV-3_2020-09-17
INV	RG_MIDAG-S2	665770	5488854	2020	3	2020-09-17	Composite	Dry Mass	0.32	g	Trich	RG_MIDAG-S2_INV-3_2020-09-17
INV	RG_MIDAG-S2	665770	5488854	2020	3	2020-09-17	Composite	% Moisture	79	%	Trich	RG_MIDAG-S2_INV-3_2020-09-17
INV	RG_AGCK	667566	5488693	2021	1	2021-09-11	Composite	Aluminum	607	mg/kg	Trich	RG_AGCK_INV-1_2021-09-11
INV	RG_AGCK	667566	5488693	2021	1	2021-09-11	Composite	Antimony	0.048	mg/kg	Trich	RG_AGCK_INV-1_2021-09-11
INV	RG_AGCK	667566	5488693	2021	1	2021-09-11	Composite	Arsenic	2.5	mg/kg	Trich	RG_AGCK_INV-1_2021-09-11
INV	RG_AGCK	667566	5488693	2021	1	2021-09-11	Composite	Barium	36	mg/kg	Trich	RG_AGCK_INV-1_2021-09-11
INV	RG_AGCK	667566	5488693	2021	1	2021-09-11	Composite	Boron	1.2	mg/kg	Trich	RG_AGCK_INV-1_2021-09-11
INV	RG_AGCK	667566	5488693	2021	1	2021-09-11	Composite	Cadmium	1.3	mg/kg	Trich	RG_AGCK_INV-1_2021-09-11
INV	RG_AGCK	667566	5488693	2021	1	2021-09-11	Composite	Chromium	7.5	mg/kg	Trich	RG_AGCK_INV-1_2021-09-11
INV	RG_AGCK	667566	5488693	2021	1	2021-09-11	Composite	Cobalt	0.62	mg/kg	Trich	RG_AGCK_INV-1_2021-09-11
INV	RG_AGCK	667566	5488693	2021	1	2021-09-11	Composite	Copper	11	mg/kg	Trich	RG_AGCK_INV-1_2021-09-11
INV	RG_AGCK	667566	5488693	2021	1	2021-09-11	Composite	Iron	410	mg/kg	Trich	RG_AGCK_INV-1_2021-09-11
INV	RG AGCK	667566	5488693	2021	1	2021-09-11	Composite	Lead	0.2	mg/kg	Trich	RG AGCK INV-1 2021-09-11

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Turno	Station	Location	n (UTMs) ^(a)	Veer	Replicate	Doto	Species/Composite	Analuta	Decult	Heit		Laboratory Information
Туре	Station	Easting	Northing	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit	Lab	Sample ID
INV	RG AGCK	667566	5488693	2021	1	2021-09-11	Composite	Manganese	23	mg/kg	Trich	RG AGCK INV-1 2021-09-11
INV	RG AGCK	667566	5488693	2021	1	2021-09-11	Composite	Mercury	0.095	mg/kg	Trich	RG AGCK INV-1 2021-09-11
INV	RG AGCK	667566	5488693	2021	1	2021-09-11	Composite	Molybdenum	0.43	mg/kg	Trich	RG AGCK INV-1 2021-09-11
INV	RG AGCK	667566	5488693	2021	1	2021-09-11	Composite	Nickel	17	mg/kg	Trich	RG AGCK INV-1 2021-09-11
INV	RG AGCK	667566	5488693	2021	1	2021-09-11	Composite	Silver	0.091	mg/kg	Trich	RG AGCK INV-1 2021-09-11
INV	RG AGCK	667566	5488693	2021	1	2021-09-11	Composite	Selenium	5.6	mg/kg	Trich	RG AGCK INV-1 2021-09-11
INV	RG AGCK	667566	5488693	2021	1	2021-09-11	Composite	Strontium	6.2	mg/kg	Trich	RG AGCK INV-1 2021-09-11
INV	RG AGCK	667566	5488693	2021	1	2021-09-11	Composite	Thallium	0.67	mg/kg	Trich	RG AGCK INV-1 2021-09-11
INV	RG AGCK	667566	5488693	2021	1	2021-09-11	Composite	Tin	0.84	mg/kg	Trich	RG AGCK INV-1 2021-09-11
INV	RG AGCK	667566	5488693	2021	1	2021-09-11	Composite	Titanium	40	mg/kg	Trich	RG_AGCK_INV-1_2021-09-11
INV	RG AGCK	667566	5488693	2021	1	2021-09-11	Composite	Uranium	0.068		Trich	RG_AGCK_INV-1_2021-09-11
INV	RG_AGCK	667566	5488693	2021	1	2021-09-11	Composite	Vanadium		mg/kg	Trich	RG AGCK INV-1 2021-09-11
	_								1.0	mg/kg		
INV INV	RG_AGCK	667566	5488693	2021	1	2021-09-11	Composite	Zinc	295	mg/kg	Trich	RG_AGCK_INV-1_2021-09-11
	RG_AGCK	667566	5488693	2021	1	2021-09-11	Composite	Lithium	0.37	mg/kg	Trich	RG_AGCK_INV-1_2021-09-11
INV	RG_AGCK	667566	5488693	2021	1	2021-09-11	Composite	Sodium	4,584	mg/kg	Trich	RG_AGCK_INV-1_2021-09-11
INV	RG_AGCK	667566	5488693	2021	1	2021-09-11	Composite	Magnesium	1,697	mg/kg	Trich	RG_AGCK_INV-1_2021-09-11
INV	RG_AGCK	667566	5488693	2021	1	2021-09-11	Composite	Phosphorus	14,925	mg/kg	Trich	RG_AGCK_INV-1_2021-09-11
INV	RG_AGCK	667566	5488693	2021	1	2021-09-11	Composite	Potassium	14,434	mg/kg	Trich	RG_AGCK_INV-1_2021-09-11
INV	RG_AGCK	667566	5488693	2021	1	2021-09-11	Composite	Calcium	2,868	mg/kg	Trich	RG_AGCK_INV-1_2021-09-11
INV	RG_AGCK	667566	5488693	2021	1	2021-09-11	Composite	Wet Weight	0.38	g	Trich	RG_AGCK_INV-1_2021-09-11
INV	RG_AGCK	667566	5488693	2021	1	2021-09-11	Composite	Dry Weight	0.083	g	Trich	RG_AGCK_INV-1_2021-09-11
INV	RG_AGCK	667566	5488693	2021	1	2021-09-11	Composite	% Moisture	78	%	Trich	RG_AGCK_INV-1_2021-09-11
INV	RG_AGCK	667566	5488693	2021	2	2021-09-11	Composite	Aluminum	146	mg/kg	Trich	RG_AGCK_INV-2_2021-09-11
INV	RG_AGCK	667566	5488693	2021	2	2021-09-11	Composite	Antimony	0.027	mg/kg	Trich	RG_AGCK_INV-2_2021-09-11
INV	RG_AGCK	667566	5488693	2021	2	2021-09-11	Composite	Arsenic	1.4	mg/kg	Trich	RG_AGCK_INV-2_2021-09-11
INV	RG_AGCK	667566	5488693	2021	2	2021-09-11	Composite	Barium	8.5	mg/kg	Trich	RG_AGCK_INV-2_2021-09-11
INV	RG_AGCK	667566	5488693	2021	2	2021-09-11	Composite	Boron	0.44	mg/kg	Trich	RG_AGCK_INV-2_2021-09-11
INV	RG_AGCK	667566	5488693	2021	2	2021-09-11	Composite	Cadmium	0.77	mg/kg	Trich	RG_AGCK_INV-2_2021-09-11
INV	RG_AGCK	667566	5488693	2021	2	2021-09-11	Composite	Chromium	13	mg/kg	Trich	RG_AGCK_INV-2_2021-09-11
INV	RG_AGCK	667566	5488693	2021	2	2021-09-11	Composite	Cobalt	0.31	mg/kg	Trich	RG AGCK INV-2 2021-09-11
INV	RG AGCK	667566	5488693	2021	2	2021-09-11	Composite	Copper	10	mg/kg	Trich	RG_AGCK_INV-2_2021-09-11
INV	RG AGCK	667566	5488693	2021	2	2021-09-11	Composite	Iron	322	mg/kg	Trich	RG_AGCK_INV-2_2021-09-11
INV	RG AGCK	667566	5488693	2021	2	2021-09-11	Composite	Lead	0.073	mg/kg	Trich	RG AGCK INV-2 2021-09-11
INV	RG AGCK	667566	5488693	2021	2	2021-09-11	Composite	Manganese	17	mg/kg	Trich	RG AGCK INV-2 2021-09-11
INV	RG AGCK	667566	5488693	2021	2	2021-09-11	Composite	Mercury	0.052	mg/kg	Trich	RG AGCK INV-2 2021-09-11
INV	RG AGCK	667566	5488693	2021	2	2021-09-11	Composite	Molybdenum	0.45	mg/kg	Trich	RG_AGCK_INV-2_2021-09-11
INV	RG AGCK	667566	5488693	2021	2	2021-09-11	Composite	Nickel	22	mg/kg	Trich	RG AGCK INV-2 2021-09-11
INV	RG AGCK	667566	5488693	2021	2	2021-09-11	Composite	Silver	0.056	mg/kg	Trich	RG AGCK INV-2 2021-09-11
INV	RG AGCK	667566	5488693	2021	2	2021-09-11	Composite	Selenium	5.2	mg/kg	Trich	RG AGCK INV-2 2021-09-11
INV	RG_AGCK	667566	5488693	2021	2	2021-09-11	Composite	Strontium	6.2	mg/kg	Trich	RG_AGCK_INV-2_2021-09-11
INV	RG_AGCK	667566	5488693	2021	2	2021-09-11	Composite	Thallium	0.35	mg/kg	Trich	RG_AGCK_INV-2_2021-09-11
INV	RG_AGCK	667566	5488693	2021	2	2021-09-11	Composite	Tin	1.7	mg/kg	Trich	RG_AGCK_INV-2_2021-09-11
	_											
INV	RG_AGCK	667566	5488693	2021	2	2021-09-11	Composite	Titanium	7.3	mg/kg	Trich	RG_AGCK_INV-2_2021-09-11
INV	RG_AGCK	667566	5488693	2021	2	2021-09-11	Composite	Uranium	0.035	mg/kg	Trich	RG_AGCK_INV-2_2021-09-11
INV	RG_AGCK	667566	5488693	2021	2	2021-09-11	Composite	Vanadium	0.37	mg/kg	Trich	RG_AGCK_INV-2_2021-09-11
INV	RG_AGCK	667566	5488693	2021	2	2021-09-11	Composite	Zinc	193	mg/kg	Trich	RG_AGCK_INV-2_2021-09-11
INV	RG_AGCK	667566	5488693	2021	2	2021-09-11	Composite	Lithium	0.2	mg/kg	Trich	RG_AGCK_INV-2_2021-09-11
INV	RG_AGCK	667566	5488693	2021	2	2021-09-11	Composite	Sodium	3,699	mg/kg	Trich	RG_AGCK_INV-2_2021-09-11
INV	RG_AGCK	667566	5488693	2021	2	2021-09-11	Composite	Magnesium	1,386	mg/kg	Trich	RG_AGCK_INV-2_2021-09-11
INV	RG_AGCK	667566	5488693	2021	2	2021-09-11	Composite	Phosphorus	12,740	mg/kg	Trich	RG_AGCK_INV-2_2021-09-11
INV	RG_AGCK	667566	5488693	2021	2	2021-09-11	Composite	Potassium	11,848	mg/kg	Trich	RG_AGCK_INV-2_2021-09-11
INV	RG_AGCK	667566	5488693	2021	2	2021-09-11	Composite	Calcium	2,429	mg/kg	Trich	RG_AGCK_INV-2_2021-09-11
INV	RG_AGCK	667566	5488693	2021	2	2021-09-11	Composite	Wet Weight	0.061	g	Trich	RG_AGCK_INV-2_2021-09-11
INV	RG_AGCK	667566	5488693	2021	2	2021-09-11	Composite	Dry Weight	0.013	g	Trich	RG_AGCK_INV-2_2021-09-11
INV	RG_AGCK	667566	5488693	2021	2	2021-09-11	Composite	% Moisture	78	%	Trich	RG_AGCK_INV-2_2021-09-11
INV	RG AGCK	667566	5488693	2021	3	2021-09-11	Composite	Aluminum	318	mg/kg	Trich	RG_AGCK_INV-3_2021-09-11
INV	RG_AGCK	667566	5488693	2021	3	2021-09-11	Composite	Antimony	0.034	mg/kg	Trich	RG AGCK INV-3 2021-09-11

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Typo	Station	Locatio	n (UTMs) ^(a)	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit		Laboratory Information
Туре	Station	Easting	Northing	rear	Replicate	Date	Species/Composite	Analyte	Result	Unit	Lab	Sample ID
INV	RG AGCK	667566	5488693	2021	3	2021-09-11	Composite	Arsenic	1.8	mg/kg	Trich	RG AGCK INV-3 2021-09-11
INV	RG AGCK	667566	5488693	2021	3	2021-09-11	Composite	Barium	6.1	mg/kg	Trich	RG AGCK INV-3 2021-09-11
INV	RG_AGCK	667566	5488693	2021	3	2021-09-11	Composite	Boron	0.59	mg/kg	Trich	RG AGCK INV-3 2021-09-11
INV	RG AGCK	667566	5488693	2021	3	2021-09-11	Composite	Cadmium	0.74	mg/kg	Trich	RG_AGCK_INV-3_2021-09-11
INV	RG AGCK	667566	5488693	2021	3	2021-09-11	Composite	Chromium	9.7	mg/kg	Trich	RG_AGCK_INV-3_2021-09-11
INV	RG AGCK	667566	5488693	2021	3	2021-09-11	Composite	Cobalt	0.59	mg/kg	Trich	RG AGCK INV-3 2021-09-11
INV	RG AGCK	667566	5488693	2021	3	2021-09-11	Composite	Copper	9.9	mg/kg	Trich	RG AGCK INV-3 2021-09-11
INV	RG AGCK	667566	5488693	2021	3	2021-09-11	Composite	Iron	460	mg/kg	Trich	RG AGCK INV-3 2021-09-11
INV	RG AGCK	667566	5488693	2021	3	2021-09-11	Composite	Lead	0.1	mg/kg	Trich	RG AGCK INV-3 2021-09-11
INV	RG AGCK	667566	5488693	2021	3	2021-09-11	Composite	Manganese	12	mg/kg	Trich	RG AGCK INV-3 2021-09-11
INV	RG_AGCK	667566	5488693	2021	3	2021-09-11	Composite	Mercury	0.034	mg/kg	Trich	RG_AGCK_INV-3_2021-09-11
INV	RG_AGCK	667566	5488693	2021	3	2021-09-11	Composite	Molybdenum	0.034		Trich	RG AGCK INV-3 2021-09-11
INV	RG_AGCK	667566	5488693	2021	3	2021-09-11	<u>'</u>	Nickel	19	mg/kg	Trich	
INV		667566					Composite		0.056	mg/kg		RG_AGCK_INV-3_2021-09-11
INV	RG_AGCK		5488693	2021	3	2021-09-11	Composite	Silver		mg/kg	Trich	RG_AGCK_INV-3_2021-09-11
	RG_AGCK	667566	5488693	2021	3	2021-09-11	Composite	Selenium	7.4	mg/kg	Trich	RG_AGCK_INV-3_2021-09-11
INV	RG_AGCK	667566	5488693	2021	3	2021-09-11	Composite	Strontium	4.4	mg/kg	Trich	RG_AGCK_INV-3_2021-09-11
INV	RG_AGCK	667566	5488693	2021	3	2021-09-11	Composite	Thallium —:	0.92	mg/kg	Trich	RG_AGCK_INV-3_2021-09-11
INV	RG_AGCK	667566	5488693	2021	3	2021-09-11	Composite	Tin	0.6	mg/kg	Trich	RG_AGCK_INV-3_2021-09-11
INV	RG_AGCK	667566	5488693	2021	3	2021-09-11	Composite	Titanium	18	mg/kg	Trich	RG_AGCK_INV-3_2021-09-11
INV	RG_AGCK	667566	5488693	2021	3	2021-09-11	Composite	Uranium	0.041	mg/kg	Trich	RG_AGCK_INV-3_2021-09-11
INV	RG_AGCK	667566	5488693	2021	3	2021-09-11	Composite	Vanadium	0.64	mg/kg	Trich	RG_AGCK_INV-3_2021-09-11
INV	RG_AGCK	667566	5488693	2021	3	2021-09-11	Composite	Zinc	165	mg/kg	Trich	RG_AGCK_INV-3_2021-09-11
INV	RG_AGCK	667566	5488693	2021	3	2021-09-11	Composite	Lithium	0.29	mg/kg	Trich	RG_AGCK_INV-3_2021-09-11
INV	RG_AGCK	667566	5488693	2021	3	2021-09-11	Composite	Sodium	4,577	mg/kg	Trich	RG_AGCK_INV-3_2021-09-11
INV	RG_AGCK	667566	5488693	2021	3	2021-09-11	Composite	Magnesium	2,122	mg/kg	Trich	RG_AGCK_INV-3_2021-09-11
INV	RG_AGCK	667566	5488693	2021	3	2021-09-11	Composite	Phosphorus	14,152	mg/kg	Trich	RG_AGCK_INV-3_2021-09-11
INV	RG_AGCK	667566	5488693	2021	3	2021-09-11	Composite	Potassium	12,235	mg/kg	Trich	RG_AGCK_INV-3_2021-09-11
INV	RG_AGCK	667566	5488693	2021	3	2021-09-11	Composite	Calcium	2,851	mg/kg	Trich	RG_AGCK_INV-3_2021-09-11
INV	RG_AGCK	667566	5488693	2021	3	2021-09-11	Composite	Wet Weight	0.14	g	Trich	RG_AGCK_INV-3_2021-09-11
INV	RG AGCK	667566	5488693	2021	3	2021-09-11	Composite	Dry Weight	0.029	g	Trich	RG_AGCK_INV-3_2021-09-11
INV	RG AGCK	667566	5488693	2021	3	2021-09-11	Composite	% Moisture	79	%	Trich	RG AGCK INV-3 2021-09-11
INV	RG CORCK	668527	5487371	2021	1	2021-09-14	Composite	Aluminum	411	mg/kg	Trich	RG CORCK INV-1 2021-09-14
INV	RG CORCK	668527	5487371	2021	1	2021-09-14	Composite	Antimony	0.054	mg/kg	Trich	RG CORCK INV-1 2021-09-14
INV	RG CORCK	668527	5487371	2021	1	2021-09-14	Composite	Arsenic	<0.441	mg/kg	Trich	RG CORCK INV-1 2021-09-14
INV	RG CORCK	668527	5487371	2021	1	2021-09-14	Composite	Barium	25	mg/kg	Trich	RG CORCK INV-1 2021-09-14
INV	RG CORCK	668527	5487371	2021	1	2021-09-14	Composite	Boron	1.5	mg/kg	Trich	RG CORCK INV-1 2021-09-14
INV	RG CORCK	668527	5487371	2021	1	2021-09-14	Composite	Cadmium	0.44	mg/kg	Trich	RG CORCK INV-1 2021-09-14
INV	RG CORCK	668527	5487371	2021	1	2021-09-14	Composite	Chromium	5.1	mg/kg	Trich	RG CORCK INV-1 2021-09-14
INV	RG CORCK	668527	5487371	2021	1	2021-09-14	Composite	Cobalt	25	mg/kg	Trich	RG CORCK INV-1 2021-09-14
INV	RG_CORCK	668527	5487371	2021	1 1	2021-09-14	Composite	Copper	13	mg/kg	Trich	RG CORCK INV-1 2021-09-14
INV	RG_CORCK	668527	5487371	2021	1 1	2021-09-14	·	Copper Iron	325		Trich	RG_CORCK_INV-1_2021-09-14 RG_CORCK_INV-1_2021-09-14
INV	RG_CORCK	668527	5487371	2021	1	2021-09-14	Composite			mg/kg	Trich	RG_CORCK_INV-1_2021-09-14 RG_CORCK_INV-1_2021-09-14
	_				1		Composite	Lead	0.11	mg/kg		
INV	RG_CORCK	668527	5487371	2021	1	2021-09-14	Composite	Manganese	160	mg/kg	Trich	RG_CORCK_INV-1_2021-09-14
INV	RG_CORCK	668527	5487371	2021	1	2021-09-14	Composite	Mercury	<0.025	mg/kg	Trich	RG_CORCK_INV-1_2021-09-14
INV	RG_CORCK	668527	5487371	2021	1	2021-09-14	Composite	Molybdenum	0.27	mg/kg	Trich	RG_CORCK_INV-1_2021-09-14
INV	RG_CORCK	668527	5487371	2021	1	2021-09-14	Composite	Nickel	30	mg/kg	Trich	RG_CORCK_INV-1_2021-09-14
INV	RG_CORCK	668527	5487371	2021	1	2021-09-14	Composite	Silver	0.035	mg/kg	Trich	RG_CORCK_INV-1_2021-09-14
INV	RG_CORCK	668527	5487371	2021	1	2021-09-14	Composite	Selenium	4.1	mg/kg	Trich	RG_CORCK_INV-1_2021-09-14
INV	RG_CORCK	668527	5487371	2021	1	2021-09-14	Composite	Strontium	22	mg/kg	Trich	RG_CORCK_INV-1_2021-09-14
INV	RG_CORCK	668527	5487371	2021	1	2021-09-14	Composite	Thallium	0.032	mg/kg	Trich	RG_CORCK_INV-1_2021-09-14
INV	RG_CORCK	668527	5487371	2021	1	2021-09-14	Composite	Tin	0.13	mg/kg	Trich	RG_CORCK_INV-1_2021-09-14
INV	RG_CORCK	668527	5487371	2021	1	2021-09-14	Composite	Titanium	31	mg/kg	Trich	RG_CORCK_INV-1_2021-09-14
INV	RG_CORCK	668527	5487371	2021	1	2021-09-14	Composite	Uranium	0.16	mg/kg	Trich	RG_CORCK_INV-1_2021-09-14
INV	RG_CORCK	668527	5487371	2021	1	2021-09-14	Composite	Vanadium	0.61	mg/kg	Trich	RG_CORCK_INV-1_2021-09-14
INV	RG_CORCK	668527	5487371	2021	1	2021-09-14	Composite	Zinc	160	mg/kg	Trich	RG_CORCK_INV-1_2021-09-14
INV	RG_CORCK	668527	5487371	2021	1	2021-09-14	Composite	Lithium	0.72	mg/kg	Trich	RG_CORCK_INV-1_2021-09-14
INV	RG CORCK	668527	5487371	2021	1 .	2021-09-14	Composite	Sodium	3,619	mg/kg	Trich	RG CORCK INV-1 2021-09-14

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Type	Station	Location	n (UTMs) ^(a)	Year	Replicate	Date	Species/Composite	Analyta	Result	Unit		Laboratory Information
Туре	Station	Easting	Northing	rear	Replicate	Date	Species/Composite	Analyte	Result	Unit	Lab	Sample ID
INV	RG_CORCK	668527	5487371	2021	1	2021-09-14	Composite	Magnesium	1,297	mg/kg	Trich	RG_CORCK_INV-1_2021-09-14
INV	RG_CORCK	668527	5487371	2021	1	2021-09-14	Composite	Phosphorus	9,718	mg/kg	Trich	RG_CORCK_INV-1_2021-09-14
INV	RG_CORCK	668527	5487371	2021	1	2021-09-14	Composite	Potassium	9,911	mg/kg	Trich	RG CORCK INV-1 2021-09-14
INV	RG_CORCK	668527	5487371	2021	1	2021-09-14	Composite	Calcium	13,410	mg/kg	Trich	RG_CORCK_INV-1_2021-09-14
INV	RG CORCK	668527	5487371	2021	1	2021-09-14	Composite	Wet Weight	0.31	q	Trich	RG CORCK INV-1 2021-09-14
INV	RG CORCK	668527	5487371	2021	1	2021-09-14	Composite	Dry Weight	0.098	<u>a</u>	Trich	RG CORCK INV-1 2021-09-14
INV	RG CORCK	668527	5487371	2021	1	2021-09-14	Composite	% Moisture	68	<u> </u>	Trich	RG CORCK INV-1 2021-09-14
INV	RG CORCK	668527	5487371	2021	1	2021-09-14	Composite	Aluminum	410	mg/kg	Trich	RG CORCK INV-1 2021-09-14Dup
INV	RG CORCK	668527	5487371	2021	1	2021-09-14	Composite	Antimony	0.045	mg/kg	Trich	RG CORCK INV-1 2021-09-14Dup
INV	RG CORCK	668527	5487371	2021	1	2021-09-14	Composite	Arsenic	<0.441	mg/kg	Trich	RG CORCK INV-1 2021-09-14Dup
INV	RG_CORCK	668527	5487371	2021	1	2021-09-14	Composite	Barium	22	mg/kg	Trich	RG CORCK INV-1 2021-09-14Dup
INV	RG CORCK	668527	5487371	2021	1	2021-09-14	Composite	Boron	1.5	mg/kg	Trich	RG_CORCK_INV-1_2021-09-14Dup
INV	RG_CORCK	668527	5487371	2021	1	2021-09-14	Composite	Cadmium	0.31		Trich	RG_CORCK_INV-1_2021-09-14Dup
INV	RG CORCK	668527	5487371	2021	1	2021-09-14	Composite			mg/kg	Trich	RG CORCK INV-1 2021-09-14Dup
INV	_	668527			1			Chromium	5.1	mg/kg		
	RG_CORCK		5487371	2021	1	2021-09-14	Composite	Cobalt	22	mg/kg	Trich	RG_CORCK_INV-1_2021-09-14Dup
INV	RG_CORCK	668527	5487371	2021		2021-09-14	Composite	Copper	10	mg/kg	Trich	RG_CORCK_INV-1_2021-09-14Dup
INV	RG_CORCK	668527	5487371	2021	1	2021-09-14	Composite	Iron	313	mg/kg	Trich	RG_CORCK_INV-1_2021-09-14Dup
INV	RG_CORCK	668527	5487371	2021	1	2021-09-14	Composite	Lead	0.12	mg/kg	Trich	RG_CORCK_INV-1_2021-09-14Dup
INV	RG_CORCK	668527	5487371	2021	1	2021-09-14	Composite	Manganese	177	mg/kg	Trich	RG_CORCK_INV-1_2021-09-14Dup
INV	RG_CORCK	668527	5487371	2021	1	2021-09-14	Composite	Mercury	0.033	mg/kg	Trich	RG_CORCK_INV-1_2021-09-14Dup
INV	RG_CORCK	668527	5487371	2021	1	2021-09-14	Composite	Molybdenum	0.25	mg/kg	Trich	RG_CORCK_INV-1_2021-09-14Duյ
INV	RG_CORCK	668527	5487371	2021	1	2021-09-14	Composite	Nickel	27	mg/kg	Trich	RG_CORCK_INV-1_2021-09-14Dup
INV	RG_CORCK	668527	5487371	2021	1	2021-09-14	Composite	Silver	0.035	mg/kg	Trich	RG_CORCK_INV-1_2021-09-14Du
INV	RG_CORCK	668527	5487371	2021	1	2021-09-14	Composite	Selenium	3.6	mg/kg	Trich	RG_CORCK_INV-1_2021-09-14Du
INV	RG_CORCK	668527	5487371	2021	1	2021-09-14	Composite	Strontium	19	mg/kg	Trich	RG_CORCK_INV-1_2021-09-14Du
INV	RG_CORCK	668527	5487371	2021	1	2021-09-14	Composite	Thallium	0.026	mg/kg	Trich	RG_CORCK_INV-1_2021-09-14Du
INV	RG_CORCK	668527	5487371	2021	1	2021-09-14	Composite	Tin	0.11	mg/kg	Trich	RG_CORCK_INV-1_2021-09-14Du
INV	RG_CORCK	668527	5487371	2021	1	2021-09-14	Composite	Titanium	29	mg/kg	Trich	RG_CORCK_INV-1_2021-09-14Du
INV	RG_CORCK	668527	5487371	2021	1	2021-09-14	Composite	Uranium	0.13	mg/kg	Trich	RG_CORCK_INV-1_2021-09-14Du
INV	RG_CORCK	668527	5487371	2021	1	2021-09-14	Composite	Vanadium	0.55	mg/kg	Trich	RG_CORCK_INV-1_2021-09-14Du
INV	RG CORCK	668527	5487371	2021	1	2021-09-14	Composite	Zinc	124	mg/kg	Trich	RG CORCK INV-1 2021-09-14Du
INV	RG CORCK	668527	5487371	2021	1	2021-09-14	Composite	Lithium	0.56	mg/kg	Trich	RG CORCK INV-1 2021-09-14Dup
INV	RG CORCK	668527	5487371	2021	1	2021-09-14	Composite	Sodium	2,819	mg/kg	Trich	RG CORCK INV-1 2021-09-14Du
INV	RG CORCK	668527	5487371	2021	1	2021-09-14	Composite	Magnesium	1,225	mg/kg	Trich	RG CORCK INV-1 2021-09-14Du
INV	RG CORCK	668527	5487371	2021	1	2021-09-14	Composite	Phosphorus	7,623	mg/kg	Trich	RG CORCK INV-1 2021-09-14Du
INV	RG CORCK	668527	5487371	2021	1	2021-09-14	Composite	Potassium	7,758	mg/kg	Trich	RG CORCK INV-1 2021-09-14Du
INV	RG CORCK	668527	5487371	2021	1	2021-09-14	Composite	Calcium	10,252	mg/kg	Trich	RG CORCK INV-1 2021-09-14Du
INV	RG CORCK	668527	5487371	2021	2	2021-09-14	Composite	Aluminum	116	mg/kg	Trich	RG CORCK INV-2 2021-09-14-09-14
INV	RG CORCK	668527	5487371	2021	2	2021-09-14	Composite	Antimony	0.033	mg/kg	Trich	RG CORCK INV-2 2021-09-14
INV	RG_CORCK	668527	5487371	2021	2	2021-09-14		Arsenic	<0.441		Trich	RG CORCK INV-2 2021-09-14
INV	RG_CORCK	668527	5487371	2021	2	2021-09-14	Composite Composite	Barium		mg/kg	Trich	RG_CORCK_INV-2_2021-09-14
INV	RG_CORCK	668527	5487371	2021		2021-09-14			6.6	mg/kg	Trich	RG_CORCK_INV-2_2021-09-14
	_				2		Composite	Boron	1.2	mg/kg		
INV	RG_CORCK	668527	5487371	2021	2	2021-09-14	Composite	Cadmium	0.18	mg/kg	Trich	RG_CORCK_INV-2_2021-09-14
INV	RG_CORCK	668527	5487371	2021	2	2021-09-14	Composite	Chromium	8.7	mg/kg	Trich	RG_CORCK_INV-2_2021-09-14
INV	RG_CORCK	668527	5487371	2021	2	2021-09-14	Composite	Cobalt	13	mg/kg	Trich	RG_CORCK_INV-2_2021-09-14
INV	RG_CORCK	668527	5487371	2021	2	2021-09-14	Composite	Copper	12	mg/kg	Trich	RG_CORCK_INV-2_2021-09-14
INV	RG_CORCK	668527	5487371	2021	2	2021-09-14	Composite	Iron	228	mg/kg	Trich	RG_CORCK_INV-2_2021-09-14
INV	RG_CORCK	668527	5487371	2021	2	2021-09-14	Composite	Lead	0.04	mg/kg	Trich	RG_CORCK_INV-2_2021-09-14
INV	RG_CORCK	668527	5487371	2021	2	2021-09-14	Composite	Manganese	66	mg/kg	Trich	RG_CORCK_INV-2_2021-09-14
INV	RG_CORCK	668527	5487371	2021	2	2021-09-14	Composite	Mercury	<0.025	mg/kg	Trich	RG_CORCK_INV-2_2021-09-14
INV	RG_CORCK	668527	5487371	2021	2	2021-09-14	Composite	Molybdenum	0.22	mg/kg	Trich	RG_CORCK_INV-2_2021-09-14
INV	RG_CORCK	668527	5487371	2021	2	2021-09-14	Composite	Nickel	25	mg/kg	Trich	RG_CORCK_INV-2_2021-09-14
INV	RG_CORCK	668527	5487371	2021	2	2021-09-14	Composite	Silver	0.035	mg/kg	Trich	RG_CORCK_INV-2_2021-09-14
INV	RG_CORCK	668527	5487371	2021	2	2021-09-14	Composite	Selenium	3.0	mg/kg	Trich	RG_CORCK_INV-2_2021-09-14
INV	RG_CORCK	668527	5487371	2021	2	2021-09-14	Composite	Strontium	13	mg/kg	Trich	RG_CORCK_INV-2_2021-09-14
INV	RG CORCK	668527	5487371	2021	2	2021-09-14	Composite	Thallium	0.017	mg/kg	Trich	RG CORCK INV-2 2021-09-14
INV	RG CORCK	668527	5487371	2021	2	2021-09-14	Composite	Tin	0.12	mg/kg	Trich	RG CORCK INV-2 2021-09-14

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Туре	Station		on (UTMs) ^(a)	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit		Laboratory Information
		Easting	Northing		·						Lab	Sample ID
INV	RG_CORCK	668527	5487371	2021	2	2021-09-14	Composite	Titanium	9.4	mg/kg	Trich	RG_CORCK_INV-2_2021-09-14
INV	RG_CORCK	668527	5487371	2021	2	2021-09-14	Composite	Uranium	0.033	mg/kg	Trich	RG_CORCK_INV-2_2021-09-14
INV	RG_CORCK	668527	5487371	2021	2	2021-09-14	Composite	Vanadium —:	0.25	mg/kg	Trich	RG_CORCK_INV-2_2021-09-14
INV	RG_CORCK	668527	5487371	2021	2	2021-09-14	Composite	Zinc	131	mg/kg	Trich	RG_CORCK_INV-2_2021-09-14
INV	RG_CORCK	668527	5487371	2021	2	2021-09-14	Composite	Lithium	0.27	mg/kg	Trich	RG_CORCK_INV-2_2021-09-14
INV	RG_CORCK	668527	5487371	2021	2	2021-09-14	Composite	Sodium	2,318	mg/kg	Trich	RG_CORCK_INV-2_2021-09-14
INV	RG_CORCK	668527	5487371	2021	2	2021-09-14	Composite	Magnesium	1,272	mg/kg	Trich	RG_CORCK_INV-2_2021-09-14
INV	RG_CORCK	668527	5487371	2021	2	2021-09-14	Composite	Phosphorus	7,296	mg/kg	Trich	RG_CORCK_INV-2_2021-09-14
INV	RG_CORCK	668527	5487371	2021	2	2021-09-14	Composite	Potassium	6,267	mg/kg	Trich	RG_CORCK_INV-2_2021-09-14
INV	RG_CORCK	668527	5487371	2021	2	2021-09-14	Composite	Calcium	3,761	mg/kg	Trich	RG_CORCK_INV-2_2021-09-14
INV	RG_CORCK	668527	5487371	2021	2	2021-09-14	Composite	Wet Weight	0.09	g	Trich	RG_CORCK_INV-2_2021-09-14
INV	RG_CORCK	668527	5487371	2021	2	2021-09-14	Composite	Dry Weight	0.028	g	Trich	RG_CORCK_INV-2_2021-09-14
INV	RG_CORCK	668527	5487371	2021	2	2021-09-14	Composite	% Moisture	69	%	Trich	RG_CORCK_INV-2_2021-09-14
INV	RG_CORCK	668527	5487371	2021	3	2021-09-14	Composite	Aluminum	188	mg/kg	Trich	RG_CORCK_INV-3_2021-09-14
INV	RG_CORCK	668527	5487371	2021	3	2021-09-14	Composite	Antimony	0.036	mg/kg	Trich	RG_CORCK_INV-3_2021-09-14
INV	RG_CORCK	668527	5487371	2021	3	2021-09-14	Composite	Arsenic	<0.441	mg/kg	Trich	RG_CORCK_INV-3_2021-09-14
INV	RG_CORCK	668527	5487371	2021	3	2021-09-14	Composite	Barium	12	mg/kg	Trich	RG_CORCK_INV-3_2021-09-14
INV	RG_CORCK	668527	5487371	2021	3	2021-09-14	Composite	Boron	1.1	mg/kg	Trich	RG_CORCK_INV-3_2021-09-14
INV	RG_CORCK	668527	5487371	2021	3	2021-09-14	Composite	Cadmium	0.48	mg/kg	Trich	RG_CORCK_INV-3_2021-09-14
INV	RG_CORCK	668527	5487371	2021	3	2021-09-14	Composite	Chromium	6.7	mg/kg	Trich	RG_CORCK_INV-3_2021-09-14
INV	RG_CORCK	668527	5487371	2021	3	2021-09-14	Composite	Cobalt	8.7	mg/kg	Trich	RG_CORCK_INV-3_2021-09-14
INV	RG_CORCK	668527	5487371	2021	3	2021-09-14	Composite	Copper	13	mg/kg	Trich	RG_CORCK_INV-3_2021-09-14
INV	RG CORCK	668527	5487371	2021	3	2021-09-14	Composite	Iron	297	mg/kg	Trich	RG CORCK INV-3 2021-09-14
INV	RG CORCK	668527	5487371	2021	3	2021-09-14	Composite	Lead	0.074	mg/kg	Trich	RG CORCK INV-3 2021-09-14
INV	RG CORCK	668527	5487371	2021	3	2021-09-14	Composite	Manganese	52	mg/kg	Trich	RG CORCK INV-3 2021-09-14
INV	RG CORCK	668527	5487371	2021	3	2021-09-14	Composite	Mercury	0.041	mg/kg	Trich	RG CORCK INV-3 2021-09-14
INV	RG CORCK	668527	5487371	2021	3	2021-09-14	Composite	Molybdenum	0.37	mg/kg	Trich	RG_CORCK_INV-3_2021-09-14
INV	RG CORCK	668527	5487371	2021	3	2021-09-14	Composite	Nickel	17	mg/kg	Trich	RG CORCK INV-3 2021-09-14
INV	RG CORCK	668527	5487371	2021	3	2021-09-14	Composite	Silver	0.084	mg/kg	Trich	RG CORCK INV-3 2021-09-14
INV	RG CORCK	668527	5487371	2021	3	2021-09-14	Composite	Selenium	4.7	mg/kg	Trich	RG CORCK INV-3 2021-09-14
INV	RG CORCK	668527	5487371	2021	3	2021-09-14	Composite	Strontium	20	mg/kg	Trich	RG CORCK INV-3 2021-09-14
INV	RG CORCK	668527	5487371	2021	3	2021-09-14	Composite	Thallium	0.027	mg/kg	Trich	RG CORCK INV-3 2021-09-14
INV	RG CORCK	668527	5487371	2021	3	2021-09-14	Composite	Tin	0.68	mg/kg	Trich	RG CORCK INV-3 2021-09-14
INV	RG CORCK	668527	5487371	2021	3	2021-09-14	Composite	Titanium	13	mg/kg	Trich	RG CORCK INV-3 2021-09-14
INV	RG_CORCK	668527	5487371	2021	3	2021-09-14	Composite	Uranium	0.063	mg/kg	Trich	RG CORCK INV-3 2021-09-14
INV	RG_CORCK	668527	5487371	2021	3	2021-09-14	Composite	Vanadium	0.43	mg/kg	Trich	RG CORCK INV-3 2021-09-14
INV	RG CORCK	668527	5487371	2021	3	2021-09-14	Composite	Zinc	143	mg/kg	Trich	RG CORCK INV-3 2021-09-14
INV	RG CORCK	668527	5487371	2021	3	2021-09-14	Composite	Lithium	0.27	mg/kg	Trich	RG_CORCK_INV-3_2021-09-14
INV	RG CORCK	668527	5487371	2021	3	2021-09-14	Composite	Sodium	4,482	mg/kg	Trich	RG CORCK INV-3 2021-09-14
INV	RG CORCK	668527	5487371	2021	3	2021-09-14	Composite	Magnesium	1,734	mg/kg	Trich	RG CORCK INV-3 2021-09-14
INV	RG CORCK	668527	5487371	2021	3	2021-09-14	Composite	Phosphorus	10,856	mg/kg	Trich	RG CORCK INV-3 2021-09-14
INV	RG_CORCK	668527	5487371	2021	3	2021-09-14	Composite	Potassium	10,030		Trich	RG_CORCK_INV-3_2021-09-14
INV	_	668527	5487371			2021-09-14	Composite	Calcium		mg/kg	Trich	
INV	RG_CORCK RG_CORCK	668527	5487371	2021	3	2021-09-14	•		5,424 0.16	mg/kg	Trich	RG_CORCK_INV-3_2021-09-14
INV	RG_CORCK	668527	5487371	2021		2021-09-14	Composite Composite	Wet Weight Dry Weight	0.16	g a	Trich	RG_CORCK_INV-3_2021-09-14
INV	RG_CORCK	668527	5487371	2021	3	2021-09-14	-	% Moisture		<u>g</u> %	Trich	RG_CORCK_INV-3_2021-09-14 RG_CORCK_INV-3_2021-09-14
INV				-	3		Composite		72		Trich	
	RG_LE1	659583	5494063	2021	1	2021-09-14	Composite	Aluminum	1,097	mg/kg		RG_LE1_INV-1_2021-09-14
INV	RG_LE1	659583	5494063	2021		2021-09-14	Composite	Antimony	0.083	mg/kg	Trich	RG_LE1_INV-1_2021-09-14
INV	RG_LE1	659583	5494063	2021	1	2021-09-14	Composite	Arsenic	0.92	mg/kg	Trich	RG_LE1_INV-1_2021-09-14
INV	RG_LE1	659583	5494063	2021	1	2021-09-14	Composite	Barium	124	mg/kg	Trich	RG_LE1_INV-1_2021-09-14
INV	RG_LE1	659583	5494063	2021	1	2021-09-14	Composite	Boron	3.1	mg/kg	Trich	RG_LE1_INV-1_2021-09-14
INV	RG_LE1	659583	5494063	2021	1	2021-09-14	Composite	Cadmium	8.7	mg/kg	Trich	RG_LE1_INV-1_2021-09-14
INV	RG_LE1	659583	5494063	2021	1	2021-09-14	Composite	Chromium	39	mg/kg	Trich	RG_LE1_INV-1_2021-09-14
INV	RG_LE1	659583	5494063	2021	1	2021-09-14	Composite	Cobalt	1.6	mg/kg	Trich	RG_LE1_INV-1_2021-09-14
INV	RG_LE1	659583	5494063	2021	1	2021-09-14	Composite	Copper	29	mg/kg	Trich	RG_LE1_INV-1_2021-09-14
INV	RG_LE1	659583	5494063	2021	1	2021-09-14	Composite	Iron	982	mg/kg	Trich	RG_LE1_INV-1_2021-09-14
INV	RG_LE1	659583	5494063	2021	1	2021-09-14	Composite	Lead	0.26	mg/kg	Trich	RG_LE1_INV-1_2021-09-14

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Type	Station	Location Location	n (UTMs) ^(a)	Year	Replicate	Date	Species/Composite	Apalyte	Pocult	Unit		Laboratory Information
Туре	Station	Easting	Northing	- Year	Replicate	Date	Species/Composite	Analyte	Result	Unit	Lab	Sample ID
INV	RG LE1	659583	5494063	2021	1	2021-09-14	Composite	Manganese	63	mg/kg	Trich	RG LE1 INV-1 2021-09-14
INV	RG LE1	659583	5494063	2021	1	2021-09-14	Composite	Mercury	0.11	mg/kg	Trich	RG LE1 INV-1 2021-09-14
INV	RG_LE1	659583	5494063	2021	1	2021-09-14	Composite	Molybdenum	0.89	mg/kg	Trich	RG LE1 INV-1 2021-09-14
INV	RG LE1	659583	5494063	2021	1	2021-09-14	Composite	Nickel	66	mg/kg	Trich	RG LE1 INV-1 2021-09-14
INV	RG LE1	659583	5494063	2021	1	2021-09-14	Composite	Silver	0.41	mg/kg	Trich	RG LE1 INV-1 2021-09-14
INV	RG LE1	659583	5494063	2021	1	2021-09-14	Composite	Selenium	6.8	mg/kg	Trich	RG LE1 INV-1 2021-09-14
INV	RG LE1	659583	5494063	2021	1	2021-09-14	Composite	Strontium	5.8	mg/kg	Trich	RG LE1 INV-1 2021-09-14
INV	RG LE1	659583	5494063	2021	1	2021-09-14	Composite	Thallium	0.037	mg/kg	Trich	RG LE1 INV-1 2021-09-14
INV	RG LE1	659583	5494063	2021	1	2021-09-14	Composite	Tin	1.3	mg/kg	Trich	RG LE1 INV-1 2021-09-14
INV	RG_LE1	659583	5494063	2021	1	2021-09-14	Composite	Titanium	61	mg/kg	Trich	RG LE1 INV-1 2021-09-14
INV	RG LE1	659583	5494063	2021	1	2021-09-14		Uranium	0.072		Trich	RG LE1 INV-1 2021-09-14
INV	RG LE1	659583	5494063	2021	1	2021-09-14	Composite Composite	Vanadium		mg/kg	Trich	RG LE1 INV-1 2021-09-14
					1		<u> </u>		2.3	mg/kg		
INV	RG_LE1	659583	5494063	2021	1	2021-09-14	Composite	Zinc	258	mg/kg	Trich	RG_LE1_INV-1_2021-09-14
INV	RG_LE1	659583	5494063	2021	1	2021-09-14	Composite	Lithium	0.51	mg/kg	Trich	RG_LE1_INV-1_2021-09-14
INV	RG_LE1	659583	5494063	2021	1	2021-09-14	Composite	Sodium	5,549	mg/kg	Trich	RG_LE1_INV-1_2021-09-14
INV	RG_LE1	659583	5494063	2021	1	2021-09-14	Composite	Magnesium	1,838	mg/kg	Trich	RG_LE1_INV-1_2021-09-14
INV	RG_LE1	659583	5494063	2021	1	2021-09-14	Composite	Phosphorus	14,101	mg/kg	Trich	RG_LE1_INV-1_2021-09-14
INV	RG_LE1	659583	5494063	2021	1	2021-09-14	Composite	Potassium	15,285	mg/kg	Trich	RG_LE1_INV-1_2021-09-14
INV	RG_LE1	659583	5494063	2021	1	2021-09-14	Composite	Calcium	2,797	mg/kg	Trich	RG_LE1_INV-1_2021-09-14
INV	RG_LE1	659583	5494063	2021	1	2021-09-14	Composite	Wet Weight	0.085	g	Trich	RG_LE1_INV-1_2021-09-14
INV	RG_LE1	659583	5494063	2021	1	2021-09-14	Composite	Dry Weight	0.016	g	Trich	RG_LE1_INV-1_2021-09-14
INV	RG_LE1	659583	5494063	2021	1	2021-09-14	Composite	% Moisture	82	%	Trich	RG_LE1_INV-1_2021-09-14
INV	RG_LE1	659583	5494063	2021	2	2021-09-14	Composite	Aluminum	1,100	mg/kg	Trich	RG_LE1_INV-2_2021-09-14
INV	RG LE1	659583	5494063	2021	2	2021-09-14	Composite	Antimony	0.073	mg/kg	Trich	RG_LE1_INV-2_2021-09-14
INV	RG LE1	659583	5494063	2021	2	2021-09-14	Composite	Arsenic	0.86	mg/kg	Trich	RG_LE1_INV-2_2021-09-14
INV	RG LE1	659583	5494063	2021	2	2021-09-14	Composite	Barium	270	mg/kg	Trich	RG_LE1_INV-2_2021-09-14
INV	RG LE1	659583	5494063	2021	2	2021-09-14	Composite	Boron	1.6	mg/kg	Trich	RG_LE1_INV-2_2021-09-14
INV	RG_LE1	659583	5494063	2021	2	2021-09-14	Composite	Cadmium	7.3	mg/kg	Trich	RG_LE1_INV-2_2021-09-14
INV	RG LE1	659583	5494063	2021	2	2021-09-14	Composite	Chromium	15	mg/kg	Trich	RG_LE1_INV-2_2021-09-14
INV	RG LE1	659583	5494063	2021	2	2021-09-14	Composite	Cobalt	1.7	mg/kg	Trich	RG_LE1_INV-2_2021-09-14
INV	RG LE1	659583	5494063	2021	2	2021-09-14	Composite	Copper	20	mg/kg	Trich	RG LE1 INV-2 2021-09-14
INV	RG LE1	659583	5494063	2021	2	2021-09-14	Composite	Iron	573	mg/kg	Trich	RG LE1 INV-2 2021-09-14
INV	RG LE1	659583	5494063	2021	2	2021-09-14	Composite	Lead	0.23	mg/kg	Trich	RG LE1 INV-2 2021-09-14
INV	RG LE1	659583	5494063	2021	2	2021-09-14			66		Trich	RG LE1 INV-2 2021-09-14
							Composite	Manganese		mg/kg		
INV	RG_LE1	659583	5494063	2021	2	2021-09-14	Composite	Mercury	0.11	mg/kg	Trich	RG_LE1_INV-2_2021-09-14
INV	RG_LE1	659583	5494063	2021	2	2021-09-14	Composite	Molybdenum	0.74	mg/kg	Trich	RG_LE1_INV-2_2021-09-14
INV	RG_LE1	659583	5494063	2021	2	2021-09-14	Composite	Nickel	22	mg/kg	Trich	RG_LE1_INV-2_2021-09-14
INV	RG_LE1	659583	5494063	2021	2	2021-09-14	Composite	Silver	0.22	mg/kg	Trich	RG_LE1_INV-2_2021-09-14
INV	RG_LE1	659583	5494063	2021	2	2021-09-14	Composite	Selenium	6.0	mg/kg	Trich	RG_LE1_INV-2_2021-09-14
INV	RG_LE1	659583	5494063	2021	2	2021-09-14	Composite	Strontium	4.2	mg/kg	Trich	RG_LE1_INV-2_2021-09-14
INV	RG_LE1	659583	5494063	2021	2	2021-09-14	Composite	Thallium	0.039	mg/kg	Trich	RG_LE1_INV-2_2021-09-14
INV	RG_LE1	659583	5494063	2021	2	2021-09-14	Composite	Tin	0.96	mg/kg	Trich	RG_LE1_INV-2_2021-09-14
INV	RG_LE1	659583	5494063	2021	2	2021-09-14	Composite	Titanium	56	mg/kg	Trich	RG_LE1_INV-2_2021-09-14
INV	RG_LE1	659583	5494063	2021	2	2021-09-14	Composite	Uranium	0.066	mg/kg	Trich	RG_LE1_INV-2_2021-09-14
INV	RG_LE1	659583	5494063	2021	2	2021-09-14	Composite	Vanadium	2.4	mg/kg	Trich	RG_LE1_INV-2_2021-09-14
INV	RG_LE1	659583	5494063	2021	2	2021-09-14	Composite	Zinc	238	mg/kg	Trich	RG_LE1_INV-2_2021-09-14
INV	RG_LE1	659583	5494063	2021	2	2021-09-14	Composite	Lithium	0.44	mg/kg	Trich	RG_LE1_INV-2_2021-09-14
INV	RG_LE1	659583	5494063	2021	2	2021-09-14	Composite	Sodium	3,115	mg/kg	Trich	RG_LE1_INV-2_2021-09-14
INV	RG_LE1	659583	5494063	2021	2	2021-09-14	Composite	Magnesium	1,667	mg/kg	Trich	RG_LE1_INV-2_2021-09-14
INV	RG LE1	659583	5494063	2021	2	2021-09-14	Composite	Phosphorus	12,296	mg/kg	Trich	RG LE1 INV-2 2021-09-14
INV	RG LE1	659583	5494063	2021	2	2021-09-14	Composite	Potassium	11,843	mg/kg	Trich	RG LE1 INV-2 2021-09-14
INV	RG LE1	659583	5494063	2021	2	2021-09-14	Composite	Calcium	1,724	mg/kg	Trich	RG LE1 INV-2 2021-09-14
INV	RG LE1	659583	5494063	2021	2	2021-09-14	Composite	Wet Weight	0.061	a	Trich	RG LE1 INV-2 2021-09-14
INV	RG LE1	659583	5494063	2021	2	2021-09-14	Composite	Dry Weight	0.017	<u>9</u> a	Trich	RG LE1 INV-2 2021-09-14
INV	RG_LE1	659583	5494063	2021	2	2021-09-14	Composite	% Moisture	72	<u>9</u> %	Trich	RG LE1 INV-2 2021-09-14
INV	RG_LE1	659583	5494063	2021	3	2021-09-14	Composite	Aluminum	3,055		Trich	RG_LE1_INV-2_2021-09-14 RG_LE1_INV-3_2021-09-14
INV	RG_LE1				ł – – †					mg/kg		
118187	1 RG LE1	659583	5494063	2021	3	2021-09-14	Composite	Antimony	0.13	mg/kg	Trich	RG LE1 INV-3 2021-09-14

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

		Locatio	n (UTMs) ^(a)									Laboratory Information
Type	Station	Easting	Northing	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit	Lab	Sample ID
INV	RG LE1	659583	5494063	2021	3	2021-09-14	Composite	Arsenic	1.1	mg/kg	Trich	RG LE1 INV-3 2021-09-14
INV	RG LE1	659583	5494063	2021	3	2021-09-14	Composite	Barium	367	mg/kg	Trich	RG LE1 INV-3 2021-09-14
INV	RG LE1	659583	5494063	2021	3	2021-09-14	Composite	Boron	15	mg/kg	Trich	RG LE1 INV-3 2021-09-14
INV	RG_LE1	659583	5494063	2021	3	2021-09-14	Composite	Cadmium	6.3	mg/kg	Trich	RG_LE1_INV-3_2021-09-14
INV	RG LE1	659583	5494063	2021	3	2021-09-14	Composite	Chromium	50	mg/kg	Trich	RG LE1 INV-3 2021-09-14
INV	RG LE1	659583	5494063	2021	3	2021-09-14	Composite	Cobalt	3.2	mg/kg	Trich	RG LE1 INV-3 2021-09-14
INV	RG LE1	659583	5494063	2021	3	2021-09-14	•		24	0 0	Trich	RG LE1 INV-3 2021-09-14
INV				2021			Composite	Copper	1,728	mg/kg	_	RG LE1 INV-3 2021-09-14
	RG_LE1	659583	5494063		3	2021-09-14	Composite	Iron		mg/kg	Trich	
INV	RG_LE1	659583	5494063	2021	3	2021-09-14	Composite	Lead	0.67	mg/kg	Trich	RG_LE1_INV-3_2021-09-14
INV	RG_LE1	659583	5494063	2021	3	2021-09-14	Composite	Manganese	94	mg/kg	Trich	RG_LE1_INV-3_2021-09-14
INV	RG_LE1	659583	5494063	2021	3	2021-09-14	Composite	Mercury	0.082	mg/kg	Trich	RG_LE1_INV-3_2021-09-14
INV	RG_LE1	659583	5494063	2021	3	2021-09-14	Composite	Molybdenum	0.73	mg/kg	Trich	RG_LE1_INV-3_2021-09-14
INV	RG_LE1	659583	5494063	2021	3	2021-09-14	Composite	Nickel	76	mg/kg	Trich	RG_LE1_INV-3_2021-09-14
INV	RG_LE1	659583	5494063	2021	3	2021-09-14	Composite	Silver	0.4	mg/kg	Trich	RG_LE1_INV-3_2021-09-14
INV	RG_LE1	659583	5494063	2021	3	2021-09-14	Composite	Selenium	6.0	mg/kg	Trich	RG_LE1_INV-3_2021-09-14
INV	RG_LE1	659583	5494063	2021	3	2021-09-14	Composite	Strontium	10	mg/kg	Trich	RG_LE1_INV-3_2021-09-14
INV	RG_LE1	659583	5494063	2021	3	2021-09-14	Composite	Thallium	0.057	mg/kg	Trich	RG_LE1_INV-3_2021-09-14
INV	RG_LE1	659583	5494063	2021	3	2021-09-14	Composite	Tin	1.1	mg/kg	Trich	RG_LE1_INV-3_2021-09-14
INV	RG_LE1	659583	5494063	2021	3	2021-09-14	Composite	Titanium	212	mg/kg	Trich	RG_LE1_INV-3_2021-09-14
INV	RG_LE1	659583	5494063	2021	3	2021-09-14	Composite	Uranium	0.17	mg/kg	Trich	RG_LE1_INV-3_2021-09-14
INV	RG_LE1	659583	5494063	2021	3	2021-09-14	Composite	Vanadium	6.7	mg/kg	Trich	RG_LE1_INV-3_2021-09-14
INV	RG_LE1	659583	5494063	2021	3	2021-09-14	Composite	Zinc	240	mg/kg	Trich	RG_LE1_INV-3_2021-09-14
INV	RG_LE1	659583	5494063	2021	3	2021-09-14	Composite	Lithium	1.2	mg/kg	Trich	RG_LE1_INV-3_2021-09-14
INV	RG_LE1	659583	5494063	2021	3	2021-09-14	Composite	Sodium	3,545	mg/kg	Trich	RG_LE1_INV-3_2021-09-14
INV	RG_LE1	659583	5494063	2021	3	2021-09-14	Composite	Magnesium	1,820	mg/kg	Trich	RG_LE1_INV-3_2021-09-14
INV	RG_LE1	659583	5494063	2021	3	2021-09-14	Composite	Phosphorus	12,615	mg/kg	Trich	RG_LE1_INV-3_2021-09-14
INV	RG LE1	659583	5494063	2021	3	2021-09-14	Composite	Potassium	13,218	mg/kg	Trich	RG LE1 INV-3 2021-09-14
INV	RG LE1	659583	5494063	2021	3	2021-09-14	Composite	Calcium	4,714	mg/kg	Trich	RG_LE1_INV-3_2021-09-14
INV	RG_LE1	659583	5494063	2021	3	2021-09-14	Composite	Wet Weight	0.13	g	Trich	RG_LE1_INV-3_2021-09-14
INV	RG LE1	659583	5494063	2021	3	2021-09-14	Composite	Dry Weight	0.022	q	Trich	RG LE1 INV-3 2021-09-14
INV	RG LE1	659583	5494063	2021	3	2021-09-14	Composite	% Moisture	83	%	Trich	RG LE1 INV-3 2021-09-14
INV	RG MI25	668195	5482814	2021	1	2021-09-13	Composite	Aluminum	2,570	mg/kg	Trich	RG MI25 INV-1 2021-09-13
INV	RG MI25	668195	5482814	2021	1	2021-09-13	Composite	Antimony	0.091	mg/kg	Trich	RG MI25 INV-1 2021-09-13
INV	RG MI25	668195	5482814	2021	1	2021-09-13	Composite	Arsenic	1.4	mg/kg	Trich	RG MI25 INV-1 2021-09-13
INV	RG MI25	668195	5482814	2021	1	2021-09-13	Composite	Barium	75	mg/kg	Trich	RG MI25 INV-1 2021-09-13
INV	RG MI25	668195	5482814	2021	1	2021-09-13	Composite	Boron	5.9	mg/kg	Trich	RG MI25 INV-1 2021-09-13
INV	RG MI25	668195	5482814	2021	1	2021-09-13	Composite	Cadmium	2.0	mg/kg	Trich	RG MI25 INV-1 2021-09-13
INV	RG MI25	668195	5482814	2021	1	2021-09-13	Composite	Chromium	33	mg/kg	Trich	RG MI25 INV-1 2021-09-13
INV	RG MI25	668195	5482814	2021	1	2021-09-13	Composite	Cobalt	2.4	mg/kg	Trich	RG MI25_INV-1_2021-09-13
INV	RG_MI25	668195	5482814	2021	1	2021-09-13	Composite	Copper	29	mg/kg	Trich	RG MI25 INV-1 2021-09-13
INV	RG_MI25	668195	5482814	2021	1	2021-09-13	Composite	Iron	1,663	mg/kg	Trich	RG MI25 INV-1 2021-09-13
INV	RG_MI25	668195	5482814	2021	1	2021-09-13	Composite	Lead	0.81	mg/kg	Trich	RG_MI25_INV-1_2021-09-13 RG_MI25_INV-1_2021-09-13
INV	RG_MI25	668195	5482814	2021	1	2021-09-13	Composite	Manganese		mg/kg	Trich	RG_MI25_INV-1_2021-09-13 RG_MI25_INV-1_2021-09-13
INV				_	1				0.082	0 0		
	RG_MI25	668195	5482814	2021	1	2021-09-13	Composite	Mercury		mg/kg	Trich	RG_MI25_INV-1_2021-09-13
INV	RG_MI25	668195	5482814	2021	1	2021-09-13	Composite	Molybdenum	0.55	mg/kg	Trich	RG_MI25_INV-1_2021-09-13
INV	RG_MI25	668195	5482814	2021	1	2021-09-13	Composite	Nickel	56	mg/kg	Trich	RG_MI25_INV-1_2021-09-13
INV	RG_MI25	668195	5482814	2021	1	2021-09-13	Composite	Silver	0.12	mg/kg	Trich	RG_MI25_INV-1_2021-09-13
INV	RG_MI25	668195	5482814	2021	1	2021-09-13	Composite	Selenium	3.3	mg/kg	Trich	RG_MI25_INV-1_2021-09-13
INV	RG_MI25	668195	5482814	2021	1	2021-09-13	Composite	Strontium	7.3	mg/kg	Trich	RG_MI25_INV-1_2021-09-13
INV	RG_MI25	668195	5482814	2021	1	2021-09-13	Composite	Thallium	0.11	mg/kg	Trich	RG_MI25_INV-1_2021-09-13
INV	RG_MI25	668195	5482814	2021	1	2021-09-13	Composite	Tin	0.49	mg/kg	Trich	RG_MI25_INV-1_2021-09-13
INV	RG_MI25	668195	5482814	2021	1	2021-09-13	Composite	Titanium	321	mg/kg	Trich	RG_MI25_INV-1_2021-09-13
INV	RG_MI25	668195	5482814	2021	1	2021-09-13	Composite	Uranium	0.12	mg/kg	Trich	RG_MI25_INV-1_2021-09-13
INV	RG_MI25	668195	5482814	2021	1	2021-09-13	Composite	Vanadium	4.6	mg/kg	Trich	RG_MI25_INV-1_2021-09-13
INV	RG_MI25	668195	5482814	2021	1	2021-09-13	Composite	Zinc	193	mg/kg	Trich	RG_MI25_INV-1_2021-09-13
INV	RG_MI25	668195	5482814	2021	1	2021-09-13	Composite	Lithium	1.4	mg/kg	Trich	RG_MI25_INV-1_2021-09-13
INV	RG MI25	668195	5482814	2021	1	2021-09-13	Composite	Sodium	4,265	mg/kg	Trich	RG MI25 INV-1 2021-09-13

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Typo	Station	Location	n (UTMs) ^(a)	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit		Laboratory Information
Туре	Station	Easting	Northing	rear	Replicate	Date	Species/Composite	Analyte	Result	Unit	Lab	Sample ID
INV	RG_MI25	668195	5482814	2021	1	2021-09-13	Composite	Magnesium	1,714	mg/kg	Trich	RG_MI25_INV-1_2021-09-13
INV	RG MI25	668195	5482814	2021	1	2021-09-13	Composite	Phosphorus	11,608	mg/kg	Trich	RG MI25 INV-1 2021-09-13
INV	RG MI25	668195	5482814	2021	1	2021-09-13	Composite	Potassium	13,111	mg/kg	Trich	RG MI25 INV-1 2021-09-13
INV	RG MI25	668195	5482814	2021	1	2021-09-13	Composite	Calcium	2,061	mg/kg	Trich	RG_MI25_INV-1_2021-09-13
INV	RG MI25	668195	5482814	2021	1	2021-09-13	Composite	Wet Weight	0.36	a	Trich	RG MI25 INV-1 2021-09-13
INV	RG MI25	668195	5482814	2021	1	2021-09-13	Composite	Dry Weight	0.085	a	Trich	RG MI25 INV-1 2021-09-13
INV	RG MI25	668195	5482814	2021	1	2021-09-13	Composite	% Moisture	76	9 %	Trich	RG MI25 INV-1 2021-09-13
INV	RG MI25	668195	5482814	2021	2	2021-09-13	Composite	Aluminum	1,834	mg/kg	Trich	RG_MI25_INV-2_2021-09-13
INV	RG MI25	668195	5482814	2021	2	2021-09-13	Composite	Antimony	0.11	mg/kg	Trich	RG MI25 INV-2 2021-09-13
INV	RG MI25	668195	5482814	2021	2	2021-09-13	Composite	Artimony	1.6	mg/kg	Trich	RG MI25 INV-2 2021-09-13
INV	RG MI25	668195	5482814	2021	2	2021-09-13	Composite	Barium	65		Trich	RG_MI25_INV-2_2021-09-13
INV			5482814							mg/kg	Trich	
	RG_MI25	668195		2021	2	2021-09-13	Composite	Boron	5.6	mg/kg		RG_MI25_INV-2_2021-09-13
INV	RG_MI25	668195	5482814	2021	2	2021-09-13	Composite	Cadmium	1.5	mg/kg	Trich	RG_MI25_INV-2_2021-09-13
INV	RG_MI25	668195	5482814	2021	2	2021-09-13	Composite	Chromium	22	mg/kg	Trich	RG_MI25_INV-2_2021-09-13
INV	RG_MI25	668195	5482814	2021	2	2021-09-13	Composite	Cobalt	1.8	mg/kg	Trich	RG_MI25_INV-2_2021-09-13
INV	RG_MI25	668195	5482814	2021	2	2021-09-13	Composite	Copper	11	mg/kg	Trich	RG_MI25_INV-2_2021-09-13
INV	RG_MI25	668195	5482814	2021	2	2021-09-13	Composite	Iron	1,428	mg/kg	Trich	RG_MI25_INV-2_2021-09-13
INV	RG_MI25	668195	5482814	2021	2	2021-09-13	Composite	Lead	0.79	mg/kg	Trich	RG_MI25_INV-2_2021-09-13
INV	RG_MI25	668195	5482814	2021	2	2021-09-13	Composite	Manganese	57	mg/kg	Trich	RG_MI25_INV-2_2021-09-13
INV	RG_MI25	668195	5482814	2021	2	2021-09-13	Composite	Mercury	0.06	mg/kg	Trich	RG_MI25_INV-2_2021-09-13
INV	RG_MI25	668195	5482814	2021	2	2021-09-13	Composite	Molybdenum	0.53	mg/kg	Trich	RG_MI25_INV-2_2021-09-13
INV	RG MI25	668195	5482814	2021	2	2021-09-13	Composite	Nickel	41	mg/kg	Trich	RG MI25 INV-2 2021-09-13
INV	RG MI25	668195	5482814	2021	2	2021-09-13	Composite	Silver	0.035	mg/kg	Trich	RG MI25 INV-2 2021-09-13
INV	RG MI25	668195	5482814	2021	2	2021-09-13	Composite	Selenium	2.5	mg/kg	Trich	RG MI25 INV-2 2021-09-13
INV	RG MI25	668195	5482814	2021	2	2021-09-13	Composite	Strontium	9.4	mg/kg	Trich	RG_MI25_INV-2_2021-09-13
INV	RG MI25	668195	5482814	2021	2	2021-09-13	Composite	Thallium	0.11	mg/kg	Trich	RG_MI25_INV-2_2021-09-13
INV	RG MI25	668195	5482814	2021	2	2021-09-13	Composite	Tin	0.56	mg/kg	Trich	RG_MI25_INV-2_2021-09-13
INV	RG MI25	668195	5482814	2021	2	2021-09-13	Composite	Titanium	136	mg/kg	Trich	RG_MI25_INV-2_2021-09-13
INV	RG MI25	668195	5482814	2021	2	2021-09-13	Composite	Uranium	0.17	mg/kg	Trich	RG_MI25_INV-2_2021-09-13
INV	RG MI25	668195	5482814	2021	2	2021-09-13	Composite	Vanadium	3.1	mg/kg	Trich	RG_MI25_INV-2_2021-09-13
INV	RG_MI25	668195	5482814	2021	2	2021-09-13	•	Zinc	111		Trich	RG_MI25_INV-2_2021-09-13
	_						Composite			mg/kg		
INV	RG_MI25	668195	5482814	2021	2	2021-09-13	Composite	Lithium	0.92	mg/kg	Trich	RG_MI25_INV-2_2021-09-13
INV	RG_MI25	668195	5482814	2021	2	2021-09-13	Composite	Sodium	3,099	mg/kg	Trich	RG_MI25_INV-2_2021-09-13
INV	RG_MI25	668195	5482814	2021	2	2021-09-13	Composite	Magnesium	1,324	mg/kg	Trich	RG_MI25_INV-2_2021-09-13
INV	RG_MI25	668195	5482814	2021	2	2021-09-13	Composite	Phosphorus	8,758	mg/kg	Trich	RG_MI25_INV-2_2021-09-13
INV	RG_MI25	668195	5482814	2021	2	2021-09-13	Composite	Potassium	9,513	mg/kg	Trich	RG_MI25_INV-2_2021-09-13
INV	RG_MI25	668195	5482814	2021	2	2021-09-13	Composite	Calcium	3,208	mg/kg	Trich	RG_MI25_INV-2_2021-09-13
INV	RG_MI25	668195	5482814	2021	2	2021-09-13	Composite	Wet Weight	0.21	g	Trich	RG_MI25_INV-2_2021-09-13
INV	RG_MI25	668195	5482814	2021	2	2021-09-13	Composite	Dry Weight	0.03	g	Trich	RG_MI25_INV-2_2021-09-13
INV	RG_MI25	668195	5482814	2021	2	2021-09-13	Composite	% Moisture	86	%	Trich	RG_MI25_INV-2_2021-09-13
INV	RG_MI25	668195	5482814	2021	3	2021-09-13	Composite	Aluminum	1,911	mg/kg	Trich	RG_MI25_INV-3_2021-09-13
INV	RG_MI25	668195	5482814	2021	3	2021-09-13	Composite	Antimony	0.095	mg/kg	Trich	RG_MI25_INV-3_2021-09-13
INV	RG_MI25	668195	5482814	2021	3	2021-09-13	Composite	Arsenic	1.5	mg/kg	Trich	RG_MI25_INV-3_2021-09-13
INV	RG MI25	668195	5482814	2021	3	2021-09-13	Composite	Barium	143	mg/kg	Trich	RG MI25 INV-3 2021-09-13
INV	RG MI25	668195	5482814	2021	3	2021-09-13	Composite	Boron	4.7	mg/kg	Trich	RG MI25 INV-3 2021-09-13
INV	RG MI25	668195	5482814	2021	3	2021-09-13	Composite	Cadmium	1.3	mg/kg	Trich	RG MI25 INV-3 2021-09-13
INV	RG MI25	668195	5482814	2021	3	2021-09-13	Composite	Chromium	17	mg/kg	Trich	RG MI25 INV-3 2021-09-13
INV	RG MI25	668195	5482814	2021	3	2021-09-13	Composite	Cobalt	1.2	mg/kg	Trich	RG MI25 INV-3 2021-09-13
INV	RG MI25	668195	5482814	2021	3	2021-09-13	Composite	Copper	20	mg/kg	Trich	RG MI25 INV-3 2021-09-13
INV	RG_MI25	668195	5482814	2021	3	2021-09-13	Composite	Iron	942		Trich	RG MI25 INV-3 2021-09-13
				_			•			mg/kg		
INV	RG_MI25	668195	5482814	2021	3	2021-09-13	Composite	Lead	0.61	mg/kg	Trich	RG_MI25_INV-3_2021-09-13
INV	RG_MI25	668195	5482814	2021	3	2021-09-13	Composite	Manganese	57	mg/kg	Trich	RG_MI25_INV-3_2021-09-13
INV	RG_MI25	668195	5482814	2021	3	2021-09-13	Composite	Mercury	0.09	mg/kg	Trich	RG_MI25_INV-3_2021-09-13
INV	RG_MI25	668195	5482814	2021	3	2021-09-13	Composite	Molybdenum	0.36	mg/kg	Trich	RG_MI25_INV-3_2021-09-13
INV	RG_MI25	668195	5482814	2021	3	2021-09-13	Composite	Nickel	26	mg/kg	Trich	RG_MI25_INV-3_2021-09-13
INV	RG_MI25	668195	5482814	2021	3	2021-09-13	Composite	Silver	0.1	mg/kg	Trich	RG_MI25_INV-3_2021-09-13
INV	RG MI25	668195	5482814	2021	3	2021-09-13	Composite	Selenium	2.3	mg/kg	Trich	RG MI25 INV-3 2021-09-13

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Type	Station	Location	n (UTMs) ^(a)	Voor	Poplicate	Data	Species/Composite	Analyte	Booult	Unit		Laboratory Information
Туре	Station	Easting	Northing	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit	Lab	Sample ID
INV	RG MI25	668195	5482814	2021	3	2021-09-13	Composite	Strontium	6.1	mg/kg	Trich	RG_MI25_INV-3_2021-09-13
INV	RG MI25	668195	5482814	2021	3	2021-09-13	Composite	Thallium	0.086	mg/kg	Trich	RG MI25 INV-3 2021-09-13
INV	RG MI25	668195	5482814	2021	3	2021-09-13	Composite	Tin	0.38	mg/kg	Trich	RG_MI25_INV-3_2021-09-13
INV	RG MI25	668195	5482814	2021	3	2021-09-13	Composite	Titanium	141	mg/kg	Trich	RG_MI25_INV-3_2021-09-13
INV	RG MI25	668195	5482814	2021	3	2021-09-13	Composite	Uranium	0.093	mg/kg	Trich	RG MI25 INV-3 2021-09-13
INV	RG MI25	668195	5482814	2021	3	2021-09-13	Composite	Vanadium	2.4	mg/kg	Trich	RG MI25 INV-3 2021-09-13
INV	RG MI25	668195	5482814	2021	3	2021-09-13	Composite	Zinc	170	mg/kg	Trich	RG MI25 INV-3 2021-09-13
INV	RG MI25	668195	5482814	2021	3	2021-09-13	Composite	Lithium	0.98	mg/kg	Trich	RG MI25 INV-3 2021-09-13
INV	RG MI25	668195	5482814	2021	3	2021-09-13	Composite	Sodium	4,781	mg/kg	Trich	RG MI25 INV-3 2021-09-13
INV	RG MI25	668195	5482814	2021	3	2021-09-13	Composite	Magnesium	1,293	mg/kg	Trich	RG MI25 INV-3 2021-09-13
INV	RG MI25	668195	5482814	2021	3	2021-09-13	Composite	Phosphorus	11,741	mg/kg	Trich	RG_MI25_INV-3_2021-09-13
INV	RG MI25	668195	5482814	2021	3	2021-09-13	Composite	Potassium	13,476	mg/kg	Trich	RG MI25 INV-3 2021-09-13
INV	RG MI25	668195	5482814	2021	3	2021-09-13	Composite	Calcium	2,163	mg/kg	Trich	RG_MI25_INV-3_2021-09-13
INV	RG_MI25	668195	5482814	2021	3	2021-09-13	Composite	Wet Weight	0.28	ilig/kg	Trich	RG_MI25_INV-3_2021-09-13
INV	RG_MI25		5482814			2021-09-13				<u>9</u>		RG_MI25_INV-3_2021-09-13
		668195		2021	3		Composite	Dry Weight	0.056	g	Trich	
INV	RG_MI25	668195	5482814	2021	3	2021-09-13	Composite	% Moisture	80	<u>%</u>	Trich	RG_MI25_INV-3_2021-09-13
INV	RG_MI5	659504	5496614	2021	1	2021-09-16	Composite	Aluminum	737	mg/kg	Trich	RG_MI5_INV-1_2021-09-16
INV	RG_MI5	659504	5496614	2021	1	2021-09-16	Composite	Antimony	0.047	mg/kg	Trich	RG_MI5_INV-1_2021-09-16
INV	RG_MI5	659504	5496614	2021	1	2021-09-16	Composite	Arsenic	0.48	mg/kg	Trich	RG_MI5_INV-1_2021-09-16
INV	RG_MI5	659504	5496614	2021	1	2021-09-16	Composite	Barium	50	mg/kg	Trich	RG_MI5_INV-1_2021-09-16
INV	RG_MI5	659504	5496614	2021	1	2021-09-16	Composite	Boron	1.5	mg/kg	Trich	RG_MI5_INV-1_2021-09-16
INV	RG_MI5	659504	5496614	2021	1	2021-09-16	Composite	Cadmium	2.3	mg/kg	Trich	RG_MI5_INV-1_2021-09-16
INV	RG_MI5	659504	5496614	2021	1	2021-09-16	Composite	Chromium	11	mg/kg	Trich	RG_MI5_INV-1_2021-09-16
INV	RG_MI5	659504	5496614	2021	1	2021-09-16	Composite	Cobalt	2.3	mg/kg	Trich	RG_MI5_INV-1_2021-09-16
INV	RG_MI5	659504	5496614	2021	1	2021-09-16	Composite	Copper	12	mg/kg	Trich	RG_MI5_INV-1_2021-09-16
INV	RG_MI5	659504	5496614	2021	1	2021-09-16	Composite	Iron	489	mg/kg	Trich	RG_MI5_INV-1_2021-09-16
INV	RG_MI5	659504	5496614	2021	1	2021-09-16	Composite	Lead	0.19	mg/kg	Trich	RG_MI5_INV-1_2021-09-16
INV	RG_MI5	659504	5496614	2021	1	2021-09-16	Composite	Manganese	50	mg/kg	Trich	RG_MI5_INV-1_2021-09-16
INV	RG MI5	659504	5496614	2021	1	2021-09-16	Composite	Mercury	0.063	mg/kg	Trich	RG_MI5_INV-1_2021-09-16
INV	RG MI5	659504	5496614	2021	1	2021-09-16	Composite	Molybdenum	0.27	mg/kg	Trich	RG_MI5_INV-1_2021-09-16
INV	RG MI5	659504	5496614	2021	1	2021-09-16	Composite	Nickel	22	mg/kg	Trich	RG MI5 INV-1 2021-09-16
INV	RG MI5	659504	5496614	2021	1	2021-09-16	Composite	Silver	0.11	mg/kg	Trich	RG MI5 INV-1 2021-09-16
INV	RG MI5	659504	5496614	2021	1	2021-09-16	Composite	Selenium	4.8	mg/kg	Trich	RG MI5 INV-1 2021-09-16
INV	RG MI5	659504	5496614	2021	1	2021-09-16	Composite	Strontium	6.4	mg/kg	Trich	RG MI5 INV-1 2021-09-16
INV	RG MI5	659504	5496614	2021	1	2021-09-16	Composite	Thallium	0.08	mg/kg	Trich	RG MI5 INV-1 2021-09-16
INV	RG MI5	659504	5496614	2021	1	2021-09-16	Composite	Tin	0.73	mg/kg	Trich	RG MI5 INV-1 2021-09-16
INV	RG MI5	659504	5496614	2021	1	2021-09-16	Composite	Titanium	36	mg/kg	Trich	RG MI5 INV-1 2021-09-16
INV	RG MI5	659504	5496614	2021	1	2021-09-16	Composite	Uranium	0.059	mg/kg	Trich	RG MI5 INV-1 2021-09-16
INV	RG MI5	659504	5496614	2021	1	2021-09-16	Composite	Vanadium	1.3	mg/kg	Trich	RG MI5 INV-1 2021-09-16
INV	RG_MI5	659504	5496614	2021	1	2021-09-16	Composite	Zinc	160	mg/kg	Trich	RG MI5 INV-1 2021-09-16
INV	RG_MI5	659504	5496614	2021	1	2021-09-16		Lithium	0.4		Trich	RG_MI5_INV-1_2021-09-16 RG_MI5_INV-1_2021-09-16
INV	RG_MI5	659504	5496614	2021	1	2021-09-16	Composite		8,645	mg/kg	Trich	
					1		Composite	Sodium		mg/kg		RG_MI5_INV-1_2021-09-16
INV	RG_MI5	659504	5496614	2021	1	2021-09-16	Composite	Magnesium	1,332	mg/kg	Trich	RG_MI5_INV-1_2021-09-16
INV	RG_MI5	659504	5496614	2021	1	2021-09-16	Composite	Phosphorus	10,726	mg/kg	Trich	RG_MI5_INV-1_2021-09-16
INV	RG_MI5	659504	5496614	2021	1	2021-09-16	Composite	Potassium	11,774	mg/kg	Trich	RG_MI5_INV-1_2021-09-16
INV	RG_MI5	659504	5496614	2021	1	2021-09-16	Composite	Calcium	2,212	mg/kg	Trich	RG_MI5_INV-1_2021-09-16
INV	RG_MI5	659504	5496614	2021	1	2021-09-16	Composite	Wet Weight	0.35	g	Trich	RG_MI5_INV-1_2021-09-16
INV	RG_MI5	659504	5496614	2021	1	2021-09-16	Composite	Dry Weight	0.056	g	Trich	RG_MI5_INV-1_2021-09-16
INV	RG_MI5	659504	5496614	2021	1	2021-09-16	Composite	% Moisture	84	%	Trich	RG_MI5_INV-1_2021-09-16
INV	RG_MI5	659504	5496614	2021	2	2021-09-16	Composite	Aluminum	7,279	mg/kg	Trich	RG_MI5_INV-2_2021-09-16
INV	RG_MI5	659504	5496614	2021	2	2021-09-16	Composite	Antimony	0.25	mg/kg	Trich	RG_MI5_INV-2_2021-09-16
INV	RG_MI5	659504	5496614	2021	2	2021-09-16	Composite	Arsenic	1.5	mg/kg	Trich	RG_MI5_INV-2_2021-09-16
INV	RG_MI5	659504	5496614	2021	2	2021-09-16	Composite	Barium	221	mg/kg	Trich	RG_MI5_INV-2_2021-09-16
INV	RG_MI5	659504	5496614	2021	2	2021-09-16	Composite	Boron	7.2	mg/kg	Trich	RG_MI5_INV-2_2021-09-16
INV	RG_MI5	659504	5496614	2021	2	2021-09-16	Composite	Cadmium	3.2	mg/kg	Trich	RG_MI5_INV-2_2021-09-16
INV	RG MI5	659504	5496614	2021	2	2021-09-16	Composite	Chromium	92	mg/kg	Trich	RG MI5 INV-2 2021-09-16
INV	RG MI5	659504	5496614	2021	2	2021-09-16	Composite	Cobalt	7.7	mg/kg	Trich	RG MI5 INV-2 2021-09-16

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

		Locatio	n (UTMs) ^(a)									Laboratory Information
Туре	Station	Easting	Northing	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit	Lab	Sample ID
INV	RG MI5	659504	5496614	2021	2	2021-09-16	Composite	Copper	19	mg/kg	Trich	RG MI5 INV-2 2021-09-16
INV	RG MI5	659504	5496614	2021	2	2021-09-16	Composite	Iron	4,468	mg/kg	Trich	RG MI5 INV-2 2021-09-16
INV	RG MI5	659504	5496614	2021	2	2021-09-16	Composite	Lead	1.4	mg/kg	Trich	RG MI5 INV-2 2021-09-16
INV	RG MI5	659504	5496614	2021	2	2021-09-16	Composite	Manganese	109	mg/kg	Trich	RG_MI5_INV-2_2021-09-16
INV	RG MI5	659504	5496614	2021	2	2021-09-16	Composite	Mercury	0.081	mg/kg	Trich	RG MI5 INV-2 2021-09-16
INV	RG MI5	659504	5496614	2021	2	2021-09-16		Molybdenum	0.65	mg/kg	Trich	RG MI5 INV-2 2021-09-16
	RG_MI5			2021			Composite	Nickel		0 0	Trich	
INV	_	659504	5496614		2	2021-09-16	Composite		151	mg/kg		RG_MI5_INV-2_2021-09-16
INV	RG_MI5	659504	5496614	2021	2	2021-09-16	Composite	Silver	0.17	mg/kg	Trich	RG_MI5_INV-2_2021-09-16
INV	RG_MI5	659504	5496614	2021	2	2021-09-16	Composite	Selenium	8.1	mg/kg	Trich	RG_MI5_INV-2_2021-09-16
INV	RG_MI5	659504	5496614	2021	2	2021-09-16	Composite	Strontium	17	mg/kg	Trich	RG_MI5_INV-2_2021-09-16
INV	RG_MI5	659504	5496614	2021	2	2021-09-16	Composite	Thallium	0.2	mg/kg	Trich	RG_MI5_INV-2_2021-09-16
INV	RG_MI5	659504	5496614	2021	2	2021-09-16	Composite	Tin	0.96	mg/kg	Trich	RG_MI5_INV-2_2021-09-16
INV	RG_MI5	659504	5496614	2021	2	2021-09-16	Composite	Titanium	601	mg/kg	Trich	RG_MI5_INV-2_2021-09-16
INV	RG_MI5	659504	5496614	2021	2	2021-09-16	Composite	Uranium	0.29	mg/kg	Trich	RG_MI5_INV-2_2021-09-16
INV	RG_MI5	659504	5496614	2021	2	2021-09-16	Composite	Vanadium	16	mg/kg	Trich	RG_MI5_INV-2_2021-09-16
INV	RG_MI5	659504	5496614	2021	2	2021-09-16	Composite	Zinc	208	mg/kg	Trich	RG_MI5_INV-2_2021-09-16
INV	RG_MI5	659504	5496614	2021	2	2021-09-16	Composite	Lithium	2.5	mg/kg	Trich	RG_MI5_INV-2_2021-09-16
INV	RG MI5	659504	5496614	2021	2	2021-09-16	Composite	Sodium	3,993	mg/kg	Trich	RG MI5 INV-2 2021-09-16
INV	RG MI5	659504	5496614	2021	2	2021-09-16	Composite	Magnesium	1,906	mg/kg	Trich	RG MI5 INV-2 2021-09-16
INV	RG MI5	659504	5496614	2021	2	2021-09-16	Composite	Phosphorus	11,245	mg/kg	Trich	RG MI5 INV-2 2021-09-16
INV	RG MI5	659504	5496614	2021	2	2021-09-16	Composite	Potassium	13,573	mg/kg	Trich	RG_MI5_INV-2_2021-09-16
INV	RG MI5	659504	5496614	2021	2	2021-09-16	Composite	Calcium	4,034	mg/kg	Trich	RG MI5 INV-2 2021-09-16
INV	RG MI5	659504	5496614	2021	2	2021-09-16	Composite	Wet Weight	0.54	a a	Trich	RG MI5 INV-2 2021-09-16
INV	RG MI5	659504	5496614	2021	2	2021-09-16	Composite	Dry Weight	0.097	<u>9</u>	Trich	RG MI5 INV-2 2021-09-16
							<u>'</u>			<u> </u>		
INV	RG_MI5	659504	5496614	2021	2	2021-09-16	Composite	% Moisture	82	%	Trich	RG_MI5_INV-2_2021-09-16
INV	RG_MI5	659504	5496614	2021	3	2021-09-16	Composite	Aluminum	3,430	mg/kg	Trich	RG_MI5_INV-3_2021-09-16
INV	RG_MI5	659504	5496614	2021	3	2021-09-16	Composite	Antimony	0.19	mg/kg	Trich	RG_MI5_INV-3_2021-09-16
INV	RG_MI5	659504	5496614	2021	3	2021-09-16	Composite	Arsenic	1.1	mg/kg	Trich	RG_MI5_INV-3_2021-09-16
INV	RG_MI5	659504	5496614	2021	3	2021-09-16	Composite	Barium	130	mg/kg	Trich	RG_MI5_INV-3_2021-09-16
INV	RG_MI5	659504	5496614	2021	3	2021-09-16	Composite	Boron	4.2	mg/kg	Trich	RG_MI5_INV-3_2021-09-16
INV	RG_MI5	659504	5496614	2021	3	2021-09-16	Composite	Cadmium	0.88	mg/kg	Trich	RG_MI5_INV-3_2021-09-16
INV	RG_MI5	659504	5496614	2021	3	2021-09-16	Composite	Chromium	106	mg/kg	Trich	RG_MI5_INV-3_2021-09-16
INV	RG_MI5	659504	5496614	2021	3	2021-09-16	Composite	Cobalt	5.6	mg/kg	Trich	RG_MI5_INV-3_2021-09-16
INV	RG MI5	659504	5496614	2021	3	2021-09-16	Composite	Copper	17	mg/kg	Trich	RG MI5 INV-3 2021-09-16
INV	RG MI5	659504	5496614	2021	3	2021-09-16	Composite	Iron	2,576	mg/kg	Trich	RG MI5 INV-3 2021-09-16
INV	RG MI5	659504	5496614	2021	3	2021-09-16	Composite	Lead	0.69	mg/kg	Trich	RG MI5 INV-3 2021-09-16
INV	RG MI5	659504	5496614	2021	3	2021-09-16	Composite	Manganese	96	mg/kg	Trich	RG MI5 INV-3 2021-09-16
INV	RG MI5	659504	5496614	2021	3	2021-09-16	Composite	Mercury	0.078	mg/kg	Trich	RG MI5 INV-3 2021-09-16
INV	RG MI5	659504	5496614	2021	3	2021-09-16	Composite	Molybdenum	0.52	mg/kg	Trich	RG MI5 INV-3 2021-09-16
INV	RG MI5	659504	5496614	2021	3	2021-09-16	Composite	Nickel	169	mg/kg	Trich	RG MI5 INV-3 2021-09-16
INV	RG MI5	659504	5496614	2021	3	2021-09-16	Composite	Silver	0.14	mg/kg	Trich	RG MI5 INV-3 2021-09-16
	_			2021			<u>'</u>					
INV	RG_MI5	659504	5496614		3	2021-09-16	Composite	Selenium	5.4	mg/kg	Trich	RG_MI5_INV-3_2021-09-16
INV	RG_MI5	659504	5496614	2021	3	2021-09-16	Composite	Strontium	11	mg/kg	Trich	RG_MI5_INV-3_2021-09-16
INV	RG_MI5	659504	5496614	2021	3	2021-09-16	Composite	Thallium	0.087	mg/kg	Trich	RG_MI5_INV-3_2021-09-16
INV	RG_MI5	659504	5496614	2021	3	2021-09-16	Composite	Tin	0.46	mg/kg	Trich	RG_MI5_INV-3_2021-09-16
INV	RG_MI5	659504	5496614	2021	3	2021-09-16	Composite	Titanium	298	mg/kg	Trich	RG_MI5_INV-3_2021-09-16
INV	RG_MI5	659504	5496614	2021	3	2021-09-16	Composite	Uranium	0.18	mg/kg	Trich	RG_MI5_INV-3_2021-09-16
INV	RG_MI5	659504	5496614	2021	3	2021-09-16	Composite	Vanadium	9.6	mg/kg	Trich	RG_MI5_INV-3_2021-09-16
INV	RG_MI5	659504	5496614	2021	3	2021-09-16	Composite	Zinc	198	mg/kg	Trich	RG_MI5_INV-3_2021-09-16
INV	RG_MI5	659504	5496614	2021	3	2021-09-16	Composite	Lithium	1.3	mg/kg	Trich	RG_MI5_INV-3_2021-09-16
INV	RG_MI5	659504	5496614	2021	3	2021-09-16	Composite	Sodium	2,901	mg/kg	Trich	RG_MI5_INV-3_2021-09-16
INV	RG MI5	659504	5496614	2021	3	2021-09-16	Composite	Magnesium	1,401	mg/kg	Trich	RG MI5 INV-3 2021-09-16
INV	RG MI5	659504	5496614	2021	3	2021-09-16	Composite	Phosphorus	11,501	mg/kg	Trich	RG MI5 INV-3 2021-09-16
INV	RG MI5	659504	5496614	2021	3	2021-09-16	Composite	Potassium	11,195	mg/kg	Trich	RG MI5 INV-3 2021-09-16
INV	RG MI5	659504	5496614	2021	3	2021-09-16	Composite	Calcium	2,977	mg/kg	Trich	RG MI5 INV-3 2021-09-16
INV	RG MI5	659504	5496614	2021	3	2021-09-16	Composite	Wet Weight	0.19	a a	Trich	RG MI5 INV-3 2021-09-16
INV	_	659504		_			•	<u> </u>		<u>y</u>	Trich	
IINV	RG_MI5	009004	5496614	2021	3	2021-09-16	Composite	Dry Weight	0.053	y	HICH	RG_MI5_INV-3_2021-09-16

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Туре	Station	Locatio	n (UTMs) ^(a)	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit		Laboratory Information
туре	Station	Easting	Northing	I ear	Replicate	Date	Species/Composite	Allalyte	Result	Offic	Lab	Sample ID
INV	RG_MI5	659504	5496614	2021	3	2021-09-16	Composite	% Moisture	72	%	Trich	RG_MI5_INV-3_2021-09-16
INV	RG_MIDAG	665271	5489373	2021	1	2021-09-11	Composite	Aluminum	1,761	mg/kg	Trich	RG_MIDAG_INV-1_2021-09-11
INV	RG_MIDAG	665271	5489373	2021	1	2021-09-11	Composite	Antimony	0.069	mg/kg	Trich	RG_MIDAG_INV-1_2021-09-11
INV	RG_MIDAG	665271	5489373	2021	1	2021-09-11	Composite	Arsenic	1.3	mg/kg	Trich	RG_MIDAG_INV-1_2021-09-11
INV	RG_MIDAG	665271	5489373	2021	1	2021-09-11	Composite	Barium	42	mg/kg	Trich	RG_MIDAG_INV-1_2021-09-11
INV	RG MIDAG	665271	5489373	2021	1	2021-09-11	Composite	Boron	2.7	mg/kg	Trich	RG MIDAG INV-1 2021-09-11
INV	RG MIDAG	665271	5489373	2021	1	2021-09-11	Composite	Cadmium	0.82	mg/kg	Trich	RG MIDAG INV-1 2021-09-11
INV	RG MIDAG	665271	5489373	2021	1	2021-09-11	Composite	Chromium	15	mg/kg	Trich	RG MIDAG INV-1 2021-09-11
INV	RG MIDAG	665271	5489373	2021	1	2021-09-11	Composite	Cobalt	18	mg/kg	Trich	RG MIDAG INV-1 2021-09-11
INV	RG MIDAG	665271	5489373	2021	1	2021-09-11	Composite	Copper	11	mg/kg	Trich	RG MIDAG INV-1 2021-09-11
INV	RG_MIDAG	665271	5489373	2021	1	2021-09-11	Composite	Iron	947	mg/kg	Trich	RG MIDAG INV-1 2021-09-11
INV	RG MIDAG	665271	5489373	2021	1	2021-09-11	Composite	Lead	0.49	mg/kg	Trich	RG MIDAG INV-1 2021-09-11
INV	RG_MIDAG	665271	5489373	2021	1	2021-09-11	Composite	Manganese	106	mg/kg	Trich	RG_MIDAG_INV-1_2021-09-11
INV	RG MIDAG	665271	5489373	2021	1	2021-09-11	Composite	Mercury	0.06	mg/kg	Trich	RG MIDAG INV-1 2021-09-11
INV	RG MIDAG	665271	5489373	2021	1	2021-09-11	Composite	Molybdenum	0.55	mg/kg	Trich	RG MIDAG INV-1 2021-09-11
INV	RG MIDAG	665271	5489373	2021	1	2021-09-11	Composite	Nickel	50	mg/kg	Trich	RG MIDAG INV-1 2021-09-11
INV	RG MIDAG	665271	5489373	2021	1	2021-09-11	Composite	Silver	0.07	mg/kg	Trich	RG MIDAG INV-1 2021-09-11
INV	RG MIDAG	665271	5489373	2021	1	2021-09-11	Composite	Selenium	6.1	mg/kg	Trich	RG MIDAG INV-1 2021-09-11
INV	RG MIDAG	665271	5489373	2021	1	2021-09-11	Composite	Strontium	7.4	mg/kg	Trich	RG MIDAG INV-1 2021-09-11
INV	RG MIDAG	665271	5489373	2021	1	2021-09-11	Composite	Thallium	0.16		Trich	RG MIDAG INV-1 2021-09-11
INV	RG MIDAG	665271	5489373	2021	1	2021-09-11	Composite	Tin	0.10	mg/kg	Trich	RG MIDAG INV-1 2021-09-11
INV	RG MIDAG	665271	5489373	2021	1	2021-09-11	•	Titanium	129	mg/kg	Trich	RG MIDAG INV-1 2021-09-11
INV	RG_MIDAG	665271	5489373		1	2021-09-11	Composite		0.094	mg/kg	Trich	
INV				2021	1		Composite	Uranium		mg/kg		RG_MIDAG_INV-1_2021-09-11
	RG_MIDAG	665271	5489373	2021	1	2021-09-11	Composite	Vanadium	2.2	mg/kg	Trich	RG_MIDAG_INV-1_2021-09-11
INV	RG_MIDAG	665271	5489373	2021	1	2021-09-11	Composite	Zinc	161	mg/kg	Trich	RG_MIDAG_INV-1_2021-09-11
INV	RG_MIDAG	665271	5489373	2021	1	2021-09-11	Composite	Lithium	0.65	mg/kg	Trich	RG_MIDAG_INV-1_2021-09-11
INV	RG_MIDAG	665271	5489373	2021	1	2021-09-11	Composite	Sodium	3,087	mg/kg	Trich	RG_MIDAG_INV-1_2021-09-11
INV	RG_MIDAG	665271	5489373	2021	1	2021-09-11	Composite	Magnesium	1,189	mg/kg	Trich	RG_MIDAG_INV-1_2021-09-11
INV	RG_MIDAG	665271	5489373	2021	1	2021-09-11	Composite	Phosphorus	11,255	mg/kg	Trich	RG_MIDAG_INV-1_2021-09-11
INV	RG_MIDAG	665271	5489373	2021	1	2021-09-11	Composite	Potassium	9,833	mg/kg	Trich	RG_MIDAG_INV-1_2021-09-11
INV	RG_MIDAG	665271	5489373	2021	1	2021-09-11	Composite	Calcium	2,499	mg/kg	Trich	RG_MIDAG_INV-1_2021-09-11
INV	RG_MIDAG	665271	5489373	2021	1	2021-09-11	Composite	Wet Weight	0.41	g	Trich	RG_MIDAG_INV-1_2021-09-11
INV	RG_MIDAG	665271	5489373	2021	1	2021-09-11	Composite	Dry Weight	0.11	g	Trich	RG_MIDAG_INV-1_2021-09-11
INV	RG_MIDAG	665271	5489373	2021	1	2021-09-11	Composite	% Moisture	74	%	Trich	RG_MIDAG_INV-1_2021-09-11
INV	RG_MIDAG	665271	5489373	2021	2	2021-09-11	Composite	Aluminum	1,241	mg/kg	Trich	RG_MIDAG_INV-2_2021-09-11
INV	RG_MIDAG	665271	5489373	2021	2	2021-09-11	Composite	Antimony	0.05	mg/kg	Trich	RG_MIDAG_INV-2_2021-09-11
INV	RG_MIDAG	665271	5489373	2021	2	2021-09-11	Composite	Arsenic	0.61	mg/kg	Trich	RG_MIDAG_INV-2_2021-09-11
INV	RG_MIDAG	665271	5489373	2021	2	2021-09-11	Composite	Barium	37	mg/kg	Trich	RG_MIDAG_INV-2_2021-09-11
INV	RG_MIDAG	665271	5489373	2021	2	2021-09-11	Composite	Boron	2.2	mg/kg	Trich	RG_MIDAG_INV-2_2021-09-11
INV	RG_MIDAG	665271	5489373	2021	2	2021-09-11	Composite	Cadmium	0.74	mg/kg	Trich	RG_MIDAG_INV-2_2021-09-11
INV	RG_MIDAG	665271	5489373	2021	2	2021-09-11	Composite	Chromium	13	mg/kg	Trich	RG_MIDAG_INV-2_2021-09-11
INV	RG_MIDAG	665271	5489373	2021	2	2021-09-11	Composite	Cobalt	7.0	mg/kg	Trich	RG_MIDAG_INV-2_2021-09-11
INV	RG_MIDAG	665271	5489373	2021	2	2021-09-11	Composite	Copper	18	mg/kg	Trich	RG_MIDAG_INV-2_2021-09-11
INV	RG_MIDAG	665271	5489373	2021	2	2021-09-11	Composite	Iron	646	mg/kg	Trich	RG_MIDAG_INV-2_2021-09-11
INV	RG_MIDAG	665271	5489373	2021	2	2021-09-11	Composite	Lead	0.34	mg/kg	Trich	RG_MIDAG_INV-2_2021-09-11
INV	RG_MIDAG	665271	5489373	2021	2	2021-09-11	Composite	Manganese	46	mg/kg	Trich	RG_MIDAG_INV-2_2021-09-11
INV	RG_MIDAG	665271	5489373	2021	2	2021-09-11	Composite	Mercury	0.052	mg/kg	Trich	RG_MIDAG_INV-2_2021-09-11
INV	RG_MIDAG	665271	5489373	2021	2	2021-09-11	Composite	Molybdenum	0.23	mg/kg	Trich	RG_MIDAG_INV-2_2021-09-11
INV	RG_MIDAG	665271	5489373	2021	2	2021-09-11	Composite	Nickel	30	mg/kg	Trich	RG_MIDAG_INV-2_2021-09-11
INV	RG MIDAG	665271	5489373	2021	2	2021-09-11	Composite	Silver	0.17	mg/kg	Trich	RG MIDAG INV-2 2021-09-11
INV	RG MIDAG	665271	5489373	2021	2	2021-09-11	Composite	Selenium	2.5	mg/kg	Trich	RG MIDAG INV-2 2021-09-11
INV	RG MIDAG	665271	5489373	2021	2	2021-09-11	Composite	Strontium	16	mg/kg	Trich	RG MIDAG INV-2 2021-09-11
	RG MIDAG	665271	5489373	2021	2	2021-09-11	Composite	Thallium	0.15	mg/kg	Trich	RG MIDAG INV-2 2021-09-11
INV	_		5489373	2021	2	2021-09-11	Composite	Tin	0.58	mg/kg	Trich	RG MIDAG INV-2 2021-09-11
INV	RG MIDAG	hh52/1	0409.17.1									
INV	RG_MIDAG	665271 665271		_								
	RG_MIDAG RG_MIDAG RG_MIDAG	665271 665271	5489373 5489373	2021	2 2	2021-09-11	Composite Composite	Titanium Uranium	87 0.1	mg/kg mg/kg	Trich Trich	RG_MIDAG_INV-2_2021-09-11 RG_MIDAG_INV-2_2021-09-11

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Type	Station	Locatio	n (UTMs) ^(a)	Year	Replicate	Date	Species/Composite	Analyta	Pacult	Unit		Laboratory Information
Туре	Station	Easting	Northing	rear	Replicate	Date	Species/Composite	Analyte	Result	Unit	Lab	Sample ID
INV	RG_MIDAG	665271	5489373	2021	2	2021-09-11	Composite	Zinc	180	mg/kg	Trich	RG_MIDAG_INV-2_2021-09-11
INV	RG_MIDAG	665271	5489373	2021	2	2021-09-11	Composite	Lithium	0.67	mg/kg	Trich	RG_MIDAG_INV-2_2021-09-11
INV	RG_MIDAG	665271	5489373	2021	2	2021-09-11	Composite	Sodium	7,834	mg/kg	Trich	RG_MIDAG_INV-2_2021-09-11
INV	RG_MIDAG	665271	5489373	2021	2	2021-09-11	Composite	Magnesium	1,544	mg/kg	Trich	RG_MIDAG_INV-2_2021-09-11
INV	RG MIDAG	665271	5489373	2021	2	2021-09-11	Composite	Phosphorus	12,067	mg/kg	Trich	RG MIDAG INV-2 2021-09-11
INV	RG MIDAG	665271	5489373	2021	2	2021-09-11	Composite	Potassium	12,038	mg/kg	Trich	RG MIDAG INV-2 2021-09-11
INV	RG MIDAG	665271	5489373	2021	2	2021-09-11	Composite	Calcium	6,141	mg/kg	Trich	RG MIDAG INV-2 2021-09-11
INV	RG MIDAG	665271	5489373	2021	2	2021-09-11	Composite	Wet Weight	0.29	a	Trich	RG MIDAG INV-2 2021-09-11
INV	RG MIDAG	665271	5489373	2021	2	2021-09-11	Composite	Dry Weight	0.051	<u>9</u>	Trich	RG MIDAG INV-2 2021-09-11
INV	RG MIDAG	665271	5489373	2021	2	2021-09-11	Composite	% Moisture	83		Trich	RG MIDAG INV-2 2021-09-11
INV	RG_MIDAG	665271	5489373	2021	3	2021-09-11	Composite	Aluminum	1,155	mg/kg	Trich	RG_MIDAG_INV-3_2021-09-11
INV	RG MIDAG	665271	5489373	2021	3	2021-09-11	Composite	Antimony	0.047	mg/kg	Trich	RG MIDAG INV-3 2021-09-11
INV	RG_MIDAG	665271	5489373	2021	3	2021-09-11	Composite	Arsenic	1.0		Trich	RG_MIDAG_INV-3_2021-09-11
INV	RG MIDAG	665271	5489373	2021	3	2021-09-11	Composite	Barium	28	mg/kg	Trich	RG MIDAG INV-3 2021-09-11
INV							'			mg/kg		
	RG_MIDAG	665271	5489373	2021	3	2021-09-11	Composite	Boron	2.6	mg/kg	Trich	RG_MIDAG_INV-3_2021-09-11
INV	RG_MIDAG	665271	5489373	2021	3	2021-09-11	Composite	Cadmium	2.4	mg/kg	Trich	RG_MIDAG_INV-3_2021-09-11
INV	RG_MIDAG	665271	5489373	2021	3	2021-09-11	Composite	Chromium	13	mg/kg	Trich	RG_MIDAG_INV-3_2021-09-11
INV	RG_MIDAG	665271	5489373	2021	3	2021-09-11	Composite	Cobalt	36	mg/kg	Trich	RG_MIDAG_INV-3_2021-09-11
INV	RG_MIDAG	665271	5489373	2021	3	2021-09-11	Composite	Copper	15	mg/kg	Trich	RG_MIDAG_INV-3_2021-09-11
INV	RG_MIDAG	665271	5489373	2021	3	2021-09-11	Composite	Iron	713	mg/kg	Trich	RG_MIDAG_INV-3_2021-09-11
INV	RG_MIDAG	665271	5489373	2021	3	2021-09-11	Composite	Lead	0.3	mg/kg	Trich	RG_MIDAG_INV-3_2021-09-11
INV	RG_MIDAG	665271	5489373	2021	3	2021-09-11	Composite	Manganese	60	mg/kg	Trich	RG_MIDAG_INV-3_2021-09-11
INV	RG_MIDAG	665271	5489373	2021	3	2021-09-11	Composite	Mercury	0.069	mg/kg	Trich	RG_MIDAG_INV-3_2021-09-11
INV	RG_MIDAG	665271	5489373	2021	3	2021-09-11	Composite	Molybdenum	0.53	mg/kg	Trich	RG_MIDAG_INV-3_2021-09-11
INV	RG_MIDAG	665271	5489373	2021	3	2021-09-11	Composite	Nickel	32	mg/kg	Trich	RG_MIDAG_INV-3_2021-09-11
INV	RG_MIDAG	665271	5489373	2021	3	2021-09-11	Composite	Silver	0.14	mg/kg	Trich	RG_MIDAG_INV-3_2021-09-11
INV	RG MIDAG	665271	5489373	2021	3	2021-09-11	Composite	Selenium	5.9	mg/kg	Trich	RG MIDAG INV-3 2021-09-11
INV	RG_MIDAG	665271	5489373	2021	3	2021-09-11	Composite	Strontium	10	mg/kg	Trich	RG MIDAG INV-3 2021-09-11
INV	RG_MIDAG	665271	5489373	2021	3	2021-09-11	Composite	Thallium	0.22	mg/kg	Trich	RG_MIDAG_INV-3_2021-09-11
INV	RG MIDAG	665271	5489373	2021	3	2021-09-11	Composite	Tin	0.59	mg/kg	Trich	RG_MIDAG_INV-3_2021-09-11
INV	RG MIDAG	665271	5489373	2021	3	2021-09-11	Composite	Titanium	81	mg/kg	Trich	RG MIDAG INV-3 2021-09-11
INV	RG MIDAG	665271	5489373	2021	3	2021-09-11	Composite	Uranium	0.068	mg/kg	Trich	RG MIDAG INV-3 2021-09-11
INV	RG MIDAG	665271	5489373	2021	3	2021-09-11	Composite	Vanadium	1.5	mg/kg	Trich	RG MIDAG INV-3 2021-09-11
INV	RG MIDAG	665271	5489373	2021	3	2021-09-11	Composite	Zinc	281	mg/kg	Trich	RG MIDAG INV-3 2021-09-11
INV	RG MIDAG	665271	5489373	2021	3	2021-09-11	Composite	Lithium	0.45	mg/kg	Trich	RG MIDAG INV-3 2021-09-11
INV	RG MIDAG	665271	5489373	2021	3	2021-09-11	Composite	Sodium	7,559	mg/kg	Trich	RG MIDAG INV-3 2021-09-11
INV	RG_MIDAG	665271	5489373	2021	3	2021-09-11	Composite	Magnesium	2,117		Trich	RG MIDAG INV-3 2021-09-11
	_							<u>_</u>		mg/kg		
INV	RG_MIDAG	665271	5489373	2021	3	2021-09-11	Composite	Phosphorus	13,357	mg/kg	Trich	RG_MIDAG_INV-3_2021-09-11
INV	RG_MIDAG	665271	5489373	2021	3	2021-09-11	Composite	Potassium	12,009	mg/kg	Trich	RG_MIDAG_INV-3_2021-09-11
INV	RG_MIDAG	665271	5489373	2021	3	2021-09-11	Composite	Calcium	4,488	mg/kg	Trich	RG_MIDAG_INV-3_2021-09-11
INV	RG_MIDAG	665271	5489373	2021	3	2021-09-11	Composite	Wet Weight	0.29	g	Trich	RG_MIDAG_INV-3_2021-09-11
INV	RG_MIDAG	665271	5489373	2021	3	2021-09-11	Composite	Dry Weight	0.057	g	Trich	RG_MIDAG_INV-3_2021-09-11
INV	RG_MIDAG	665271	5489373	2021	3	2021-09-11	Composite	% Moisture	80	%	Trich	RG_MIDAG_INV-3_2021-09-11
INV	RG_MIDCO	667764	5487585	2021	1	2021-09-12	Composite	Aluminum	11,586	mg/kg	Trich	RG_MIDCO_INV-1_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	1	2021-09-12	Composite	Antimony	0.19	mg/kg	Trich	RG_MIDCO_INV-1_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	1	2021-09-12	Composite	Arsenic	2.0	mg/kg	Trich	RG_MIDCO_INV-1_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	1	2021-09-12	Composite	Barium	147	mg/kg	Trich	RG_MIDCO_INV-1_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	1	2021-09-12	Composite	Boron	18	mg/kg	Trich	RG_MIDCO_INV-1_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	1	2021-09-12	Composite	Cadmium	0.9	mg/kg	Trich	RG_MIDCO_INV-1_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	1	2021-09-12	Composite	Chromium	43	mg/kg	Trich	RG_MIDCO_INV-1_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	1	2021-09-12	Composite	Cobalt	58	mg/kg	Trich	RG_MIDCO_INV-1_2021-09-12
INV	RG MIDCO	667764	5487585	2021	1	2021-09-12	Composite	Copper	21	mg/kg	Trich	RG MIDCO INV-1 2021-09-12
INV	RG MIDCO	667764	5487585	2021	1	2021-09-12	Composite	Iron	3,637	mg/kg	Trich	RG MIDCO INV-1 2021-09-12
INV	RG MIDCO	667764	5487585	2021	1	2021-09-12	Composite	Lead	2.2	mg/kg	Trich	RG MIDCO INV-1 2021-09-12
INV	RG MIDCO	667764	5487585	2021	1	2021-09-12	Composite	Manganese	247	mg/kg	Trich	RG MIDCO INV-1 2021-09-12
INV	RG MIDCO	667764	5487585	2021	1	2021-09-12	Composite	Mercury	0.046	mg/kg	Trich	RG_MIDCO_INV-1_2021-09-12
II N V	I NO MIDOO	001104	0707000	2021	1 1	2021-03-12	Composite	ividiouiy	0.040	mg/kg	111011	1.0_1411000_1144-1_2021-03-12

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Туре	Station	Location	n (UTMs) ^(a)	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit		Laboratory Information
туре	Station	Easting	Northing	i cai	Replicate	Date	opecies/composite	Allalyte	Result	Offic	Lab	Sample ID
INV	RG_MIDCO	667764	5487585	2021	1	2021-09-12	Composite	Nickel	110	mg/kg	Trich	RG_MIDCO_INV-1_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	1	2021-09-12	Composite	Silver	0.16	mg/kg	Trich	RG_MIDCO_INV-1_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	1	2021-09-12	Composite	Selenium	4.4	mg/kg	Trich	RG_MIDCO_INV-1_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	1	2021-09-12	Composite	Strontium	52	mg/kg	Trich	RG_MIDCO_INV-1_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	1	2021-09-12	Composite	Thallium	0.29	mg/kg	Trich	RG_MIDCO_INV-1_2021-09-12
INV	RG MIDCO	667764	5487585	2021	1	2021-09-12	Composite	Tin	0.83	mg/kg	Trich	RG MIDCO INV-1 2021-09-12
INV	RG MIDCO	667764	5487585	2021	1	2021-09-12	Composite	Titanium	1,082	mg/kg	Trich	RG MIDCO INV-1 2021-09-12
INV	RG MIDCO	667764	5487585	2021	1	2021-09-12	Composite	Uranium	0.41	mg/kg	Trich	RG MIDCO INV-1 2021-09-12
INV	RG MIDCO	667764	5487585	2021	1	2021-09-12	Composite	Vanadium	14	mg/kg	Trich	RG MIDCO INV-1 2021-09-12
INV	RG MIDCO	667764	5487585	2021	1	2021-09-12	Composite	Zinc	161	mg/kg	Trich	RG MIDCO INV-1 2021-09-12
INV	RG_MIDCO	667764	5487585	2021	1	2021-09-12	Composite	Lithium	3.7	mg/kg	Trich	RG MIDCO INV-1 2021-09-12
INV	RG MIDCO	667764	5487585	2021	1	2021-09-12	Composite	Sodium	4,571	mg/kg	Trich	RG_MIDCO_INV-1_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	1	2021-09-12	Composite	Magnesium	2,658	mg/kg	Trich	RG_MIDCO_INV-1_2021-09-12
INV	RG MIDCO	667764	5487585	2021	1	2021-09-12	Composite	Phosphorus	11,413	mg/kg	Trich	RG MIDCO INV-1 2021-09-12
INV	RG MIDCO	667764	5487585	2021	1	2021-09-12		Potassium	16,236		Trich	RG MIDCO INV-1 2021-09-12
INV	_				1		Composite			mg/kg		
	RG_MIDCO	667764	5487585	2021	1	2021-09-12	Composite	Calcium	17,887	mg/kg	Trich	RG_MIDCO_INV-1_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	1	2021-09-12	Composite	Wet Weight	0.29	g	Trich	RG_MIDCO_INV-1_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	1	2021-09-12	Composite	Dry Weight	0.07	g	Trich	RG_MIDCO_INV-1_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	1	2021-09-12	Composite	% Moisture	76	%	Trich	RG_MIDCO_INV-1_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	2	2021-09-12	Composite	Aluminum	1,448	mg/kg	Trich	RG_MIDCO_INV-2_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	2	2021-09-12	Composite	Antimony	0.028	mg/kg	Trich	RG_MIDCO_INV-2_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	2	2021-09-12	Composite	Arsenic	0.55	mg/kg	Trich	RG_MIDCO_INV-2_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	2	2021-09-12	Composite	Barium	25	mg/kg	Trich	RG_MIDCO_INV-2_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	2	2021-09-12	Composite	Boron	2.1	mg/kg	Trich	RG_MIDCO_INV-2_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	2	2021-09-12	Composite	Cadmium	1.0	mg/kg	Trich	RG_MIDCO_INV-2_2021-09-12
INV	RG MIDCO	667764	5487585	2021	2	2021-09-12	Composite	Chromium	13	mg/kg	Trich	RG MIDCO INV-2 2021-09-12
INV	RG MIDCO	667764	5487585	2021	2	2021-09-12	Composite	Cobalt	72	mg/kg	Trich	RG MIDCO INV-2 2021-09-12
INV	RG_MIDCO	667764	5487585	2021	2	2021-09-12	Composite	Copper	15	mg/kg	Trich	RG MIDCO INV-2 2021-09-12
INV	RG_MIDCO	667764	5487585	2021	2	2021-09-12	Composite	Iron	713	mg/kg	Trich	RG_MIDCO_INV-2_2021-09-12
INV	RG MIDCO	667764	5487585	2021	2	2021-09-12	Composite	Lead	0.3	mg/kg	Trich	RG_MIDCO_INV-2_2021-09-12
INV	RG MIDCO	667764	5487585	2021	2	2021-09-12	Composite	Manganese	80	mg/kg	Trich	RG MIDCO INV-2 2021-09-12
INV	RG MIDCO	667764	5487585	2021	2	2021-09-12	Composite	Mercury	0.038	mg/kg	Trich	RG MIDCO INV-2 2021-09-12
INV	RG MIDCO	667764	5487585	2021	2	2021-09-12	Composite	Molybdenum	0.52	mg/kg	Trich	RG MIDCO INV-2 2021-09-12
INV	RG MIDCO	667764	5487585	2021	2	2021-09-12	Composite	Nickel	34		Trich	RG MIDCO INV-2 2021-09-12
INV	RG MIDCO	667764	5487585	2021	2	2021-09-12		Silver	0.086	mg/kg	Trich	RG MIDCO INV-2 2021-09-12
							Composite			mg/kg		
INV	RG_MIDCO	667764	5487585	2021	2	2021-09-12	Composite	Selenium	3.1	mg/kg	Trich	RG_MIDCO_INV-2_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	2	2021-09-12	Composite	Strontium	9.6	mg/kg	Trich	RG_MIDCO_INV-2_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	2	2021-09-12	Composite	Thallium	0.11	mg/kg	Trich	RG_MIDCO_INV-2_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	2	2021-09-12	Composite	Tin	0.92	mg/kg	Trich	RG_MIDCO_INV-2_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	2	2021-09-12	Composite	Titanium	110	mg/kg	Trich	RG_MIDCO_INV-2_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	2	2021-09-12	Composite	Uranium	0.055	mg/kg	Trich	RG_MIDCO_INV-2_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	2	2021-09-12	Composite	Vanadium	1.5	mg/kg	Trich	RG_MIDCO_INV-2_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	2	2021-09-12	Composite	Zinc	162	mg/kg	Trich	RG_MIDCO_INV-2_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	2	2021-09-12	Composite	Lithium	0.56	mg/kg	Trich	RG_MIDCO_INV-2_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	2	2021-09-12	Composite	Sodium	10,211	mg/kg	Trich	RG_MIDCO_INV-2_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	2	2021-09-12	Composite	Magnesium	1,898	mg/kg	Trich	RG_MIDCO_INV-2_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	2	2021-09-12	Composite	Phosphorus	11,142	mg/kg	Trich	RG_MIDCO_INV-2_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	2	2021-09-12	Composite	Potassium	12,279	mg/kg	Trich	RG_MIDCO_INV-2_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	2	2021-09-12	Composite	Calcium	2,994	mg/kg	Trich	RG_MIDCO_INV-2_2021-09-12
INV	RG MIDCO	667764	5487585	2021	2	2021-09-12	Composite	Wet Weight	0.18	g g	Trich	RG MIDCO INV-2 2021-09-12
INV	RG MIDCO	667764	5487585	2021	2	2021-09-12	Composite	Dry Weight	0.037	q	Trich	RG MIDCO INV-2 2021-09-12
INV	RG MIDCO	667764	5487585	2021	2	2021-09-12	Composite	% Moisture	79	<u>9</u> %	Trich	RG MIDCO INV-2 2021-09-12
INV	RG MIDCO	667764	5487585	2021	3	2021-09-12	Composite	Aluminum	1,537	mg/kg	Trich	RG MIDCO INV-3 2021-09-12
INV	RG MIDCO	667764	5487585	2021	3	2021-09-12	Composite	Antimony	0.042	mg/kg	Trich	RG MIDCO INV-3 2021-09-12
INV	RG MIDCO	667764	5487585	2021	3	2021-09-12	Composite	Arsenic	0.63	mg/kg	Trich	RG MIDCO INV-3 2021-09-12
	RG MIDCO	667764	5487585	2021	3	2021-09-12	Composite	Barium	35	mg/kg	Trich	RG MIDCO INV-3 2021-09-12
INV												

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

		Location	n (UTMs) ^(a)									Laboratory Information
Туре	Station	Easting	Northing	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit	Lab	Sample ID
INV	RG MIDCO	667764	5487585	2021	3	2021-09-12	Composite	Cadmium	0.36	mg/kg	Trich	RG MIDCO INV-3 2021-09-12
INV	RG MIDCO	667764	5487585	2021	3	2021-09-12	Composite	Chromium	8.3	mg/kg	Trich	RG MIDCO INV-3 2021-09-12
INV	RG MIDCO	667764	5487585	2021	3	2021-09-12	Composite	Cobalt	25	mg/kg	Trich	RG MIDCO INV-3 2021-09-12
INV	RG_MIDCO	667764	5487585	2021	3	2021-09-12	Composite	Copper	14	mg/kg	Trich	RG_MIDCO_INV-3_2021-09-12
INV	RG MIDCO	667764	5487585	2021	3	2021-09-12	Composite	Iron	655	mg/kg	Trich	RG MIDCO INV-3 2021-09-12
INV	RG MIDCO	667764	5487585	2021	3	2021-09-12	Composite	Lead	0.49	mg/kg	Trich	RG MIDCO INV-3 2021-09-12
	RG_MIDCO			2021			-		138	0 0	Trich	RG MIDCO INV-3 2021-09-12
INV		667764	5487585	_	3	2021-09-12	Composite	Manganese		mg/kg		
INV	RG_MIDCO	667764	5487585	2021	3	2021-09-12	Composite	Mercury	0.053	mg/kg	Trich	RG_MIDCO_INV-3_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	3	2021-09-12	Composite	Molybdenum	0.31	mg/kg	Trich	RG_MIDCO_INV-3_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	3	2021-09-12	Composite	Nickel	27	mg/kg	Trich	RG_MIDCO_INV-3_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	3	2021-09-12	Composite	Silver	0.046	mg/kg	Trich	RG_MIDCO_INV-3_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	3	2021-09-12	Composite	Selenium	4.0	mg/kg	Trich	RG_MIDCO_INV-3_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	3	2021-09-12	Composite	Strontium	10	mg/kg	Trich	RG_MIDCO_INV-3_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	3	2021-09-12	Composite	Thallium	0.099	mg/kg	Trich	RG_MIDCO_INV-3_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	3	2021-09-12	Composite	Tin	0.18	mg/kg	Trich	RG_MIDCO_INV-3_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	3	2021-09-12	Composite	Titanium	95	mg/kg	Trich	RG_MIDCO_INV-3_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	3	2021-09-12	Composite	Uranium	0.1	mg/kg	Trich	RG_MIDCO_INV-3_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	3	2021-09-12	Composite	Vanadium	2.1	mg/kg	Trich	RG_MIDCO_INV-3_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	3	2021-09-12	Composite	Zinc	176	mg/kg	Trich	RG_MIDCO_INV-3_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	3	2021-09-12	Composite	Lithium	0.68	mg/kg	Trich	RG_MIDCO_INV-3_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	3	2021-09-12	Composite	Sodium	3,760	mg/kg	Trich	RG_MIDCO_INV-3_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	3	2021-09-12	Composite	Magnesium	1,477	mg/kg	Trich	RG_MIDCO_INV-3_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	3	2021-09-12	Composite	Phosphorus	10,011	mg/kg	Trich	RG_MIDCO_INV-3_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	3	2021-09-12	Composite	Potassium	10,931	mg/kg	Trich	RG_MIDCO_INV-3_2021-09-12
INV	RG MIDCO	667764	5487585	2021	3	2021-09-12	Composite	Calcium	3,301	mg/kg	Trich	RG MIDCO INV-3 2021-09-12
INV	RG MIDCO	667764	5487585	2021	3	2021-09-12	Composite	Wet Weight	0.36	g	Trich	RG MIDCO INV-3 2021-09-12
INV	RG MIDCO	667764	5487585	2021	3	2021-09-12	Composite	Dry Weight	0.097	q	Trich	RG MIDCO INV-3 2021-09-12
INV	RG MIDCO	667764	5487585	2021	3	2021-09-12	Composite	% Moisture	73	%	Trich	RG MIDCO INV-3 2021-09-12
INV	RG MIDCO	667764	5487585	2021	3	2021-09-12	Composite	Aluminum	1,504	mg/kg	Trich	RG_MIDCO_INV-3_2021-09-12Dup
INV	RG MIDCO	667764	5487585	2021	3	2021-09-12	Composite	Antimony	0.047	mg/kg	Trich	RG_MIDCO_INV-3_2021-09-12Dup
INV	RG MIDCO	667764	5487585	2021	3	2021-09-12	Composite	Arsenic	0.61	mg/kg	Trich	RG MIDCO INV-3 2021-09-12Dup
INV	RG MIDCO	667764	5487585	2021	3	2021-09-12	Composite	Barium	26	mg/kg	Trich	RG MIDCO INV-3 2021-09-12Dup
INV	RG MIDCO	667764	5487585	2021	3	2021-09-12	Composite	Boron	3.3	mg/kg	Trich	RG MIDCO INV-3 2021-09-12Dup
INV	RG MIDCO	667764	5487585	2021	3	2021-09-12	Composite	Cadmium	0.39	mg/kg	Trich	RG MIDCO INV-3 2021-09-12Dup
INV	RG MIDCO	667764	5487585	2021	3	2021-09-12	Composite	Chromium	5.6	mg/kg	Trich	RG MIDCO INV-3 2021-09-12Dup
INV	RG MIDCO	667764	5487585	2021	3	2021-09-12	Composite	Cobalt	25	mg/kg	Trich	RG MIDCO INV-3 2021-09-12Dup
INV	RG MIDCO	667764	5487585	2021	3	2021-09-12	Composite	Copper	11	mg/kg	Trich	RG MIDCO INV-3 2021-09-12Dup
INV	RG MIDCO	667764	5487585	2021	3	2021-09-12	Composite	Iron	599	mg/kg	Trich	RG MIDCO INV-3 2021-09-12Dup
INV	RG MIDCO	667764	5487585	2021	3	2021-09-12	Composite	Lead	0.47	mg/kg	Trich	RG MIDCO INV-3 2021-09-12Dup
INV	RG_MIDCO	667764	5487585	2021	3	2021-09-12	Composite	Manganese	109	mg/kg	Trich	RG_MIDCO_INV-3_2021-09-12Dup
INV	RG_MIDCO	667764	5487585	2021	3	2021-09-12	Composite	Mercury	<0.025	mg/kg	Trich	RG MIDCO INV-3_2021-09-12Dup
INV	RG_MIDCO	667764	5487585	2021	3	2021-09-12		· · · · · · · · · · · · · · · · · · ·	0.26		Trich	RG_MIDCO_INV-3_2021-09-12Dup
				_			Composite	Molybdenum		mg/kg		
INV	RG_MIDCO	667764	5487585	2021	3	2021-09-12	Composite	Nickel	27	mg/kg	Trich	RG_MIDCO_INV-3_2021-09-12Dup
INV	RG_MIDCO	667764	5487585	2021	3	2021-09-12	Composite	Silver	0.034	mg/kg	Trich	RG_MIDCO_INV-3_2021-09-12Dup
INV	RG_MIDCO	667764	5487585	2021	3	2021-09-12	Composite	Selenium	3.6	mg/kg	Trich	RG_MIDCO_INV-3_2021-09-12Dup
INV	RG_MIDCO	667764	5487585	2021	3	2021-09-12	Composite	Strontium	8.6	mg/kg	Trich	RG_MIDCO_INV-3_2021-09-12Dup
INV	RG_MIDCO	667764	5487585	2021	3	2021-09-12	Composite	Thallium	0.093	mg/kg	Trich	RG_MIDCO_INV-3_2021-09-12Dup
INV	RG_MIDCO	667764	5487585	2021	3	2021-09-12	Composite	Tin	0.31	mg/kg	Trich	RG_MIDCO_INV-3_2021-09-12Dup
INV	RG_MIDCO	667764	5487585	2021	3	2021-09-12	Composite	Titanium	139	mg/kg	Trich	RG_MIDCO_INV-3_2021-09-12Dup
INV	RG_MIDCO	667764	5487585	2021	3	2021-09-12	Composite	Uranium	0.087	mg/kg	Trich	RG_MIDCO_INV-3_2021-09-12Dup
INV	RG_MIDCO	667764	5487585	2021	3	2021-09-12	Composite	Vanadium	1.9	mg/kg	Trich	RG_MIDCO_INV-3_2021-09-12Dup
INV	RG_MIDCO	667764	5487585	2021	3	2021-09-12	Composite	Zinc	125	mg/kg	Trich	RG_MIDCO_INV-3_2021-09-12Dup
INV	RG_MIDCO	667764	5487585	2021	3	2021-09-12	Composite	Lithium	0.67	mg/kg	Trich	RG_MIDCO_INV-3_2021-09-12Dup
INV	RG_MIDCO	667764	5487585	2021	3	2021-09-12	Composite	Sodium	2,814	mg/kg	Trich	RG_MIDCO_INV-3_2021-09-12Dup
	RG MIDCO	667764	5487585	2021	3	2021-09-12	Composite	Magnesium	1,635	mg/kg	Trich	RG_MIDCO_INV-3_2021-09-12Dup
INV	TKO_IMIDOO			-			•	-				
INV	RG MIDCO	667764	5487585	2021	3	2021-09-12	Composite	Phosphorus	8,146	mg/kg	Trich	RG MIDCO INV-3 2021-09-12Dup

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Type	Station	Locatio	n (UTMs) ^(a)	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit		Laboratory Information
Туре	Station	Easting	Northing	rear	Replicate	Date	Species/Composite	Analyte	Result	Unit	Lab	Sample ID
INV	RG_MIDCO	667764	5487585	2021	3	2021-09-12	Composite	Calcium	2,649	mg/kg	Trich	RG_MIDCO_INV-3_2021-09-12Dup
INV	RG_MIDCO	667764	5487585	2021	4	2021-09-12	Composite	Aluminum	1,568	mg/kg	Trich	RG_MIDCO_INV-4_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	4	2021-09-12	Composite	Antimony	0.039	mg/kg	Trich	RG_MIDCO_INV-4_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	4	2021-09-12	Composite	Arsenic	0.57	mg/kg	Trich	RG_MIDCO_INV-4_2021-09-12
INV	RG MIDCO	667764	5487585	2021	4	2021-09-12	Composite	Barium	41	mg/kg	Trich	RG MIDCO INV-4 2021-09-12
INV	RG MIDCO	667764	5487585	2021	4	2021-09-12	Composite	Boron	3.2	mg/kg	Trich	RG MIDCO INV-4 2021-09-12
INV	RG MIDCO	667764	5487585	2021	4	2021-09-12	Composite	Cadmium	1.1	mg/kg	Trich	RG MIDCO INV-4 2021-09-12
INV	RG MIDCO	667764	5487585	2021	4	2021-09-12	Composite	Chromium	12	mg/kg	Trich	RG MIDCO INV-4 2021-09-12
INV	RG MIDCO	667764	5487585	2021	4	2021-09-12	Composite	Cobalt	24	mg/kg	Trich	RG MIDCO INV-4 2021-09-12
INV	RG MIDCO	667764	5487585	2021	4	2021-09-12	Composite	Copper	13	mg/kg	Trich	RG MIDCO INV-4 2021-09-12
INV	RG_MIDCO	667764	5487585	2021	4	2021-09-12	Composite	Iron	725	mg/kg	Trich	RG_MIDCO_INV-4_2021-09-12
INV	RG MIDCO	667764	5487585	2021	4	2021-09-12	Composite	Lead	0.43	mg/kg	Trich	RG MIDCO INV-4 2021-09-12
INV	RG_MIDCO	667764	5487585	2021	4	2021-09-12	Composite	Manganese	97		Trich	RG_MIDCO_INV-4_2021-09-12
INV	RG MIDCO	667764	5487585	2021	4	2021-09-12	Composite	Mercury	0.053	mg/kg	Trich	RG MIDCO INV-4 2021-09-12
INV					4			, , , , , , , , , , , , , , , , , , ,		mg/kg		
	RG_MIDCO	667764	5487585	2021		2021-09-12	Composite	Molybdenum	0.31	mg/kg	Trich	RG_MIDCO_INV-4_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	4	2021-09-12	Composite	Nickel	52	mg/kg	Trich	RG_MIDCO_INV-4_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	4	2021-09-12	Composite	Silver	0.092	mg/kg	Trich	RG_MIDCO_INV-4_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	4	2021-09-12	Composite	Selenium	3.6	mg/kg	Trich	RG_MIDCO_INV-4_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	4	2021-09-12	Composite	Strontium	11	mg/kg	Trich	RG_MIDCO_INV-4_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	4	2021-09-12	Composite	Thallium	0.1	mg/kg	Trich	RG_MIDCO_INV-4_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	4	2021-09-12	Composite	Tin	0.64	mg/kg	Trich	RG_MIDCO_INV-4_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	4	2021-09-12	Composite	Titanium	128	mg/kg	Trich	RG_MIDCO_INV-4_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	4	2021-09-12	Composite	Uranium	0.11	mg/kg	Trich	RG_MIDCO_INV-4_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	4	2021-09-12	Composite	Vanadium	2.2	mg/kg	Trich	RG_MIDCO_INV-4_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	4	2021-09-12	Composite	Zinc	118	mg/kg	Trich	RG_MIDCO_INV-4_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	4	2021-09-12	Composite	Lithium	0.7	mg/kg	Trich	RG_MIDCO_INV-4_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	4	2021-09-12	Composite	Sodium	4,272	mg/kg	Trich	RG_MIDCO_INV-4_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	4	2021-09-12	Composite	Magnesium	1,414	mg/kg	Trich	RG_MIDCO_INV-4_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	4	2021-09-12	Composite	Phosphorus	10,925	mg/kg	Trich	RG_MIDCO_INV-4_2021-09-12
INV	RG MIDCO	667764	5487585	2021	4	2021-09-12	Composite	Potassium	12,455	mg/kg	Trich	RG MIDCO INV-4 2021-09-12
INV	RG MIDCO	667764	5487585	2021	4	2021-09-12	Composite	Calcium	3,732	mg/kg	Trich	RG MIDCO INV-4 2021-09-12
INV	RG MIDCO	667764	5487585	2021	4	2021-09-12	Composite	Wet Weight	0.17	a a	Trich	RG MIDCO INV-4 2021-09-12
INV	RG MIDCO	667764	5487585	2021	4	2021-09-12	Composite	Dry Weight	0.036	a	Trich	RG MIDCO INV-4 2021-09-12
INV	RG MIDCO	667764	5487585	2021	4	2021-09-12	Composite	% Moisture	79	<u>9</u> %	Trich	RG MIDCO INV-4 2021-09-12
INV	RG MIDCO	667764	5487585	2021	5	2021-09-12	Composite	Aluminum	2,109	mg/kg	Trich	RG MIDCO INV-5 2021-09-12
INV	RG MIDCO	667764	5487585	2021	5	2021-09-12	Composite	Antimony	0.074	mg/kg	Trich	RG MIDCO INV-5 2021-09-12
INV	RG_MIDCO	667764	5487585	2021	5	2021-09-12	Composite	Arsenic	0.85		Trich	RG_MIDCO_INV-5_2021-09-12
INV	_		<u> </u>	2021			•			mg/kg		
	RG_MIDCO	667764	5487585		5	2021-09-12	Composite	Barium	40	mg/kg	Trich	RG_MIDCO_INV-5_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	5	2021-09-12	Composite	Boron	3.3	mg/kg	Trich	RG_MIDCO_INV-5_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	5	2021-09-12	Composite	Cadmium	0.52	mg/kg	Trich	RG_MIDCO_INV-5_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	5	2021-09-12	Composite	Chromium	22	mg/kg	Trich	RG_MIDCO_INV-5_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	5	2021-09-12	Composite	Cobalt	22	mg/kg	Trich	RG_MIDCO_INV-5_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	5	2021-09-12	Composite	Copper	12	mg/kg	Trich	RG_MIDCO_INV-5_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	5	2021-09-12	Composite	Iron	1,066	mg/kg	Trich	RG_MIDCO_INV-5_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	5	2021-09-12	Composite	Lead	0.43	mg/kg	Trich	RG_MIDCO_INV-5_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	5	2021-09-12	Composite	Manganese	81	mg/kg	Trich	RG_MIDCO_INV-5_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	5	2021-09-12	Composite	Mercury	0.045	mg/kg	Trich	RG_MIDCO_INV-5_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	5	2021-09-12	Composite	Molybdenum	0.46	mg/kg	Trich	RG_MIDCO_INV-5_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	5	2021-09-12	Composite	Nickel	44	mg/kg	Trich	RG_MIDCO_INV-5_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	5	2021-09-12	Composite	Silver	0.05	mg/kg	Trich	RG_MIDCO_INV-5_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	5	2021-09-12	Composite	Selenium	3.2	mg/kg	Trich	RG_MIDCO_INV-5_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	5	2021-09-12	Composite	Strontium	13	mg/kg	Trich	RG_MIDCO_INV-5_2021-09-12
INV	RG MIDCO	667764	5487585	2021	5	2021-09-12	Composite	Thallium	0.073	mg/kg	Trich	RG MIDCO INV-5 2021-09-12
INV	RG MIDCO	667764	5487585	2021	5	2021-09-12	Composite	Tin	0.37	mg/kg	Trich	RG MIDCO INV-5 2021-09-12
INV	RG MIDCO	667764	5487585	2021	5	2021-09-12	Composite	Titanium	144	mg/kg	Trich	RG MIDCO INV-5 2021-09-12
INV	RG MIDCO	667764	5487585	2021	5	2021-09-12	Composite	Uranium	0.092	mg/kg	Trich	RG MIDCO INV-5 2021-09-12
INV	RG MIDCO	667764	5487585	2021	5	2021-09-12	Composite	Vanadium	2.5	mg/kg	Trich	RG MIDCO INV-5 2021-09-12

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

		Locatio	n (UTMs) ^(a)			ns, 2015 to 202 _						Laboratory Information
Туре	Station	Easting	Northing	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit	Lab	Sample ID
INV	RG MIDCO	667764	5487585	2021	5	2021-09-12	Composite	Zinc	124	mg/kg	Trich	RG MIDCO INV-5 2021-09-12
INV	RG MIDCO	667764	5487585	2021	5	2021-09-12	Composite	Lithium	0.8	mg/kg	Trich	RG MIDCO INV-5 2021-09-12
INV	RG MIDCO	667764	5487585	2021	5	2021-09-12	Composite	Sodium	1,730	mg/kg	Trich	RG MIDCO INV-5 2021-09-12
INV	RG_MIDCO	667764	5487585	2021	5	2021-09-12	Composite	Magnesium	1,112	mg/kg	Trich	RG_MIDCO_INV-5_2021-09-12
INV	RG MIDCO	667764	5487585	2021	5	2021-09-12	Composite	Phosphorus	6,628	mg/kg	Trich	RG MIDCO INV-5 2021-09-12
INV	RG MIDCO	667764	5487585	2021	5	2021-09-12	Composite	Potassium	6,622	mg/kg	Trich	RG MIDCO INV-5 2021-09-12
	RG_MIDCO									0 0	Trich	RG MIDCO INV-5 2021-09-12
INV		667764	5487585	2021	5	2021-09-12	Composite	Calcium	3,106	mg/kg		
INV	RG_MIDCO	667764	5487585	2021	5	2021-09-12	Composite	Wet Weight	0.12	<u>g</u>	Trich	RG_MIDCO_INV-5_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	5	2021-09-12	Composite	Dry Weight	0.028	g	Trich	RG_MIDCO_INV-5_2021-09-12
INV	RG_MIDCO	667764	5487585	2021	5	2021-09-12	Composite	% Moisture	77	%	Trich	RG_MIDCO_INV-5_2021-09-12
INV	RG_MIUCO	668232	5486600	2021	1	2021-09-12	Composite	Aluminum	2,167	mg/kg	Trich	RG_MIUCO_INV-1_2021-09-12
INV	RG_MIUCO	668232	5486600	2021	1	2021-09-12	Composite	Antimony	0.041	mg/kg	Trich	RG_MIUCO_INV-1_2021-09-12
INV	RG_MIUCO	668232	5486600	2021	1	2021-09-12	Composite	Arsenic	1.6	mg/kg	Trich	RG_MIUCO_INV-1_2021-09-12
INV	RG_MIUCO	668232	5486600	2021	1	2021-09-12	Composite	Barium	87	mg/kg	Trich	RG_MIUCO_INV-1_2021-09-12
INV	RG_MIUCO	668232	5486600	2021	1	2021-09-12	Composite	Boron	2.9	mg/kg	Trich	RG_MIUCO_INV-1_2021-09-12
INV	RG_MIUCO	668232	5486600	2021	1	2021-09-12	Composite	Cadmium	3.1	mg/kg	Trich	RG_MIUCO_INV-1_2021-09-12
INV	RG_MIUCO	668232	5486600	2021	1	2021-09-12	Composite	Chromium	30	mg/kg	Trich	RG_MIUCO_INV-1_2021-09-12
INV	RG_MIUCO	668232	5486600	2021	1	2021-09-12	Composite	Cobalt	2.0	mg/kg	Trich	RG_MIUCO_INV-1_2021-09-12
INV	RG_MIUCO	668232	5486600	2021	1	2021-09-12	Composite	Copper	20	mg/kg	Trich	RG_MIUCO_INV-1_2021-09-12
INV	RG_MIUCO	668232	5486600	2021	1	2021-09-12	Composite	Iron	1,618	mg/kg	Trich	RG_MIUCO_INV-1_2021-09-12
INV	RG_MIUCO	668232	5486600	2021	1	2021-09-12	Composite	Lead	0.55	mg/kg	Trich	RG_MIUCO_INV-1_2021-09-12
INV	RG_MIUCO	668232	5486600	2021	1	2021-09-12	Composite	Manganese	129	mg/kg	Trich	RG_MIUCO_INV-1_2021-09-12
INV	RG_MIUCO	668232	5486600	2021	1	2021-09-12	Composite	Mercury	0.053	mg/kg	Trich	RG_MIUCO_INV-1_2021-09-12
INV	RG_MIUCO	668232	5486600	2021	1	2021-09-12	Composite	Molybdenum	1.4	mg/kg	Trich	RG_MIUCO_INV-1_2021-09-12
INV	RG_MIUCO	668232	5486600	2021	1	2021-09-12	Composite	Nickel	47	mg/kg	Trich	RG_MIUCO_INV-1_2021-09-12
INV	RG_MIUCO	668232	5486600	2021	1	2021-09-12	Composite	Silver	0.074	mg/kg	Trich	RG_MIUCO_INV-1_2021-09-12
INV	RG_MIUCO	668232	5486600	2021	1	2021-09-12	Composite	Selenium	7.8	mg/kg	Trich	RG_MIUCO_INV-1_2021-09-12
INV	RG_MIUCO	668232	5486600	2021	1	2021-09-12	Composite	Strontium	6.7	mg/kg	Trich	RG_MIUCO_INV-1_2021-09-12
INV	RG_MIUCO	668232	5486600	2021	1	2021-09-12	Composite	Thallium	0.07	mg/kg	Trich	RG_MIUCO_INV-1_2021-09-12
INV	RG MIUCO	668232	5486600	2021	1	2021-09-12	Composite	Tin	0.93	mg/kg	Trich	RG MIUCO INV-1 2021-09-12
INV	RG MIUCO	668232	5486600	2021	1	2021-09-12	Composite	Titanium	144	mg/kg	Trich	RG MIUCO INV-1 2021-09-12
INV	RG MIUCO	668232	5486600	2021	1	2021-09-12	Composite	Uranium	0.062	mg/kg	Trich	RG MIUCO INV-1 2021-09-12
INV	RG MIUCO	668232	5486600	2021	1	2021-09-12	Composite	Vanadium	2.6	mg/kg	Trich	RG_MIUCO_INV-1_2021-09-12
INV	RG MIUCO	668232	5486600	2021	1	2021-09-12	Composite	Zinc	115	mg/kg	Trich	RG_MIUCO_INV-1_2021-09-12
INV	RG MIUCO	668232	5486600	2021	1	2021-09-12	Composite	Lithium	0.66	mg/kg	Trich	RG MIUCO INV-1 2021-09-12
INV	RG MIUCO	668232	5486600	2021	1	2021-09-12	Composite	Sodium	3,775	mg/kg	Trich	RG MIUCO INV-1 2021-09-12
INV	RG MIUCO	668232	5486600	2021	1	2021-09-12	Composite	Magnesium	1,766	mg/kg	Trich	RG_MIUCO_INV-1_2021-09-12
INV	RG MIUCO	668232	5486600	2021	1	2021-09-12	Composite	Phosphorus	13,258	mg/kg	Trich	RG MIUCO INV-1 2021-09-12
INV	RG MIUCO	668232	5486600	2021	1	2021-09-12	Composite	Potassium	14,278	mg/kg	Trich	RG MIUCO INV-1 2021-09-12
INV	RG MIUCO	668232	5486600	2021	1	2021-09-12	Composite	Calcium	2,306	mg/kg	Trich	RG MIUCO INV-1 2021-09-12
INV	RG MIUCO	668232	5486600	2021	1	2021-09-12	Composite	Wet Weight	0.063	q q	Trich	RG MIUCO INV-1 2021-09-12
INV	RG MIUCO	668232	5486600	2021	1	2021-09-12	Composite	Dry Weight	0.022	<u>9</u>	Trich	RG_MIUCO_INV-1_2021-09-12
INV	RG MIUCO	668232	5486600	2021	1	2021-09-12	Composite	% Moisture	65	<u>9</u> %	Trich	RG MIUCO INV-1 2021-09-12
INV	RG MIUCO	668232	5486600	2021	2	2021-09-12	Composite	Aluminum	9,513	mg/kg	Trich	RG MIUCO INV-2 2021-09-12
INV	RG MIUCO	668232	5486600	2021	2	2021-09-12	Composite	Antimony	0.11	mg/kg	Trich	RG MIUCO INV-2 2021-09-12
INV	RG MIUCO	668232	5486600	2021	2	2021-09-12	Composite	Artimony	1.9	mg/kg	Trich	RG MIUCO INV-2 2021-09-12
INV	RG_MIUCO	668232	5486600	2021	2	2021-09-12	Composite	Barium	1.9	mg/kg	Trich	RG_MIUCO_INV-2_2021-09-12
INV	RG_MIUCO	668232	5486600	2021	2	2021-09-12	Composite	Boron	13	mg/kg	Trich	RG_MIUCO_INV-2_2021-09-12
INV	RG_MIUCO	668232	5486600	2021		2021-09-12		Cadmium			Trich	
					2		Composite		3.9	mg/kg		RG_MIUCO_INV-2_2021-09-12
INV	RG_MIUCO	668232	5486600	2021	2	2021-09-12	Composite	Chromium	96	mg/kg	Trich	RG_MIUCO_INV-2_2021-09-12
INV	RG_MIUCO	668232	5486600	2021	2	2021-09-12	Composite	Cobalt	6.9	mg/kg	Trich	RG_MIUCO_INV-2_2021-09-12
INV	RG_MIUCO	668232	5486600	2021	2	2021-09-12	Composite	Copper	29	mg/kg	Trich	RG_MIUCO_INV-2_2021-09-12
INV	RG_MIUCO	668232	5486600	2021	2	2021-09-12	Composite	Iron	4,522	mg/kg	Trich	RG_MIUCO_INV-2_2021-09-12
INV	RG_MIUCO	668232	5486600	2021	2	2021-09-12	Composite	Lead	1.8	mg/kg	Trich	RG_MIUCO_INV-2_2021-09-12
INV	RG_MIUCO	668232	5486600	2021	2	2021-09-12	Composite	Manganese	256	mg/kg	Trich	RG_MIUCO_INV-2_2021-09-12
INV	RG_MIUCO	668232	5486600	2021	2	2021-09-12	Composite	Mercury	0.069	mg/kg	Trich	RG_MIUCO_INV-2_2021-09-12
INV	RG MIUCO	668232	5486600	2021	2	2021-09-12	Composite	Molybdenum	1.6	mg/kg	Trich	RG MIUCO INV-2 2021-09-12

Reference No. 22574542-001-R-Rev0-1000

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Typo	Station	Location	n (UTMs) ^(a)	Year	Replicate	Date	Species/Composite	Analyte	Posult	Unit		Laboratory Information
Туре	Station	Easting	Northing	rear	Replicate	Date	Species/Composite	Analyte	Result	Unit	Lab	Sample ID
INV	RG_MIUCO	668232	5486600	2021	2	2021-09-12	Composite	Nickel	176	mg/kg	Trich	RG_MIUCO_INV-2_2021-09-12
INV	RG_MIUCO	668232	5486600	2021	2	2021-09-12	Composite	Silver	0.16	mg/kg	Trich	RG_MIUCO_INV-2_2021-09-12
INV	RG_MIUCO	668232	5486600	2021	2	2021-09-12	Composite	Selenium	7.2	mg/kg	Trich	RG_MIUCO_INV-2_2021-09-12
INV	RG_MIUCO	668232	5486600	2021	2	2021-09-12	Composite	Strontium	14	mg/kg	Trich	RG_MIUCO_INV-2_2021-09-12
INV	RG MIUCO	668232	5486600	2021	2	2021-09-12	Composite	Thallium	0.21	mg/kg	Trich	RG_MIUCO_INV-2_2021-09-12
INV	RG MIUCO	668232	5486600	2021	2	2021-09-12	Composite	Tin	2.8	mg/kg	Trich	RG MIUCO INV-2 2021-09-12
INV	RG MIUCO	668232	5486600	2021	2	2021-09-12	Composite	Titanium	867	mg/kg	Trich	RG MIUCO INV-2 2021-09-12
INV	RG MIUCO	668232	5486600	2021	2	2021-09-12	Composite	Uranium	0.23	mg/kg	Trich	RG_MIUCO_INV-2_2021-09-12
INV	RG MIUCO	668232	5486600	2021	2	2021-09-12	Composite	Vanadium	12	mg/kg	Trich	RG MIUCO INV-2 2021-09-12
INV	RG MIUCO	668232	5486600	2021	2	2021-09-12	Composite	Zinc	180	mg/kg	Trich	RG MIUCO INV-2 2021-09-12
INV	RG_MIUCO	668232	5486600	2021	2	2021-09-12	Composite	Lithium	2.8	mg/kg	Trich	RG_MIUCO_INV-2_2021-09-12
INV	RG MIUCO	668232	5486600	2021	2	2021-09-12	Composite	Sodium	16,101	mg/kg	Trich	RG MIUCO INV-2 2021-09-12
INV	RG_MIUCO	668232	5486600	2021	2	2021-09-12	Composite	Magnesium	2,820		Trich	RG_MIUCO_INV-2_2021-09-12
INV	RG MIUCO	668232	5486600	2021	2	2021-09-12	Composite	<u> </u>	17,124	mg/kg	Trich	RG MIUCO INV-2 2021-09-12
INV								Phosphorus		mg/kg		
	RG_MIUCO	668232	5486600	2021	2	2021-09-12	Composite	Potassium	20,961	mg/kg	Trich	RG_MIUCO_INV-2_2021-09-12
INV	RG_MIUCO	668232	5486600	2021	2	2021-09-12	Composite	Calcium	4,360	mg/kg	Trich	RG_MIUCO_INV-2_2021-09-12
INV	RG_MIUCO	668232	5486600	2021	2	2021-09-12	Composite	Wet Weight	0.094	g	Trich	RG_MIUCO_INV-2_2021-09-12
INV	RG_MIUCO	668232	5486600	2021	2	2021-09-12	Composite	Dry Weight	0.017	g	Trich	RG_MIUCO_INV-2_2021-09-12
INV	RG_MIUCO	668232	5486600	2021	2	2021-09-12	Composite	% Moisture	83	%	Trich	RG_MIUCO_INV-2_2021-09-12
INV	RG_MIUCO	668232	5486600	2021	3	2021-09-12	Composite	Aluminum	11,166	mg/kg	Trich	RG_MIUCO_INV-3_2021-09-12
INV	RG_MIUCO	668232	5486600	2021	3	2021-09-12	Composite	Antimony	0.16	mg/kg	Trich	RG_MIUCO_INV-3_2021-09-12
INV	RG_MIUCO	668232	5486600	2021	3	2021-09-12	Composite	Arsenic	2.3	mg/kg	Trich	RG_MIUCO_INV-3_2021-09-12
INV	RG_MIUCO	668232	5486600	2021	3	2021-09-12	Composite	Barium	187	mg/kg	Trich	RG_MIUCO_INV-3_2021-09-12
INV	RG_MIUCO	668232	5486600	2021	3	2021-09-12	Composite	Boron	16	mg/kg	Trich	RG_MIUCO_INV-3_2021-09-12
INV	RG_MIUCO	668232	5486600	2021	3	2021-09-12	Composite	Cadmium	2.6	mg/kg	Trich	RG_MIUCO_INV-3_2021-09-12
INV	RG_MIUCO	668232	5486600	2021	3	2021-09-12	Composite	Chromium	62	mg/kg	Trich	RG_MIUCO_INV-3_2021-09-12
INV	RG_MIUCO	668232	5486600	2021	3	2021-09-12	Composite	Cobalt	6.0	mg/kg	Trich	RG_MIUCO_INV-3_2021-09-12
INV	RG_MIUCO	668232	5486600	2021	3	2021-09-12	Composite	Copper	21	mg/kg	Trich	RG_MIUCO_INV-3_2021-09-12
INV	RG_MIUCO	668232	5486600	2021	3	2021-09-12	Composite	Iron	4,717	mg/kg	Trich	RG_MIUCO_INV-3_2021-09-12
INV	RG MIUCO	668232	5486600	2021	3	2021-09-12	Composite	Lead	2.0	mg/kg	Trich	RG_MIUCO_INV-3_2021-09-12
INV	RG MIUCO	668232	5486600	2021	3	2021-09-12	Composite	Manganese	376	mg/kg	Trich	RG MIUCO INV-3 2021-09-12
INV	RG MIUCO	668232	5486600	2021	3	2021-09-12	Composite	Mercury	0.069	mg/kg	Trich	RG MIUCO INV-3 2021-09-12
INV	RG MIUCO	668232	5486600	2021	3	2021-09-12	Composite	Molybdenum	1.1	mg/kg	Trich	RG MIUCO INV-3 2021-09-12
INV	RG MIUCO	668232	5486600	2021	3	2021-09-12	Composite	Nickel	99	mg/kg	Trich	RG MIUCO INV-3 2021-09-12
INV	RG MIUCO	668232	5486600	2021	3	2021-09-12	Composite	Silver	0.086	mg/kg	Trich	RG MIUCO INV-3 2021-09-12
INV	RG MIUCO	668232	5486600	2021	3	2021-09-12	Composite	Selenium	6.5	mg/kg	Trich	RG MIUCO INV-3 2021-09-12
INV	RG MIUCO	668232	5486600	2021	3	2021-09-12	Composite	Strontium	19	mg/kg	Trich	RG_MIUCO_INV-3_2021-09-12
INV	RG MIUCO	668232	5486600	2021	3	2021-09-12	Composite	Thallium	0.24	mg/kg	Trich	RG MIUCO INV-3 2021-09-12
INV	RG MIUCO	668232	5486600	2021	3	2021-09-12	Composite	Tin	1.4	mg/kg	Trich	RG MIUCO INV-3 2021-09-12
INV	RG MIUCO	668232	5486600	2021	3	2021-09-12		Titanium	925		Trich	RG MIUCO INV-3 2021-09-12
INV	RG_MIUCO	668232	5486600	2021	3	2021-09-12	Composite	Uranium	0.31	mg/kg	Trich	RG_MIUCO_INV-3_2021-09-12
INV	_	668232	5486600	2021	ł —	2021-09-12	Composite			mg/kg	Trich	RG_MIUCO_INV-3_2021-09-12
	RG_MIUCO				3		Composite	Vanadium	13	mg/kg		
INV	RG_MIUCO	668232	5486600	2021	3	2021-09-12	Composite	Zinc	125	mg/kg	Trich	RG_MIUCO_INV-3_2021-09-12
INV	RG_MIUCO	668232	5486600	2021	3	2021-09-12	Composite	Lithium	3.4	mg/kg	Trich	RG_MIUCO_INV-3_2021-09-12
INV	RG_MIUCO	668232	5486600	2021	3	2021-09-12	Composite	Sodium	3,904	mg/kg	Trich	RG_MIUCO_INV-3_2021-09-12
INV	RG_MIUCO	668232	5486600	2021	3	2021-09-12	Composite	Magnesium	2,742	mg/kg	Trich	RG_MIUCO_INV-3_2021-09-12
INV	RG_MIUCO	668232	5486600	2021	3	2021-09-12	Composite	Phosphorus	13,174	mg/kg	Trich	RG_MIUCO_INV-3_2021-09-12
INV	RG_MIUCO	668232	5486600	2021	3	2021-09-12	Composite	Potassium	14,635	mg/kg	Trich	RG_MIUCO_INV-3_2021-09-12
INV	RG_MIUCO	668232	5486600	2021	3	2021-09-12	Composite	Calcium	6,510	mg/kg	Trich	RG_MIUCO_INV-3_2021-09-12
INV	RG_MIUCO	668232	5486600	2021	3	2021-09-12	Composite	Wet Weight	0.15	g	Trich	RG_MIUCO_INV-3_2021-09-12
INV	RG_MIUCO	668232	5486600	2021	3	2021-09-12	Composite	Dry Weight	0.028	g	Trich	RG_MIUCO_INV-3_2021-09-12
INV	RG_MIUCO	668232	5486600	2021	3	2021-09-12	Composite	% Moisture	81	%	Trich	RG_MIUCO_INV-3_2021-09-12
INV	RG_MIULE	660541	5493015	2021	1	2021-09-14	Composite	Aluminum	3,567	mg/kg	Trich	RG_MIULE_INV-1_2021-09-14
INV	RG_MIULE	660541	5493015	2021	1	2021-09-14	Composite	Antimony	0.072	mg/kg	Trich	RG_MIULE_INV-1_2021-09-14
INV	RG_MIULE	660541	5493015	2021	1	2021-09-14	Composite	Arsenic	1.1	mg/kg	Trich	RG_MIULE_INV-1_2021-09-14
INV	RG MIULE	660541	5493015	2021	1	2021-09-14	Composite	Barium	107	mg/kg	Trich	RG MIULE INV-1 2021-09-14
INV	RG MIULE	660541	5493015	2021	1 i	2021-09-14	Composite	Boron	5.4	mg/kg	Trich	RG MIULE INV-1 2021-09-14

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Type	Station	Locatio	n (UTMs) ^(a)	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit		Laboratory Information
Туре	Station	Easting	Northing	rear	Replicate	Date	Species/Composite	Analyte	Result	Unit	Lab	Sample ID
INV	RG_MIULE	660541	5493015	2021	1	2021-09-14	Composite	Cadmium	1.7	mg/kg	Trich	RG_MIULE_INV-1_2021-09-14
INV	RG MIULE	660541	5493015	2021	1	2021-09-14	Composite	Chromium	157	mg/kg	Trich	RG MIULE INV-1 2021-09-14
INV	RG MIULE	660541	5493015	2021	1	2021-09-14	Composite	Cobalt	15	mg/kg	Trich	RG MIULE INV-1 2021-09-14
INV	RG MIULE	660541	5493015	2021	1	2021-09-14	Composite	Copper	17	mg/kg	Trich	RG MIULE INV-1 2021-09-14
INV	RG MIULE	660541	5493015	2021	1	2021-09-14	Composite	Iron	3,738	mg/kg	Trich	RG MIULE INV-1 2021-09-14
INV	RG MIULE	660541	5493015	2021	1	2021-09-14	Composite	Lead	0.75	mg/kg	Trich	RG MIULE INV-1 2021-09-14
INV	RG MIULE	660541	5493015	2021	1	2021-09-14	Composite	Manganese	97	mg/kg	Trich	RG MIULE INV-1 2021-09-14
INV	RG MIULE	660541	5493015	2021	1	2021-09-14	Composite	Mercury	0.053	mg/kg	Trich	RG_MIULE_INV-1_2021-09-14
INV	RG MIULE	660541	5493015	2021	1	2021-09-14	Composite	Molybdenum	0.59	mg/kg	Trich	RG MIULE INV-1 2021-09-14
INV	RG MIULE	660541	5493015	2021	1	2021-09-14	Composite	Nickel	250	mg/kg	Trich	RG MIULE INV-1 2021-09-14
INV	RG_MIULE	660541	5493015	2021	1	2021-09-14	Composite	Silver	0.097	mg/kg	Trich	RG MIULE INV-1 2021-09-14
INV	RG MIULE	660541	5493015	2021	1	2021-09-14	Composite	Selenium	9.3		Trich	RG MIULE INV-1 2021-09-14
INV	_			_	1					mg/kg	Trich	
	RG_MIULE	660541	5493015	2021	1	2021-09-14	Composite	Strontium	30	mg/kg		RG_MIULE_INV-1_2021-09-14
INV	RG_MIULE	660541	5493015	2021	1	2021-09-14	Composite	Thallium	0.18	mg/kg	Trich	RG_MIULE_INV-1_2021-09-14
INV	RG_MIULE	660541	5493015	2021	1	2021-09-14	Composite	Tin	0.78	mg/kg	Trich	RG_MIULE_INV-1_2021-09-14
INV	RG_MIULE	660541	5493015	2021	1	2021-09-14	Composite	Titanium	248	mg/kg	Trich	RG_MIULE_INV-1_2021-09-14
INV	RG_MIULE	660541	5493015	2021	1	2021-09-14	Composite	Uranium	0.19	mg/kg	Trich	RG_MIULE_INV-1_2021-09-14
INV	RG_MIULE	660541	5493015	2021	1	2021-09-14	Composite	Vanadium	8.0	mg/kg	Trich	RG_MIULE_INV-1_2021-09-14
INV	RG_MIULE	660541	5493015	2021	1	2021-09-14	Composite	Zinc	199	mg/kg	Trich	RG_MIULE_INV-1_2021-09-14
INV	RG_MIULE	660541	5493015	2021	1	2021-09-14	Composite	Lithium	1.1	mg/kg	Trich	RG_MIULE_INV-1_2021-09-14
INV	RG_MIULE	660541	5493015	2021	1	2021-09-14	Composite	Sodium	3,099	mg/kg	Trich	RG_MIULE_INV-1_2021-09-14
INV	RG_MIULE	660541	5493015	2021	1	2021-09-14	Composite	Magnesium	2,258	mg/kg	Trich	RG_MIULE_INV-1_2021-09-14
INV	RG_MIULE	660541	5493015	2021	1	2021-09-14	Composite	Phosphorus	11,449	mg/kg	Trich	RG_MIULE_INV-1_2021-09-14
INV	RG_MIULE	660541	5493015	2021	1	2021-09-14	Composite	Potassium	11,638	mg/kg	Trich	RG_MIULE_INV-1_2021-09-14
INV	RG MIULE	660541	5493015	2021	1	2021-09-14	Composite	Calcium	9,129	mg/kg	Trich	RG_MIULE_INV-1_2021-09-14
INV	RG MIULE	660541	5493015	2021	1	2021-09-14	Composite	Wet Weight	0.094	g	Trich	RG MIULE INV-1 2021-09-14
INV	RG MIULE	660541	5493015	2021	1	2021-09-14	Composite	Dry Weight	0.025	q	Trich	RG MIULE INV-1 2021-09-14
INV	RG MIULE	660541	5493015	2021	1	2021-09-14	Composite	% Moisture	74	%	Trich	RG MIULE INV-1 2021-09-14
INV	RG MIULE	660541	5493015	2021	2	2021-09-14	Composite	Aluminum	4,977	mg/kg	Trich	RG_MIULE_INV-2_2021-09-14
INV	RG MIULE	660541	5493015	2021	2	2021-09-14	Composite	Antimony	0.12	mg/kg	Trich	RG_MIULE_INV-2_2021-09-14
INV	RG MIULE	660541	5493015	2021	2	2021-09-14	Composite	Arsenic	1.4	mg/kg	Trich	RG MIULE INV-2 2021-09-14
INV	RG MIULE	660541	5493015	2021	2	2021-09-14	Composite	Barium	107	mg/kg	Trich	RG MIULE INV-2 2021-09-14
INV	RG MIULE	660541	5493015	2021	2	2021-09-14	Composite	Boron	6.1	mg/kg	Trich	RG MIULE INV-2 2021-09-14
INV	RG MIULE	660541	5493015	2021	2	2021-09-14	Composite	Cadmium	3.1		Trich	RG MIULE INV-2 2021-09-14
INV	RG MIULE	660541	5493015	2021	2	2021-09-14		Chromium	126	mg/kg		RG MIULE INV-2 2021-09-14
INV							Composite			mg/kg	Trich	
	RG_MIULE	660541	5493015	2021	2	2021-09-14	Composite	Cobalt	20	mg/kg	Trich	RG_MIULE_INV-2_2021-09-14
INV	RG_MIULE	660541	5493015	2021	2	2021-09-14	Composite	Copper	20	mg/kg	Trich	RG_MIULE_INV-2_2021-09-14
INV	RG_MIULE	660541	5493015	2021	2	2021-09-14	Composite	Iron	3,269	mg/kg	Trich	RG_MIULE_INV-2_2021-09-14
INV	RG_MIULE	660541	5493015	2021	2	2021-09-14	Composite	Lead	0.92	mg/kg	Trich	RG_MIULE_INV-2_2021-09-14
INV	RG_MIULE	660541	5493015	2021	2	2021-09-14	Composite	Manganese	82	mg/kg	Trich	RG_MIULE_INV-2_2021-09-14
INV	RG_MIULE	660541	5493015	2021	2	2021-09-14	Composite	Mercury	0.053	mg/kg	Trich	RG_MIULE_INV-2_2021-09-14
INV	RG_MIULE	660541	5493015	2021	2	2021-09-14	Composite	Molybdenum	1.8	mg/kg	Trich	RG_MIULE_INV-2_2021-09-14
INV	RG_MIULE	660541	5493015	2021	2	2021-09-14	Composite	Nickel	219	mg/kg	Trich	RG_MIULE_INV-2_2021-09-14
INV	RG_MIULE	660541	5493015	2021	2	2021-09-14	Composite	Silver	0.092	mg/kg	Trich	RG_MIULE_INV-2_2021-09-14
INV	RG_MIULE	660541	5493015	2021	2	2021-09-14	Composite	Selenium	9.8	mg/kg	Trich	RG_MIULE_INV-2_2021-09-14
INV	RG_MIULE	660541	5493015	2021	2	2021-09-14	Composite	Strontium	21	mg/kg	Trich	RG_MIULE_INV-2_2021-09-14
INV	RG_MIULE	660541	5493015	2021	2	2021-09-14	Composite	Thallium	0.19	mg/kg	Trich	RG_MIULE_INV-2_2021-09-14
INV	RG_MIULE	660541	5493015	2021	2	2021-09-14	Composite	Tin	1.6	mg/kg	Trich	RG_MIULE_INV-2_2021-09-14
INV	RG_MIULE	660541	5493015	2021	2	2021-09-14	Composite	Titanium	633	mg/kg	Trich	RG_MIULE_INV-2_2021-09-14
INV	RG MIULE	660541	5493015	2021	2	2021-09-14	Composite	Uranium	0.17	mg/kg	Trich	RG MIULE INV-2 2021-09-14
INV	RG MIULE	660541	5493015	2021	2	2021-09-14	Composite	Vanadium	6.7	mg/kg	Trich	RG_MIULE_INV-2_2021-09-14
INV	RG MIULE	660541	5493015	2021	2	2021-09-14	Composite	Zinc	269	mg/kg	Trich	RG MIULE INV-2 2021-09-14
INV	RG MIULE	660541	5493015	2021	2	2021-09-14	Composite	Lithium	2.2	mg/kg	Trich	RG MIULE INV-2 2021-09-14
INV	RG MIULE	660541	5493015	2021	2	2021-09-14	Composite	Sodium	3,520	mg/kg	Trich	RG MIULE INV-2 2021-09-14
INV	RG MIULE	660541	5493015	2021	2	2021-09-14	Composite	Magnesium	1,540	mg/kg	Trich	RG MIULE INV-2 2021-09-14
INV	RG_MIULE	660541	5493015	2021	2	2021-09-14	Composite	Phosphorus	9,880	mg/kg	Trich	RG_MIULE_INV-2_2021-09-14
IKIV						7UZ 1=UM= 14	COMPOSITE	PHOSOHOTIS				5.3 WHILE HVV-2 2021-09-14

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Type	Ctation	Locatio	on (UTMs) ^(a)	Voor	Doplicate	Doto	Species/Composite	Apolyte	Dogult	Heit		Laboratory Information
Туре	Station	Easting	Northing	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit	Lab	Sample ID
INV	RG MIULE	660541	5493015	2021	2	2021-09-14	Composite	Calcium	9,810	mg/kg	Trich	RG MIULE INV-2 2021-09-14
INV	RG MIULE	660541	5493015	2021	2	2021-09-14	Composite	Wet Weight	0.16	g	Trich	RG MIULE INV-2 2021-09-14
INV	RG MIULE	660541	5493015	2021	2	2021-09-14	Composite	Dry Weight	0.038	g	Trich	RG MIULE INV-2 2021-09-14
INV	RG MIULE	660541	5493015	2021	2	2021-09-14	Composite	% Moisture	76	%	Trich	RG MIULE INV-2 2021-09-14
INV	RG MIULE	660541	5493015	2021	3	2021-09-14	Composite	Aluminum	905	mg/kg	Trich	RG MIULE INV-3 2021-09-14
INV	RG MIULE	660541	5493015	2021	3	2021-09-14	Composite	Antimony	0.03	mg/kg	Trich	RG_MIULE_INV-3_2021-09-14
INV	RG MIULE	660541	5493015	2021	3	2021-09-14	Composite	Arsenic	0.59	mg/kg	Trich	RG MIULE INV-3 2021-09-14
INV	RG MIULE	660541	5493015	2021	3	2021-09-14	Composite	Barium	29	mg/kg	Trich	RG MIULE INV-3 2021-09-14
INV	RG MIULE	660541	5493015	2021	3	2021-09-14	Composite	Boron	1.7	mg/kg	Trich	RG MIULE INV-3 2021-09-14
INV	RG MIULE	660541	5493015	2021	3	2021-09-14	Composite	Cadmium	1.8	mg/kg	Trich	RG MIULE INV-3 2021-09-14
INV	RG_MIULE	660541	5493015	2021	3	2021-09-14	Composite	Chromium	20	mg/kg	Trich	RG_MIULE_INV-3_2021-09-14
INV	RG MIULE	660541	5493015	2021	3	2021-09-14	Composite	Cobalt	6.1	mg/kg	Trich	RG MIULE INV-3 2021-09-14
INV	RG_MIULE	660541	5493015	2021	3	2021-09-14			15		Trich	
INV		660541				2021-09-14	Composite	Copper	683	mg/kg		RG_MIULE_INV-3_2021-09-14
INV	RG_MIULE		5493015	2021	3		Composite	Iron		mg/kg	Trich	RG_MIULE_INV-3_2021-09-14
	RG_MIULE	660541	5493015	2021	3	2021-09-14	Composite	Lead	0.27	mg/kg	Trich	RG_MIULE_INV-3_2021-09-14
INV	RG_MIULE	660541	5493015	2021	3	2021-09-14	Composite	Manganese	40	mg/kg	Trich	RG_MIULE_INV-3_2021-09-14
INV	RG_MIULE	660541	5493015	2021	3	2021-09-14	Composite	Mercury	0.09	mg/kg	Trich	RG_MIULE_INV-3_2021-09-14
INV	RG_MIULE	660541	5493015	2021	3	2021-09-14	Composite	Molybdenum	0.31	mg/kg	Trich	RG_MIULE_INV-3_2021-09-14
INV	RG_MIULE	660541	5493015	2021	3	2021-09-14	Composite	Nickel	37	mg/kg	Trich	RG_MIULE_INV-3_2021-09-14
INV	RG_MIULE	660541	5493015	2021	3	2021-09-14	Composite	Silver	0.17	mg/kg	Trich	RG_MIULE_INV-3_2021-09-14
INV	RG_MIULE	660541	5493015	2021	3	2021-09-14	Composite	Selenium	6.0	mg/kg	Trich	RG_MIULE_INV-3_2021-09-14
INV	RG_MIULE	660541	5493015	2021	3	2021-09-14	Composite	Strontium	7.0	mg/kg	Trich	RG_MIULE_INV-3_2021-09-14
INV	RG_MIULE	660541	5493015	2021	3	2021-09-14	Composite	Thallium	0.097	mg/kg	Trich	RG_MIULE_INV-3_2021-09-14
INV	RG_MIULE	660541	5493015	2021	3	2021-09-14	Composite	Tin	0.51	mg/kg	Trich	RG_MIULE_INV-3_2021-09-14
INV	RG_MIULE	660541	5493015	2021	3	2021-09-14	Composite	Titanium	71	mg/kg	Trich	RG_MIULE_INV-3_2021-09-14
INV	RG_MIULE	660541	5493015	2021	3	2021-09-14	Composite	Uranium	0.066	mg/kg	Trich	RG_MIULE_INV-3_2021-09-14
INV	RG_MIULE	660541	5493015	2021	3	2021-09-14	Composite	Vanadium	1.7	mg/kg	Trich	RG_MIULE_INV-3_2021-09-14
INV	RG MIULE	660541	5493015	2021	3	2021-09-14	Composite	Zinc	205	mg/kg	Trich	RG MIULE INV-3 2021-09-14
INV	RG MIULE	660541	5493015	2021	3	2021-09-14	Composite	Lithium	0.65	mg/kg	Trich	RG_MIULE_INV-3_2021-09-14
INV	RG MIULE	660541	5493015	2021	3	2021-09-14	Composite	Sodium	13,407	mg/kg	Trich	RG_MIULE_INV-3_2021-09-14
INV	RG MIULE	660541	5493015	2021	3	2021-09-14	Composite	Magnesium	1,445	mg/kg	Trich	RG MIULE INV-3 2021-09-14
INV	RG MIULE	660541	5493015	2021	3	2021-09-14	Composite	Phosphorus	12,695	mg/kg	Trich	RG MIULE INV-3 2021-09-14
INV	RG MIULE	660541	5493015	2021	3	2021-09-14	Composite	Potassium	12,663	mg/kg	Trich	RG MIULE INV-3 2021-09-14
INV	RG MIULE	660541	5493015	2021	3	2021-09-14	Composite	Calcium	2,977	mg/kg	Trich	RG MIULE INV-3 2021-09-14
INV	RG MIULE	660541	5493015	2021	3	2021-09-14	Composite	Wet Weight	0.28	a a	Trich	RG MIULE INV-3 2021-09-14
INV	RG MIULE	660541	5493015	2021	3	2021-09-14	Composite	Dry Weight	0.045	<u>9</u> a	Trich	RG MIULE INV-3 2021-09-14
INV	RG_MIULE	660541	5493015	2021	3	2021-09-14	Composite	% Moisture	84	<u>9</u> %	Trich	RG MIULE INV-3 2021-09-14
	_								856	-		
INV	RG_MIULE	660541	5493015	2021	3	2021-09-14	Composite	Aluminum		mg/kg	Trich	RG_MIULE_INV-3_2021-09-14Du
INV	RG_MIULE	660541	5493015	2021	3	2021-09-14	Composite	Antimony	0.038	mg/kg	Trich	RG_MIULE_INV-3_2021-09-14Du
INV	RG_MIULE	660541	5493015	2021	3	2021-09-14	Composite	Arsenic	0.57	mg/kg	Trich	RG_MIULE_INV-3_2021-09-14Du
INV	RG_MIULE	660541	5493015	2021	3	2021-09-14	Composite	Barium	28	mg/kg	Trich	RG_MIULE_INV-3_2021-09-14Du
INV	RG_MIULE	660541	5493015	2021	3	2021-09-14	Composite	Boron	1.8	mg/kg	Trich	RG_MIULE_INV-3_2021-09-14Du
INV	RG_MIULE	660541	5493015	2021	3	2021-09-14	Composite	Cadmium	1.7	mg/kg	Trich	RG_MIULE_INV-3_2021-09-14Du
INV	RG_MIULE	660541	5493015	2021	3	2021-09-14	Composite	Chromium	17	mg/kg	Trich	RG_MIULE_INV-3_2021-09-14Du
INV	RG_MIULE	660541	5493015	2021	3	2021-09-14	Composite	Cobalt	6.2	mg/kg	Trich	RG_MIULE_INV-3_2021-09-14Du
INV	RG_MIULE	660541	5493015	2021	3	2021-09-14	Composite	Copper	16	mg/kg	Trich	RG_MIULE_INV-3_2021-09-14Du
INV	RG_MIULE	660541	5493015	2021	3	2021-09-14	Composite	Iron	613	mg/kg	Trich	RG_MIULE_INV-3_2021-09-14Du
INV	RG_MIULE	660541	5493015	2021	3	2021-09-14	Composite	Lead	0.25	mg/kg	Trich	RG_MIULE_INV-3_2021-09-14Du
INV	RG_MIULE	660541	5493015	2021	3	2021-09-14	Composite	Manganese	37	mg/kg	Trich	RG_MIULE_INV-3_2021-09-14Du
INV	RG_MIULE	660541	5493015	2021	3	2021-09-14	Composite	Mercury	0.074	mg/kg	Trich	RG_MIULE_INV-3_2021-09-14Du
INV	RG_MIULE	660541	5493015	2021	3	2021-09-14	Composite	Molybdenum	0.36	mg/kg	Trich	RG_MIULE_INV-3_2021-09-14Du
INV	RG_MIULE	660541	5493015	2021	3	2021-09-14	Composite	Nickel	31	mg/kg	Trich	RG_MIULE_INV-3_2021-09-14Du
INV	RG_MIULE	660541	5493015	2021	3	2021-09-14	Composite	Silver	0.15	mg/kg	Trich	RG_MIULE_INV-3_2021-09-14Du
INV	RG MIULE	660541	5493015	2021	3	2021-09-14	Composite	Selenium	5.7	mg/kg	Trich	RG MIULE INV-3 2021-09-14Du
INV	RG MIULE	660541	5493015	2021	3	2021-09-14	Composite	Strontium	6.7	mg/kg	Trich	RG MIULE INV-3 2021-09-14Du
INV	RG MIULE	660541	5493015	2021	3	2021-09-14	Composite	Thallium	0.098	mg/kg	Trich	RG MIULE INV-3 2021-09-14Du
		UUUUTI	0-100010			202 I 00-IT	Composite	maniani	0.000	1119/119	111011	1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V 1 V

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

INV INV INV INV INV INV INV	Station RG_MIULE RG_MIULE RG_MIULE	Easting 660541 660541	Northing 5493015 5493015	2021	Replicate 3	Date 2021-09-14	Species/Composite Composite	Analyte Titanium	Result 62	Unit mg/kg	Lab Trich	Sample ID RG MIULE INV-3 2021-09-14Dup
INV INV INV INV INV	RG_MIULE	660541			3	2021-09-14	Composite	Titanium	62	ma/ka	I Trich	RG MIULE INV-3 2021-09-14Dup
INV INV INV	_		5493015							0 0		'
INV INV INV	RG_MIULE			2021	3	2021-09-14	Composite	Uranium	0.066	mg/kg	Trich	RG_MIULE_INV-3_2021-09-14Dup
INV INV		660541	5493015	2021	3	2021-09-14	Composite	Vanadium	1.6	mg/kg	Trich	RG_MIULE_INV-3_2021-09-14Dup
INV	RG_MIULE	660541	5493015	2021	3	2021-09-14	Composite	Zinc	217	mg/kg	Trich	RG_MIULE_INV-3_2021-09-14Dup
	RG_MIULE	660541	5493015	2021	3	2021-09-14	Composite	Lithium	0.6	mg/kg	Trich	RG_MIULE_INV-3_2021-09-14Dup
INI\/	RG_MIULE	660541	5493015	2021	3	2021-09-14	Composite	Sodium	13,374	mg/kg	Trich	RG_MIULE_INV-3_2021-09-14Dup
	RG_MIULE	660541	5493015	2021	3	2021-09-14	Composite	Magnesium	1,500	mg/kg	Trich	RG_MIULE_INV-3_2021-09-14Dup
INV	RG_MIULE	660541	5493015	2021	3	2021-09-14	Composite	Phosphorus	12,766	mg/kg	Trich	RG_MIULE_INV-3_2021-09-14Dup
INV	RG_MIULE	660541	5493015	2021	3	2021-09-14	Composite	Potassium	12,526	mg/kg	Trich	RG_MIULE_INV-3_2021-09-14Dup
INV	RG_MIULE	660541	5493015	2021	3	2021-09-14	Composite	Calcium	2,854	mg/kg	Trich	RG_MIULE_INV-3_2021-09-14Dup
INV	RG_AGCK	667627	5488726	2022	1	2022-09-15	COMPNOLI	Lithium	0.3	mg/kg dw	Trich	RG_AGCK_COMPNOLI-1_2022-09-15_N
INV	RG_AGCK	667627	5488726	2022	1	2022-09-15	COMPNOLI	Boron	0.65	mg/kg dw	Trich	RG_AGCK_COMPNOLI-1_2022-09-15_N
INV	RG_AGCK	667627	5488726	2022	1	2022-09-15	COMPNOLI	Sodium	3,534	mg/kg dw	Trich	RG_AGCK_COMPNOLI-1_2022-09-15_N
INV	RG_AGCK	667627	5488726	2022	1	2022-09-15	COMPNOLI	Magnesium	1,056	mg/kg dw	Trich	RG_AGCK_COMPNOLI-1_2022-09-15_N
INV	RG_AGCK	667627	5488726	2022	1	2022-09-15	COMPNOLI	Aluminum	224	mg/kg dw	Trich	RG_AGCK_COMPNOLI-1_2022-09-15_N
INV	RG_AGCK	667627	5488726	2022	1	2022-09-15	COMPNOLI	Phosphorus	13,320	mg/kg dw	Trich	RG_AGCK_COMPNOLI-1_2022-09-15_N
INV	RG_AGCK	667627	5488726	2022	1	2022-09-15	COMPNOLI	Potassium	10,379	mg/kg dw	Trich	RG_AGCK_COMPNOLI-1_2022-09-15_N
INV	RG_AGCK	667627	5488726	2022	1	2022-09-15	COMPNOLI	Calcium	1,833	mg/kg dw	Trich	RG_AGCK_COMPNOLI-1_2022-09-15_N
INV	RG_AGCK	667627	5488726	2022	1	2022-09-15	COMPNOLI	Titanium	11	mg/kg dw	Trich	RG_AGCK_COMPNOLI-1_2022-09-15_N
INV	RG_AGCK	667627	5488726	2022	1	2022-09-15	COMPNOLI	Vanadium	0.57	mg/kg dw	Trich	RG_AGCK_COMPNOLI-1_2022-09-15_N
INV	RG_AGCK	667627	5488726	2022	1	2022-09-15	COMPNOLI	Chromium	3.0	mg/kg dw	Trich	RG_AGCK_COMPNOLI-1_2022-09-15_N
INV	RG_AGCK	667627	5488726	2022	1	2022-09-15	COMPNOLI	Manganese	12	mg/kg dw	Trich	RG_AGCK_COMPNOLI-1_2022-09-15_N
INV	RG_AGCK	667627	5488726	2022	1	2022-09-15	COMPNOLI	Iron	217	mg/kg dw	Trich	RG_AGCK_COMPNOLI-1_2022-09-15_N
INV	RG_AGCK	667627	5488726	2022	1	2022-09-15	COMPNOLI	Cobalt	0.12	mg/kg dw	Trich	RG_AGCK_COMPNOLI-1_2022-09-15_N
INV	RG_AGCK	667627	5488726	2022	1	2022-09-15	COMPNOLI	Nickel	5.2	mg/kg dw	Trich	RG_AGCK_COMPNOLI-1_2022-09-15_N
INV	RG_AGCK	667627	5488726	2022	1	2022-09-15	COMPNOLI	Copper	9.3	mg/kg dw	Trich	RG_AGCK_COMPNOLI-1_2022-09-15_N
INV	RG_AGCK	667627	5488726	2022	1	2022-09-15	COMPNOLI	Zinc	135	mg/kg dw	Trich	RG_AGCK_COMPNOLI-1_2022-09-15_N
INV	RG_AGCK	667627	5488726	2022	1	2022-09-15	COMPNOLI	Arsenic	1.2	mg/kg dw	Trich	RG_AGCK_COMPNOLI-1_2022-09-15_N
INV	RG_AGCK	667627	5488726	2022	1	2022-09-15	COMPNOLI	Selenium	4.4	mg/kg dw	Trich	RG_AGCK_COMPNOLI-1_2022-09-15_N
INV	RG_AGCK	667627	5488726	2022	1	2022-09-15	COMPNOLI	Strontium	3.7	mg/kg dw	Trich	RG_AGCK_COMPNOLI-1_2022-09-15_N
INV	RG_AGCK	667627	5488726	2022	1	2022-09-15	COMPNOLI	Molybdenum	0.2	mg/kg dw	Trich	RG_AGCK_COMPNOLI-1_2022-09-15_N
INV	RG_AGCK	667627	5488726	2022	1	2022-09-15	COMPNOLI	Silver	0.093	mg/kg dw	Trich	RG_AGCK_COMPNOLI-1_2022-09-15_N
INV	RG_AGCK	667627	5488726	2022	1	2022-09-15	COMPNOLI	Cadmium	0.33	mg/kg dw	Trich	RG_AGCK_COMPNOLI-1_2022-09-15_N
INV	RG_AGCK	667627	5488726	2022	1	2022-09-15	COMPNOLI	Tin	0.43	mg/kg dw	Trich	RG_AGCK_COMPNOLI-1_2022-09-15_N
INV	RG_AGCK	667627	5488726	2022	1	2022-09-15	COMPNOLI	Antimony	0.024	mg/kg dw	Trich	RG_AGCK_COMPNOLI-1_2022-09-15_N
INV	RG_AGCK	667627	5488726	2022	1	2022-09-15	COMPNOLI	Barium	21	mg/kg dw	Trich	RG_AGCK_COMPNOLI-1_2022-09-15_N
INV	RG_AGCK	667627	5488726	2022	1	2022-09-15	COMPNOLI	Mercury	0.05	mg/kg dw	Trich	RG_AGCK_COMPNOLI-1_2022-09-15_N
INV	RG_AGCK	667627	5488726	2022	1	2022-09-15	COMPNOLI	Thallium	0.23	mg/kg dw	Trich	RG_AGCK_COMPNOLI-1_2022-09-15_N
INV	RG_AGCK	667627	5488726	2022	1	2022-09-15	COMPNOLI	Lead	0.096	mg/kg dw	Trich	RG_AGCK_COMPNOLI-1_2022-09-15_N
INV	RG_AGCK	667627	5488726	2022	1	2022-09-15	COMPNOLI	Uranium	0.031	mg/kg dw	Trich	RG_AGCK_COMPNOLI-1_2022-09-15_N
INV	RG_AGCK	667627	5488726	2022	1	2022-09-15	COMPNOLI	Wet Mass	0.22	g	Trich	RG_AGCK_COMPNOLI-1_2022-09-15_N
INV	RG_AGCK	667627	5488726	2022	1	2022-09-15	COMPNOLI	Dry Mass	0.039	<u>g</u>	Trich	RG_AGCK_COMPNOLI-1_2022-09-15_N
INV	RG_AGCK	667627	5488726	2022	1	2022-09-15	COMPNOLI	% Moisture	83	%	Trich	RG_AGCK_COMPNOLI-1_2022-09-15_N
INV	RG_AGCK	667565	5488691	2022	2	2022-09-15	COMPNOLI	Lithium	0.27	mg/kg dw	Trich	RG_AGCK_COMPNOLI-2_2022-09-15_N
INV	RG_AGCK	667565	5488691	2022	2	2022-09-15	COMPNOLI	Boron	0.47	mg/kg dw	Trich	RG_AGCK_COMPNOLI-2_2022-09-15_N
INV	RG_AGCK	667565	5488691	2022	2	2022-09-15	COMPNOLI	Sodium	5,278	mg/kg dw	Trich	RG_AGCK_COMPNOLI-2_2022-09-15_N
INV	RG_AGCK	667565	5488691	2022	2	2022-09-15	COMPNOLI	Magnesium	1,460	mg/kg dw	Trich	RG_AGCK_COMPNOLI-2_2022-09-15_N
INV	RG_AGCK	667565	5488691	2022	2	2022-09-15	COMPNOLI	Aluminum	147	mg/kg dw	Trich	RG_AGCK_COMPNOLI-2_2022-09-15_N
INV	RG_AGCK	667565	5488691	2022	2	2022-09-15	COMPNOLI	Phosphorus	14,049	mg/kg dw	Trich	RG_AGCK_COMPNOLI-2_2022-09-15_N
INV	RG_AGCK	667565	5488691	2022	2	2022-09-15	COMPNOLI	Potassium	15,678	mg/kg dw	Trich	RG_AGCK_COMPNOLI-2_2022-09-15_N
INV	RG_AGCK	667565	5488691	2022	2	2022-09-15	COMPNOLI	Calcium	2,007	mg/kg dw	Trich	RG_AGCK_COMPNOLI-2_2022-09-15_N
INV	RG_AGCK	667565	5488691	2022	2	2022-09-15	COMPNOLI	Titanium	7.4	mg/kg dw	Trich	RG_AGCK_COMPNOLI-2_2022-09-15_N
	RG_AGCK	667565	5488691	2022	2	2022-09-15	COMPNOLI	Vanadium	0.46	mg/kg dw	Trich	RG_AGCK_COMPNOLI-2_2022-09-15_N
INV	RG AGCK	667565	5488691	2022	2	2022-09-15	COMPNOLI	Chromium	9.3	mg/kg dw	Trich	RG_AGCK_COMPNOLI-2_2022-09-15_N
INV	_		_	1								
INV INV	RG_AGCK	667565	5488691	2022	2	2022-09-15	COMPNOLI	Manganese	12	mg/kg dw	Trich	RG_AGCK_COMPNOLI-2_2022-09-15_N
INV	_		5488691 5488691 5488691	2022 2022 2022	2 2 2	2022-09-15 2022-09-15 2022-09-15	COMPNOLI COMPNOLI COMPNOLI	Manganese Iron Cobalt	12 235 0.43	mg/kg dw mg/kg dw mg/kg dw	Trich Trich Trich	RG_AGCK_COMPNOLI-2_2022-09-15_N RG_AGCK_COMPNOLI-2_2022-09-15_N RG_AGCK_COMPNOLI-2_2022-09-15_N

Reference No. 22574542-001-R-Rev0-1000

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Section Company Comp			Location	n (UTMs) ^(a)									Laboratory Information
NY ROLAGOK 997969 9499991 2022 2 20200-0-6 COMPROLI Novel 13 psylogiste Troit ROLAGOK COMPROLIZ-20200 NV ROLAGOK 997969 9499991 2022 2 20200-0-6 COMPROLIZ-20200 NV ROLAGOK 997969 949991 2022 2 2 20200-0-6 COMPROLIZ-20200 NV ROLAGOK 997969 949991 2022 2 2 20200-0-6 COMPROLIZ-20200 NV ROLAGOK 997969 949991	Туре	Station		_ ` _ ′	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit	Lab	<u>-</u>
No. Accord No.	INV	RG AGCK	_		2022	2	2022-09-15	COMPNOLI	Nickel	13	ma/ka dw		
W	INV	_											
Miles	INV	_							• • • • • • • • • • • • • • • • • • • •				
Maintain	INV	_											
March	INV	_	_										
NY RG AGOK 687885 5-588861 2022 2 2022-0615 COMPNOL Melyddrum 0.28 mghg de Trich RG AGOK COMPNOL 3202-0619 NG AGOK 687865 5-588861 2022 2 2022-0615 COMPNOL Shert 0.16 mghg de Trich RG AGOK COMPNOL 3202-0619 NG AGOK 687865 5-588861 2022 2 2022-0615 COMPNOL Communication 1.1 mghg de Trich RG AGOK COMPNOL 2022-0619 NG AGOK 687865 5-588861 2022 2 2022-0615 COMPNOL Advancey 0.00 8 mghg de Trich RG AGOK COMPNOL 2022-0619 NG AGOK 687865 5-588861 2022 2 2022-0615 COMPNOL Advancey 0.00 8 mghg de Trich RG AGOK COMPNOL 2022-0619 NG AGOK 687865 5-588861 2022 2 2022-0615 COMPNOL Advancey 0.00 8 mghg de Trich RG AGOK COMPNOL 2022-0619 NG AGOK 687865 5-588861 2022 2 2022-0615 COMPNOL 10 Memory 0.00 11 mghg de Trich RG AGOK COMPNOL 2022-0619 NG AGOK 687865 5-588861 2022 2 2022-0615 COMPNOL 10 Memory 0.00 11 mghg de Trich RG AGOK COMPNOL 2022-0619 NG AGOK 687865 5-588861 2022 2 2022-0615 COMPNOL 10 Memory 0.00 11 mghg de Trich RG AGOK COMPNOL 2022-0619 NG AGOK 687865 5-588861 2022 2 2022-0615 COMPNOL 10 Memory 0.00 11 mghg de Trich RG AGOK COMPNOL 2022-0619 NG AGOK 687865 5-588861 2022 2 2022-0615 COMPNOL 10 Memory 0.00 11 mghg de Trich RG AGOK COMPNOL 2022-0619 NG AGOK 687865 5-588861 2022 2 2022-0615 COMPNOL 10 Memory 0.00 11 mghg de Trich RG AGOK COMPNOL 2022-0619 NG AGOK 687865 5-588861 2022 2 2022-0615 COMPNOL 10 Memory 0.00 11 mghg de Trich RG AGOK COMPNOL 2022-0619 NG AGOK 687865 5-588861 2022 2 2022-0615 COMPNOL 10 Memory 0.00 11 mghg de Trich RG AGOK COMPNOL 2022-0619 NG AGOK 687865 5-588861 2022 2 2022-0615 COMPNOL 10 Memory 0.00 11 mghg de Trich RG AGOK COMPNOL 2022-0619 NG AGOK 687865 5-588861 2022 2 2022-0615 COMPNOL 10 Memory 0.00 11 mghg de Trich RG AGOK COMPNOL 2022-0619 NG AGOK 687861 5-588861 2022 2 2022-0615 COMPNOL 10 Memory 0.00 11 mghg de Trich RG AGOK COMPNOL 2022-0619 NG AGOK 687861 5-588861 2022 2 2 2022-0615 COMPNOL 10 Memory 0.00 11 mghg de Trich RG AGOK COMPNOL 2022-0619 NG AGOK 687861 5-588861 2022 2 2 2022-0615 COMPNOL 10 Memory 0.00 11 mghg de Trich RG AGOK COMPNOL 2022-0619 NG AGOK 687861 5-58886	INV	_											
NY RG AGOK 697965 5468991 2022 2 3022-0415 COMPROLI Sheem 1.13 righty on Trian RG AGOK COMPROLIZ 2022-04 NR AGOK 697965 5468991 2022 2 3022-0415 COMPROLIZ 2022-04 NR AGOK 697961 546801 2022 3 3022-0415 COMPROLIZ 3022-04 NR AGOK 697961 546801 2022 3 3022-0415 COMPROLIZ 3022-04 NR AGOK 697961 546801 2022 3 3022-0415 COMPROLIZ 3022-04 NR AGOK 697961 546801 2022 3 3022-0415 COMPROLIZ 3022-04 NR AGOK 697961 546801 2022 3 3022-0415 COMPROLIZ 3022-04 NR AGOK 697961 546801 2022 3 3022-0415 COMPROLIZ 3022-04 NR AGOK 697961 546801 2022 3 3022-0415 COMPROLIZ 3022-04 NR AGOK 697961 546801 2022 3 3022-0415 COMPROLIZ 3022-04 NR AGOK 697961 546801 2022 3 3022-0415 COMPROLIZ 3022-04 NR AGOK 697961 546801 2022 3 3022-0415 COMPROLIZ 3022-04 NR AGOK 697961 546801 2022 3 3022-0415 COMPROLIZ 3022-04 NR AGOK 697961 546801 2022 3 3022-0415		_	_										
No. R.G. AGCK													
No. R.G. AGCK G67965 Sidelight 2022 2 2022-01-15 COMPROL Americany 0.010 molty and Tech R.G. AGCK COMPROL 2,702-20 2022-01-15 COMPROL Americany 0.010 molty and Tech R.G. AGCK COMPROL 2,702-20 2022-01-15 COMPROL 2,702-20 2022-01-15 COMPROL 2,702-20 2,													
NV N RG AGCK 69796 5488901 2022 2 2022-09-15 COMPROLL Barmony 0.070 mg/sg ow 1 Treft RG AGCK COMPROLL 2022-09 NV N RG AGCK 69796 5488901 2022 2 2022-09-15 COMPROLL Mercury 0.077 mg/sg ow 1 Treft RG AGCK COMPROLL 2022-09 NV RG AGCK 69796 5488901 2022 2 2022-09-15 COMPROLL Mercury 0.079 mg/sg ow 1 Treft RG AGCK COMPROLL 2022-09 NV RG AGCK 69796 5488901 2022 2 2022-09-15 COMPROLL Mercury 0.079 mg/sg ow 1 Treft RG AGCK COMPROLL 2022-09 NV RG AGCK 69796 5488901 2022 2 2022-09-15 COMPROLL Demands 0.079 mg/sg ow 1 Treft RG AGCK COMPROLL 2022-09 NV RG AGCK 69796 5488901 2022 2 2022-09-15 COMPROLL 3022-09 NV RG AGCK 69796 5488901 2022 2 2022-09-15 COMPROLL 3022-09 NV RG AGCK 69796 5488901 2022 2 2022-09-15 COMPROLL 3022-09 NV RG AGCK 69796 5488901 2022 2 2022-09-15 COMPROLL 3022-09 NV RG AGCK 69796 5488901 2022 2 2022-09-15 COMPROLL 3022-09 NV RG AGCK 69796 5488901 2022 2 2022-09-15 COMPROLL 3022-09 NV RG AGCK 69796 5488901 2022 2 2022-09-15 COMPROLL 3022-09 NV RG AGCK 69796 5488901 2022 2 2022-09-15 COMPROLL 3022-09 NV RG AGCK 69796 5488901 2022 2 2022-09-15 COMPROLL 3022-09 NV RG AGCK 69796 5488901 2022 2 2022-09-15 COMPROLL 3022-09 NV RG AGCK 69796 5488901 2022 2 2022-09-15 COMPROLL 3022-09 NV RG AGCK 69796 5488901 2022 2 2022-09-15 COMPROLL 3022-09 NV RG AGCK 69796 5488901 2022 2 2022-09-15 COMPROLL 3022-09 NV RG AGCK 69796 5488901 2022 2 2 2022-09-15 COMPROLL 3022-09 NV RG AGCK 69796 5488901 2022 2 3 2022-09-15 COMPROLL 3022-09 NV RG AGCK 69796 5488901 2022 2 3 2022-09-15 COMPROLL 3022-09 NV RG AGCK 69796 5488901 2022 2 3 2022-09-15 COMPROLL 3022-09 NV RG AGCK 69796 5488901 2022 2 3 2022-09-15 COMPROLL 3022-09 NV RG AGCK 69796 5488901 2022 2 3 2022-09-15 COMPROLL 3022-09 NV RG AGCK 69796 5488901 2022 2 3 2022-09-15 COMPROLL 3022-09 NV RG AGCK 69796 5488901 2022 2 3 2022-09-15 COMPROLL 3022-09 NV RG AGCK 69796 5488901 2022 2 3 2022-09-15 COMPROLL 3022-09 NV RG AGCK 69796 5488901 2022 2 3 2022-09-15 COMPROLL 3022-09 NV RG AGCK 69796 5488901 2022 2 3 2022-09-15 COMPROLL 3022-09 NV RG AGCK 69796 5488901 2022 2 3 2022-0			_			1							
W		_											
W		_							·				
No. R.C. ASCIK 667765 5486691 2022 2 2022-09-15 COMPROLI Lead 0.079 mghg av Tron R.C. ASCIK COMPROLI 2022-09-15 COMPROLI Lead 0.079 mghg av Tron R.C. ASCIK COMPROLI 2022-09-15 COMPROLI Umnium 0.191 mghg av Tron R.C. ASCIK COMPROLI 2022-09-15 COMPROLI Umnium 0.191 mghg av Tron R.C. ASCIK COMPROLI 2022-09-15 COMPROLI Umnium 0.191 mghg av Tron R.C. ASCIK COMPROLI 2022-09-15 COMPROLI Umnium 0.191 mghg av Tron R.C. ASCIK COMPROLI 2022-09-15 COMPROLI Umnium 0.191 mghg av Tron R.C. ASCIK COMPROLI 2022-09-16 COMPROLI Umnium 0.191 mghg av Tron R.C. ASCIK COMPROLI 2022-09-16 COMPROLI Umnium 0.191 mghg av Tron R.C. ASCIK COMPROLI 2022-09-16 COMPROLI Umnium 0.191 mghg av Tron R.C. ASCIK COMPROLI 2022-09-16 COMPROLI Umnium 0.191 mghg av Tron R.C. ASCIK COMPROLI 2022-09-16 COMPROLI Umnium 0.191 mghg av Tron R.C. ASCIK COMPROLI 2022-09-16 COMPROLI Umnium 0.191 mghg av Tron R.C. ASCIK COMPROLI 2022-09-16 COMPROLI Umnium 0.191 mghg av Tron R.C. ASCIK COMPROLI 2022-09-16 COMPROLI Umnium 0.191 mghg av Tron R.C. ASCIK COMPROLI Umnium 0.191 mghg av Tron R.C. ASCIK COMPROLI COMPROLI Umnium 0.191 mghg av Tron R.C. ASCIK COMPROLI COMPROLI Mgagnatum 0.191 mghg av Tron R.C. ASCIK COMPROLI COMPROLI Mgagnatum 0.191 mghg av Tron R.C. ASCIK COMPROLI COMPROLI Mgagnatum 0.191 mghg av Tron R.C. ASCIK COMPROLI COMPROLI R.C. ASCIK COMPROLI COMPROLI R.C. ASCIK COMPROLI COMPROLI R.C. ASCIK COMPROLI		_											
No. Ro AGCK 667645 648691 2022 2 2022-09-15 COMPNOLI Leed 0.070 mphg da					_				•				
NY RG AGCK 697595 5498991 2022 2 3022-20.15 COMPNOLI Uranium 0.031 mgbg dw Trich RG AGCK COMPNOLI2-2022-2 NY RG AGCK 697595 5498991 2022 2 2 2022-20.15 COMPNOLI Dy Yelses 0.023 9 Trich RG AGCK COMPNOLI2-2022-2 NY RG AGCK 697595 5498991 2022 2 2 2022-20.15 COMPNOLI Dy Yelses 0.023 9 Trich RG AGCK COMPNOLI2-2022-2 NY RG AGCK 697595 5498991 2022 2 2 2022-20.15 COMPNOLI Dy Yelses 0.023 9 Trich RG AGCK COMPNOLI2-2022-2 NY RG AGCK 697595 5498991 2022 2 2 2022-20.15 COMPNOLI Dy Yelses 0.023 9 Trich RG AGCK COMPNOLI2-2022-2 NY RG AGCK 697591 5498912 2022 3 2022-20.15 COMPNOLI Dillium 0.14 mgbg dw Trich RG AGCK COMPNOLI2-2022-2 NY RG AGCK 697591 5498912 2022 3 2022-20.15 COMPNOLI Millium 0.14 mgbg dw Trich RG AGCK COMPNOLI3-2022-2 NY RG AGCK 697591 5498912 2022 3 2022-20.15 COMPNOLI Magnesem 937 mgbg dw Trich RG AGCK COMPNOLI3-2022-2 NY RG AGCK 697591 5498912 2022 3 2022-20.15 COMPNOLI Magnesem 937 mgbg dw Trich RG AGCK COMPNOLI3-2022-2 NY RG AGCK 697591 5498912 2022 3 2022-20.15 COMPNOLI Phasphons 9,099 mgbg dw Trich RG AGCK COMPNOLI3-2022-2 NY RG AGCK 697591 5498912 2022 3 2022-20.15 COMPNOLI Phasphons 9,099 mgbg dw Trich RG AGCK COMPNOLI3-2022-2 NY RG AGCK 697591 5498912 2022 3 2022-20.15 COMPNOLI Phasphons 9,099 mgbg dw Trich RG AGCK COMPNOLI3-2022-2 NY RG AGCK 697591 5498912 2022 3 2022-20.15 COMPNOLI Phasphons 9,099 mgbg dw Trich RG AGCK COMPNOLI3-2022-2 NY RG AGCK 697591 5498912 2022 3 2022-20.15 COMPNOLI Phasphons 9,099 mgbg dw Trich RG AGCK COMPNOLI3-2022-2 NY RG AGCK 697591 5498912 2022 3 2022-20.15 COMPNOLI Phasphons 9,099 mgbg dw Trich RG AGCK COMPNOLI3-2022-2 NY RG AGCK 697591 5498912 2022 3 2022-20.15 COMPNOLI Phasphons 9,099 mgbg dw Trich RG AGCK COMPNOLI3-2022-2 NY RG AGCK 697591 5498912 2022 3 2022-20.15 COMPNOLI Phasphons 9,099 mgbg dw Trich RG AGCK COMPNOLI3-2022-2 NY RG AGCK 697591 5498912 2022 3 2022-20.15 COMPNOLI Phasphons 9,099 mgbg dw Trich RG AGCK COMPNOLI3-2022-2 NY RG AGCK 697591 5498912 2022 3 2022-20.15 COMPNOLI Phasphons 9,099 mgbg dw Trich RG AGCK COMPNOLI3-2022-2 NY RG AGCK 697591 549891		_											
No. RG_AGCK R67585 5488691 2022 2 2022-09-15 COMPNOLI Dip Mass 0.023 9 Trion RG_AGCK COMPNOLI 2022-09-15 COMPNOLI Dip Mass 0.023 9 Trion RG_AGCK COMPNOLI 2022-09-15 COMPNOLI Standard 0.04 Trich RG_AGCK COMPNOLI 2022-09-16 COMPNOLI Standard 0.04 Trich RG_AGCK COMPNOLI 2022-09-16 COMPNOLI Libium 0.14 mghg dw Trich RG_AGCK COMPNOLI 2022-09-16 COMPNOLI Libium 0.14 mghg dw Trich RG_AGCK COMPNOLI 2022-09-16 COMPNOLI Reson 0.31 mghg dw Trich RG_AGCK COMPNOLI 2022-09-16 COMPNOLI Reson 0.31 mghg dw Trich RG_AGCK COMPNOLI 2022-09-16 COMPNOLI Reson 0.31 mghg dw Trich RG_AGCK COMPNOLI 2022-09-16 COMPNOLI Reson 0.31 mghg dw Trich RG_AGCK COMPNOLI 2022-09-16 COMPNOLI Reson 0.31 mghg dw Trich RG_AGCK COMPNOLI 2022-09-16 COMPNOLI Reson 0.31 mghg dw Trich RG_AGCK COMPNOLI 2022-09-16 COMPNOLI Reson 0.31 mghg dw Trich RG_AGCK R		_			_								
No. RG_ACCK	INV	_											
No. RG ACCK 667541 5488612 2022 3 2022-09-15 COMPNOLI 54. Ministure 80 5 Trich RG ACCK COMPNOLI 2022-09-15 COMPNOLI Liftnum 0.14 mg/kg dw Trich RG ACCK COMPNOLI 2022-09-15 COMPNOLI Boron 0.31 mg/kg dw Trich RG ACCK COMPNOLI 2022-09-15 COMPNOLI Boron 0.31 mg/kg dw Trich RG ACCK COMPNOLI 2022-09-15 COMPNOLI Boron 0.31 mg/kg dw Trich RG ACCK COMPNOLI 2022-09-15 COMPNOLI Boron 0.31 mg/kg dw Trich RG ACCK COMPNOLI 2022-09-15 COMPNOLI Boron 0.31 mg/kg dw Trich RG ACCK COMPNOLI 2022-09-15 COMPNOLI Mg/msissim 19.7 mg/kg dw Trich RG ACCK COMPNOLI 2022-09-15 COMPNOLI Mg/msissim 19.7 mg/kg dw Trich RG ACCK COMPNOLI Mg/msissim 19.7 mg/kg dw Trich RG ACCK COMPNOLI 2022-09-15 COMPNOLI Mg/msissim 19.7 mg/kg dw Trich RG ACCK COMPNOLI 2022-09-15 COMPNOLI Potassium 8.567 mg/kg dw Trich RG ACCK COMPNOLI 2022-09-15 COMPNOLI Potassium 2.525 mg/kg dw Trich RG ACCK COMPNOLI 2022-09-15 COMPNOLI Potassium 2.525 mg/kg dw Trich RG ACCK COMPNOLI 2022-09-15 COMPNOLI Calcus 2.425 mg/kg dw Trich RG ACCK COMPNOLI 2022-09-15 COMPNOLI Calcus 2.425 mg/kg dw Trich RG ACCK COMPNOLI 2022-09-15 COMPNOLI Trilimium 6.5 mg/kg dw Trich RG ACCK COMPNOLI 2022-09-15 COMPNOLI Trilimium 6.5 mg/kg dw Trich RG ACCK COMPNOLI 2022-09-15 COMPNOLI Trilimium 6.5 mg/kg dw Trich RG ACCK COMPNOLI 2022-09-15 COMPNOLI Trilimium 8.6 mg/kg dw Trich RG ACCK COMPNOLI 2022-09-15 COMPNOLI Trilimium 8.6 mg/kg dw Trich RG ACCK COMPNOLI 2022-09-15 COMPNOLI Trilimium 8.6 mg/kg dw Trich RG ACCK COMPNOLI 2022-09-15	INV	_			_						<u> </u>		
No. RG AGCK 687-941 5488812 2022 3 2022-09-15 COMPNOLI Birthorn 0.14 mg/kg dw Trich RG AGCK COMPNOLI3 2022-09-15 COMPNOLI Boron 0.31 mg/kg dw Trich RG AGCK COMPNOLI3 2022-09-15 COMPNOLI Boron 0.31 mg/kg dw Trich RG AGCK COMPNOLI3 2022-09-15 COMPNOLI Msgreesium 3,121 mg/kg dw Trich RG AGCK COMPNOLI3 2022-09-15 COMPNOLI Msgreesium 9.77 mg/kg dw Trich RG AGCK COMPNOLI3 2022-09-15 COMPNOLI Msgreesium 113 mg/kg dw Trich RG AGCK COMPNOLI3 2022-09-15 COMPNOLI Aluminum 113 mg/kg dw Trich RG AGCK COMPNOLI3 2022-09-15 COMPNOLI Aluminum 113 mg/kg dw Trich RG AGCK COMPNOLI3 2022-09-15 COMPNOLI Prospitions 0.999 mg/kg dw Trich RG AGCK COMPNOLI3 2022-09-16 COMPNOLI Prospitions 0.999 mg/kg dw Trich RG AGCK COMPNOLI3 2022-09-16 COMPNOLI Prospitions 0.999 mg/kg dw Trich RG AGCK COMPNOLI3 2022-09-16 COMPNOLI Prospitions 0.999 mg/kg dw Trich RG AGCK COMPNOLI3 2022-09-16 COMPNOLI Prospitions 0.999 mg/kg dw Trich RG AGCK COMPNOLI3 2022-09-16 COMPNOLI Trianism 0.5 mg/kg dw Trich RG AGCK COMPNOLI3 2022-09-16 COMPNOLI Trianism 0.5 mg/kg dw Trich RG AGCK COMPNOLI3 2022-09-16 COMPNOLI Trianism 0.5 mg/kg dw Trich RG AGCK COMPNOLI3 2022-09-16 COMPNOLI Vanadusm 0.481 mg/kg dw Trich RG AGCK COMPNOLI3 2022-09-16 COMPNOLI Vanadusm 0.481 mg/kg dw Trich RG AGCK COMPNOLI3 2022-09-16 COMPNOLI Vanadusm 0.481 mg/kg dw Trich RG AGCK COMPNOLI3 2022-09-16 COMPNOLI National 0.481 mg/kg dw Trich RG AGCK COMPNOLI3 2022-09-16 COMPNOLI National 0.481 mg/kg dw Trich RG AGCK COMPNOLI3 2022-09-16 COMPNOLI National 0.481 mg/kg dw Trich RG AGCK COMPNOLI3 2022-09-16 COMPNOLI National 0.481 mg/kg dw Trich RG AGCK COMPNOLI3 2022-09-16 COMPNOLI National 0.481 mg/kg dw Trich RG AGCK COMPNOLI3 2022-09-	INV	_							·				
W	INV	_				1							
W	INV	_	_						Lithium		mg/kg dw		
NY RG ACCK 687541 5488612 2022 3 2022-09-15 COMPNOLI Magnesium 937 mg/lsg dw Trich RG ACCK COMPNOLIS 2022-09-15 COMPNOLI Aluminum 113 mg/lsg dw Trich RG ACCK COMPNOLIS 2022-09-15 COMPNOLI Phosphorus 9,000 mg/lsg dw Trich RG ACCK COMPNOLIS 2022-09-15 COMPNOLI Phosphorus 9,000 mg/lsg dw Trich RG ACCK COMPNOLIS 2022-09-15 COMPNOLI Phosphorus 8,507 mg/lsg dw Trich RG ACCK COMPNOLIS 2022-09-15 COMPNOLI Phosphorus 2,425 mg/lsg dw Trich RG ACCK COMPNOLIS 2022-09-15 COMPNOLI Calcium 2,425 mg/lsg dw Trich RG ACCK COMPNOLIS 2022-09-15 COMPNOLI Talmium 0.5 mg/lsg dw Trich RG ACCK COMPNOLIS 2022-09-15 COMPNOLI Talmium 0.5 mg/lsg dw Trich RG ACCK COMPNOLIS 2022-09-15 COMPNOLI Talmium 0.5 mg/lsg dw Trich RG ACCK COMPNOLIS 2022-09-15 COMPNOLI Talmium 0.5 mg/lsg dw Trich RG ACCK COMPNOLIS 2022-09-15 COMPNOLI Chromium 7.8 mg/lsg dw Trich RG ACCK COMPNOLIS 2022-09-15 COMPNOLI Chromium 7.8 mg/lsg dw Trich RG ACCK COMPNOLIS 2022-09-15 COMPNOLI Chromium 7.8 mg/lsg dw Trich RG ACCK COMPNOLIS 2022-09-15 COMPNOLI Chromium 7.8 mg/lsg dw Trich RG ACCK COMPNOLIS 2022-09-15 COMPNOLI Chromium 7.8 mg/lsg dw Trich RG ACCK COMPNOLIS 2022-09-15 COMPNOLI Chromium 7.8 mg/lsg dw Trich RG ACCK COMPNOLIS 2022-09-15 COMPNOLI Chromium 7.8 mg/lsg dw Trich RG ACCK COMPNOLIS 2022-09-15 COMPNOLI Chromium 7.9 mg/lsg dw Trich RG ACCK COMPNOLIS 2022-09-15 COMPNOLI Chromium RG ACCK COMPNOLIS 2022-09-15 COMPNOLI RG ACCK COMPNOL	INV	_									0 0		RG_AGCK_COMPNOLI-3_2022-09-15_N
NY RG AGCK 667541 5488612 2022 3 2022-09-15 COMPNOLI Aluminum 113 mghtg dw Trich RG AGCK COMPNOLI 2022-09-15 COMPNOLI Probabinus 9.099 mghtg dw Trich RG AGCK COMPNOLI 2022-09-15 COMPNOLI Probabinus 9.099 mghtg dw Trich RG AGCK COMPNOLI 2022-09-15 COMPNOLI Probabinus 9.099 mghtg dw Trich RG AGCK COMPNOLI 2022-09-15 COMPNOLI Calcium 2,425 mghtg dw Trich RG AGCK COMPNOLI 2022-09-15 COMPNOLI 2022-09-15 COMPNOLI 24.75 mghtg dw Trich RG AGCK COMPNOLI 2022-09-15 COMPNOLI Tilanium 6.5 mghtg dw Trich RG AGCK COMPNOLI 2022-09-15 COMPNOLI Tilanium 6.5 mghtg dw Trich RG AGCK COMPNOLI 2022-09-15 COMPNOLI Tilanium 6.6 mghtg dw Trich RG AGCK COMPNOLI 2022-09-15 COMPNOLI Tilanium 7.8 mghtg dw Trich RG AGCK COMPNOLI 2022-09-15 COMPNOLI Tilanium 7.8 mghtg dw Trich RG AGCK COMPNOLI 2022-09-15 COMPNOLI Tilanium 7.8 mghtg dw Trich RG AGCK COMPNOLI 2022-09-15 COMPNOLI Tilanium 7.8 mghtg dw Trich RG AGCK COMPNOLI 2022-09-15 COMPNOLI Tilanium 7.8 mghtg dw Trich RG AGCK COMPNOLI 2022-09-15 COMPNOLI Tilanium 7.8 mghtg dw Trich RG AGCK COMPNOLI 2022-09-15 COMPNOLI Tilanium 7.8 mghtg dw Trich RG AGCK COMPNOLI 2022-09-15 COMPNOLI	INV	_				3			Sodium			Trich	RG_AGCK_COMPNOLI-3_2022-09-15_N
No. RG. AGCK 667541 5488612 2022 3 2022-09-16 COMPNOLI Phosphous 9.099 mghg dw Trich RG. AGCK COMPNOLI 5488612 2022 3 2022-09-16 COMPNOLI Calcium 2.425 mghg dw Trich RG. AGCK COMPNOLI State Composition Research Resear	INV	_				3			•			Trich	RG_AGCK_COMPNOLI-3_2022-09-15_N
NY RG AGCK 667541 5488612 2022 3 2022-09-15 COMPNOLI Polassium 8,667 mg/kg dw Trich RG AGCK COMPNOLI 3022-09-15 COMPNOLI Calcium 2,425 mg/kg dw Trich RG AGCK COMPNOLI 3022-09-15 COMPNOLI Trianium 6.5 mg/kg dw Trich RG AGCK COMPNOLI 3022-09-15 COMPNOLI Vanadium 0.43 mg/kg dw Trich RG AGCK COMPNOLI 3022-09-15 COMPNOLI Vanadium 0.43 mg/kg dw Trich RG AGCK COMPNOLI 3022-09-15 COMPNOLI Vanadium 0.43 mg/kg dw Trich RG AGCK COMPNOLI 3022-09-15 COMPNOLI Vanadium 0.43 mg/kg dw Trich RG AGCK COMPNOLI 3022-09-15 COMPNOLI Chromium 7.8 mg/kg dw Trich RG AGCK COMPNOLI 3022-09-15 COMPNOLI Manganese 7.0 mg/kg dw Trich RG AGCK COMPNOLI 3022-09-15 COMPNOLI Manganese 7.0 mg/kg dw Trich RG AGCK COMPNOLI 3022-09-15 COMPNOLI Manganese 7.0 mg/kg dw Trich RG AGCK COMPNOLI 3022-09-15 COMPNOLI Trich RG AGCK COMPNOLI RG AGCK R67541 5488612 2022 3 2022-09-15 COMPNOLI Trich RG AGCK R67541 S488612 2022 3 2022-09-15 COMPNOLI Trich RG AGCK R67541 RG AGCK R67541 S488612 2022 3 2022-09-15 COMPNOLI R014-04 R	INV	_		5488612	2022	3		COMPNOLI	Aluminum		mg/kg dw	Trich	RG_AGCK_COMPNOLI-3_2022-09-15_N
No. RG_AGCK 667541 5488612 2022 3 2022-09-15 COMPNOLI Calcium 2,425 mg/kg dw Trich RG_AGCK_COMPNOLIS_2022-0 Trich RG_AGCK_COMPNOLIS_2022-0 Trich RG_AGCK_COMPNOLIS_2022-0 RG_A	INV	_	667541	5488612		3	2022-09-15	COMPNOLI	Phosphorus		mg/kg dw	Trich	RG_AGCK_COMPNOLI-3_2022-09-15_N
NY RG AGCK 687541 5488612 2022 3 2022-09-15 COMPNOLI Tilanium 6.5 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Vanadum 0.43 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Chromium 7.8 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Chromium 7.8 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Chromium 7.8 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Chromium 7.8 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Iron 219 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Iron 219 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Iron 219 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Iron 219 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Iron 219 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Cobalt	INV	RG_AGCK	667541	5488612	2022	3	2022-09-15	COMPNOLI	Potassium	8,567	mg/kg dw	Trich	RG_AGCK_COMPNOLI-3_2022-09-15_N
NY RG AGCK 667541 5488612 2022 3 2022-09-15 COMPNOLI Chember Composite	INV	RG_AGCK	667541	5488612	2022	3	2022-09-15	COMPNOLI	Calcium	2,425	mg/kg dw	Trich	RG_AGCK_COMPNOLI-3_2022-09-15_N
NY RG AGCK 667541 5488612 2022 3 2022-09-15 COMPNOLI Chromium 7.8 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Manganese 7.0 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Iron 219 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Iron 219 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Iron 219 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI RICKER 110 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI RICKER 111 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI RICKER 112 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI RICKER 112 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI RICKER 112 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI RICKER 112 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 RICKER	INV	RG_AGCK	667541	5488612	2022	3	2022-09-15	COMPNOLI	Titanium	6.5	mg/kg dw	Trich	RG_AGCK_COMPNOLI-3_2022-09-15_N
NY RG AGCK 667541 5488612 2022 3 2022-09-15 COMPNOLI Manganese 7.0 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI fron 219 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Cobalt 0.45 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Nickel 111 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Nickel 111 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Nickel 111 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Nickel 111 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Copper 12 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Copper 12 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Arsenic 1.2 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Arsenic 1.2 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Arsenic 1.2 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Arsenic 1.2 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Arsenic 1.2 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Seitentum 7.0 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Seitentum 7.0 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Signetum 4.5 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Signetum 4.5 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Mg/kgdenum 0.37 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Signetum 4.5 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Mg/kgdenum 0.37 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Signetum 4.5 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Cadmium 1.2 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Residentum 4.5 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Residentum 4.5 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Residentum	INV	RG_AGCK	667541	5488612	2022	3	2022-09-15	COMPNOLI	Vanadium	0.43	mg/kg dw	Trich	RG_AGCK_COMPNOLI-3_2022-09-15_N
RG AGCK 667541 5488612 2022 3 2022-09-15 COMPNOLI Iron 219 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Cobatt 0.455 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Nickel 11 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Nickel 11 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Nickel 11 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Nickel 11 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Zinc 179 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Zinc 179 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Zinc 179 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Zinc 179 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Zinc 179 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Selenium Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Trich RG AGCK COMPNOLI	INV	RG_AGCK	667541	5488612	2022	3	2022-09-15	COMPNOLI	Chromium	7.8	mg/kg dw	Trich	RG_AGCK_COMPNOLI-3_2022-09-15_N
No. RG AGCK 667541 5488612 2022 3 2022-09-15 COMPNOLI Cobalt 0.45 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Nickel 11 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Nickel 11 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Nickel 11 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Zinc 179 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Zinc 179 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Zinc 179 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Zinc 179 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Zinc 179 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Selenium T.0 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Selenium T.0 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Selenium T.0 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Selenium T.0 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Selenium T.0 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Molybdenum 0.37 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Molybdenum 0.37 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Silver 0.14 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Silver 0.14 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Silver 0.14 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Silver 0.14 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Silver 0.14 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Silver 0.14 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Silver 0.14 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Silver 0.14 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Silver 0.14 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-0	INV	RG_AGCK	667541	5488612	2022	3	2022-09-15	COMPNOLI	Manganese	7.0	mg/kg dw	Trich	RG_AGCK_COMPNOLI-3_2022-09-15_N
NY RG AGCK 667541 5488612 2022 3 2022-09-15 COMPNOLI Cobalt 0.45 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-0 NY RG AGCK 667541 5488612 2022 3 2022-09-15 COMPNOLI Nickel 11 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-0 NY RG AGCK 667541 5488612 2022 3 2022-09-15 COMPNOLI Zinc 179 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-0 NY RG AGCK 667541 5488612 2022 3 2022-09-15 COMPNOLI Zinc 179 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-0 NY RG AGCK 667541 5488612 2022 3 2022-09-15 COMPNOLI Selenium T.0 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-0 NY RG AGCK 667541 5488612 2022 3 2022-09-15 COMPNOLI Selenium T.0 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-0 NY RG AGCK 667541 5488612 2022 3 2022-09-15 COMPNOLI Selenium T.0 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-0 NY RG AGCK 667541 5488612 2022 3 2022-09-15 COMPNOLI Molybdenum 0.37 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-0 NY RG AGCK 667541 5488612 2022 3 2022-09-15 COMPNOLI Molybdenum 0.37 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-0 NY RG AGCK 667541 5488612 2022 3 2022-09-15 COMPNOLI Silver 0.14 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-0 NY RG AGCK 667541 5488612 2022 3 2022-09-15 COMPNOLI Cadmium 1.2 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-0 NY RG AGCK 667541 5488612 2022 3 2022-09-15 COMPNOLI Cadmium 1.2 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-0 NY RG AGCK 667541 5488612 2022 3 2022-09-15 COMPNOLI Trich RG AGCK COMPNOLI-3 2022-0 NY RG AGCK 667541 5488612 2022 3 2022-09-15 COMPNOLI Rainum 5.7 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-0 NY RG AGCK 667541 5488612 2022 3 2022-09-15 COMPNOLI Rainum 5.7 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-0 NY RG AGCK 667541 5488612 2022 3 2022-09-15 COMPNOLI Rai	INV	RG AGCK	667541	5488612	2022	3	2022-09-15	COMPNOLI	Iron	219	mg/kg dw	Trich	RG AGCK COMPNOLI-3 2022-09-15 N
No. R.G. AGCK 667541 5488612 2022 3 2022-09-15 COMPNOLI Copper 12 mg/kg dw Trich R.G. AGCK COMPNOLI-3 2022-09-15 COMPNOLI Copper 12 mg/kg dw Trich R.G. AGCK COMPNOLI-3 2022-09-15 COMPNOLI Zinc 179 mg/kg dw Trich R.G. AGCK COMPNOLI-3 2022-09-15 COMPNOLI Zinc 179 mg/kg dw Trich R.G. AGCK COMPNOLI-3 2022-09-15 COMPNOLI Zinc 179 mg/kg dw Trich R.G. AGCK COMPNOLI-3 2022-09-15 COMPNOLI Arisenic 1.2 mg/kg dw Trich R.G. AGCK COMPNOLI-3 2022-09-15 COMPNOLI Selenium 7.0 mg/kg dw Trich R.G. AGCK COMPNOLI-3 2022-09-15 COMPNOLI Selenium 7.0 mg/kg dw Trich R.G. AGCK COMPNOLI-3 2022-09-15 COMPNOLI Strontium 4.5 mg/kg dw Trich R.G. AGCK COMPNOLI-3 2022-09-15 COMPNOLI Strontium 4.5 mg/kg dw Trich R.G. AGCK COMPNOLI-3 2022-09-15 COMPNOLI Strontium 4.5 mg/kg dw Trich R.G. AGCK COMPNOLI-3 2022-09-15 COMPNOLI Strontium 4.5 mg/kg dw Trich R.G. AGCK COMPNOLI-3 2022-09-15 COMPNOLI Strontium 4.5 mg/kg dw Trich R.G. AGCK COMPNOLI-3 2022-09-15 COMPNOLI Strontium 4.5 mg/kg dw Trich R.G. AGCK COMPNOLI-3 2022-09-15 COMPNOLI Strontium 4.5 mg/kg dw Trich R.G. AGCK COMPNOLI-3 2022-09-15 COMPNOLI Strontium 4.5 mg/kg dw Trich R.G. AGCK COMPNOLI-3 2022-09-15 COMPNOLI Strontium 4.5 mg/kg dw Trich R.G. AGCK COMPNOLI-3 2022-09-15 COMPNOLI Strontium 4.5 mg/kg dw Trich R.G. AGCK COMPNOLI-3 2022-09-15 COMPNOLI Strontium 4.5 mg/kg dw Trich R.G. AGCK COMPNOLI-3 2022-09-15 COMPNOLI Trin 0.78 mg/kg dw Trich R.G. AGCK COMPNOLI-3 2022-09-15 COMPNOLI Trin 0.78 mg/kg dw Trich R.G. AGCK COMPNOLI-3 2022-09-15 COMPNOLI Trin R.G. AGCK COMPNOL	INV	RG AGCK	667541	5488612	2022	3	2022-09-15	COMPNOLI	Cobalt	0.45		Trich	RG AGCK COMPNOLI-3 2022-09-15 N
NY RG AGCK 667541 5488612 2022 3 2022-09-15 COMPNOLI Copper 12 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Zinc 179 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Zinc 179 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Arsenic 1.2 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Arsenic 1.2 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Selenium 7.0 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Selenium 7.0 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Selenium 7.0 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Selenium 7.0 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Selenium 7.0 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Selenium 7.0 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Selenium 7.0 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Molybdenum 0.37 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Selenium 7.0 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Selenium 7.0 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Cadmium 7.0 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Cadmium 7.0 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Amtimony 0.022 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Barium 5.7 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Barium 5.7 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Barium 5.7 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Trich RG AGCK COMPNOLI-3	INV			5488612	2022	3	2022-09-15	COMPNOLI	Nickel	11		Trich	RG AGCK COMPNOLI-3 2022-09-15 N
RG AGCK 667541 5488612 2022 3 2022-09-15 COMPNOLI Zinc 179 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Arisenic 1.2 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Selenium 7.0 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Selenium 7.0 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Strontium 4.5 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Strontium 4.5 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Strontium 4.5 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Strontium 4.5 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Silver 0.14 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Silver 0.14 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Silver 0.14 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Silver 0.14 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Silver 0.14 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Antimony 0.022 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Antimony 0.022 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Barium 5-7 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Trich RG AGCK COMPNO	INV			5488612	2022	3		COMPNOLI	Copper	12		Trich	RG AGCK COMPNOLI-3 2022-09-15 N
NY RG AGCK 667541 5488612 2022 3 2022-09-15 COMPNOLI Arsenic 1.2 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Selenium 7.0 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Strontium 4.5 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Strontium 4.5 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Strontium 4.5 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Molybdenum 0.37 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Silver 0.14 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Silver 0.14 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Cadmium 1.2 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Cadmium 1.2 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Artimony 0.022 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Artimony 0.022 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Barium 5.7 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Barium 5.7 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Mercury 0.042 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Mercury 0.042 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Trailium 0.13 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Lead 0.063 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Mercury 0.042 Mg/kg dw Trich RG	INV	_				3			• • • • • • • • • • • • • • • • • • • •				RG AGCK COMPNOLI-3 2022-09-15 N
NV RG AGCK 667541 5488612 2022 3 2022-09-15 COMPNOLI Selenium 7.0 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Strontium 4.5 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Strontium 4.5 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Molybdenum 0.37 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Silver 0.14 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Silver 0.14 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Silver 0.14 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Silver 0.14 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Silver 0.14 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Antimony 0.022 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Antimony 0.022 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Antimony 0.022 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Antimony 0.042 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Mercury 0.042 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Mercury 0.042 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Lead 0.063 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Lead 0.063 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Lead 0.063 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Lead 0.063 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Dry Mass 0.	INV	_	_			3			Arsenic			+	RG AGCK COMPNOLI-3 2022-09-15 N
RG AGCK 667541 5488612 2022 3 2022-09-15 COMPNOLI Strontium 4.5 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Molybdenum 0.37 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Silver 0.14 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Silver 0.14 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Silver 0.14 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Cadmium 1.2 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Cadmium 1.2 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Trich Cadmium 1.2 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Trich Cadmium 1.2 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Trich Cadmium 1.2 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Antimony 0.022 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Antimony 0.022 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Barium 5.7 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Barium 5.7 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Mercury 0.042 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Triallium 0.13 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Triallium 0.13 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Lead 0.063 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Lead 0.063 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Dry Mass 0.014 g Trich RG AGCK COMPNOLI-3 2022-09-	INV			5488612		3		COMPNOLI	Selenium	7.0	<u> </u>	Trich	RG AGCK COMPNOLI-3 2022-09-15 N
RG_AGCK 667541 5488612 2022 3 2022-09-15 COMPNOLI Molybdenum 0.37 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Silver 0.14 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Silver 0.14 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Cadmium 1.2 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Tin 0.78 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Tin 0.78 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Tin 0.78 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Antimony 0.022 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Antimony 0.022 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Barium 5.7 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Mercury 0.042 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Mercury 0.042 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Mercury 0.042 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Thallium 0.13 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Thallium 0.13 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Thallium 0.13 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Dry Mass 0.018 g Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Dry Mass 0.018 g Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Dry Mass 0.018 g Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Dry Mass 0.018 g Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Dry Mass 0.018 g Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Dry Mass 0.018 g Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Dry Mass 0.0	INV												RG AGCK COMPNOLI-3 2022-09-15 N
NV RG AGCK 667541 5488612 2022 3 2022-09-15 COMPNOLI Silver 0.14 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Cadmium 1.2 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Trin 0.78 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Trin 0.78 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Trin 0.78 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Trin 0.78 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Antimony 0.022 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Barium 5.7 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Barium 5.7 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Mercury 0.042 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Thallium 0.13 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Thallium 0.13 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Lead 0.063 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Lead 0.063 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw	INV	_											RG AGCK COMPNOLI-3 2022-09-15 N
NV RG_AGCK 667541 5488612 2022 3 2022-09-15 COMPNOLI Cadmium 1.2 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Tin 0.78 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Tin 0.78 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Tin 0.78 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Antimony 0.022 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Barium 5.7 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Barium 5.7 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Mercury 0.042 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Mercury 0.042 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Mercury 0.042 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Thallium 0.13 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Lead 0.063 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Lead 0.063 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Dry Mass 0.018 g Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Dry Mass 0.018 g Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Dry Mass 0.018 g Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Dry Mass 0.018 g Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Dry Mass 0.018 g Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Dry Mass 0.018 g Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Dry Mass 0.018 g Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Dry Mass 0.018 g Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Dry Mass 0.018 g Trich RG_AGC	INV	_	_						·				
NV RG AGCK 667541 5488612 2022 3 2022-09-15 COMPNOLI Tin 0.78 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Antimony 0.022 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Barium 5.7 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Barium 5.7 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Barium 5.7 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Barium 5.7 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Mercury 0.042 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Thallium 0.13 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Lead 0.063 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Lead 0.063 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG AGCK COMPNOLI-3 2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG CORCK ROMPNOLI-3 2022-09-15 COMPNOLI Uranium 0.26 mg/kg dw Trich RG CORCK ROMPNOLI-3 2022-09-15 COMPNOLI Uranium 0.26	INV	_											
RG AGCK 667541 5488612 2022 3 2022-09-15 COMPNOLI Barium 5.7 mg/kg dw Trich RG AGCK COMPNOLI-3_2022-09-15 COMPNOLI Barium 5.7 mg/kg dw Trich RG AGCK COMPNOLI-3_2022-09-15 COMPNOLI Barium 5.7 mg/kg dw Trich RG AGCK COMPNOLI-3_2022-09-15 COMPNOLI Mercury 0.042 mg/kg dw Trich RG AGCK COMPNOLI-3_2022-09-15 COMPNOLI Mercury 0.042 mg/kg dw Trich RG AGCK COMPNOLI-3_2022-09-15 COMPNOLI Thallium 0.13 mg/kg dw Trich RG AGCK COMPNOLI-3_2022-09-15 COMPNOLI Thallium 0.13 mg/kg dw Trich RG AGCK COMPNOLI-3_2022-09-15 COMPNOLI Thallium 0.042 mg/kg dw Trich RG AGCK COMPNOLI-3_2022-09-15 COMPNOLI Thallium 0.050 mg/kg dw Trich RG AGCK COMPNOLI-3_2022-09-15 COMPNOLI Thallium 0.063 mg/kg dw Trich RG AGCK COMPNOLI-3_2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG AGCK COMPNOLI-3_2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG AGCK COMPNOLI-3_2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG AGCK COMPNOLI-3_2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG AGCK COMPNOLI-3_2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG AGCK COMPNOLI-3_2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG AGCK COMPNOLI-3_2022-09-15 COMPNOLI Dry Mass 0.018 g Trich RG AGCK COMPNOLI-3_2022-09-15 COMPNOLI Dry Mass 0.018 g Trich RG AGCK COMPNOLI-3_2022-09-15 COMPNOLI Dry Mass 0.018 g Trich RG AGCK COMPNOLI-3_2022-09-15 COMPNOLI Dry Mass 0.018 d Trich RG AGCK COMPNOLI-3_2022-09-15 COMPNOLI Dry Mass 0.018 d Trich RG AGCK COMPNOLI-3_2022-09-15 COMPNOLI Dry Mass 0.018 d Trich RG AGCK COMPNOLI-3_2022-09-15 COMPNOLI Dry Mass 0.018 d Trich RG AGCK COMPNOLI-3_2022-09-15 COMPNOLI Dry Mass 0.018 d Trich RG AGCK COMPNOLI-3_2022-09-15 COMPNOLI Dry Mass 0.018 d Trich RG AGCK COMPNOLI-3_2022-09-15 COMPNOLI Dry Mass 0.018 d Trich RG AGCK COMPNOLI-3_2022-09-15 COMPNOLI Dry Mass 0.018 d Trich RG AGCK COMPNOLI-3_2022-09-15 COMPNOLI Dry Mass 0.018 d Trich RG AGCK COMPNOLI-3_2022-09-15 COMPNOLI Dry Mass 0.018 d Trich RG AGCK COMPNOLI-3_2022-09-15 COMPNOLI Dry Mass 0.018 d Trich RG AGCK COMPNOLI-3_2022-09-15 COMPNOLI Dry Mass 0.018 d Trich RG AGCK COMPNOLI-3_2022	INV				_								
RG_AGCK 667541 5488612 2022 3 2022-09-15 COMPNOLI Barium 5.7 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Mercury 0.042 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Mercury 0.042 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Thallium 0.13 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Thallium 0.13 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Lead 0.063 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG_CORCK_INV-1_2022-09-14 COMPNOLI Uranium 0.026 mg/kg dw Trich RG_CORCK_INV-1_2022-09-14 COMPNOLI Uranium 0.026 mg/kg dw Trich RG_CORCK_INV-1_2022-09-14 COMPNOLI Uranium 0.026 mg/kg dw Trich RG_CORCK_INV-1_2022-09-14 COMPNOLI Uranium 0.026 mg/kg dw Trich RG_CORCK_INV-1_2022-09-14 COMPNOLI Uranium 0.026 mg/kg dw Trich RG_CORCK_INV-1_2022-09-14 COMPNOLI Uranium 0.026 mg/kg dw Trich RG_CORCK_INV-1_2022-09-14 COMPNOLI Uranium 0.026 mg/kg dw Trich RG_CORCK_INV-1_2022-09-14 COMPNOLI Uranium 0.026 mg/kg dw Trich RG_CORCK_INV-1_2022-09-14 COMPNOLI Uranium 0.026 mg/kg dw Trich RG_CORCK_INV-1_2022-09-14 COMPNOLI Ur	INV		_										
RG_AGCK 667541 5488612 2022 3 2022-09-15 COMPNOLI Mercury 0.042 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Thallium 0.13 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Thallium 0.13 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Lead 0.063 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Uranium 0.26 mg/kg dw Trich RG_CORCK_INV-1_2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG_CORCK_INV-1_2022-09-15 COMPNOLI Uranium	INV	_											
NV RG_AGCK 667541 5488612 2022 3 2022-09-15 COMPNOLI Thallium 0.13 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Lead 0.063 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Lead 0.063 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Wet Mass 0.074 g Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Dry Mass 0.018 g Trich RG_AGCK_COMPNOLI-3_2022-	INV	_											
RG_AGCK 667541 5488612 2022 3 2022-09-15 COMPNOLI Lead 0.063 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Wet Mass 0.074 g Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Dry Mass 0.018 g Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Dry Mass 0.018 g Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Dry Mass 0.018 g Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Modisture 76 % Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Modisture 76 % Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Modisture 76 % Trich RG_AGCK_COMPNOLI-3_2022-09-14 Composite Lithium 0.26 mg/kg dw Trich RG_CORCK_INV-1_2022-09-14 Composite Boron 1.0 mg/kg dw Trich RG_CORCK_INV-1_2022-09-14 Composite Sodium 2,649 mg/kg dw Trich RG_CORCK_INV-1_2022-09-14 Composite Sodium 1,132 mg/kg dw Trich RG_CORCK_INV-1_2022-09-14 Composite Magnesium 1,132 mg/kg dw Trich RG_CORCK_I						1			,				
RV RG_AGCK 667541 5488612 2022 3 2022-09-15 COMPNOLI Uranium 0.026 mg/kg dw Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Wet Mass 0.074 g Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Dry Mass 0.018 g Trich RG_AGCK_COMPNOLI-3_2022-09-109-109-109-109-109-109-109-109-109-		_											
NV RG_AGCK 667541 5488612 2022 3 2022-09-15 COMPNOLI Wet Mass 0.074 g Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Dry Mass 0.018 g Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Dry Mass 0.018 g Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Mr. RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Mr. RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Mr. RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Mr. RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI Mr. RG_CORCK 668529 5487366 2022 1 2022-09-14 Composite Lithium 0.26 mg/kg dw Trich RG_CORCK_INV-1_2022-09-14 COMPNOLI Mr. RG_CORCK_COMPNOLI-3_2022-09-14 COMPNOLI Mr. RG_CORCK_COMPNOLI	_												
NV RG_AGCK 667541 5488612 2022 3 2022-09-15 COMPNOLI Dry Mass 0.018 g Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI % Moisture 76 % Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI % Moisture 76 % Trich RG_AGCK_COMPNOLI-3_2022-09-15 COMPNOLI % Moisture 76 % Trich RG_AGCK_COMPNOLI-3_2022-09-16 W RG_CORCK 668529 5487366 2022 1 2022-09-14 Composite Lithium 0.26 mg/kg dw Trich RG_CORCK_INV-1_2022-09-14 W RG_CORCK 668529 5487366 2022 1 2022-09-14 Composite Boron 1.0 mg/kg dw Trich RG_CORCK_INV-1_2022-09-14 W RG_CORCK 668529 5487366 2022 1 2022-09-14 Composite Sodium 2,649 mg/kg dw Trich RG_CORCK_INV-1_2022-09-14 W RG_CORCK 668529 5487366 2022 1 2022-09-14 Composite Magnesium 1,132 mg/kg dw Trich RG_CORCK_INV-1_2022-09-14 W RG_CORCK 668529 5487366 2022 1 2022-09-14 Composite Magnesium 1,132 mg/kg dw Trich RG_CORCK_INV-1_2022-09-14 W RG_CORCK_INV-1_2022-09-14 Composite Magnesium 1,132 mg/kg dw Trich RG_CORCK_INV-1_2022-09-14 W RG_CORCK_INV-1_2022-09-14 Composite Magnesium 1,132 mg/kg dw Trich RG_CORCK_INV-1_2022-09-14 W RG_CORCK_INV-1_2022-09-14 Composite Magnesium 1,132 mg/kg dw Trich RG_CORCK_INV-1_2022-09-14 W RG_CORCK_INV-1_2022-09-14 Composite Magnesium 1,132 mg/kg dw Trich RG_CORCK_INV-1_2022-09-14 W RG_CORCK_INV-1_2022-09-14 Composite Magnesium 1,132 mg/kg dw Trich RG_CORCK_INV-1_2022-09-14 W RG_CORCK_INV-1_2022-09-14 Composite Magnesium 1,132 mg/kg dw Trich RG_CORCK_INV-1_2022-09-14 W RG_CORCK_INV-1_2022-09-14		_											
NV RG_AGCK 667541 5488612 2022 3 2022-09-15 COMPNOLI % Moisture 76 % Trich RG_AGCK_COMPNOLI-3_2022-09-14 Composite Lithium 0.26 mg/kg dw Trich RG_CORCK_INV-1_2022-09-14 Composite Boron 1.0 mg/kg dw Trich RG_CORCK_INV-1_2022-09-14 Composite Sodium 2,649 mg/kg dw Trich RG_CORCK_INV-1_2022-09-14 Composite Sodium 1,132 mg/kg dw Trich RG_CORCK_INV-1_2022-09-14 Composite Magnesium 1,132 mg/kg dw Trich RG_CORCK_INV-1_2022-09-14 Composite Mag	INV	_			_						<u> </u>		
NV RG_CORCK 668529 5487366 2022 1 2022-09-14 Composite Lithium 0.26 mg/kg dw Trich RG_CORCK_INV-1_2022-09-14 NV RG_CORCK 668529 5487366 2022 1 2022-09-14 Composite Boron 1.0 mg/kg dw Trich RG_CORCK_INV-1_2022-09-14 NV RG_CORCK 668529 5487366 2022 1 2022-09-14 Composite Sodium 2,649 mg/kg dw Trich RG_CORCK_INV-1_2022-09-14 NV RG_CORCK 668529 5487366 2022 1 2022-09-14 Composite Magnesium 1,132 mg/kg dw Trich RG_CORCK_INV-1_2022-09-14 NV RG_CORCK 668529 5487366 2022 1 2022-09-14 NV RG_CORCK_INV-1_2022-09-14	INV	_				1			•				
NV RG_CORCK 668529 5487366 2022 1 2022-09-14 Composite Boron 1.0 mg/kg dw Trich RG_CORCK_INV-1_2022-09-14	INV	_				3							
NV RG_CORCK 668529 5487366 2022 1 2022-09-14 Composite Sodium 2,649 mg/kg dw Trich RG_CORCK_INV-1_2022-09-14 Composite Magnesium 1,132 mg/kg dw Trich RG_CORCK_INV-1_2022-09-14 Composite Magnesium 1,132 mg/kg dw Trich RG_CORCK_INV-1_2022-09-14 RG_CORCK_	INV	_				1							
NV RG_CORCK 668529 5487366 2022 1 2022-09-14 Composite Magnesium 1,132 mg/kg dw Trich RG_CORCK_INV-1_2022-09-14	INV	_	_			1							
	INV	_				1							
NV RG_CORCK 668529 5487366 2022 1 2022-09-14 Composite Aluminum 113 mg/kg dw Trich RG_CORCK_INV-1 2022-09-14	INV	_	_		_	1							
	INV	RG_CORCK	668529	5487366	2022	1	2022-09-14	Composite	Aluminum	113	mg/kg dw	Trich	RG_CORCK_INV-1_2022-09-14_N

Reference No. 22574542-001-R-Rev0-1000

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Type	Station	Location	n (UTMs) ^(a)	Year	Replicate	Date	Species/Composite	Analyte	Posult	Unit		Laboratory Information
Туре	Station	Easting	Northing	rear	Replicate	Date	Species/Composite	Analyte	Result	Unit	Lab	Sample ID
INV	RG_CORCK	668529	5487366	2022	1	2022-09-14	Composite	Phosphorus	8,222	mg/kg dw	Trich	RG_CORCK_INV-1_2022-09-14_N
INV	RG_CORCK	668529	5487366	2022	1	2022-09-14	Composite	Potassium	8,371	mg/kg dw	Trich	RG_CORCK_INV-1_2022-09-14_N
INV	RG_CORCK	668529	5487366	2022	1	2022-09-14	Composite	Calcium	2,541	mg/kg dw	Trich	RG CORCK INV-1 2022-09-14 N
INV	RG_CORCK	668529	5487366	2022	1	2022-09-14	Composite	Titanium	6.0	mg/kg dw	Trich	RG CORCK INV-1 2022-09-14 N
INV	RG CORCK	668529	5487366	2022	1	2022-09-14	Composite	Vanadium	0.22	mg/kg dw	Trich	RG CORCK INV-1 2022-09-14 N
INV	RG CORCK	668529	5487366	2022	1	2022-09-14	Composite	Chromium	4.4	mg/kg dw	Trich	RG CORCK INV-1 2022-09-14 N
INV	RG CORCK	668529	5487366	2022	1	2022-09-14	Composite	Manganese	68	mg/kg dw	Trich	RG CORCK INV-1 2022-09-14 N
INV	RG CORCK	668529	5487366	2022	1	2022-09-14	Composite	Iron	147	mg/kg dw	Trich	RG CORCK INV-1 2022-09-14 N
INV	RG CORCK	668529	5487366	2022	1	2022-09-14	Composite	Cobalt	12	mg/kg dw	Trich	RG CORCK INV-1 2022-09-14 N
INV	RG CORCK	668529	5487366	2022	1	2022-09-14	Composite	Nickel	14	mg/kg dw	Trich	RG CORCK INV-1 2022-09-14 N
INV	RG_CORCK	668529	5487366	2022	1	2022-09-14	Composite	Copper	11	mg/kg dw	Trich	RG CORCK INV-1 2022-09-14 N
INV	RG CORCK	668529	5487366	2022	1	2022-09-14	Composite	Zinc	119		Trich	RG CORCK INV-1 2022-09-14 N
INV	_	668529	5487366	2022	1		<u> </u>	Arsenic	<0.401	mg/kg dw	Trich	
	RG_CORCK				1	2022-09-14	Composite			mg/kg dw		RG_CORCK_INV-1_2022-09-14_N
INV	RG_CORCK	668529	5487366	2022	1	2022-09-14	Composite	Selenium	4.6	mg/kg dw	Trich	RG_CORCK_INV-1_2022-09-14_N
INV	RG_CORCK	668529	5487366	2022	1	2022-09-14	Composite	Strontium	9.5	mg/kg dw	Trich	RG_CORCK_INV-1_2022-09-14_N
INV	RG_CORCK	668529	5487366	2022	1	2022-09-14	Composite	Molybdenum	0.14	mg/kg dw	Trich	RG_CORCK_INV-1_2022-09-14_N
INV	RG_CORCK	668529	5487366	2022	1	2022-09-14	Composite	Silver	0.03	mg/kg dw	Trich	RG_CORCK_INV-1_2022-09-14_N
INV	RG_CORCK	668529	5487366	2022	1	2022-09-14	Composite	Cadmium	0.3	mg/kg dw	Trich	RG_CORCK_INV-1_2022-09-14_I
INV	RG_CORCK	668529	5487366	2022	1	2022-09-14	Composite	Tin	0.07	mg/kg dw	Trich	RG_CORCK_INV-1_2022-09-14_I
INV	RG_CORCK	668529	5487366	2022	1	2022-09-14	Composite	Antimony	0.033	mg/kg dw	Trich	RG_CORCK_INV-1_2022-09-14_I
INV	RG_CORCK	668529	5487366	2022	1	2022-09-14	Composite	Barium	3.9	mg/kg dw	Trich	RG_CORCK_INV-1_2022-09-14_I
INV	RG_CORCK	668529	5487366	2022	1	2022-09-14	Composite	Mercury	0.024	mg/kg dw	Trich	RG_CORCK_INV-1_2022-09-14_
INV	RG CORCK	668529	5487366	2022	1	2022-09-14	Composite	Thallium	0.021	mg/kg dw	Trich	RG CORCK INV-1 2022-09-14
INV	RG CORCK	668529	5487366	2022	1	2022-09-14	Composite	Lead	0.04	mg/kg dw	Trich	RG CORCK INV-1 2022-09-14
INV	RG CORCK	668529	5487366	2022	1	2022-09-14	Composite	Uranium	0.029	mg/kg dw	Trich	RG CORCK INV-1 2022-09-14
INV	RG CORCK	668529	5487366	2022	1	2022-09-14	Composite	Wet Mass	0.2	a a	Trich	RG CORCK INV-1 2022-09-14
INV	RG_CORCK	668529	5487366	2022	1	2022-09-14	Composite	Dry Mass	0.059	a	Trich	RG CORCK INV-1 2022-09-14
INV	RG_CORCK	668529	5487366	2022	1	2022-09-14	Composite	% Moisture	70	9 %	Trich	RG CORCK INV-1 2022-09-14
INV	RG_CORCK	668477	5487342	2022	2	2022-09-14	Composite	Lithium	0.26	mg/kg dw	Trich	RG_CORCK_INV-1_2022-09-14_
INV		668477	5487342	2022	2	2022-09-14	•	Boron			Trich	RG CORCK INV-2 2022-09-14
	RG_CORCK						Composite		1.0	mg/kg dw		
INV	RG_CORCK	668477	5487342	2022	2	2022-09-14	Composite	Sodium	4,101	mg/kg dw	Trich	RG_CORCK_INV-2_2022-09-14_I
INV	RG_CORCK	668477	5487342	2022	2	2022-09-14	Composite	Magnesium	1,796	mg/kg dw	Trich	RG_CORCK_INV-2_2022-09-14_I
INV	RG_CORCK	668477	5487342	2022	2	2022-09-14	Composite	Aluminum	116	mg/kg dw	Trich	RG_CORCK_INV-2_2022-09-14_
INV	RG_CORCK	668477	5487342	2022	2	2022-09-14	Composite	Phosphorus	12,064	mg/kg dw	Trich	RG_CORCK_INV-2_2022-09-14_
INV	RG_CORCK	668477	5487342	2022	2	2022-09-14	Composite	Potassium	9,000	mg/kg dw	Trich	RG_CORCK_INV-2_2022-09-14_
INV	RG_CORCK	668477	5487342	2022	2	2022-09-14	Composite	Calcium	4,134	mg/kg dw	Trich	RG_CORCK_INV-2_2022-09-14_I
INV	RG_CORCK	668477	5487342	2022	2	2022-09-14	Composite	Titanium	6.3	mg/kg dw	Trich	RG_CORCK_INV-2_2022-09-14_
INV	RG_CORCK	668477	5487342	2022	2	2022-09-14	Composite	Vanadium	0.29	mg/kg dw	Trich	RG_CORCK_INV-2_2022-09-14_
INV	RG_CORCK	668477	5487342	2022	2	2022-09-14	Composite	Chromium	6.8	mg/kg dw	Trich	RG_CORCK_INV-2_2022-09-14_
INV	RG_CORCK	668477	5487342	2022	2	2022-09-14	Composite	Manganese	51	mg/kg dw	Trich	RG_CORCK_INV-2_2022-09-14_
INV	RG_CORCK	668477	5487342	2022	2	2022-09-14	Composite	Iron	217	mg/kg dw	Trich	RG_CORCK_INV-2_2022-09-14_
INV	RG CORCK	668477	5487342	2022	2	2022-09-14	Composite	Cobalt	7.5	mg/kg dw	Trich	RG CORCK INV-2 2022-09-14
INV	RG CORCK	668477	5487342	2022	2	2022-09-14	Composite	Nickel	13	mg/kg dw	Trich	RG CORCK INV-2 2022-09-14
INV	RG CORCK	668477	5487342	2022	2	2022-09-14	Composite	Copper	16	mg/kg dw	Trich	RG CORCK INV-2 2022-09-14
INV	RG CORCK	668477	5487342	2022	2	2022-09-14	Composite	Zinc	167	mg/kg dw	Trich	RG CORCK INV-2 2022-09-14
INV	RG CORCK	668477	5487342	2022	2	2022-09-14	Composite	Arsenic	<0.401	mg/kg dw	Trich	RG CORCK INV-2 2022-09-14
INV	RG_CORCK	668477	5487342	2022	2	2022-09-14	Composite	Selenium	5.2	mg/kg dw	Trich	RG CORCK INV-2 2022-09-14
INV	RG CORCK	668477	5487342	2022	2	2022-09-14	Composite	Strontium	16	mg/kg dw	Trich	RG CORCK INV-2 2022-09-14
INV	RG_CORCK	668477	5487342	2022	2	2022-09-14	Composite		0.17		Trich	RG_CORCK_INV-2_2022-09-14_I
	_						<u> </u>	Molybdenum		mg/kg dw		
INV	RG_CORCK	668477	5487342	2022	2	2022-09-14	Composite	Silver	0.059	mg/kg dw	Trich	RG_CORCK_INV-2_2022-09-14_
INV	RG_CORCK	668477	5487342	2022	2	2022-09-14	Composite	Cadmium	0.45	mg/kg dw	Trich	RG_CORCK_INV-2_2022-09-14_
INV	RG_CORCK	668477	5487342	2022	2	2022-09-14	Composite	Tin	0.22	mg/kg dw	Trich	RG_CORCK_INV-2_2022-09-14_
INV	RG_CORCK	668477	5487342	2022	2	2022-09-14	Composite	Antimony	0.021	mg/kg dw	Trich	RG_CORCK_INV-2_2022-09-14_I
INV	RG_CORCK	668477	5487342	2022	2	2022-09-14	Composite	Barium	5.0	mg/kg dw	Trich	RG_CORCK_INV-2_2022-09-14_I
INV	RG_CORCK	668477	5487342	2022	2	2022-09-14	Composite	Mercury	0.03	mg/kg dw	Trich	RG_CORCK_INV-2_2022-09-14_f
INV	RG_CORCK	668477	5487342	2022	2	2022-09-14	Composite	Thallium	0.027	mg/kg dw	Trich	RG_CORCK_INV-2_2022-09-14_N
INV	RG CORCK	668477	5487342	2022	2	2022-09-14	Composite	Lead	0.054	mg/kg dw	Trich	RG CORCK INV-2 2022-09-14 I

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Туре	Station	Location	n (UTMs) ^(a)	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit		Laboratory Information
Type	Station	Easting	Northing	i eai	Replicate	Date	Species/Composite	Analyte	Result	Offic	Lab	Sample ID
INV	RG_CORCK	668477	5487342	2022	2	2022-09-14	Composite	Uranium	0.031	mg/kg dw	Trich	RG_CORCK_INV-2_2022-09-14_N
INV	RG_CORCK	668477	5487342	2022	2	2022-09-14	Composite	Wet Mass	0.17	g	Trich	RG_CORCK_INV-2_2022-09-14_N
INV	RG_CORCK	668477	5487342	2022	2	2022-09-14	Composite	Dry Mass	0.041	g	Trich	RG_CORCK_INV-2_2022-09-14_N
INV	RG_CORCK	668477	5487342	2022	2	2022-09-14	Composite	% Moisture	75	%	Trich	RG_CORCK_INV-2_2022-09-14_N
INV	RG CORCK	668482	5487337	2022	3	2022-09-14	Composite	Lithium	0.26	mg/kg dw	Trich	RG CORCK INV-3 2022-09-14 N
INV	RG CORCK	668482	5487337	2022	3	2022-09-14	Composite	Boron	1.0	mg/kg dw	Trich	RG CORCK INV-3 2022-09-14 N
INV	RG CORCK	668482	5487337	2022	3	2022-09-14	Composite	Sodium	2,839	mg/kg dw	Trich	RG CORCK INV-3 2022-09-14 N
INV	RG CORCK	668482	5487337	2022	3	2022-09-14	Composite	Magnesium	1,571	mg/kg dw	Trich	RG CORCK INV-3 2022-09-14 N
INV	RG CORCK	668482	5487337	2022	3	2022-09-14	Composite	Aluminum	131	mg/kg dw	Trich	RG CORCK INV-3 2022-09-14 N
INV	RG CORCK	668482	5487337	2022	3	2022-09-14	Composite	Phosphorus	9,860	mg/kg dw	Trich	RG CORCK INV-3 2022-09-14 N
INV	RG_CORCK	668482	5487337	2022	3	2022-09-14	Composite	Potassium	9,403	mg/kg dw	Trich	RG_CORCK_INV-3_2022-09-14_N
INV	RG CORCK	668482	5487337	2022	3	2022-09-14	Composite	Calcium	3,421		Trich	RG CORCK INV-3_2022-09-14_N
INV		668482	5487337	2022	3		<u>'</u>	Titanium	7.2	mg/kg dw	Trich	
	RG_CORCK					2022-09-14	Composite			mg/kg dw		RG_CORCK_INV-3_2022-09-14_N
INV	RG_CORCK	668482	5487337	2022	3	2022-09-14	Composite	Vanadium	0.25	mg/kg dw	Trich	RG_CORCK_INV-3_2022-09-14_N
INV	RG_CORCK	668482	5487337	2022	3	2022-09-14	Composite	Chromium	3.5	mg/kg dw	Trich	RG_CORCK_INV-3_2022-09-14_N
INV	RG_CORCK	668482	5487337	2022	3	2022-09-14	Composite	Manganese	61	mg/kg dw	Trich	RG_CORCK_INV-3_2022-09-14_N
INV	RG_CORCK	668482	5487337	2022	3	2022-09-14	Composite	Iron	155	mg/kg dw	Trich	RG_CORCK_INV-3_2022-09-14_N
INV	RG_CORCK	668482	5487337	2022	3	2022-09-14	Composite	Cobalt	7.5	mg/kg dw	Trich	RG_CORCK_INV-3_2022-09-14_N
INV	RG_CORCK	668482	5487337	2022	3	2022-09-14	Composite	Nickel	11	mg/kg dw	Trich	RG_CORCK_INV-3_2022-09-14_N
INV	RG_CORCK	668482	5487337	2022	3	2022-09-14	Composite	Copper	12	mg/kg dw	Trich	RG_CORCK_INV-3_2022-09-14_N
INV	RG_CORCK	668482	5487337	2022	3	2022-09-14	Composite	Zinc	150	mg/kg dw	Trich	RG_CORCK_INV-3_2022-09-14_N
INV	RG_CORCK	668482	5487337	2022	3	2022-09-14	Composite	Arsenic	<0.401	mg/kg dw	Trich	RG_CORCK_INV-3_2022-09-14_N
INV	RG CORCK	668482	5487337	2022	3	2022-09-14	Composite	Selenium	4.5	mg/kg dw	Trich	RG CORCK INV-3 2022-09-14 N
INV	RG CORCK	668482	5487337	2022	3	2022-09-14	Composite	Strontium	15	mg/kg dw	Trich	RG CORCK INV-3 2022-09-14 N
INV	RG CORCK	668482	5487337	2022	3	2022-09-14	Composite	Molybdenum	0.2	mg/kg dw	Trich	RG CORCK INV-3 2022-09-14 N
INV	RG CORCK	668482	5487337	2022	3	2022-09-14	Composite	Silver	0.037	mg/kg dw	Trich	RG CORCK INV-3 2022-09-14 N
INV	RG_CORCK	668482	5487337	2022	3	2022-09-14	Composite	Cadmium	0.77	mg/kg dw	Trich	RG CORCK INV-3 2022-09-14 N
INV	RG_CORCK	668482	5487337	2022	3	2022-09-14	Composite	Tin	0.26	mg/kg dw	Trich	RG_CORCK_INV-3_2022-09-14_N
INV	RG_CORCK	668482	5487337	2022	3	2022-09-14	Composite	Antimony	0.027	mg/kg dw	Trich	RG_CORCK_INV-3_2022-09-14_N
INV	RG_CORCK	668482	5487337	2022	3	2022-09-14	Composite	Barium	6.8	mg/kg dw	Trich	RG CORCK INV-3 2022-09-14 N
INV	RG CORCK	668482	5487337	2022	3	2022-09-14	Composite	Mercury	0.042	mg/kg dw	Trich	RG CORCK INV-3 2022-09-14 N
INV	RG_CORCK		5487337	2022		2022-09-14	· · · · · · · · · · · · · · · · · · ·	•			Trich	RG CORCK INV-3 2022-09-14 N
		668482			3		Composite	Thallium	0.016	mg/kg dw		
INV	RG_CORCK	668482	5487337	2022	3	2022-09-14	Composite	Lead	0.042	mg/kg dw	Trich	RG_CORCK_INV-3_2022-09-14_N
INV	RG_CORCK	668482	5487337	2022	3	2022-09-14	Composite	Uranium	0.026	mg/kg dw	Trich	RG_CORCK_INV-3_2022-09-14_N
INV	RG_CORCK	668482	5487337	2022	3	2022-09-14	Composite	Wet Mass	0.14	g	Trich	RG_CORCK_INV-3_2022-09-14_N
INV	RG_CORCK	668482	5487337	2022	3	2022-09-14	Composite	Dry Mass	0.034	g	Trich	RG_CORCK_INV-3_2022-09-14_1
INV	RG_CORCK	668482	5487337	2022	3	2022-09-14	Composite	% Moisture	75	%	Trich	RG_CORCK_INV-3_2022-09-14_1
INV	RG_LE1	659588	5494017	2022	1	2022-09-16	Composite	Lithium	0.17	mg/kg dw	Trich	RG_LE1_INV-1_2022-09-16_N
INV	RG_LE1	659588	5494017	2022	1	2022-09-16	Composite	Boron	0.39	mg/kg dw	Trich	RG_LE1_INV-1_2022-09-16_N
INV	RG_LE1	659588	5494017	2022	1	2022-09-16	Composite	Sodium	4,026	mg/kg dw	Trich	RG_LE1_INV-1_2022-09-16_N
INV	RG_LE1	659588	5494017	2022	1	2022-09-16	Composite	Magnesium	1,292	mg/kg dw	Trich	RG_LE1_INV-1_2022-09-16_N
INV	RG_LE1	659588	5494017	2022	1	2022-09-16	Composite	Aluminum	164	mg/kg dw	Trich	RG_LE1_INV-1_2022-09-16_N
INV	RG LE1	659588	5494017	2022	1	2022-09-16	Composite	Phosphorus	11,918	mg/kg dw	Trich	RG LE1 INV-1 2022-09-16 N
INV	RG LE1	659588	5494017	2022	1	2022-09-16	Composite	Potassium	10,484	mg/kg dw	Trich	RG LE1 INV-1 2022-09-16 N
INV	RG LE1	659588	5494017	2022	1	2022-09-16	Composite	Calcium	1,649	mg/kg dw	Trich	RG LE1 INV-1 2022-09-16 N
INV	RG LE1	659588	5494017	2022	1	2022-09-16	Composite	Titanium	7.9	mg/kg dw	Trich	RG LE1 INV-1 2022-09-16 N
INV	RG LE1	659588	5494017	2022	1	2022-09-16	Composite	Vanadium	0.52	mg/kg dw	Trich	RG LE1 INV-1 2022-09-16 N
INV	RG LE1	659588	5494017	2022	1	2022-09-16	Composite	Chromium	9.0	mg/kg dw	Trich	RG LE1 INV-1 2022-09-16 N
INV	RG_LE1	659588	5494017	2022	1	2022-09-16	Composite	Manganese	42	mg/kg dw	Trich	RG LE1 INV-1 2022-09-16 N
INV	RG LE1	659588	5494017	2022	1	2022-09-16	Composite	Iron	329	mg/kg dw	Trich	RG_LE1_INV-1_2022-09-10_N RG_LE1_INV-1_2022-09-16_N
	RG_LE1			2022	1		<u> </u>		0.78			
INV		659588	5494017		1	2022-09-16	Composite	Cobalt		mg/kg dw	Trich	RG_LE1_INV-1_2022-09-16_N
INV	RG_LE1	659588	5494017	2022	1	2022-09-16	Composite	Nickel	12	mg/kg dw	Trich	RG_LE1_INV-1_2022-09-16_N
INV	RG_LE1	659588	5494017	2022	1	2022-09-16	Composite	Copper	17	mg/kg dw	Trich	RG_LE1_INV-1_2022-09-16_N
INV	RG_LE1	659588	5494017	2022	1	2022-09-16	Composite	Zinc	165	mg/kg dw	Trich	RG_LE1_INV-1_2022-09-16_N
INV	RG_LE1	659588	5494017	2022	1	2022-09-16	Composite	Arsenic	0.79	mg/kg dw	Trich	RG_LE1_INV-1_2022-09-16_N
INV	RG_LE1	659588	5494017	2022	1	2022-09-16	Composite	Selenium	6.7	mg/kg dw	Trich	RG_LE1_INV-1_2022-09-16_N
INV	RG LE1	659588	5494017	2022	4	2022-09-16	Composite	Strontium	2.9	mg/kg dw	Trich	RG LE1 INV-1 2022-09-16 N

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Туре	Station	Location	n (UTMs) ^(a)	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit		Laboratory Information
Type	Station	Easting	Northing	I eai	Replicate	Date	Species/Composite	Allalyte	Result	Offic	Lab	Sample ID
INV	RG_LE1	659588	5494017	2022	1	2022-09-16	Composite	Molybdenum	0.51	mg/kg dw	Trich	RG_LE1_INV-1_2022-09-16_N
INV	RG_LE1	659588	5494017	2022	1	2022-09-16	Composite	Silver	0.32	mg/kg dw	Trich	RG_LE1_INV-1_2022-09-16_N
INV	RG_LE1	659588	5494017	2022	1	2022-09-16	Composite	Cadmium	6.0	mg/kg dw	Trich	RG_LE1_INV-1_2022-09-16_N
INV	RG_LE1	659588	5494017	2022	1	2022-09-16	Composite	Tin	0.42	mg/kg dw	Trich	RG_LE1_INV-1_2022-09-16_N
INV	RG_LE1	659588	5494017	2022	1	2022-09-16	Composite	Antimony	0.026	mg/kg dw	Trich	RG_LE1_INV-1_2022-09-16_N
INV	RG_LE1	659588	5494017	2022	1	2022-09-16	Composite	Barium	74	mg/kg dw	Trich	RG_LE1_INV-1_2022-09-16_N
INV	RG_LE1	659588	5494017	2022	1	2022-09-16	Composite	Mercury	0.12	mg/kg dw	Trich	RG_LE1_INV-1_2022-09-16_N
INV	RG_LE1	659588	5494017	2022	1	2022-09-16	Composite	Thallium	0.019	mg/kg dw	Trich	RG_LE1_INV-1_2022-09-16_N
INV	RG LE1	659588	5494017	2022	1	2022-09-16	Composite	Lead	0.14	mg/kg dw	Trich	RG LE1 INV-1 2022-09-16 N
INV	RG LE1	659588	5494017	2022	1	2022-09-16	Composite	Uranium	0.021	mg/kg dw	Trich	RG LE1 INV-1 2022-09-16 N
INV	RG LE1	659588	5494017	2022	1	2022-09-16	Composite	Wet Mass	0.13	g	Trich	RG LE1 INV-1 2022-09-16 N
INV	RG LE1	659588	5494017	2022	1	2022-09-16	Composite	Dry Mass	0.025	g	Trich	RG LE1 INV-1 2022-09-16 N
INV	RG_LE1	659588	5494017	2022	1	2022-09-16	Composite	% Moisture	81	%	Trich	RG_LE1_INV-1_2022-09-16_N
INV	RG LE1	659554	5494119	2022	2	2022-09-16	Composite	Lithium	0.25	mg/kg dw	Trich	RG LE1 INV-2 2022-09-16 N
INV	RG LE1	659554	5494119	2022	2	2022-09-16	Composite	Boron	0.76	mg/kg dw	Trich	RG_LE1_INV-2_2022-09-16_N
INV	RG LE1	659554	5494119	2022	2	2022-09-16	Composite	Sodium	3,448	mg/kg dw	Trich	RG_LE1_INV-2_2022-09-16_N
INV	RG_LE1	659554	5494119	2022	2	2022-09-16	Composite	Magnesium	1,043	mg/kg dw	Trich	RG_LE1_INV-2_2022-09-16_N
INV	RG LE1	659554	5494119	2022	2	2022-09-16	Composite	Aluminum	392	mg/kg dw	Trich	RG LE1 INV-2 2022-09-16 N
INV	RG LE1	659554	5494119	2022	2	2022-09-16	Composite	Phosphorus	9,933	mg/kg dw	Trich	RG LE1 INV-2 2022-09-16 N
INV	RG LE1	659554	5494119	2022	2	2022-09-16	Composite	Potassium	8,942	mg/kg dw	Trich	RG LE1 INV-2 2022-09-16 N
INV	RG LE1	659554	5494119	2022	2	2022-09-16	Composite	Calcium	1,525	mg/kg dw	Trich	RG_LE1_INV-2_2022-09-16_N
INV	RG LE1	659554	5494119	2022	2	2022-09-16	Composite	Titanium	9.0	mg/kg dw	Trich	RG LE1 INV-2 2022-09-16 N
INV	RG LE1	659554	5494119	2022	2	2022-09-16	Composite	Vanadium	0.68	mg/kg dw	Trich	RG LE1 INV-2 2022-09-16 N
INV	RG LE1	659554	5494119	2022	2	2022-09-16	Composite	Chromium	7.7	mg/kg dw	Trich	RG LE1 INV-2 2022-09-16 N
INV	RG LE1	659554	5494119	2022	2	2022-09-16	Composite	Manganese	58	mg/kg dw	Trich	RG_LE1_INV-2_2022-09-16_N
INV	RG_LE1	659554	5494119	2022	2	2022-09-16	Composite	Iron	553	mg/kg dw	Trich	RG LE1 INV-2 2022-09-16 N
INV	RG_LE1	659554	5494119	2022	2	2022-09-16	Composite	Cobalt	0.39	mg/kg dw	Trich	RG LE1 INV-2 2022-09-16 N
INV	RG_LE1	659554	5494119	2022	2	2022-09-16	Composite	Nickel	10	mg/kg dw	Trich	RG_LE1_INV-2_2022-09-16_N RG_LE1_INV-2_2022-09-16_N
INV	RG LE1	659554	5494119	2022	2	2022-09-16	•		19	mg/kg dw	Trich	RG_LE1_INV-2_2022-09-16_N RG_LE1_INV-2_2022-09-16_N
INV	RG_LE1	659554	5494119	2022	2	2022-09-16	Composite	Copper Zinc	144		Trich	
INV	RG_LE1	659554	5494119	2022	2	2022-09-16	Composite		0.47	mg/kg dw	Trich	RG_LE1_INV-2_2022-09-16_N RG_LE1_INV-2_2022-09-16_N
INV	_		5494119	2022			Composite	Arsenic		mg/kg dw	Trich	
	RG_LE1	659554			2	2022-09-16	Composite	Selenium	7.2	mg/kg dw		RG_LE1_INV-2_2022-09-16_N
INV	RG_LE1	659554	5494119	2022	2	2022-09-16	Composite	Strontium	2.6	mg/kg dw	Trich	RG_LE1_INV-2_2022-09-16_N
INV	RG_LE1	659554	5494119	2022	2	2022-09-16	Composite	Molybdenum	0.4	mg/kg dw	Trich	RG_LE1_INV-2_2022-09-16_N
INV	RG_LE1	659554	5494119	2022	2	2022-09-16	Composite	Silver	0.23	mg/kg dw	Trich	RG_LE1_INV-2_2022-09-16_N
INV	RG_LE1	659554	5494119	2022	2	2022-09-16	Composite	Cadmium	3.9	mg/kg dw	Trich	RG_LE1_INV-2_2022-09-16_N
INV	RG_LE1	659554	5494119	2022	2	2022-09-16	Composite	Tin	0.45	mg/kg dw	Trich	RG_LE1_INV-2_2022-09-16_N
INV	RG_LE1	659554	5494119	2022	2	2022-09-16	Composite	Antimony	0.044	mg/kg dw	Trich	RG_LE1_INV-2_2022-09-16_N
INV	RG_LE1	659554	5494119	2022	2	2022-09-16	Composite	Barium	108	mg/kg dw	Trich	RG_LE1_INV-2_2022-09-16_N
INV	RG_LE1	659554	5494119	2022	2	2022-09-16	Composite	Mercury	0.13	mg/kg dw	Trich	RG_LE1_INV-2_2022-09-16_N
INV	RG_LE1	659554	5494119	2022	2	2022-09-16	Composite	Thallium	0.023	mg/kg dw	Trich	RG_LE1_INV-2_2022-09-16_N
INV	RG_LE1	659554	5494119	2022	2	2022-09-16	Composite	Lead	0.16	mg/kg dw	Trich	RG_LE1_INV-2_2022-09-16_N
INV	RG_LE1	659554	5494119	2022	2	2022-09-16	Composite	Uranium	0.031	mg/kg dw	Trich	RG_LE1_INV-2_2022-09-16_N
INV	RG_LE1	659554	5494119	2022	2	2022-09-16	Composite	Wet Mass	0.11	g	Trich	RG_LE1_INV-2_2022-09-16_N
INV	RG_LE1	659554	5494119	2022	2	2022-09-16	Composite	Dry Mass	0.021	g	Trich	RG_LE1_INV-2_2022-09-16_N
INV	RG_LE1	659554	5494119	2022	2	2022-09-16	Composite	% Moisture	81	%	Trich	RG_LE1_INV-2_2022-09-16_N
INV	RG_LE1	659639	5494121	2022	3	2022-09-16	Composite	Lithium	0.69	mg/kg dw	Trich	RG_LE1_INV-3_2022-09-16_N
INV	RG_LE1	659639	5494121	2022	3	2022-09-16	Composite	Boron	1.5	mg/kg dw	Trich	RG_LE1_INV-3_2022-09-16_N
INV	RG_LE1	659639	5494121	2022	3	2022-09-16	Composite	Sodium	3,495	mg/kg dw	Trich	RG_LE1_INV-3_2022-09-16_N
INV	RG_LE1	659639	5494121	2022	3	2022-09-16	Composite	Magnesium	1,531	mg/kg dw	Trich	RG_LE1_INV-3_2022-09-16_N
INV	RG_LE1	659639	5494121	2022	3	2022-09-16	Composite	Aluminum	1,374	mg/kg dw	Trich	RG_LE1_INV-3_2022-09-16_N
INV	RG_LE1	659639	5494121	2022	3	2022-09-16	Composite	Phosphorus	12,983	mg/kg dw	Trich	RG_LE1_INV-3_2022-09-16_N
INV	RG_LE1	659639	5494121	2022	3	2022-09-16	Composite	Potassium	13,443	mg/kg dw	Trich	RG_LE1_INV-3_2022-09-16_N
INV	RG_LE1	659639	5494121	2022	3	2022-09-16	Composite	Calcium	2,726	mg/kg dw	Trich	RG_LE1_INV-3_2022-09-16_N
INV	RG_LE1	659639	5494121	2022	3	2022-09-16	Composite	Titanium	80	mg/kg dw	Trich	RG_LE1_INV-3_2022-09-16_N
INV	RG_LE1	659639	5494121	2022	3	2022-09-16	Composite	Vanadium	3.4	mg/kg dw	Trich	RG_LE1_INV-3_2022-09-16_N
INV	RG LE1	659639	5494121	2022	3	2022-09-16	Composite	Chromium	19	mg/kg dw	Trich	RG LE1 INV-3 2022-09-16 N

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

_	21.11	Locatio	n (UTMs) ^(a)				0 1 /0					Laboratory Information
Туре	Station	Easting	Northing	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit	Lab	Sample ID
INV	RG LE1	659639	5494121	2022	3	2022-09-16	Composite	Manganese	49	mg/kg dw	Trich	RG LE1 INV-3 2022-09-16 N
INV	RG LE1	659639	5494121	2022	3	2022-09-16	Composite	Iron	1,075	mg/kg dw	Trich	RG LE1 INV-3 2022-09-16 N
INV	RG LE1	659639	5494121	2022	3	2022-09-16	Composite	Cobalt	1.9	mg/kg dw	Trich	RG LE1 INV-3 2022-09-16 N
INV	RG LE1	659639	5494121	2022	3	2022-09-16	Composite	Nickel	30	mg/kg dw	Trich	RG LE1 INV-3 2022-09-16 N
INV	RG LE1	659639	5494121	2022	3	2022-09-16	Composite	Copper	20	mg/kg dw	Trich	RG LE1 INV-3 2022-09-16 N
INV	RG LE1	659639	5494121	2022	3	2022-09-16	Composite	Zinc	143	mg/kg dw	Trich	RG LE1 INV-3 2022-09-16 N
INV	RG LE1	659639	5494121	2022	3	2022-09-16	Composite	Arsenic	1.9	mg/kg dw	Trich	RG LE1 INV-3 2022-09-16 N
INV	RG_LE1	659639	5494121	2022	3	2022-09-16		Selenium	8.9		Trich	RG LE1 INV-3 2022-09-16 N
				2022	1		Composite			mg/kg dw		
INV	RG_LE1	659639	5494121		3	2022-09-16	Composite	Strontium	4.5	mg/kg dw	Trich	RG_LE1_INV-3_2022-09-16_N
INV	RG_LE1	659639	5494121	2022	3	2022-09-16	Composite	Molybdenum	0.57	mg/kg dw	Trich	RG_LE1_INV-3_2022-09-16_N
INV	RG_LE1	659639	5494121	2022	3	2022-09-16	Composite	Silver	0.25	mg/kg dw	Trich	RG_LE1_INV-3_2022-09-16_N
INV	RG_LE1	659639	5494121	2022	3	2022-09-16	Composite	Cadmium	13	mg/kg dw	Trich	RG_LE1_INV-3_2022-09-16_N
INV	RG_LE1	659639	5494121	2022	3	2022-09-16	Composite	Tin	1.0	mg/kg dw	Trich	RG_LE1_INV-3_2022-09-16_N
INV	RG_LE1	659639	5494121	2022	3	2022-09-16	Composite	Antimony	0.11	mg/kg dw	Trich	RG_LE1_INV-3_2022-09-16_N
INV	RG_LE1	659639	5494121	2022	3	2022-09-16	Composite	Barium	72	mg/kg dw	Trich	RG_LE1_INV-3_2022-09-16_N
INV	RG_LE1	659639	5494121	2022	3	2022-09-16	Composite	Mercury	0.13	mg/kg dw	Trich	RG_LE1_INV-3_2022-09-16_N
INV	RG_LE1	659639	5494121	2022	3	2022-09-16	Composite	Thallium	0.04	mg/kg dw	Trich	RG_LE1_INV-3_2022-09-16_N
INV	RG_LE1	659639	5494121	2022	3	2022-09-16	Composite	Lead	0.36	mg/kg dw	Trich	RG_LE1_INV-3_2022-09-16_N
INV	RG_LE1	659639	5494121	2022	3	2022-09-16	Composite	Uranium	0.074	mg/kg dw	Trich	RG_LE1_INV-3_2022-09-16_N
INV	RG_LE1	659639	5494121	2022	3	2022-09-16	Composite	Wet Mass	0.086	g	Trich	RG_LE1_INV-3_2022-09-16_N
INV	RG_LE1	659639	5494121	2022	3	2022-09-16	Composite	Dry Mass	0.017	g	Trich	RG_LE1_INV-3_2022-09-16_N
INV	RG_LE1	659639	5494121	2022	3	2022-09-16	Composite	% Moisture	81	%	Trich	RG_LE1_INV-3_2022-09-16_N
INV	RG_MI25	668209	5482811	2022	1	2022-09-15	Composite	Lithium	0.66	mg/kg dw	Trich	RG_MI25_INV-1_2022-09-15_N
INV	RG_MI25	668209	5482811	2022	1	2022-09-15	Composite	Boron	2.7	mg/kg dw	Trich	RG_MI25_INV-1_2022-09-15_N
INV	RG_MI25	668209	5482811	2022	1	2022-09-15	Composite	Sodium	4,051	mg/kg dw	Trich	RG_MI25_INV-1_2022-09-15_N
INV	RG MI25	668209	5482811	2022	1	2022-09-15	Composite	Magnesium	1,246	mg/kg dw	Trich	RG MI25 INV-1 2022-09-15 N
INV	RG MI25	668209	5482811	2022	1	2022-09-15	Composite	Aluminum	1,241	mg/kg dw	Trich	RG MI25 INV-1 2022-09-15 N
INV	RG MI25	668209	5482811	2022	1	2022-09-15	Composite	Phosphorus	12,573	mg/kg dw	Trich	RG MI25 INV-1 2022-09-15 N
INV	RG MI25	668209	5482811	2022	1	2022-09-15	Composite	Potassium	14,139	mg/kg dw	Trich	RG MI25 INV-1 2022-09-15 N
INV	RG MI25	668209	5482811	2022	1	2022-09-15	Composite	Calcium	1,828	mg/kg dw	Trich	RG MI25 INV-1 2022-09-15 N
INV	RG MI25	668209	5482811	2022	1	2022-09-15	Composite	Titanium	81	mg/kg dw	Trich	RG MI25 INV-1 2022-09-15 N
INV	RG MI25	668209	5482811	2022	1	2022-09-15	Composite	Vanadium	1.7	mg/kg dw	Trich	RG MI25 INV-1 2022-09-15 N
INV	RG MI25	668209	5482811	2022	1	2022-09-15	Composite	Chromium	6.8	mg/kg dw	Trich	RG_MI25_INV-1_2022-09-15_N
INV	RG MI25	668209	5482811	2022	1	2022-09-15	Composite	Manganese	56	mg/kg dw	Trich	RG MI25 INV-1 2022-09-15 N
INV	RG MI25	668209	5482811	2022	1	2022-09-15	Composite	Iron	590	mg/kg dw	Trich	RG MI25 INV-1 2022-09-15 N
INV	RG MI25	668209	5482811	2022	1	2022-09-15	Composite	Cobalt	1.2	mg/kg dw	Trich	RG MI25 INV-1 2022-09-15 N
INV	RG MI25	668209	5482811	2022	1	2022-09-15	Composite	Nickel	10	mg/kg dw	Trich	RG MI25 INV-1 2022-09-15 N
INV	RG MI25	668209	5482811	2022	1	2022-09-15	Composite	Copper	18	<u> </u>	Trich	RG MI25 INV-1 2022-09-15 N
INV	RG_MI25	668209	5482811	2022	1	2022-09-15	Composite	Zinc	134	mg/kg dw	Trich	RG MI25 INV-1 2022-09-15 N
INV	RG_MI25	668209	5482811		1	2022-09-15			1.3	mg/kg dw		RG MI25 INV-1 2022-09-15 N
INV	RG_MI25	668209	5482811	2022 2022	1	2022-09-15	Composite	Arsenic		mg/kg dw	Trich	
	_				1		Composite	Selenium	4.2	mg/kg dw	Trich	RG_MI25_INV-1_2022-09-15_N
INV	RG_MI25	668209	5482811	2022	1	2022-09-15	Composite	Strontium	5.8	mg/kg dw	Trich	RG_MI25_INV-1_2022-09-15_N
INV	RG_MI25	668209	5482811	2022	1	2022-09-15	Composite	Molybdenum	0.6	mg/kg dw	Trich	RG_MI25_INV-1_2022-09-15_N
INV	RG_MI25	668209	5482811	2022	1	2022-09-15	Composite	Silver	0.067	mg/kg dw	Trich	RG_MI25_INV-1_2022-09-15_N
INV	RG_MI25	668209	5482811	2022	1	2022-09-15	Composite	Cadmium	3.5	mg/kg dw	Trich	RG_MI25_INV-1_2022-09-15_N
INV	RG_MI25	668209	5482811	2022	1	2022-09-15	Composite	Tin	0.69	mg/kg dw	Trich	RG_MI25_INV-1_2022-09-15_N
INV	RG_MI25	668209	5482811	2022	1	2022-09-15	Composite	Antimony	0.038	mg/kg dw	Trich	RG_MI25_INV-1_2022-09-15_N
INV	RG_MI25	668209	5482811	2022	1	2022-09-15	Composite	Barium	45	mg/kg dw	Trich	RG_MI25_INV-1_2022-09-15_N
INV	RG_MI25	668209	5482811	2022	1	2022-09-15	Composite	Mercury	0.068	mg/kg dw	Trich	RG_MI25_INV-1_2022-09-15_N
INV	RG_MI25	668209	5482811	2022	1	2022-09-15	Composite	Thallium	0.054	mg/kg dw	Trich	RG_MI25_INV-1_2022-09-15_N
INV	RG_MI25	668209	5482811	2022	1	2022-09-15	Composite	Lead	0.48	mg/kg dw	Trich	RG_MI25_INV-1_2022-09-15_N
INV	RG_MI25	668209	5482811	2022	1	2022-09-15	Composite	Uranium	0.053	mg/kg dw	Trich	RG_MI25_INV-1_2022-09-15_N
INV	RG_MI25	668209	5482811	2022	1	2022-09-15	Composite	Wet Mass	0.35	g	Trich	RG_MI25_INV-1_2022-09-15_N
INV	RG_MI25	668209	5482811	2022	1	2022-09-15	Composite	Dry Mass	0.07	g	Trich	RG_MI25_INV-1_2022-09-15_N
INV	RG_MI25	668209	5482811	2022	1	2022-09-15	Composite	% Moisture	80	%	Trich	RG_MI25_INV-1_2022-09-15_N
11 4 4	<u> </u>									,, ,		
INV	RG MI25	668190	5482833	2022	2	2022-09-15	Composite	Lithium	1.0	mg/kg dw	Trich	RG MI25 INV-2 2022-09-15 N

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Туре	Station	Location	n (UTMs) ^(a)	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit		Laboratory Information
туре	Station	Easting	Northing	I eai	Replicate	Date	Species/Composite	Analyte	Result	Offic	Lab	Sample ID
INV	RG_MI25	668190	5482833	2022	2	2022-09-15	Composite	Sodium	4,090	mg/kg dw	Trich	RG_MI25_INV-2_2022-09-15_N
INV	RG_MI25	668190	5482833	2022	2	2022-09-15	Composite	Magnesium	1,396	mg/kg dw	Trich	RG_MI25_INV-2_2022-09-15_N
INV	RG_MI25	668190	5482833	2022	2	2022-09-15	Composite	Aluminum	1,499	mg/kg dw	Trich	RG_MI25_INV-2_2022-09-15_N
INV	RG MI25	668190	5482833	2022	2	2022-09-15	Composite	Phosphorus	13,333	mg/kg dw	Trich	RG_MI25_INV-2_2022-09-15_N
INV	RG MI25	668190	5482833	2022	2	2022-09-15	Composite	Potassium	13,868	mg/kg dw	Trich	RG MI25 INV-2 2022-09-15 N
INV	RG MI25	668190	5482833	2022	2	2022-09-15	Composite	Calcium	2,397	mg/kg dw	Trich	RG MI25 INV-2 2022-09-15 N
INV	RG MI25	668190	5482833	2022	2	2022-09-15	Composite	Titanium	83	mg/kg dw	Trich	RG MI25 INV-2 2022-09-15 N
INV	RG MI25	668190	5482833	2022	2	2022-09-15	Composite	Vanadium	2.0	mg/kg dw	Trich	RG MI25 INV-2 2022-09-15 N
INV	RG MI25	668190	5482833	2022	2	2022-09-15	Composite	Chromium	14	mg/kg dw	Trich	RG MI25 INV-2 2022-09-15 N
INV	RG MI25	668190	5482833	2022	2	2022-09-15	Composite	Manganese	73	mg/kg dw	Trich	RG_MI25_INV-2_2022-09-15_N
INV	RG MI25	668190	5482833	2022	2	2022-09-15	Composite	Iron	880	mg/kg dw	Trich	RG_MI25_INV-2_2022-09-15_N
INV	RG MI25	668190	5482833	2022	2	2022-09-15	Composite	Cobalt	2.0		Trich	RG MI25 INV-2 2022-09-15 N
INV	_	668190	5482833	2022	2		<u>'</u>	Nickel	2.0	mg/kg dw	Trich	
	RG_MI25					2022-09-15	Composite			mg/kg dw		RG_MI25_INV-2_2022-09-15_N
INV	RG_MI25	668190	5482833	2022	2	2022-09-15	Composite	Copper	19	mg/kg dw	Trich	RG_MI25_INV-2_2022-09-15_N
INV	RG_MI25	668190	5482833	2022	2	2022-09-15	Composite	Zinc	115	mg/kg dw	Trich	RG_MI25_INV-2_2022-09-15_N
INV	RG_MI25	668190	5482833	2022	2	2022-09-15	Composite	Arsenic	1.7	mg/kg dw	Trich	RG_MI25_INV-2_2022-09-15_N
INV	RG_MI25	668190	5482833	2022	2	2022-09-15	Composite	Selenium	4.8	mg/kg dw	Trich	RG_MI25_INV-2_2022-09-15_N
INV	RG_MI25	668190	5482833	2022	2	2022-09-15	Composite	Strontium	6.7	mg/kg dw	Trich	RG_MI25_INV-2_2022-09-15_N
INV	RG_MI25	668190	5482833	2022	2	2022-09-15	Composite	Molybdenum	0.64	mg/kg dw	Trich	RG_MI25_INV-2_2022-09-15_N
INV	RG_MI25	668190	5482833	2022	2	2022-09-15	Composite	Silver	0.059	mg/kg dw	Trich	RG_MI25_INV-2_2022-09-15_N
INV	RG_MI25	668190	5482833	2022	2	2022-09-15	Composite	Cadmium	3.7	mg/kg dw	Trich	RG_MI25_INV-2_2022-09-15_N
INV	RG_MI25	668190	5482833	2022	2	2022-09-15	Composite	Tin	0.4	mg/kg dw	Trich	RG_MI25_INV-2_2022-09-15_N
INV	RG MI25	668190	5482833	2022	2	2022-09-15	Composite	Antimony	0.048	mg/kg dw	Trich	RG MI25 INV-2 2022-09-15 N
INV	RG MI25	668190	5482833	2022	2	2022-09-15	Composite	Barium	53	mg/kg dw	Trich	RG MI25 INV-2 2022-09-15 N
INV	RG MI25	668190	5482833	2022	2	2022-09-15	Composite	Mercury	0.065	mg/kg dw	Trich	RG_MI25_INV-2_2022-09-15_N
INV	RG MI25	668190	5482833	2022	2	2022-09-15	Composite	Thallium	0.058	mg/kg dw	Trich	RG_MI25_INV-2_2022-09-15_N
INV	RG MI25	668190	5482833	2022	2	2022-09-15	Composite	Lead	0.47	mg/kg dw	Trich	RG MI25 INV-2 2022-09-15 N
INV	RG MI25	668190	5482833	2022	2	2022-09-15	Composite	Uranium	0.085	mg/kg dw	Trich	RG_MI25_INV-2_2022-09-15_N
INV	RG MI25	668190	5482833	2022	2	2022-09-15	Composite	Wet Mass	0.003	nig/kg dw	Trich	RG_MI25_INV-2_2022-09-15_N
INV	_	668190	5482833	2022	2	2022-09-15	<u> </u>	Dry Mass	0.28	9	Trich	
	RG_MI25						Composite	•		g		RG_MI25_INV-2_2022-09-15_N
INV	RG_MI25	668190	5482833	2022	2	2022-09-15	Composite	% Moisture	80	%	Trich	RG_MI25_INV-2_2022-09-15_N
INV	RG_MI25	668170	5482853	2022	3	2022-09-15	Composite	Lithium	0.24	mg/kg dw	Trich	RG_MI25_INV-3_2022-09-15_N
INV	RG_MI25	668170	5482853	2022	3	2022-09-15	Composite	Boron	0.9	mg/kg dw	Trich	RG_MI25_INV-3_2022-09-15_N
INV	RG_MI25	668170	5482853	2022	3	2022-09-15	Composite	Sodium	3,490	mg/kg dw	Trich	RG_MI25_INV-3_2022-09-15_N
INV	RG_MI25	668170	5482853	2022	3	2022-09-15	Composite	Magnesium	1,494	mg/kg dw	Trich	RG_MI25_INV-3_2022-09-15_N
INV	RG_MI25	668170	5482853	2022	3	2022-09-15	Composite	Aluminum	316	mg/kg dw	Trich	RG_MI25_INV-3_2022-09-15_N
INV	RG_MI25	668170	5482853	2022	3	2022-09-15	Composite	Phosphorus	11,670	mg/kg dw	Trich	RG_MI25_INV-3_2022-09-15_N
INV	RG_MI25	668170	5482853	2022	3	2022-09-15	Composite	Potassium	10,835	mg/kg dw	Trich	RG_MI25_INV-3_2022-09-15_N
INV	RG_MI25	668170	5482853	2022	3	2022-09-15	Composite	Calcium	1,526	mg/kg dw	Trich	RG_MI25_INV-3_2022-09-15_N
INV	RG MI25	668170	5482853	2022	3	2022-09-15	Composite	Titanium	16	mg/kg dw	Trich	RG MI25 INV-3 2022-09-15 N
INV	RG MI25	668170	5482853	2022	3	2022-09-15	Composite	Vanadium	0.51	mg/kg dw	Trich	RG MI25 INV-3 2022-09-15 N
INV	RG MI25	668170	5482853	2022	3	2022-09-15	Composite	Chromium	5.2	mg/kg dw	Trich	RG MI25 INV-3 2022-09-15 N
INV	RG MI25	668170	5482853	2022	3	2022-09-15	Composite	Manganese	33	mg/kg dw	Trich	RG MI25 INV-3 2022-09-15 N
INV	RG MI25	668170	5482853	2022	3	2022-09-15	Composite	Iron	217	mg/kg dw	Trich	RG MI25 INV-3 2022-09-15 N
INV	RG MI25	668170	5482853	2022	3	2022-09-15	Composite	Cobalt	0.63	mg/kg dw	Trich	RG MI25 INV-3 2022-09-15 N
INV	RG_MI25	668170	5482853	2022	3	2022-09-15	Composite	Nickel	5.5	mg/kg dw	Trich	RG MI25 INV-3 2022-09-15 N
INV	RG_MI25	668170	5482853	2022	3	2022-09-15	Composite		20		Trich	RG MI25 INV-3 2022-09-15 N
								Copper		mg/kg dw		
INV	RG_MI25	668170	5482853	2022	3	2022-09-15	Composite	Zinc	140	mg/kg dw	Trich	RG_MI25_INV-3_2022-09-15_N
INV	RG_MI25	668170	5482853	2022	3	2022-09-15	Composite	Arsenic	0.67	mg/kg dw	Trich	RG_MI25_INV-3_2022-09-15_N
INV	RG_MI25	668170	5482853	2022	3	2022-09-15	Composite	Selenium	3.6	mg/kg dw	Trich	RG_MI25_INV-3_2022-09-15_N
INV	RG_MI25	668170	5482853	2022	3	2022-09-15	Composite	Strontium	3.3	mg/kg dw	Trich	RG_MI25_INV-3_2022-09-15_N
INV	RG_MI25	668170	5482853	2022	3	2022-09-15	Composite	Molybdenum	0.28	mg/kg dw	Trich	RG_MI25_INV-3_2022-09-15_N
INV	RG_MI25	668170	5482853	2022	3	2022-09-15	Composite	Silver	0.12	mg/kg dw	Trich	RG_MI25_INV-3_2022-09-15_N
INV	RG_MI25	668170	5482853	2022	3	2022-09-15	Composite	Cadmium	1.4	mg/kg dw	Trich	RG_MI25_INV-3_2022-09-15_N
INV	RG_MI25	668170	5482853	2022	3	2022-09-15	Composite	Tin	0.17	mg/kg dw	Trich	RG_MI25_INV-3_2022-09-15_N
INV	RG_MI25	668170	5482853	2022	3	2022-09-15	Composite	Antimony	0.017	mg/kg dw	Trich	RG_MI25_INV-3_2022-09-15_N
INV	RG MI25	668170	5482853	2022	3	2022-09-15	Composite	Barium	28	mg/kg dw	Trich	RG MI25 INV-3 2022-09-15 N

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Туре	Station	Location	n (UTMs) ^(a)	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit		Laboratory Information
туре	Station	Easting	Northing	I ear	Replicate	Date	Species/Composite	Allalyte	Result	Offic	Lab	Sample ID
INV	RG_MI25	668170	5482853	2022	3	2022-09-15	Composite	Mercury	0.059	mg/kg dw	Trich	RG_MI25_INV-3_2022-09-15_N
INV	RG_MI25	668170	5482853	2022	3	2022-09-15	Composite	Thallium	0.017	mg/kg dw	Trich	RG_MI25_INV-3_2022-09-15_N
INV	RG_MI25	668170	5482853	2022	3	2022-09-15	Composite	Lead	0.15	mg/kg dw	Trich	RG_MI25_INV-3_2022-09-15_N
INV	RG MI25	668170	5482853	2022	3	2022-09-15	Composite	Uranium	0.021	mg/kg dw	Trich	RG_MI25_INV-3_2022-09-15_N
INV	RG MI25	668170	5482853	2022	3	2022-09-15	Composite	Wet Mass	0.23	g	Trich	RG MI25 INV-3 2022-09-15 N
INV	RG MI25	668170	5482853	2022	3	2022-09-15	Composite	Dry Mass	0.059	a	Trich	RG MI25 INV-3 2022-09-15 N
INV	RG MI25	668170	5482853	2022	3	2022-09-15	Composite	% Moisture	74	%	Trich	RG MI25 INV-3 2022-09-15 N
INV	RG MI5	659559	5496348	2022	1	2022-09-12	Composite	Lithium	0.18	mg/kg dw	Trich	RG MI5 INV-1 2022-09-12 N
INV	RG MI5	659559	5496348	2022	1	2022-09-12	Composite	Boron	0.76	mg/kg dw	Trich	RG MI5 INV-1 2022-09-12 N
INV	RG MI5	659559	5496348	2022	1	2022-09-12	Composite	Sodium	2,671	mg/kg dw	Trich	RG MI5 INV-1 2022-09-12 N
INV	RG MI5	659559	5496348	2022	1	2022-09-12	Composite	Magnesium	1,131	mg/kg dw	Trich	RG MI5 INV-1 2022-09-12 N
INV	RG MI5	659559	5496348	2022	1	2022-09-12	Composite	Aluminum	176	mg/kg dw	Trich	RG MI5 INV-1 2022-09-12 N
INV	RG MI5	659559	5496348	2022	1	2022-09-12	Composite	Phosphorus	10,038	mg/kg dw	Trich	RG_MI5_INV-1_2022-09-12_N
INV	RG MI5	659559	5496348	2022	1	2022-09-12	Composite	Potassium	10,036		Trich	RG MI5 INV-1 2022-09-12 N
INV					1					mg/kg dw		
	RG_MI5	659559	5496348	2022	1	2022-09-12	Composite	Calcium	1,197	mg/kg dw	Trich	RG_MI5_INV-1_2022-09-12_N
INV	RG_MI5	659559	5496348	2022	1	2022-09-12	Composite	Titanium	9.3	mg/kg dw	Trich	RG_MI5_INV-1_2022-09-12_N
INV	RG_MI5	659559	5496348	2022	1	2022-09-12	Composite	Vanadium	0.36	mg/kg dw	Trich	RG_MI5_INV-1_2022-09-12_N
INV	RG_MI5	659559	5496348	2022	1	2022-09-12	Composite	Chromium	3.5	mg/kg dw	Trich	RG_MI5_INV-1_2022-09-12_N
INV	RG_MI5	659559	5496348	2022	1	2022-09-12	Composite	Manganese	66	mg/kg dw	Trich	RG_MI5_INV-1_2022-09-12_N
INV	RG_MI5	659559	5496348	2022	1	2022-09-12	Composite	Iron	162	mg/kg dw	Trich	RG_MI5_INV-1_2022-09-12_N
INV	RG_MI5	659559	5496348	2022	1	2022-09-12	Composite	Cobalt	1.9	mg/kg dw	Trich	RG_MI5_INV-1_2022-09-12_N
INV	RG_MI5	659559	5496348	2022	1	2022-09-12	Composite	Nickel	8.3	mg/kg dw	Trich	RG_MI5_INV-1_2022-09-12_N
INV	RG_MI5	659559	5496348	2022	1	2022-09-12	Composite	Copper	11	mg/kg dw	Trich	RG_MI5_INV-1_2022-09-12_N
INV	RG_MI5	659559	5496348	2022	1	2022-09-12	Composite	Zinc	144	mg/kg dw	Trich	RG_MI5_INV-1_2022-09-12_N
INV	RG_MI5	659559	5496348	2022	1	2022-09-12	Composite	Arsenic	0.62	mg/kg dw	Trich	RG_MI5_INV-1_2022-09-12_N
INV	RG_MI5	659559	5496348	2022	1	2022-09-12	Composite	Selenium	6.3	mg/kg dw	Trich	RG_MI5_INV-1_2022-09-12_N
INV	RG MI5	659559	5496348	2022	1	2022-09-12	Composite	Strontium	3.1	mg/kg dw	Trich	RG MI5 INV-1 2022-09-12 N
INV	RG MI5	659559	5496348	2022	1	2022-09-12	Composite	Molybdenum	0.17	mg/kg dw	Trich	RG MI5 INV-1 2022-09-12 N
INV	RG MI5	659559	5496348	2022	1	2022-09-12	Composite	Silver	0.089	mg/kg dw	Trich	RG_MI5_INV-1_2022-09-12_N
INV	RG MI5	659559	5496348	2022	1	2022-09-12	Composite	Cadmium	1.1	mg/kg dw	Trich	RG MI5 INV-1 2022-09-12 N
INV	RG MI5	659559	5496348	2022	1	2022-09-12	Composite	Tin	0.26	mg/kg dw	Trich	RG MI5 INV-1 2022-09-12 N
INV	RG MI5	659559	5496348	2022	1	2022-09-12	Composite	Antimony	0.02	mg/kg dw	Trich	RG MI5 INV-1 2022-09-12 N
INV	RG MI5	659559	5496348	2022	1	2022-09-12	Composite	Barium	35	mg/kg dw	Trich	RG MI5 INV-1 2022-09-12 N
INV	RG MI5	659559	5496348	2022	1	2022-09-12	Composite	Mercury	0.083		Trich	RG MI5 INV-1 2022-09-12 N
INV	RG MI5	659559	5496348	2022	1	2022-09-12		Thallium	0.083	mg/kg dw		RG MI5 INV-1 2022-09-12 N
					1 4		Composite			mg/kg dw	Trich	
INV	RG_MI5	659559	5496348	2022	1	2022-09-12	Composite	Lead	0.14	mg/kg dw	Trich	RG_MI5_INV-1_2022-09-12_N
INV	RG_MI5	659559	5496348	2022	1	2022-09-12	Composite	Uranium	0.019	mg/kg dw	Trich	RG_MI5_INV-1_2022-09-12_N
INV	RG_MI5	659559	5496348	2022	1	2022-09-12	Composite	Wet Mass	0.29	g	Trich	RG_MI5_INV-1_2022-09-12_N
INV	RG_MI5	659559	5496348	2022	1	2022-09-12	Composite	Dry Mass	0.07	g	Trich	RG_MI5_INV-1_2022-09-12_N
INV	RG_MI5	659559	5496348	2022	1	2022-09-12	Composite	% Moisture	76	%	Trich	RG_MI5_INV-1_2022-09-12_N
INV	RG_MI5	659503	5496524	2022	2	2022-09-12	Composite	Lithium	0.27	mg/kg dw	Trich	RG_MI5_INV-2_2022-09-12_N
INV	RG_MI5	659503	5496524	2022	2	2022-09-12	Composite	Boron	1.6	mg/kg dw	Trich	RG_MI5_INV-2_2022-09-12_N
INV	RG_MI5	659503	5496524	2022	2	2022-09-12	Composite	Sodium	2,869	mg/kg dw	Trich	RG_MI5_INV-2_2022-09-12_N
INV	RG_MI5	659503	5496524	2022	2	2022-09-12	Composite	Magnesium	1,112	mg/kg dw	Trich	RG_MI5_INV-2_2022-09-12_N
INV	RG_MI5	659503	5496524	2022	2	2022-09-12	Composite	Aluminum	364	mg/kg dw	Trich	RG_MI5_INV-2_2022-09-12_N
INV	RG_MI5	659503	5496524	2022	2	2022-09-12	Composite	Phosphorus	11,057	mg/kg dw	Trich	RG_MI5_INV-2_2022-09-12_N
INV	RG_MI5	659503	5496524	2022	2	2022-09-12	Composite	Potassium	11,288	mg/kg dw	Trich	RG_MI5_INV-2_2022-09-12_N
INV	RG_MI5	659503	5496524	2022	2	2022-09-12	Composite	Calcium	2,293	mg/kg dw	Trich	RG_MI5_INV-2_2022-09-12_N
INV	RG MI5	659503	5496524	2022	2	2022-09-12	Composite	Titanium	22	mg/kg dw	Trich	RG MI5 INV-2 2022-09-12 N
INV	RG MI5	659503	5496524	2022	2	2022-09-12	Composite	Vanadium	1.1	mg/kg dw	Trich	RG MI5 INV-2 2022-09-12 N
INV	RG MI5	659503	5496524	2022	2	2022-09-12	Composite	Chromium	13	mg/kg dw	Trich	RG MI5 INV-2 2022-09-12 N
INV	RG MI5	659503	5496524	2022	2	2022-09-12	Composite	Manganese	70	mg/kg dw	Trich	RG MI5 INV-2 2022-09-12 N
INV	RG MI5	659503	5496524	2022	2	2022-09-12	Composite	Iron	444	mg/kg dw	Trich	RG MI5 INV-2 2022-09-12 N
INV	RG MI5	659503	5496524	2022	2	2022-09-12	Composite	Cobalt	2.4	mg/kg dw	Trich	RG MI5 INV-2 2022-09-12 N
INV	RG_MI5	659503	5496524	2022	2	2022-09-12		Nickel			Trich	RG_MI5_INV-2_2022-09-12_N RG_MI5_INV-2_2022-09-12_N
							Composite		28	mg/kg dw		
INV INV	RG_MI5	659503	5496524	2022	2	2022-09-12	Composite	Copper	13	mg/kg dw	Trich	RG_MI5_INV-2_2022-09-12_N
1611/	RG MI5	659503	5496524	2022	2	2022-09-12	Composite	Zinc	128	mg/kg dw	Trich	RG MI5 INV-2 2022-09-12 N

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Type	Station	Location	n (UTMs) ^(a)	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit		Laboratory Information
Туре	Station	Easting	Northing	rear	Replicate	Date	Species/Composite	Analyte	Result	Ullit	Lab	Sample ID
INV	RG_MI5	659503	5496524	2022	2	2022-09-12	Composite	Arsenic	0.62	mg/kg dw	Trich	RG_MI5_INV-2_2022-09-12_N
INV	RG_MI5	659503	5496524	2022	2	2022-09-12	Composite	Selenium	7.2	mg/kg dw	Trich	RG_MI5_INV-2_2022-09-12_N
INV	RG_MI5	659503	5496524	2022	2	2022-09-12	Composite	Strontium	10	mg/kg dw	Trich	RG_MI5_INV-2_2022-09-12_N
INV	RG MI5	659503	5496524	2022	2	2022-09-12	Composite	Molybdenum	0.28	mg/kg dw	Trich	RG_MI5_INV-2_2022-09-12_N
INV	RG MI5	659503	5496524	2022	2	2022-09-12	Composite	Silver	0.082	mg/kg dw	Trich	RG MI5 INV-2 2022-09-12 N
INV	RG MI5	659503	5496524	2022	2	2022-09-12	Composite	Cadmium	1.5	mg/kg dw	Trich	RG MI5 INV-2 2022-09-12 N
INV	RG MI5	659503	5496524	2022	2	2022-09-12	Composite	Tin	0.36	mg/kg dw	Trich	RG MI5 INV-2 2022-09-12 N
INV	RG MI5	659503	5496524	2022	2	2022-09-12	Composite	Antimony	0.036	mg/kg dw	Trich	RG MI5 INV-2 2022-09-12 N
INV	RG MI5	659503	5496524	2022	2	2022-09-12	Composite	Barium	93	mg/kg dw	Trich	RG MI5 INV-2 2022-09-12 N
INV	RG MI5	659503	5496524	2022	2	2022-09-12	Composite	Mercury	0.089	mg/kg dw	Trich	RG MI5 INV-2 2022-09-12 N
INV	RG MI5	659503	5496524	2022	2	2022-09-12	Composite	Thallium	0.037	mg/kg dw	Trich	RG_MI5_INV-2_2022-09-12_N
INV	RG MI5	659503	5496524	2022	2	2022-09-12	Composite	Lead	0.037	mg/kg dw	Trich	RG MI5 INV-2 2022-09-12 N
INV	RG MI5	659503	5496524	2022	2	2022-09-12	<u>'</u>	Uranium	0.2		Trich	RG_MI5_INV-2_2022-09-12_N
INV	_	659503				2022-09-12	Composite			mg/kg dw		RG_MI5_INV-2_2022-09-12_N RG_MI5_INV-2_2022-09-12_N
	RG_MI5		5496524	2022	2		Composite	Wet Mass	0.34	9	Trich	
INV	RG_MI5	659503	5496524	2022	2	2022-09-12	Composite	Dry Mass	0.058	g	Trich	RG_MI5_INV-2_2022-09-12_N
INV	RG_MI5	659503	5496524	2022	2	2022-09-12	Composite	% Moisture	83	%	Trich	RG_MI5_INV-2_2022-09-12_N
INV	RG_MI5	659499	5496580	2022	3	2022-09-12	Composite	Lithium	0.25	mg/kg dw	Trich	RG_MI5_INV-3_2022-09-12_N
INV	RG_MI5	659499	5496580	2022	3	2022-09-12	Composite	Boron	1.4	mg/kg dw	Trich	RG_MI5_INV-3_2022-09-12_N
INV	RG_MI5	659499	5496580	2022	3	2022-09-12	Composite	Sodium	3,313	mg/kg dw	Trich	RG_MI5_INV-3_2022-09-12_N
INV	RG_MI5	659499	5496580	2022	3	2022-09-12	Composite	Magnesium	1,105	mg/kg dw	Trich	RG_MI5_INV-3_2022-09-12_N
INV	RG_MI5	659499	5496580	2022	3	2022-09-12	Composite	Aluminum	317	mg/kg dw	Trich	RG_MI5_INV-3_2022-09-12_N
INV	RG_MI5	659499	5496580	2022	3	2022-09-12	Composite	Phosphorus	11,822	mg/kg dw	Trich	RG_MI5_INV-3_2022-09-12_N
INV	RG_MI5	659499	5496580	2022	3	2022-09-12	Composite	Potassium	12,532	mg/kg dw	Trich	RG_MI5_INV-3_2022-09-12_N
INV	RG_MI5	659499	5496580	2022	3	2022-09-12	Composite	Calcium	2,883	mg/kg dw	Trich	RG_MI5_INV-3_2022-09-12_N
INV	RG MI5	659499	5496580	2022	3	2022-09-12	Composite	Titanium	18	mg/kg dw	Trich	RG_MI5_INV-3_2022-09-12_N
INV	RG MI5	659499	5496580	2022	3	2022-09-12	Composite	Vanadium	0.69	mg/kg dw	Trich	RG MI5 INV-3 2022-09-12 N
INV	RG MI5	659499	5496580	2022	3	2022-09-12	Composite	Chromium	4.8	mg/kg dw	Trich	RG MI5 INV-3 2022-09-12 N
INV	RG MI5	659499	5496580	2022	3	2022-09-12	Composite	Manganese	72	mg/kg dw	Trich	RG_MI5_INV-3_2022-09-12_N
INV	RG MI5	659499	5496580	2022	3	2022-09-12	Composite	Iron	338	mg/kg dw	Trich	RG_MI5_INV-3_2022-09-12_N
INV	RG MI5	659499	5496580	2022	3	2022-09-12	Composite	Cobalt	3.2	mg/kg dw	Trich	RG_MI5_INV-3_2022-09-12_N
INV	RG MI5	659499	5496580	2022	3	2022-09-12	Composite	Nickel	15	mg/kg dw	Trich	RG MI5 INV-3 2022-09-12 N
INV	RG MI5	659499	5496580	2022	3	2022-09-12	Composite	Copper	13	mg/kg dw	Trich	RG MI5 INV-3 2022-09-12 N
INV	RG MI5	659499	5496580	2022	3	2022-09-12	Composite	Zinc	163	mg/kg dw	Trich	RG MI5 INV-3 2022-09-12 N
INV	RG MI5	659499	5496580	2022	3	2022-09-12		Arsenic	0.78		Trich	RG MI5 INV-3 2022-09-12 N
							Composite			mg/kg dw		
INV	RG_MI5	659499	5496580	2022	3	2022-09-12	Composite	Selenium	9.3	mg/kg dw	Trich	RG_MI5_INV-3_2022-09-12_N
INV	RG_MI5	659499	5496580	2022	3	2022-09-12	Composite	Strontium	7.3	mg/kg dw	Trich	RG_MI5_INV-3_2022-09-12_N
INV	RG_MI5	659499	5496580	2022	3	2022-09-12	Composite	Molybdenum	0.34	mg/kg dw	Trich	RG_MI5_INV-3_2022-09-12_N
INV	RG_MI5	659499	5496580	2022	3	2022-09-12	Composite	Silver	0.15	mg/kg dw	Trich	RG_MI5_INV-3_2022-09-12_N
INV	RG_MI5	659499	5496580	2022	3	2022-09-12	Composite	Cadmium	2.9	mg/kg dw	Trich	RG_MI5_INV-3_2022-09-12_N
INV	RG_MI5	659499	5496580	2022	3	2022-09-12	Composite	Tin	0.39	mg/kg dw	Trich	RG_MI5_INV-3_2022-09-12_N
INV	RG_MI5	659499	5496580	2022	3	2022-09-12	Composite	Antimony	0.04	mg/kg dw	Trich	RG_MI5_INV-3_2022-09-12_N
INV	RG_MI5	659499	5496580	2022	3	2022-09-12	Composite	Barium	90	mg/kg dw	Trich	RG_MI5_INV-3_2022-09-12_N
INV	RG_MI5	659499	5496580	2022	3	2022-09-12	Composite	Mercury	0.071	mg/kg dw	Trich	RG_MI5_INV-3_2022-09-12_N
INV	RG_MI5	659499	5496580	2022	3	2022-09-12	Composite	Thallium	0.04	mg/kg dw	Trich	RG_MI5_INV-3_2022-09-12_N
INV	RG_MI5	659499	5496580	2022	3	2022-09-12	Composite	Lead	0.21	mg/kg dw	Trich	RG_MI5_INV-3_2022-09-12_N
INV	RG MI5	659499	5496580	2022	3	2022-09-12	Composite	Uranium	0.073	mg/kg dw	Trich	RG MI5 INV-3 2022-09-12 N
INV	RG MI5	659499	5496580	2022	3	2022-09-12	Composite	Wet Mass	0.21	g	Trich	RG MI5 INV-3 2022-09-12 N
INV	RG MI5	659499	5496580	2022	3	2022-09-12	Composite	Dry Mass	0.037	q	Trich	RG MI5 INV-3 2022-09-12 N
INV	RG MI5	659499	5496580	2022	3	2022-09-12	Composite	% Moisture	82	<u> </u>	Trich	RG MI5 INV-3 2022-09-12 N
INV	RG MIDAG	665217	5489528	2022	1	2022-09-13	Composite	Lithium	0.44	mg/kg dw	Trich	RG MIDAG INV-1 2022-09-13 N
INV	RG MIDAG	665217	5489528	2022	1	2022-09-13	Composite	Boron	1.2	mg/kg dw	Trich	RG MIDAG_INV-1_2022-09-13_N
INV	RG MIDAG	665217	5489528	2022	1	2022-09-13	Composite	Sodium	3,437		Trich	RG MIDAG_INV-1_2022-09-13_N
	_				1					mg/kg dw		
INV	RG_MIDAG	665217	5489528	2022	1	2022-09-13	Composite	Magnesium	1,140	mg/kg dw	Trich	RG_MIDAG_INV-1_2022-09-13_N
INV	RG_MIDAG	665217	5489528	2022	1	2022-09-13	Composite	Aluminum	571	mg/kg dw	Trich	RG_MIDAG_INV-1_2022-09-13_N
INV	RG_MIDAG	665217	5489528	2022	1	2022-09-13	Composite	Phosphorus	10,500	mg/kg dw	Trich	RG_MIDAG_INV-1_2022-09-13_N
INV	RG_MIDAG	665217	5489528	2022	1	2022-09-13	Composite	Potassium	10,872	mg/kg dw	Trich	RG_MIDAG_INV-1_2022-09-13_N
INV	RG MIDAG	665217	5489528	2022	1	2022-09-13	Composite	Calcium	1,571	mg/kg dw	Trich	RG MIDAG INV-1 2022-09-13 N

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Type	Station	Location	n (UTMs) ^(a)	Year	Replicate	Date	Species/Composite	Analyte	Pacult	Unit		Laboratory Information
Туре	Station	Easting	Northing	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit	Lab	Sample ID
INV	RG MIDAG	665217	5489528	2022	1	2022-09-13	Composite	Titanium	44	mg/kg dw	Trich	RG MIDAG INV-1 2022-09-13 N
INV	RG MIDAG	665217	5489528	2022	1	2022-09-13	Composite	Vanadium	1.2	mg/kg dw	Trich	RG MIDAG INV-1 2022-09-13 N
INV	RG_MIDAG	665217	5489528	2022	1	2022-09-13	Composite	Chromium	5.2	mg/kg dw	Trich	RG MIDAG INV-1 2022-09-13 N
INV	RG MIDAG	665217	5489528	2022	1	2022-09-13	Composite	Manganese	105	mg/kg dw	Trich	RG MIDAG INV-1 2022-09-13 N
INV	RG MIDAG	665217	5489528	2022	1	2022-09-13	Composite	Iron	441	mg/kg dw	Trich	RG MIDAG INV-1 2022-09-13 N
INV	RG MIDAG	665217	5489528	2022	1	2022-09-13	Composite	Cobalt	9.8	mg/kg dw	Trich	RG MIDAG INV-1 2022-09-13 N
INV	RG MIDAG	665217	5489528	2022	1	2022-09-13	Composite	Nickel	16	mg/kg dw	Trich	RG MIDAG INV-1 2022-09-13 N
INV	RG MIDAG	665217	5489528	2022	1	2022-09-13	Composite	Copper	15	mg/kg dw	Trich	RG MIDAG INV-1 2022-09-13 N
INV	RG MIDAG	665217	5489528	2022	1	2022-09-13	Composite	Zinc	160	mg/kg dw	Trich	RG MIDAG INV-1 2022-09-13 N
INV	RG MIDAG	665217	5489528	2022	1	2022-09-13	Composite	Arsenic	0.71	mg/kg dw	Trich	RG MIDAG INV-1 2022-09-13 N
INV	RG_MIDAG	665217	5489528	2022	1	2022-09-13		Selenium			Trich	RG MIDAG INV-1 2022-09-13 N
INV					1		Composite		7.9	mg/kg dw		
	RG_MIDAG	665217	5489528	2022	1	2022-09-13	Composite	Strontium	4.7	mg/kg dw	Trich	RG_MIDAG_INV-1_2022-09-13_N
INV	RG_MIDAG	665217	5489528	2022	1	2022-09-13	Composite	Molybdenum	0.46	mg/kg dw	Trich	RG_MIDAG_INV-1_2022-09-13_N
INV	RG_MIDAG	665217	5489528	2022	1	2022-09-13	Composite	Silver	0.1	mg/kg dw	Trich	RG_MIDAG_INV-1_2022-09-13_N
INV	RG_MIDAG	665217	5489528	2022	1	2022-09-13	Composite	Cadmium	1.0	mg/kg dw	Trich	RG_MIDAG_INV-1_2022-09-13_N
INV	RG_MIDAG	665217	5489528	2022	1	2022-09-13	Composite	Tin	0.19	mg/kg dw	Trich	RG_MIDAG_INV-1_2022-09-13_N
INV	RG_MIDAG	665217	5489528	2022	1	2022-09-13	Composite	Antimony	0.04	mg/kg dw	Trich	RG_MIDAG_INV-1_2022-09-13_N
INV	RG_MIDAG	665217	5489528	2022	1	2022-09-13	Composite	Barium	28	mg/kg dw	Trich	RG_MIDAG_INV-1_2022-09-13_N
INV	RG_MIDAG	665217	5489528	2022	1	2022-09-13	Composite	Mercury	0.065	mg/kg dw	Trich	RG_MIDAG_INV-1_2022-09-13_N
INV	RG_MIDAG	665217	5489528	2022	1	2022-09-13	Composite	Thallium	0.054	mg/kg dw	Trich	RG_MIDAG_INV-1_2022-09-13_N
INV	RG_MIDAG	665217	5489528	2022	1	2022-09-13	Composite	Lead	0.29	mg/kg dw	Trich	RG_MIDAG_INV-1_2022-09-13_N
INV	RG MIDAG	665217	5489528	2022	1	2022-09-13	Composite	Uranium	0.059	mg/kg dw	Trich	RG MIDAG INV-1 2022-09-13 N
INV	RG MIDAG	665217	5489528	2022	1	2022-09-13	Composite	Wet Mass	0.46	q	Trich	RG MIDAG INV-1 2022-09-13 N
INV	RG MIDAG	665217	5489528	2022	1	2022-09-13	Composite	Dry Mass	0.1	a	Trich	RG MIDAG INV-1 2022-09-13 N
INV	RG MIDAG	665217	5489528	2022	1	2022-09-13	Composite	% Moisture	78	%	Trich	RG MIDAG INV-1 2022-09-13 N
INV	RG MIDAG	665266	5489463	2022	2	2022-09-13	Composite	Lithium	0.84	mg/kg dw	Trich	RG MIDAG INV-2 2022-09-13 N
INV	RG MIDAG	665266	5489463	2022	2	2022-09-13	Composite	Boron	2.5	mg/kg dw	Trich	RG MIDAG INV-2 2022-09-13 N
INV	RG_MIDAG	665266	5489463	2022	2	2022-09-13	Composite	Sodium	4,027	mg/kg dw	Trich	RG MIDAG_INV-2_2022-09-13_N
INV		665266	5489463	2022		2022-09-13	•		1,940		Trich	RG_MIDAG_INV-2_2022-09-13_N
	RG_MIDAG				2		Composite	Magnesium		mg/kg dw		
INV	RG_MIDAG	665266	5489463	2022	2	2022-09-13	Composite	Aluminum	1,314	mg/kg dw	Trich	RG_MIDAG_INV-2_2022-09-13_N
INV	RG_MIDAG	665266	5489463	2022	2	2022-09-13	Composite	Phosphorus	13,247	mg/kg dw	Trich	RG_MIDAG_INV-2_2022-09-13_N
INV	RG_MIDAG	665266	5489463	2022	2	2022-09-13	Composite	Potassium	12,015	mg/kg dw	Trich	RG_MIDAG_INV-2_2022-09-13_N
INV	RG_MIDAG	665266	5489463	2022	2	2022-09-13	Composite	Calcium	3,651	mg/kg dw	Trich	RG_MIDAG_INV-2_2022-09-13_N
INV	RG_MIDAG	665266	5489463	2022	2	2022-09-13	Composite	Titanium	114	mg/kg dw	Trich	RG_MIDAG_INV-2_2022-09-13_N
INV	RG_MIDAG	665266	5489463	2022	2	2022-09-13	Composite	Vanadium	2.3	mg/kg dw	Trich	RG_MIDAG_INV-2_2022-09-13_N
INV	RG_MIDAG	665266	5489463	2022	2	2022-09-13	Composite	Chromium	7.2	mg/kg dw	Trich	RG_MIDAG_INV-2_2022-09-13_N
INV	RG_MIDAG	665266	5489463	2022	2	2022-09-13	Composite	Manganese	69	mg/kg dw	Trich	RG_MIDAG_INV-2_2022-09-13_N
INV	RG_MIDAG	665266	5489463	2022	2	2022-09-13	Composite	Iron	822	mg/kg dw	Trich	RG_MIDAG_INV-2_2022-09-13_N
INV	RG MIDAG	665266	5489463	2022	2	2022-09-13	Composite	Cobalt	20	mg/kg dw	Trich	RG MIDAG INV-2 2022-09-13 N
INV	RG MIDAG	665266	5489463	2022	2	2022-09-13	Composite	Nickel	25	mg/kg dw	Trich	RG MIDAG INV-2 2022-09-13 N
INV	RG MIDAG	665266	5489463	2022	2	2022-09-13	Composite	Copper	15	mg/kg dw	Trich	RG MIDAG INV-2 2022-09-13 N
INV	RG MIDAG	665266	5489463	2022	2	2022-09-13	Composite	Zinc	189	mg/kg dw	Trich	RG MIDAG INV-2 2022-09-13 N
INV	RG MIDAG	665266	5489463	2022	2	2022-09-13	Composite	Arsenic	1.8	mg/kg dw	Trich	RG MIDAG INV-2 2022-09-13 N
INV	RG MIDAG	665266	5489463	2022	2	2022-09-13	Composite	Selenium	1.0	mg/kg dw	Trich	RG MIDAG INV-2 2022-09-13 N
INV	RG MIDAG	665266	5489463	2022	2	2022-09-13	Composite	Strontium	9.1	mg/kg dw	Trich	RG MIDAG INV-2 2022-09-13 N
INV	RG MIDAG	665266	5489463	2022	2	2022-09-13	Composite	Molybdenum	0.41	mg/kg dw	Trich	RG MIDAG INV-2 2022-09-13 N
INV	_	665266				2022-09-13		Silver	0.41			RG_MIDAG_INV-2_2022-09-13_N RG_MIDAG_INV-2_2022-09-13_N
	RG_MIDAG		5489463	2022	2		Composite			mg/kg dw	Trich	
INV	RG_MIDAG	665266	5489463	2022	2	2022-09-13	Composite	Cadmium	2.2	mg/kg dw	Trich	RG_MIDAG_INV-2_2022-09-13_N
INV	RG_MIDAG	665266	5489463	2022	2	2022-09-13	Composite	Tin	0.7	mg/kg dw	Trich	RG_MIDAG_INV-2_2022-09-13_N
INV	RG_MIDAG	665266	5489463	2022	2	2022-09-13	Composite	Antimony	0.067	mg/kg dw	Trich	RG_MIDAG_INV-2_2022-09-13_N
INV	RG_MIDAG	665266	5489463	2022	2	2022-09-13	Composite	Barium	32	mg/kg dw	Trich	RG_MIDAG_INV-2_2022-09-13_N
INV	RG_MIDAG	665266	5489463	2022	2	2022-09-13	Composite	Mercury	0.059	mg/kg dw	Trich	RG_MIDAG_INV-2_2022-09-13_N
INV	RG_MIDAG	665266	5489463	2022	2	2022-09-13	Composite	Thallium	0.092	mg/kg dw	Trich	RG_MIDAG_INV-2_2022-09-13_N
INV	RG_MIDAG	665266	5489463	2022	2	2022-09-13	Composite	Lead	0.45	mg/kg dw	Trich	RG_MIDAG_INV-2_2022-09-13_N
INV	RG_MIDAG	665266	5489463	2022	2	2022-09-13	Composite	Uranium	0.083	mg/kg dw	Trich	RG_MIDAG_INV-2_2022-09-13_N
INV	RG MIDAG	665266	5489463	2022	2	2022-09-13	Composite	Wet Mass	0.27	q	Trich	RG MIDAG INV-2 2022-09-13 N
INV	RG MIDAG	665266	5489463	2022	2	2022-09-13	Composite	Dry Mass	0.056	J	Trich	RG MIDAG INV-2 2022-09-13 N

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Tune	Station	Locatio	n (UTMs) ^(a)	Veen	Donlingto	Data	Species/Comments	Analyta	Dogult	Heit		Laboratory Information
Туре	Station	Easting	Northing	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit	Lab	Sample ID
INV	RG MIDAG	665266	5489463	2022	2	2022-09-13	Composite	% Moisture	80	%	Trich	RG MIDAG INV-2 2022-09-13 N
INV	RG MIDAG	665267	5489368	2022	3	2022-09-13	Composite	Lithium	0.25	mg/kg dw	Trich	RG MIDAG INV-3 2022-09-13 N
INV	RG_MIDAG	665267	5489368	2022	3	2022-09-13	Composite	Boron	0.8	mg/kg dw	Trich	RG MIDAG INV-3 2022-09-13 N
INV	RG MIDAG	665267	5489368	2022	3	2022-09-13	Composite	Sodium	5,445	mg/kg dw	Trich	RG MIDAG INV-3 2022-09-13 N
INV	RG MIDAG	665267	5489368	2022	3	2022-09-13	Composite	Magnesium	1,656	mg/kg dw	Trich	RG_MIDAG_INV-3_2022-09-13_N
INV	RG MIDAG	665267	5489368	2022	3	2022-09-13	Composite	Aluminum	343	mg/kg dw	Trich	RG MIDAG INV-3 2022-09-13 N
INV	RG MIDAG	665267	5489368	2022	3	2022-09-13	Composite	Phosphorus	15,453	mg/kg dw	Trich	RG MIDAG INV-3 2022-09-13 N
INV	RG MIDAG	665267	5489368	2022	3	2022-09-13	Composite	Potassium	13,085	mg/kg dw	Trich	RG MIDAG INV-3 2022-09-13 N
INV	RG MIDAG	665267	5489368	2022	3	2022-09-13	Composite	Calcium	2,012	mg/kg dw	Trich	RG MIDAG INV-3 2022-09-13 N
INV	RG MIDAG	665267	5489368	2022	3	2022-09-13	Composite	Titanium	23	mg/kg dw	Trich	RG MIDAG INV-3 2022-09-13 N
INV	RG_MIDAG	665267	5489368	2022	3	2022-09-13	Composite	Vanadium	0.62	mg/kg dw	Trich	RG MIDAG INV-3 2022-09-13 N
INV	RG MIDAG	665267	5489368	2022	3	2022-09-13	Composite	Chromium	4.3	mg/kg dw	Trich	RG_MIDAG_INV-3_2022-09-13_N
INV	RG_MIDAG	665267	5489368	2022	3	2022-09-13	Composite	Manganese	57	mg/kg dw	Trich	RG_MIDAG_INV-3_2022-09-13_N
INV	RG MIDAG	665267	5489368	2022	3	2022-09-13	Composite	Iron	250	mg/kg dw	Trich	RG MIDAG INV-3 2022-09-13 N
INV	RG MIDAG	665267	5489368	2022	3	2022-09-13		Cobalt	10		Trich	RG MIDAG INV-3 2022-09-13 N
INV	_	665267				2022-09-13	Composite			mg/kg dw		
	RG_MIDAG		5489368	2022	3		Composite	Nickel	12	mg/kg dw	Trich	RG_MIDAG_INV-3_2022-09-13_N
INV	RG_MIDAG	665267	5489368	2022	3	2022-09-13	Composite	Copper	19	mg/kg dw	Trich	RG_MIDAG_INV-3_2022-09-13_N
INV	RG_MIDAG	665267	5489368	2022	3	2022-09-13	Composite	Zinc	244	mg/kg dw	Trich	RG_MIDAG_INV-3_2022-09-13_N
INV	RG_MIDAG	665267	5489368	2022	3	2022-09-13	Composite	Arsenic	0.75	mg/kg dw	Trich	RG_MIDAG_INV-3_2022-09-13_N
INV	RG_MIDAG	665267	5489368	2022	3	2022-09-13	Composite	Selenium	8.8	mg/kg dw	Trich	RG_MIDAG_INV-3_2022-09-13_1
INV	RG_MIDAG	665267	5489368	2022	3	2022-09-13	Composite	Strontium	7.0	mg/kg dw	Trich	RG_MIDAG_INV-3_2022-09-13_I
INV	RG_MIDAG	665267	5489368	2022	3	2022-09-13	Composite	Molybdenum	0.24	mg/kg dw	Trich	RG_MIDAG_INV-3_2022-09-13_I
INV	RG_MIDAG	665267	5489368	2022	3	2022-09-13	Composite	Silver	0.13	mg/kg dw	Trich	RG_MIDAG_INV-3_2022-09-13_I
INV	RG_MIDAG	665267	5489368	2022	3	2022-09-13	Composite	Cadmium	1.3	mg/kg dw	Trich	RG_MIDAG_INV-3_2022-09-13_I
INV	RG_MIDAG	665267	5489368	2022	3	2022-09-13	Composite	Tin	0.85	mg/kg dw	Trich	RG_MIDAG_INV-3_2022-09-13_I
INV	RG_MIDAG	665267	5489368	2022	3	2022-09-13	Composite	Antimony	0.025	mg/kg dw	Trich	RG_MIDAG_INV-3_2022-09-13_I
INV	RG_MIDAG	665267	5489368	2022	3	2022-09-13	Composite	Barium	21	mg/kg dw	Trich	RG_MIDAG_INV-3_2022-09-13_N
INV	RG_MIDAG	665267	5489368	2022	3	2022-09-13	Composite	Mercury	0.077	mg/kg dw	Trich	RG_MIDAG_INV-3_2022-09-13_f
INV	RG_MIDAG	665267	5489368	2022	3	2022-09-13	Composite	Thallium	0.085	mg/kg dw	Trich	RG_MIDAG_INV-3_2022-09-13_I
INV	RG_MIDAG	665267	5489368	2022	3	2022-09-13	Composite	Lead	0.19	mg/kg dw	Trich	RG_MIDAG_INV-3_2022-09-13_f
INV	RG_MIDAG	665267	5489368	2022	3	2022-09-13	Composite	Uranium	0.039	mg/kg dw	Trich	RG_MIDAG_INV-3_2022-09-13_1
INV	RG_MIDAG	665267	5489368	2022	3	2022-09-13	Composite	Wet Mass	0.23	g	Trich	RG_MIDAG_INV-3_2022-09-13_f
INV	RG MIDAG	665267	5489368	2022	3	2022-09-13	Composite	Dry Mass	0.043	g	Trich	RG MIDAG INV-3 2022-09-13 I
INV	RG MIDAG	665267	5489368	2022	3	2022-09-13	Composite	% Moisture	82	%	Trich	RG MIDAG INV-3 2022-09-13 I
INV	RG MIDCO	667769	5487592	2022	1	2022-09-13	Composite	Lithium	1.4	mg/kg dw	Trich	RG MIDCO INV-1 2022-09-13
INV	RG MIDCO	667769	5487592	2022	1	2022-09-13	Composite	Boron	4.9	mg/kg dw	Trich	RG MIDCO INV-1 2022-09-13
INV	RG MIDCO	667769	5487592	2022	1	2022-09-13	Composite	Sodium	5.070	mg/kg dw	Trich	RG MIDCO INV-1 2022-09-13
INV	RG MIDCO	667769	5487592	2022	1	2022-09-13	Composite	Magnesium	1,628	mg/kg dw	Trich	RG MIDCO INV-1 2022-09-13
INV	RG MIDCO	667769	5487592	2022	1	2022-09-13	Composite	Aluminum	3,084	mg/kg dw	Trich	RG MIDCO INV-1 2022-09-13
INV	RG MIDCO	667769	5487592	2022	1	2022-09-13	Composite	Phosphorus	12,290	mg/kg dw	Trich	RG MIDCO INV-1 2022-09-13
INV	RG MIDCO	667769	5487592	2022	1	2022-09-13	Composite	Potassium	12,697	mg/kg dw	Trich	RG MIDCO INV-1 2022-09-13 I
INV	RG MIDCO	667769	5487592	2022	1	2022-09-13	Composite	Calcium	3,845	mg/kg dw	Trich	RG MIDCO INV-1 2022-09-13 I
INV	RG MIDCO	667769	5487592	2022	1	2022-09-13	Composite	Titanium	223	mg/kg dw	Trich	RG MIDCO INV-1 2022-09-13 I
INV	RG MIDCO	667769	5487592	2022	1	2022-09-13	Composite	Vanadium	4.0	mg/kg dw	Trich	RG MIDCO INV-1 2022-09-13 I
INV	RG MIDCO	667769	5487592	2022	1	2022-09-13	Composite	Chromium	7.4	mg/kg dw	Trich	RG MIDCO INV-1 2022-09-13 I
INV	RG MIDCO	667769	5487592	2022	1	2022-09-13	Composite	Manganese	115	mg/kg dw	Trich	RG MIDCO INV-1 2022-09-13 I
INV	RG MIDCO	667769	5487592	2022	1	2022-09-13	Composite	Iron	1,386	mg/kg dw	Trich	RG MIDCO INV-1 2022-09-13 I
INV	RG MIDCO	667769	5487592	2022	1	2022-09-13	Composite	Cobalt	55	mg/kg dw	Trich	RG MIDCO INV-1 2022-09-13 I
INV	RG_MIDCO	667769	5487592	2022	1	2022-09-13	Composite	Nickel	37	mg/kg dw	Trich	RG_MIDCO_INV-1_2022-09-13_1 RG_MIDCO_INV-1_2022-09-13_1
INV	RG_MIDCO	667769	5487592	2022	1	2022-09-13			14		Trich	RG_MIDCO_INV-1_2022-09-13_1 RG_MIDCO_INV-1_2022-09-13_1
					1		Composite	Copper		mg/kg dw		
INV	RG_MIDCO	667769	5487592	2022	1	2022-09-13	Composite	Zinc	139	mg/kg dw	Trich	RG_MIDCO_INV-1_2022-09-13_I
INV	RG_MIDCO	667769	5487592	2022	1	2022-09-13	Composite	Arsenic	0.81	mg/kg dw	Trich	RG_MIDCO_INV-1_2022-09-13_I
INV	RG_MIDCO	667769	5487592	2022	1	2022-09-13	Composite	Selenium	4.3	mg/kg dw	Trich	RG_MIDCO_INV-1_2022-09-13_N
INV	RG_MIDCO	667769	5487592	2022	1	2022-09-13	Composite	Strontium	12	mg/kg dw	Trich	RG_MIDCO_INV-1_2022-09-13_N
INV	RG_MIDCO	667769	5487592	2022	1	2022-09-13	Composite	Molybdenum	0.31	mg/kg dw	Trich	RG_MIDCO_INV-1_2022-09-13_N
INV	RG_MIDCO	667769	5487592	2022	1	2022-09-13	Composite	Silver	0.048	mg/kg dw	Trich	RG_MIDCO_INV-1_2022-09-13_N
INV	RG MIDCO	667769	5487592	2022	4	2022-09-13	Composite	Cadmium	1.1	mg/kg dw	Trich	RG MIDCO INV-1 2022-09-13 N

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Typo	Station	Locatio	n (UTMs) ^(a)	Year	Replicate	Date	Spacias/Composite	Analyta	Pocult	Unit		Laboratory Information
Туре	Station	Easting	Northing	rear	Replicate	Date	Species/Composite	Analyte	Result	Unit	Lab	Sample ID
INV	RG_MIDCO	667769	5487592	2022	1	2022-09-13	Composite	Tin	0.58	mg/kg dw	Trich	RG MIDCO INV-1 2022-09-13 N
INV	RG MIDCO	667769	5487592	2022	1	2022-09-13	Composite	Antimony	0.058	mg/kg dw	Trich	RG MIDCO INV-1 2022-09-13 N
INV	RG_MIDCO	667769	5487592	2022	1	2022-09-13	Composite	Barium	36	mg/kg dw	Trich	RG MIDCO INV-1 2022-09-13 N
INV	RG MIDCO	667769	5487592	2022	1	2022-09-13	Composite	Mercury	0.043	mg/kg dw	Trich	RG MIDCO INV-1 2022-09-13 N
INV	RG MIDCO	667769	5487592	2022	1	2022-09-13	Composite	Thallium	0.15	mg/kg dw	Trich	RG MIDCO INV-1 2022-09-13 N
INV	RG MIDCO	667769	5487592	2022	1	2022-09-13	Composite	Lead	0.88	mg/kg dw	Trich	RG MIDCO INV-1 2022-09-13 N
INV	RG MIDCO	667769	5487592	2022	1	2022-09-13	Composite	Uranium	0.11	mg/kg dw	Trich	RG MIDCO INV-1 2022-09-13 N
INV	RG MIDCO	667769	5487592	2022	1	2022-09-13	Composite	Wet Mass	0.21	a a	Trich	RG MIDCO INV-1 2022-09-13 N
INV	RG MIDCO	667769	5487592	2022	1	2022-09-13	Composite	Dry Mass	0.049	a a	Trich	RG MIDCO INV-1 2022-09-13 N
INV	RG MIDCO	667769	5487592	2022	1	2022-09-13	Composite	% Moisture	76	9 %	Trich	RG MIDCO INV-1 2022-09-13 N
INV	RG_MIDCO	667734	5487613	2022	2	2022-09-13	Composite	Lithium	0.37	mg/kg dw	Trich	RG_MIDCO_INV-2_2022-09-13_N
INV	RG MIDCO	667734	5487613	2022	2	2022-09-13	Composite	Boron	1.4		Trich	RG_MIDCO_INV-2_2022-09-13_N
INV	_						<u>'</u>			mg/kg dw		
	RG_MIDCO	667734	5487613	2022	2	2022-09-13	Composite	Sodium	3,745	mg/kg dw	Trich	RG_MIDCO_INV-2_2022-09-13_N
INV	RG_MIDCO	667734	5487613	2022	2	2022-09-13	Composite	Magnesium	1,320	mg/kg dw	Trich	RG_MIDCO_INV-2_2022-09-13_N
INV	RG_MIDCO	667734	5487613	2022	2	2022-09-13	Composite	Aluminum	641	mg/kg dw	Trich	RG_MIDCO_INV-2_2022-09-13_N
INV	RG_MIDCO	667734	5487613	2022	2	2022-09-13	Composite	Phosphorus	11,070	mg/kg dw	Trich	RG_MIDCO_INV-2_2022-09-13_N
INV	RG_MIDCO	667734	5487613	2022	2	2022-09-13	Composite	Potassium	10,407	mg/kg dw	Trich	RG_MIDCO_INV-2_2022-09-13_N
INV	RG_MIDCO	667734	5487613	2022	2	2022-09-13	Composite	Calcium	2,703	mg/kg dw	Trich	RG_MIDCO_INV-2_2022-09-13_f
INV	RG_MIDCO	667734	5487613	2022	2	2022-09-13	Composite	Titanium	34	mg/kg dw	Trich	RG_MIDCO_INV-2_2022-09-13_I
INV	RG_MIDCO	667734	5487613	2022	2	2022-09-13	Composite	Vanadium	0.83	mg/kg dw	Trich	RG_MIDCO_INV-2_2022-09-13_I
INV	RG_MIDCO	667734	5487613	2022	2	2022-09-13	Composite	Chromium	4.8	mg/kg dw	Trich	RG_MIDCO_INV-2_2022-09-13_I
INV	RG_MIDCO	667734	5487613	2022	2	2022-09-13	Composite	Manganese	84	mg/kg dw	Trich	RG_MIDCO_INV-2_2022-09-13_f
INV	RG_MIDCO	667734	5487613	2022	2	2022-09-13	Composite	Iron	371	mg/kg dw	Trich	RG_MIDCO_INV-2_2022-09-13_I
INV	RG_MIDCO	667734	5487613	2022	2	2022-09-13	Composite	Cobalt	17	mg/kg dw	Trich	RG_MIDCO_INV-2_2022-09-13_I
INV	RG_MIDCO	667734	5487613	2022	2	2022-09-13	Composite	Nickel	17	mg/kg dw	Trich	RG_MIDCO_INV-2_2022-09-13_f
INV	RG MIDCO	667734	5487613	2022	2	2022-09-13	Composite	Copper	15	mg/kg dw	Trich	RG MIDCO INV-2 2022-09-13 I
INV	RG MIDCO	667734	5487613	2022	2	2022-09-13	Composite	Zinc	152	mg/kg dw	Trich	RG MIDCO INV-2 2022-09-13 I
INV	RG_MIDCO	667734	5487613	2022	2	2022-09-13	Composite	Arsenic	<0.401	mg/kg dw	Trich	RG_MIDCO_INV-2_2022-09-13_I
INV	RG_MIDCO	667734	5487613	2022	2	2022-09-13	Composite	Selenium	3.5	mg/kg dw	Trich	RG_MIDCO_INV-2_2022-09-13_I
INV	RG MIDCO	667734	5487613	2022	2	2022-09-13	Composite	Strontium	9.0	mg/kg dw	Trich	RG_MIDCO_INV-2_2022-09-13_I
INV	RG MIDCO	667734	5487613	2022	2	2022-09-13	Composite	Molybdenum	0.23	mg/kg dw	Trich	RG MIDCO INV-2 2022-09-13 I
INV	RG MIDCO	667734	5487613	2022	2	2022-09-13	Composite	Silver	0.069	mg/kg dw	Trich	RG MIDCO INV-2 2022-09-13 I
INV	RG MIDCO	667734	5487613	2022	2	2022-09-13	Composite	Cadmium	0.003	mg/kg dw	Trich	RG MIDCO INV-2 2022-09-13 I
INV	RG MIDCO	667734	5487613	2022	2	2022-09-13	Composite	Tin	0.62	mg/kg dw	Trich	RG MIDCO INV-2 2022-09-13 I
INV	RG MIDCO	667734	5487613	2022	2	2022-09-13	Composite	Antimony	0.028	mg/kg dw	Trich	RG MIDCO INV-2 2022-09-13 I
INV	RG MIDCO	667734	5487613	2022	2	2022-09-13	·	Barium	17		Trich	RG MIDCO INV-2 2022-09-13 I
	_				2		Composite			mg/kg dw	+	
INV	RG_MIDCO	667734	5487613	2022		2022-09-13	Composite	Mercury	0.049	mg/kg dw	Trich	RG_MIDCO_INV-2_2022-09-13_
INV	RG_MIDCO	667734	5487613	2022	2	2022-09-13	Composite	Thallium	0.045	mg/kg dw	Trich	RG_MIDCO_INV-2_2022-09-13_
INV	RG_MIDCO	667734	5487613	2022	2	2022-09-13	Composite	Lead	0.3	mg/kg dw	Trich	RG_MIDCO_INV-2_2022-09-13_I
INV	RG_MIDCO	667734	5487613	2022	2	2022-09-13	Composite	Uranium	0.041	mg/kg dw	Trich	RG_MIDCO_INV-2_2022-09-13_I
INV	RG_MIDCO	667734	5487613	2022	2	2022-09-13	Composite	Wet Mass	0.3	g	Trich	RG_MIDCO_INV-2_2022-09-13_I
INV	RG_MIDCO	667734	5487613	2022	2	2022-09-13	Composite	Dry Mass	0.074	g	Trich	RG_MIDCO_INV-2_2022-09-13_I
INV	RG_MIDCO	667734	5487613	2022	2	2022-09-13	Composite	% Moisture	75	%	Trich	RG_MIDCO_INV-2_2022-09-13_I
INV	RG_MIDCO	667706	5487633	2022	3	2022-09-13	Composite	Lithium	0.43	mg/kg dw	Trich	RG_MIDCO_INV-3_2022-09-13_I
INV	RG_MIDCO	667706	5487633	2022	3	2022-09-13	Composite	Boron	1.5	mg/kg dw	Trich	RG_MIDCO_INV-3_2022-09-13_f
INV	RG_MIDCO	667706	5487633	2022	3	2022-09-13	Composite	Sodium	3,151	mg/kg dw	Trich	RG_MIDCO_INV-3_2022-09-13_I
INV	RG_MIDCO	667706	5487633	2022	3	2022-09-13	Composite	Magnesium	1,211	mg/kg dw	Trich	RG_MIDCO_INV-3_2022-09-13_f
INV	RG_MIDCO	667706	5487633	2022	3	2022-09-13	Composite	Aluminum	887	mg/kg dw	Trich	RG_MIDCO_INV-3_2022-09-13_I
INV	RG_MIDCO	667706	5487633	2022	3	2022-09-13	Composite	Phosphorus	8,882	mg/kg dw	Trich	RG_MIDCO_INV-3_2022-09-13_I
INV	RG_MIDCO	667706	5487633	2022	3	2022-09-13	Composite	Potassium	8,739	mg/kg dw	Trich	RG_MIDCO_INV-3_2022-09-13_f
INV	RG MIDCO	667706	5487633	2022	3	2022-09-13	Composite	Calcium	1,824	mg/kg dw	Trich	RG MIDCO INV-3 2022-09-13 I
INV	RG MIDCO	667706	5487633	2022	3	2022-09-13	Composite	Titanium	57	mg/kg dw	Trich	RG MIDCO INV-3 2022-09-13 I
INV	RG MIDCO	667706	5487633	2022	3	2022-09-13	Composite	Vanadium	1.1	mg/kg dw	Trich	RG MIDCO INV-3 2022-09-13 I
INV	RG MIDCO	667706	5487633	2022	3	2022-09-13	Composite	Chromium	7.2	mg/kg dw	Trich	RG MIDCO INV-3 2022-09-13 N
INV	RG MIDCO	667706	5487633	2022	3	2022-09-13	Composite	Manganese	74	mg/kg dw	Trich	RG MIDCO INV-3 2022-09-13 N
INV	RG MIDCO	667706	5487633	2022	3	2022-09-13	Composite	Iron	500	mg/kg dw	Trich	RG MIDCO INV-3 2022-09-13 N
		1 111//////	ı 04 07033		J	2022-03-13	COMPOSILE	11011	1 300	i iiiu/ku uw	111611	1/2 1/10/20 11/1/-2 2022-09-12 1

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Security Company Com			Locatio	n (UTMs) ^(a)									Laboratory Information
No. No. No. No. No. No. No. No. No. No. No. No. No. No.	Туре	Station			Year	Replicate	Date	Species/Composite	Analyte	Result	Unit	Lab	-
Marco	INV	RG MIDCO			2022	3	2022-09-13	Composite	Nickel	21	ma/ka dw		RG MIDCO INV-3 2022-09-13 N
NV		_											RG MIDCO INV-3 2022-09-13 N
NV R. MICCO 667708 5487653 2022 3 2002-06-13 Composite Seminary 1 Composite Se		_							• • • • • • • • • • • • • • • • • • • •				RG MIDCO INV-3 2022-09-13 N
No. No. No. No. September Sept		_			_			<u>'</u>					RG MIDCO INV-3 2022-09-13 N
No. R. M. MICCO 68770B 5447033 2002 3 2002-0-10													RG MIDCO INV-3 2022-09-13 N
No. R. Misco Ser 708 Ser 7		_											
No. R.O. MICCO 697708 549763 2022 3 2022-69-19 Composite Cambridge C			_										
No. Rof, MIDCO 667768 546783 2022 3 2022-06-13 Composite Tr. 0.29 might give Trich Rof, MIDCO RMS 720 MINV Rof, MIDCO 667768 546783 2022 3 2022-06-13 Composite Tr. 0.29 might give Trich Rof, MIDCO RMS 720 MINV Rof, MIDCO 667768 546783 2022 3 2022-06-13 Composite Compo												1	
No. No. MiloCo 08776 048783 2022 3 2022-09-13 Composete Armony Du21 mystg ow Then RS MiloCo No. 3 202 No.													
No. No.					_								
No. RG MIDCO 867766 5457633 2022 3 2022-09-13 Composite Bahrum 20 might glow Trich RG MIDCO MRV	_												
RV RG MIDCO R67768 5487633 2022 3 2022-0913 Composite Mercury 0.044 mg/kg dw Trich R6 MIDCO NN-3 202 N					_			·	·				
INV		_			_			<u>'</u>					
INV RG MIDCO 887786 5487833 2022 3 2022-09-13 Composite Lead 0.31 mg/kg dw Trinn RG MIDCO MrV 328 MrV RG MIDCO 667706 5487633 2022 3 2022-09-13 Composite Uranum 0.046 mg/kg dw Trinn RG MIDCO MrV RG MIDCO 667706 5487633 2022 3 2022-09-13 Composite West Mass 0.42 g Trinn RG MIDCO MrV 328 MrV RG MIDCO 667706 5487633 2022 3 2022-09-13 Composite West Mass 0.42 g Trinn RG MIDCO MrV 328 MrV RG MIDCO 667706 5487633 2022 4 2022-09-13 Composite MrV RG MIDCO 667707 5487632 2022 4 2022-09-13 Composite MrV RG MIDCO MrV RG MI									<u> </u>				
INV RG MIDCO 667766 5487633 2022 3 2022-09-13 Composite Unminim 0.946 mylkg size Trich RG MIDCO RV3 2012 3 2022-09-13 Composite Unwill Miss 0.42 9 Trich RG MIDCO RV3 2012 3 2022-09-13 Composite Dy Miss 0.089 9 Trich RG MIDCO RV3 2012 3 2022-09-13 Composite Dy Miss 0.089 9 Trich RG MIDCO RV3 2012 3 2022-09-13 Composite Dy Miss 0.089 9 Trich RG MIDCO RV4 2012		_											
INV													
INV RG MIDCO 687706 5487633 2022 3 2022-09-13 Composite Dry Mess 0.099 g Trich RG MIDCO INV3 2023 3 2022-09-13 Composite Lithium 0.4 mg/kg dw Trich RG MIDCO INV3 2023 3 2022-09-13 Composite Lithium 0.4 mg/kg dw Trich RG MIDCO INV4 2023-09-13 Composite Lithium 0.4 mg/kg dw Trich RG MIDCO INV4 2023-09-13 Composite Baron 1.6 mg/kg dw Trich RG MIDCO INV4 2023-09-13 Composite Baron 1.6 mg/kg dw Trich RG MIDCO INV4 2023-09-13 Composite Southern 4.013 mg/kg dw Trich RG MIDCO INV4 2023-09-13 Composite Magnetism 1.095 mg/kg dw Trich RG MIDCO INV4 2023-09-13 Composite Magnetism 1.095 mg/kg dw Trich RG MIDCO INV4 2023-09-13 Composite Magnetism 1.095 mg/kg dw Trich RG MIDCO INV4 2023-09-13 Composite Magnetism 1.095 mg/kg dw Trich RG MIDCO INV4 2023-09-13 Composite Magnetism 1.095 mg/kg dw Trich RG MIDCO INV4 2023-09-13 Composite Magnetism 1.095 mg/kg dw Trich RG MIDCO INV4 2023-09-13 Composite Magnetism 1.095 mg/kg dw Trich RG MIDCO INV4 2023-09-13 Composite Magnetism 1.095 mg/kg dw Trich RG MIDCO INV4 2023-09-13 Composite Magnetism 1.095 mg/kg dw Trich RG MIDCO INV4 2023-09-13 Composite Magnetism 1.095 mg/kg dw Trich RG MIDCO INV4 2023-09-13 Composite Magnetism 1.095 mg/kg dw Trich RG MIDCO INV4 2023-09-13 Composite Magnetism 1.095 mg/kg dw Trich RG MIDCO INV4 2023-09-13 Composite Magnetism 1.095 mg/kg dw Trich RG MIDCO INV4 2023-09-13 Composite Magnetism 1.095 mg/kg dw Trich RG MIDCO INV4 2023-09-13 Composite Magnetism 1.095 mg/kg dw Trich RG MIDCO INV4 2023-09-13 Composite Magnetism 1.095 mg/kg dw Trich RG MIDCO INV4 2023-09-13 Composite Inv4 mg/kg dw Trich RG MIDCO INV4 202		_										-	RG_MIDCO_INV-3_2022-09-13_N
INV		_									<u> </u>		RG_MIDCO_INV-3_2022-09-13_N
INV		_						<u>'</u>	·				RG_MIDCO_INV-3_2022-09-13_N
INV RG MIDCO 667682 5467632 2022 4 2022-09-13 Composite Sodium 4,013 mg/ltg dw Trich RG MIDCO INV 201 RG MIDCO Ref Ref Ref Ref MIDCO Ref Ref Ref Ref Ref Ref Ref Ref Ref Ref													RG_MIDCO_INV-3_2022-09-13_N
No. RG MIDCO 697682 5497632 2022 4 2022-09-13 Composite Magnetium 4,013 mg/kg dw Trich RG MIDCO No. 420 No. No. RG MIDCO No. 420 No.		_			4		Composite			mg/kg dw		RG_MIDCO_INV-4_2022-09-13_N	
INV RS MIDCO 667882 5487832 2022 4 2022-09-13 Composite Magnesisum 1,085 mg/kg dw Trich RG MIDCO INV-4 2003 MIDCO RF MidCO RF MidCO RF MidCO		_			_	4							RG_MIDCO_INV-4_2022-09-13_N
INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Phosphrous 11,360 mg/kg dw Trich RG MIDCO INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Phosphrous 11,360 mg/kg dw Trich RG MIDCO INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Calcium 2,075 mg/kg dw Trich RG MIDCO INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Trinhum 30 mg/kg dw Trich RG MIDCO INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Vanadium 0.76 mg/kg dw Trich RG MIDCO INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Vanadium 0.76 mg/kg dw Trich RG MIDCO INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Chromium 4.2 mg/kg dw Trich RG MIDCO INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Iron 276 mg/kg dw Trich RG MIDCO INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Iron 276 mg/kg dw Trich RG MIDCO INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Iron 276 mg/kg dw Trich RG MIDCO INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Robert Rob		_				4		Composite	Sodium			Trich	RG_MIDCO_INV-4_2022-09-13_N
INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Phosphtrus 11,380 mg/kg dw Trich RG MIDCO NV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Calcium 2,075 mg/kg dw Trich RG MIDCO NV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Tifantum 30 mg/kg dw Trich RG MIDCO NV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Tifantum 30 mg/kg dw Trich RG MIDCO NV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Chromium 4 2 mg/kg dw Trich RG MIDCO NV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Chromium 4 2 mg/kg dw Trich RG MIDCO NV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Chromium 4 2 mg/kg dw Trich RG MIDCO NV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Challed RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Challed RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Challed RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Challed RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Challed RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Challed RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Challed RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Challed RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Challed RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Challed RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Challed RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite RG MIDCO 667682 5487632 2022	INV	_			2022	4		Composite	Magnesium		mg/kg dw	Trich	RG_MIDCO_INV-4_2022-09-13_N
INV RG MIDCO 667882 5487832 2022 4 2022-09-13 Composite Polassium 10,617 mg/kg dw Trich R6 MIDCO INV-4 202 202 4 2022-09-13 Composite Titanium 30 mg/kg dw Trich R6 MIDCO INV-4 202 202 4 2022-09-13 Composite Titanium 30 mg/kg dw Trich R6 MIDCO INV-4 202 202 4 2022-09-13 Composite Titanium 30 mg/kg dw Trich R6 MIDCO INV-4 202 202 4 2022-09-13 Composite Chromium 4.2 mg/kg dw Trich R6 MIDCO INV-4 202 202 4 2022-09-13 Composite Chromium 4.2 mg/kg dw Trich R6 MIDCO INV-4 202 202 4 2022-09-13 Composite Chromium 4.2 mg/kg dw Trich R6 MIDCO INV-4 202 202 4 2022-09-13 Composite Chromium 4.2 mg/kg dw Trich R6 MIDCO INV-4 202 202 4 2022-09-13 Composite Chromium 4.2 mg/kg dw Trich R6 MIDCO INV-4 202 202 4 2022-09-13 Composite Chromium 4.2 mg/kg dw Trich R6 MIDCO INV-4 202 202 4 2022-09-13 Composite Chromium 276 mg/kg dw Trich R6 MIDCO INV-4 202 202 4 2022-09-13 Composite Chromium 276 mg/kg dw Trich R6 MIDCO INV-4 202 202 4 2022-09-13 Composite Chromium 276 mg/kg dw Trich R6 MIDCO INV-4 202 202 4 2022-09-13 Composite Chromium 276 mg/kg dw Trich R6 MIDCO INV-4 202 202 4 2022-09-13 Composite Chromium Chromium 276 mg/kg dw Trich R6 MIDCO INV-4 202 202 4 2022-09-13 Composite Chromium	INV	_		5487632	2022	4		Composite	Aluminum		mg/kg dw	Trich	RG_MIDCO_INV-4_2022-09-13_N
INV RG MIDCO 667882 5487832 2022 4 2022-09-13 Composite Tanuum 30 mg/kg dw Trich RG MIDCO INV-4 2023 RG MIDCO R	INV	RG_MIDCO	667682	5487632	2022	4	2022-09-13	Composite	Phosphorus	11,360	mg/kg dw	Trich	RG_MIDCO_INV-4_2022-09-13_N
INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Vanadium 0.76 mg/kg dw Trich RG MIDCO INV-4 202 RG MIDCO INV	RG_MIDCO	667682	5487632	2022	4	2022-09-13	Composite	Potassium	10,617	mg/kg dw	Trich	RG_MIDCO_INV-4_2022-09-13_N	
INV	INV	RG_MIDCO	667682	5487632	2022	4	2022-09-13	Composite	Calcium	2,075	mg/kg dw	Trich	RG_MIDCO_INV-4_2022-09-13_N
INV	INV	RG_MIDCO	667682	5487632	2022	4	2022-09-13	Composite	Titanium	30	mg/kg dw	Trich	RG_MIDCO_INV-4_2022-09-13_N
INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Inon 276 mg/kg dw Trich RG MIDCO INV-4 2021 RG MIDCO RG F682 5487632 2022 4 2022-09-13 Composite Inon 276 mg/kg dw Trich RG MIDCO INV-4 2021 RG MIDCO INV-4 20	INV	RG_MIDCO	667682	5487632	2022	4	2022-09-13	Composite	Vanadium	0.76	mg/kg dw	Trich	RG_MIDCO_INV-4_2022-09-13_N
INV	INV	RG_MIDCO	667682	5487632	2022	4	2022-09-13	Composite	Chromium	4.2	mg/kg dw	Trich	RG_MIDCO_INV-4_2022-09-13_N
INV	INV	RG_MIDCO	667682	5487632	2022	4	2022-09-13	Composite	Manganese	108	mg/kg dw	Trich	RG_MIDCO_INV-4_2022-09-13_N
INV	INV	RG MIDCO	667682	5487632	2022	4	2022-09-13	Composite	Iron	276	mg/kg dw	Trich	RG MIDCO INV-4 2022-09-13 N
INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Nickel 25 mg/kg dw Trich RG MIDCO INV-4 202 INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Zinc 142 mg/kg dw Trich RG MIDCO INV-4 202 INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Zinc 142 mg/kg dw Trich RG MIDCO INV-4 202 INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Arsenic 0.45 mg/kg dw Trich RG MIDCO INV-4 202 INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Selenium 2.9 mg/kg dw Trich RG MIDCO INV-4 202 INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Strontium T.2 mg/kg dw Trich RG MIDCO INV-4 202 INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Strontium T.2 mg/kg dw Trich RG MIDCO INV-4 202 INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Silver 0.048 mg/kg dw Trich RG MIDCO INV-4 202 INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Silver 0.048 mg/kg dw Trich RG MIDCO INV-4 202 INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Cadmium 0.46 mg/kg dw Trich RG MIDCO INV-4 202 INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Cadmium 0.46 mg/kg dw Trich RG MIDCO INV-4 202 INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Cadmium 0.46 mg/kg dw Trich RG MIDCO INV-4 202 INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Antimony 0.03 mg/kg dw Trich RG MIDCO INV-4 202 INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Antimony 0.03 mg/kg dw Trich RG MIDCO INV-4 202 INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Barium 17 mg/kg dw Trich RG MIDCO INV-4 202 INV RG MIDCO 667682 5487632 2022 4 2022-09-13	INV	RG MIDCO	667682	5487632	2022	4	2022-09-13	Composite	Cobalt	19		Trich	RG MIDCO INV-4 2022-09-13 N
INV	INV			5487632		4		Composite	Nickel				RG MIDCO INV-4 2022-09-13 N
INV	INV			5487632	2022	4		Composite	Copper				RG MIDCO INV-4 2022-09-13 N
INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Arsenic 0.45 mg/kg dw Trich RG MIDCO INV-4 2021 RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Selenium 2.9 mg/kg dw Trich RG MIDCO INV-4 2021 RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Strontium 7.2 mg/kg dw Trich RG MIDCO INV-4 2021 RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Molybdenum 0.21 mg/kg dw Trich RG MIDCO INV-4 2021 RG MIDCO INV		_				4		·	• • • • • • • • • • • • • • • • • • • •				RG MIDCO INV-4 2022-09-13 N
INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Selenium 2.9 mg/kg dw Trich RG MIDCO INV-4 202 INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Strontium 7.2 mg/kg dw Trich RG MIDCO INV-4 202 INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Molybdenum 0.21 mg/kg dw Trich RG MIDCO INV-4 202 INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Silver 0.048 mg/kg dw Trich RG MIDCO INV-4 202 INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Cadmium 0.46 mg/kg dw Trich RG MIDCO INV-4 202 INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Cadmium 0.46 mg/kg dw Trich RG MIDCO INV-4 202 INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Antimony 0.03 mg/kg dw Trich RG MIDCO INV-4 202 INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Antimony 0.03 mg/kg dw Trich RG MIDCO INV-4 202 INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Barium 17 mg/kg dw Trich RG MIDCO INV-4 202 INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Barium 17 mg/kg dw Trich RG MIDCO INV-4 202 INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Mercury 0.031 mg/kg dw Trich RG MIDCO INV-4 202 INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Lead 0.25 mg/kg dw Trich RG MIDCO INV-4 202 INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Lead 0.25 mg/kg dw Trich RG MIDCO INV-4 202 INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Lead 0.25 mg/kg dw Trich RG MIDCO INV-4 202 INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Uranium 0.04 mg/kg dw Trich RG MIDCO INV-4 202 INV RG MIDCO 667662 5487632 2022 4 2022-09-13 Composite Uranium 0.04		_				4		· · · · · · · · · · · · · · · · · · ·	Arsenic			+ +	RG MIDCO INV-4 2022-09-13 N
INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Strontium 7.2 mg/kg dw Trich RG MIDCO INV-4 202 INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Silver 0.048 mg/kg dw Trich RG MIDCO INV-4 202 INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Cadmium 0.46 mg/kg dw Trich RG MIDCO INV-4 202 INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Cadmium 0.46 mg/kg dw Trich RG MIDCO INV-4 202 INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Trin 0.53 mg/kg dw Trich RG MIDCO INV-4 202 INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Antimony 0.03 mg/kg dw Trich RG MIDCO INV-4 202 INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Barium 17 mg/kg dw Trich RG MIDCO INV-4 202 INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Barium 17 mg/kg dw Trich RG MIDCO INV-4 202 INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Barium 17 mg/kg dw Trich RG MIDCO INV-4 202 INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Mercury 0.031 mg/kg dw Trich RG MIDCO INV-4 202 INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Lead 0.25 mg/kg dw Trich RG MIDCO INV-4 202 INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Lead 0.25 mg/kg dw Trich RG MIDCO INV-4 202 INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Uranium 0.036 mg/kg dw Trich RG MIDCO INV-4 202 INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Uranium 0.036 mg/kg dw Trich RG MIDCO INV-4 202 INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Uranium 0.04 mg/kg dw Trich RG MIDCO INV-4 202 INV RG MIDCO 667666 5487664 2022 5 2022-09-13 Composite Dry Mass 0.064 g		_		5487632		4		<u>'</u>	Selenium	2.9		Trich	RG MIDCO INV-4 2022-09-13 N
INV		_				4							RG MIDCO INV-4 2022-09-13 N
INV		_											RG_MIDCO_INV-4_2022-09-13_N
INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Cadmium 0.46 mg/kg dw Trich RG MIDCO INV-4 202 202 4 2022-09-13 Composite Tin 0.53 mg/kg dw Trich RG MIDCO INV-4 202 202 4 2022-09-13 Composite Tin 0.53 mg/kg dw Trich RG MIDCO INV-4 202 202 202 202 202 202 202 202 202 2022-09-13 Composite Raminum 17 mg/kg dw Trich RG MIDCO INV-4 202 INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Raminum 17 mg/kg dw Trich RG MIDCO INV-4 202 INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Mercury 0.031 mg/kg dw Trich RG MIDCO INV-4 202 INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Thallium 0.064 mg/kg dw Trich RG MIDCO INV-4 202 INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Lead 0.25 mg/kg dw Trich RG MIDCO INV-4 202 INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Uranium 0.036 mg/kg dw Trich RG MIDCO INV-4 202 INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Uranium 0.036 mg/kg dw Trich RG MIDCO INV-4 202 INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Uranium 0.036 mg/kg dw Trich RG MIDCO INV-4 202 INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Uranium 0.04 mg/kg dw Trich RG MIDCO INV-4 202 INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Dry Mass 0.064 g Trich RG MIDCO INV-4 202 INV RG MIDCO 667666 5487664 2022 5 2022-09-13 Composite Lithium 0.4 mg/kg dw Trich RG MIDCO INV-5 202 INV RG MIDCO 667666 5487664 2022 5 2022-09-13 Composite Boron 1.5 mg/kg dw Trich RG MIDCO INV-5 202 INV RG MIDCO 667666 5487664 2022 5 2022-09-13 Composite Boron 1.5 mg/kg dw Trich RG MIDCO INV-5 202 INV RG M		_						·	·				RG MIDCO INV-4 2022-09-13 N
INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Tin 0.53 mg/kg dw Trich RG MIDCO INV-4 202 202 4 2022-09-13 Composite Antimony 0.03 mg/kg dw Trich RG MIDCO INV-4 202 202 202 202 2022-09-13 Composite Barium 17 mg/kg dw Trich RG MIDCO INV-4 202 202 202 2022-09-13 Composite Mercury 0.031 mg/kg dw Trich RG MIDCO INV-4 202 202 202 202 2022-09-13 Composite Mercury 0.031 mg/kg dw Trich RG MIDCO INV-4 202 202 202 202 202 202 202 202 202 202 202 202 202 202 202 202 202 202 203 Composite Mercury 0.031 mg/kg dw Trich RG MIDCO INV-4 202 INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Lead 0.25 mg/kg dw Trich RG MIDCO INV-4 202 INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Uranium 0.036 mg/kg dw Trich RG MIDCO INV-4 202 INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Uranium 0.036 mg/kg dw Trich RG MIDCO INV-4 202 INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Wet Mass 0.3 g Trich RG MIDCO INV-4 202 INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Dry Mass 0.064 g Trich RG MIDCO INV-4 202 INV RG MIDCO 667682 5487632 2022 4 2022-09-13 Composite Dry Mass 0.064 g Trich RG MIDCO INV-4 202 INV RG MIDCO 667666 5487664 2022 5 2022-09-13 Composite Lithium 0.4 mg/kg dw Trich RG MIDCO INV-5 202 INV RG MIDCO 667666 5487664 2022 5 2022-09-13 Composite Boron 1.5 mg/kg dw Trich RG MIDCO INV-5 202 INV RG MIDCO 667666 5487664 2022 5 2022-09-13 Composite Sodium 3,089 mg/kg dw Trich RG MIDCO INV-5 202 INV RG MIDCO 667666 5487664 2022 5 2022-09-13 Composite Magnesium 1,149 mg/kg dw Trich RG MIDCO INV-5 202 INV RG MIDCO 667		_						<u> </u>					RG MIDCO INV-4 2022-09-13 N
INV RG_MIDCO 667682 5487632 2022 4 2022-09-13 Composite Antimony 0.03 mg/kg dw Trich RG_MIDCO INV-4_202 INV RG_MIDCO 667682 5487632 2022 4 2022-09-13 Composite Barium 17 mg/kg dw Trich RG_MIDCO INV-4_202 INV RG_MIDCO 667682 5487632 2022 4 2022-09-13 Composite Mercury 0.031 mg/kg dw Trich RG_MIDCO INV-4_202 INV RG_MIDCO 667682 5487632 2022 4 2022-09-13 Composite Thallium 0.064 mg/kg dw Trich RG_MIDCO INV-4_202 INV RG_MIDCO 667682 5487632 2022 4 2022-09-13 Composite Lead 0.25 mg/kg dw Trich RG_MIDCO INV-4_202 INV RG_MIDCO 667682 5487632 2022 4 2022-09-13 Composite Uranium 0.036 mg/kg dw Trich RG_MIDCO INV-4_202 INV RG_MIDCO 667682 5487632 2022 4 2022-09-13 Composite Uranium 0.036 mg/kg dw Trich RG_MIDCO INV-4_202 INV RG_MIDCO 667682 5487632 2022 4 2022-09-13 Composite Wet Mass 0.3 g Trich RG_MIDCO INV-4_202 INV RG_MIDCO 667682 5487632 2022 4 2022-09-13 Composite Dry Mass 0.064 g Trich RG_MIDCO INV-4_202 INV RG_MIDCO 667682 5487632 2022 4 2022-09-13 Composite Dry Mass 0.064 g Trich RG_MIDCO INV-4_202 INV RG_MIDCO 667666 5487664 2022 5 2022-09-13 Composite Lithium 0.4 mg/kg dw Trich RG_MIDCO INV-5_202 INV RG_MIDCO 667666 5487664 2022 5 2022-09-13 Composite Boron 1.5 mg/kg dw Trich RG_MIDCO INV-5_202 INV RG_MIDCO 667666 5487664 2022 5 2022-09-13 Composite Sodium 3,089 mg/kg dw Trich RG_MIDCO INV-5_202 INV RG_MIDCO 667666 5487664 2022 5 2022-09-13 Composite Magnesium 1,149 mg/kg dw Trich RG_MIDCO INV-5_202 INV RG_MIDCO 667666 5487664 2022 5 2022-09-13 Composite Magnesium 1,149 mg/kg dw Trich RG_MIDCO INV-5_202 INV RG_MIDCO 667666 5487664 2022 5 2022-09-13 Composite Magnesium 1,149 mg		_											RG MIDCO INV-4 2022-09-13 N
INV RG_MIDCO 667682 5487632 2022 4 2022-09-13 Composite Barium 17 mg/kg dw Trich RG_MIDCO_INV-4_202			_					<u> </u>					RG MIDCO INV-4 2022-09-13 N
INV RG_MIDCO 667682 5487632 2022 4 2022-09-13 Composite Mercury 0.031 mg/kg dw Trich RG_MIDCO_INV-4_202 INV RG_MIDCO 667682 5487632 2022 4 2022-09-13 Composite Thallium 0.064 mg/kg dw Trich RG_MIDCO_INV-4_202 INV RG_MIDCO 667682 5487632 2022 4 2022-09-13 Composite Lead 0.25 mg/kg dw Trich RG_MIDCO_INV-4_202 INV RG_MIDCO 667682 5487632 2022 4 2022-09-13 Composite Uranium 0.036 mg/kg dw Trich RG_MIDCO_INV-4_202 INV RG_MIDCO 667682 5487632 2022 4 2022-09-13 Composite Wet Mass 0.3 g Trich RG_MIDCO_INV-4_202 INV RG_MIDCO 667682 5487632 2022 4 2022-09-13 Composite Dry Mass 0.064 g Trich RG_MIDCO_INV-4_202 <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><u> </u></td> <td>j</td> <td></td> <td></td> <td></td> <td>RG MIDCO INV-4 2022-09-13 N</td>		_						<u> </u>	j				RG MIDCO INV-4 2022-09-13 N
INV RG_MIDCO 667682 5487632 2022 4 2022-09-13 Composite Thallium 0.064 mg/kg dw Trich RG_MIDCO_INV-4_202 INV RG_MIDCO 667682 5487632 2022 4 2022-09-13 Composite Lead 0.25 mg/kg dw Trich RG_MIDCO_INV-4_202 INV RG_MIDCO 667682 5487632 2022 4 2022-09-13 Composite Uranium 0.036 mg/kg dw Trich RG_MIDCO_INV-4_202 INV RG_MIDCO 667682 5487632 2022 4 2022-09-13 Composite Wet Mass 0.3 g Trich RG_MIDCO_INV-4_202 INV RG_MIDCO 667682 5487632 2022 4 2022-09-13 Composite Dry Mass 0.064 g Trich RG_MIDCO_INV-4_202 INV RG_MIDCO 667682 5487632 2022 4 2022-09-13 Composite Dry Mass 0.064 g Trich RG_MIDCO_INV-4_202 INV RG_MIDCO 667666 5487664 2022 5 2022-09-13 Composite May Moisture Total Mg/kg dw Trich RG_MIDCO_INV-5_202 INV RG_MIDCO 667666 5487664 2022 5 2022-09-13 Composite Boron 1.5 mg/kg dw Trich RG_MIDCO_INV-5_202 INV RG_MIDCO 667666 5487664 2022 5 2022-09-13 Composite Sodium 3,089 mg/kg dw Trich RG_MIDCO_INV-5_202 INV RG_MIDCO 667666 5487664 2022 5 2022-09-13 Composite Sodium 3,089 mg/kg dw Trich RG_MIDCO_INV-5_202 INV RG_MIDCO 667666 5487664 2022 5 2022-09-13 Composite Sodium 3,089 mg/kg dw Trich RG_MIDCO_INV-5_202 INV RG_MIDCO 667666 5487664 2022 5 2022-09-13 Composite Sodium 3,089 mg/kg dw Trich RG_MIDCO_INV-5_202 INV RG_MIDCO 667666 5487664 2022 5 2022-09-13 Composite Sodium 3,089 mg/kg dw Trich RG_MIDCO_INV-5_202 INV RG_MIDCO 667666 5487664 2022 5 2022-09-13 Composite Sodium 1,149 mg/kg dw Trich RG_MIDCO_INV-5_202 INV RG_MIDCO INV-5_202 INV RG_MIDCO INV-5_202 INV-5_202 INV RG_MIDCO INV-5_202 INV RG_MIDCO INV-5_202 INV-5_202 INV RG_MIDCO INV-5_202 INV-5_202 INV-5_202 INV-5_202 INV-5_202 INV-5_202 INV-5_202 INV-5_202		_				-		<u> </u>					RG MIDCO INV-4 2022-09-13 N
INV RG_MIDCO 667682 5487632 2022 4 2022-09-13 Composite Lead 0.25 mg/kg dw Trich RG_MIDCO_INV-4_202 INV RG_MIDCO 667682 5487632 2022 4 2022-09-13 Composite Uranium 0.036 mg/kg dw Trich RG_MIDCO_INV-4_202 INV RG_MIDCO 667682 5487632 2022 4 2022-09-13 Composite Wet Mass 0.3 g Trich RG_MIDCO_INV-4_202 INV RG_MIDCO 667682 5487632 2022 4 2022-09-13 Composite Dry Mass 0.064 g Trich RG_MIDCO_INV-4_202 INV RG_MIDCO 667682 5487632 2022 4 2022-09-13 Composite Wet Mass 0.064 g Trich RG_MIDCO_INV-4_202 INV RG_MIDCO 667682 5487632 2022 4 2022-09-13 Composite Wet Mass 0.064 g Trich RG_MIDCO_INV-4_202 INV RG_MIDCO 667666 5487664 2022 5 2022-09-13 Composite Wet Mass 0.064 g Trich RG_MIDCO_INV-4_202 INV RG_MIDCO 667666 5487664 2022 5 2022-09-13 Composite Wet Mass 0.064 g Trich RG_MIDCO_INV-4_202 INV RG_MIDCO 667666 5487664 2022 5 2022-09-13 Composite Lithium 0.4 mg/kg dw Trich RG_MIDCO_INV-5_202 INV RG_MIDCO 667666 5487664 2022 5 2022-09-13 Composite Boron 1.5 mg/kg dw Trich RG_MIDCO_INV-5_202 INV RG_MIDCO 667666 5487664 2022 5 2022-09-13 Composite Sodium 3,089 mg/kg dw Trich RG_MIDCO_INV-5_202 INV-5_202 INV RG_MIDCO 667666 5487664 2022 5 2022-09-13 Composite Magnesium 1,149 mg/kg dw Trich RG_MIDCO_INV-5_202 INV-5_202 INV													RG MIDCO INV-4 2022-09-13 N
INV RG_MIDCO 667682 5487632 2022 4 2022-09-13 Composite Uranium 0.036 mg/kg dw Trich RG_MIDCO_INV-4_202 INV RG_MIDCO 667682 5487632 2022 4 2022-09-13 Composite Wet Mass 0.3 g Trich RG_MIDCO_INV-4_202 INV RG_MIDCO 667682 5487632 2022 4 2022-09-13 Composite Dry Mass 0.064 g Trich RG_MIDCO_INV-4_202 INV RG_MIDCO 667682 5487632 2022 4 2022-09-13 Composite % Moisture 79 % Trich RG_MIDCO_INV-4_202 INV RG_MIDCO 667666 5487664 2022 5 2022-09-13 Composite Lithium 0.4 mg/kg dw Trich RG_MIDCO_INV-5_202 INV RG_MIDCO 667666 5487664 2022 5 2022-09-13 Composite Boron 1.5 mg/kg dw Trich RG_MIDCO_INV-5_202 <tr< td=""><td></td><td>_</td><td></td><td></td><td>_</td><td></td><td></td><td>·</td><td></td><td></td><td></td><td></td><td></td></tr<>		_			_			·					
INV RG_MIDCO 667682 5487632 2022 4 2022-09-13 Composite Wet Mass 0.3 g Trich RG_MIDCO_INV-4_202 INV RG_MIDCO 667682 5487632 2022 4 2022-09-13 Composite Dry Mass 0.064 g Trich RG_MIDCO_INV-4_202 INV RG_MIDCO 667682 5487632 2022 4 2022-09-13 Composite % Moisture 79 % Trich RG_MIDCO_INV-4_202 INV RG_MIDCO 667666 5487664 2022 5 2022-09-13 Composite Lithium 0.4 mg/kg dw Trich RG_MIDCO_INV-5_202 INV RG_MIDCO 667666 5487664 2022 5 2022-09-13 Composite Boron 1.5 mg/kg dw Trich RG_MIDCO_INV-5_202 INV RG_MIDCO 667666 5487664 2022 5 2022-09-13 Composite Sodium 3,089 mg/kg dw Trich RG_MIDCO_INV-5_202		_			_								
INV RG_MIDCO 667682 5487632 2022 4 2022-09-13 Composite Dry Mass 0.064 g Trich RG_MIDCO_INV-4_202 INV RG_MIDCO 667682 5487632 2022 4 2022-09-13 Composite % Moisture 79 % Trich RG_MIDCO_INV-4_202 INV RG_MIDCO 667666 5487664 2022 5 2022-09-13 Composite Lithium 0.4 mg/kg dw Trich RG_MIDCO_INV-5_202 INV RG_MIDCO 667666 5487664 2022 5 2022-09-13 Composite Boron 1.5 mg/kg dw Trich RG_MIDCO_INV-5_202 INV RG_MIDCO 667666 5487664 2022 5 2022-09-13 Composite Sodium 3,089 mg/kg dw Trich RG_MIDCO_INV-5_202 INV RG_MIDCO 667666 5487664 2022 5 2022-09-13 Composite Magnesium 1,149 mg/kg dw Trich RG_MIDCO_INV-5_202 <td></td> <td>_</td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		_			_								
INV RG_MIDCO 667682 5487632 2022 4 2022-09-13 Composite % Moisture 79 % Trich RG_MIDCO_INV-4_202 INV RG_MIDCO 667666 5487664 2022 5 2022-09-13 Composite Lithium 0.4 mg/kg dw Trich RG_MIDCO_INV-5_202 INV RG_MIDCO 667666 5487664 2022 5 2022-09-13 Composite Boron 1.5 mg/kg dw Trich RG_MIDCO_INV-5_202 INV RG_MIDCO 667666 5487664 2022 5 2022-09-13 Composite Sodium 3,089 mg/kg dw Trich RG_MIDCO_INV-5_202 INV RG_MIDCO 667666 5487664 2022 5 2022-09-13 Composite Sodium 3,089 mg/kg dw Trich RG_MIDCO_INV-5_202 INV RG_MIDCO 667666 5487664 2022 5 2022-09-13 Composite Magnesium 1,149 mg/kg dw Trich RG_MIDCO_INV-5_202		_			_						<u> </u>		
INV RG_MIDCO 667666 5487664 2022 5 2022-09-13 Composite Lithium 0.4 mg/kg dw Trich RG_MIDCO_INV-5_202 INV RG_MIDCO 667666 5487664 2022 5 2022-09-13 Composite Boron 1.5 mg/kg dw Trich RG_MIDCO_INV-5_202 INV RG_MIDCO 667666 5487664 2022 5 2022-09-13 Composite Sodium 3,089 mg/kg dw Trich RG_MIDCO_INV-5_202 INV RG_MIDCO 667666 5487664 2022 5 2022-09-13 Composite Magnesium 1,149 mg/kg dw Trich RG_MIDCO_INV-5_202		_			_			·	•				
INV RG_MIDCO 667666 5487664 2022 5 2022-09-13 Composite Boron 1.5 mg/kg dw Trich RG_MIDCO_INV-5_202 INV RG_MIDCO 667666 5487664 2022 5 2022-09-13 Composite Sodium 3,089 mg/kg dw Trich RG_MIDCO_INV-5_202 INV RG_MIDCO 667666 5487664 2022 5 2022-09-13 Composite Magnesium 1,149 mg/kg dw Trich RG_MIDCO_INV-5_202 INV RG_MIDCO_INV-5_202 RG_MIDCO_INV-5_202 RG_MIDCO_INV-5_202 RG_MIDCO_INV-5_202 RG_MIDCO_INV-5_202					_			·					
INV RG_MIDCO 667666 5487664 2022 5 2022-09-13 Composite Sodium 3,089 mg/kg dw Trich RG_MIDCO_INV-5_202 INV RG_MIDCO 667666 5487664 2022 5 2022-09-13 Composite Magnesium 1,149 mg/kg dw Trich RG_MIDCO_INV-5_202 INV RG_MIDCO_INV-5_202 RG_MIDCO_INV-5_202 RG_MIDCO_INV-5_202 RG_MIDCO_INV-5_202					_			<u> </u>					RG_MIDCO_INV-5_2022-09-13_N
INV RG_MIDCO 667666 5487664 2022 5 2022-09-13 Composite Magnesium 1,149 mg/kg dw Trich RG_MIDCO_INV-5_202		_	_										RG_MIDCO_INV-5_2022-09-13_N
		_											RG_MIDCO_INV-5_2022-09-13_N
INV RG_MIDCO 667666 5487664 2022 5 2022-09-13 Composite Aluminum 629 mg/kg dw Trich RG_MIDCO_INV-5_202			_										RG_MIDCO_INV-5_2022-09-13_N
	INV	RG_MIDCO	667666	5487664	2022	5	2022-09-13	Composite	Aluminum	629	mg/kg dw	Trich	RG_MIDCO_INV-5_2022-09-13_N

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Tuno	Station	Locatio	n (UTMs) ^(a)	Year	Replicate	Date	Species/Composite	Angluta	Popult	Unit		Laboratory Information
Туре	Station	Easting	Northing	rear	Replicate	Date	Species/Composite	Analyte	Result	Unit	Lab	Sample ID
INV	RG_MIDCO	667666	5487664	2022	5	2022-09-13	Composite	Phosphorus	9,377	mg/kg dw	Trich	RG_MIDCO_INV-5_2022-09-13_N
INV	RG MIDCO	667666	5487664	2022	5	2022-09-13	Composite	Potassium	8,848	mg/kg dw	Trich	RG MIDCO INV-5 2022-09-13 N
INV	RG_MIDCO	667666	5487664	2022	5	2022-09-13	Composite	Calcium	1,710	mg/kg dw	Trich	RG MIDCO INV-5 2022-09-13 N
INV	RG MIDCO	667666	5487664	2022	5	2022-09-13	Composite	Titanium	39	mg/kg dw	Trich	RG MIDCO INV-5 2022-09-13 N
INV	RG MIDCO	667666	5487664	2022	5	2022-09-13	Composite	Vanadium	0.82	mg/kg dw	Trich	RG MIDCO INV-5 2022-09-13 N
INV	RG MIDCO	667666	5487664	2022	5	2022-09-13	Composite	Chromium	4.8	mg/kg dw	Trich	RG MIDCO INV-5 2022-09-13 N
INV	RG MIDCO	667666	5487664	2022	5	2022-09-13	Composite	Manganese	80	mg/kg dw	Trich	RG MIDCO INV-5 2022-09-13 N
INV	RG MIDCO	667666	5487664	2022	5	2022-09-13	Composite	Iron	380	mg/kg dw	Trich	RG MIDCO INV-5 2022-09-13 N
INV	RG MIDCO	667666	5487664	2022	5	2022-09-13	Composite	Cobalt	16	mg/kg dw	Trich	RG MIDCO INV-5 2022-09-13 N
INV	RG MIDCO	667666	5487664	2022	5	2022-09-13	Composite	Nickel	18	mg/kg dw	Trich	RG MIDCO INV-5 2022-09-13 N
INV	RG_MIDCO	667666	5487664	2022	5	2022-09-13	Composite	Copper	12	mg/kg dw	Trich	RG_MIDCO_INV-5_2022-09-13_N
INV	RG MIDCO	667666	5487664	2022	5	2022-09-13	Composite	Zinc	149		Trich	RG_MIDCO_INV-5_2022-09-13_N
INV	_	667666	5487664	2022	5			Arsenic	0.49	mg/kg dw	Trich	
INV	RG_MIDCO					2022-09-13	Composite			mg/kg dw		RG_MIDCO_INV-5_2022-09-13_N
	RG_MIDCO	667666	5487664	2022	5	2022-09-13	Composite	Selenium	3.7	mg/kg dw	Trich	RG_MIDCO_INV-5_2022-09-13_N
INV	RG_MIDCO	667666	5487664	2022	5	2022-09-13	Composite	Strontium	6.4	mg/kg dw	Trich	RG_MIDCO_INV-5_2022-09-13_N
INV	RG_MIDCO	667666	5487664	2022	5	2022-09-13	Composite	Molybdenum	0.15	mg/kg dw	Trich	RG_MIDCO_INV-5_2022-09-13_N
INV	RG_MIDCO	667666	5487664	2022	5	2022-09-13	Composite	Silver	0.041	mg/kg dw	Trich	RG_MIDCO_INV-5_2022-09-13_N
INV	RG_MIDCO	667666	5487664	2022	5	2022-09-13	Composite	Cadmium	0.5	mg/kg dw	Trich	RG_MIDCO_INV-5_2022-09-13_N
INV	RG_MIDCO	667666	5487664	2022	5	2022-09-13	Composite	Tin	0.23	mg/kg dw	Trich	RG_MIDCO_INV-5_2022-09-13_N
INV	RG_MIDCO	667666	5487664	2022	5	2022-09-13	Composite	Antimony	0.024	mg/kg dw	Trich	RG_MIDCO_INV-5_2022-09-13_I
INV	RG_MIDCO	667666	5487664	2022	5	2022-09-13	Composite	Barium	16	mg/kg dw	Trich	RG_MIDCO_INV-5_2022-09-13_I
INV	RG_MIDCO	667666	5487664	2022	5	2022-09-13	Composite	Mercury	0.031	mg/kg dw	Trich	RG_MIDCO_INV-5_2022-09-13_f
INV	RG_MIDCO	667666	5487664	2022	5	2022-09-13	Composite	Thallium	0.053	mg/kg dw	Trich	RG_MIDCO_INV-5_2022-09-13_
INV	RG_MIDCO	667666	5487664	2022	5	2022-09-13	Composite	Lead	0.26	mg/kg dw	Trich	RG_MIDCO_INV-5_2022-09-13_I
INV	RG MIDCO	667666	5487664	2022	5	2022-09-13	Composite	Uranium	0.037	mg/kg dw	Trich	RG MIDCO INV-5 2022-09-13 I
INV	RG MIDCO	667666	5487664	2022	5	2022-09-13	Composite	Wet Mass	0.47	q	Trich	RG MIDCO INV-5 2022-09-13 I
INV	RG MIDCO	667666	5487664	2022	5	2022-09-13	Composite	Dry Mass	0.1	a	Trich	RG MIDCO INV-5 2022-09-13 I
INV	RG_MIDCO	667666	5487664	2022	5	2022-09-13	Composite	% Moisture	78	%	Trich	RG MIDCO INV-5 2022-09-13 I
INV	RG_MIUCO	668232	5486599	2022	1	2022-09-14	Composite	Lithium	0.38	mg/kg dw	Trich	RG MIUCO INV-1 2022-09-14 I
INV	RG MIUCO	668232	5486599	2022	1	2022-09-14	Composite	Boron	0.87	mg/kg dw	Trich	RG_MIUCO_INV-1_2022-09-14_I
INV	RG MIUCO	668232	5486599	2022	1	2022-09-14	Composite	Sodium	6,004	mg/kg dw	Trich	RG MIUCO INV-1 2022-09-14 I
INV	RG MIUCO	668232	5486599	2022	1	2022-09-14	Composite	Magnesium	1,273	mg/kg dw	Trich	RG MIUCO INV-1 2022-09-14 I
INV	RG MIUCO	668232	5486599	2022	1	2022-09-14	Composite	Aluminum	572	mg/kg dw	Trich	RG MIUCO INV-1 2022-09-14 I
INV	RG MIUCO	668232	5486599	2022	1	2022-09-14	Composite	Phosphorus	13,014		Trich	RG MIUCO INV-1 2022-09-14 I
INV	RG MIUCO	668232	5486599	2022	1	2022-09-14		Potassium	11,338	mg/kg dw	Trich	RG MIUCO INV-1 2022-09-14 I
	_				1		Composite			mg/kg dw		
INV	RG_MIUCO	668232	5486599	2022	1	2022-09-14	Composite	Calcium	647	mg/kg dw	Trich	RG_MIUCO_INV-1_2022-09-14_I
INV	RG_MIUCO	668232	5486599	2022	1	2022-09-14	Composite	Titanium	34	mg/kg dw	Trich	RG_MIUCO_INV-1_2022-09-14_I
INV	RG_MIUCO	668232	5486599	2022	1	2022-09-14	Composite	Vanadium	0.79	mg/kg dw	Trich	RG_MIUCO_INV-1_2022-09-14_I
INV	RG_MIUCO	668232	5486599	2022	1	2022-09-14	Composite	Chromium	2.4	mg/kg dw	Trich	RG_MIUCO_INV-1_2022-09-14_I
INV	RG_MIUCO	668232	5486599	2022	1	2022-09-14	Composite	Manganese	66	mg/kg dw	Trich	RG_MIUCO_INV-1_2022-09-14_I
INV	RG_MIUCO	668232	5486599	2022	1	2022-09-14	Composite	Iron	332	mg/kg dw	Trich	RG_MIUCO_INV-1_2022-09-14_I
INV	RG_MIUCO	668232	5486599	2022	1	2022-09-14	Composite	Cobalt	0.4	mg/kg dw	Trich	RG_MIUCO_INV-1_2022-09-14_I
INV	RG_MIUCO	668232	5486599	2022	1	2022-09-14	Composite	Nickel	4.1	mg/kg dw	Trich	RG_MIUCO_INV-1_2022-09-14_I
INV	RG_MIUCO	668232	5486599	2022	1	2022-09-14	Composite	Copper	16	mg/kg dw	Trich	RG_MIUCO_INV-1_2022-09-14_I
INV	RG_MIUCO	668232	5486599	2022	1	2022-09-14	Composite	Zinc	128	mg/kg dw	Trich	RG_MIUCO_INV-1_2022-09-14_I
INV	RG_MIUCO	668232	5486599	2022	1	2022-09-14	Composite	Arsenic	0.49	mg/kg dw	Trich	RG_MIUCO_INV-1_2022-09-14_I
INV	RG_MIUCO	668232	5486599	2022	1	2022-09-14	Composite	Selenium	3.2	mg/kg dw	Trich	RG_MIUCO_INV-1_2022-09-14_f
INV	RG_MIUCO	668232	5486599	2022	1	2022-09-14	Composite	Strontium	1.9	mg/kg dw	Trich	RG_MIUCO_INV-1_2022-09-14_I
INV	RG_MIUCO	668232	5486599	2022	1	2022-09-14	Composite	Molybdenum	0.29	mg/kg dw	Trich	RG_MIUCO_INV-1_2022-09-14_I
INV	RG MIUCO	668232	5486599	2022	1	2022-09-14	Composite	Silver	0.038	mg/kg dw	Trich	RG MIUCO INV-1 2022-09-14 I
INV	RG MIUCO	668232	5486599	2022	1	2022-09-14	Composite	Cadmium	0.42	mg/kg dw	Trich	RG MIUCO INV-1 2022-09-14 I
INV	RG MIUCO	668232	5486599	2022	1	2022-09-14	Composite	Tin	0.13	mg/kg dw	Trich	RG MIUCO INV-1 2022-09-14 I
INV	RG MIUCO	668232	5486599	2022	1	2022-09-14	Composite	Antimony	0.016	mg/kg dw	Trich	RG MIUCO INV-1 2022-09-14 I
INV	RG MIUCO	668232	5486599	2022	1	2022-09-14	Composite	Barium	36	mg/kg dw	Trich	RG MIUCO INV-1 2022-09-14 N
INV	RG MIUCO	668232	5486599	2022	1	2022-09-14	Composite	Mercury	0.056	mg/kg dw	Trich	RG MIUCO INV-1 2022-09-14 N
	RG_MIUCO	668232	5486599	2022	1	2022-09-14	Composite	Thallium	0.039	mg/kg dw	Trich	RG_MIUCO_INV-1_2022-09-14_N
INV												

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

_	A	Locatio	n (UTMs) ^(a)									Laboratory Information
Туре	Station	Easting	Northing	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit	Lab	Sample ID
INV	RG MIUCO	668232	5486599	2022	1	2022-09-14	Composite	Uranium	0.015	mg/kg dw	Trich	RG MIUCO INV-1 2022-09-14 N
INV	RG MIUCO	668232	5486599	2022	1	2022-09-14	Composite	Wet Mass	0.42	n n	Trich	RG MIUCO INV-1 2022-09-14 N
INV	RG MIUCO	668232	5486599	2022	1	2022-09-14	Composite	Dry Mass	0.08	<u>9</u>	Trich	RG MIUCO INV-1 2022-09-14 N
INV	RG MIUCO	668232	5486599	2022	1	2022-09-14	Composite	% Moisture	81	<u>9</u> %	Trich	RG MIUCO INV-1 2022-09-14 N
INV	RG MIUCO	668204	5486636	2022	2	2022-09-14	Composite	Lithium	0.81	mg/kg dw	Trich	RG MIUCO INV-2 2022-09-14 N
INV	RG MIUCO	668204	5486636	2022	2	2022-09-14	Composite	Boron	2.9		Trich	RG MIUCO INV-2 2022-09-14 N
	RG_MIUCO								5,079	mg/kg dw		
INV	_	668204	5486636	2022	2	2022-09-14	Composite	Sodium		mg/kg dw	Trich	RG_MIUCO_INV-2_2022-09-14_N
INV	RG_MIUCO	668204	5486636	2022	2	2022-09-14	Composite	Magnesium	1,290	mg/kg dw	Trich	RG_MIUCO_INV-2_2022-09-14_N
INV	RG_MIUCO	668204	5486636	2022	2	2022-09-14	Composite	Aluminum	1,144	mg/kg dw	Trich	RG_MIUCO_INV-2_2022-09-14_N
INV	RG_MIUCO	668204	5486636	2022	2	2022-09-14	Composite	Phosphorus	12,860	mg/kg dw	Trich	RG_MIUCO_INV-2_2022-09-14_N
INV	RG_MIUCO	668204	5486636	2022	2	2022-09-14	Composite	Potassium	12,558	mg/kg dw	Trich	RG_MIUCO_INV-2_2022-09-14_N
INV	RG_MIUCO	668204	5486636	2022	2	2022-09-14	Composite	Calcium	1,649	mg/kg dw	Trich	RG_MIUCO_INV-2_2022-09-14_N
INV	RG_MIUCO	668204	5486636	2022	2	2022-09-14	Composite	Titanium	44	mg/kg dw	Trich	RG_MIUCO_INV-2_2022-09-14_N
INV	RG_MIUCO	668204	5486636	2022	2	2022-09-14	Composite	Vanadium	1.2	mg/kg dw	Trich	RG_MIUCO_INV-2_2022-09-14_N
INV	RG_MIUCO	668204	5486636	2022	2	2022-09-14	Composite	Chromium	7.9	mg/kg dw	Trich	RG_MIUCO_INV-2_2022-09-14_N
INV	RG_MIUCO	668204	5486636	2022	2	2022-09-14	Composite	Manganese	146	mg/kg dw	Trich	RG_MIUCO_INV-2_2022-09-14_N
INV	RG_MIUCO	668204	5486636	2022	2	2022-09-14	Composite	Iron	920	mg/kg dw	Trich	RG_MIUCO_INV-2_2022-09-14_N
INV	RG_MIUCO	668204	5486636	2022	2	2022-09-14	Composite	Cobalt	1.5	mg/kg dw	Trich	RG_MIUCO_INV-2_2022-09-14_N
INV	RG_MIUCO	668204	5486636	2022	2	2022-09-14	Composite	Nickel	13	mg/kg dw	Trich	RG_MIUCO_INV-2_2022-09-14_N
INV	RG_MIUCO	668204	5486636	2022	2	2022-09-14	Composite	Copper	21	mg/kg dw	Trich	RG_MIUCO_INV-2_2022-09-14_N
INV	RG_MIUCO	668204	5486636	2022	2	2022-09-14	Composite	Zinc	171	mg/kg dw	Trich	RG_MIUCO_INV-2_2022-09-14_N
INV	RG_MIUCO	668204	5486636	2022	2	2022-09-14	Composite	Arsenic	1.6	mg/kg dw	Trich	RG_MIUCO_INV-2_2022-09-14_N
INV	RG MIUCO	668204	5486636	2022	2	2022-09-14	Composite	Selenium	4.7	mg/kg dw	Trich	RG MIUCO INV-2 2022-09-14 N
INV	RG MIUCO	668204	5486636	2022	2	2022-09-14	Composite	Strontium	5.1	mg/kg dw	Trich	RG MIUCO INV-2 2022-09-14 N
INV	RG MIUCO	668204	5486636	2022	2	2022-09-14	Composite	Molybdenum	0.44	mg/kg dw	Trich	RG MIUCO INV-2 2022-09-14 N
INV	RG MIUCO	668204	5486636	2022	2	2022-09-14	Composite	Silver	0.089	mg/kg dw	Trich	RG MIUCO INV-2 2022-09-14 N
INV	RG MIUCO	668204	5486636	2022	2	2022-09-14	Composite	Cadmium	2.5	mg/kg dw	Trich	RG_MIUCO_INV-2_2022-09-14_N
INV	RG MIUCO	668204	5486636	2022	2	2022-09-14	Composite	Tin	0.76	mg/kg dw	Trich	RG_MIUCO_INV-2_2022-09-14_N
INV	RG MIUCO	668204	5486636	2022	2	2022-09-14	Composite	Antimony	0.034	mg/kg dw	Trich	RG MIUCO INV-2 2022-09-14 N
INV	RG MIUCO	668204	5486636	2022	2	2022-09-14	Composite	Barium	61	mg/kg dw	Trich	RG MIUCO INV-2 2022-09-14 N
INV	RG MIUCO	668204	5486636	2022	2	2022-09-14	Composite	Mercury	0.068	mg/kg dw	Trich	RG MIUCO INV-2 2022-09-14 N
INV	RG MIUCO	668204	5486636	2022	2	2022-09-14	Composite	Thallium	0.07	mg/kg dw	Trich	RG MIUCO INV-2 2022-09-14 N
INV	RG MIUCO	668204	5486636	2022	2	2022-09-14	Composite	Lead	0.68	mg/kg dw	Trich	RG MIUCO INV-2 2022-09-14 N
INV	RG MIUCO	668204	5486636	2022	2	2022-09-14	Composite	Uranium	0.056	mg/kg dw	Trich	RG MIUCO INV-2 2022-09-14 N
INV	RG MIUCO	668204	5486636	2022	2	2022-09-14	Composite	Wet Mass	0.27	a a	Trich	RG MIUCO INV-2 2022-09-14 N
INV	RG MIUCO	668204	5486636	2022	2	2022-09-14	Composite	Dry Mass	0.052	<u>9</u>	Trich	RG MIUCO INV-2 2022-09-14 N
INV	RG_MIUCO	668204	5486636	2022	2	2022-09-14	Composite	% Moisture	81	<u>9</u> %	Trich	RG MIUCO INV-2 2022-09-14 N
INV	RG MIUCO	668201	5486675	2022	3	2022-09-14	Composite	Lithium	0.3		Trich	RG MIUCO INV-3 2022-09-14 N
INV	RG_MIUCO		5486675	2022		2022-09-14				mg/kg dw		RG MIUCO INV-3 2022-09-14 N
INV	RG_MIUCO	668201 668201	5486675		3	2022-09-14	Composite	Boron	1.3 3,045	mg/kg dw	Trich	RG_MIUCO_INV-3_2022-09-14_N RG_MIUCO_INV-3_2022-09-14_N
INV		668201	5486675	2022	3	2022-09-14	Composite	Sodium	1,099	mg/kg dw	Trich	RG_MIUCO_INV-3_2022-09-14_N RG_MIUCO_INV-3_2022-09-14_N
	RG_MIUCO				3		Composite	Magnesium		mg/kg dw	Trich	
INV	RG_MIUCO	668201	5486675	2022	3	2022-09-14	Composite	Aluminum	791	mg/kg dw	Trich	RG_MIUCO_INV-3_2022-09-14_N
INV	RG_MIUCO	668201	5486675	2022	3	2022-09-14	Composite	Phosphorus	9,944	mg/kg dw	Trich	RG_MIUCO_INV-3_2022-09-14_N
INV	RG_MIUCO	668201	5486675	2022	3	2022-09-14	Composite	Potassium	7,861	mg/kg dw	Trich	RG_MIUCO_INV-3_2022-09-14_N
INV	RG_MIUCO	668201	5486675	2022	3	2022-09-14	Composite	Calcium	1,356	mg/kg dw	Trich	RG_MIUCO_INV-3_2022-09-14_N
INV	RG_MIUCO	668201	5486675	2022	3	2022-09-14	Composite	Titanium	66	mg/kg dw	Trich	RG_MIUCO_INV-3_2022-09-14_N
INV	RG_MIUCO	668201	5486675	2022	3	2022-09-14	Composite	Vanadium	0.99	mg/kg dw	Trich	RG_MIUCO_INV-3_2022-09-14_N
INV	RG_MIUCO	668201	5486675	2022	3	2022-09-14	Composite	Chromium	4.7	mg/kg dw	Trich	RG_MIUCO_INV-3_2022-09-14_N
INV	RG_MIUCO	668201	5486675	2022	3	2022-09-14	Composite	Manganese	63	mg/kg dw	Trich	RG_MIUCO_INV-3_2022-09-14_N
INV	RG_MIUCO	668201	5486675	2022	3	2022-09-14	Composite	Iron	485	mg/kg dw	Trich	RG_MIUCO_INV-3_2022-09-14_N
INV	RG_MIUCO	668201	5486675	2022	3	2022-09-14	Composite	Cobalt	0.67	mg/kg dw	Trich	RG_MIUCO_INV-3_2022-09-14_N
INV	RG_MIUCO	668201	5486675	2022	3	2022-09-14	Composite	Nickel	7.4	mg/kg dw	Trich	RG_MIUCO_INV-3_2022-09-14_N
INV	RG_MIUCO	668201	5486675	2022	3	2022-09-14	Composite	Copper	13	mg/kg dw	Trich	RG_MIUCO_INV-3_2022-09-14_N
	RG MIUCO	668201	5486675	2022	3	2022-09-14	Composite	Zinc	92	mg/kg dw	Trich	RG_MIUCO_INV-3_2022-09-14_N
INV	<u> </u>			1			• "					
INV	RG_MIUCO	668201	5486675	2022	3	2022-09-14	Composite	Arsenic	0.65	mg/kg dw	Trich	RG_MIUCO_INV-3_2022-09-14_N
	_	668201 668201	5486675 5486675	2022	3	2022-09-14 2022-09-14	Composite Composite	Arsenic Selenium	3.4	mg/kg dw mg/kg dw	Trich Trich	RG_MIUCO_INV-3_2022-09-14_N RG_MIUCO_INV-3_2022-09-14_N

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Turns	Otation	Locatio	n (UTMs) ^(a)	V	Doublest	Dete	Sanaina/Sanaina	Analyte	D	1114		Laboratory Information
Туре	Station	Easting	Northing	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit	Lab	Sample ID
INV	RG MIUCO	668201	5486675	2022	3	2022-09-14	Composite	Molybdenum	0.27	mg/kg dw	Trich	RG MIUCO INV-3 2022-09-14 N
INV	RG MIUCO	668201	5486675	2022	3	2022-09-14	Composite	Silver	0.048	mg/kg dw	Trich	RG MIUCO INV-3 2022-09-14 N
INV	RG MIUCO	668201	5486675	2022	3	2022-09-14	Composite	Cadmium	0.88	mg/kg dw	Trich	RG MIUCO INV-3 2022-09-14 N
INV	RG MIUCO	668201	5486675	2022	3	2022-09-14	Composite	Tin	0.32	mg/kg dw	Trich	RG MIUCO INV-3 2022-09-14 N
INV	RG MIUCO	668201	5486675	2022	3	2022-09-14	Composite	Antimony	0.018	mg/kg dw	Trich	RG MIUCO INV-3 2022-09-14 N
INV	RG MIUCO	668201	5486675	2022	3	2022-09-14	Composite	Barium	17	mg/kg dw	Trich	RG MIUCO INV-3 2022-09-14 N
INV	RG MIUCO	668201	5486675	2022	3	2022-09-14	Composite	Mercury	0.056	mg/kg dw	Trich	RG MIUCO INV-3 2022-09-14 N
INV	RG MIUCO	668201	5486675	2022	3	2022-09-14	Composite	Thallium	0.039	mg/kg dw	Trich	RG MIUCO INV-3 2022-09-14 N
INV	RG MIUCO	668201	5486675	2022	3	2022-09-14	Composite	Lead	0.039	mg/kg dw	Trich	RG MIUCO INV-3 2022-09-14 I
INV	RG_MIUCO	668201	5486675	2022	3	2022-09-14		Uranium	0.21		Trich	RG MIUCO INV-3 2022-09-14 I
	_						Composite			mg/kg dw		
INV	RG_MIUCO	668201	5486675 5486675	2022	3	2022-09-14	Composite	Wet Mass	0.19	g	Trich	RG_MIUCO_INV-3_2022-09-14_
INV	RG_MIUCO	668201			3	2022-09-14	Composite	Dry Mass	0.044	g	Trich	RG_MIUCO_INV-3_2022-09-14_I
INV	RG_MIUCO	668201	5486675	2022	3	2022-09-14	Composite	% Moisture	77	%	Trich	RG_MIUCO_INV-3_2022-09-14_I
INV	RG_MIULE	660633	5492985	2022	1	2022-09-12	Composite	Lithium	0.19	mg/kg dw	Trich	RG_MIULE_INV-1_2022-09-12_I
INV	RG_MIULE	660633	5492985	2022	1	2022-09-12	Composite	Boron	0.76	mg/kg dw	Trich	RG_MIULE_INV-1_2022-09-12_N
INV	RG_MIULE	660633	5492985	2022	1	2022-09-12	Composite	Sodium	3,494	mg/kg dw	Trich	RG_MIULE_INV-1_2022-09-12_N
INV	RG_MIULE	660633	5492985	2022	1	2022-09-12	Composite	Magnesium	1,220	mg/kg dw	Trich	RG_MIULE_INV-1_2022-09-12_I
INV	RG_MIULE	660633	5492985	2022	1	2022-09-12	Composite	Aluminum	401	mg/kg dw	Trich	RG_MIULE_INV-1_2022-09-12_I
INV	RG_MIULE	660633	5492985	2022	1	2022-09-12	Composite	Phosphorus	10,553	mg/kg dw	Trich	RG_MIULE_INV-1_2022-09-12_I
INV	RG_MIULE	660633	5492985	2022	1	2022-09-12	Composite	Potassium	8,922	mg/kg dw	Trich	RG_MIULE_INV-1_2022-09-12_I
INV	RG_MIULE	660633	5492985	2022	1	2022-09-12	Composite	Calcium	1,881	mg/kg dw	Trich	RG_MIULE_INV-1_2022-09-12_I
INV	RG_MIULE	660633	5492985	2022	1	2022-09-12	Composite	Titanium	29	mg/kg dw	Trich	RG_MIULE_INV-1_2022-09-12_I
INV	RG_MIULE	660633	5492985	2022	1	2022-09-12	Composite	Vanadium	0.63	mg/kg dw	Trich	RG_MIULE_INV-1_2022-09-12_I
INV	RG_MIULE	660633	5492985	2022	1	2022-09-12	Composite	Chromium	4.6	mg/kg dw	Trich	RG_MIULE_INV-1_2022-09-12_I
INV	RG_MIULE	660633	5492985	2022	1	2022-09-12	Composite	Manganese	39	mg/kg dw	Trich	RG_MIULE_INV-1_2022-09-12_I
INV	RG MIULE	660633	5492985	2022	1	2022-09-12	Composite	Iron	363	mg/kg dw	Trich	RG MIULE INV-1 2022-09-12 I
INV	RG MIULE	660633	5492985	2022	1	2022-09-12	Composite	Cobalt	6.1	mg/kg dw	Trich	RG MIULE INV-1 2022-09-12 I
INV	RG MIULE	660633	5492985	2022	1	2022-09-12	Composite	Nickel	13	mg/kg dw	Trich	RG MIULE INV-1 2022-09-12 N
INV	RG MIULE	660633	5492985	2022	1	2022-09-12	Composite	Copper	13	mg/kg dw	Trich	RG MIULE INV-1 2022-09-12 I
INV	RG MIULE	660633	5492985	2022	1	2022-09-12	Composite	Zinc	196	mg/kg dw	Trich	RG MIULE INV-1 2022-09-12 I
INV	RG MIULE	660633	5492985	2022	1	2022-09-12	Composite	Arsenic	0.68	mg/kg dw	Trich	RG MIULE INV-1 2022-09-12 N
INV	RG MIULE	660633	5492985	2022	1	2022-09-12	Composite	Selenium	7.3	mg/kg dw	Trich	RG MIULE INV-1 2022-09-12 I
INV	RG MIULE	660633	5492985	2022	1	2022-09-12	Composite	Strontium	6.6	mg/kg dw	Trich	RG MIULE INV-1 2022-09-12 I
INV	RG MIULE	660633	5492985	2022	1	2022-09-12	Composite	Molybdenum	0.23	mg/kg dw	Trich	RG MIULE INV-1 2022-09-12 I
INV	RG MIULE	660633	5492985	2022	1	2022-09-12	Composite	Silver	0.14	mg/kg dw	Trich	RG MIULE INV-1 2022-09-12 N
INV	RG MIULE	660633	5492985	2022	1	2022-09-12	Composite	Cadmium	1.1	mg/kg dw	Trich	RG MIULE INV-1 2022-09-12 N
INV	RG MIULE	660633	5492985	2022	1	2022-09-12	Composite	Tin	0.46	mg/kg dw	Trich	RG MIULE INV-1 2022-09-12 I
INV	- -			2022	1						Trich	
	RG_MIULE	660633	5492985		1	2022-09-12	Composite	Antimony	0.04	mg/kg dw		RG_MIULE_INV-1_2022-09-12_N
INV	RG_MIULE	660633	5492985	2022	1	2022-09-12	Composite	Barium	22	mg/kg dw	Trich	RG_MIULE_INV-1_2022-09-12_I
INV	RG_MIULE	660633	5492985	2022	1	2022-09-12	Composite	Mercury	0.059	mg/kg dw	Trich	RG_MIULE_INV-1_2022-09-12_I
INV	RG_MIULE	660633	5492985	2022	1	2022-09-12	Composite	Thallium	0.061	mg/kg dw	Trich	RG_MIULE_INV-1_2022-09-12_I
INV	RG_MIULE	660633	5492985	2022	1	2022-09-12	Composite	Lead	0.25	mg/kg dw	Trich	RG_MIULE_INV-1_2022-09-12_N
INV	RG_MIULE	660633	5492985	2022	1	2022-09-12	Composite	Uranium	0.029	mg/kg dw	Trich	RG_MIULE_INV-1_2022-09-12_I
INV	RG_MIULE	660633	5492985	2022	1	2022-09-12	Composite	Wet Mass	0.3	g	Trich	RG_MIULE_INV-1_2022-09-12_I
INV	RG_MIULE	660633	5492985	2022	1	2022-09-12	Composite	Dry Mass	0.058	g	Trich	RG_MIULE_INV-1_2022-09-12_I
INV	RG_MIULE	660633	5492985	2022	11	2022-09-12	Composite	% Moisture	81	%	Trich	RG_MIULE_INV-1_2022-09-12_I
INV	RG_MIULE	660563	5493002	2022	2	2022-09-12	Composite	Lithium	0.78	mg/kg dw	Trich	RG_MIULE_INV-2_2022-09-12_I
INV	RG_MIULE	660563	5493002	2022	2	2022-09-12	Composite	Boron	2.7	mg/kg dw	Trich	RG_MIULE_INV-2_2022-09-12_I
INV	RG_MIULE	660563	5493002	2022	2	2022-09-12	Composite	Sodium	3,530	mg/kg dw	Trich	RG_MIULE_INV-2_2022-09-12_I
INV	RG_MIULE	660563	5493002	2022	2	2022-09-12	Composite	Magnesium	1,342	mg/kg dw	Trich	RG_MIULE_INV-2_2022-09-12_I
INV	RG_MIULE	660563	5493002	2022	2	2022-09-12	Composite	Aluminum	1,589	mg/kg dw	Trich	RG_MIULE_INV-2_2022-09-12_I
	RG_MIULE	660563	5493002	2022	2	2022-09-12	Composite	Phosphorus	10,740	mg/kg dw	Trich	RG_MIULE_INV-2_2022-09-12_f
INV		660563	5493002	2022	2	2022-09-12	Composite	Potassium	9,968	mg/kg dw	Trich	RG_MIULE_INV-2_2022-09-12_I
INV INV	RG_MIULE	000303	0.00002									
	RG_MIULE RG_MIULE	660563	5493002	2022	2	2022-09-12	Composite	Calcium	4,785	mg/kg dw	Trich	RG_MIULE_INV-2 2022-09-12 N
INV	_				2 2	2022-09-12 2022-09-12	Composite Composite	Calcium Titanium	4,785 95	mg/kg dw mg/kg dw		
INV INV	RG_MIULE	660563	5493002	2022							Trich	RG_MIULE_INV-2_2022-09-12_N RG_MIULE_INV-2_2022-09-12_N RG_MIULE_INV-2_2022-09-12_N

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Type	Station	Locatio	on (UTMs) ^(a)	Veer	Poplicate	Doto	Species/Compasite	Analysis	Populé	Heit		Laboratory Information
Туре	Station	Easting	Northing	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit	Lab	Sample ID
INV	RG MIULE	660563	5493002	2022	2	2022-09-12	Composite	Manganese	65	mg/kg dw	Trich	RG MIULE INV-2 2022-09-12 N
INV	RG MIULE	660563	5493002	2022	2	2022-09-12	Composite	Iron	969	mg/kg dw	Trich	RG MIULE INV-2 2022-09-12 N
INV	RG MIULE	660563	5493002	2022	2	2022-09-12	Composite	Cobalt	13	mg/kg dw	Trich	RG MIULE INV-2 2022-09-12 N
INV	RG MIULE	660563	5493002	2022	2	2022-09-12	Composite	Nickel	34	mg/kg dw	Trich	RG MIULE INV-2 2022-09-12 N
INV	RG MIULE	660563	5493002	2022	2	2022-09-12	Composite	Copper	13	mg/kg dw	Trich	RG MIULE INV-2 2022-09-12 N
INV	RG MIULE	660563	5493002	2022	2	2022-09-12	Composite	Zinc	164	mg/kg dw	Trich	RG MIULE INV-2 2022-09-12 N
INV	RG MIULE	660563	5493002	2022	2	2022-09-12	Composite	Arsenic	1.1	mg/kg dw	Trich	RG MIULE INV-2 2022-09-12 N
INV	RG MIULE	660563	5493002	2022	2	2022-09-12	Composite	Selenium	8.9	mg/kg dw	Trich	RG MIULE INV-2 2022-09-12 N
INV	RG MIULE	660563	5493002	2022	2	2022-09-12	Composite	Strontium	14	mg/kg dw	Trich	RG MIULE INV-2 2022-09-12 N
INV	RG MIULE	660563	5493002	2022	2	2022-09-12	Composite	Molybdenum	0.33	mg/kg dw	Trich	RG MIULE INV-2 2022-09-12 N
INV	RG_MIULE	660563	5493002	2022		2022-09-12		Silver	0.082		Trich	RG_MIULE_INV-2_2022-09-12_N
INV		660563		_	2	2022-09-12	Composite			mg/kg dw		
	RG_MIULE		5493002	2022	2		Composite	Cadmium	2.1	mg/kg dw	Trich	RG_MIULE_INV-2_2022-09-12_N
INV	RG_MIULE	660563	5493002	2022	2	2022-09-12	Composite	Tin	0.68	mg/kg dw	Trich	RG_MIULE_INV-2_2022-09-12_N
INV	RG_MIULE	660563	5493002	2022	2	2022-09-12	Composite	Antimony	0.067	mg/kg dw	Trich	RG_MIULE_INV-2_2022-09-12_N
INV	RG_MIULE	660563	5493002	2022	2	2022-09-12	Composite	Barium	55	mg/kg dw	Trich	RG_MIULE_INV-2_2022-09-12_N
INV	RG_MIULE	660563	5493002	2022	2	2022-09-12	Composite	Mercury	0.056	mg/kg dw	Trich	RG_MIULE_INV-2_2022-09-12_N
INV	RG_MIULE	660563	5493002	2022	2	2022-09-12	Composite	Thallium	0.14	mg/kg dw	Trich	RG_MIULE_INV-2_2022-09-12_N
INV	RG_MIULE	660563	5493002	2022	2	2022-09-12	Composite	Lead	0.55	mg/kg dw	Trich	RG_MIULE_INV-2_2022-09-12_N
INV	RG_MIULE	660563	5493002	2022	2	2022-09-12	Composite	Uranium	0.081	mg/kg dw	Trich	RG_MIULE_INV-2_2022-09-12_N
INV	RG_MIULE	660563	5493002	2022	2	2022-09-12	Composite	Wet Mass	0.16	g	Trich	RG_MIULE_INV-2_2022-09-12_N
INV	RG_MIULE	660563	5493002	2022	2	2022-09-12	Composite	Dry Mass	0.031	g	Trich	RG_MIULE_INV-2_2022-09-12_N
INV	RG_MIULE	660563	5493002	2022	2	2022-09-12	Composite	% Moisture	80	%	Trich	RG_MIULE_INV-2_2022-09-12_N
INV	RG_MIULE	660482	5493070	2022	3	2022-09-12	Composite	Lithium	0.48	mg/kg dw	Trich	RG_MIULE_INV-3_2022-09-12_N
INV	RG_MIULE	660482	5493070	2022	3	2022-09-12	Composite	Boron	1.9	mg/kg dw	Trich	RG_MIULE_INV-3_2022-09-12_N
INV	RG MIULE	660482	5493070	2022	3	2022-09-12	Composite	Sodium	2,620	mg/kg dw	Trich	RG_MIULE_INV-3_2022-09-12_N
INV	RG MIULE	660482	5493070	2022	3	2022-09-12	Composite	Magnesium	976	mg/kg dw	Trich	RG MIULE INV-3 2022-09-12 N
INV	RG MIULE	660482	5493070	2022	3	2022-09-12	Composite	Aluminum	1,162	mg/kg dw	Trich	RG_MIULE_INV-3_2022-09-12_N
INV	RG MIULE	660482	5493070	2022	3	2022-09-12	Composite	Phosphorus	8,111	mg/kg dw	Trich	RG MIULE INV-3 2022-09-12 N
INV	RG MIULE	660482	5493070	2022	3	2022-09-12	Composite	Potassium	7,045	mg/kg dw	Trich	RG_MIULE_INV-3_2022-09-12_N
INV	RG MIULE	660482	5493070	2022	3	2022-09-12	Composite	Calcium	2,537	mg/kg dw	Trich	RG MIULE INV-3 2022-09-12 N
INV	RG MIULE	660482	5493070	2022	3	2022-09-12	Composite	Titanium	63	mg/kg dw	Trich	RG MIULE INV-3 2022-09-12 N
INV	RG MIULE	660482	5493070	2022	3	2022-09-12	Composite	Vanadium	1.7	mg/kg dw	Trich	RG MIULE INV-3 2022-09-12 N
INV	RG MIULE	660482	5493070	2022	3	2022-09-12	Composite	Chromium	9.1	mg/kg dw	Trich	RG MIULE INV-3 2022-09-12 N
INV	RG MIULE	660482	5493070	2022	3	2022-09-12	Composite	Manganese	54	mg/kg dw	Trich	RG MIULE INV-3 2022-09-12 N
INV	RG MIULE	660482	5493070	2022	3	2022-09-12	Composite	Iron	651	mg/kg dw	Trich	RG MIULE INV-3 2022-09-12 N
INV	RG MIULE	660482	5493070	2022	3	2022-09-12		Cobalt			Trich	RG_MIULE_INV-3_2022-09-12_N
INV	_	660482	5493070		3		Composite	Nickel	20	mg/kg dw	Trich	
	RG_MIULE			2022	, ,	2022-09-12	Composite			mg/kg dw		RG_MIULE_INV-3_2022-09-12_N
INV	RG_MIULE	660482	5493070	2022	3	2022-09-12	Composite	Copper	10	mg/kg dw	Trich	RG_MIULE_INV-3_2022-09-12_N
INV	RG_MIULE	660482	5493070	2022	3	2022-09-12	Composite	Zinc	147	mg/kg dw	Trich	RG_MIULE_INV-3_2022-09-12_N
INV	RG_MIULE	660482	5493070	2022	3	2022-09-12	Composite	Arsenic	0.84	mg/kg dw	Trich	RG_MIULE_INV-3_2022-09-12_N
INV	RG_MIULE	660482	5493070	2022	3	2022-09-12	Composite	Selenium	6.4	mg/kg dw	Trich	RG_MIULE_INV-3_2022-09-12_N
INV	RG_MIULE	660482	5493070	2022	3	2022-09-12	Composite	Strontium	7.6	mg/kg dw	Trich	RG_MIULE_INV-3_2022-09-12_N
INV	RG_MIULE	660482	5493070	2022	3	2022-09-12	Composite	Molybdenum	0.29	mg/kg dw	Trich	RG_MIULE_INV-3_2022-09-12_N
INV	RG_MIULE	660482	5493070	2022	3	2022-09-12	Composite	Silver	0.069	mg/kg dw	Trich	RG_MIULE_INV-3_2022-09-12_N
INV	RG_MIULE	660482	5493070	2022	3	2022-09-12	Composite	Cadmium	1.8	mg/kg dw	Trich	RG_MIULE_INV-3_2022-09-12_N
INV	RG_MIULE	660482	5493070	2022	3	2022-09-12	Composite	Tin	0.77	mg/kg dw	Trich	RG_MIULE_INV-3_2022-09-12_N
INV	RG_MIULE	660482	5493070	2022	3	2022-09-12	Composite	Antimony	0.04	mg/kg dw	Trich	RG_MIULE_INV-3_2022-09-12_N
INV	RG_MIULE	660482	5493070	2022	3	2022-09-12	Composite	Barium	35	mg/kg dw	Trich	RG_MIULE_INV-3_2022-09-12_N
INV	RG_MIULE	660482	5493070	2022	3	2022-09-12	Composite	Mercury	0.056	mg/kg dw	Trich	RG_MIULE_INV-3_2022-09-12_N
	RG_MIULE	660482	5493070	2022	3	2022-09-12	Composite	Thallium	0.086	mg/kg dw	Trich	RG_MIULE_INV-3_2022-09-12_N
INV		660482	5493070	2022	3	2022-09-12	Composite	Lead	0.39	mg/kg dw	Trich	RG MIULE INV-3 2022-09-12 N
INV	RG MIULE			2022	3	2022-09-12	Composite	Uranium	0.051	mg/kg dw	Trich	RG MIULE INV-3 2022-09-12 N
INV INV	RG_MIULE RG MIULE	660482	5493070	2022		· -	··· ···			.55 ~		
INV INV INV	RG_MIULE	660482 660482	5493070 5493070			2022-09-12	Composite	Wet Mass	0.12	а	Trich	RG MIULE INV-3 2022-09-12 N
INV INV INV	RG_MIULE RG_MIULE	660482	5493070	2022	3	2022-09-12 2022-09-12	Composite Composite	Wet Mass Dry Mass	0.12	g	Trich Trich	RG_MIULE_INV-3_2022-09-12_N RG_MIULE_INV-3_2022-09-12_N
INV INV INV INV INV	RG_MIULE RG_MIULE RG_MIULE	660482 660482	5493070 5493070	2022 2022	3	2022-09-12	Composite	Dry Mass	0.022	g g %	Trich	RG_MIULE_INV-3_2022-09-12_N
INV INV INV	RG_MIULE RG_MIULE	660482	5493070	2022	3		•			g g % mg/kg dw		

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

Туре	Station	Locatio	n (UTMs) ^(a)	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit		Laboratory Information
туре	Station	Easting	Northing	I eai	Replicate	Date	Species/Composite	Analyte	Result	Offic	Lab	Sample ID
INV	RG_AGCK	667627	5488726	2022	1	2022-09-15	INVOLI	Sodium	2,226	mg/kg dw	Trich	RG_AGCK_INVOLI-1_2022-09-15_N
INV	RG_AGCK	667627	5488726	2022	1	2022-09-15	INVOLI	Magnesium	1,113	mg/kg dw	Trich	RG_AGCK_INVOLI-1_2022-09-15_N
INV	RG_AGCK	667627	5488726	2022	1	2022-09-15	INVOLI	Aluminum	697	mg/kg dw	Trich	RG_AGCK_INVOLI-1_2022-09-15_N
INV	RG AGCK	667627	5488726	2022	1	2022-09-15	INVOLI	Phosphorus	12,315	mg/kg dw	Trich	RG AGCK INVOLI-1 2022-09-15 N
INV	RG AGCK	667627	5488726	2022	1	2022-09-15	INVOLI	Potassium	7,609	mg/kg dw	Trich	RG AGCK INVOLI-1 2022-09-15 N
INV	RG AGCK	667627	5488726	2022	1	2022-09-15	INVOLI	Calcium	5,320	mg/kg dw	Trich	RG AGCK INVOLI-1 2022-09-15 N
INV	RG AGCK	667627	5488726	2022	1	2022-09-15	INVOLI	Titanium	66	mg/kg dw	Trich	RG AGCK INVOLI-1 2022-09-15 N
INV	RG AGCK	667627	5488726	2022	1	2022-09-15	INVOLI	Vanadium	2.7	mg/kg dw	Trich	RG AGCK INVOLI-1 2022-09-15 N
INV	RG AGCK	667627	5488726	2022	1	2022-09-15	INVOLI	Chromium	1.6	mg/kg dw	Trich	RG AGCK INVOLI-1 2022-09-15 N
INV	RG AGCK	667627	5488726	2022	1	2022-09-15	INVOLI	Manganese	16	mg/kg dw	Trich	RG AGCK INVOLI-1 2022-09-15 N
INV	RG_AGCK	667627	5488726	2022	1	2022-09-15	INVOLI	Iron	519	mg/kg dw	Trich	RG_AGCK_INVOLI-1_2022-09-15_N
INV	RG AGCK	667627	5488726	2022	1	2022-09-15	INVOLI	Cobalt	0.55	mg/kg dw	Trich	RG AGCK INVOLI-1_2022-09-15_N
INV	RG_AGCK	667627	5488726	2022	1	2022-09-15	INVOLI	Nickel			Trich	
					1				6.0	mg/kg dw		RG_AGCK_INVOLI-1_2022-09-15_N
INV	RG_AGCK	667627	5488726	2022	1	2022-09-15	INVOLI	Copper	5.1	mg/kg dw	Trich	RG_AGCK_INVOLI-1_2022-09-15_N
INV	RG_AGCK	667627	5488726	2022	1	2022-09-15	INVOLI	Zinc	571	mg/kg dw	Trich	RG_AGCK_INVOLI-1_2022-09-15_N
INV	RG_AGCK	667627	5488726	2022	1	2022-09-15	INVOLI	Arsenic	6.5	mg/kg dw	Trich	RG_AGCK_INVOLI-1_2022-09-15_N
INV	RG_AGCK	667627	5488726	2022	1	2022-09-15	INVOLI	Selenium	4.6	mg/kg dw	Trich	RG_AGCK_INVOLI-1_2022-09-15_N
INV	RG_AGCK	667627	5488726	2022	1	2022-09-15	INVOLI	Strontium	38	mg/kg dw	Trich	RG_AGCK_INVOLI-1_2022-09-15_N
INV	RG_AGCK	667627	5488726	2022	1	2022-09-15	INVOLI	Molybdenum	0.21	mg/kg dw	Trich	RG_AGCK_INVOLI-1_2022-09-15_N
INV	RG_AGCK	667627	5488726	2022	1	2022-09-15	INVOLI	Silver	0.045	mg/kg dw	Trich	RG_AGCK_INVOLI-1_2022-09-15_N
INV	RG_AGCK	667627	5488726	2022	1	2022-09-15	INVOLI	Cadmium	2.7	mg/kg dw	Trich	RG_AGCK_INVOLI-1_2022-09-15_N
INV	RG_AGCK	667627	5488726	2022	1	2022-09-15	INVOLI	Tin	0.3	mg/kg dw	Trich	RG_AGCK_INVOLI-1_2022-09-15_N
INV	RG_AGCK	667627	5488726	2022	1	2022-09-15	INVOLI	Antimony	0.18	mg/kg dw	Trich	RG_AGCK_INVOLI-1_2022-09-15_N
INV	RG AGCK	667627	5488726	2022	1	2022-09-15	INVOLI	Barium	466	mg/kg dw	Trich	RG AGCK INVOLI-1 2022-09-15 N
INV	RG AGCK	667627	5488726	2022	1	2022-09-15	INVOLI	Mercury	0.28	mg/kg dw	Trich	RG AGCK INVOLI-1 2022-09-15 N
INV	RG AGCK	667627	5488726	2022	1	2022-09-15	INVOLI	Thallium	2.1	mg/kg dw	Trich	RG AGCK INVOLI-1 2022-09-15 N
INV	RG_AGCK	667627	5488726	2022	1	2022-09-15	INVOLI	Lead	0.42	mg/kg dw	Trich	RG AGCK INVOLI-1 2022-09-15 N
INV	RG_AGCK	667627	5488726	2022	1	2022-09-15	INVOLI	Uranium	0.066	mg/kg dw	Trich	RG AGCK INVOLI-1 2022-09-15 N
INV	RG_AGCK	667627	5488726	2022	1	2022-09-15	INVOLI	Wet Mass	0.0078	a a	Trich	RG AGCK INVOLI-1 2022-09-15 N
INV	RG AGCK	667627	5488726	2022	1	2022-09-15	INVOLI	Dry Mass	0.0070	9 a	Trich	RG AGCK INVOLI-1 2022-09-15 N
INV	RG AGCK	667627	5488726	2022	1	2022-09-15	INVOLI	% Moisture	53	9 %	Trich	RG AGCK INVOLI-1 2022-09-15 N
INV		667565		2022	1	2022-09-15	INVOLI		0.55			RG AGCK INVOLI-1 2022-09-15 N
	RG_AGCK		5488691		2			Lithium		mg/kg dw	Trich	
INV	RG_AGCK	667565	5488691	2022	2	2022-09-15	INVOLI	Boron	1.1	mg/kg dw	Trich	RG_AGCK_INVOLI-2_2022-09-15_N
INV	RG_AGCK	667565	5488691	2022	2	2022-09-15	INVOLI	Sodium	1,759	mg/kg dw	Trich	RG_AGCK_INVOLI-2_2022-09-15_N
INV	RG_AGCK	667565	5488691	2022	2	2022-09-15	INVOLI	Magnesium	406	mg/kg dw	Trich	RG_AGCK_INVOLI-2_2022-09-15_N
INV	RG_AGCK	667565	5488691	2022	2	2022-09-15	INVOLI	Aluminum	560	mg/kg dw	Trich	RG_AGCK_INVOLI-2_2022-09-15_N
INV	RG_AGCK	667565	5488691	2022	2	2022-09-15	INVOLI	Phosphorus	4,936	mg/kg dw	Trich	RG_AGCK_INVOLI-2_2022-09-15_N
INV	RG_AGCK	667565	5488691	2022	2	2022-09-15	INVOLI	Potassium	4,256	mg/kg dw	Trich	RG_AGCK_INVOLI-2_2022-09-15_N
INV	RG_AGCK	667565	5488691	2022	2	2022-09-15	INVOLI	Calcium	2,273	mg/kg dw	Trich	RG_AGCK_INVOLI-2_2022-09-15_N
INV	RG_AGCK	667565	5488691	2022	2	2022-09-15	INVOLI	Titanium	44	mg/kg dw	Trich	RG_AGCK_INVOLI-2_2022-09-15_I
INV	RG_AGCK	667565	5488691	2022	2	2022-09-15	INVOLI	Vanadium	2.1	mg/kg dw	Trich	RG_AGCK_INVOLI-2_2022-09-15_I
INV	RG_AGCK	667565	5488691	2022	2	2022-09-15	INVOLI	Chromium	1.8	mg/kg dw	Trich	RG_AGCK_INVOLI-2_2022-09-15_I
INV	RG_AGCK	667565	5488691	2022	2	2022-09-15	INVOLI	Manganese	7.0	mg/kg dw	Trich	RG_AGCK_INVOLI-2_2022-09-15_I
INV	RG_AGCK	667565	5488691	2022	2	2022-09-15	INVOLI	Iron	380	mg/kg dw	Trich	RG_AGCK_INVOLI-2_2022-09-15_I
INV	RG_AGCK	667565	5488691	2022	2	2022-09-15	INVOLI	Cobalt	0.23	mg/kg dw	Trich	RG_AGCK_INVOLI-2_2022-09-15_I
INV	RG AGCK	667565	5488691	2022	2	2022-09-15	INVOLI	Nickel	3.5	mg/kg dw	Trich	RG AGCK INVOLI-2 2022-09-15 I
INV	RG AGCK	667565	5488691	2022	2	2022-09-15	INVOLI	Copper	2.7	mg/kg dw	Trich	RG AGCK INVOLI-2 2022-09-15
INV	RG AGCK	667565	5488691	2022	2	2022-09-15	INVOLI	Zinc	290	mg/kg dw	Trich	RG AGCK INVOLI-2 2022-09-15 I
INV	RG AGCK	667565	5488691	2022	2	2022-09-15	INVOLI	Arsenic	2.1	mg/kg dw	Trich	RG AGCK INVOLI-2 2022-09-15 I
INV	RG AGCK	667565	5488691	2022	2	2022-09-15	INVOLI	Selenium	1.6	mg/kg dw	Trich	RG AGCK INVOLI-2 2022-09-15
INV	RG_AGCK	667565	5488691	2022	2	2022-09-15	INVOLI	Strontium	1.6	mg/kg dw	Trich	RG AGCK INVOLI-2 2022-09-15
			5488691									
INV	RG_AGCK	667565		2022	2	2022-09-15	INVOLI	Molybdenum	0.13	mg/kg dw	Trich	RG_AGCK_INVOLL2_2022-09-15_
INV	RG_AGCK	667565	5488691	2022	2	2022-09-15	INVOLI	Silver	0.027	mg/kg dw	Trich	RG_AGCK_INVOLI-2_2022-09-15_
INV	RG_AGCK	667565	5488691	2022	2	2022-09-15	INVOLI	Cadmium	1.2	mg/kg dw	Trich	RG_AGCK_INVOLI-2_2022-09-15_I
INV	RG_AGCK	667565	5488691	2022	2	2022-09-15	INVOLI	Tin	7.2	mg/kg dw	Trich	RG_AGCK_INVOLI-2_2022-09-15_N
INV	RG_AGCK	667565	5488691	2022	2	2022-09-15	INVOLI	Antimony	0.097	mg/kg dw	Trich	RG_AGCK_INVOLI-2_2022-09-15_N
INV	RG AGCK	667565	5488691	2022	2	2022-09-15	INVOLI	Barium	157	mg/kg dw	Trich	RG AGCK INVOLI-2 2022-09-15 I

Table L-1: Benthic Invertebrate Tissue Data Collected from the CMm LAEMP Sampling Stations, 2015 to 2022

	Invertebrate rissue L		on (UTMs) ^(a)			ŕ						Laboratory Information
Туре	Station	Easting	Northing	Year	Replicate	Date	Species/Composite	Analyte	Result	Unit	Lab	Sample ID
INV	RG AGCK	667565	5488691	2022	2	2022-09-15	INVOLI	Mercury	0.14	mg/kg dw	Trich	RG AGCK INVOLI-2 2022-09-15 N
INV	RG AGCK	667565	5488691	2022	2	2022-09-15	INVOLI	Thallium	0.88	mg/kg dw	Trich	RG AGCK INVOLI-2 2022-09-15 N
INV	RG AGCK	667565	5488691	2022	2	2022-09-15	INVOLI	Lead	0.35	mg/kg dw	Trich	RG AGCK INVOLI-2 2022-09-15 N
INV	RG AGCK	667565	5488691	2022	2	2022-09-15	INVOLI	Uranium	0.046	mg/kg dw	Trich	RG AGCK INVOLI-2 2022-09-15 N
INV	RG_AGCK	667565	5488691	2022	2	2022-09-15	INVOLI	Wet Mass	1.3	g	Trich	RG AGCK INVOLI-2 2022-09-15 N
INV	RG AGCK	667565	5488691	2022	2	2022-09-15	INVOLI	Dry Mass	0.0045	g	Trich	RG AGCK INVOLI-2 2022-09-15 N
INV	RG AGCK	667565	5488691	2022	2	2022-09-15	INVOLI	% Moisture	100	%	Trich	RG AGCK INVOLI-2 2022-09-15 N
INV	RG AGCK	667541	5488612	2022	3	2022-09-15	INVOLI	Lithium	1.5	mg/kg dw	Trich	RG AGCK INVOLI-3 2022-09-15 N
INV	RG_AGCK	667541	5488612	2022	3	2022-09-15	INVOLI	Boron	3.6	mg/kg dw	Trich	RG_AGCK_INVOLI-3_2022-09-15_N
INV	RG_AGCK	667541	5488612	2022	3	2022-09-15	INVOLI	Sodium	5,929	mg/kg dw	Trich	RG_AGCK_INVOLI-3_2022-09-15_N
INV	RG_AGCK	667541	5488612	2022	3	2022-09-15	INVOLI	Magnesium	1,212	mg/kg dw	Trich	RG_AGCK_INVOLI-3_2022-09-15_N
INV	RG_AGCK	667541	5488612	2022	3	2022-09-15	INVOLI	Aluminum	1,720	mg/kg dw	Trich	RG_AGCK_INVOLI-3_2022-09-15_N
INV	RG_AGCK	667541	5488612	2022	3	2022-09-15	INVOLI	Phosphorus	16,989	mg/kg dw	Trich	RG_AGCK_INVOLI-3_2022-09-15_N
INV	RG_AGCK	667541	5488612	2022	3	2022-09-15	INVOLI	Potassium	22,575	mg/kg dw	Trich	RG_AGCK_INVOLI-3_2022-09-15_N
INV	RG_AGCK	667541	5488612	2022	3	2022-09-15	INVOLI	Calcium	4,837	mg/kg dw	Trich	RG_AGCK_INVOLI-3_2022-09-15_N
INV	RG_AGCK	667541	5488612	2022	3	2022-09-15	INVOLI	Titanium	85	mg/kg dw	Trich	RG_AGCK_INVOLI-3_2022-09-15_N
INV	RG_AGCK	667541	5488612	2022	3	2022-09-15	INVOLI	Vanadium	3.4	mg/kg dw	Trich	RG_AGCK_INVOLI-3_2022-09-15_N
INV	RG_AGCK	667541	5488612	2022	3	2022-09-15	INVOLI	Chromium	2.1	mg/kg dw	Trich	RG_AGCK_INVOLI-3_2022-09-15_N
INV	RG_AGCK	667541	5488612	2022	3	2022-09-15	INVOLI	Manganese	14	mg/kg dw	Trich	RG_AGCK_INVOLI-3_2022-09-15_N
INV	RG_AGCK	667541	5488612	2022	3	2022-09-15	INVOLI	Iron	869	mg/kg dw	Trich	RG_AGCK_INVOLI-3_2022-09-15_N
INV	RG_AGCK	667541	5488612	2022	3	2022-09-15	INVOLI	Cobalt	0.71	mg/kg dw	Trich	RG_AGCK_INVOLI-3_2022-09-15_N
INV	RG_AGCK	667541	5488612	2022	3	2022-09-15	INVOLI	Nickel	8.6	mg/kg dw	Trich	RG_AGCK_INVOLI-3_2022-09-15_N
INV	RG_AGCK	667541	5488612	2022	3	2022-09-15	INVOLI	Copper	8.2	mg/kg dw	Trich	RG_AGCK_INVOLI-3_2022-09-15_N
INV	RG_AGCK	667541	5488612	2022	3	2022-09-15	INVOLI	Zinc	438	mg/kg dw	Trich	RG_AGCK_INVOLI-3_2022-09-15_N
INV	RG_AGCK	667541	5488612	2022	3	2022-09-15	INVOLI	Arsenic	7.0	mg/kg dw	Trich	RG_AGCK_INVOLI-3_2022-09-15_N
INV	RG_AGCK	667541	5488612	2022	3	2022-09-15	INVOLI	Selenium	4.6	mg/kg dw	Trich	RG_AGCK_INVOLI-3_2022-09-15_N
INV	RG_AGCK	667541	5488612	2022	3	2022-09-15	INVOLI	Strontium	32	mg/kg dw	Trich	RG_AGCK_INVOLI-3_2022-09-15_N
INV	RG_AGCK	667541	5488612	2022	3	2022-09-15	INVOLI	Molybdenum	0.32	mg/kg dw	Trich	RG_AGCK_INVOLI-3_2022-09-15_N
INV	RG_AGCK	667541	5488612	2022	3	2022-09-15	INVOLI	Silver	0.076	mg/kg dw	Trich	RG_AGCK_INVOLI-3_2022-09-15_N
INV	RG_AGCK	667541	5488612	2022	3	2022-09-15	INVOLI	Cadmium	2.4	mg/kg dw	Trich	RG_AGCK_INVOLI-3_2022-09-15_N
INV	RG_AGCK	667541	5488612	2022	3	2022-09-15	INVOLI	Tin	15	mg/kg dw	Trich	RG_AGCK_INVOLI-3_2022-09-15_N
INV	RG_AGCK	667541	5488612	2022	3	2022-09-15	INVOLI	Antimony	0.41	mg/kg dw	Trich	RG_AGCK_INVOLI-3_2022-09-15_N
INV	RG_AGCK	667541	5488612	2022	3	2022-09-15	INVOLI	Barium	224	mg/kg dw	Trich	RG_AGCK_INVOLI-3_2022-09-15_N
INV	RG_AGCK	667541	5488612	2022	3	2022-09-15	INVOLI	Mercury	0.22	mg/kg dw	Trich	RG_AGCK_INVOLI-3_2022-09-15_N
INV	RG_AGCK	667541	5488612	2022	3	2022-09-15	INVOLI	Thallium	3.0	mg/kg dw	Trich	RG_AGCK_INVOLI-3_2022-09-15_N
INV	RG_AGCK	667541	5488612	2022	3	2022-09-15	INVOLI	Lead	0.94	mg/kg dw	Trich	RG_AGCK_INVOLI-3_2022-09-15_N
INV	RG_AGCK	667541	5488612	2022	3	2022-09-15	INVOLI	Uranium	0.12	mg/kg dw	Trich	RG_AGCK_INVOLI-3_2022-09-15_N
INV	RG_AGCK	667541	5488612	2022	3	2022-09-15	INVOLI	Wet Mass	1.0	g	Trich	RG_AGCK_INVOLI-3_2022-09-15_N
INV	RG_AGCK	667541	5488612	2022	3	2022-09-15	INVOLI	Dry Mass	0.0053	g	Trich	RG_AGCK_INVOLI-3_2022-09-15_N
INV	RG_AGCK	667541	5488612	2022	3	2022-09-15	INVOLI	% Moisture	100	%	Trich	RG_AGCK_INVOLI-3_2022-09-15_N

a) UTM coordinates (NAD = 83, Zone = 11) for 2012 to 2021 data are available in the RAEMP and previous LAEMP reports; 2022 UTMs are included here for reference, except for the three stations CM-MC2, MIDAG-S1, and MIDAG-S2, which were only sampled in 2020 as part of the Nickel Benchmark Study.

^{- =} data not available; % = percent; dw = dry weight; g = grams; mg/kg= microgams per gram; ww = wet weight; < = less than; INV = composite benthic invertebrate sample; LOD = level of detection; EPH = Ephemeroptera; HYD = Hydropsychidae; RHY = Rhyacophilidae.

Trich = TrichAnalytics Inc.; SRC = sample reciept confirmation; MURR = University of Missouri, Columbia Research Reactor Center; COMPNOLI = composite-taxon sample that does not include any annelid species; INVOLI = taxon-specific sample that is only annelid tissue.

Table L-2: Benthic Invertebrate Tissue Chemistry Screening at CMm LAEMP Sampling Stations, 2022

	ertebrate Tissue Ch	emistry Screening at CMm LA	AEMP Sampl	ing Stations, 2	2022															
Location												Referenc	e Stations							
Watercourse		BC Invertebrate Tissue		nvertebrate		Michel C	reek			Andy Good	e Creek			Andy Good	e Creek			Leach (Creek	
Station		Guidelines for the	Benc	hmarks		MI28	5			AGCK_COM	/IPNOLI			AGCK_IN	VOLI			LE	1	
Replicate		Protection of Aquatic Life			1	2	3	CV%	1	2	3	CV%	1	2	3	CV%	1	2	3	CV%
Date]	Level 1	Level 2	15-Sep-22	15-Sep-22	15-Sep-22	CV /6	15-Sep-22	15-Sep-22	15-Sep-22	CV /6	15-Sep-22	15-Sep-22	15-Sep-22	CV /6	16-Sep-22	16-Sep-22	16-Sep-22	CV /6
Parameter	Unit																			
Wet Mass	g	-	-	-	0.35	0.28	0.23	22	0.22	0.11	0.07	57	0.01	1.28	1.05	87	0.13	0.11	0.09	20
Dry Mass	g	-	-	-	0.07	0.06	0.06	11	0.04	0.02	0.02	42	0.00	0.00	0.01	18	0.03	0.02	0.02	21
Moisture	%	-	-	-	80.3	79.7	74.1	4	82.5	80.1	75.5	4	52.6	99.6	99.5	32	80.5	80.6	80.9	0
Aluminum	mg/kg dw	-	-	-	1241	1499	316	61	224	147	113	35	697	560	1720	64	164	392	1374	100
Antimony	mg/kg dw	-	-	-	0.04	0.05	0.02	46	0.02	0.03	0.02	8	0.18	0.10	0.41	71	0.03	0.04	0.11	75
Arsenic	mg/kg dw	-	-	-	1.30	1.70	0.67	43	1.20	1.80	1.20	25	6.50	2.10	7.00	52	0.79	0.47	1.90	72
Barium	mg/kg dw	-	-	-	45.0	53.0	28.0	30	21.0	11.0	5.7	62	466.0	157.0	224.0	58	74.0	108.0	72.0	24
Boron	mg/kg dw	-	-	-	2.70	3.70	0.90	58	0.65	0.47	0.31	35	1.70	1.10	3.60	61	0.39	0.76	1.50	64
Cadmium	mg/kg dw	-	-	-	3.50	3.70	1.40	44	0.33	1.30	1.20	56	2.70	1.20	2.40	38	6.00	3.90	13.00	62
Calcium	mg/kg dw	-	-	-	1828	2397	1526	23	1833	2007	2425	15	5320	2273	4837	40	1649	1525	2726	34
Chromium	mg/kg dw	-	-	-	6.80	14.00	5.20	54	3.00	9.30	7.80	49	1.60	1.80	2.10	14	9.00	7.70	19.00	52
Cobalt	mg/kg dw	-	-	-	1.20	2.00	0.63	54	0.12	0.43	0.45	55	0.55	0.23	0.71	49	0.78	0.39	1.90	77
Copper	mg/kg dw	-	-	-	18.0	19.0	20.0	5	9.30	12.00	12.0	14	5.10	2.70	8.20	52	17.0	19.0	20.0	8
Iron	mg/kg dw	-	-	-	590	880	217	59	217	235	219	4	519	380	869	43	329	553	1075	59
Lead	mg/kg dw	-	-	-	0.48	0.47	0.15	52	0.10	0.08	0.06	21	0.42	0.35	0.94	56	0.14	0.16	0.36	54
Lithium	mg/kg dw	-	-	-	0.66	1.00	0.24	60	0.30	0.27	0.14	36	0.73	0.55	1.50	55	0.17	0.25	0.69	76
Magnesium	mg/kg dw	-	-	-	1246	1396	1494	9	1056	1460	937	24	1113	406	1212	48	1292	1043	1531	19
Manganese	mg/kg dw	-	-	-	56.0	73.0	33.0	37	12.0	12.0	7.0	28	16.0	7.0	14.0	38	42.0	58.0	49.0	16
Mercury	mg/kg dw	-	-	-	0.07	0.07	0.06	7	0.05	0.07	0.04	28	0.28	0.14	0.22	33	0.12	0.13	0.13	3
Molybdenum	mg/kg dw	-	-	-	0.60	0.64	0.28	38	0.20	0.28	0.37	30	0.21	0.13	0.32	44	0.51	0.40	0.57	18
Nickel	mg/kg dw	-	-	-	10.0	20.0	5.5	63	5.2	13.0	11.0	42	6.0	3.5	8.6	42	12.0	10.0	30.0	64
Phosphorus	mg/kg dw	-	-	-	12573	13333	11670	7	13320	14049	9099	22	12315	4936	16989	53	11918	9933	12983	13
Potassium	mg/kg dw	-	-	-	14139	13868	10835	14	10379	15678	8567	32	7609	4256	22575	85	10484	8942	13443	21
Selenium	mg/kg dw	4	13	20	4.20	4.80	3.60	14	4.40	7.40	7.00	26	4.60	1.60	4.60	48	6.70	7.20	8.90	15
Silver	mg/kg dw	-	-	-	0.07	0.06	0.12	40	0.09	0.16	0.14	25	0.05	0.03	0.08	50	0.32	0.23	0.25	18
Sodium	mg/kg dw	-	-	-	4051	4090	3490	9	3534	5278	3121	29	2226	1759	5929	69	4026	3448	3495	9
Strontium	mg/kg dw	-	-	-	5.80	6.70	3.30	33	3.70	4.70	4.50	12	38.00	16.00	32.00	40	2.90	2.60	4.50	31
Thallium	mg/kg dw	-	-	-	0.05	0.06	0.02	53	0.23	0.22	0.13	29	2.10	0.88	3.00	54	0.02	0.02	0.04	41
Tin	mg/kg dw	-	-	-	0.69	0.40	0.17	62	0.43	0.73	0.78	29	0.30	7.20	15.00	98	0.42	0.45	1.00	52
Titanium	mg/kg dw	-	-	-	81.0	83.0	16.0	64	11.0	7.4	6.5	29	66.0	44.0	85.0	32	7.9	9.0	80.0	128
Uranium	mg/kg dw	-	-	-	0.05	0.09	0.02	60	0.03	0.03	0.03	10	0.07	0.05	0.12	48	0.02	0.03	0.07	67
Vanadium	mg/kg dw	-	-	-	1.70	2.00	0.51	56	0.57	0.46	0.43	15	2.70	2.10	3.40	24	0.52	0.68	3.40	105
Zinc	mg/kg dw	-	-	-	134	115	140	10	135	217	179	23	571	290	438	32	165	144	143	8

CMm = Coal Mountain Mine; LAEMP = local aquatic effects monitoring program; BC ENV = BC Ministry of Environment and Climate Change Strategy; CV% = coefficient of variation expressed as percentage; EVWQP = Elk Valley Water Quality Plan.

- = no guideline or data; < = below method detection limit; % = percent; g = grams; mg/kg dw = milligrams per kilogram dry weight.

 Value
 Value is greater than EVWQP Invertebrate Level 1 Benchmark.

 Value
 Value is greater than EVWQP Invertebrate Level 2 Benchmark.

Value Value is greater than the BC Invertebrate Tissue Guidelines for the Protection of Aquatic Life.

Table L-2: Benthic Invertebrate Tissue Chemistry Screening at CMm LAEMP Sampling Stations, 2022

Location		emistry Screening at CMM LA		pg Ctataone,			N	line-Influ	enced Stations							Min	e-Influenced St	ations				
Watercourse		BC Invertebrate Tissue EVWQP Invertebra		P Invertebrate	Michel Creek Corbin Creek						Michel Creek						Michel Creek					
Station		Guidelines for the	Bei	nchmarks		MIUCO)			CORC	(MIDCO)				MIDA	G	
Replicate		Protection of Aquatic Life			1	2	3	G) (0)	1	2	3	O) (0/	1	2	3	4	5	01/0/	1	2	3	O) (0)
Date		1	Level 1	Level 2	14-Sep-22	14-Sep-22	14-Sep-22	CV%	14-Sep-22	14-Sep-22	14-Sep-22	CV%	13-Sep-22	13-Sep-22	13-Sep-22	13-Sep-22	13-Sep-22	CV%	13-Sep-22	13-Sep-22	13-Sep-22	CV%
Parameter	Unit																					
Wet Mass	g	-	-	-	0.42	0.27	0.19	40	0.20	0.17	0.14	19	0.21	0.30	0.42	0.30	0.47	31	0.46	0.27	0.23	38
Dry Mass	g	-	-	-	0.08	0.05	0.04	32	0.06	0.04	0.03	29	0.05	0.07	0.09	0.06	0.10	28	0.10	0.06	0.04	47
Moisture	%	-	-	-	81.2	80.9	76.9	3	70.2	75.4	75.1	4	76.3	75.1	79.0	78.7	78.2	2	77.6	79.5	81.6	3
Aluminum	mg/kg dw	-	-	-	572	1144	791	35	113	116	131	8	3084	641	887	522	629	94	571	1314	343	68
Antimony	mg/kg dw	-	-	-	0.02	0.03	0.02	43	0.03	0.02	0.03	22	0.06	0.03	0.02	0.03	0.02	46	0.04	0.07	0.03	48
Arsenic	mg/kg dw	-	-	-	0.49	1.60	0.65	66	<0.401	<0.401	<0.401	-	0.81	<0.401	0.42	0.45	0.49	33	0.71	1.80	0.75	57
Barium	mg/kg dw	-	-	-	36.3	61.0	17.0	58	3.9	5.0	6.8	28	36.0	17.0	20.0	17.0	16.0	40	28.0	32.0	21.0	21
Boron	mg/kg dw	-	-	-	0.87	2.90	1.30	63	1.00	1.00	1.00	0	4.90	1.40	1.50	1.60	1.50	70	1.20	2.50	0.80	59
Cadmium	mg/kg dw	-	-	-	0.42	2.50	0.88	86	0.30	0.45	0.77	47	1.10	0.50	0.46	0.46	0.50	47	1.00	2.20	1.30	42
Calcium	mg/kg dw	-	-	-	647	1649	1356	42	2541	4134	3421	24	3845	2703	1824	2075	1710	36	1571	3651	2012	45
Chromium	mg/kg dw	-	-	-	2.40	7.90	4.70	55	4.40	6.80	3.50	35	7.40	4.80	7.20	4.20	4.80	26	5.20	7.20	4.30	27
Cobalt	mg/kg dw	-	-	-	0.40	1.50	0.67	67	12.00	7.50	7.50	29	55.00	17.00	21.00	19.00	16.00	65	9.80	20.00	10.00	44
Copper	mg/kg dw	-	-	-	15.7	21.0	13.0	25	11.0	16.0	12.0	20	14.0	15.0	11.0	12.0	12.0	13	15.0	15.0	19.0	14
Iron	mg/kg dw	-	-	-	332	920	485	53	147	217	155	22	1386	371	500	276	380	78	441	822	250	58
Lead	mg/kg dw	-	-	-	0.18	0.68	0.21	78	0.04	0.05	0.04	17	0.88	0.30	0.31	0.25	0.26	68	0.29	0.45	0.19	43
Lithium	mg/kg dw	-	-	-	0.38	0.81	0.30	55	0.26	0.26	0.26	1	1.40	0.37	0.43	0.40	0.40	75	0.44	0.84	0.25	60
Magnesium	mg/kg dw	-	-	-	1273	1290	1099	9	1132	1796	1571	23	1628	1320	1211	1065	1149	17	1140	1940	1656	26
Manganese	mg/kg dw	-	-	-	66.5	146.0	63.0	51	68.0	51.0	61.0	14	115.0	84.0	74.0	108.0	80.0	20	105.0	69.0	57.0	32
Mercury	mg/kg dw	-	-	-	0.06	0.07	0.06	12	0.02	0.03	0.04	29	0.04	0.05	0.04	0.03	0.03	20	0.07	0.06	0.08	14
Molybdenum	mg/kg dw	-	-	-	0.29	0.44	0.27	27	0.14	0.17	0.20	17	0.31	0.23	0.15	0.21	0.15	30	0.46	0.41	0.24	30
Nickel	mg/kg dw	-	-	-	4.1	13.0	7.4	55	14.0	13.0	11.0	12	37.0	17.0	21.0	25.0	18.0	34	16.0	25.0	12.0	38
Phosphorus	mg/kg dw	-	-	-	13014	12860	9944	14	8222	12064	9860	19	12290	11070	8882	11360	9377	13	10500	13247	15453	19
Potassium	mg/kg dw	-	-	-	11338	12558	7861	23	8371	9000	9403	6	12697	10407	8739	10617	8848	16	10872	12015	13085	9
Selenium	mg/kg dw	4	13	20	3.23	4.70	3.40	21	4.60	5.20	4.50	8	4.30	3.50	3.00	2.90	3.70	16	7.90	12.00	8.80	23
Silver	mg/kg dw	-	-	-	0.04	0.09	0.05	47	0.03	0.06	0.04	36	0.05	0.07	0.04	0.05	0.04	23	0.10	0.10	0.13	17
Sodium	mg/kg dw	-	-	-	6004	5079	3045	32	2649	4101	2839	25	5070	3745	3151	4013	3089	21	3437	4027	5445	24
Strontium	mg/kg dw	-	-	-	1.89	5.10	2.60	53	9.50	16.00	15.00	26	12.00	9.00	6.90	7.20	6.40	28	4.70	9.10	7.00	32
Thallium	mg/kg dw	-	-	-	0.04	0.07	0.04	36	0.02	0.03	0.02	26	0.15	0.05	0.05	0.06	0.05	60	0.05	0.09	0.09	26
Tin	mg/kg dw	-	-	-	0.13	0.76	0.32	80	0.07	0.22	0.26	55	0.58	0.62	0.28	0.53	0.23	40	0.19	0.70	0.85	60
Titanium	mg/kg dw	-	-	-	34.2	44.0	66.0	34	6.0	6.3	7.2	10	223.0	34.0	57.0	30.0	39.0	108	44.0	114.0	23.0	79
Uranium	mg/kg dw	-	-	-	0.01	0.06	0.02	74	0.03	0.03	0.03	9	0.11	0.04	0.05	0.04	0.04	59	0.06	0.08	0.04	37
Vanadium	mg/kg dw	-	-	-	0.79	1.20	0.99	21	0.22	0.29	0.25	13	4.00	0.83	1.10	0.76	0.82	94	1.20	2.30	0.62	62
Zinc	mg/kg dw	-	-	-	128	171	92	30	119	167	150	17	139	152	122	142	149	8	160	189	244	22

CMm = Coal Mountain Mine; LAEMP = local aquatic effects monitoring program; BC ENV = BC Ministry of Environment and Climate Change Strategy; CV% = coefficient of variation expressed as percentage; EVWQP = Elk Valley Water Quality Plan.

- = no guideline or data; < = below method detection limit; % = percent; g = grams; mg/kg dw = milligrams per kilogram dry wei ht.

 Value
 Value is greater than EVWQP Invertebrate Level 1 Benchmark.

 Value
 Value is greater than EVWQP Invertebrate Level 2 Benchmark.

Value Value is greater than the BC Invertebrate Tissue Guidelines for the Protection of Aquatic Life.

Table L-2: Benthic Invertebrate Tissue Chemistry Screening at CMm LAEMP Sampling Stations, 2022

	ertebrate Tissue Che	emistry Screening at CMm LA	AEMP Sampl	ing Stations, 2	2022							
Location		_						-Influenc	ed Stations			
Watercourse		BC Invertebrate Tissue		nvertebrate		Michel C			Michel (
Station		Guidelines for the	Benc	Benchmarks		MIULE				MIS	5	
Replicate		Protection of Aquatic Life			1	2	3	CV%	1	2	3	CV%
Date			Level 1	Level 2	12-Sep-22	12-Sep-22	12-Sep-22	C V /0	12-Sep-22	12-Sep-22	12-Sep-22	C V /0
Parameter	Unit											
Wet Mass	g	-	-	-	0.30	0.16	0.12	51	0.29	0.34	0.21	24
Dry Mass	g	-	-	-	0.06	0.03	0.02	49	0.07	0.06	0.04	30
Moisture	%	-	-	-	81.0	80.0	8.08	1	76.0	83.0	82.2	5
Aluminum	mg/kg dw	-	-	-	401	1589	1162	57	176	364	317	34
Antimony	mg/kg dw	-	-	-	0.04	0.07	0.04	32	0.02	0.04	0.04	33
Arsenic	mg/kg dw	-	-	-	0.68	1.10	0.84	24	0.62	0.62	0.78	13
Barium	mg/kg dw	-	-	-	22.0	55.0	35.0	45	35.0	93.0	90.0	45
Boron	mg/kg dw	-	-	-	0.76	2.70	1.90	55	0.76	1.60	1.40	35
Cadmium	mg/kg dw	-	-	-	1.10	2.10	1.80	31	1.10	1.50	2.90	52
Calcium	mg/kg dw	-	-	-	1881	4785	2537	50	1197	2293	2883	40
Chromium	mg/kg dw	-	-	-	4.60	17.00	9.10	61	3.50	13.00	4.80	73
Cobalt	mg/kg dw	-	-	-	6.10	13.00	11.00	35	1.90	2.40	3.20	26
Copper	mg/kg dw	-	-	-	13.0	13.0	10.0	14	11.0	13.0	13.0	9
Iron	mg/kg dw	-	-	-	363	969	651	46	162	444	338	45
Lead	mg/kg dw	-	-	-	0.25	0.55	0.39	38	0.14	0.20	0.21	21
Lithium	mg/kg dw	-	-	-	0.19	0.78	0.48	61	0.18	0.27	0.25	20
Magnesium	mg/kg dw	-	-	-	1220	1342	976	16	1131	1112	1105	1
Manganese	mg/kg dw	-	-	-	39.0	65.0	54.0	25	66.0	70.0	72.0	4
Mercury	mg/kg dw	-	-	-	0.06	0.06	0.06	3	0.08	0.09	0.07	11
Molybdenum	mg/kg dw	-	-	-	0.23	0.33	0.29	18	0.17	0.28	0.34	33
Nickel	mg/kg dw	-	-	-	13.0	34.0	20.0	48	8.3	28.0	15.0	59
Phosphorus	mg/kg dw	-	-	-	10553	10740	8111	15	10038	11057	11822	8
Potassium	mg/kg dw	-	-	-	8922	9968	7045	17	10757	11288	12532	8
Selenium	mg/kg dw	4	13	20	7.30	8.90	6.40	17	6.30	7.20	9.30	20
Silver	mg/kg dw	-	-	-	0.14	0.08	0.07	39	0.09	0.08	0.15	33
Sodium	mg/kg dw	-	-	-	3494	3530	2620	16	2671	2869	3313	11
Strontium	mg/kg dw	-	-	-	6.60	14.00	7.60	43	3.10	10.00	7.30	51
Thallium	mg/kg dw	-	-	-	0.06	0.14	0.09	43	0.03	0.04	0.04	13
Tin	mg/kg dw	-	-	-	0.46	0.68	0.77	25	0.26	0.36	0.39	20
Titanium	mg/kg dw	-	-	-	29.0	95.0	63.0	53	9.3	22.0	18.0	40
Uranium	mg/kg dw	-	-	-	0.03	0.08	0.05	49	0.02	0.06	0.07	56
Vanadium	mg/kg dw	-	-	-	0.63	2.90	1.70	65	0.36	1.10	0.69	52
Zinc	mg/kg dw	-	-	-	196	164	147	15	144	128	163	12

Note: Data were screened against the approved invertebrate tissue guideline for the protection of aquatic life (BC ENV 2019a) and EVWQP benchmarks for selenium. Invertebrate tissue guidelines and benchmarks were not available for additional parameters. Grey cells represent concentrations that exceed the British Columbia invertebrate tissue guideline.

CMm = Coal Mountain Mine; LAEMP = local aquatic effects monitoring program; BC ENV = BC Ministry of Environment and Climate Change Strategy; CV% = coefficient of variation expressed as percentage; EVWQP = Elk Valley Water Quality Plan.

- = no guideline or data; < = below method detection limit; % = percent; g = grams; mg/kg dw = milligrams per kilogram dry wei ht.

 Value
 Value is greater than EVWQP Invertebrate Level 1 Benchmark.

 Value
 Value is greater than EVWQP Invertebrate Level 2 Benchmark.

Value Value is greater than the BC Invertebrate Tissue Guidelines for the Protection of Aquatic Life.

APPENDIX M

Declaration of Competency and Conflict of Interest

This statement is to acknowledge that the undersigned was/were responsible for the preparation and/or review of the **2022 Coal Mountain Mine Local Aquatic Effects Monitoring Report** (the "Report") submitted to Teck Coal Limited on 29 June 2023.

The Report was prepared using the data and other information available to the undersigned at the time of writing, along with the past experience and professional judgement of the undersigned. To the best of the knowledge, information and belief of the undersigned the Report is considered to be true and accurate as the time of writing and is subject to the assumptions stated therein.

Date:

29 June 2023

Author Name:

Kelly Hille, M\$c, RPBio

Author Title and Company:

Lead, Aquatic Scientist, WSP Canada Inc.

Signature/Stamp:

Declaration of Competency

The Ministry of Environment and Climate Change Strategy relies on the work, advice, recommendations and in some cases decision making of qualified professionals¹, under government's professional reliance regime. With this comes an assumption that professionals who undertake work in relation to ministry legislation, regulations and codes of practice have the knowledge, experience and objectivity necessary to fulfill this role.

1.	Name of Qualified Professional Kelly, Hille
	Title <u>Lead</u> , Aquatic Scientist
2.	Are you a registered member of a professional association in B.C.? ✓ Yes □ No
	Name of Association: College of Applied Biologists Registration # 3149
3.	Brief description of professional services:
	Preparation and review of agaz coal Mountain Mine
	local aquatic effects Monitoring program report
	, , , , , , , , , , , , , , , , , , ,

This declaration of competency is collected under section 26(c) of the *Freedom of Information and Protection of Privacy Act* for the purposes of increasing government transparency and ensuring professional ethics and accountability. By signing and submitting this statement you consent to its publication and its disclosure outside of Canada. This consent is valid from the date submitted and cannot be revoked. If you have any questions about the collection, use or disclosure of your personal information please contact the Ministry of Environment and Climate Change Strategy Headquarters Office at 1-800-663-7867.

Declaration

I am a qualified professional with the knowledge, skills and experience to provide expert information, advice and/or recommendations in relation to the specific work described above.

Signature:

Prior Name: Hally Hills

Witnessed by:

Drint Name

Date signed: <u>a9-June</u> - 2023

- a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and
- b) through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

 $^{^{1}}$ Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

Conflict of Interest Disclosure Statement

A qualified professional ¹ providing services to either the Ministry of Environment and Climate Change Strategy ("ministry"), or to a regulated person for the purpose of obtaining an authorization from the ministry, or pursuant to a requirement imposed under the *Environmental Management Act*, the *Integrated Pest Management Act* or the *Park Act* has a real or perceived conflict of interest when the qualified professional, or their relatives, close associates or personal friends have a financial or other interest in the outcome of the work being performed.

A real or perceived conflict of interest occurs when a qualified professional has

- a) an ownership interest in the regulated person's business;
- b) an opportunity to influence a decision that leads to financial benefits from the regulated person or their business other than a standard fee for service (e.g. bonuses, stock options, other profit sharing arrangements);
- c) a personal or professional interest in a specific outcome;
- d) the promise of a long term or ongoing business relationship with the regulated person, that is contingent upon a specific outcome of work;
- e) a spouse or other family member who will benefit from a specific outcome; or
- f) any other interest that could be perceived as a threat to the independence or objectivity of the qualified professional in performing a duty or function.

Qualified professionals who work under ministry legislation must take care in the conduct of their work that potential conflicts of interest within their control are avoided or mitigated. Precise rules in conflict of interest are not possible and professionals must rely on guidance of their professional associations, their common sense, conscience and sense of personal integrity.

<u>Declaration</u>	
I Retterst an Harrie as a member of declare	Hat N: Collegession As Applied Brologist.
Select one of the following:	y Arthru
Absence from conflict of interest	
Other than the standard fee I will receive for my profession other interest in the outcome of this Coal Mountain Mills I further declare that should a conflict of interest arise in the work, I will fully disclose the circumstances in writing and we be the circumstances in writing and we be the circumstances in writing and we have the circumstances in which we have the circumstances in which we have the circumstances in the circumstances in which we have the circumstances in the circumstances in the circumstances in the circumstances in the circumstances in the circumstances in the circumstances in the circumstances in the circumstances in the circumstances in the circumstances in the circumstances in the circumstances in the	ne future during the course of this

☐ Real or perceived conflict of interest	
Description and nature of conflict(s):	<u>-</u>
I will maintain my objectivity, conducting my work in accordance with my Code of Ethand standards of practice.	- iics
In addition, I will take the following steps to mitigate the real or perceived conflict(s) have disclosed, to ensure the public interest remains paramount:	l -
Further, I acknowledge that this disclosure may be interpreted as a threat to my independence and will be considered by the statutory decision maker accordingly.	- -

This conflict of interest disclosure statement is collected under section 26(c) of the *Freedom of Information and Protection of Privacy Act* for the purposes of increasing government transparency and ensuring professional ethics and accountability. By signing and submitting this statement you consent to its publication and its disclosure outside of Canada. This consent is valid from the date submitted and cannot be revoked. If you have any questions about the collection, use or disclosure of your personal information please contact the Ministry of Environment and Climate Change Strategy Headquarters Office at 1-800-663-7867.

Signature:

Print name:

Kelly Hille

Witnessed by:

rint name:

Date: 29 - June - 2023

¹Qualified Professional, in relation to a duty or function under ministry legislation, means an individual who

a) is registered in British Columbia with a professional association, is acting under that organization's code of ethics, and is subject to disciplinary action by that association, and

through suitable education, experience, accreditation and knowledge, may reasonably be relied on to provide advice within his or her area of expertise, which area of expertise is applicable to the duty or function.

